UNCLASSIFIED

AD NUMBER:

AD0834233

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLDC), Kirtland AFB, N.M. Distribution of this doucment is limited because of the technology discussed.

AUTHORITY

ST-A AFWL LTR, 30 NOV 1971

AFWL-TR-67-143

ENGINEERING CHARACTERISTICS OF

SOME SOUTHEAST ASIAN SOILS

James L. Post

The Eric H. Wang Civil Engineering Research Facility University of New Mexico

> Albuquerque, New Mexico Contract F29601-68-C-0009

TECHNICAL REPORT NO. AFWL-TR-67-143

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

May 1968

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLDC) , Kirtland AFB, NM, 87117.

AIR FORCE WEAPONS LABORATORY Air Force Systems Command Kirtland Air Force Base New Mexico

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report is made available for study with the understanding that proprietary interests in and relating thereto will not be impaired. In case of apparent conflict or any other questions between the Government's rights and those of others, notify the Judge Advocate, Air Force Systems Command, Andrews Air Force Base, Washington, D. C. 20331.

DO NOT RETURN THIS COPY. RETAIN OR DESTROY.

.19

ENGINEERING CHARACTERISTICS OF SOME SOUTHEAST ASIAN SOILS

James L. Post

The Eric H. Wang Civil Engineering Research Facility University of New Mexico Albuquerque, New Mexico Contract F29601-68-C-0009

TECHNICAL REPORT NO. AFWL-TR-67-143

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFWL (WLDC), Kirtland AFB, N.M. Distribution of this document is limited because of the technology discussed.

FOREWORD

This report was prepared by the Eric H. Wang Civil Engineering Research Facility, University of New Mexico, Albuquerque, New Mexico, under Contract F29601-68-C-0009. The research was performed under Program Element 6.44.15.06.4, Project 1559, Task 113, and was funded by the Aeronautical Systems Division (ASD).

Inclusive dates of research were 26 June 1967 to 28 November 1967. The report was submitted 19 April 1968 by the AFWL Project Officer, Lt J. R. Salley, (WLDC).

The help of Lt Salley and Lt John Trierweiler (WLDC) in securing samples and providing assistance in this investigation is greatly appreciated by the author.

This report has been reviewed and is approved.

Valles

J. R. SALLEY 1Lt, USAF Project Officer

ROBERT E. CRAWFORD Lt Colonel, USAF Chief, Civil Engineering Branch

GEORGE C. DARBY.

Colonel, USAF Chief, Development Division

ABSTRACT

(Distribution Limitation Statement No. 2)

The physical characteristics and the chemical and mineralogical compositions of soils from selected sites in Southeastern Asia were investigated to determine scil properties and effective chemical stabilants. The effect of additives on soil-cement was determined, and the fluence of the grain-size distribution of the soil gradation on soil-cement compressive strength was investigated. The unconfined compressive strengths of the cured soil-cements, compacted at ASTM standard optimum moisture-densities, were determined and correlated with mineralogical and chemical soil characteristics. The soil samples were mostly sandy soils and lateritic soils, composed mainly of quartz, perthite, kaolinite, illite, and goethite, or some combination of these minerals. Portland cement proved to be the most effective soil stabilization agent that gave adequate compressive strength to the soil-cement mixtures. Thailand portland cement and lime products were found to be of good quality, comparable to U.S. products. Aluminous cement additive was effective with some soils but was not very reliable, and lime additive proved to be of little value. The compressive strength of the soilcements depended mainly on gradation of the soils and was not affected adversely by the sesquioxides in the lateritic soils. Additional tests are required to more accurately delineate the most beneficial soil gradations for soil-cements.

CONTENTS

Section			Page
Ι	LAB	ORATORY PROCEDURE	1
	1.	Introduction	1
	2.	Mechanical Analyses	1
	3.	Soil Stabilization	2
	4.	Chemical Analyses	5
	5.	Mineralogical Analyses	6
II	EFF	TECT OF SOIL STABILIZATION ADDITIVES	8
	1.	General	8
	2.	Portland Cement Additive	9
	3.	Portland Cement-Hematite Additives	10
	4.	Portland Cement-Calcite Additives	10
	5.	Portland Cement-Lime Additives	11
	6.	Aluminous Cement Additive	11
	7.	Lime Additive	12
	8.	Thailand Cement Additives	12
	9.	Soil Grain-Size Additives	13
	10.	Soil-Aggregate Stabilization	16
III	SOI	IL MINERALOGY	18
	1.	Analysis Procedures	18
	2.	Silicates	18
	3.	Clay Minerals	19
	4.	Iron Sesquioxides	19
	5.	Trace Minerals	20
IV	COR	RELATION OF SOIL-CEMENT CONSTITUENTS	22
	1.	Grain-Size Distribution	22
	2.	Soil-Cement Strength	22
v	SUM	MARY AND RECOMMENDATIONS	29
	1.	Summary	29
	2.	Recommendations	30

v

CONTENTS	(Cont'd)
----------	----------

Section	Page
Appendix: Test Data Summary by Site	31
Bien Hoa	32
Cam Ranh Bay	47
Don Muang	62
Nakhon Phanom	70
Phan Rang	82
Tan Son Nhut	93
Tuy Hoa	103
Ubon	115
Udorn	127
U Tapao	135
References	144
Distribution	146

ILLUSTRATIONS

Figure		Page
1	Plasticity chart for SEA soils using the Unified Soil Classification, 10 sites, 34 samples	3
2	The effect of kaolinite additive on the compressive strength of soil-cement mixtures (portland cement), Cam Ranh Bay sample 1	14
3	The effect of kaolinite additive on the compressive strength of soil-cement mixtures (portland cement), Tuy Hoa sample 1	15
4	Grain-size distribution limits for soil samples giving 7-day compressive strengths of 900 to 1,300 psi in soil-cements with 10-percent portland cement	23
5	Grain-size distribution limits for soil samples giving 7-day compressive strengths of 500 to 700 psi in soil-cements with 10-percent portland cement	24
6	Grain-size distribution curve for soil mixture consisting of 80 percent of sample 2 from Don Muang and 20 percent of sample 2 from Tuy Hoa	26
7	Effect of clay-size content on maximum compressive strength of soil-cement made from SEA soils with U.S. portland cement cured for 7 and 28 days	28
8	Grain-size distribution curve, Bien Hoa sample 1	33
9	Grain-size distribution curve, Bien Hoa sample 2	34
10	Grain-size distribution curve, Bien Hoa sample 3	35
11	Grain-size distribution curve, Bien Hoa sample 4	36
12	Grain-size distribution curve, Bien Hoa sample 5	37
13	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Bien Hoa sample 1	41
14	Compressive-strength changes with time in compacted soil- cement mixtures (portland cementhematite), Bien Hoa sample 1	42
15	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Bien Hoa sample 2	43
16	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Bien Hoa sample 3	44
17	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Bien Hoa sample 4	45

ILLUSTRATICNS (Cont'd)

Figure		Page
18	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Bien Hoa sample 5	46
19	Grain-size distribution curve, Cam Ranh Bay sample 1	48
20	Grain-size distribution curve, Cam Ranh Bay sample 2	49
21	Grain-size distribution curve, Cam Ranh Bay sample 3	50
22	Grain-size distribution curve, Cam Ranh Bay sample 4	51
23	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Cam Ranh Bay sample 1	55
24	Compressive-strength changes with time in compacted soil- cement mixtures (portland cementcalcite), Cam Ranh Bay sample 1	56
25	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Cam Ranh Bay sample 2	57
26	Compressive-strength changes with time in compacted soil- cement mixtures (portland cementhematite), Cam Ranh Bay sample 2	58
27	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Cam Ranh Bay sample 3	59
28	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Cam Ranh Bay sample 4	60
29	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Cam Ranh Bay sample 4	61
30	Grain-size distribution curve, Don Muang sample 1	63
31	Grain-size distribution curve, Don Muang sample 2	64
32	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Don Muang sample 1	68
33	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Don Muang sample 2	69
34	Grain-size distribution curve, Nakhon Phanom sample 1	71
35	Grain-size distribution curve, Nakhon Phanom sample 2	72
36	Grain-size distribution curve, Nakhon Phanom sample 3	73

-

. .

ILLUSTRATIONS (Cont'd)

igure		Page
37	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 1	77
38	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 2	78
39	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 3	79
40	Compressive-strength changes with time in compacted soil- cement mixtures (lime), Nakhon Phanom sample 3	80
41	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 4	81
42	Grain-size distribution curves, Phan Rang samples 1, 2, and 3	83
43	Grain-size distribution curve, Phan Rang sample 4	84
44	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 1	88
45	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Phan Rang sample 1	89
46	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 2	90
47	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 3	91
48	Compressive-strength changes with time in compactel soil- cement mixtures (portland cement), Phan Rang sample 4	92
49	Grain-size distribution curve, Tan Son Nhut sample 1	94
50	Grain-size distribution curve, Tan Son Nhut sample 2	95
51	Grain-size distribution curve, Tan Son Nhut sample 3	96
52	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tan Son Nhut sample 1	100
53	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tan Son Nhut sample 2	101
54	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tan Son Nhut sample 3	102
55	Grain-size distribution curve, Tuy Hoa sample 1	104
	 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 1 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 2 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 3 Compressive-strength changes with time in compacted soil- cement mixtures (lime), Nakhon Phanom sample 3 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 4 Grain-size distribution curves, Phan Rang samples 1, 2, and 3 Grain-size distribution curve, Phan Rang sample 1, 2, and 3 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 1 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 1 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 2 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 2 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 2 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 3 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 3 Grain-size distribution curve, Tan Son Nhut sample 1 Grain-size distribution curve, Tan Son Nhut sample 1 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tan Son Nhut sample 2 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tan Son Nhut sample 2 Compressive-strength changes with time in compacted soil- cement

ILLUSTRATIONS (Cont'd)

Figure		Page
56	Grain-size distribution curve, Tuy Hoa sample 2	105
57	Grain-size distribution curve, Tuy Hoa sample 3	106
58	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tuy Hoa sample 1	110
59	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tuy Hoa sample 2	111
60	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tuy Hoa sample 3	112
61	Compressive-strength changes with time in compacted soil- cement mixtures (lime), Tuy Hoa sample 3	113
62	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Tuy Hoa sample 3	114
63	Grain-size distribution curve, Ubon sample 1	116
64	Grain-size distribution curve, Ubon sample 2	117
65	Grain-size distribution curve, Ubon sample 3	118
66	Grain-size distribution curve, Ubon sample 4	119
67	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Ubon sample 1	123
68	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Ubon sample 2	124
69	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Ubon sample 3	125
70	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Ubon sample 4	126
71	Grain-size distribution curve, Udorn sample 1	128
72	Grain-size distribution curve, Udorn sample 2	129
73	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Udorn sample 1	133
74	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Udorn sample 2	134
75	Grain-size distribution curve, U Tapao sample 1	136

ILLUSTRATIONS (Cont'd)

	Page
Grain-size distribution curve, U Tapao sample 2	137
Grain-size distribution curve, U Tapao sample 3	138
Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), U Tapao sample 1	142
Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), U Tapao sample 3	143
	Grain-size distribution curve, U Tapao sample 3 Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), U Tapao sample 1 Compressive-strength changes with time in compacted soil

TABLES

Table		Page
1	Soil-cement mixtures	9
2	Percent ferric oxide content of laterites	20
3	Properties of soils from Bien Hoa	38
4	Soil mineralogy, Bien Hoa	39
5	Stabilization of soils from Bien Hoa	40
6	Properties of soils from Cam Ranh Bay	52
7	Soil mineralogy, Cam Ranh Bay	53
8	Stabilization of soils from Cam Ranh Bay	54
9	Properties of soils from Don Muang	65
10	Soil mineralogy, Don Muang	66
11	Stabilization of soils from Don Muang	67
12	Properties of soils from Nakhon Phanom	74
13	Soil mineralogy, Nakhon Phanom	75
14	Stabilization of soils from Nakhon Phanom	76
15	Properties of soils from Phan Rang	85
16	Soil mineralogy, Phan Rang	86
17	Stabilization of soils from Phan Rang	87
18	Properties of soils from Tan Son Nhut	97
19	Soil mineralogy, Tan Son Nhut	98
20	Stabilization of soils from Tan Son Nhut	99
21	Properties of soils from Tuy Hoa	107
22	Soil mineralogy, Tuy Hoa	108
23	Stabilization of soils from Tuy Hoa	109
24	Properties of soils from Ubon	120
25	Soil mineralogy, Ubon	121
26	Stabilization of soils from Ubon	122

xii

TABLES (Cont'd)

Table		Page
27	Properties of soils from Udorn	130
28	Soil mineralogy, Udorn	131
29	Stabilization of soils from Udorn	132
30	Properties of soils from U Tapao	139
31	Soil mineralogy, U Tapao	140
32	Stabilization of soils from U Tapao	141

BLANK PAGE

SECTION I

LABORATORY PROCEDURE

1. Introduction.

The purpose of this investigation was to determine the physical characteristics and composition of soils found near air traffic facilities in Southeast Asia (SEA). Soil stabilization procedures are also given for the soil samples which have been secured. The term "soil stabilization," as used in this study, refers to the process by which the physical properties of the soils may be improved to provide an adequate foundation material for support of loads transmitted to it.

Thirty-four soil samples were secured from ten sites, representing some of the more common types of soils to be found in Vietnam and Thailand. A general soil map of Vietnam assembled by Moormann is available in reference 1. The soils were classified according to soil types and tested with chemical stabilants which are available in that part of the world. Thailand lime and portland cement were tested and compared with analogous products manufactured in the United States.

Procedures were developed for the preparation of acceptable soil-cement material from the soils of Southeast Asia. Many of the soils used in construction are referred to as "lateritic" soils, or "latosols." Lateritic soils may be defined as soils possessing concretionary formations or sesquioxide-rich crusts in at least one of their horizons (ref. 2).

2. Mechanical Analyses.

Each soil sample, consisting of 6 to 10 kilograms of partially saturated soil, was tested for moisture content, was air-dried, and then broken down with a mortar and rubber pestle. The lateritic soils contained nodules of weakly indurated material. These nodules were formed mainly of concentric layers of goethite and kaolinite and when air-dired could often retain as much moisture as the soil fraction passing the No. 10 U.S. Standard sieve. The soil moisture data are given in the appendix.

The following standard test procedures were used for soil classification purposes as given in the ASIM Procedures for Testing Soils (ref. 3).

Liquid limit Plastic limit and Plasticity Index Specific gravity Grain-size analysis ASTM Designation: D423-61T
 ASTM Designation: D424-59
 ASTM Designation: D854-58
 ASTM Designation: D422-63

An ASTM 152-H hydrometer was used for the fines portion of the grain-size analysis, and the hydrometer test was generally allowed to run for only 250 minutes, this being sufficient to show the amount of clay-size material in the soil samples. The range of the silt-size material was taken to be from 0.05 millimeter (mm) to 5 microns (μ); the grain-size distribution curves were plotted on 6-cycle semilog paper. The results of the soil tests are included in the appendix by site.

The soils are classified according to the Unified Soil Classification System and the American Association of State Highway Officials (AASHO) Classification System, using the appropriate grain-size limits in each case. These classifications are also given on the data sheets in the appendix.

From two to five bulk soil samples were taken from separate pits at each site, except at Phan Rang where three soil samples were taken across one soil column. The plasticity characteristics of all the soils tested are shown on the plasticity chart in figure 1 where the number of nonplastic soils is also indicated. Most of these soils are quite inactive, the activity (Plasticity Index/ $[-2 \mu]$ clay fraction) being less than 0.75 in every case. Nearly every type of inorganic soil is represented by the soil samples received; however, the two most common soil types received were sandy soils (15 samples) and lateritic soils (9 samples). Because of the small soil samples received and the large portion of nodules in the lateritic soils, the indurated material in those soils was pulverized and used for testing.

3. Soil Stabilization.

The hygroscopic moisture of the soil fraction passing the No. 20 sieve was determined for each of the 33 samples, and the samples were subsequently thoroughly mixed and stored in sealed plastic bags. One soil sample from Nakhon Phanom consisted of heavily indurated laterite. This sample was reduced to material that was less than 1 mm in size by a mechanical pulverizer.

A Harvard miniature compaction apparatus (ref. 4) was used because of the small amount of soil sample material, and time, available. The material as compacted in five layers using 25 blows per layer with a 25-pound tamper spring.

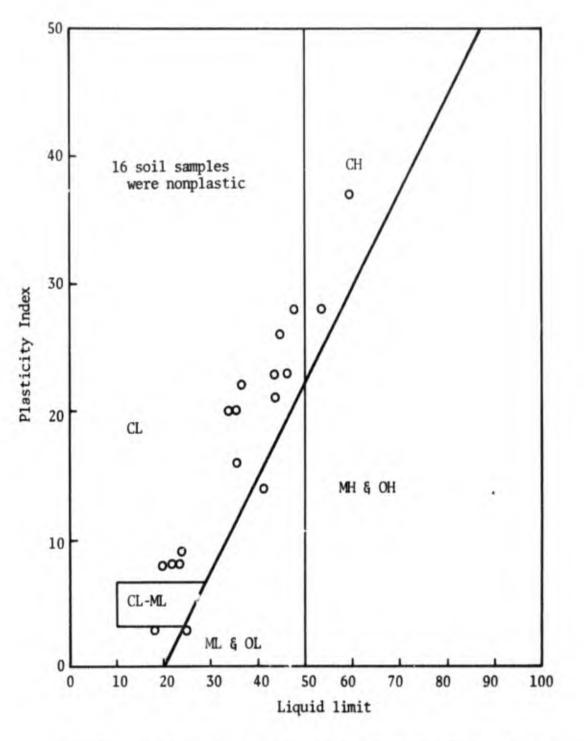


Figure 1. Plasticity chart for SEA soils using the Unified Soil Classification, 10 sites, 34 samples

.

The moisture-density relationships obtained with the Harvard miniature compaction apparatus were comparable to those of the ASTM 'Moisture-Density Relations of Soils Using 5.5-pound Rammer and 12-inch Drop (D698-64T)." The correlation procedure has been described by Wilson (ref. 4).

A moisture-density plot was made for each soil sample, and from each plot the optimum moisture-density relations were determined. These data are given in the appendix. The water adsorptive characteristics of the soil stabilization additives were determined from their moisture-density curves by determining the moisture content at maximum density (e.g., 25 grams of water per 100 grams of portland cement). The water content of the soil-additive mixtures was adjusted to attain optimum moisture content, and the soil-cement mixtures were then compacted to maximum density.

The soil additives were chosen for investigation to satisfy certain criteria. These included availability (both from the United States and Thailand), satisfactory soil-cement strengths, economy, resistance to erosion, and general reliability. All the soil samples were tested using portland cement, Type I (PC). The only other additives used were hydrated lime, hematite, calcite, Lumnite^{*} (aluminous cement), and various combinations of these additives. Hydrated lime and portland cement, Type I, from Thailand were also used in order to compare them to lime and portland cement from the United States. The testing of additional additives was felt unnecessary after it had been determined that the grain-size distribution of SEA soils was a major factor in the development of their soil-cement strengths. This factor is discussed in detail in section IV.

Duplicate soil-cement cylinders were compacted with two different amounts of additive and at two curing times. The soil-cement cylinders were stored in a high-humidity environment for 7 and 28 days. At the end of these curing times the soil-cement cylinders were submerged in water for 1 hour, removed, and tested for unconfined compressive strength. Six of the soil samples consisted of uniformly graded sands. Extra compaction sleeves were prepared and the sandcement mixtures were compacted and allowed to cure in these open-ended sleeves. The soil-cement cylinders were then easily extruded and were treated in the same manner as the other specimens.

Lumnite, registered trademark, used by permission of The Reardon Co., St. Louis, Mo.

The soil-cement cylinders were tested at a strain rate of about 0.05 inch per minute (in./min), with only the maximum strain and strength being recorded. The type of failure and the moisture content at failure were also noted for test control. The maximum strength of the soil-cement cylinders was reduced to maximum unit stress and expressed in pounds per square inch (psi). The strength of each soil-additive mixture was plotted with respect to curing time when both 7- and 28day data were available. When insufficient time was available for further 28-day curing periods, some additional soil-cement mixtures were allowed to cure for 7 and 14 days. These data are presented in the appendix by site.

The minimum criteria for successfully stabilized soil-cement mixtures vary but are generally considered to require a 7-day compressive strength greater than 250 psi for rural roadways and 400 psi for main roads (ref. 5). The state of California requires a 7-day compressive strength of 750 psi for cemented aggregate base material (ref. 5). The criteria should take into account the precipitation, erosion, ground water, and traffic conditions at each site.

4. Chemical Analyses.

Four types of chemical tests were conducted on all the soil samples. They included tests for determining water solubility, organic content, hydrogen activity determination (pH), and equivalent ferric iron content (expressed as Fe_20_3). Preliminary investigation of the X-ray diffraction traces indicated the presence of significant amounts of calcite in three soil samples and gypsum in one; as a result, three equivalent carbonate tests were conducted (expressed as $CaCO_3$), and one equivalent gypsum test was conducted (expressed as $CaSO_4 \cdot 2H_20$).

The water-solubility test consisted of leaching about 250 milliliters of boiling water through 10 grams of soil that has been broken down to material finer than 2 mm in size, the leachate being retained for further analysis. This test is a rough index of the more soluble salts in a soil.

The organic contents were determined according to the dichromate method given by Akroyd (ref. 6). This method is comparable to procedure #24 given in the Agriculture Handbook No. 60 (ref. 7). The equivalent carbonate tests were conducted according to procedure #23b, alkaline-earth carbonates by gravimetric loss of carbon dioxide, in the same Handbook. This method generally gives an accuracy to within 1 percent by weight.

The pH of the soil samples was determined by the method proposed by Jackson (ref. 8), the "sticky point" method. The sticky point is reached when the soil

is just wet enough to stick firmly to a spatula pressed to a soil mass and pulled directly away from it. This method was used in an effort to determine the pH of the "bound" water in the soil-water system. In general, the more dilute the soil suspension, the higher the soil pH value found, because of the effect of the "free" water pH.

A fast, simple method for determining the percent of ferric oxide in soil samples was used. "Iron oxide will go into solution when hot hydrochloric acid is used to leach the soil, and the iron leached from the soil may be determined iodometrically" (ref. 9). A rough estimate of the iron in a soil sample may also be made from the X-ray fluorescence background that occurs when the sample is subjected to X-ray radiation from a copper target.

The equivalent gypsum content of a soil was determined by gravimetric procedures, taking advantage of the narrow dehydration range of the mineral. The soil may be heated to 50° C, weighed, reheated to 105° C, and reweighed. The weight loss, as shown by Deer et al. (ref. 10), is due almost entirely to the dehydration of gypsum. This method appears to give an accuracy to within 1 percent by weight.

The results of these chemical analyses are also given in the appendix.

5. Mineralogical Analyses.

The mineral constituents of the soils were determined by X-ray diffraction analyses, using the spectrometric powder technique. The soils were reduced to material passing a No. 140 sieve, and X-ray diffraction traces were made from the randomly oriented powder samples according to the procedure given by Klug and Alexander (ref. 11).

The X-ray apparatus has a horizonal goniometer with a vertical specimen rack. For this reason the powder samples were pressed into the sample holder so that they would remain in place; thus, random orientation was not achieved with all soil minerals because of the cleavage habits of such minerals as the feldspars. This sample mounting procedure provided the advantage that a reliable quantitative analysis procedure could be developed.

X-ray diffraction patterns were made of each soil sample; and when more than 25 percent of a sample consisted of material coarser than 2 mm, a pattern was made of both the coarse and fine material. Mineral analyses were made using these patterns, along with the results of the chemical tests. The operating procedure for producing the diffraction patterns, using the General Electric XRD-5 unit, was as follows:

Copper Target--Nickel Filter

Chromium Target--Zirconium Oxide Filter

The chromium target was used to make X-ray diffraction patterns of soil samples with a high iron content because of X-ray fluorescence induced by use of a copper target ($\Delta Z = 3$).

The X-ray powder diffraction data used for the analyses of the soil samples were obtained mainly from the ASTM powder diffraction file. Other sources of information included data published by the British Mineralogical Society (ref. 12) and by Grim (ref. 13).

The procedures used for quantitative analyses were developed by Klug and Alexander (ref. 11) and recently elaborated by Moore (ref. 14).

SECTION II

EFFECT OF SOIL STABILIZATION ADDITIVES

1. General.

Thirty-four soil samples from ten sites were tested with 5- and 10-percent portland cement additive (PC) to determine its effectiveness as a soil stabilization agent and to compare the soil-cement mixtures. After the results of the portland cement additive were observed for the 7-day curing period and the predominant soil minerals were identified, other soil additives described on the following pages were tried.

There have been many studies of the characteristics of lateritic soils; however, the results of these studies are not so well known north of the tropics. Lateritic soils, in particular, have been investigated and discussed for over 150 years. The Natural Resources Research IV review by Maignien (ref. 2) probably contains the most complete summary of the nature and formation of lateritic soils; and volume III, chapter XI, of Soils Engineering, published by the United States Army, probably contains the most complete summary of the engineering characteristics of tropical soils (ref. 15). Recently an investigation was made of the comparison of engineering properties of some tropical and temperate soils, including soils from Thailand (ref. 16). Investigations of the engineering characteristics of lateritic soils began in the United States during World War II, one of the first studies being conducted in 1945 by Fruhauf (ref. 17). More recently much attention has been given to the problem of stabilizing tropical soils for use in road construction. Indurated laterites have been used as construction materials in the tropics for centuries and have been one of the main sources of aggregate for road construction. More recently in many cases stabilization of the in-situ material has proved to be faster and more economical. In Rhodesia, for example, hydrated lime and portland cement are now being used as soil stabilization agents (ref. 18).

Systematic studies of soil stabilization are being conducted at the SEATO Graduate School of Engineering in Thailand. Some of the completed studies include the effect of sulfates on lateritic soil-cements (ref. 19), asphaltic stabilization of lateritic soils (ref. 20), and the cement treatment of lateritic soils (ref. 21). The investigation of the engineering properties of lateritic soils will continue to become more important because it has been estimated (ref. 22) that these soils comprise the most common soil type on earth.

The choice of different additives to soil-cements was determined according to the mineral constituents in the soil samples and the grain-size distribution of the soils. The soil mineralogy is discussed in the following section. The soil samples were classified according to the results of mechanical analyses and tested according to soil type by using the following soil-cement mixtures (table 1).

Additional soil samples were tested using various portions of the material coarser than 2 mm. The coarse-size fractions of all the soils were pulverized for chemical tests. Two soil samples were reconstituted using the broken-down coarse-size material tested with portland cement additive, and the coarse-size fractions of three different soil samples were tested with portland cement additive.

2. Portland Cement Additive.

Type I portland cement was used, in amounts of 5 and 10 percent by ovendry weight, as a soil stabilant to compare the different soil-cement mixtures and to determine the soil-cement strengths of tropical soils in comparison with other soils that have been tested. It was found that about half of the soilcement mixtures could be given a 28-day unconfined compressive strength greater than 250 psi with a 5-percent portland cement admixture. A 10-percent portland cement admixture proved to give strengths greater than 250 psi for all but four of the soil-cement mixtures for the same curing time. These four mixtures consisted of two soils from Cam Ranh Bay containing uniformly

TABLE 1

SOIL-CEMENT MIXTURES

Additive	Number of soil samples
Portland cement	33
Hydrated lime	7
Aluminous cement (Lumnite)	4
Thailand portland cement	5
Thailand lime	3
Hematite and portland cement	3
Calcite and portland cement	1
Kaolinite and portland cement	2
Hydrated lime and portland cement	1
Sand and portland cement	2

graded sand and two soils from Nakhon Phanom containing lateritic nodules with little sand-size material. The results of these tests are given in the appendix. The "Jinglestone" aggregate from U Tapao is comparable to the soil sample from Red Horse Hill and should give similar aggregate-cement strengths. The reasons for the soil-cement strength variations are discussed in section IV.

It should be noted that eight of the soil-cement samples showed no further strength increases after 7 days curing time, and four of these showed some strength decrease. In areas of high rainfall the resultant soil leaching may be deleterious to soil-cement that is not covered with a waterproofing agent.

There appeared to be few reactive agents in the tested soil samples, the agents having been leached out by tropical weathering in most cases. The organic content of the soil samples was quite small, only three soil samples containing more than 1 percent; and the soils were also inactive, none greater than 0.75 $(PI/[-2 \mu])$ clay content). Sample 1 from Don Muang contained about 3-percent gypsum.

3. Portland Cement-Hematite Additives.

Iron oxide is very common in tropical soils, giving rise to the red, orange, and yellow color in the soils. When present in small amounts, iron oxide is usually hydrated and appears as goethite; and when it is a predominant portion of the soil, it may occur partly as goethite and partly as hematite (ref. 2).

Small amounts of hematite were added to soil-cement mixtures, using portland cement, to determine the effect of hematite on calcareous cement reactions in soils. Hematite, in the amounts of 2 and 5 percent by weight of oven-dry soil, was added to three samples consisting of sand from Bien Hoa and Cam Ranh Bay, along with 5- and 10-percent portland cement additive. The hematite does not appear to affect the 7-day strength of the 5-percent PC mixtures or the 7- and 28-day strength of the 10-percent PC mixtures, but the 2- and 5-percent hematite additive both appear to retard any additional strength gain in the 5-percent PC mixture after 7 days curing time. Uniform sand-cement mixtures were very difficult to form, and no further deductions were gained from these data.

4. Portland Cement-Calcite Additives.

Carbonate minerals were present in seashells in sample 2 from Cam Ranh Bay and consisted of both calcite and dolomite. Calcite in the amount of 5 percent was added to sample 1, a pure siliceous sand, along with 5- and 10-percent portland cement additive. The calcite was destructive to the 7- and 28-day strength of the 5-percent PC mixtures and also destructive to the 28-day strength of the 10-percent PC mixture. Ordinarily a soil contains some clays for the portland cement-water system to react on, but this soil system contained only quartz and calcite. The hydrated lime liberated from portland cement by the addition of water normally reacts first on water-soluble minerals, clays, and organic materials; but in this case it appears to have reacted mainly on the calcite, forming a weak hydraulic cement.

5. Portland Cement-Lime Additives.

A pre-treatment with lime is sometimes used to flocculate the clays and weakly cement the fines in a soil before treating the soil with portland cement additive. This method of treatment may be effective if the surplus residual hydrated lime is leached out before adding portland cement, but the method does not appear to be valid if there is residual lime available to disturb the natural chemical cementing reactions.

Soil sample 1 from Ubon was treated with an admixture of 4-percent lime and 5-percent portland cement. The 7- and 28-day compressive strength of the soilcement was reduced to less than half the strength of the soil-cement mixture when only 5-percent portland cement additive was used.

The U.S. lime product used as an additive was found on analysis to contain a large amount of magnesium hydroxide, which is known to be deleterious to portland cement hydration reactions. Dolomitic dihydrate lime by itself generally shows poor strength-gaining properties (ref. 23).

6. Aluminous Cement Additive.

Of the three most common types of hydraulic cements used throughout the world, two types are readily available in the United States: calcium silicate cements (portland cements) and calcium aluminate cements (Lumnite). Slag cement and sintering cement are becoming more available but were not used in this investigation. Both cements Lay contain large amounts of iron, magnesium, or manganous oxide (ref. 24).

Aluminous cements are known to be resistant to attack by caustic alkalis and sulfate solutions but do not appear to make very durable soil-cements. Perhaps that is because the main hydraulic cements are quick-setting calcium aluminates and there may be transitory formations when silica is present. In hydrated portland cement calcium silicate hydrates are the main end-reaction products (ref. 24).

Four soil samples were tested with an admixture of Lumnite: one of sand, two of clayey soil, and one of laterite (appendix, pp. 54,76,87,109). An admixture of 5- and 10-percent of Lumnite was used in each soil sample with curing times of 7 and 28 days (as with the PC admixtures).

The sand-cement mixtures, sample 4 from Cam Ranh Bay (appendix, p. 52), gave a high, early strength after 7 days curing time but had very little strength after 28 days. The 10-percent admixture showed five times the strength of the PC admixture after 7 days but only one-tenth the strength of the PC admixture after 28 days, indicating a possible deterioration of the strength of the portland cement with time for this particular soil.

The soil-cement mixtures, sample 1 from Phan Rang (appendix, p. 87) and sample 3 from Tuy Hoa (appendix, p. 109), showed less than half the 7-day strength of soil-cement mixtures made with portland cement additive; and the soil-cement mixtures made from laterite, sample 4 from Nakhon Phanom (appendix, p. 76), showed less than one-quarter of the 7-day strength of soil-cement mixtures made with portland cement, with little change in strength after 28 days curing time.

7. Lime Additive.

Hydrated lime is used as a soil stabilization agent primarily when a soil contains significant amounts of clay minerals, the lime admixture resulting in ionic charge balance, flocculation, and formation of pozzolanic cements.

Seven soil samples that passed a No. 20 sieve and consisted of 17- to 52percent clay-size material (most of it clay minerals) were chosen from six sites and tested. A dolomitic dihydrate lime was used and gave very poor soil-cement strengths, as might be expected. Lime additive in the amounts of 4 and 6 percent were used with the soil samples. The resultant compressive strengths of the soilcement mixtures were so small that the difference between 4- and 6-percent admixtures was negligible. The Thailand lime admixtures gave soil-cement strengths about one-third greater than the U.S. lime admixtures, the 7-day compressive strengths varying between 5 and 40 psi with little or no gain in strength after 7 days curing time.

8. Thailand Cement Additives.

Two soil-cement additives, portland cement and hydrated lime, were available from Thailand. Both products appear to be of good quality and compare favorably with similar products manufactured in the United States. The lime appears to be a rather pure calcium hydroxide with very little magnesium hydroxide content, as determined by X-ray diffraction analysis.

Five soil samples from five sites were tested with Thailand portland cement in the same manner as with the portland cement manufactured in New Mexico. In every case except one, the soil-cement mixtures made with Thailand PC were comparable to that made with the U.S. product. The soil-cement mixture, soil sample 1 from Phan Rang, gave slightly lower strengths for the 5-percent PC admixture, but in any case the 10-percent PC admixture should give more than adequate soil-cement strength.

As previously mentioned, the Thailand lime product is superior to the dolomitic dihydrate lime as a soil stabilization agent.

9. Soil Grain-Size Additives.

The gradation of soil in soil-cement mixtures is a major factor in the production of soil-cement that has adequate compressive strength. Specifications for gradation of soils that may be successfully stabilized by the use of portland cement admixtures are given by the Portland Cement Association (ref. 25), the British Ministry of Transport (ref. 5), and many other organizations. These specifications vary according to the use that is to be made of the soil-cement but are in agreement that gap-graded soils, uniformly graded soils, and most soils with an excessive amount of fines do not make strong soil-cements. The most effective ξ radation for soil-cement mixtures would also appear to be somewhat comparable to the AASHO materials specifications for soil in roadway construction (ref. 26).

Kaolinite in amounts of 10 and 20 percent of the oven-dry weight of the soil was added to two samples of uniformly graded sands, sample 1 from Cam Ranh Bay and sample 1 from Tuy Hoa, along with 5- and 10-percent portland cement additive. The results of the tests are given in figures 2 and 3; and, as can be seen, from pages 48 and 104, the two sands had somewhat different grain-size distributions. The Cam Ranh Bay sand held about 20-percent kaolinite with an ensuing increased density and strength, whereas the Tuy Hoa sand held about 10-percent kaolinite at maximum density and strength. When more clay was added to the Tuy Hoa sand (20 percent), the sand matrix appeared to be spread open so that the soil-cement strength was determined by the cemented clay.

Sand was added to two clayey soil samples, samples 1 and 2 from Don Muang, which contained about 40- to 50-percent clay-size material in the portion passing

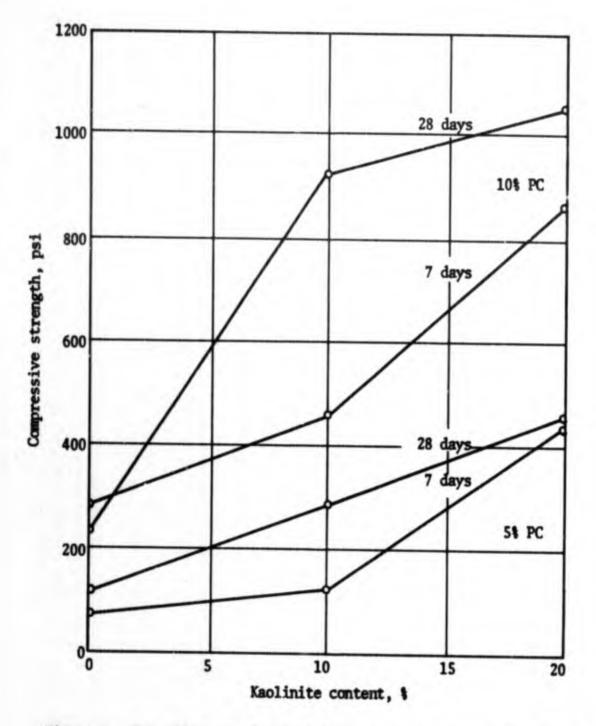


Figure 2. The effect of kaolinite additive on the compressive strength of soil-cement mixtures (portland cement), Cam Ranh Bay sample 1

+ . . .

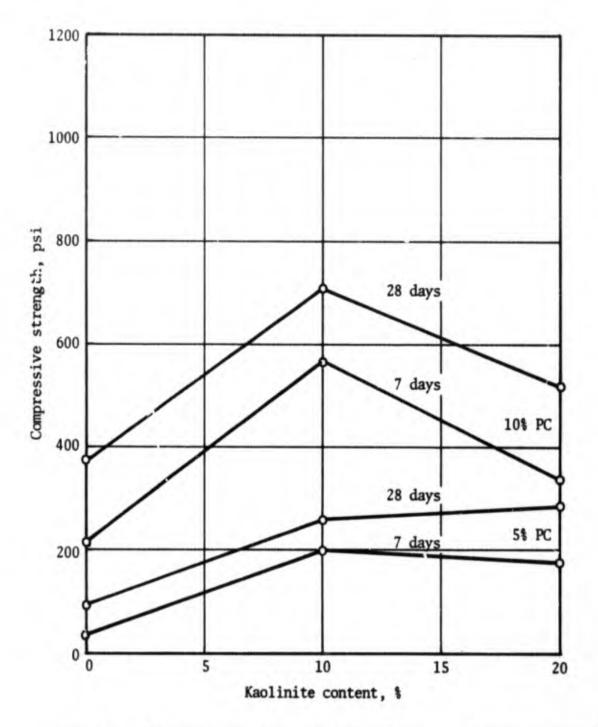


Figure 3. The effect of kaolinite additive on the compressive strength of soil-cement mixtures (portland cement), Tuy Hoa sample 1

*

a No. 20 sieve. The sand, sample 2 from Tuy Hoa, was added in the amount of 25 percent of the oven-dry weight of the clayey soils, along with 5- and 10-percent portland cement. The 7-day compressive strengths of the soil-cement mixtures were more than doubled and increased as much as fourfold. These are good examples of the effect of soil gradation on soil-cement strength.

10. Soil-Aggregate Stabilization.

Twelve of the soil samples contained more than 25 percent of material coarser than 2 mm, and nine of these consisted of lateritic soils. The coarse-size material of all the samples except the "Jinglestone" aggregate (sample 2) was pulverized for additional tests.

Portions of the pulverized soil aggregate material from two soil samples were remixed with the fines to reconstitute the composition of the original soil material. These reconstituted soils were then tested with 5- and 10-percent portland cement admixture to compare the soil-cement strength of the total soil sample with that of the material passing a No. 20 sieve. The total soil sample 3 from Bien Hoa showed a strength more than 25 percent greater than the fine soil material for both 7- and 28-day curing times. The total soil sample 2 from Nakhon Phanom showed a strength more than five times greater than the fine soil material. To verify what has long been known, laterite makes a very good construction material; however, it is possible that the whole laterite nodules would make a much weaker aggregate-cement because some of the nodules are friable.

The pulverized material of two soil samples was tested with 5- and 10-percent portland cement additive to compare the pulverized aggregate material with the soil fines where the coarse material comprised the predominant portion of the soils (more than 70 percent). The pulverized aggregate material (a lateritic soil), sample 1 from Don Muang, showed four times the strength of the fine portion of the same soil, and the aggregate material from sample 3 from U Tapao showed twice the strength of the fine portion of the soil for 5-percent PC additive and more than a 10-percent increase for 10-percent additive. The composition of the aggregate and fines of the sample from U Tapao are similar except for the larger clay content of the fines. Soil-cement made from the "Jinglestone" aggregate sample 2 would probably be similar to the soil-cement made from sample 3.

The indurated laterite comprising sample 4 from Nakhon Phanom was also pulverized and tested with 5- and 10-percent portland cement additive. It is apparent that sesquioxides of iron in soils do not interfere with portland cement hydration reactions and that while indurated laterite makes a good construction material, laterite-cement makes a better material.

The soil-cement strength data for all the soil-cement mixtures are tabulated in the appendix by site, and the soil cement mixtures that were tested after a curing time of 7 and 28 days are also given in the appendix as strength-time graphs.

SECTION III

SOIL MINERALOGY

1. Analysis Procedures.

X-ray identifications of soil minerals were made for all 34 soil samples; and when more than 25 percent of a soil sample consisted of material coarser than 2 mm, an additional mineral analysis of the coarse fraction was made. The quantitative determinations were based on relative X-ray diffraction intensities and were estimated by means of mineral calibration charts. The quantitative determinations were correlated with quantitative chemical analyses which were also made (see sec. I).

The float rock, sample 3 from Phan Rang, was identified as dolomitic limestone, but it was not considered as part of the soil mineral composition (as given in the appendix) because the soil appeared to be derived from igneous rock.

The soil samples were found to have a rather simple composition consisting mainly of quartz, perthite, kaolinite, illite, and geothite, or some combination of these minerals.

2. Silicates.

The predominant silicate minerals in the soil samples are quartz and feldspars. Quartz was found in all the soil samples, even in the indurated laterite, although the lateritic soils were found to contain lesser amounts, as was stated by Maignien (ref. 2). The feldspars in the soil samples were all perthitic feldspars consisting mainly of microcline with smaller amounts of plagioclase feldspar that has been tentatively identified as oligoclase.

The sands consisted mainly of quartz and perthite with some feldspar (as high as 25 percent). One sand, sample 1 from Cam Ranh Bay, was found to be very nearly pure quartz.

The quartz content of the soils, other than sands and lateritic soils, varied from about 25 to 50 percent of the oven-dry weight of the soils, except for the two samples of aggregate material from U Tapao; and the quartz content of the lateritic soils varied from 5 to 40 percent.

Only nine of the soil samples contained more than 5-percent perthite; sample 2 from Cam Ranh Bay contained nearly 30 percent.

3. Clay Minerals.

The predominant clay minerals in the soil samples were kaolinite and illite. The remainder of the clay minerals, listed in the appendix as "other clays," have been tentatively identified as mixed-layer clays and consist primarily of kaoliniteillite interlayered structures.

Some chlorite is believed to be present in the soils, especially in sample 4 from Phan Rang and sample 3 from Tuy Hoa. Where the detrital soil is not yet sufficiently altered by weathering, both chlorite and vermiculite may be found.

The kaolinite appeared to be partially hydrated in some of the soils, especially those from Nakhon Phanom and Phan Rang, and may exist partly as halloysite. The two minerals are listed together for those sites.

The illite content of the soils was estimated by comparing its $10.0\text{\AA}(001)$ and $1.50\text{\AA}(060)$ diffraction peak intensities with those of kaolinite and by noting the total clay-size content of the soil samples. Where the detrital soil was not badly weathered, the illite was reported as 'mica-illite.'' The identification procedures suggested by Warshaw and Roy (ref. 27) were used to positively identify both illite and kaolinite.

4. Iron Sesquioxides.

Laterite is a general term used to describe naturally occurring mixtures consisting essentially of hydrated oxides of aluminum, iron, and titanium but often containing a considerable amount of dry minerals such as kaolinite or hall~ site (ref. 12). The soil samples that were analyzed did not appear to contain significant amounts of gibbsite or any other aluminum oxide minerals.

All of the soil samples contained at least a small amount of ferric oxide, probably in the form of goethite. Often there was only sufficient ferric oxide present in the soils to color the soils reddish to yellowish shades. In no case was it possible to determine the ferric oxide content by soil color.

Nine of the soil samples could be classified as true lateritic soils, eight consisting largely of ferruginous nodules and one of indurated material. When there was sufficient ferric oxide to form ferruginous nodules, the ferric oxide was found to be present both as goethite and hematite. The estimated amounts of each were derived from the chemical analyses, given in table 2 and in the appendix. The remaining soil samples contained much smaller amounts of ferric oxide, ranging from 0.1- to 5.7-percent equivalent ferric oxide.

TABI	LE	2

Site and soil sample	Amount of soil smaller than 2 mm, %	Size of material	
		>2 mm	<2 mm
Bien Hoa 3	49.5	1.6	25.8
Tan Son Nhut 1	43.4	5.2	34.0
Don Muang 1	73.4	6.4	19.5
Nakhon Phanom 1	64.0	14.9	38.7
Nakhon Phanom 2	71.1	8.8	45.8
Nakhon Phanom 3	32.4	2.1	41.2
Nakhon Phanom 4	100.0		40.8
Ubon 3	41.9	6.8	30.3
Udorn 1	73.8	12.2	35.4

PERCENT FERRIC OXIDE CONTENT OF LATERITES

The amount of ferric oxide in the material finer than 2 mm is probably partially dependent on whether the soil was naturally formed or recently hauled in and mixed.

The formation of lateritic soils has been described by Maignien (ref. 2), but there is some question about the source of energy that forms the lateritic nodules, which consist mainly of concentric surfaces of kaolinite and goethite. The zeta potential of each soil mineral is dependent on the pH of the soil-water system (ref. 28). The isoelectric points for kaolinite and goethite are at pH 3.4 and 6.7, and all of the lateritic soil samples show pH readings that are between 3.5 and 6.5. It is possible that the nodules are formed by an electrokinetic method (electrophoresis), once the necessary minerals and climatic conditions exist.

5. Trace Minerals.

Small amounts of calcite and dolomite were found in the Phan Rang soil samples, less than 2 percent except for the previously mentioned dolomitic limestone float rock found in sample 3. About 10 percent of soil sample 2 from Cam Ranh Bay consisted of seashells, which were composed mainly of calcite and dolomite.

All of the lateritic soils contained small amounts of magnetite, which could be removed from the pulverized lateritic material with a magnet. Probably less than 2 percent of any lateritic soil was comprised of magnetite. Only one soil, sample 2 from Nakhon Phanom, contained less than 5-percent gibbsite; and one soil, sample 2 from Don Muang, contained about 3-percent gypsum. Five soil samples contained small amounts of amphibole, and in three of these samples the amphiboles were identified as hornblende.

The leaching tests were made on the material finer than 2 mm from each soil sample. The soil was leached on No. 1 Whatman filter paper with boiling distilled water.

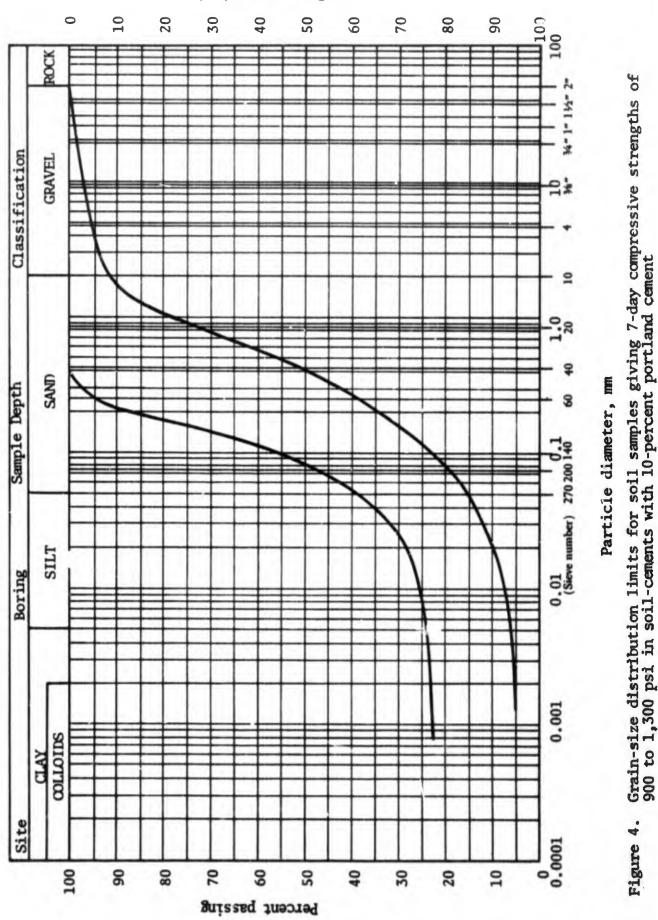
Because of the tropical, humid climate the soils contained little residual water-soluble material and very little organic matter. Only four soil samples contained more than 1-percent water-soluble material, which was not considered sufficient for further analyses. The organic content of the soil samples was less than 1 percent, except for three surface samples.

The results of the mineralogical analyses are given in the appendix by site.

SECTION IV

CORRELATION OF SOIL-CEMENT CONSTITUENTS

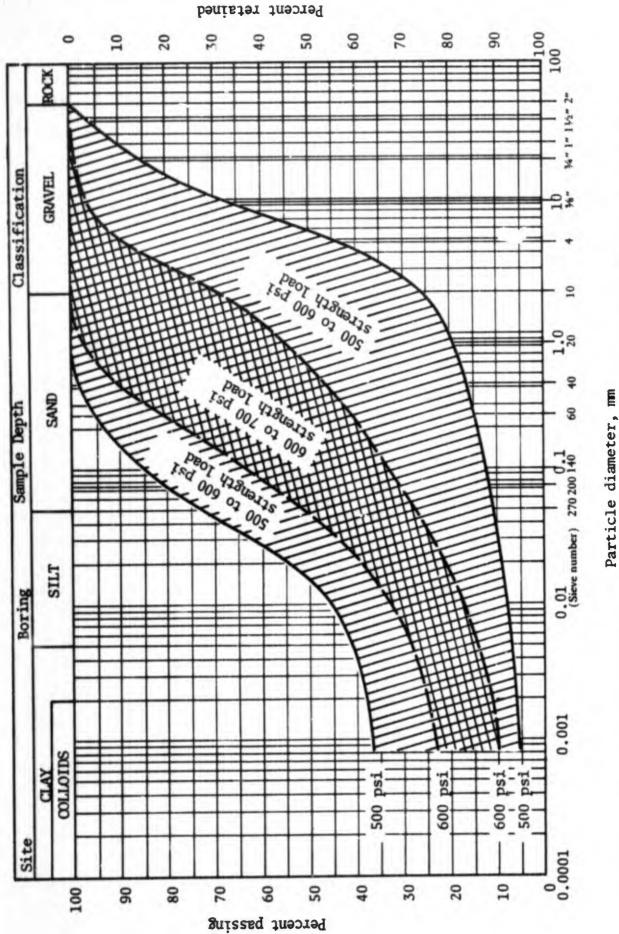
1. Grain-Size Distribution.


The soil-cement mixtures made with portland cement additive indicate that the compressive strength of the soil-cements is mainly dependent on the grainsize distribution, or grading, of the soil. Although the strength of the soilcement also appears to be dependent on the ferric oxide content of the soils, this is only because the ferric oxide is largely incidental to the clay content of the soils. The high-compressive strength of the remolded laterite made from soil sample 4 from Nakhom Phanem proves this (appendix, p. 81). Although siliceeves sand appeared to be a necessary component for high-early-strength soilcement, the reconstructed lateritic soils which were tested also gave adequate soil-cement strengths (sec. II.10).

Nearly every type of soil, except organic, was represented by the soil samples. The Plasticity Index of the soils varied from N.P. to 37 percent and it was determined that the soil fines contained relatively inactive clays, as verified by X-ray diffraction analyses. The activity of the soils was determined for the fraction of the soils finer than 2 mm in size and was found to vary from zero for the sands to 0.74 for the lateritic soils.

2. Soil-Cement Strength.

The 7-day strength of the soil-cements appeared to be closely related to the soil gradation. The strongest soil-cements were found to have grain-size distribution curves that lay within rather narrow bounds, as shown by the envelope curves in figure 4. These soil-cements, with 7-day compressive strengths varying from 900 to 1,300 psi, did not include any lateritic soils. The strongest soil-cements were set apart from the rest of the soil-cement mixtures in that there were no mixtures with 7-day strengths from 700 to 900 psi.


The soil-cements with 7-day compressive strengths ranging from 500 to 700 psi lay within the bounds shown in figure 5. The mixtures with 500- to 600-psi compressive strength having soil-gradation curves that lay in the outer portions of the envelope curves and the mixtures with 600- to 700-psi compressive strength having soil-gradation curves that lay in the inner portion of the envelope curves are also shown in figure 5 as solid and dashed lines, respectively.


*

Figure 4.

Percent retained

r.

Any soil with a gradation curve that crosses any of the envelope curves shown in figure 5, except for the special cases previously discussed, had a soil-cement strength considerably less than those soils with gradation curves that tended to parallel the envelope curves. The soils with gradation curves that lay within the upper bounds tended to contain too much clay-size material, and the soils with gradation curves that lay within the lower bounds tended to contain too much coarse-size material.

It is possible to change soil gradations to meet stipulated soil-cement strength requirements, at least to gain a 7-day compressive strength of 500 psi and possibly more. As examples, four soil samples were mixed with different grain-size portions and two were reconstituted after the coarse-size fractions were pulverized. In each case stronger soil-cement mixtures resulted.

Some of the sandy soils contained no fines and thus exhibited low soil-cement strengths. Clay in the form of Florida kaolinite was added to two soil-cements as shown in figures 2 and 3. As was stated, the soil-cement strength increased with added clay until the soil voids were filled. Clayey soils may be used in the same manner to strengthen these soil-cements. When there is more than enough clay in a soil to fill the larger voids, the cement requirements increase with increased clay content (ref. 29).

Some of the clayey soils contained very little sand-size material and also exhibited low soil-cement strengths. A portion of the two soil samples from Don Muang were mixed with an admixture of 25-percent sand (100-gram soil plus 25gram sand) along with 10-percent portland cement, the sand used being from Tuy Hoa sample 2. The resultant gradation curve for the soil mixture is shown in figure 6, along with the grain-size distribution curves for the two original soil samples (dashed lines). It may be seen that the gradation curve for the soil mixture lies within the upper bounds of the envelope curves in figure 5 but that it cuts across the 600-psi limiting envelope. A soil-cement strength somewhat greater than 500 psi might be predicted for the mixture; and, in fact, a 7-day compressive strength of 539 psi was attained with a 10-percent portland cement admixture.

The soil mineral constituents were in most cases inert in that they did not appear to affect the soil-cement reactions. An exception to this were the seashells in sample 2 from Cam Ranh Bay and possibly the gypsum in sample 2 from Don Muang. As was stated, the minor constituents of sands probably react with the portland cement because of a lack of clay minerals in the soil.

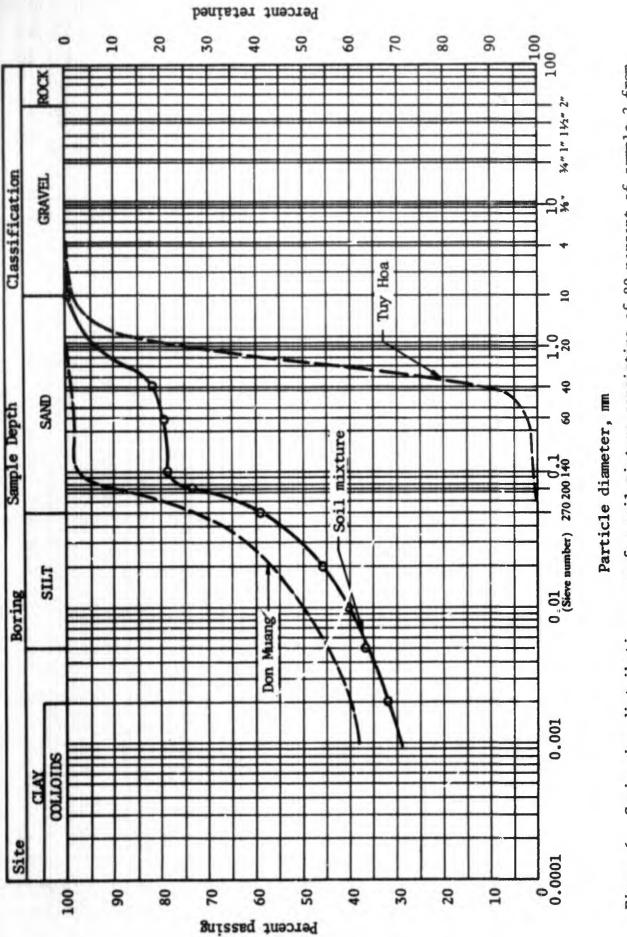
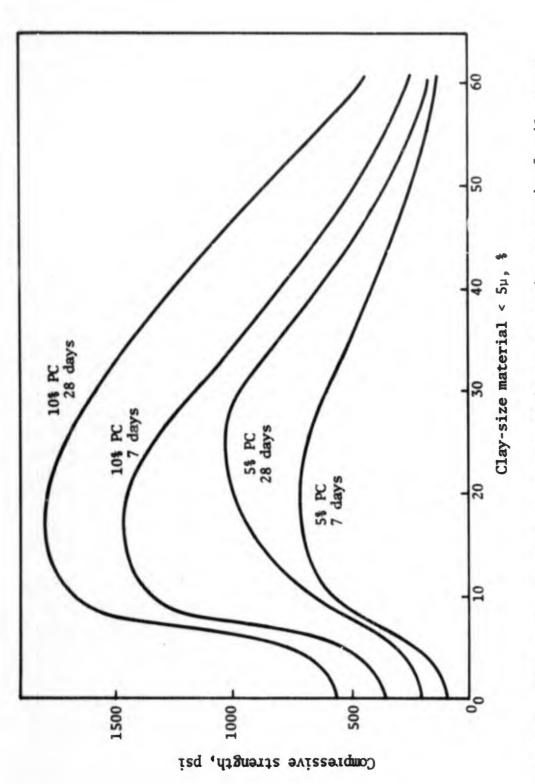



Figure 7 shows the maximum soil-cement compressive strengths that may be realized when the most beneficial soil-gradation conditions are obtained. It is of course possible that additional soil samples from the same area having ideal soil gradations might show somewhat higher soil-cement strengths.

Although soils that are very well graded may be expected to give higher soilcement strengths, this was not found to be so with the soils that were tested. The clay portion of the soils consists of platelets rather than well-rounded anhedral particles so that the soil gradation giving the densest structure will not hold as much clay as might otherwise be expected. Well-graded soils with grain-size distribution curves that cut across the envelope curves shown in figure 5 always showed lower strengths than those that paralleled the envelope curves, especially when an excess of clay was present.

.

SECTION V

SUMMARY AND RECOMMENDATIONS

1. Summary.

The soil samples from Southeast Asia that were tested represented a wide variety of common soil types but did not include any with large amounts of organic material or swelling clays. The two most common soil types received were sandy soils and lateritic soils. Most of the samples were classified as nonplastic or CL in the Unified Soil Classification.

The soil samples were composed mainly of quartz, perthite, kaolinite, illite, and goethite, or some combination of these minerals. The sands consisted mainly of quartz, with some feldspar contents as high as 25 percent. The lateritic soils consisted mainly of kaolinite and goethite. The remaining soils consisted mainly of quartz, kaolinite, and illite. Some of the soil samples also contained small amounts of hematite, calcite, and other minerals.

Portland cement additive was found to be the most effective soil stabilization agent that gave adequate (250 to 300 psi) 28-day compressive strength to the soil-cement mixtures when using ASIM standard compactive effort. It was found that about half of the soil-cement mixtures could be given an adequate strength with a 5-percent admixture and that a 10-percent admixture was satisfactory for all but four of the soil samples: two from Cam Ranh Bay containing uniformly graded sand, and two from Nakhon Phanom containing lateritic nodules with little sand-size material.

Calcite and hematite proved to be destructive to the soil-cements made with portland cement only when no clay minerals determined by mineralogical analyses were present to react with the cement. Lime proved to be of little value in forming soil-cements of adequate strength and rather destructive when used with portland cement. Aluminous cement additive was effective with some soils of low quartz content, but it was not very reliable.

The Thailand portland cement and lime products were found to be of good quality, the lime in particular being quite pure calcium hydroxide and superior to the U.S. dolomitic dihydrate lime product locally acquired. Both the portland cement and lime gave comparably good results when used as soil-cement additives. Lime is found to be useful for preliminary treatment in controlling soil moisture and in reducing soil plasticity. The compressive strength of the soil-cements was found to be dependent mainly on gradation, or grain-size distribution, of the soils and was not affected adversely by the sesquioxides that largely comprise the lateritic soils. It was found that the compressive strength of the soil-cement mixtures, including the four mentioned above, could be increased simply by improving the soilgradation characteristics of the soil samples.

2. Recommendations.

It is recommended that additional tests be made with Southeast Asia soils to more accurately delineate the most beneficial soil gradations for adequate soil-cement compressive strengths. The effect of varied amounts of compactive energy on these soil-cement mixtures should also be investigated.

APPENDIX

TEST DATA SUMMARY BY SITE

Site	Page
Bien Hoa	32
Cam Ranh Bay	47
Don Muang	62
Nakhon Phanor	70
Phan Rang	82
Tan Son Nhut	93
Tuy Hoa	103
Ubon	115
Udorn	127
U Tapao	135

BIEN HOA

Figure 8. Figure 9.	Grain-size distribution curve, Bien Hoa sample 1 Grain-size distribution curve, Bien Hoa sample 2
Figure 10.	Grain-size distribution curve, Bien Hoa sample 3
Figure 11.	Grain-size distribution curve, Bien Hoa sample 4
Figure 12.	
~	Grain-size distribution curve, Bien Hoa sample 5
Table 3.	Properties of soils, Bien Hoa
Table 4.	Soil mineralogy, Bien Hoa
Table 5.	Stabilization of soils from Bien Hoa
Figure 13.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Bien Hoa sample 1
Figure 14.	Compressive-strength changes with time in compacted soil-
0	cement mixtures (portland cement-hematite), Bien Hoa
	sample 1
Figure 15.	Compressive-strength changes with time in compacted soil-
riguite 15.	
Figure 16	cement mixtures (portland cement), Bien Hoa sample 2
Figure 16.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Bien Hoa sample 3
Figure 17.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Bien Hoa sample 4
Figure 18.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Bien Hoa sample 5
	(Free Provide

1

ğ

.

1911 - 19

.

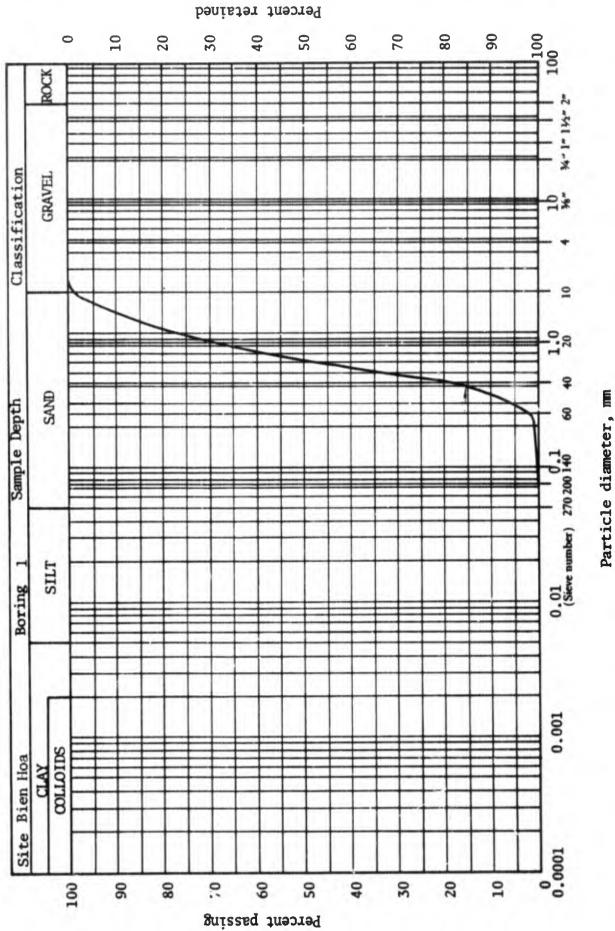


Figure 8. Grain-size distribution curve, Bien Hoa sample 1

.*

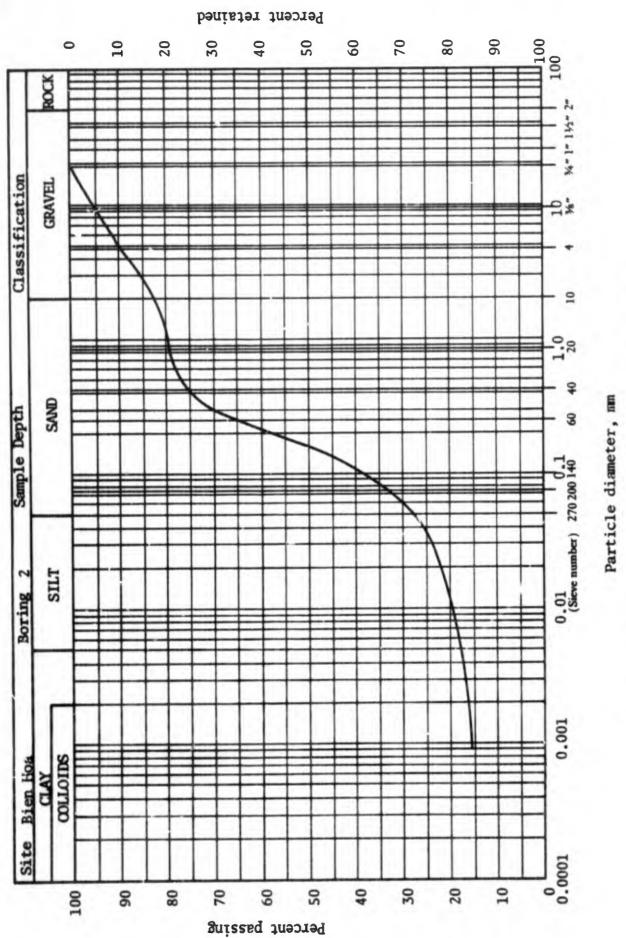


Figure 9. Grain-size distribution curve, Bien Hoa sample

 \sim

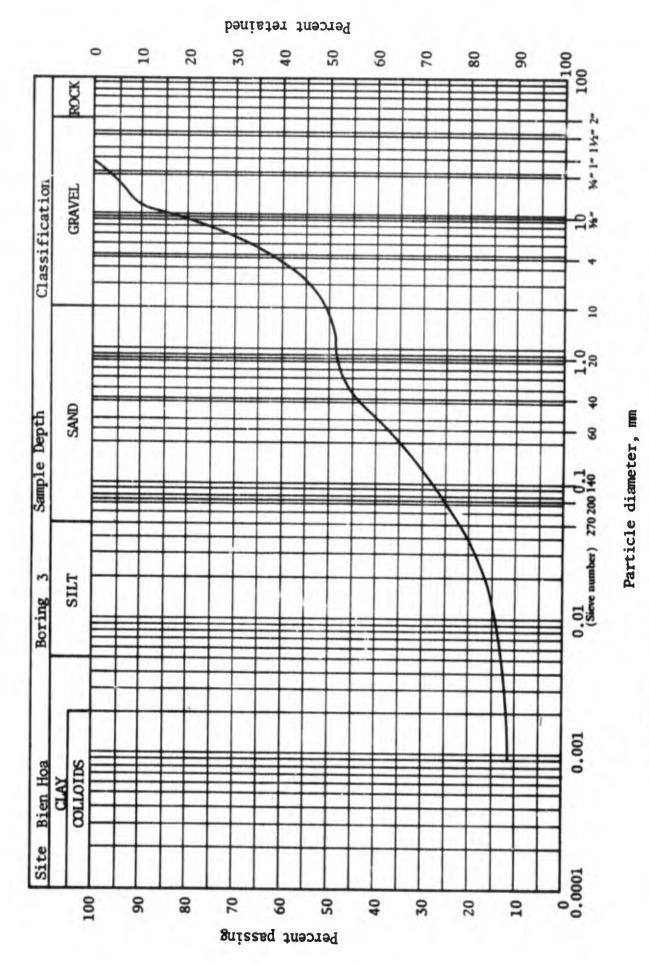


Figure 10. Grain-size distribution curve, Bien Hoa sample 3

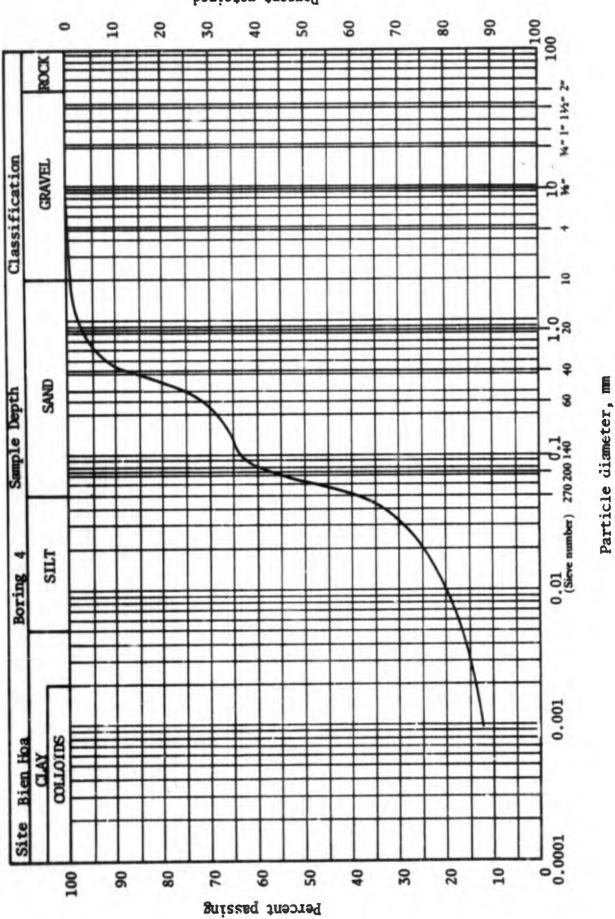


Figure 11. Grain-size distribution curve, Bien Hoa sample 4

36

Percent retained

.

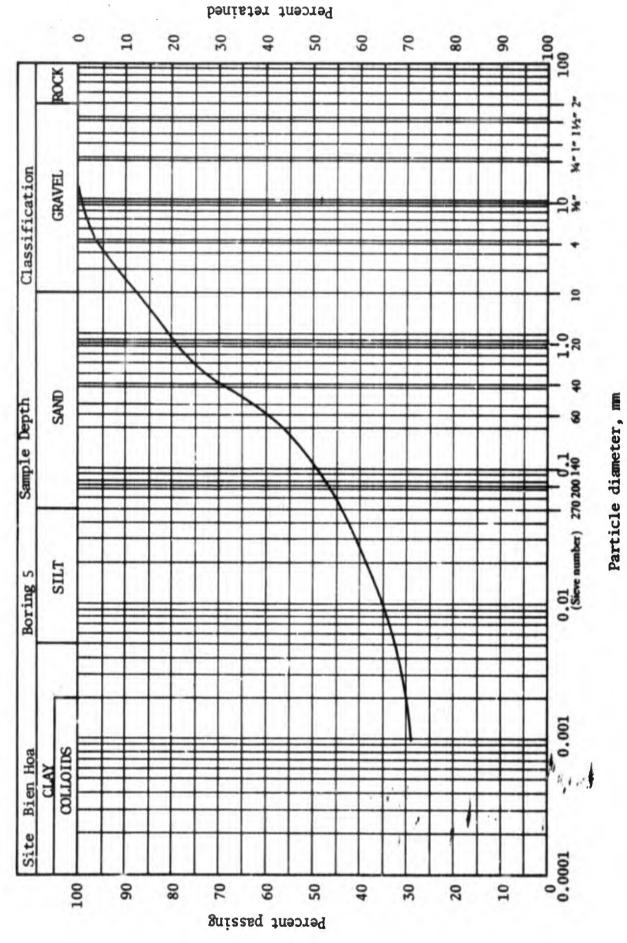


Figure 12. Grain-size distribution curve, Bien Hoa sample 5

*

1

TABLE :

PROPERTIES OF SOILS FROM BIEN	OF SUILS FROM DIEN	HUA
-------------------------------	--------------------	-----

Soil	Sample:	1	2	3	4	5
Textural Composition: %						
Sand (2.0-0.05 mm)		100	54	29	61	43
Silt (50-5 µ)			10	9	21	12
Clay (<5 µ)			18	13	17	32
Classifications:						
Unified		SP	SC	GC	SM	SC
AASHD		A-1-b[0]	A-2-4[0]	A-2-4[0]	A-4[4]	A-6[4]
Physical Properties:						
Liquid limit, \$			18	24	11	36
Plastic limit, \$			15	15		20
Plasticity Index, \$		N.P.	3	9	N.P.	16
Activity ¹ , ²			0.15	0.38		0.46
Specific gravity ¹		2.62	2.59	2.63	2.59	2.68
ASTM standard compacti	on: ³					
Dry density, 1b/cu		96.0	122.0	121.5	125.0	110.0
Optimum moisture co		10.0	11.5	12.5	9.5	17.5
Chemical Properties:1						
Equivalent Fe ₂ 0 ₃ , \$		0.5	1.2	1.6	0.4	5.7
Total soluble salt, \$		0.5	0.4	0.5	0.6	0.4
Organic matter, \$			0.7	0.3	0.3	0.1
pH .		6.95	6.40	5.20	6.10	6.50

Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

TABLE 4

SOIL MINERALOGY, BIEN HOA

Mineral, % Sa	ample: 1	2	3	4	5
Fraction Passing No. 10 Sieve, %	98.8	82.1	50.5	99.4	86.9
Quartz	70	70	70	75	35
Feldspar (perthite)	25		2		
Kaolinite	600 1001	20	20	15	35
Illite	* =	2	3		
Goethite	0.6	1.4	1.8	0.5	6.3
Other minerals:		100 400			
Other clays			3		
Fracticn Retained on No. 10 Sieve					
Quartz			30		
Feldspar (perthite)			5		
Kaolinite	* *		10		
Illite			10		
Goethite			25.3	-	
Other minerals:				-	
Other clays			5		
			Percent		
Moisture content of samples when	1.6	8.4	7.4	6.7	13.2
received					
Air-dry moisture content of mater finer than 2 mm	0.2	0.6	0.8	0.3	4.3
Air-dry moisture content of mater coarser than 2 mm			0.8	••	

1.1

TABLE	5
-------	---

Comple	Additive and	Strain at failure, in./in.		Unconfined compressive strength, psi		
Sample	amount	7-day	28-day	7-day	28-day	
1	5.0% PC	0.010	0.021	29	77	
	10.0% PC	0.015	0.014	243	292	
	5.0% PC + 2.0% Fe_2O_3	0.018	0.019	68	49	
	5.0% PC + 5.0% Fe_2O_3	0.014	0.010	22	47	
	10.0% PC + 5.0% Fe ₂ O ₃	0.020	0.016	175	310	
2	5.0% PC	0.017	0.014	121	110	
	10.0% PC	0.016	0.027	294	381	
	5.0% Thailand PC	0.015	0.014	133	181	
3	5.0% PC	0.016	0.016	255	337	
	10.0% PC	0.024	0.024	537	678	
	5.0% PC ²	0.020	0.020	332	483	
4	5.0% PC	0.020	0.024	326	216	
	10.0% PC	0.029	0.070	629	808	
	4.0% lime	0.015	0.012	13	21	
5.	5.0% PC	0.017	0.020	331	430	
	10.0% PC	0.022	0.031	502	700	
	4.0% lime	0.009	0.023	14	9	

STABILIZATION OF SOILS FROM BIEN HOA1

¹Determined for the fraction passing No. 20 sieve.

²Material retained on No. 20 sieve pulverized and original soil reconstituted.

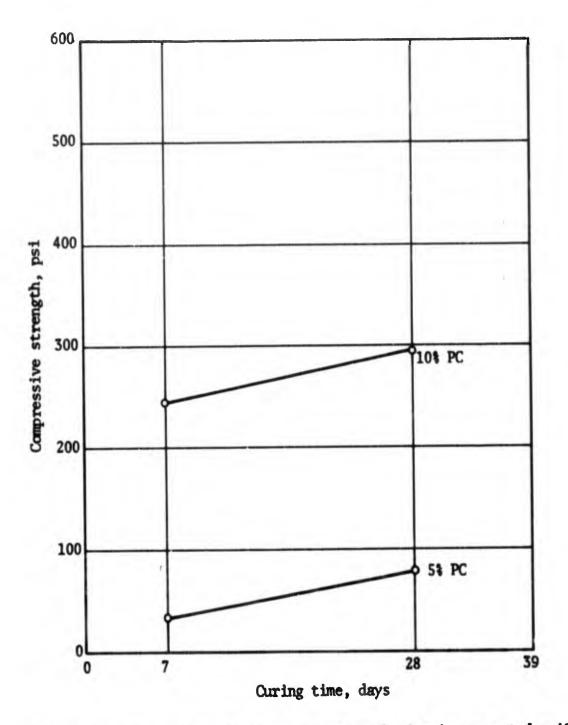


Figure 13. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Bien Hoa sample 1

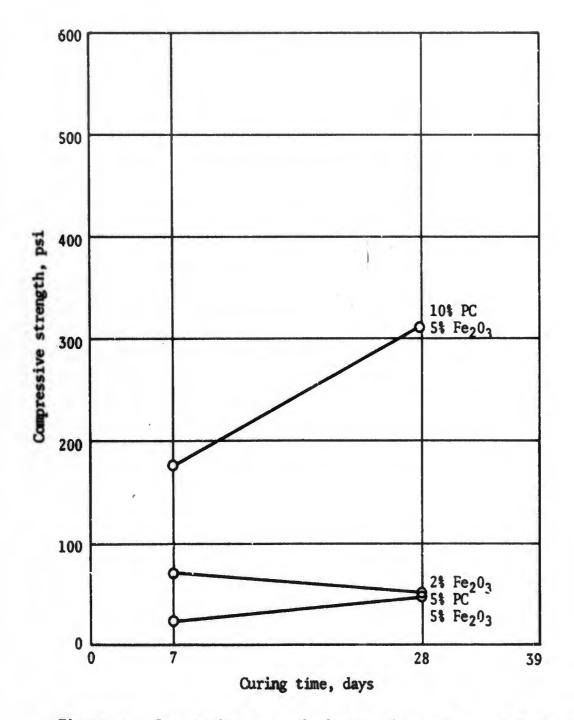


Figure 14. Compressive strength changes with time in compacted soilcement mixtures (portland cement-hematite), Bien Hoa sample 1

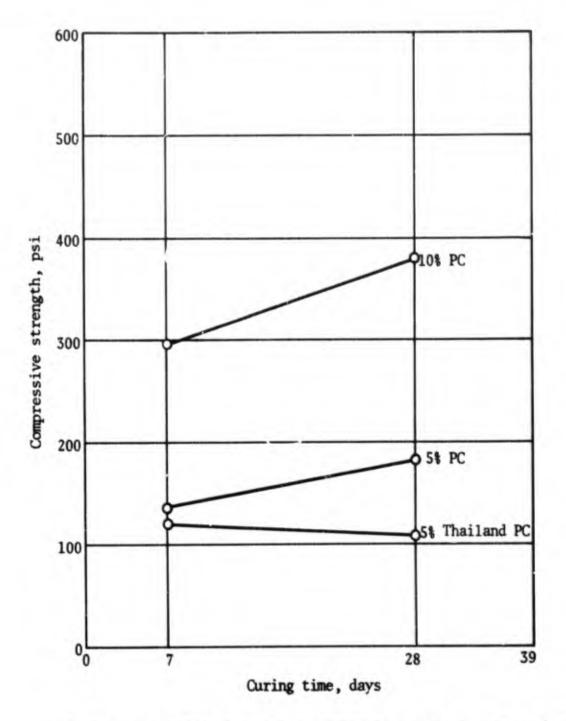
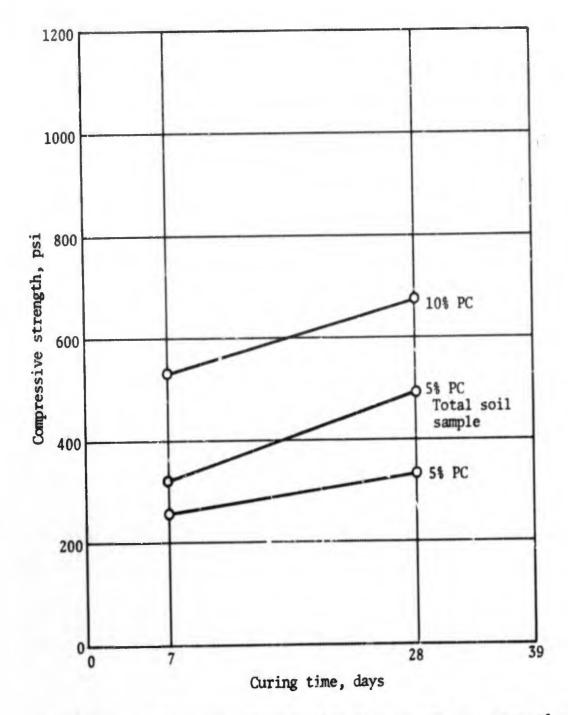
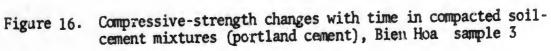
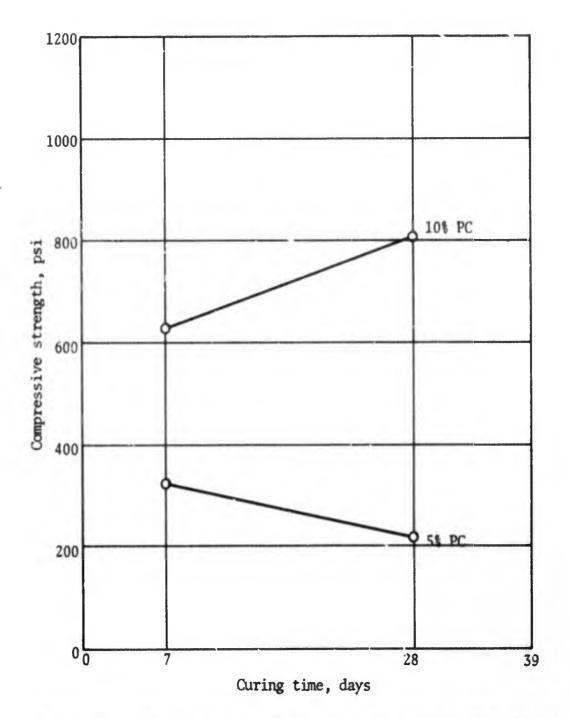
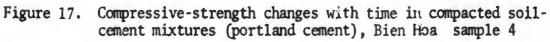
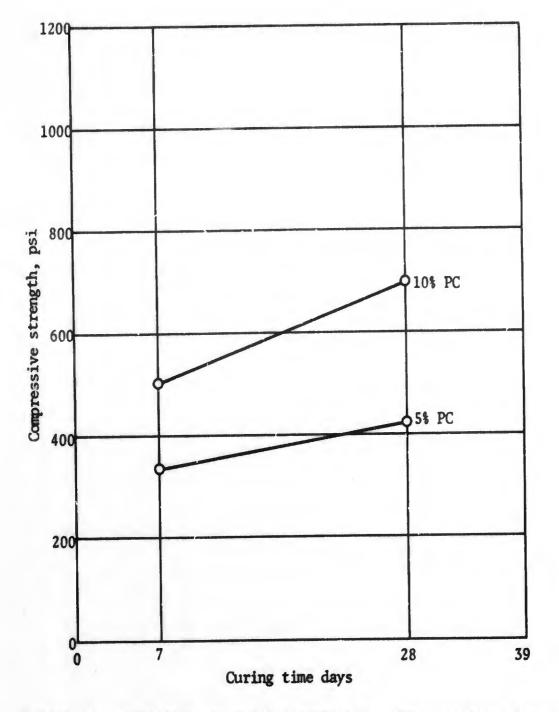
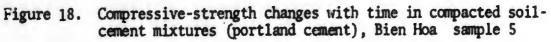






Figure 15. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Bien Hoa sample 2





.

CAM RANH BAY

Figure 19. Figure 20. Figure 21. Figure 22. Table 6. Table 7.	Grain-size distribution curve, Cam Ranh Bay sample 1 Grain-size distribution curve, Cam Ranh Bay sample 2 Grain-size distribution curve, Cam Ranh Bay sample 3 Grain-size distribution curve, Cam Ranh Bay sample 4 Properties of soils, Cam Ranh Bay Soil Mineralogy, Cam Ranh Bay
Table 8.	Stabilization of soils from Cam Ranh Bay
Figure 23.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Cam Ranh Bay sample 1
Figure 24.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement-calcite), Cam Ranh Bay sample 1
Figure 25.	Compressive-strength changes with time in compacted soll- cement mixtures (portland cement). Cam Ranh Bay sample 2
Figure 26.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement-hematite), Cam Ranh Bay Sample 2
Figure 27.	Compressive-strength changes with time in compacted soll-
Figure 28.	Compressive-strength changes with time in compacted soll- cement mixtures (portland cement), Cam Ranh Bay sample 4
Figure 29.	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Cam Ranh Bay sample 5

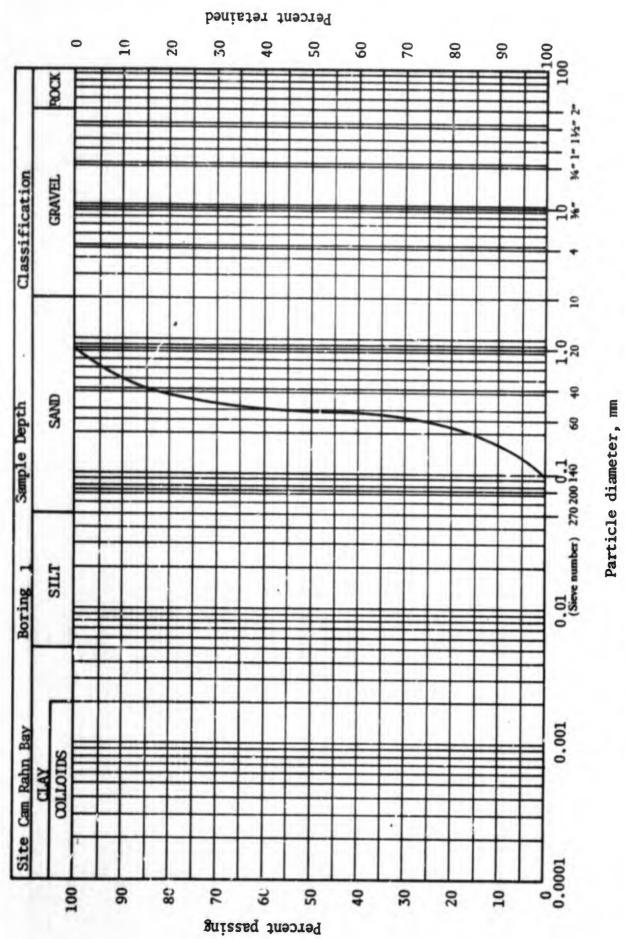


Figure 19. Grain-size distribution curve, Cam Ranh Bay sample 1

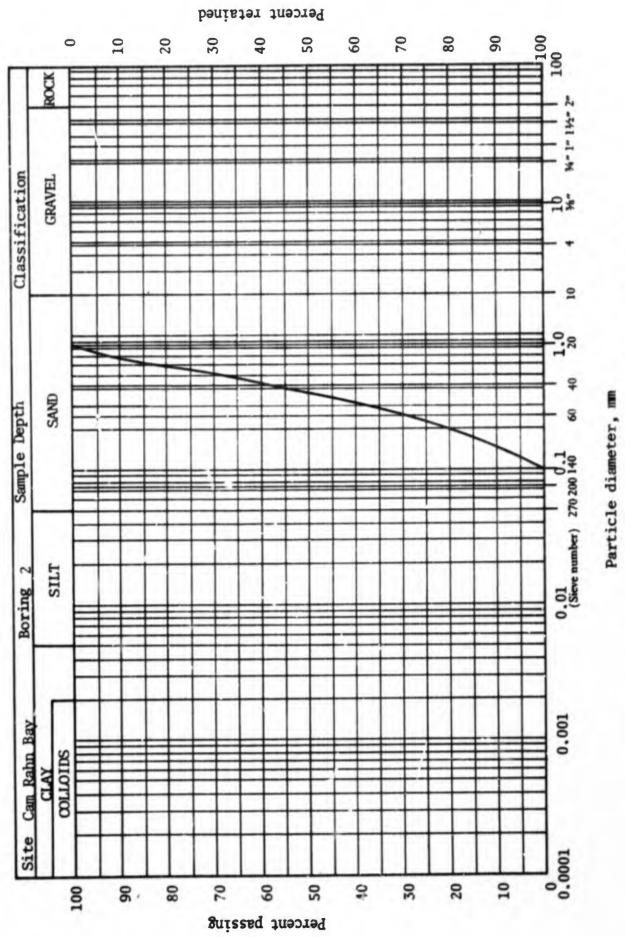
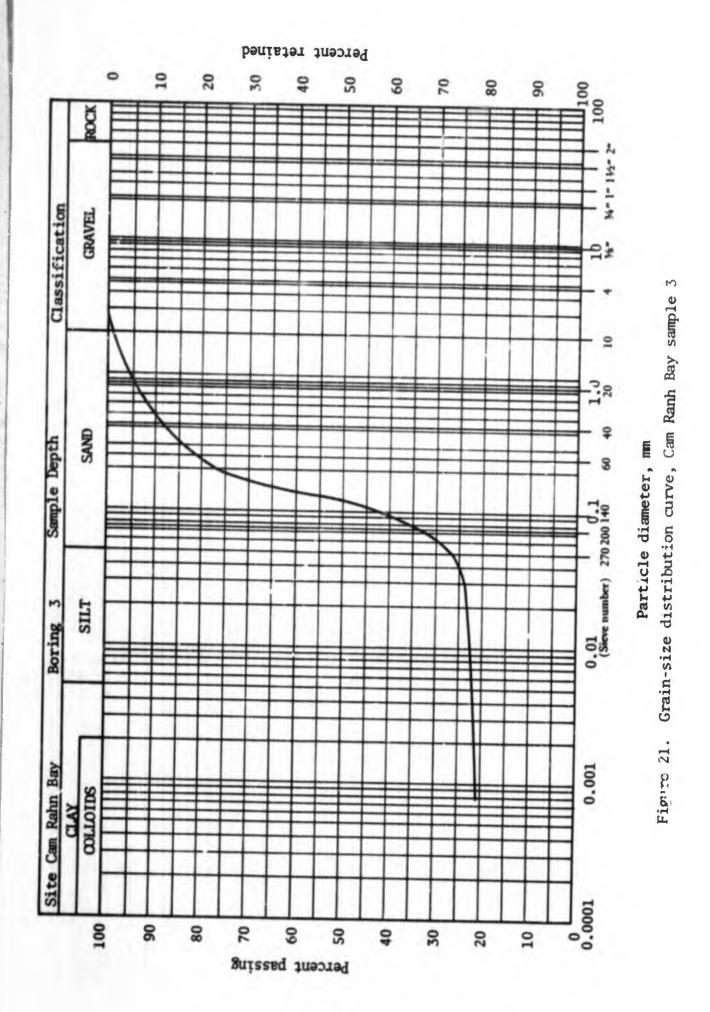



Figure 20. Grain-size distribution curve, Cam Ranh Bay sample

.

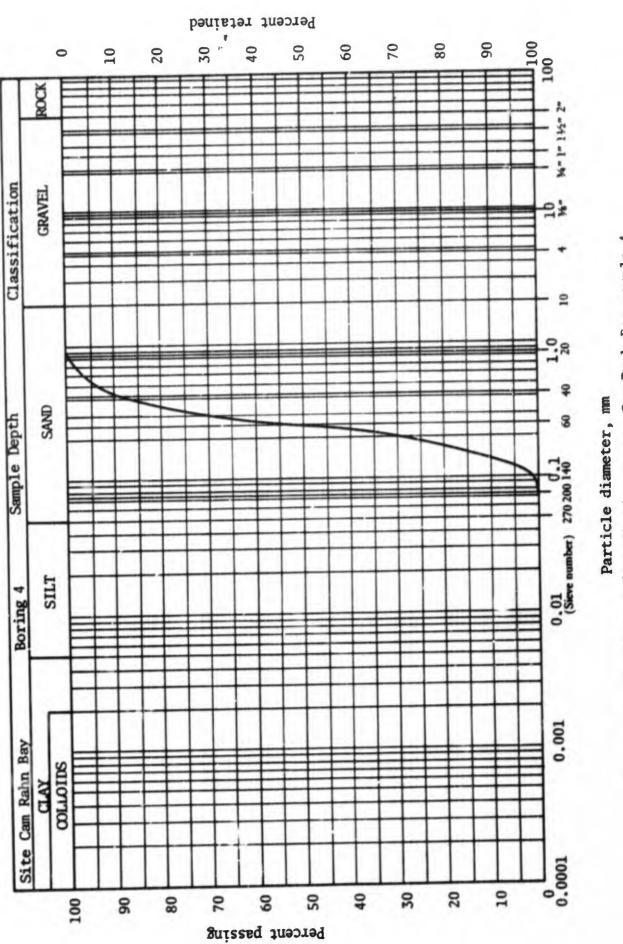


Figure 22. Grain-size distribution curve, Cam Ranh Bay sample 4

+

TA	BLE	6
	C. C	~

Soil Sample	: 1	2	3	4
Textural Composition: %				
Sand (2.0-0.05 nm)	100	100	72	100
Silt $(50-5 \mu)$			4	
Clay (<5 µ)			22	
Classifications:				
Unified	SP	SP	SM	SP
AASHO	A-3[0]	A-3[0]	A-2-4[0]	A-3[0]
Physical Properties:				
Liquid limit, %			14	
Plastic limit, \$				
Plasticity Index, \$	N.P.	N.P.	N.P.	N.P.
Activity ^{1,2}			-	
Specific gravity ¹	2.62	2.60	2.62	2.63
ASTM standard compaction: ³				
Dry density, 1b/cu ft	104.0	99.0	125.0	99.5
Optimum moisture content, 1	13.0	10.0	10.0	10.0
Chemical Properties:1				
Equivalent Fe ₂ 0 ₃ , \$	0.6	0.2	0.8	0.1
Total soluble salt, \$	0.8	0.7	1.0	0.9
Organic matter, \$			0.1	0.4
pH	6.93	7.00	7.00	7.10

PROPERTIES OF SOILS FROM CAM RANH BAY

¹Determined for the fraction passing No. 10 sieve.

.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

TABLE 7

SOIL MINERALOGY, CAM RANH BAY

Mineral, %	Sample:	1	2	3	4
Fraction Passing No. 10 Sieve, %		1.00.0	100.0	98.7	100.0
Quartz		98	55	65	85
Feldspar (perthite)			30	2	10
Kaolinite		600 800	-	20	(3) (40)
Illite-mica			3	2	60+ apt
Goethite		0.6	0.2	0.9	0.1
Other minerals:		**			
Calcite			6.5		
Dolomite			3.3		
			Perce	nt	
Moisture content of samples when					
received		3.4	2.0	3.2	3.3
Air-dry moisture content of material					
finer than 2 mm		0.1	0.1	0.4	0.2

Note: The carbonate minerals in sample 2 occur in seashells.

TA	BI	E	8
-	-	-	0

Sample	Additive and	Strain at failure, in./in.		Unconfined compressive strength, psi	
	amount	7-day	28-day	7-day	28-day
1	5.0% PC 10.0% PC 5.0% PC + 2.0% Fe ₂ O ₃	0.011 0.013 0.016	0.015 0.017 0.018	76 285 80	119 235 68
	5.0% PC + 5.0% CaCO3	0.016	0.007	4	18
	10.0% PC + 5.0% CaCO3	0.016	0.009	396	58
	5.0% PC + 10.0% clay ² 5.0% PC + 20.0% clay ² 10.0% PC + 10.0% clay ² 10.0% PC + 20.0% clay ²	0.011 0.016 0.020 0.027	0.013 0.018 0.027 0.027	125 419 459 863	287 462 928 1053
5.0	5.0% PC 10.0% PC 5.0% PC + 2.0% Fe ₂ O ₃	0.010 0.020 0.020	0.012 0.017 0.017	38 327 29	105 476 59
	5.0% PC + 5.0% Fe ₂ O ₃	0.013	0.017	60	63
	10.0% PC + 5.0% Fe ₂ 0 ₃	0.022	0.024	312	396
3.	5.0% PC 10.0% PC 4.0% lime	0.023 0.036 0.014	0.024 0.042 0.013	407 966 13	588 1157 14
4	5.0% PC 10.0% PC 5.0% Lumnite 10.0% Lumnite	0.010 0.011 0.012 0.020	0.015 0.024 0.009 0.008	27 73 61 381	48 253 8 24

STABILIZATION OF SOILS FROM CAM RANH BAY1

¹Determined for the fraction passing No. 20 sieve.

²Florid kaplinite was used.

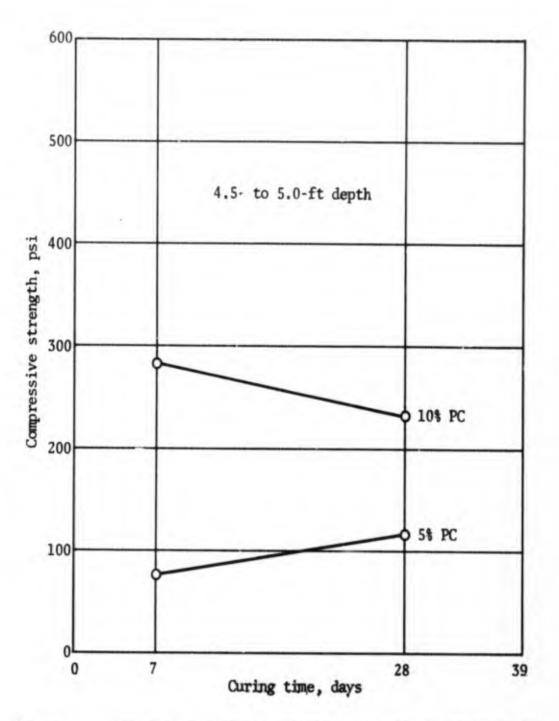


Figure 23. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Cain Ranh Bay sample 1

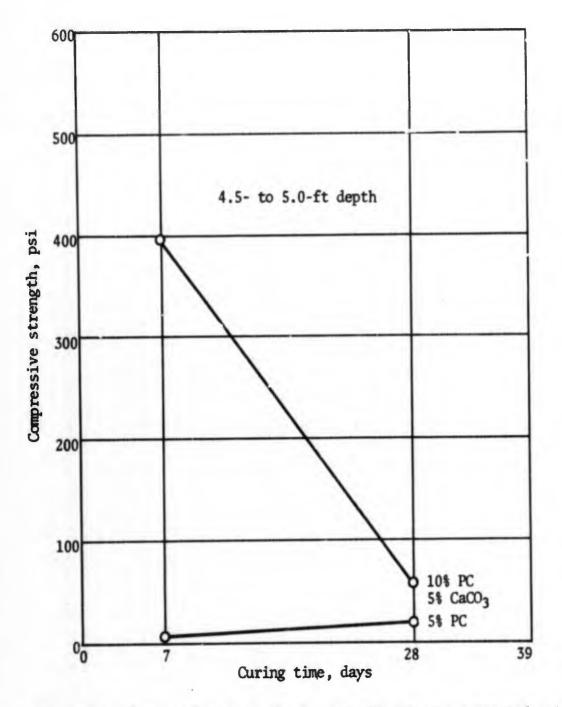


Figure 24. Compressive-strength changes with time in compacted soilcement mixtures (portland cement-calcite), Cam Ranh Bay sample 1

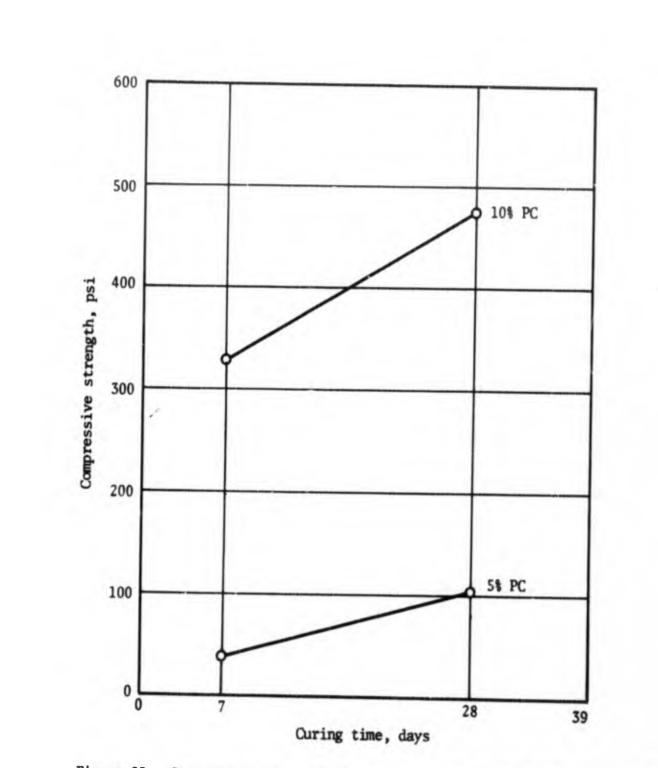
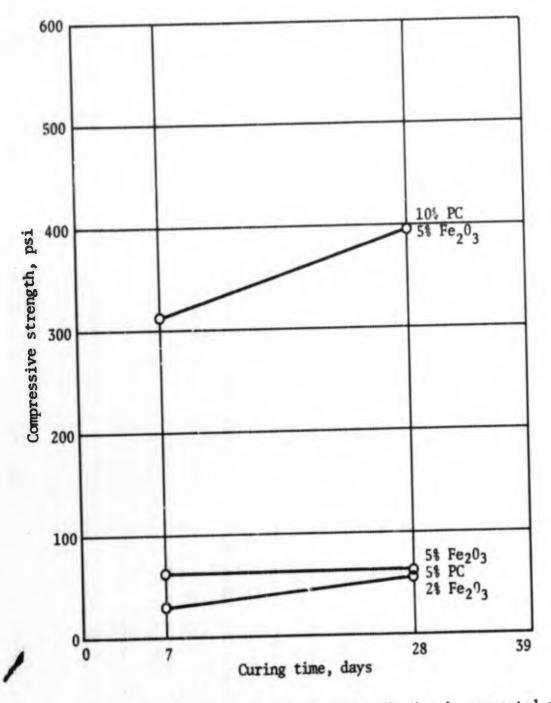
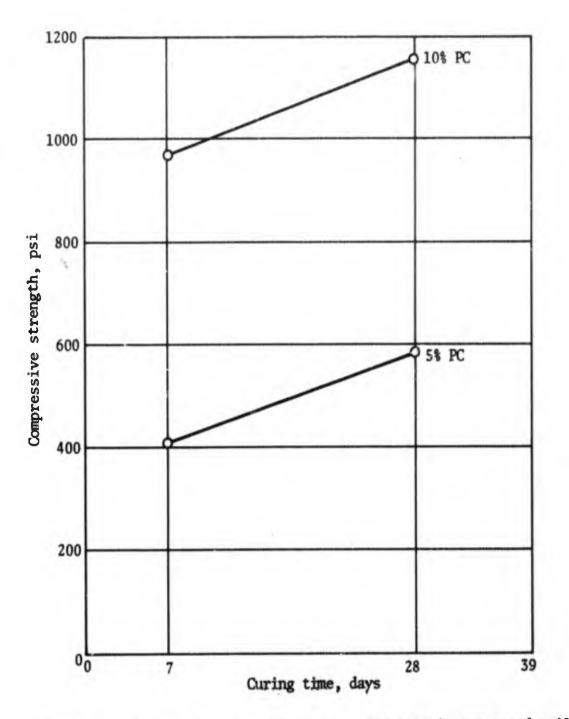
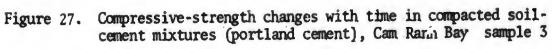
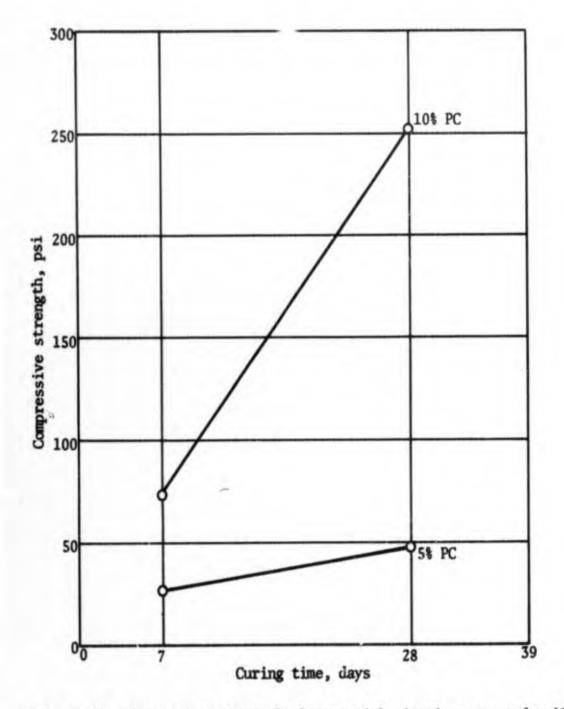
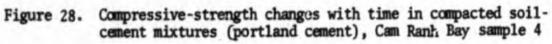
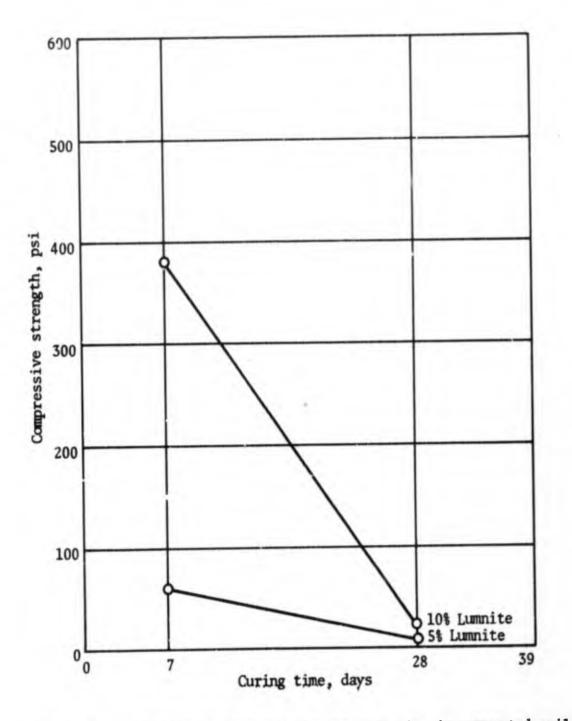
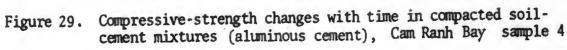


Figure 25. Compressive-strength changes with time in compacted soil-cement mixtures (portland cement), Cam Ranh Bay sample 2


Figure 26. Compressive-strength changes with time in compacted soilcement mixtures (portland cement-hematite), Cam Ranh Bay sample 2



DON MUANG

Figure 30.	Grain-size distribution curve, Don Muang sample 1
	Data in the distribution curre Don Muang sample 2
Figure 31.	Grain-size distribution curve, Don Muang sample 2
Table 9.	Properties of soils, Don Muang
Table 10.	Soil Mineralogy, Don Muang
	and the start of sails from Don Migna
Table 11.	Stabilization of soils from Don Muang
Figure 32.	Compressive-strength changes with time in compacted soil-
riguie sat	compart mixtures (portland cement). Don Muang sample 1
	Compressive-strength changes with time in compacted soil-
Figure 33.	Compressive-screngen changes with the and an angel
	cement mixtures (portland cement), Don Muang sample 2

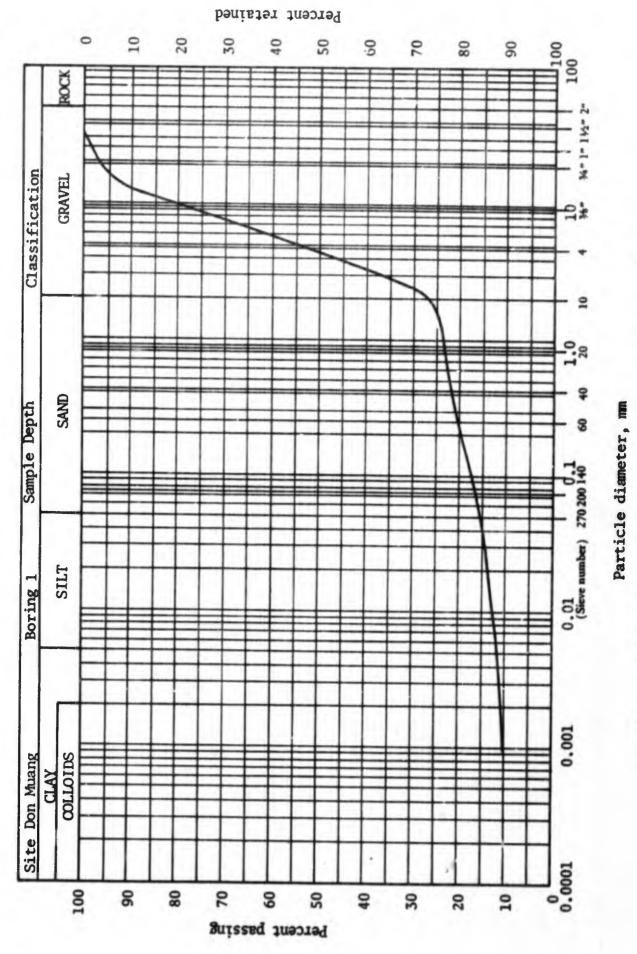
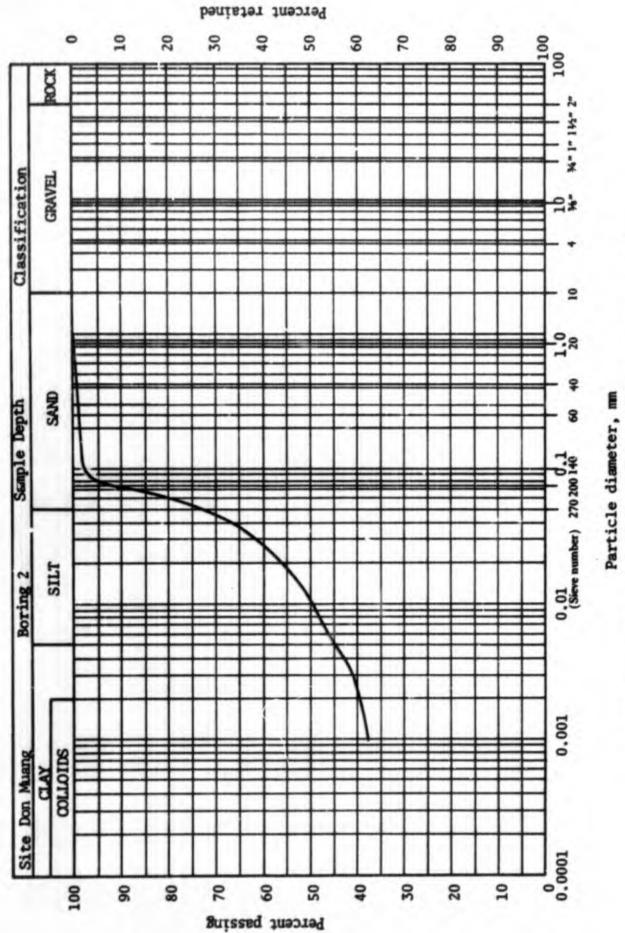



Figure 30. Grain-size distribution curve, Don Muang sample 1

+

1

TA	BLE	9
		-

PROPERTIES OF SOILS FROM DON MUANG

Soil	Sample:	1	2
Textural Composition: %			
Sand (2.0-0.05 mm)		12	27
Silt (50-5 µ)		3	28
Clay (<5 µ)		12	45
Classifications:			
Unified		GC	CL
AASHO		A-2-6[0]	A-6[12]
Physical Properties:			
Liquid limit, %		37	36
Plastic limit, %		15	16
Plasticity Index, \$		22	20
Activity ^{1,2}		0.54	0.51
Specific gravity ¹		2.75	2.61
ASTM standard compaction: ³			
Dry density, 1b/cu ft		118.0	110.5
Optimum moisture content, \$		15.5	15.5
Chemical Properties:1			
Equivalent Fe ₂ 0 ₃ , \$		6.4	1.8
Total soluble salt, %		1.0	1.6
Organic matter, %		0.3	0.5
pH		6.13	4.85

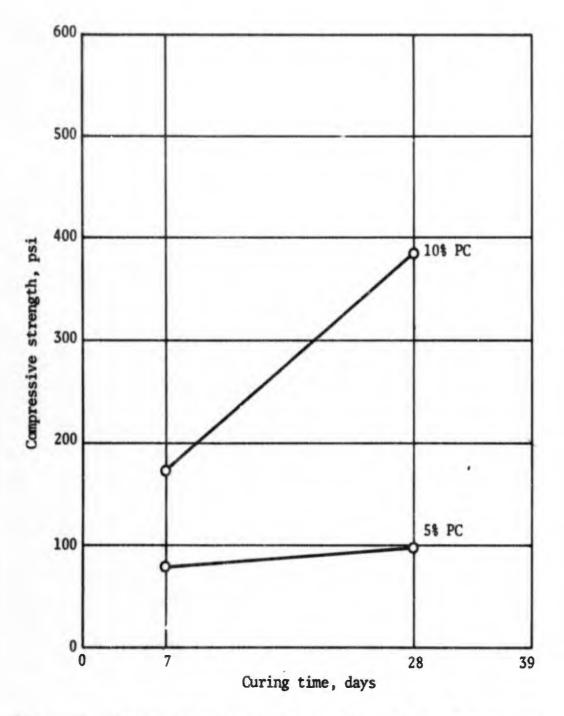
¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay fraction.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

SOIL MINERALOGY, DON MUANG

Mineral, %	Sample: 1	2
Fraction Passing No. 10 Sieve, %	26.6	100.0
Quartz	40	50
Feldspar (perthite)	5	5.
Kaolinite	35	20
Illite		5
Goethite	7.1	2.0
Other minerals:		
Other clays	5	10
Gypsum		3.0
Feldspar (perthite) Kaolinite Illite-mica Goethite Other minerals:	20 20 19.5	
Hornblende	5	Percent
Moisture content of samples when		
received	7.2	22.2
Air-dry moisture content of material		
finer than 2 mm	2.6	4.3
Air-dry moisture content of material		
coarser than 2 mm	1.6	


Sample	Additive and	Strain at failure, in./in.		Unconfined compressive strength, psi	
	amount	7-day	28-day	7-day	28-day
1	5.0% PC 10.0% PC 5.0% PC + 25.0% #966 ² 10.0% PC + 25.0% #966 ² 5.0% PC ³ 10.0% PC ³	0.010 0.011 0.019 0.033 0.022 0.028	0.012 0.010	79 173 387 904 453 763	99 388
2	5.0% PC 10.0% PC 5.0% PC + 25.0% #966 ² 10.0% PC + 25.0% #966 ²	0.011 0.015 0.007 0.017	0.012 0.012	5 247 137 539	74 297

STABILIZATION OF SOILS FROM DON MUANG¹

¹Determined for the fraction passing No. 20 sieve.

²Sample 2 from Tuy Hoa #966.

³Material retained on No. 10 sieve pulverized and used.

Į,

ð

Figure 32. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Don Muang sample 1

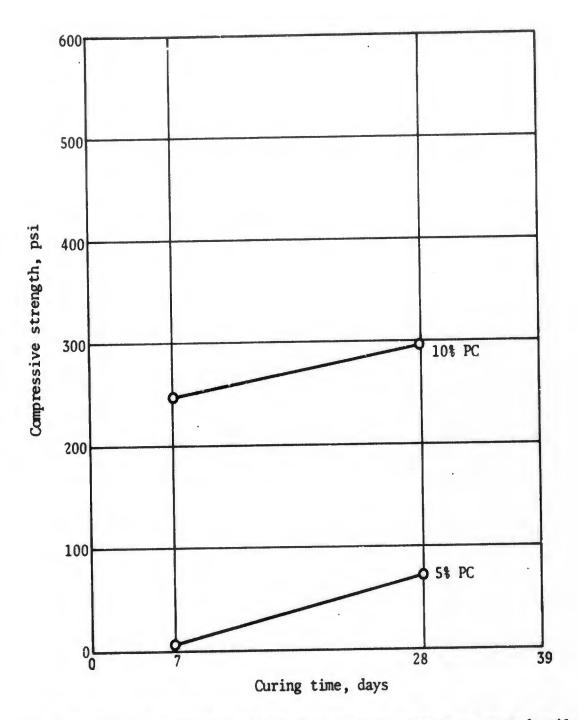


Figure 33. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Don Muang sample 2

NAKHON PHANOM

Figure 34.	Grain-size distribution curve, Nakhon Phanom sample 1
Figure 35.	Grain-size distribution curve, Nakhon Phanom sample 2
Figure 36.	Grain-size distribution curve, Nakhon Phanom sample 3
Table 12.	Properties of soils, Nakhon Phanom
Table 13.	Soil mineralogy, Nakhon Phanom
Table 14.	Stabilization of soils from Nakhon Phanom
Figure 37.	Compressive-strength changes with time on compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 1
Figure 38.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 2
Figure 39.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 3
Figure 40.	Compressive-strength changes with time in compacted soil- cement mixtures (lime), Nakhon Phanom sample 3
Figure 41.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Nakhon Phanom sample 4

.

•

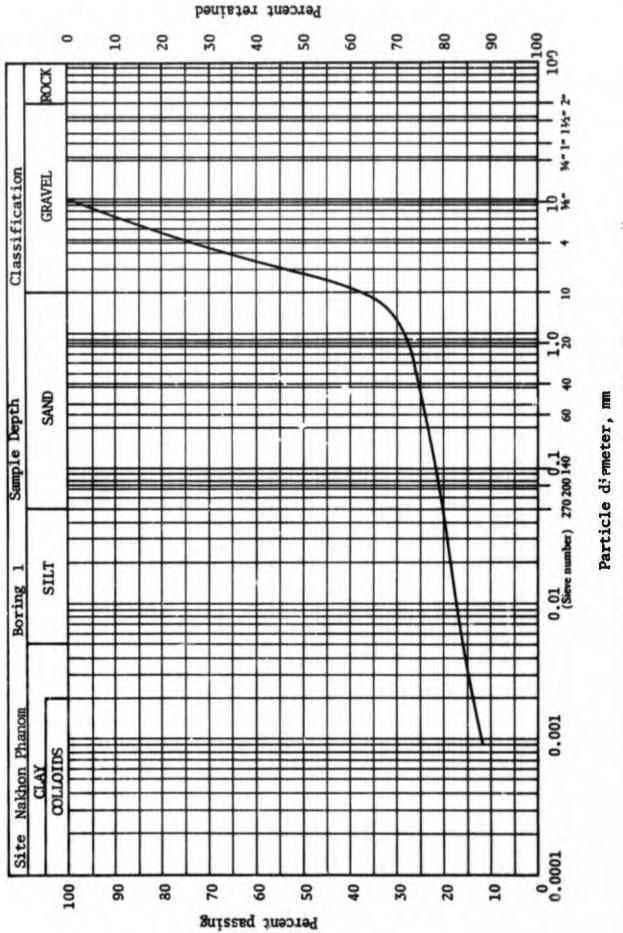


Figure 34. Grain-size distributic.. urve, Nakhon Phanom sample 1

.

Figure 35. Grain-size distribution curve, Nakhon Phanom sample 2

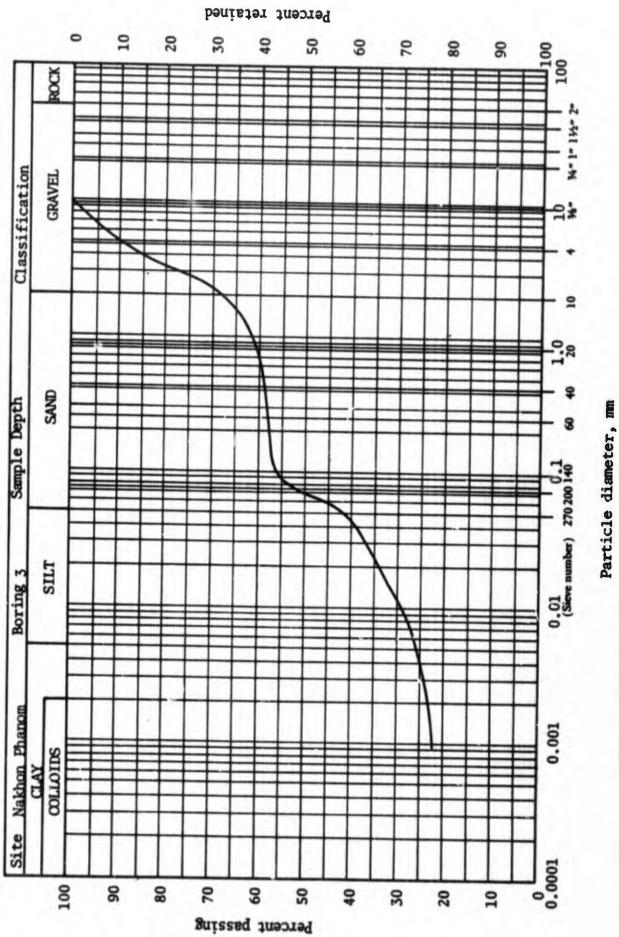


Figure 36. Grain-size distribution curve, Nakhon Phanom sample 3

.

TABLE	1	2
-------	---	---

Soil	Sample:	1	2	3	44
Traction: \$		٤			
Textural Composition: *		17	11	26	
Sand (2.0-0.5 mm)		4	9	17	
Silt (50-5 μ) Clay (<5 μ)		16	16	25	
Classifications:		SC	GC	CL	
Unified		A-2-7[1]		A-7-6[8]	
AASHO		R-2-7[1]	R-2-7[1]		
Physical Properties:			15	44	
Liquid limit, %		54	45	21	
Plastic limit, %		26	26	23	N.P.
Plasticity Index, \$		28	19		N+L +
Activity ¹ , ²		0.73	0.61	0.68	3.39
Specific gravity ¹	2	3.08	3.00	2.70	2.39
ASTM standard compaction	. 3	100.0	02.0	99.0	
Dry density, 1b/cu ft		108.0	92.0	23.5	-
Optimum moisture cont	ent, %	22.5	29.0	23.5	
Chemical Properties:1					40.0
Equivalent Fe ₂ 0 ₃ , %		14.9	8.8	2.1	40.8
Total soluble salt, %		0.7	0.8	1.1	
Organic matter, %		0.3		2.5	
pH		5.17	5.20	6.88	6.86

PROPERTIES OF SOILS FROM NAKHON PHANOM

¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniacure Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

⁴Indurated laterite.

SOIL MINERALOGY, NAKHON PHANOM

Mineral, %	Sample:	1	2	3	0,1
Fraction Passing No. 10 Sieve, %		36.0	28.9	67.6	0.0
Quartz		25	20	45	
Feldspar (perthite)				5	
Kaolinite-halloysite		25	25	20	
Illite		10	10	20	
Goethite		10	5	2.4	
Other minerals:					
Hematite		5	5		
Other clays		10	5		
Fraction Retained on No. 10 Sieve					
Quartz		15	5	20	20
Feldspar (perthite)			5 5		5
Kaolinite-halloysite		15	15	. 15	10
Illite		10	10	10	10
Goethite	e 11	25	15	.30	30
Other minerals:					
Hematite		10	10	15	15
Other clays		5	5		5
Gibbsite			5		
			Per	cent	
Moisture content of samples when					
received		13.1	18.0	24.0	
Air-dry moisture content of material finer than 2 mm		12.2	12.3	3.8	
Air-dry moisture content of material		يت و من يد	10.0		
coarser than 2 mm		5.3	4.2	1.5	4.9

¹Indurated laterite.

	Additive	Strain at failure, in./in.		Unconfined compressive strength, psi	
Sample	amount	7-day	28-day	7-day	28-day
1	5.0% PC 10.0% PC	0.017 0.020	0.018 0.022	115 255	126 401
2	5.0% PC 10.0% PC 5.0% PC ² 10.0% PC ²	0.017 0.017 0.016 0.025	0.013 0.020	29 133 277 774	8 236
3	5.0% PC 10.0% PC 6.0% U.S. lime 6.0% Thailand lime	0.032 0.019 0.014 0.013	0.019 0.013 0.008 0.012	64 172 24 31	64 168 16 26
4	5.0% PC ³ 10.0% PC ³ 5.0% Lumnite ³ 10.0% Lumnite ³	0.011 0.038 0.011 0.010	0.010 0.037 0.009 0.011	187 913 46 194	230 ⁴ 1105 ⁴ 22 ⁴ 238 ⁴

STABILIZATION OF SOILS FROM NAKHON PHANOM1

¹Determined for the fraction passing No. 20 sieve.

²Material retained on No. 20 sieve pulverized and original soil reconstituted.

³Indurated laterite pulverized to -#20-size material.

⁴Tested after 14 days curing time.

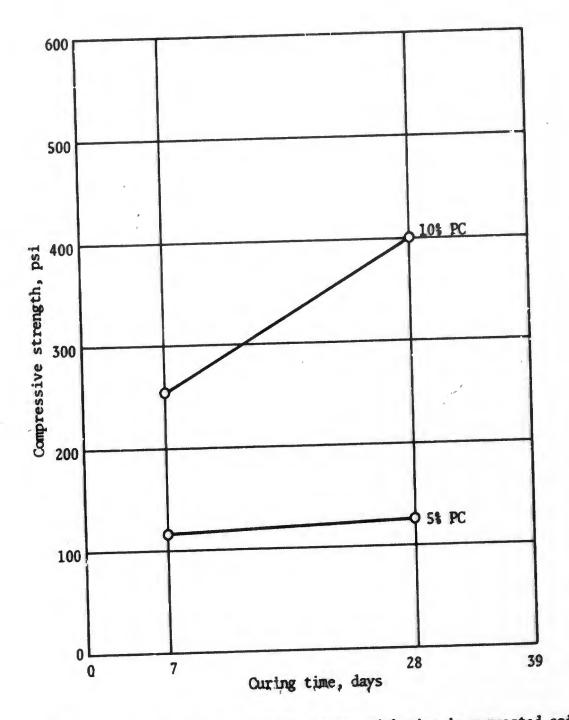
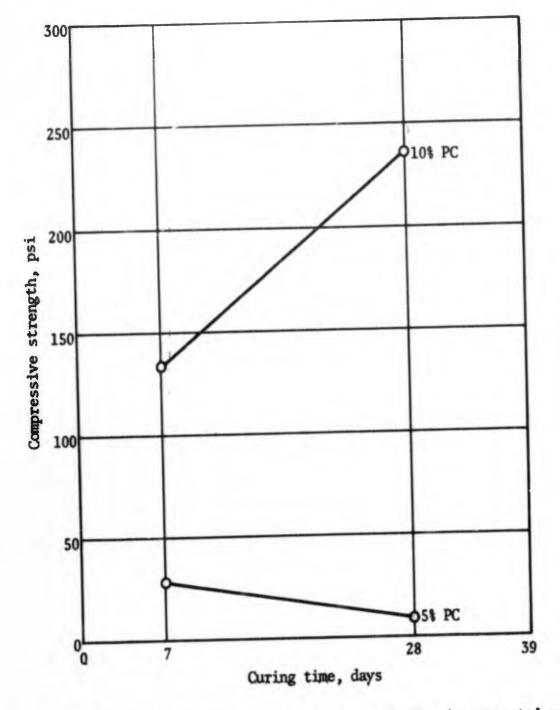
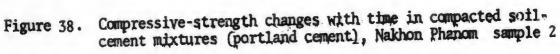




Figure 37. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Nakhon Phanom sample 1

.

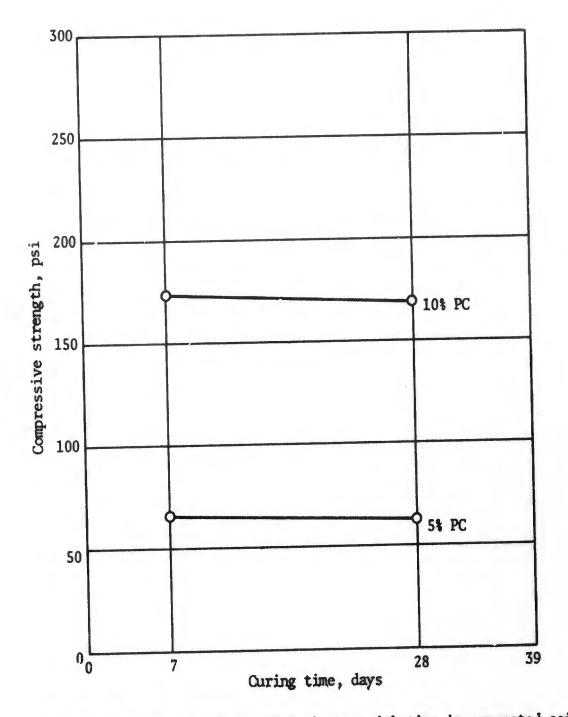
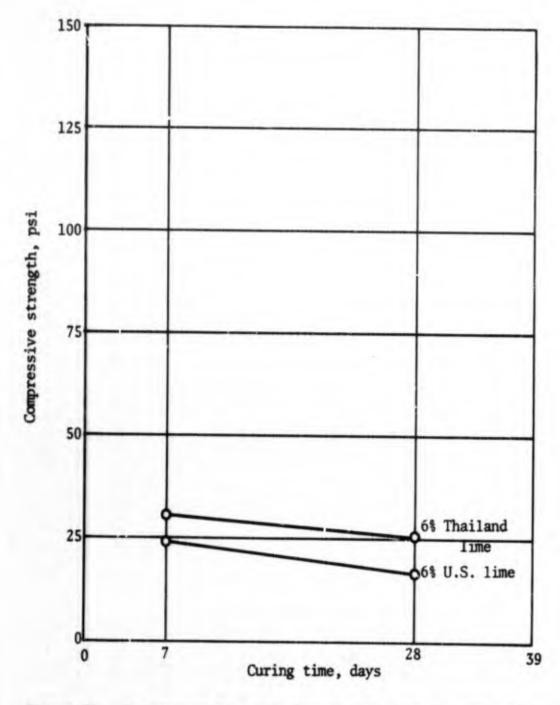
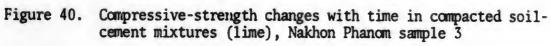
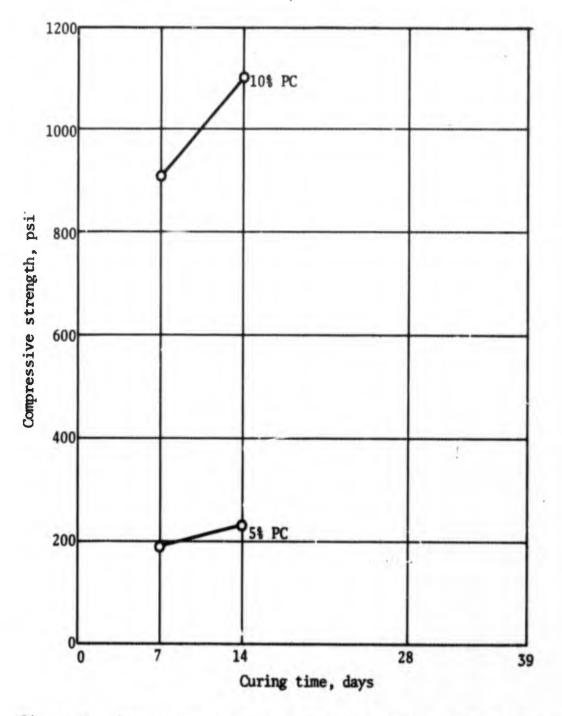
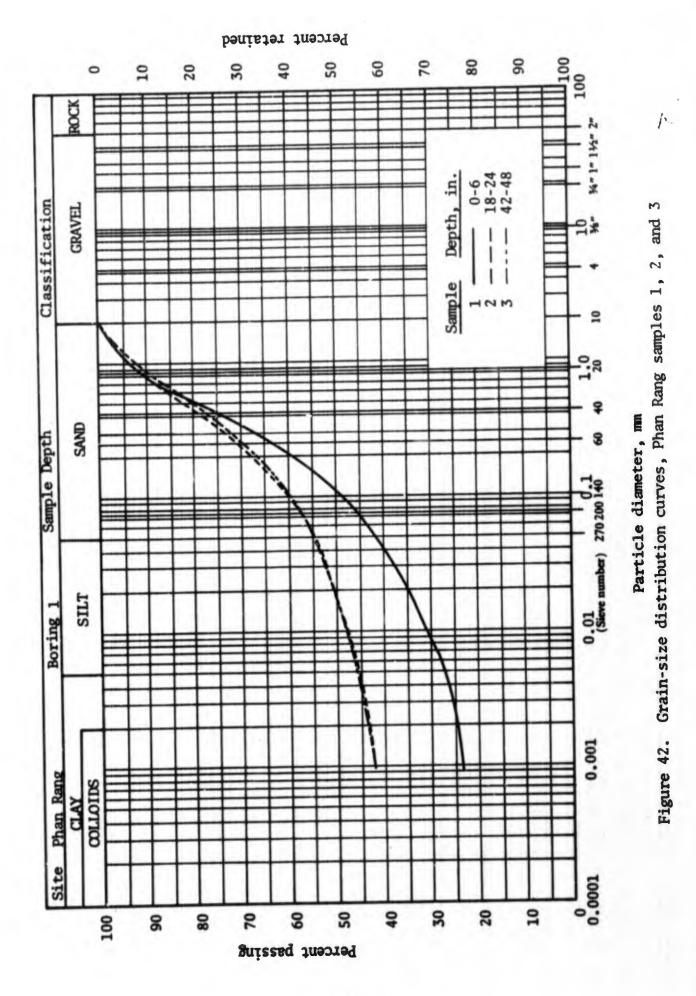
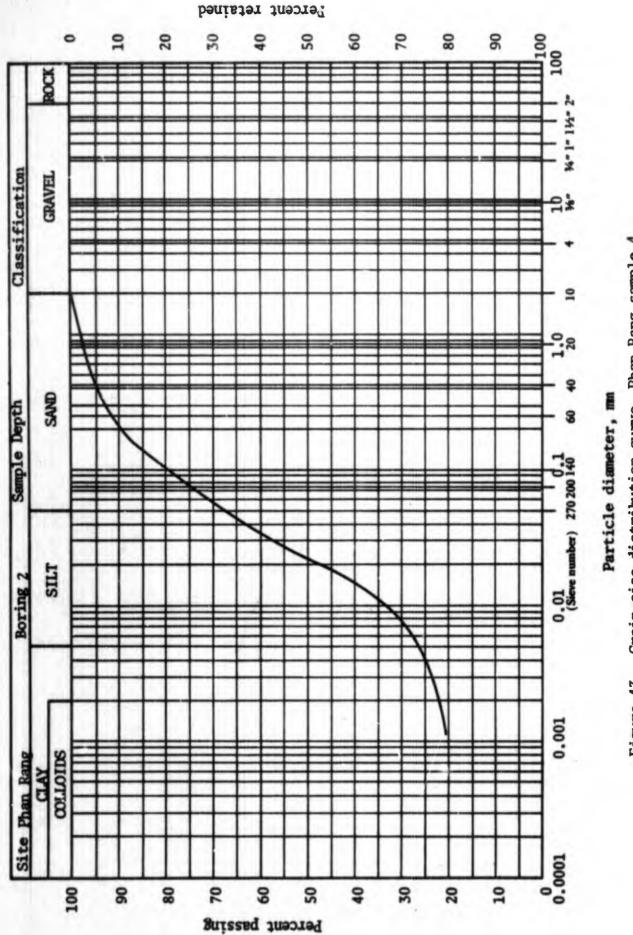





Figure 39. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Nakhon Phanom sample 3




Fiugre 41. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Nakhon Phanom sample 4

PHAN RANG

Figure 42. Figure 43. Table 15. Table 16.	Grain-size distribution curves, Phan Rang samples 1, 2, and 3 Grain-size distribution curve, Phan Rang sample 4 Properties of soils, Phan Rang Soil Mineralogy, Phan Rang
Table 17.	Stabilization of soils from Phan Rang
Figure 44.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 1
Figure 45.	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Phan Rang sample 1
Figure 46.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 2
Figure 47.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 3
Figure 48.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Phan Rang sample 4

|}

.

PROPERTIES OF SOILS FROM PHAN RANG

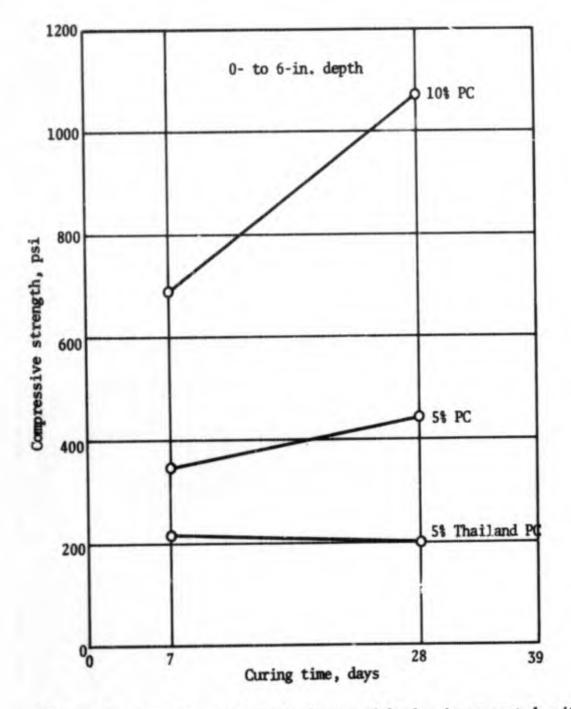
Soil	Sample:	1	2	3	4
Textural Composition: \$					
Sand (2.0-0.05 mm)		58	45	45	33
Silt (50-5 µ)		15	10	10	41
Clay (<5 µ)		27	45	45	26
Classifications:		•			
Unified		SM	CL	CL	CL
AASHO		A-4[2]	A-7-6[11]	A-7-6[11]	A-4[8]
Physical Properties:					
Liquid limit, \$		25	45	48	23
Plastic limit, %		22	19	20	15
Plasticity Index, %		3	26	28	8
Activity ^{1,2}		0.12	0.61	0.64	0.36
Specific gravity ¹		2.78	2.69	2.60	2.72
ASTM standard compaction	1:3				
Dry density, 1b/cu ff		116.5	109.5	110.5	116.4
Optimum moisture cont		13.7	18.0	18.5	14.0
Chemical Properties:1					
Equivalent Fe ₂ 0 ₃ , \$		2.2	2.6	3.3	2.6
Total soluble salt, \$		1.4	0.7	0.9	0.9
Organic matter, \$		0.9	0.5	0.4	1.3
рН		6.17	6.21	6.23	5.93

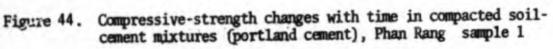
¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

SOIL MINERALOGY, PHAN RANG


Mineral, %	Sample:	1	2	3	4
Fraction Passing No. 10 Sieve, %		99.9	99.8	100.0	99.8
Quartz		30	35	15	35
Feldspar (perthite)		10	10	10	5
Kaolinite-halloysite		15	35	30	20
Illite-mica		10	2	3	10
Goethite		2.5	2.9	3.7	2.9
Other minerals:					
Dolomite		2			1
Calcite			1 5	1	
Other clays			5		
Hornblende		2			35
Chlorite					5
			Percent		
Moisture content of samples when					
received		4.6	6.8	7.6	3.6
Air-dry moisture content of material					
finer than 2 mm		3.6	2.7	3.6	2.3


Note: Sample 3 contains "float" rock consisting of dolomitic limestone, comprised of about 25% dolomite and 65% calcite.

Sample	Additive and	Strain at failure, in./in.		Unconfined compressive strength, psi	
	amount	7-day	28-day	7-day	28-day
1	5.0% PC 10.0% PC	0.017	0.018	344 687	442 1075
	5.0% Thailand PC	0.012	0.038	213	200
	5.0% Lumnite	0.017	0.004	157	194
	10.0% Lumnite	0.013	0.014	258	584
2	5.0% PC	0.011	0.014	168	192
	10.6% PC	0.023	0.019	427	482
3	5.0% PC	0.010	0.020	152	313
	10.0% PC	0.017	0.027	399	703
4	5.0% PC	0.018	0.021	311	441
	10.0% PC	0.022	0.016	538	645
	4.0% lime	0.014	0.014	3	5

STABILIZATION OF SOILS FROM PHAN RANG¹

¹Determined for the fraction passing No. 20 sieve.

-

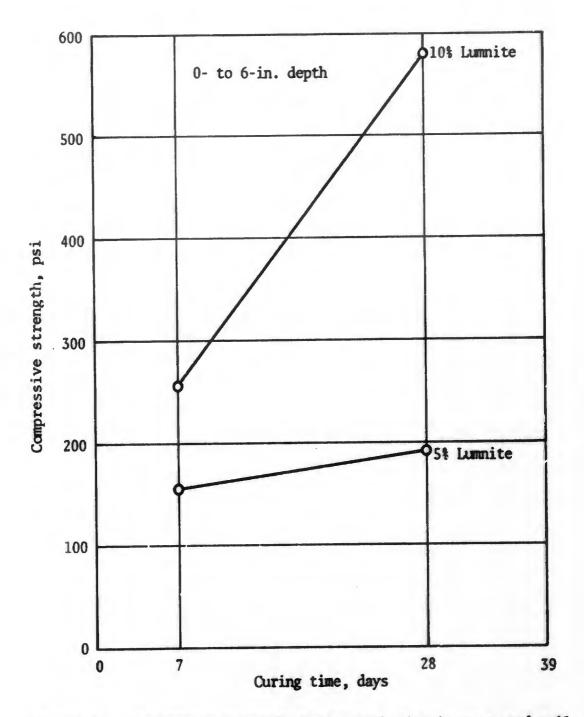
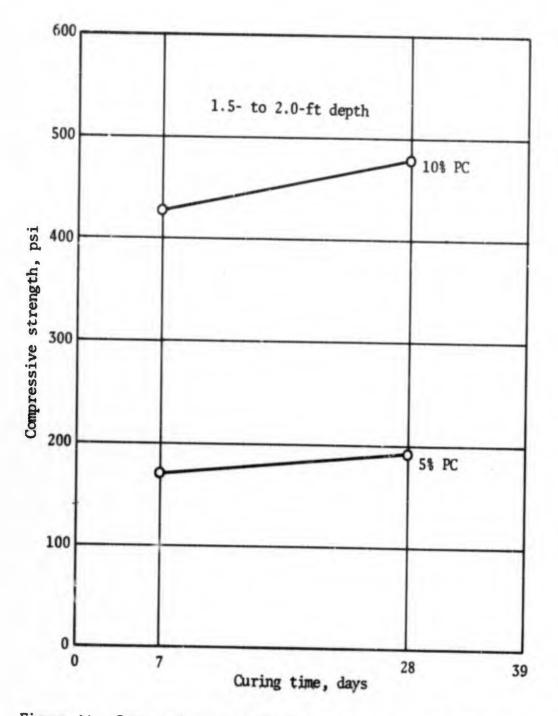
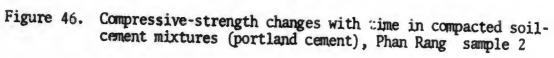




Figure 45. Compressive-strength changes with time in compacted soilcement mixtures (aluminous cement), Phan Rang sample 1

Will Stratements.

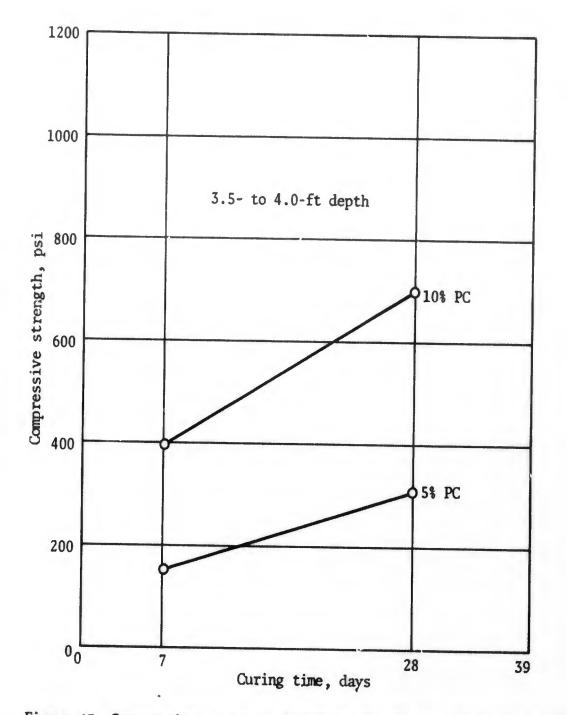
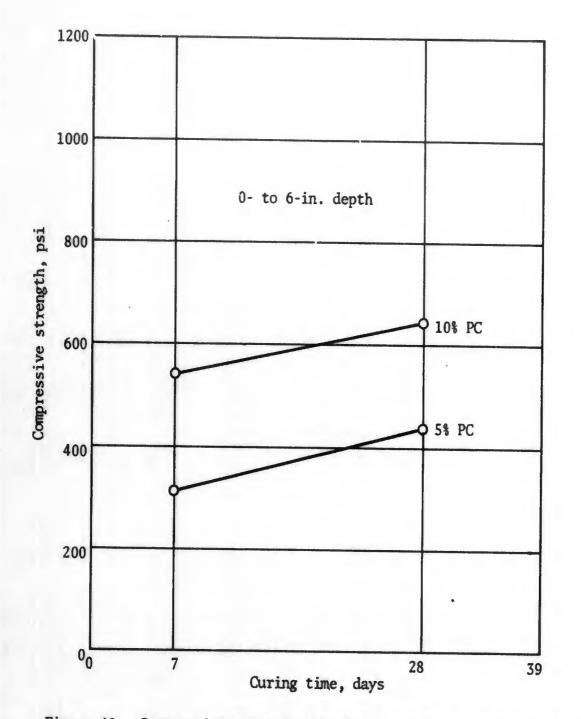



Figure 47. Compressive-strength changes with time in compacted soil-cement mixtures (portland cement), Phan Rang sample 3

i

Figure 48. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Phan Rang sample 4

0

TAN SON NHUT

Figure 49. Figure 50.	Grain-size distribution curve, Tan Son Nhut sample 1 Grain-size distribution curve, Tan Son Nhut sample 2
Figure 51.	Crain size distribution curve, fail Son Mult sample 2
	Grain-size distribution curve, Tan Son Nhut sample 3
Table 18.	Properties of soils, Tan Son Nhut
Table 19.	Soil Mineralogy, Tan Son Nhut
Table 20.	Stabilization of soils from Tan Son Nhut
Figure 52.	Compressive-strength changes with time in compacted soil-
-	cement mixtures (portland cement), Tan Son Nhut sample 1
Figure 53.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Tan Son Nhut sample 2
Figure 54.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Tan Son Nhut sample 3

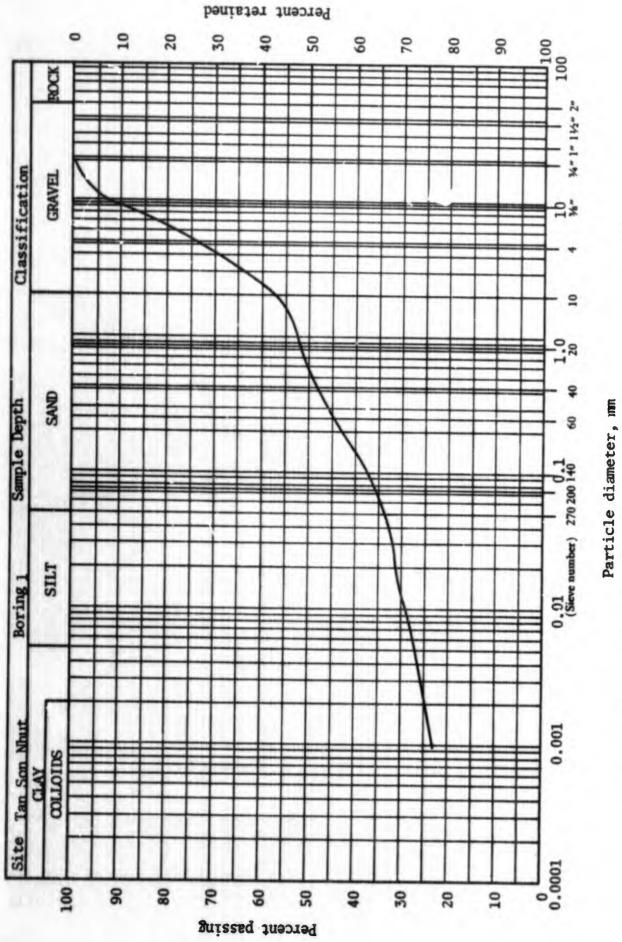


Figure 49. Grain-size distribution curve, Tan Son Nhut sample 1

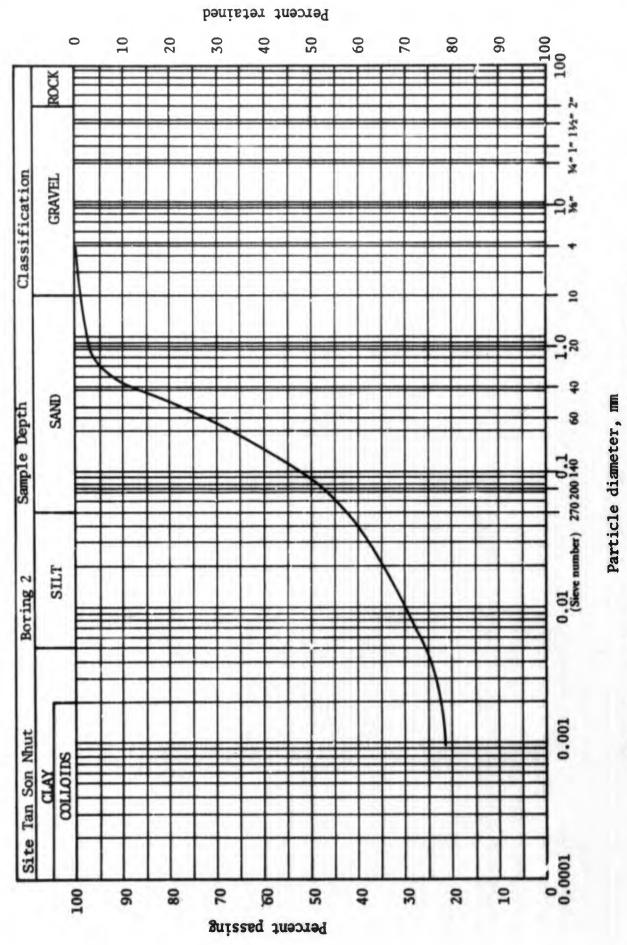
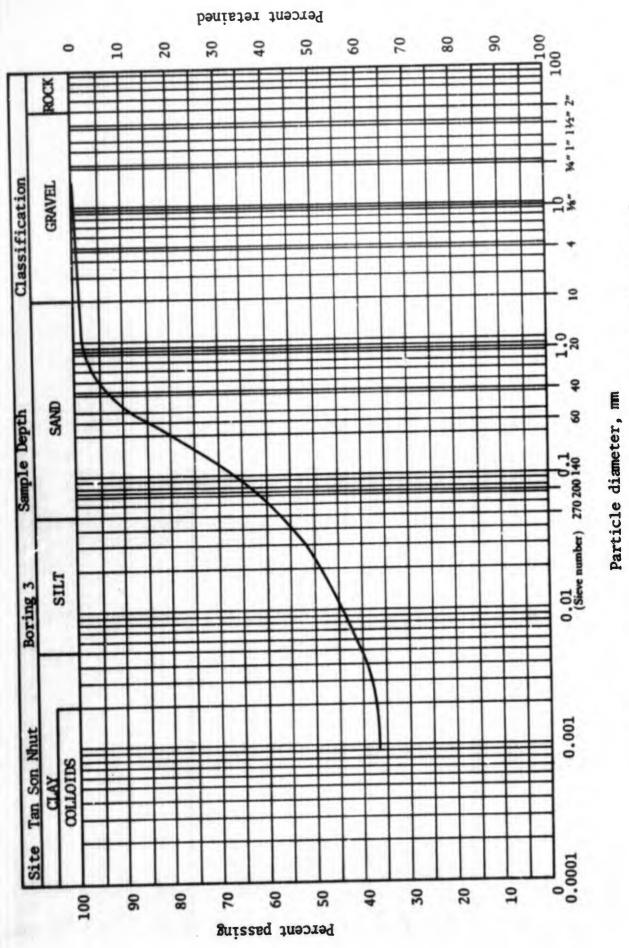



Figure 50. Grain-size distribution curve, Tan Son Nhut sample 2

TA	BL	E	1	8

PROPERTIES OF SOILS FROM TAN SON NHUT

Soil	Sample:	1	2	3
Textural Composition: %				
Sand (2.0-0.05 mm)		23	57	42
Silt (50-5 µ)		8	17	17
Clay (<5 µ)		27	25	40
Classifications:				
Unified		SC	SC	CL
AASHO		A-2-7[3]	A-4[3]	A-6[10]
Physical Properties:				
Liquid limit, %		47	20	34
Plastic limit, %		24	12	14
Plasticity Index, %		23	8	20
Activity ^{1,2}		0.52	0.31	0.53
Specific gravity ¹		2.71	2.62	2.71
ASTM standard compaction:	3			
Dry density, 1b/cu ft		106.0	126.0	113.0
Optimum moisture conter	it, %	20.0	11.0	15.5
Chemical Properties:1				
Equivalent Fe ₂ 0 ₃ , %		5.2	0.7	1.0
Total soluble salt, \$		0.8	0.8	0.7
Organic matter, %		0.3	0.5	0.3
рН		4.87	5.35	4.37

¹Determined for the fraction passing No. 10 sieve.

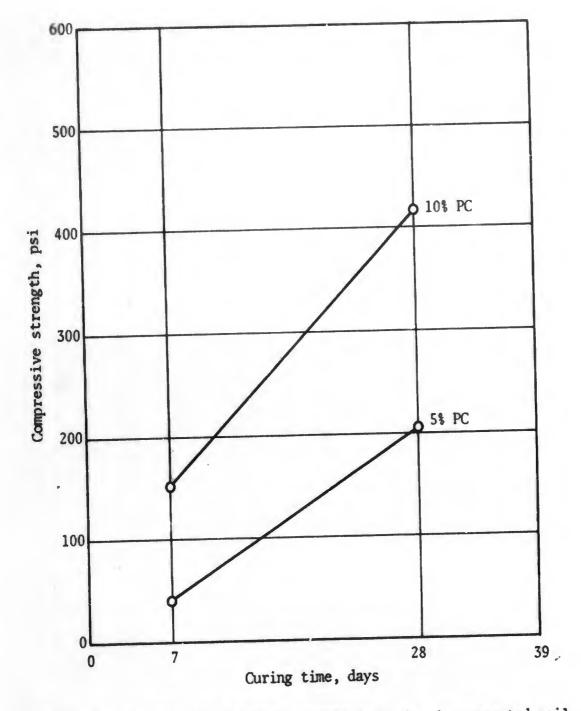
²Activity = Plasticity Index/(-2 μ) clay fraction.

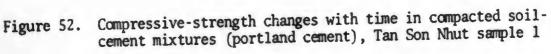
³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

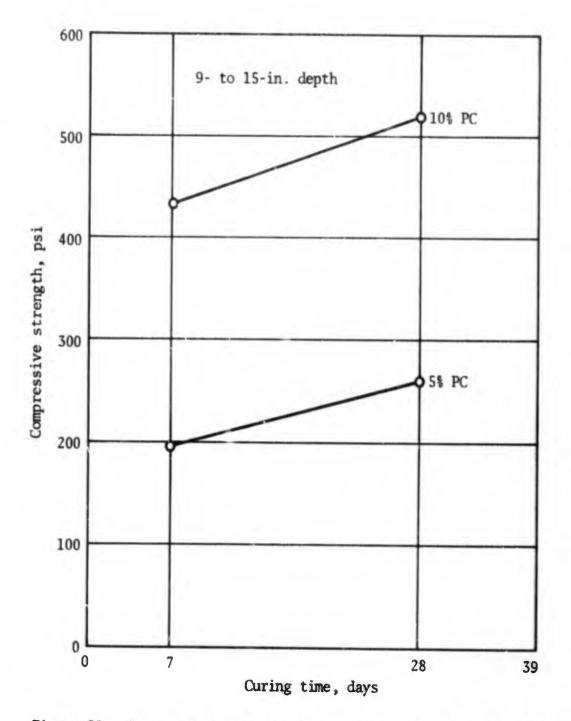
TABLE 19	TA	BL	E	1	9
----------	----	----	---	---	---

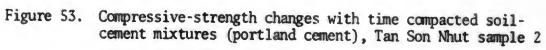
SOIL MINERALOGY, TAN SON NHUT

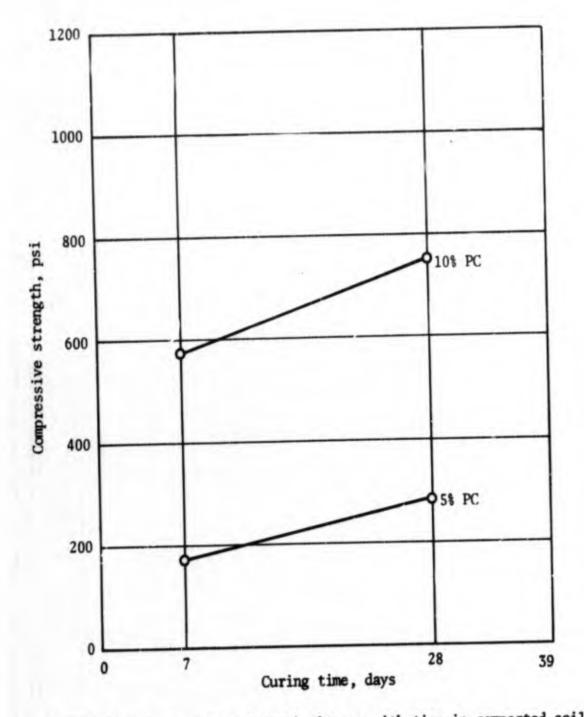
Mineral, \$	Sample:	1	2	3
Fraction Passing No. 10 Sieve, %		56.6	99.0	99.4
Quartz		30	65	55
Feldspar (perthite)		2	1	1
Kaolinite		35	25	30
Illite				
Goethite		5.8	0.8	1.2
Other minerals:				
Other clays		10		10
Fraction Retained on No. 10 Sieve				
Quartz		30		
Feldspar (perthite)		5		
Kaolinite		20	/	
Illite				10 40
Goethite		20	***	
Other minerals:				
Hematite		15		
			Percent	
Moisture content of samples when		10.7	12.6	14.7
received		12.3	12.0	14./
Air-dry moisture content of material finer than 2 mm		1.6	1.1	1.0
Air-dry moisture content of material coarser than 2 mm		1.7	·	

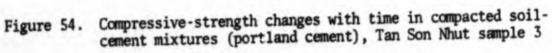

Sample	Additive and	failure	in at , in./in.	Unconfined compressive strength, psi	
amour	amount	7-day	28-day	7-day	28-day
1	5.0% PC	0.016	0.014	40	208
	10.0% PC	0.025	0.021	155	418
	6.0% Thailand lime	0.011	0.010	24	16 ²
	6.0% U.S. lime	0.004	0.005	9	8 ²
2	5,0% PC	0.014	0.013	197	262
	10.0% PC	0.022	0.018	436	522
3	5.0% PC	0.010	0.016	166	286
	10.0% PC	0.021	0.022	577	755

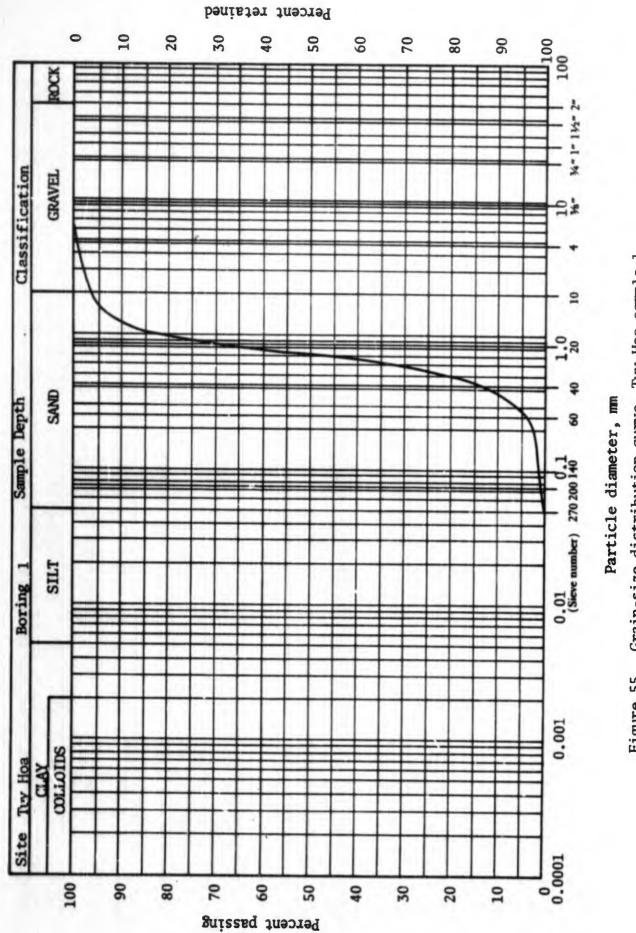

STABILIZATION OF SOILS FROM TAN SON NHUT1


¹Determined for the fraction passing No. 20 sieve.


²Tested after 14 days curing time.


•





TUY HOA

Figure 55. Figure 56. Figure 57. Table 21. Table 22.	Grain-size distribution curve, Tuy Hoa sample 1 Grain-size distribution curve, Tuy Hoa sample 2 Grain-size distribution curve, Tuy Hoa sample 3 Properties of soils, Tuy Hoa Soil mineralogy, Tuy Hoa
Table 23.	Stabilization of soils from Tuy Hoa
Figure 58.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tuy Hoa sample 1
Figure 59.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Tuy Hoa sample 2
Figure 60.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement). Tuy Hoa sample 3
Figure 61.	Compressive-strength changes with time in compacted soil-
Figure 62.	Compressive-strength changes with time in compacted soil- cement mixtures (aluminous cement), Tuy Hoa sample 3

Grain-size distribution curve, Tuy Hoa sample 1 Figure 55.

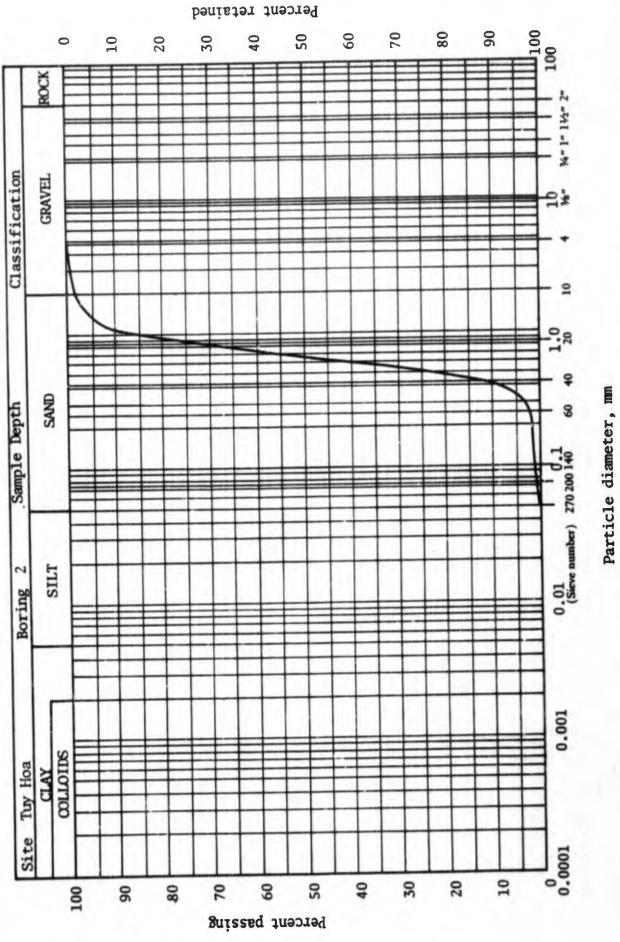


Figure 56. Grain-size distribution curve, Tuy Hoa sample 2

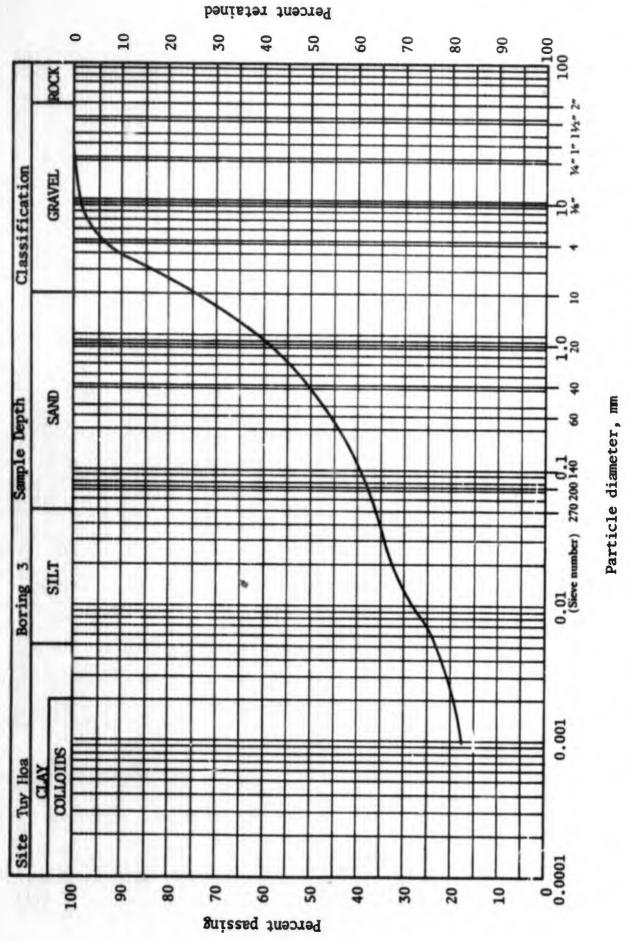


Figure 57. Grain-size distribution curve, Tuy Hoa sample 3

3 2 Soi1 Sample: 1 Textural Composition: \$ 38 98 97 Sand (2.0-0.05 mm) 13 0 0 Silt $(50-5 \mu)$ 0 23 0 Clay (<5 μ) Classifications: SP SP SM Unified A-1-b[0] A-7-6[2] A-1-b[0] AASHO Physical Properties: 42 - -- -Liquid limit, % 28 Plastic limit, * 14 N.P. N.P. Plasticity Index, % Activity¹,² 0.54 --- -2.66 2.60 Specific gravity¹ 2.63 ASTM standard compaction:³ 99.5 99.5 100.0 Dry density, 1b/cu ft 22.0 10.0 11.0 Optimum moisture content, % Chemical Properties:¹ 1.0 3.1 0.7 Equivalent Fe₂0₃, \$ 0.7 0.7 0.8 Total soluble salt, \$ 0.2 0.0 0.1 Organic matter, % 7.02 6.98 5.78 pH

PROPERTIES OF SOILS FROM TUY HOA

¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay fraction.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

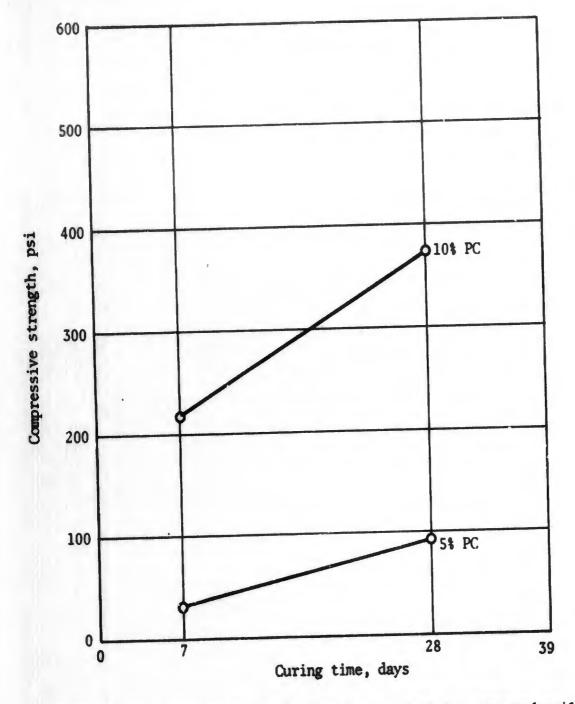
SOIL MINERALOGY, TUY HOA

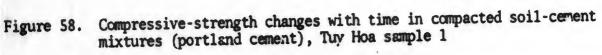
• 1

.

Mineral, %	Sample:	1	2	3
Fraction Passing No. 10 Sieve, %		96.5	98.5	74.3
Quartz		60	55	20
Feldspar (perthite)		25	25	15
Kaolinite		1	1	30
Illite-mica		3	2	5
Goethite		0.7	1.1	3.5
Other minerals:				
Chlorite				5
Fraction Retained on No. 10 Sieve				
Quartz				55
Feldspar (perthite)				20 5 5
Kaolinite				5
Illite-mica				5
Goethite				2.0
Other minerals:				
Chorite				5
			Percent	
Moisture content of samples when				
received		3.1	3.1	19.8
Air-dry moisture content of material finer than 2 mm		0.1	0.2	1.2
Air-dry moisture content of material				0.7
coarser than 2 mm				0.3

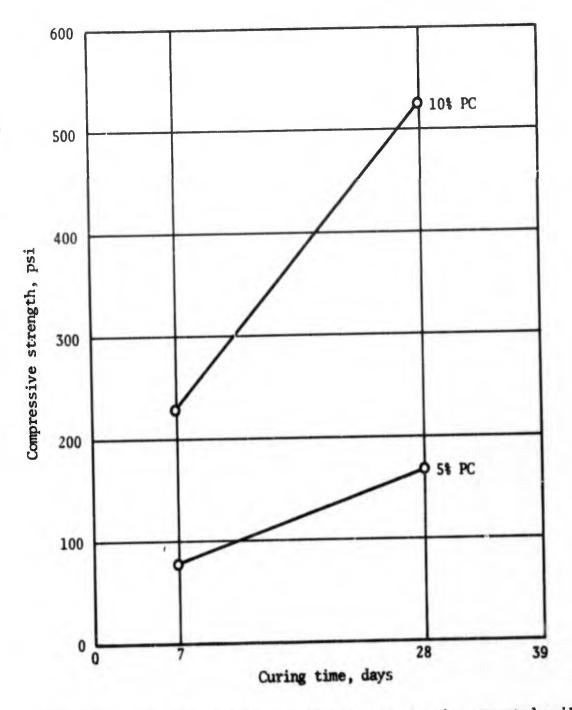
1

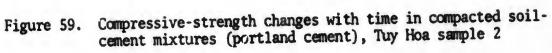

4 . u

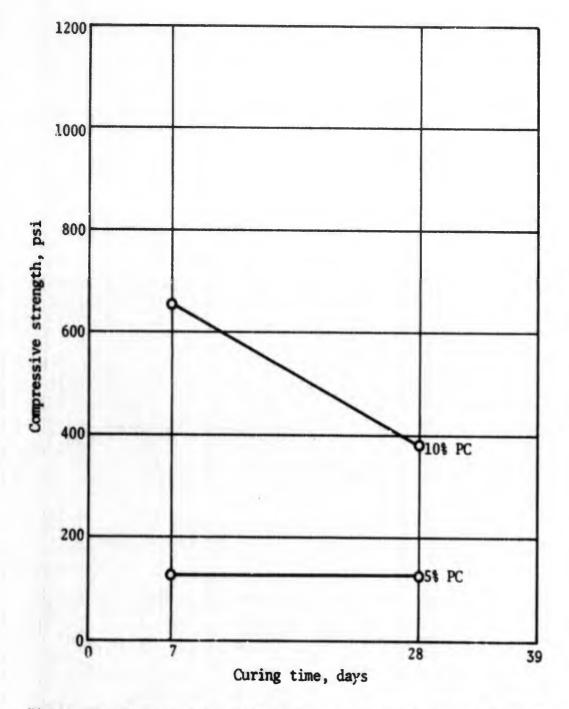

Sample	Additive and		Strain at failure, in./in.		Unconfined compressive strength, psi	
Sampre	amount	7-day	28-day	7-day	28-day	
1	5.0% PC 10.0% PC 5.0% PC + 10.0% clay ² 5.0% PC + 20.0% clay ² 10.0% PC + 10.0% clay ² 10.0% PC + 20.0% clay ²	$\begin{array}{c} 0.015 \\ 0.014 \\ 0.015 \\ 0.010 \\ 0.019 \\ 0.012 \end{array}$	0.017 0.015 0.013 7.013 0.028 0.019	32 217 199 178 564 339	94 377 258 282 708 569	
2	5.0% PC 10.0% PC	0.010 0.015	0.014 0.015	77 229	168 525	
3	5.0% PC 10.0% PC 6.0% Thailand lime 6.0% U.S. lime 5.0% Lumnite 10.0% Lumnite	0.012 0.021 0.008 0.012 0.011 0.012	0.009 0.016 0.008 0.007 0.011 0.011	129 654 38 24 58 171	132 383 41 24 82 187	

STABILIZATION OF SOILS FROM TUY HOA1

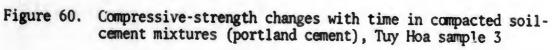
¹Determined for the fraction passing No. 20 sieve.


²Florida kaolinite was used.





1. . 1


* *

đ,

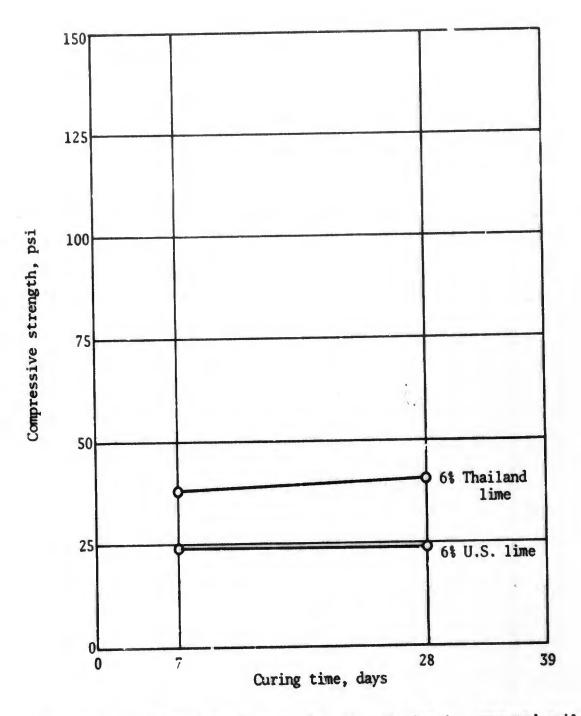
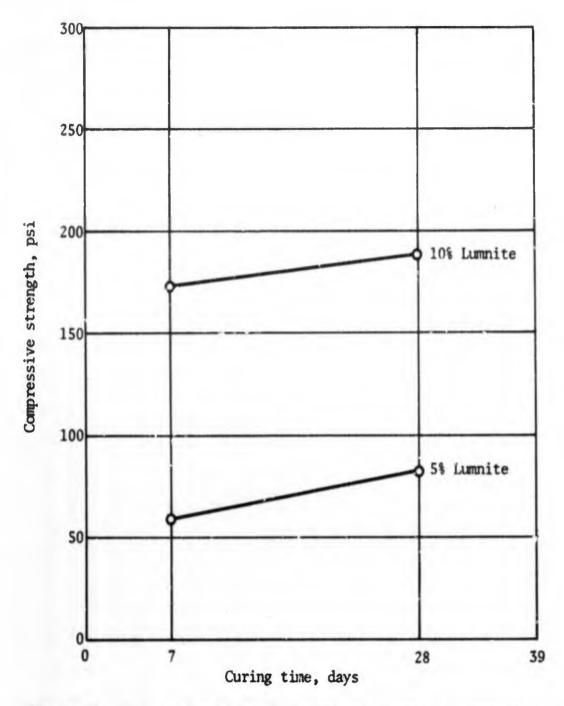
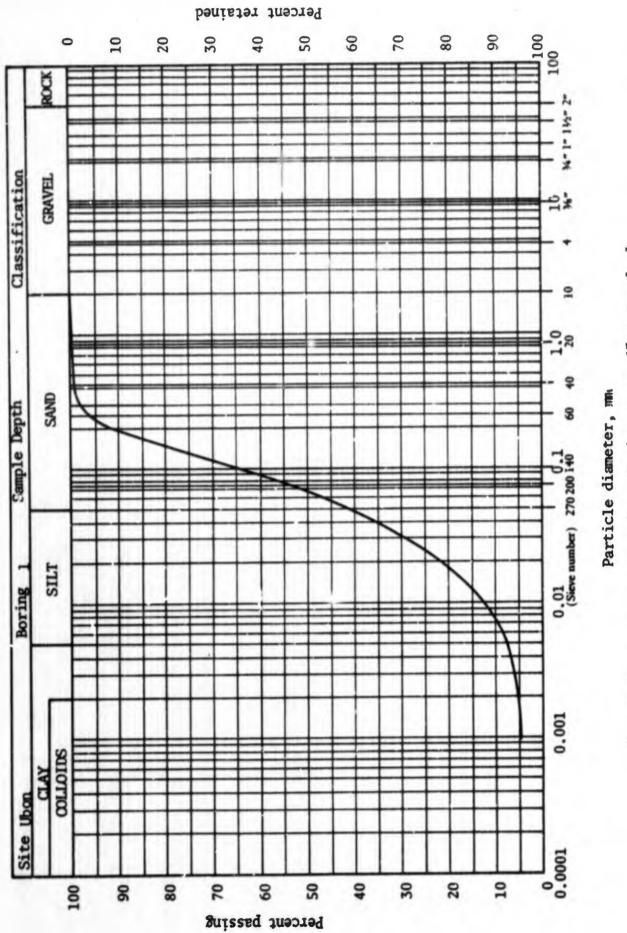
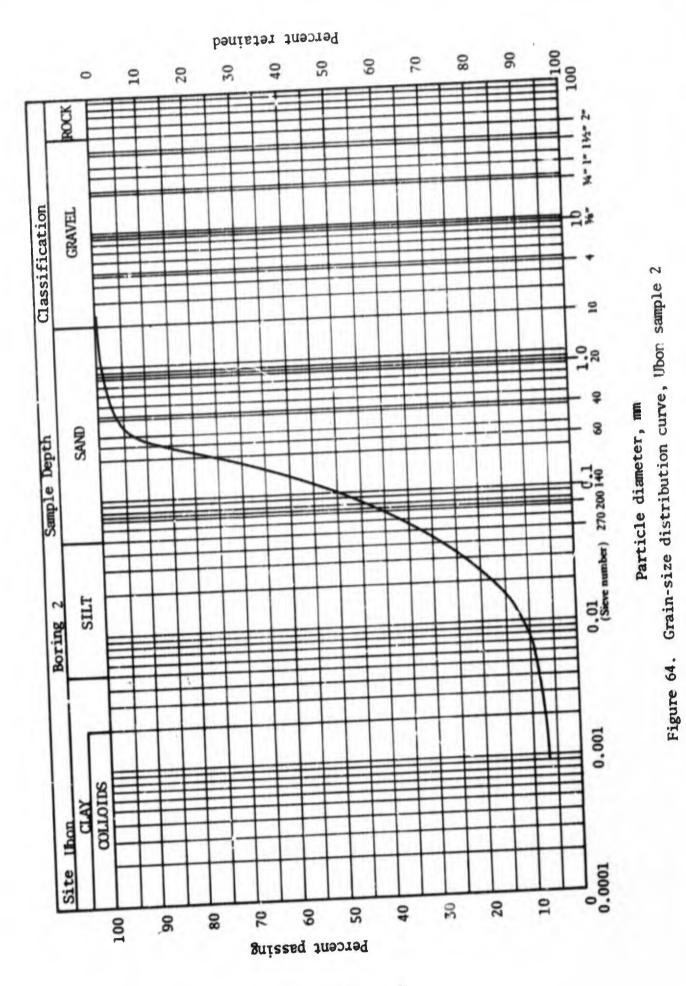


Figure 61. Compressive-strength changes with time in compacted soilcement mixtures (lime), Tuy Hoa sample 3


Figure 62. Compressive-strength changes with time in compacted soilcement mixtures (aluminous cement), Tuy Hoa sample 3

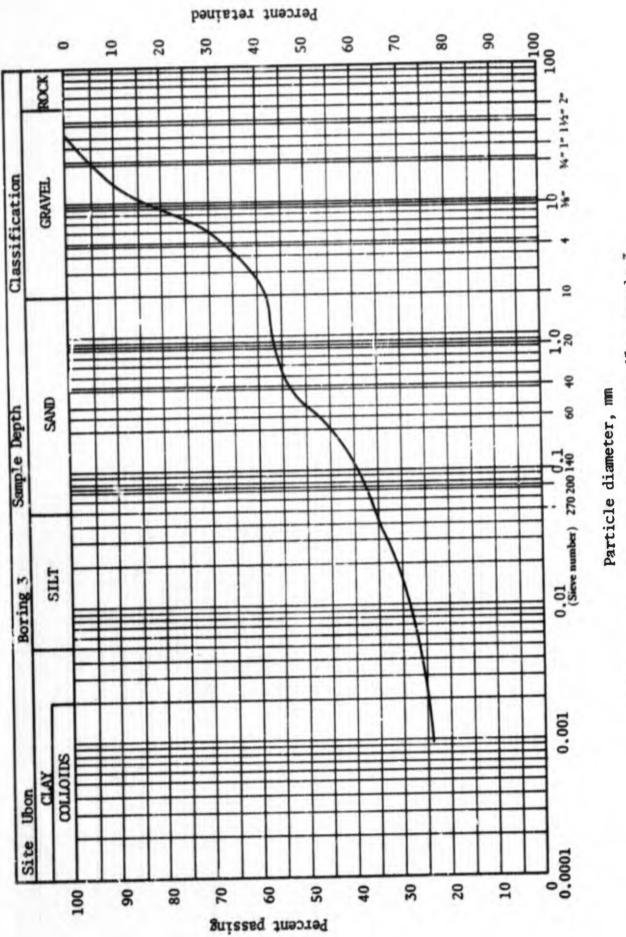

UBON

Figure 63.	Grain-size distribution curve, Ubon sample 1
Figure 64.	Grain-size distribution curve, Ubcn sample 2
Figure 65.	Grain-size distribution curve, Ubon sample 3
Figure 66.	Grain-size distribution curve, Ubon sample 4
Table 24.	Properties of soils, Ubor.
Table 25.	Soil mineralogy, Ubon
Table 26.	Stabilization of soils from Ubon
Figure 67.	Compressive-strength changes with time in compacted soil- cement mixtures (portland cement), Ubon sample 1
Figure 68.	Compressive-strength changes with time in compacted soil-
0	cement mixtures (portland cement), Ubon sample 2
Figure 69.	Compressive-strength changes with time in compacted soil-
0	cement mixtures (portland cement), Ubon sample 3
Figure 70.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), Ubon sample 4

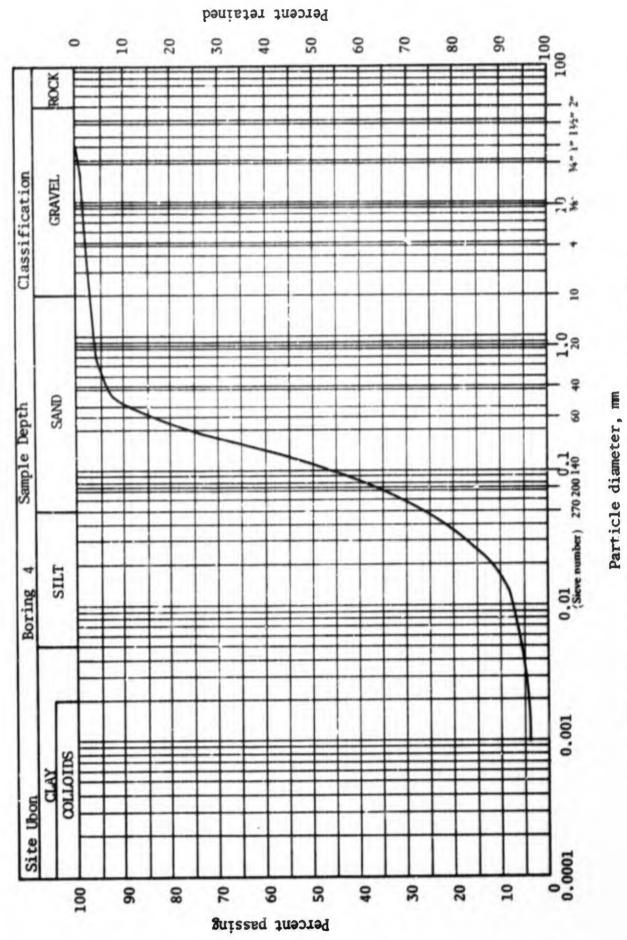


Figure 66. Grain-size distribution curve, Ubon sample 4

•

Soil	Sample:	1	2	3	4
Textural Composition: %					
Sand (2.0-0.05 mm)		59	68	22	66
Silt (50-5 µ)		34	23	9	20
Clay (<5 µ)		7	9	27	6
Classifications:					
Unified		ML	SM	GC	SM
AASHO		A-4[4]	A-4[1]	A-7-6[4]	A-2-4[0]
Physical Properties:					
Liquid limit, %				44	
Plastic limit, %				23	
Plasticity Index, \$		N.P.	N.P.	21	N.P.
Activity ¹ , ²				0.49	
Specific Gravity ¹ ASTM Standard Compaction	. 3	2.60	2.66	2.72	2.62
Dry density, 1b/cu ft	•	112.5	120.0	103.5	110.0
Optimum moisture conte	ent, %	14.5	9.0	22.0	12.0
Chemical Properties:1					
Equivalent Fe ₂ 0 ₃ , %		0.4	1.2	6.8	0.5
Total soluble salt, \$		0.9	0.7	0.7	0.8
Organic matter, \$		1.1	0.1	0.3	0.5
pH		5.76	6.37	5.27	6.69

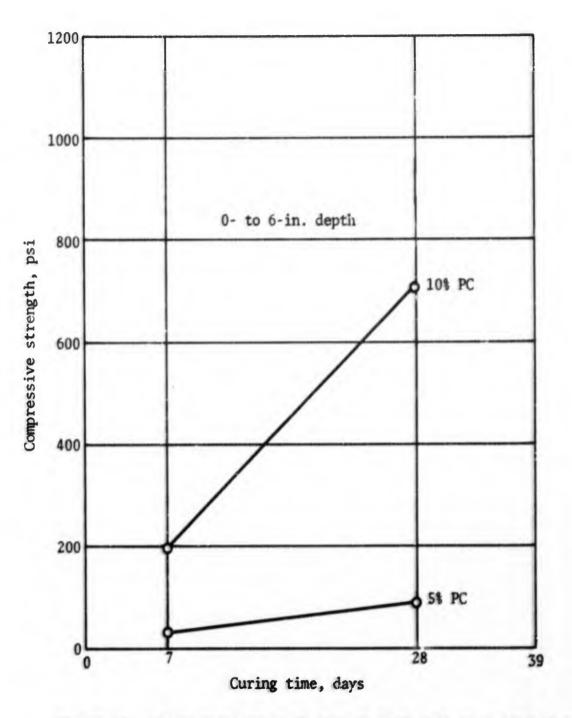
PROPERTIES OF SOILS FROM UBON

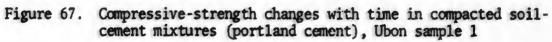
¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay fraction.

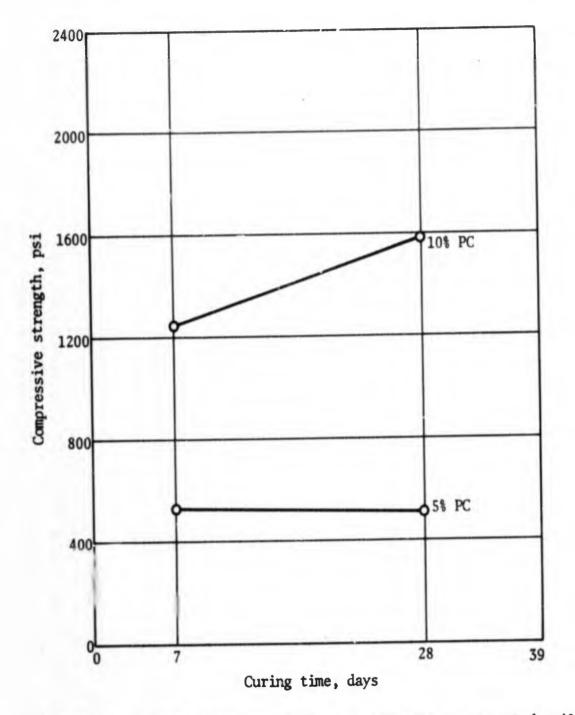
³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

SOIL MINERALOGY, UBON


Mineral, %	Sample:	1	2	3	4
Fraction Passing No. 10 Sieve, %		99.7	99.7	58.1	97.0
Quartz		85	90	40	90
Feldspar (perthite)			2		2 2
Kaolinite		aan oo		40	2
Illite-mica		2			-
Goethite		0.5	1.4	7.5	0.6
Other minerals:		0.0			
		3			
Amphibole		3	5	5	3
Other clays		5			
Fraction Retained on No. 10 Sieve					
Quartz				20	
Feldspar (perthite)			ga	-	
Kaolinite		440 AP		15	
Illite				10	
Goethite				20	
Other minerals:					
Hematite				10	
Other clays				5	
			Perc	ent	
Moisture content of samples when					
received		5.0	11.5	18.2	1.6
Air-dry moisture content of material finer than 2 mm		0.3	0.2	1.3	0.3
Air-dry moisture content of material				1 7	
coarser than 2 mm				1.7	


Sample	Additive and amount	Strain at failure, in./in.		Unconfined compressive strength, psi	
		7-day	28-day	7-day	28-day
1	5.0% PC	0.006	0.009	30	84
	10.0% PC	0.012	0.021	197	708
	5.0% PC + 4.0% lime	0.009	0.010	16	28 ²
2	5.0% PC	0.021	0.011	522	511
	10.0% PC	0.041	0.018	1245	1585
3	5.0% PC	0.013	0.015	265	259
	10.0% PC	0.019	0.020	455	504
4	5.0% PC	0.011	0.016	136	272
	10.0% PC	0.024	0.024	356	739
	5.0% Thailand PC	0.014	0.016	183	257 ²
	10.0% Thailand PC	0.019	0.022	604	770 ²

STABILIZATION OF SOILS FROM UBON1


¹Determined for the fraction passing No. 20 sieve.

²Tested after 14 days curing time.

123

.

Figure 68. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Ubon sample 2

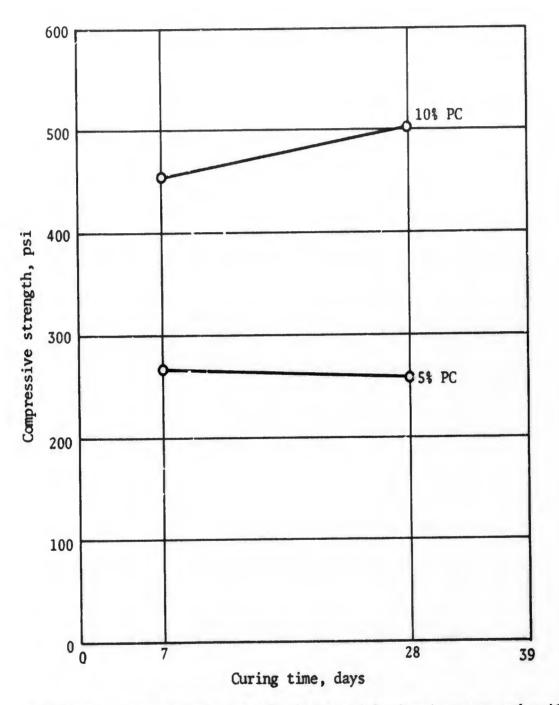


Figure 69. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Ubon sample 3

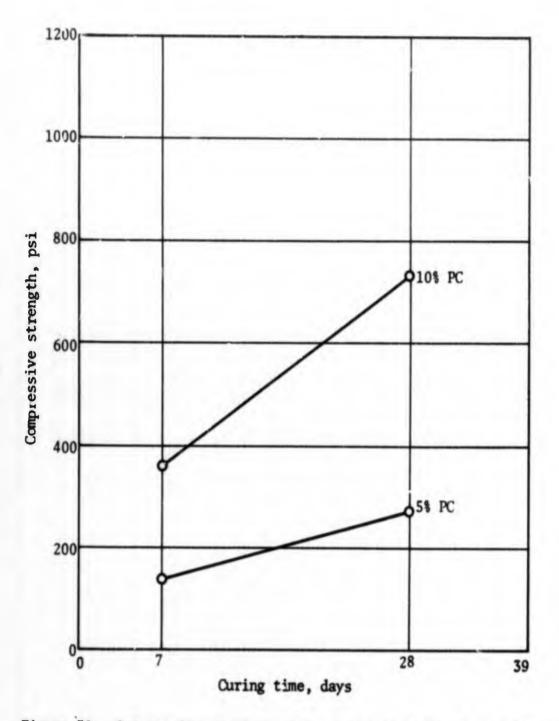
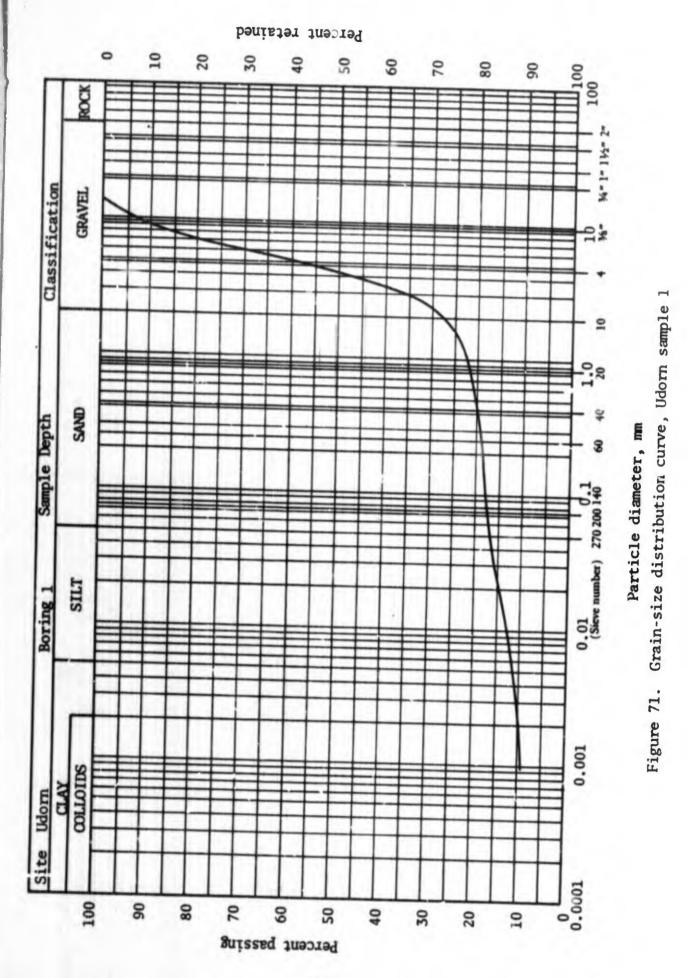



Figure 70. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Ubon sample 4

UDORN

Figure 71.	Grain-size distribution curve, Udorn sample 1			
Figure 72.	Grain-size distribution curve, Udorn sample 2			
Table 27.	Properties of soils, Udorn			
Table 28.	Soil mineralogy, Udorn			
Table 29.	Stabilization of soils from Udorn			
Figure 73.	Compressive-strength changes with time in compacted soil-			
	cement mixtures (portland cement), Udorn sample 1			
Figure 74.	Compressive-strength changes with time in compacted soil-			

cement mixtures (portland cement), Udorn sample 2

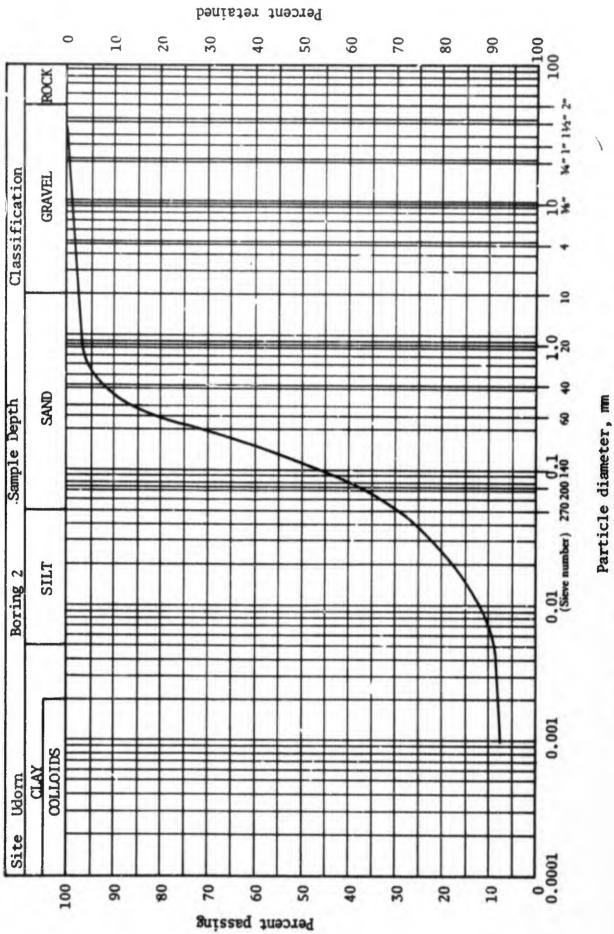


Figure 72. Grain-size distribution curve, Udorn sample 2

TA	BL	E 2	27

PROPERT	'IES OF	SOILS	ROM	UDORN

Soi1	Sample:	1	2
Textural Composition: %			
Sand (2.0-0.05 mm)		10	69
Silt (50-5 µ)		6	20
Clay (<5 µ)		11	9
Classifications:			
Unified		GC	SM
AASHO		A-2-7[0]	A-4[0]
Physical Properties:			
Liquid limit, %		60	
Plastic limit, %		23	
Plasticity Index, \$		37	N.P.
Activity ^{1,2}		0.74	
Specific gravity ¹		2.85	2.57
ASTM standard compaction: ³			
Dry density, 1b/cu ft		104.0	115.0
Optimum moisture conten	t, 8	22.0	10.0
Chemical Properties:1			
Equivalent Fe203, \$		12.2	0.9
Total soluble salt, \$		0.8	1.0
Organic matter, %		0.4	0.8
pH		4.54	6.33

¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

SOIL MINERALOGY, UDORN

Mineral, %	Sample: 1	2
Fraction Passing No. 10 Sieve, %	26.2	98.0
Quartz	30	80
Feldspar (perthite)	anto 1000	
Kaolinite	20	5
Illite	10	* *
Goethite	10	1.0
Other minerals:		
Hematite	3	
Magnetite	32	
Other clays	10	4
Fraction Retained on No. 10 Sieve		
Quartz	20	
Feldspar (perthite)		
Kaolinite	15	
Illite	5	
Goethite	25	
Other minerals:		
Hematite	15	
		Percent
Moisture content of samples when		
received	9.9	1.9
Air-dry moisture content of material		
finer than 2 mm	5.0	0.5
Air-dry moisture content of material coarser than 2 mm	4.0	

STABILIZATION OF SOILS FROM UDORN1

Sample	Additive and		in at , in./in.		compressive gth, psi
Sampre	amount	7-day	28-day	7-day	28-day
1	5.0% PC	0.010	0.013	157	199
	10.0% PC	0.016	0.021	365	552
2	5.0% PC	0.014	0.013	171	336
	10.0% PC	0.018	0.033	473	867
	5.0% Thailand PC	0.016	0.013	238	351 ²
	10.0% Thailand PC	0.020	0.028	657	884 ²

¹Determined for the fraction passing No. 20 sieve.

²Tested after 14 days curing time.

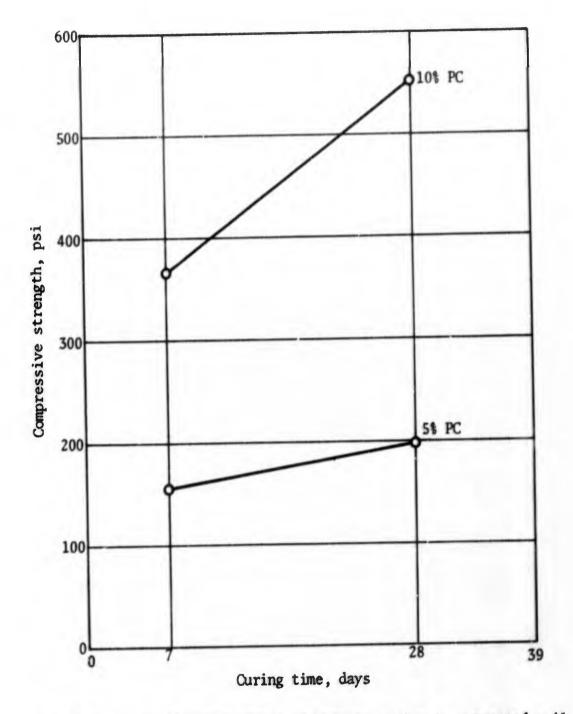


Figure 73. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Udorn sample 1

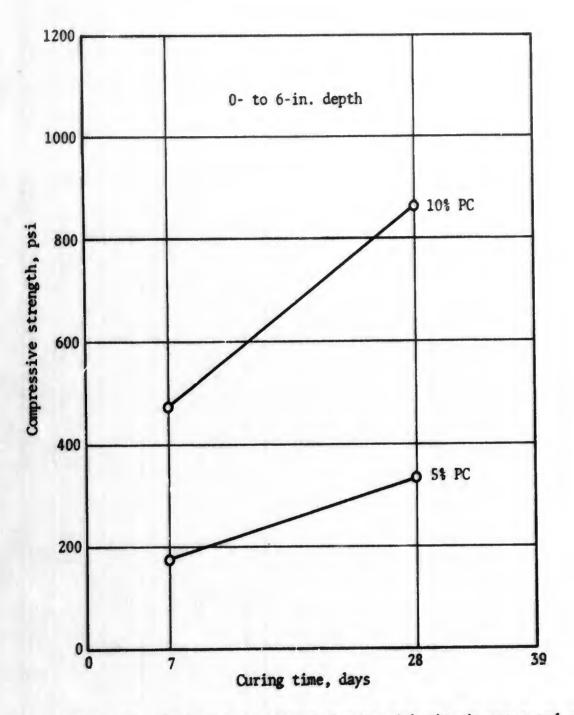
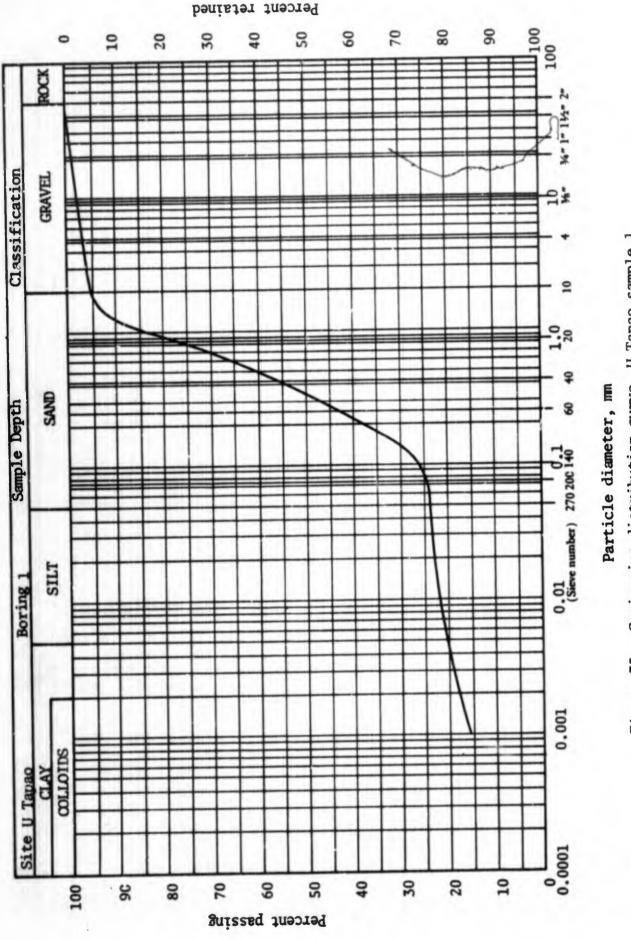



Figure 74. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), Udorn sample 2

U TAPAO

Figure 75.	Grain-size distribution curve, U Tapao sample 1
Figure 76.	Grain-size distribution curve, U Tapao sample 2
Figure 77.	Grain-size distribution curve, U Tapao sample 3
Table 30.	Properties of soils, U Tapao
Table 31.	Soil mineralogy, U Tapao
Table 32.	Stabilization of soils from U Tapao
Figure 78.	Compressive-strength changes with time in compacted soil-
c	cement mixtures (portland cement), U Tapao sample 1
Figure 79.	Compressive-strength changes with time in compacted soil-
	cement mixtures (portland cement), U Tapao sample 3

1

Figure 75. Grain-size distribution curve, U Tapao sample 1

136

+

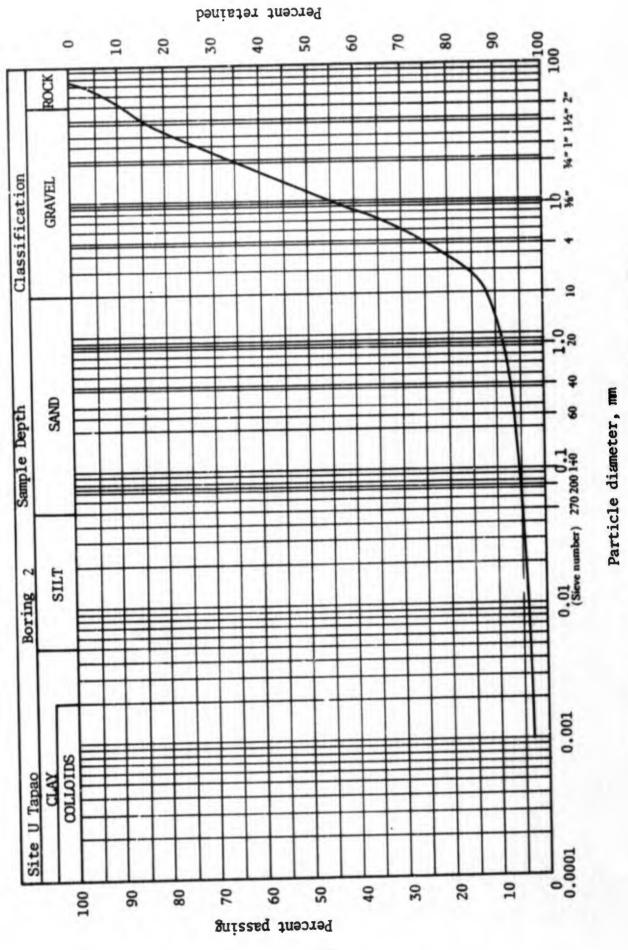
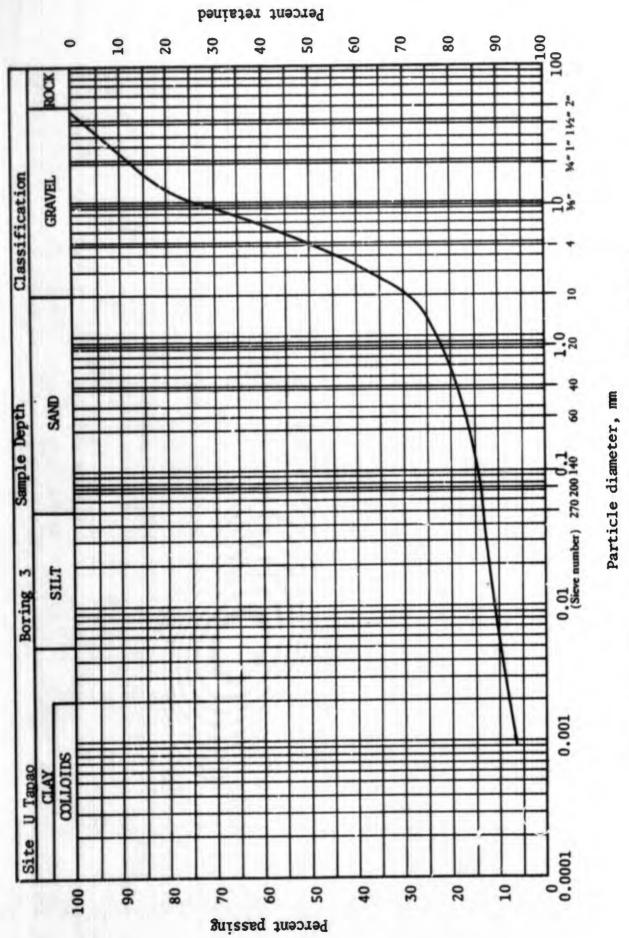



Figure 76. Grain-size distribution curve, U Tapao sample 2

Soil Sa	ample: 1	24	3
Textural Composition: %			
Sand (2.0-0.05 mm)	71	7	15
Silt (50-5 µ)	3	1	4
Clay (<5 µ)	20	4	10
Classifications:			
Unified	SM	GC	GC
AASHO	A-2-4[0]	A-1-a[0]	A-2-4[0]
Physical Properties:			
Liquid limit, %			22
Plastic limit, %			14
Plasticity Index, %	N.P.		8
Activity ^{1,2}			0.28
Specific gravity ¹	2.61	2.65	2.65
ASTM standard compaction: ³	131.5		121.5
Dry density, 1b/cu ft		**	
Optimum moisture conten	t, % 7.5		12.5
Chemical Properties:1		6= a 11	
Equivalent Fe ₂ 0 ₃ , \$	0.3	5.5	2.7
Equivalent Fe ₂ 0 ₃ , % Total soluble salt, %	2.3		-
Organic matter, %	0.1		
pH	6.43	6.65	6.62

PROPERTIES OF SOILS FROM U TAPAO

¹Determined for the fraction passing No. 10 sieve.

²Activity = Plasticity Index/(-2 μ) clay content.

³Determined by Harvard Miniature Compaction Method, compacted in five layers with a 25-1b tamper, 25 blows per layer.

"Jinglestone" aggregate.

SOIL MINERALOGY, U TAPAO

Mineral, %	Sample:	1	21	3
Fraction Passing No. 10 Sieve, %		90.4	11.5	28.5
Quartz		80	35	70
Feldspar (perthite)		2		
Kaolinite		5	25	15
Illite-mica			25	10
Goethite		0.3	6.1	3.0
Other minerals:				
Amphibole		3		
Other clays		5		
Fraction Retained on No. 10 Sieve				
Quartz			80	75
Feldspar (perthite)			2	
Kaolinite				10
Illite-mica			2	5
Goethite			0.5	2.3
Other minerals:				
Amphibole			2 2	
Other clays			2	5
			Percent	
Moisture content of samples when				
received		8.1	3.9	6.2
Air-dry moisture content of material				
finer than 2 mm		0.5	4.5	0.6
Air-dry moisture content of material				
coarser than 2 mm				0.6

¹From 'Jinglestone'' aggregate.

STABILIZATION OF SOILS FROM U TAPAO1

Sample	Additive	failure	in at , in./in.		compressive gth, psi
	amount	7-day	28-day	7-day	28-day
1	5.0% PC 10.0% PC 5.0% Thailand PC 10.0% Thailand PC	0.021 0.037 0.016 0.028	0.032 0.024 0.018 0.033	623 1284 610 1048	993 1650 695 ⁴ 1255 ⁴
22					
3	5.0% PC 10.0% PC 5.0% PC ³ 10.0% PC ³	0.014 0.023 0.021 0.025	0.013 0.028 0.020 0.032	258 589 502 820	366 990 656 ⁴ 1124 ⁴

¹Determined for the fraction passing No. 20 sieve.

2"Jinglestone" aggregate material.

³Material retained on No. 20 sieve pulverized and used.

"Tested after 14 days curing time.

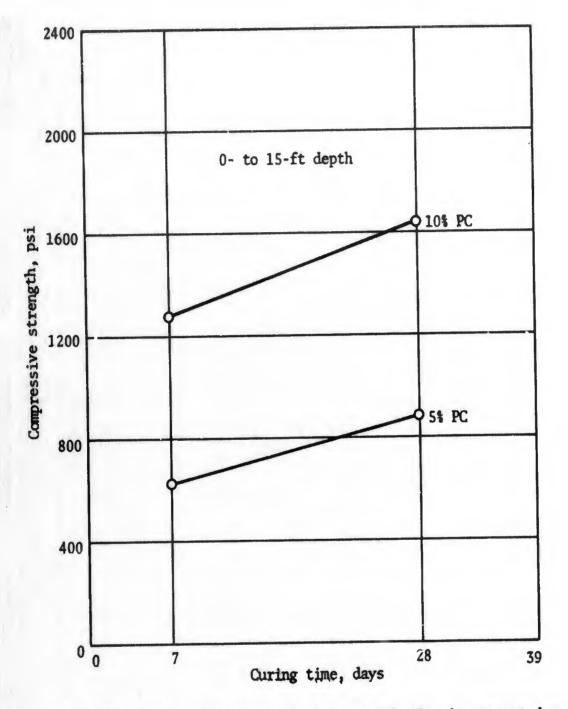


Figure 78. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), U Tapao sample 1

142

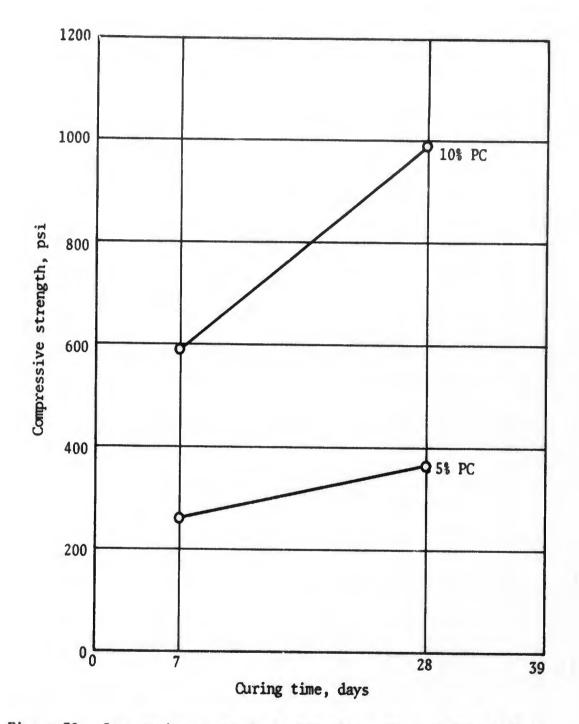


Figure 79. Compressive-strength changes with time in compacted soilcement mixtures (portland cement), U Tapao sample 3

REFERENCES

- 1. Soils of South Vietnam, Student Advance Sheet S.002. U.S. Army Engineer School, Fort Belvoir, Va., February 1967.
- 2. Maignien, R., Review of Research on Laterites, Natural Resources Research IV. Liège, Belgium, UNESCO, 1966.
- 3. ASTM Procedures for Testing Soils, American Society for Testing and Materials, Philadelphia, Pa., 1964.
- 4. Wilson, S. D., "Small Soil Compaction Apparatus Duplicates Field Results Closely," Engineering News Record, pp. 34-36, Nov. 2, 1950.
- 5. "Cement-Treated Soil Mixtures, 10 Reports," Highway Research Record Number 36, NAS-NRC, Washington, D.C., 1963.
- 6. Akroyd, T. N. W., "Laboratory Testing in Soil Engineering," Geotechnical Monograph No. 1, Soil Mechanics Ltd., London, 1964.
- 7. U.S. Dept. of Agriculture, Diagnosis and Improvement of Saline and Alkali Soil, USDA Handbook No. 60, p. 105, 1954.
- 8. Jackson, M. L., Soil Chemical Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., p. 48, 1965.
- 9. Furman, N. H. (ed.), Standard Methods of Chemical Analysis, vol. 1, 6th Edition, Van Nostrand, Princeton, N.J., p. 551, 1962.
- 10. Deer, W. A., Howie, R. A., and Zussman, J., Rock-Forming Minerals, vol. 5, John Wiley and Sons, Inc., New York, 1962.
- 11. Klug, H. P., and Alexander, L. E., X-ray Diffraction Procedures, John Wiley and Sons, Inc., New York, 1954.
- 12. Brown, G. (ed.), The X-ray Identification and Crystal Structures of Clay Minerals, Mineralogical Society, London, 1961.
- 13. Grim, R. E., Clay Mineralogy, McGraw-Hill Book Co., Inc., New York, 1953.
- 14. Moore, C. A., Jr., 'Quantitative Analysis of Naturally Occurring Multicomponent Mineral Systems by X-Ray Diffraction," paper presented at 16th National Conference on Clays and Clay Minerals, Denver, Colo., 1967.
- 15. Soils Engineering, Section 1, vol. III, chapters X and XI, Student Reference 5.002, U.S. Army Engineer School, Fort Belvoir, Va., February 1966.
- 16. Meyer, M. P., Comparison of Engineering Properties of Selected Temperate and Tropical Surface Soils, TR No. 3-732, U.S. Army Engineers Waterways Experiment Station, Corps of Engineers, Vicksburg, Miss., June 1966.
- 17. Fruhauf, B., "A Study of Lateritic Soils," Highway Research Board Proceedings, vol. 26, Washington, D.C., 1946.

REFERENCES (Cont'd)

- 18. Gregg, J. S., 'The Performance of Several Stabilized Roads and Some Concepts on Design,' *Proceedings*, 3rd Regional Conf. for Africa on Soil Mechanics and Found. Engr., vol. 1, Salisbury, Southern Rhodesia, June 1963.
- 19. Moh, Za-Chieh, and Sheikh, A. S., "Effect of Sulfates on Cement-Stabilized Lateritic Soils," SEATO Graduate School of Engineering, Thailand, 1967.
- Michelin, F. S., "Asphaltic Stabilization of Lateritic Soils with the Proprietary Additive CK3 and Aluminum Sulfate," Technical Note No. 28, SEATO Graduate School of Engineering, Thailand, February 1967.
- Jones, J. H., and Yimsirikul, C., "Cement Treatment of Selected Lateritic Soils," Technical Note No. 22, SEATO Graduate School of Engineering, Thailand, May 1965.
- 22. Goldberg, J. M., et al., "World Distribution of Soil, Rock, and Vegetation," Report TEI-865, U.S. Dept. of the Interior, Geological Survey, June 1965.
- 23. Wang, J. W. H., and Handy, R. L., "Role of MgO in Soil-Lime Stabilization," Highway Research Board, Special Report 90, Symposium on Structure of Portland Cement Paste and Concrete, Washington, D.C., 1966.
- 24. Taylor, H. F. W. (ed.), The Chemistry of Cements, vol. II, Academic Press, New York, 1964.
- 25. Soil-Cement Construction Handbook, Portland Cement Association, Chicago, 111., 1956.
- Standard Specifications for Highway Materials and Methods of Sampling and Testing, American Association of State Highway Officials, Washington, D.C., 1966.
- 27. Warshaw, C. H., and Roy, R., "Classification and a Scheme for the Identification of Layer Silicates," *Bulletin*, Geol. Soc. of Amer., vol. 72, pp. 1455-1492, 1961.
- 28. Deju, R. A., and Bhappu, R. B., Design of an Apparatus for Determining Isoelectric Point of Charge, Circular 79, N.Mex. State Bureau of Mines and Mineral Resources, Socorro, N.Mex., 1965.
- 29. Highway Research Board, NAS-NRC, "Soil Stabilization with Portland Cement," Bulletin 292, Washington, D.C., 1961.

AFWL-TR-67-143

1

DISTRIBUTION

D. CYS	HEADQUARTERS USAF
	Hq USAF, Wash, DC 20330
2	(AFOCE)
1	(AFTAC/TD-3, Capt Herman)
1	USAF Dep, IG (AFIDI), Norton AFB, Calif 92409
1	USAF Dir Nuc Safety (AFINS), Kirtland AFB, NM 87117
	MAJOR AIR COMMANDS
1	AFSC (SCNC), Andrews AFB, Wash, DC 20331
1	TAC (DEE), Langley AFB, Va 23365
1	AUL (SE)-67-464, Maxwell AFB, Ala 36112
5	CINCPACAF (DCEEE), APO San Francisco 96553
1	USAF (DFLBA), Colo 80840
	AFSC ORGANIZATIONS
1	AF Aero-Propulsion Laboratory, Wright-Patterson AFB, Ohio 45433
1	ASD, Wright-Patterson AFB, Ohio 45433
1	ORA (RRRD), Holloman AFB, NM 88330
2	SAMSO, AFUPO, Los Angeles, Calif 90045
	KIRTLAND AFB ORGANIZATIONS
1	AFSWC (SWEH), Kirtland AFB, NM 87117
	AFWL, Kirtland AFB, NM 87117
12	(WLIL)
5	(WLDC)
	ARMY ACTIVITIES
1	Chief of Engineers (ENGMC-EM), Dept of the Army, Wach, DC 20315
2	Director IIC Army Meterrison Reportment Station (MPCDI) D.O. Bon

- Z Director, US Army Waterways Experiment Station (WESRL), P.O. Box 631, Vicksburg, Miss 39181
- 1 US Army Engineering Division, Ohio River Corps of Engineers (ORDLBVR), 5851 Mariemont Ave, Cincinnati, Ohio 45227

4

NAVY ACTIVITIES

Facility Engineering Command, Dept of the Navy (Code 22.102), Wash, DC 20360 AFWL-TR-67-143

DISTRIBUTION (cont'd)

	DISTRIBUTION (CORE 3)
No. cys	
1 ·	Commanding Officer and Director, Naval Civil Engineering Laboratory, Port Hueneme, Calif 93041
1	Officer-in-Command, Naval Civil Engineering Corps Officers School, US Naval Construction Battalion Center, Port Huenem, Calif 93041
	OTHER DOD ACTIVITIES
20	DDC (TIAAS), Cameron Station, Alexandria, Va 22314
	AEC ACTIVITIES
1	Sandia Corporation (Technical Library), P.O. Box 5800, Sandia Base, NM 87117
	OIHER
1	Boeing Company (R.H. Carlson), 1707 First National Bank Bldg East, 5301 Central Ave NE, Albuquerque, NM 87108
1	Stanford Research Institute (G-037, External Reports), Menlo Park, Calif 94025
1	TRW Inc, TRW Systems Group (Technical Library, Document Acquisitions), One Space Park, Red/ndo Beach, Calif 90276
2	California Institute of Technology, ATTN: Dr. Paul J. Blatz, 1201 East California Blvd, Pasadena, Calif 91109
2	California State College, Dept of Civil Engineering, ATTN: Dr. C.V. Chelapati and Dr. Ronald F. Scott, 5151 State College Dr., Los Angeles, Calif 90032
1	Columbia University, Dept of Civil Engineering, ATTN: Dr. R. D. Stoll, Broadway & W. 116th, New York, NY 10027
2	Cornell University, Dept of Civil Engineering, ATTN: Dr. Melvin Ersig and Prof. David J. Henkel, Ithaca, NY 14850
1	Duke University, Dept of Civil Engineering, ATTN: Dr. Vesic, Durham, NC 27707
1	Georgia Institute of Technology, Dept of Civil Engineering, ATTN: Prof. George F. Sawers, Atlanta, Ga 30332
1	Harvard University, ATTN: Dr. Arthur Casagrande, Cambridge, Mass 02138
5	Illinois Institute of Technology, Research Institute, c/o Dr. E.T. Selig for Dr. Eben Vey, Mr. C.J. Costantino, Mr. W.B. Truesdale, and Library, 3300 S. Federal, Chicago, Ill 60616
3	Iowa State University, ATTN: Dr. Donald F. Young, Dr. Glen Murphy, and Prof. M. G. Spangler, Ames, Iowa 50010
2	Massachusetts Institute of Technology, Dept of Civil & Sanitary Engineering, ATTN: Dr. Robert Whitman and Dr. Den Hartog, 77 Massa- chusetts Ave, Cambridge, Mass 02139
3	Mich gan State University, Dept of Civil Engineering, East Lansing, Mich 48823

DOCUM	ENT CONTROL DATA - R	& D	
(Security classification of title, body of abstract	and indexing annotation must be	entered when the	overall report is classified)
The Eric H. Wang Civil Engineering		Unclas	ECURITY CLASSIFICATION
The Eric H. Wang Civil Engineering Iniversity of New Mexico Albuquerque, New Mexico	. Research ractively	25. GROUP	
REPORT TITLE ENGINEERING CHARACTERISTICS OF SOM	E SOUTHEAST ASIAN S	OILS	
DESCRIPTIVE NOTES (Type of report and inclusive da 26 June 1967 to 28 November 1967	(**)		
AUTHOR(S) (First name, middle initial, last name)			
James L. Post			
REPORT DATE	78. TOTAL NO.		75. NO. OF REFS
May 1968			
. CONTRACT OR GRANT NO. F29601-68-C-0009			
29601-06-0-0009 . реојест но. 1559		TR-67-143	
Task No. 113	D. OTHER REP this report)	ORT NO(S) (Any	other numbers that may be assigned
A. D. DISTRIBUTION STATEMENT This documen			
because of the technology discuss	12. SPONSORIN Air Force	MILITARY AC	Laboratory (WLDC)
1. SUPPLEMENTARY NOTES	12. SPONSORIN Air Force	Weapons 1	
	Air Force Kirtland Air Force Kirtland the chemical and min ern Asia were invest lants. The effect the grain-size dist the grain-size dist the sinvestigated the sinvestigated	e Weapons I Air Force neralogical igated to of additive ribution o . The unc TM standar alogical a soils and and goeth most effe soil-ceme f good qua ith some s alue. The the soils . Additio	Laboratory (WLDC) Base, New Mexico 871: l compositions of soils determine soil proper- es on soil-cement was f the soil gradation onfined compressive d optimum moisture- nd chemical soil lateritic soils, com- ite, or some combinati ctive soil stabilizati ent mixtures. Thailand lity, comparable to U. soils but was not very compressive strength and was not affected onal tests are required

Unclassified

Security	Classif	Ication	

KEY WORDS	LINK A			LINK B		LINK C	
		ROLE	WT	ROLE	WT	ROLE	WT
Soil stabilization							
Stabilization							
lineralogy			5				
Soil properties							
ateritic soils							
Soil-cement							
avements							
Thailand							
South Vietnam							
			i				
				•			
		1					
في	11-		sified				