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ABSTRACT 

The architecture and organization of a self-repairing 
comput°"r which operates correctly even if some of ita com­
ponents malfunction is described. This computer, using 
currently available components, has a 0. 997 probability of 
correct operation on a lC, 000 hour mission with a 25% duty 
cycle. First the proMem is stated, an overview of previous 
work is given, and the results of the investigation are 1wn­

marized. Then several current computer component technolo­
gies are appraised and the assumption in reliability models of 
a Poisson failure distribution for these components is justified. 
Next, the development of several algorithms for the generation 
and evaluation of diagnostic test patterns for computer circuits 
ii described. Thes e algorithms are illustrated by examples 
and by detailed APL programs. Next, mathem3.tical reliability 
evaluation models for a variety of functional computer unita are 
devised, their APL programming implementation given, and 
their use in the design process illustrated. The effectl of fail­
ure coverage, duty cycle, number of spare,, failure tolerance, 
lower component failure rate with power off, and other para­
meters are tabulated and delineated. Last, the architecture 
and operation of an automatically repaired computer at different 
levels of organization is described, including failure tolerant 
storage, ROS, and arithmetic logical organs. The de1ign of 
reconfiguration switches, status regi1ters, and a fully checked 
decoder is also given. By employing these technique,, which 
require about 2. 5 times as much hardware as an equivalent 
simplex computer, it is possible to gain the same benefits as 
would be produced by a 600 fold decrease in component failure 
rates . 
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l Background and Summary 

1. 1 Statement of Problem Space satellite applications require 

computers with extremely high reliability and availability, so high 

in fact that they cannot be readily achieved with any of the current 

computer configurations using extant or near-future technologies. 

Further, these applications require that the computer operate with 

no human or mechanical repair facilities, i.e. be "self-repairing". 

Typical guide-line specifications used in this report call for a 

medium sized computer (CPU, ALU, core storage, and channels) 

with approximately the computing power of a 360/model 44 which 

is to perform with a reliability and availability of . 997 for a 10, 000 

hour mission. 

Present simplex computers of this capacity have mission times 

on the order of 5-10 hours when this reliability specification is used. 

Breaking the computer up into 15 units and usi,1g triple modular 

redundancy (TMR) on each unit can only increase the effective 

mission time to about 200 hours. Thus a more imaginative computer 

architecture is required to meet the problem of achieving this 1000 

fold increase in mission time over that of the simplex machine. 

Such an architecture is developed in this report for a computer to 

be called ARC - ~utomatically ~epaired £omputer. 

Early in the development it was apparent that there existed a 

definite lack of adequate tools required to implement a truly ultra­

reliable computer architecture, e.g. knowledge of failure mechanisms, 

precise diagnostic algorithms, computer oriented reliability evaluation 

models, techniques for designing effective self-repair mechanisms, 

etc., were all unavailable. This necessitated the preliminary solution 

of these problems before the actual computer architecture could be 

specified with any degree of confidence in its efficacy. 

1 



l. 2. l T he Ea rly Years f he first digital computers made 

extensive use of relays and tubes, devices which were noted for 

a general lack of reliability, Thus, during the early development 

of computers a large effort was expended in the area of computer 

checking and self-repair. 

In relay computers intermittent faults far outnumbered 

permanent faults (ERA, 50]. For this reason, extensive dynamic 

checking (biquinary code and proper finish of instruction) was 

used, T he success of Bell Relay Computers (BRC) is evidenced 

by the following quotation, "Starting with the Model III delivered 

to the Armed Forces in 1944, not one of our customers has 

reported their computers giving out a wrong answer as the result 

of a machine error" (Harvard, 49]. In addition, replacement 

procedures were available, The BRC Model V at Aberdeen 

Proving Grounds had two central processors, When one had to 

stop a problem because of an error, the other would read in the 

next problem from paper tape and begin its execution [ERA, 50]. 

The Model VI had an improvement - a "second try" feature for 

retrying an operation immediately if it failed to. receive an OK 

signal at the end of the operation [Harvard, 49]. 

In the area of electronic computers, Raydac [Harvard, 49] 

had 1) a modulo 31 arithmetic check which was used for data 

transfers and all arithmetic operations, 2) checking for illegal 

op-codes, and 3) checks to see that the correct address was 

given the memory and that a valid word came from that address. 

R. M. Block [Harvard, 49] explicitly stated the necessity for 

checking computer controls as well as the ALU. The EDY AC 

( 1949) seems to be the first computer to use two arithmetic units 

and a comparison of their results; as long as they agreed, 

2 
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processing continued. The IAC [Weik, 55] computer started the hard­

ware design of illegal result tests, such as the divide check, and 

implemented a special instruction to take a check sum of part 

of memory. This latter instruction was designed to be used 

to check 1/0 by an examination of all data blocks as read in, 

The set of computers designed just a little later had 

the checking features shown in the following table [Weik, 55): 

Computer 

UNIVAC 

Whirlwind I 

IBM 650 

N0RC 

Data Transfer 
Checking 

parity. 

1/0 block character 
count and auto­
matic reread. 

parity, 

character validity. 

horizontal and verti-
cal parity on tape. 

modulo 4 check 

3 

Arithmetic 
Checking 

duplicate ALU. 

some ALU checks. 

modulo 9 check 

,'1 

. 

' 

I 

: 

< 

' 
I 

i 

I 



. 2. 2 The iddle Years fhe advent of the transistor (po s -

sessing a higher inhe r e nt relia bili ty than relay s or tubes) and 

its mass infbx into the va st commercial com puter market of 

the middle-to-late ' 501 s brought about a marked deemphasis in 

computer error c hecking and self-repair. At this time error 

detection and/or correction centered primarily on the I/O 

equipment, special purpose computers, and special technologies. 

One of the first computers to be designed with truly ~igh 

availability goals in mind was IBM's AN/ FSO7 (SAGE) which 

was used for on-line real-time data processing by the AIR 

FORCE (EZB, 57]. This system featured two complete tube­

type computers, one operating on-line and the second acting as 

a backup. The memory of the backup computer was periodically 

updated so as to contain the same data as the on-line machine. 

Each computer had an elaborate failure detection scheme em­

ploying parity checks and conventional software diagnostic 

programs. On detection of an error, the switchover and recovery 

was executed by software. Later versions, the AN/ FSO 31 and 

AN/FSQ 32 [Weik, 61], used transistorized circuitry and more 

inclusive checking including the FIX concept of correcting single 

errors via software. 

Remington Rand's Titan guidance computer, the Athena 

(RR, 58]. obtained some measure of high availability by carefully 

controlled construction and selection of its components. These 

were then assembled in a white room. While a gain in reliability 

was achieved, the cost-effectiveness was not very high. ,,. 
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In the large commercial computer area three machines stand 

out. Remington Rand's LARC (Weik, 57] featured Hamming single 

error correction codes for data transfers and storage, and checked 

the arithmetic operations by comparing the output of duplicate 

ALU•s. The STRETCH computer, IBM•s 7030 [Buchholz, 62], 

used parity, duplication, and residue checks (casting out 31s) 

on all arithmetici Dperations. The memories and data transfers 

used a Hamming single error correction, double error detection 

code. When uncorrectable errors occurred, the machine was 

interrupted and an extensive diagnostic "log-out" of all pertinent 

data performed. The SABRE system [PP, 61], a natural outgrowth 

of the SAGE concepts, features a pair of IBM 70901s in on-line­

standby roles supporting a vast network of airline terminals. 

Concurrent with the design of these actual computers, effort 

was being made to extend the theoretical models upon which such 

machines could be based. In the area of masking redundancy, 

von Neumann [ von Neumann, 56] developed and ar.alyzed a highly 

reliable scheme employing triplication of all units with majority 

voting at selected interfaces; this is the so-called Triple Modular 

Redundancy or TMR. Replication of circuit components, intro­

duced in [MS, SE,] for relays, culminated in the quadded logic 

method of design [Tryon, 62]. Tryon' s somewhat more sophiati­

cated approach to masking redundancy suffered from a lack of a 

really smooth way to handle memory devices; it reaorted to TMR. 

Modele for standby or replacement redundancy techniques were 

also proposed [ Creveling, 56 ; Fein, 57) and analyzed in great 

detail [Flehinger, 58). Later a method for actually effecting the 

replacement of the failed unit by its standby spare was precisely 

formulated in [GMRW, 60 ; GMR, 62] for a cryogenic technology. 

5 
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This report also evaluated the e ffe ct of swih:h failures on the 

overall syst e m reliability, showing that as the number of 
. 

switchable interfaces increas e s (co rrespondingly, the size of 

the repla ceable unit decrease s ) the switch failures tend to 

dominate the r e liability. 

Several algorithms for the diagnostic testing of computer 

circuits also made their appearance in this era ( Eldred, 59; 

Moore, 56] 

l, 2. 3 T he Pre sent Recently a strong surge of support for 

self-repairing. highly available computers has been felt. The 

major users interested in this effort are the on-line or time­

shari !l-g, transaction-oriented, commercial computing facilities 

and the) ldflg lerm space missions. In the forn:er . the concern 

is over maintenance of continuous customer servicing acknow­

ledging that failures will occur in the ever more complex 

computers required to keep pace with the transaction demand, 

In the latter, the need is for self-repairing computers capa >le of 

maintaining some minimum level of computing power with a 

very high probability over an extreme! y long mission time, 

In the commercial line the present approach taken to 

achieve high availability is that of multi-processor configurations 

employing graceful degradation as in Bell's Electronic Switching 

System [ESS, 64), IBM•s 9020 (Wood, 65] and Burrough's B-8500 

[Gluck, 65 J. Such machines are typically organized with several 

memory units . Cf'U 1 s and I/0 channels accessed off a common 

data buss. When the checking and/or periodic diagnostic testing 

determines that a device has failed , that device, together with a 

maintenanc e subs ystem, is re c onfigured out of the main computer 
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witl. a subsequent performance degradation. After the failure 
is located (probably by use oi diagnostic tests) and fixed, the 
subsystem is brought back into the main computation system 
[ DS, 66 ]. 

A very good example of how diagnostic tests can be used 
to automatically locate circuit failures is the Fault Location 
Techn (')logy (FLT) employed in SYSTEM 360. Special 11SCAN11 

lines were added to the circuitry to permit data to be entered 
into and read out of most of the circuit's latches in order to 
facilitate the use of combinational circuit diagnosis algorithms 
(cf. section 3. 1. Z for a review of such algorithms). Precomputed 
diagnostic tests, stored on a magnetic tape, are then used to 
rapidly detect and locate all circuit failures of a prespecified type. 
Use of the FLT concept greatly reduces the down-time (hence 
increases the availability) of a simplex computer or a maintence 
subsystem of a multiprocessor. 

Recent approaches to the high availability problem in 
military computers have been varied. IBM's Saturn V program 
[scF, . , 63] segmented the computer into seven functional modules 
which were then implemented in TMR. The memory was duplexed 
with parity checking used to isolate the failed unit. Extensions of 
this work [AES-EPO; 65] proposed and analyzed a full TMR 
computer for use on a 90 day mission. RCA 11 variable instruction 
computer (VIC) [Miller, 66] possesses an architecture which 
provides duplicate control stores and at least two alternate methods 
for performing any operation. When the checking indicates a 
failure in a particular portion of the ccmputer it automatically 
"degrades" to the alternate algorithm for performing the tasks 
which formerly used the failed portion. 
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A recent, advanced ultra- reliable c omputer is the Jl- L 

Self-Testing and Repairing (JPL - STAR) computer (Avizienis, 66]. 

The JPL-STAR uses complete hardware implemented error de­

tection, rather than periodic diagno s tic testing, since transient 

failure protection was deemed critical. Arithmetic operations 

are checked modulo 15. The control memory us es a four bit 

check in the 32 bit data word to verify that the 14 bit address has 

correctly accessed the proper word, The main read-write memo­

ries were duplexed. No adequate facilities have been selected for 

removing the Central Control Unit (CCU) from the "hard core " 

- hard core is defined to be that portion of the computer in 

which a single failure causes system failure. 

Another recent effort in the field of self-repairing, self­

diagnosing computers was initially reported in Phase I of this 

contract [ARSY, 65] and later published in (FRST , 65 ; AFS, 67] . 

An approach to the formalization of the theory of self-diagnosing 

digital systems was made ; theorems specifically stating necessary 

and sufficient conditions for self-diagnosibility were given. The 

theorems require that the digital system be partitioned into con­

nected sets of diagnostic subsystems each ca.pable of diagnosing 

its neighbors, The results of the t heory \\ere then used to propos~ 

the architecture of a computer, designated the DX-1, which has 

minimal hard-core circuitry. One interesting p rocedure which 

was discussed was the possibility of forming the diagnostic sub­

systems b y dividing the machine up into three nubsystems right 

through the middle of the data paths, i.e. a 36 hit data word ma­

chine used for actual computation would be segmented into three 

distinct 12 bit data word machines for diagno s is. When one failed, 

it could be diagnosed by the other two and a degraded mode of 

operation with 24 bit words initiated. 
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Omitted from the Phase I report was a sufficiently detailed 
examination of the design for the interface circuitry interconnect­
ing the diagnostic subsystems and its effect on the required in­
dependence of the diagnostic subsystems. Also omitted was the 
work necessary to precisely evaluate the reliability of self­
repairing computer architectures for use in studying the effects 
of parameter trade-offs on this reliability. 

The work described in the remaind.er of this report is a 
direct offshoot of the Phase I efforts. It was undertaken with the 
intent of extending the existing work on computer diagnosis, models 
for comp_uter reliability evaluation, and self-diagnosing, self­
repairing computer architectures and ,organizations. As stated in 
the original proposal [RBCF, 66], 

"The ultimate objective of this proposal is the design and 
construction of a truly ultra-available computer". 
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L. .) umr:i ar) of Current Re port 

l. .)_ 1 Bae kg round l'he first s ction of each chapter contains 

a comprehensi v ~ discu sion of the need for the work covered 

therein, a brief revie w of previous efforts in the area, and a 

summary of the chapter. Hence this section, l. 3, will be 

limited to a general overview. 

1. 3, 2 T echnology T he mechanisms of circuit failure in 

present technologies were investigated in order to l) establish 

the class of failures for which diagnostic tests should be 

established and 2) obtain a probability distribution for the 

failures together with the appropriate failure rates. The 

normal stuck-at-1 , stuck-at-0 and, possibly, short circuit 

failures are still valid diagnosis models. The failure mechanism 

is such that after a short burn-in period the failures can be 
-~T 

characterized by a P oiss on distribution, i.e. R = e with 

~ the constant failure rate. 

Large Scale Integration (LSI) was examined with the con­

clusion that it has definite power-weight advantages but has an 

1.ncertain failure rate and delivery for mass manufacturing. 

Further, the large circuit size and inherent pin limitation of 

LSI implies that cyclic circuits must be diagnosed without re­

sorting to extra inputs for cutting feedback loops, i.e. implies 

true cyclic circuit diagnosis algorithms be developed. 

1, 3, 3 Diagnosis Algorithms The D-calculus, due to Roth, 

was used to develop several diagnosis algorithms necessary to 

achieve the extremely efficient failure coverage required in any 

ultra-reliable computer. The algorithms are: 

1) D- Algorithm (DALG-II) guarantees finding a test. 

l 0 
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if one exists, for any failure, of a specified class, 

in an acyclic or combinational circuit. 

2) TESTDETECT ascertains all acyclic circuit failures, 

of a specified class , which a given test will detect. 

3) CD-Algorithm computes tests for failures in a certain 

well defined class of cyclic or sequential circuits. 

Both DALG-11 and TESTDETECT were programmed on the APL 

time-sharing system. 

Allied with the development of these three algorithms was 

the formulation of 1) a multiple-failure variation of the D-algorithm 

for use in finding a single test to detect~ of several failures, 

2) a Test-Response variation of TESTDETECT which not only tells 

if a failure is detected by a given test but also specifies the precise 

output response when the failure occurs and 3) a synchronous cir­

cuit model suitable for facilitating cyclic circuit diagnosis. 

l. 3. 4 Reliability and Evaluation In order to determine the 

relationships among the parameters of the Automatically Repair·ed 

Computer - ARC, mathematical reliability evaluation model■ had 

to be devised which contained specific and valid representations 

of these parameters. Typical quantities considered are listed below: 

X. failure rate during .power-on 

µ failure rate during power-off 

m number of spares initially available 

q number of modules required to be operati •.1g at 

all times (power-on) 

f number of failures each unit can withstand 

before malfunctioning. 

T mission time 

c failure coverage, or probability, that given 

a failure occurs, it is detected by the checking 

1 1 
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and/or diagno s ti c tes t s and that suc ce ssful 

recovery occurs, 

The parameters which effect the form of the reliability 

equations are m, q, c, and f. In order to display the status of 

these parameters each reliability equation is written as 

f R q A new recursive formulation of an integral equation to 
C m • 
express reliability of a system having spare modules with turned 

off power was devised, Closed form solutions were obtained for 

all cases where f = 0, When f '/: 0 closed solutions could only 

be obtained for certain small values of f a.nd q; in the general 

cases involving f > 1 approximations and bounds were obtained, 

Several interesting results of some of the parameter studies 

a.re tabulated below. 

1) It is proved that it is always worthwhile for 

reliability (as well as power consumption) to 

turn unused spares off. 

2) It i I shown that if the error coverage decreases from 1 

to . 9 then the length of survival time is decreased by 

a factor of three. 

3) The reliability cRZ and the reliability of TMR•d 

computers were compared, It was proved that for 

X. T ~- 1 and coverage equal 1, using two spares 

gave greater reliability than T:tv.R as long as the 

extra switching required for two spares was less than 

248. 3% of the total original equipment. If c ?. . 9, 

then for X. T ?_. 02 c R 
2 

is greater and for >.. T < . 02 

the maximum difference of reliability values is 
-5 8 X 10 , 

A program,REL, using these models for f R q with 
C m' 

explicit entrance ot parameters, has been written in AF-L and run on 
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on-line consoles by the system designers. REL was used exten­

sively in evolving the architecture ARC as discussed in Chapter 5 . 

1. 3. 5 Archit.ecture/Organization The design of ARC started 

with dividing a standard computer into functional units to facilitate 

hardware controlled retry within the unit. Standby redundancy and 

segmentation were then assumed for each unit and the program 

REL used to determine the optimum ARC I configuration. Then a 

new version, ARC II was obtained by redesigning memories and 

arithmetic units which could tolerate one or more errors. The 

following table shows the various design configurations considered. 

Mission Time 
with . 997 Mission Time 

Configuration Probability Equipment Equipment 

Simplex 6. 59 1 6. 59 

TMR 271 3 90 

ARC! 9, 068 3. 5 2,590 

ARCH l 0, 879 2. 5 4,350 

Detailed implementations of the following self-repair mechanisms 

are effected: 

l) Reconfiguration Switches Reconfiguration switches to effect 

standby redundancy self-repair techniques were designed with the 

property that a failure in the switch caused one of the modules being 

used to be unavailable without affecting the others. The status ·regis­

ters can be designed to be error correcting using masking redundancy. 

2) Error Tolerant Memory Unit Using the same type of 

reconfiguration switching it is easy to design a reconfigurable 

bit plane memory unit. A new method of dynamic storage 

address blocking achieved error toleration in the addressing 

circuitry. 

13 
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3) Ultra Reliable ROS Configurations The same techniques 

whlcn made a memory module more reliable are used in a 

simplified form to make a ROS error tolerant. 

4) Error Tolerant Byte ALU (BALU) The BALU is designed 

so that its bit planes are relatively independent. By adding a 

spare bit plane and changing the carry and shifting circuitry, a 

reconfiguration switch can be used to switch bit planes and 

make the BALU tolerate a single component malfunction. 

5) TMR/ Sparing Using ideas derived from the reconfiguration 

switching, it is possible to combine the features of TM.R and 

standby redundancy to design error tolerant circuits called 

TMR/ Sparing which have higher reliability than a straight 

extension of TMR for n > 3. 

Methods of designing and operating ultra-reliable computers 

are also studied. Operating ultra-reliable computers is discussed. 

The necessity for a 11 sentinal 11 to operate during turn-off periods 

is shown, and the similarity between computer ''bring up" proce­

dures at turn-on and after an error signal treated. 

14 
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z. Investigation of Technologies 

z. 1 Scope. The investigation was limited to current and incipient 

computer technologies applicable to the CPU and memories. 

The components and devices of concern included transistors, 

diodes, capacitors, resistors, connectors (solder and weld 

joints) and ferrite cores. 

z. 2 Failure Phenomena. One con-c e r.n in the investigation has 

been the mechanism of failure . . It was hoped that a knowledge 

of the physical and electro-chemical phenomena involved in 

failure could be used to predict the nature of the distribution 

of failure, over time. This proved useless because of the 

larger effect caused by manufacturing defects (see section z. 3). 

For system reliability calculations the values of the failure 

rates and the failure rate distribution (in time) must be assumed 

known. Another important effect is the observation (Nerber, 65] 

that solid 1tate devices, but not connectors or cores, exhibit 

significantly lower failure rates under power-off conditionsJ 

lower by a factor of 2 to 1 o • 

z. 3 Measurements. Actual measurements of computer failure 

rate as a function of time follow the solid line curve depicted in 

Fig. z. 1, and not a straight horizontal line that the dlscussion in 

the above 1ection would lead one to expect. The reason seems to 
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Fig. 2.1 Experimental failure rate. 

be that initially, at least, the major cause of failures is 

mar,ufacturing imperfections [Potter, 64 Raymond, 65]. 

That part of the curve above the dashed line is called the 

"infant mortality" rate or the "burn-in" rate. One 

reason for operating a space computer for a relatively long length 

of time prior to flight is to detect and replace defective compon­

ents during this initial test period. 

A statistical analysis [Lewis, 64] has been made of the rre a­

sured failure rate for that portion of the curve to the right of the 

burn-in. A good fit to the distribution of failure incidents is a 

primary Poisson sequence (failure rate independent of time) follow­

ed by a secondary sequence. One plausible explanation for this 

16 
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lack of strict adherence to a pure Poisson distribution is the 

fac t that the computers measured were constantly being repair-

ed, and that there is no guarantee that the real trouble was 

found and fixed. In fact, there is good reason to believe that 

in many cases the observed failure just went away to come back 

again at a later date. Temperature, humidity, noisy power 

sources, and other environmental factors could cause this type 

of behavior. 
. .,, 

2. 4 Failure Distribution As~'.1.\ITiption. For the reason given in the 

above two sections, it is believed that after burn-in has occurred 

one is justified in assuming a constant value for the failure rate. 

This may be a slightly pessimistic assumption, since a very 

slight negative slope does seem to exist, but this is probably 

as accurate as the data warrants. This assumption leads to the 

well known Poisson distribution in which R, the probability of 

success for a mission of duration T is given by the equation 
-~T 

R = e where "- is the sum of the individual failure rates of 

those components forming the system. As will be seen in Chap­

ter 4, the Poisson distribution assumption makes reliability 

analysis and calculations feasible that would not be possible 

with almost any other failure distribution. 
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2 . 5 Failure Rates. From the field data, laboratory te ts, and 

manufacturing experience, the predicted failure rates of Table 2. 1 

were obtained for a particular e.dant computer technology known , 

as ·4 Pi [BCJ , 67] and employed in MOL and other space vehicles. 

SOLID FAILURES / 106 HOURS 

LOGIC PAGE 
(= 475 Circuits) 

ROS (2K 100 bit words) 

MAIN STORE(ferritecore) 
(8 K 36 bit words) 

DRUM (16K 36 bit words) 

POWER SUPPLY 

SECONDARY STORE 
(A slower Main Store) 

Table 2. 1 

1968 

4. 7 

20 

47 (Solid State) 
+ 12 (Arrays) 

15 

15 

10 (Arrays 
only) 

1970 1970 

2.6 

37 .5 
11 . 5 

9 

12 

8 

2 :s· Types an·d Consequences of Failures. The ratio of transient 

to solid type failures is large [AES-EPO 65]. New data from 

an installation (FAA-Atlantic City), where careful statistics are 

kept, give a ratio of 5 intermittents to 1 solid•type failure for the 

electronic portion of the computer during the first five months of 
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1967 . This ratio, as discussed later in section 5. 5, warps the mach­

ine organization to a great extent because intermittent failures need 

to be handled differently from solid failures. 

This investigation did confirm previous opinions regarding the 

effects of failures on the circuit logic, and have generated more 

confidence in the efficacy and coverage of the diagnostic tests gen­

erated, discussed in Chapter 3. 

2. 7 Other Technologies Investigated . Various technologies for use in 

computer memories were investigated. Film memories are still so 

new that no dependable failure rates are available. There are technical 

reasons for believing that their ultimate reliability will approximate 

those of ferrite core memories since a) the number a connections is 

about the same, b) the amount of circuitry involved is about the 

same, and c) the failure rate of the magnetic storage device itself 

is negligibly small in both technologies. The remaining uncertaintJ 

is the cower consumption, and the trade -offs between access speed and 

power consumption. The first use of film memories in space computers 

might well be in writable control stores, useful for reconfiguration 

and/ or circuit diagnosis . 

Monolithic transistor technology was also examined for applica­

tion to space computer memories. They seem to offer high speeds, 

low weights, small size and small unit size (4K bits) at a feasible cost. 
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Their disadvantages are two, a) they are volatile, i. e,, 

whenever power is interrupted their contents are lost, and 

b) they have a much higher failure rate than an equivalent 

ferrite core memory. 

Large Scale Integration technology was looked at only 

peripherally. It promises to offer lower power consumption 

and greater component reliability. Its diagnostic complexity, 

however, will be greater, 

2. 7. 1 Some Basic Technological Difficulties Connected with 

LSI. There are basic technological difficulties connected with 

LS~ from the standpoint of system reliability. Because of the 

inherent complexity of LSI m odules, the circuits will necessarily 

be cyclic, i.e. feedback loops will be present. LSI the re fore seems 

to imply the necessity of development of algorithms for cyclic diagnosis 

and (or) appropriate checking circuitry. As discussed in section 

3. 6. 1 there are basic difficulties in the practical application of 

existing classical cyclic diagnosis algorithms based on state­

diagram or state-table models, The SCAN attack on cyclic circuit 

diagnosis [CMPR, 64; HS, 65], involving adding extra input and 

output "pins" to render the circuit acyclic for diagnostic purposes, 

is something not appealing for pin-limited technologies. 
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As implied by Chapter 4 Reliability/ Evaluation,failure coverage 

(the fraction of failures detected by tests or hardware) must be very 

high to achieve the ultra-reliability goal with present or near future 

Technology. This was a prime motivation for the development of 

the cyclic diagnosis algorithm in section 3. 6. 4. 

2. 7. 2 The test-point insertion problem. Can a 11tradeoff11 be 

made between test-point insertion and the efficiency of algorithm? 

How to define "natural" break point■ ? Only specific examples have 

been worked out and the test-point insertion problem remains to be 

solved for practical realization of LSI expectations. 

One proposal: Test points be inserted at ''natural'' break 

points, in the sense of architecture, e.g. from a flow-chart 

description of the design. A criterion for "naturality'' might 

be: "minimize the nurnlter of test points that must be added in 

order to have the ability to test each 'possible' failure. 11 Here 

"possible" is placed within quotation marks because we would, 

in any given procedure, be computing a set of tests to detect 

some pre1cribed class [ category] of failures, such as all single 

solid failures, or all single shorts or opens. 
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3. lgorithms for th e Detection ,rnd Didgnosis of F a ilu tes 

3, l Summary of Diagnosis 

3. 1, 1 Need for Diagnos tic Testing rteliability calcul c1 tions 

(Clapter 4) show that it is e xtrem e ly difficult to achieve ultra­

high reliability/ avai lability us ing masking redundanc y methods 

such as TM . [von Neum a nn,S(, ], 0 Ltaddin g [Tryon, 6 2j, error­

correcting codes [1-·eter~on, 6 1 ], etc, Eve n when extensive 

hardware checking is used in a computer it is still mandatory 

that diagnostic tests be used to diagnose failures in the check­

ing circuitry (cf, sectio n 5, 4, 7), Without such tests an un­

detected first-failure in the checking equipment could prevent 

identification of a subsequent failure which might occur in the 

" checked" logic, 

It is also shown in Chapter 4 that the greatest r eliability/ 

availability potential lie s in using stand-by o r sparing redun­

dancy: such redundancy requires large am,Junts of checking 

circuitry and/or diagnostic tests to locate the failed device 

and correctly switch in a replacement for it, .\gain, even if 

checking circuitry is used to supplant diagnostic testing of the 

main computer hardware, it is still necessary to use such tests 

to examine the checker s and reconfi gu rati o n switches (cf, 

section 5, 4, 2) for failures, The reliability models in section 4,3 

a nd the c, ,lculati ons in section 5 ,3 : le a rly exhibit that ''failure 

coverage" - i, e, the fraction of failures of a given Cdte go ry 

covered or detected by hardware checking a nd an ensemble of 

tests-has a c onsiderable impact on the Reliability/Mission-Time 

p icture, Without sufficient fail ure coverage the apparent 

reliability adva ntages of stand- JY redundancy cease to exist. 
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During the experimental development of ultra-reliable 

circuits implementing various functions and their associated 

checking circuits it is extremely valuable to have a design 

tool which permits fast evaluation of the checking and diag­

nostic failure coverage: TESTDETECT (cf .aection 3. 5) is 

just such a tool. In section 5. 4. 7 an intere1ting example 

is presented which shows how a checking circuit delian can be 

developed and evaluated u1ing thi1 algorithm. The u1e of 

diagnosis algorithms to as1ist in the actual circuit de1i1n, 

rather than us in1 them after-the-fact, is crucial to de1i1ning 

a truly ultra-a-vailable computer. 

With the advent of LSI it no longer become• fea1ible to 

introduce large numbers of extra. inputs and outp\ta in each 

sequential or cyclic circuit in order to render it cumbinational 

for diagnosis purposes; cf. the GCAN concept[CMPR, 64; 

HS, 65]. However, LSI is amenable to the introduction of 

extra hardware to facilitate diagno1il. Thi1 mean■ that ·a 

true sequential or cyclic circuit diagno1il algorithm ii re­

quired, but that extra circuitry can be introduced into the 

circuit or the circuit de1igned in 1ome non-minimum hardware 

implementation so as to simplify the computational problem ■ 

involved in any cyclic diagnosia algorithm (cf. Hction 3. 6. 2 

on the synchronous circuit model) . 

3. 1. 2 Review of Previous Developments Reference [Roth, 66] 

provides a comprehensive review of combinational or acyclic 

circuit diagnosis as exemplified in [ CMP R, 64 ; GNR, 64 ; 

HS, 65; MA, 63]. Approaches to diagno1is based on the u■e 

of Boolean equations are presented in [Armstrong, 66; Poage, 
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1, 3; Eldred, 59]. Typical of the cu rrent approache s to diag­

nosis of sequential o r cyclic c ircuits are t hose of [He nnie , 64; 

Kime, 66; P M , 64) all o f which us e t he cl a s s ic a l models of 

[Moore, 56; Huffman, 54; Mealy, 55 ]. 

3 .. 1.Jsummary of Newly Developed Algor it hms F undam enta l 

to all the diagnost lc algorithms developed in t hi s s tud y i s the 

new D-calculus developed in [Roth, 66) (cf. section 3. 3). 

This D-calculu ~ provides a clear concise m eans for performing 

failure ana!;sis on both acyclic and cycli c log i c circuits in a 

manner suitable for both manual and computer c omp t.. t.ation. 

Based on this calculus, the following three major diagnosis 

algorithms were developed: 

1) O-Algorithm (DALG-ll) is an algorithm which com­

putes a test, if one exists, for any failure in an 

acyclic or combinational circuit. 

2) TEST DETECT ascertains all failures in an acyclic 

circuit of a given variety detected by a given test 

consisting of specified signal values on the circuits 

inputs; it is a kind of converse of the O-Algorithm. 

3) CD-Algorithm computes tests for failures in a certain 

well defined class of cyclic or sequential circuits 

(cf. section 3. 6. 2). 

Both DALG-II and TESTDETECT _ were programmed on the 

APL time-sharing system [Iverson , 6} ; FIS, 6 '"1 ; FI , 66] for us e 

with the usual stuck-at-1, stuck-at-0 fail u res. 
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Allied with the development of these three algorithms 

was the formulation of l) a multiple-failure variation of the 

D-algorithm (cf. section 3. 4. 3) for use in finding a single 

test to detect~ of several failures, . 2) a Test-Response 

variation of TESTDETECT (cf. section 3. 5. 4) which not only 

tells if a failure is detected by a given test but also specifies 

the precise response when the failure occurs and 3) a synchro­

nous circuit model (cf. section 3. 6. 2) suit.ale for facilitating 

cyclic circuit diagnosis. 

The existence of all these algorithms is considered 

fundamental to the foundation upon which the automatically 

repaired computer of Chapter 5 is built. 
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3.l,I Ot'finition of Ba s il· TL· rm s Tl 1l' following ll'rm5 will ,.tr1st· fn·-

que ntly in tilt di cu s sion s which follow. 

a lint• w hich is not ft d by a ny othl· r linl' Ill tlil' 

gi '. t·n c i r c: uit. 

prim~ _output _(PO) - a linl' whose sig1~al is accessiblt> to tltt· cxl<>r-

1or of tlw gn·l·n cir c uit. 

a combinational logic de,·ic.e, i.e. a devict:> whose 

pr e s e nt output is alwa y s tht:> samt' well-de fin e d 

Boolean function of its pr<>s e nt inputs wlil'n it 

is fund ioning r:o r rectl y. This function is 

spedfied by a gh·en "singular l .O\'er" as defin<>d 

in section 3. 3. 

succ.essor - Jogic block is a suc.cessor of logic block j ii 

i has an input from j. 

predecessor - logic block (or primary input) .i is a pr e deces-

sor of logic block i if : is an lnput of i. 

circuit ( CKT)- an interconnection of LB's which is usuallv 

describt'd hy an enum e ration of the predecessors 

and logil· (or singular con"r) for t•ach LB to-

gether with a list of the primary outputs. 

failurP - any transformation of the 1 ardware which 

chang<'S ti e logic function realized b v any por -

tion of tl ,is ha rdwa rc . 
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test (for the failure) - an assignment of value s 1, 0 or x to the primary 

inputs such that the value of at least one primary 

output signal will diffe r depending on whether or 

not the failu r e is present. 

Several additional terms used exclusively in the development of the 

CD - Algorithm will be defined as needed in section 3. 6. 

3. 2. 2 Conventions 

Although the various D-Algorithms and TESTDETECT can 

easily be extended to handle other failures and logic, the programmed ver­

sions described in this chapter are limited to single failures of the 

stuck-at-1, stuck-at-0 variety . Extension to more involved failures is 

me rely a matter of defining more complicated primiti,.,.e D-cubes of 

failure(ci. section 3. 3). 

A circuit is said to have memo·ry or storage capacity if it is not 

combinational, i.e. its present output, even ignoring failures, is not always 

the same function of its present inputs . A CKT with memory or storage 

capacity (sequential circuit) must contain feedback loops, i.e . must be 

cyclic. A CKT will likewise he termed combinational if its present output 

is always the same well-defined function of its present input , except possibly 

for the occ-urrence of failures. It is not necessarily true that a comb;na­

tional CKT is acyclic although in this report such an as1urnption will 

u1ually be made. 

All circuits considered here are composed of AND, OR, NAND, 

NOR, and XOR (exclusive-OR) logic blocks. When describing such 
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circuits it is pos sible to as sign the s ame numbe r or name to both th e 

logic block and its output line sinc e the blocks ar e all s ingle output. 

This convention will b e us e d in all acyclic circuit algorithms so that 

the te rms "block i " and "line i II can b e used interc hangeably. This 

conve ntion is modified slightly in the section treating cyclic circuits 

wherein multiple output latche s are pe rmitted (cf.section 3.6.2). 

For a c yclic circuits, it will also be assumed that the n lines 

(or logic blocks) in the circuit ar e assigned unique number labels from 

the integers 1,2, ... , n subject to the constraints that each line shall 

have a higher number than its predecessors, and the primary inputs 

shall be assigned successive numbers starting with 1. With this con­

vention we define the terms backward to mean in the direction of de-

creasing line numbers and forward to mean in the direction of increas-

ing line numbers. A special labelling algorithm is define d in section 

3. 6. 2 to extend this numbe ring procedure to cyclic circuits. 

3. 2. 3 Diagnosability Theorem 

Theorem 3.1 Given a combinational Boolean Transfer Function TF, 
I 

there exi s ts a CKT implementation of TF which cannot be diagnosed 

except by exhaustive application of all 2n tests, where n : number of 

primary inputs. 

Proof: If the circuit is implemented in two level disjunctive normal 

form, all possible inputs for which TF: 1 must be applied in order to 
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test all the AND gates for stuck-at-0 failures. If the conjun,:tive nor­

mal form is used, all possible inputs for which TF: 0 must be a pplied 

in order to test the OR gates for stuck-at-0 failures. Sl nee the im­

plementation is not known, it could be either of the above. Thus all 

pouible inputs must be applied to insure complete testing. 
C.E.D . 

The impact of this theorem is that the actual circuit structure 

implementing a combinational logic function must be known if one 

hopes to perform failure detection by other than exhaustive testing. 

Knowledge of the TF alone is necessary but not sufficient. 

For cyclic or sequential machines it is also neceuary to know 

the actual circuit implementation if one hopes to obtain efficient diag­

nosis. Knowledge of the input-output functions and state tran1itions 

apparent at the ci rcuit terminals is not sufficient since the actual cir-

cuit could have equivalent "machine states " , something which could 

cause circuit states to be missed during diagnosis. 

3. 3 Summary of D ;alculus_ 

A "calculus of D-cubes" was developed in [Roth, 66) 

which allowed one to describe analytically the behavior of, and to co~ 

pute diagnostic te1t1 for, failing automata. A brief resume of this 

calculus will be presented here. 

The functional tran1formation for each logic block in the circuit 
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is gi : en in terms of its sinjp!lar_~_ovl·r ~oth, 60), a kind of truth 

table description for the block's function with t•xtra columns pres e nt 

i n the table lo account for circuit \·a riables otht•r titan l11ost· associated 

dirt>clly with the give n block. As usual. x's or blanks are used to 

denote that the position may he either O or 1. Each row in the singu­

lar cover is t t' rm e d a singular cube: Such cubes art• called prime 

when no larger singular cubt' of the function can exist whicl i contains 

tht> given cube (prim e singular cubes corrf'spond to prime implicants.) 

Figure 3. la shows a NOR block , with inputs 11 and ll and output 13, 

which may be thought of as being 1mbt>dded in some larger circuit. 

Its singular cover, made up of three prime singular cubes, is given 

in Fig . 3~ 1 b . 

The set of so-called primith-e D-cubes, pdc, for this NOR black 

are given in Fig. 3.lc. These D-cubes han· the following interpreta­

tion : thf' symbol D may assume only the two \·alt1t:s O and 1, and the 

assignment must be held fixed for .~!.!_ th e D's in a given D-cube. The 

symbol D rl<'nott•s tb e complcm t' nt of the value a ssignf'd to the D. 

Thus the D-cube DOD rf'prf•sc nts the two culH's 001 ,tnd 100. In effect, 

this D-cube specifif's that whl'n th e NOR is funct.1 o ning properly and a 

0 is plac ed on line 12 , tht> output must he the complf.•ment of the signal 

on lint, 11. Tl~c two dual sl"ls o f D-cuhc· s ,He· p1·ov id1·d s ince tl1t• assign­

ment o f the Dor D to th<' inputs is, at ti is stagf', arhitrarv. 
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11 
NOR 13 

12 

(a) 

11 12 13 

0 0 1 
1 0 

1 0 

(b) 

11 12 13 11 12 13 

D 0 n D 0 D 
0 D o 0 o D 
D D D o n D 
D n 0 o D 0 

(c) 

Fig. 3.1 Singular cover and primitive D-cubes 
for a two input NOR gate. 
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h1 algorithm for constructing the pdc' s is as follows. Pick 

any subset(fof coordinate positions which correspond to O or l 

values in a given singular cube~. Complem ent these \·alues and 

* the output value of~ to form a new cube ,.)( . Intersect Qloth, 59; 

Roth 6©-\ * with each singular cube~ in the cover. \\hen~* and 

f3 have a non-empty intersection y =~•n /3 , a pdc can be 

formed from Y by replacing the (!'"' coordinates in y which are l 

by a D (D) and those which are Oby a D (D). The same replace-

ment is also performed on the output coordinate of y . The alter­

nate values in parenthesis are used to gene rate the dual pdc' s. 

As an example, pick the first singular cube in Fig. 3. lb and select 

coordinate 11 as the one to be complemented. Then Y : 100 is 

non-empty. Replacing the 1 at coordinate 11 by a D and the O at the 

output coordinate by a D produces the first pdc in Fig. 3. le. Gen­

eration of pdc's like the bottom ones in Fig. 3.lc is accomplished 

by leaving the output coordinate untouched in all the computations. 

A primitive D-cube of failure pdcf is used to specify how to 

exhibit a given failure at the site where it occurs. The pdcf con-

str ction procedure will be limited to the simple stuck-d.tit or 

stuck-at-0 failures considered in this paper; {ttoth, 66) gives a 

more general construction. When a line or block is to be tested 

for a stuck-at-1 (o) failure, it is necessary to attempt placement 
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of a O (1) on the line. Thus the first step in the construction is to 

select for the given block associated with this line a prime s ingular 

cube with a 0 (1) at its output coordinate position. Then the out-

put O (1) is replace by a D (D). The use of the D and D here is by 

convention: a D meaning 1 in the good circuit and O in the failing 

circuit. For the NOR block of Fig. 3 .1 the stuck-at-1 pdcf' s 

are xlD and lxD while the stuck-at-0 pdcf is 00D. For primary 

input lines, the pdcf' s are merely a D or D at their respective 

coordinate position. 

A new D-intersection can be defined via an extension of the 

usual singular cube intersection (!loth 59; Roth 6~. Lel ~ and , 

be two D-cubes. Then their D-intersection ci i"7, ~ i1 defined 

using the coordinate D-intersection in Table 3.1 and the following 
rules, 

1. f (empty) if any coordinate intersection i1 cp . 
~ nf1: 2. 9 (undefined) if any coordinate -intersection is y. 

3. The cube forrried from the respective coordinate int9-

sections if neither 1 or 2 holds. 

Thus 0lxDx n OxlDD = 0llDD and 0lxDx n OxlDD • -1-
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n O 1 x D D 

o o 0 o V 'I' 
1 ~ 1 1 'f 'f' 
x O 1 x D D 
D 'f"f D D 'f 
D 'fYDY D 

0 = empty 
Y = undefined 

Table 3.1 Coordinate D-i ntersection. 

The a lgo rithm to be des n ibc d in this pa per will not at: tuall y 

s tore the singula r cov e r or ti P S <' l of primiLiY e 0- c ube s for t>a cl-

block i n, the cir c uit ; it will d yna micall v compute l liem on an 

as-need e d ba sis . T hi s will bt> po s si bl e> si nc t' , for tl e function 

t ype s curr t> ntl y be ing us e d (OR, AND , NOR , NA NO , XOR), tli C' 

computation is fa irly simpl e . For t>x a mplt>, th e singular coye r 

for a n n input OR gate contai n s tl P informa tion t l ,a t tl 1<' output i s 

0 if a nd only if a ll inputs a re 0 , and i s l o thf' rwi se , Th • primitin• 

0 - cubes a rc· con s tructe d bv picking a n y s uhse t of t i e n inrut s . 

ass ignin g tl iesp input s t he Ya lue D (o r D), all utlw r inputs 0 . a nd thP 

output D (o r D). Simi la r procedures ca n ht' sta t e d for the' oth e r 

h lo k tvpes . 
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Now let F be a logic failure in a circuit and let T be a test 

(a particular assignment of O's, l 's, and x's to the primary inputs). 

Then each T and F can be used to define a D-cube c(T, F), termed 

the D-cube defined by T anf F, in the following manner: if, for any 

line or coordinate i, the good and the failing circuit have the same 

value (eitJ .er 0,1, or x), this value is placed in c(T,F) at coordinate 

i; if the good circuit has a 1(0) and the failing circuit a 0(1) on 

line i, then c(T, F} receives a D (D} in coordinate i. This choice 

of how the D and D are assigned is, as with the pdcf, by conven­

tion. The importance of the D-cube c(T, F} is that it allows one to 

describe completely the operation of the good and failing circuit 

. 
• under the input T: set D = 1 (thus D : _ 0) and one gets the good 

circuit's response, set D: 0 (D = 1) and one gets the failing cir­

cuit's response. If T is indeed a test for the existence of F then 

c{T ,F) must have a D or D on at least one primary output so that 

these two responses would differ. Reference [ Roth, 66] develops 

a set of lemmas which show that c{T ,F) must contain a connected 

chain of D's and/or D's linking the site of the failure to a primary 

output, and that c(T, F} could be constructed by a D-intersection 

of primitive D-cubes and singular cubes of the blocks in the cir­

cuit. Here connected D-chain is construed to mean a block (other 

than the site of failure) has a D or D on its output if and only if at 

least one of its inputs has value D or D. 
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As an ex a mple, l et F be the failure "line 1 stuck-at-0" in the 

circuit of Fig. 3. 2a and let test T consist of the values llOx on 

the primary inputs 1, 2, 3, and 4 r e spectively. Then c(T ,F)=DlOxD .OD. 

The connected D-chain is composed of the Don failing line 1, the 

D on intermediate line 5 and the D on the primary output line 7. It 

i R also possible to show that under the r ules of D-inters e ction, 

c(T ,F) can be constructed as 

c(T ,F) : Dxxxxxx ii DlxxDxx J1 xxxxDOD n xxOxxOx 

whe r e the first term is the pdcf for the failing primary input line 

1 and the last three terms are pdc's and singular cubes obtained 

from the pdc lists and singular covers shown in Fig. 3.2b (note 

that for brevity the dual set of pdc' s are not s hown). In the al­

gorithm of reference (Roth, 66) the intersection of pdcf and the 

pdc's is termed the D-drive of the D-chain to a primary output. 

The intersection with the singular cubes, termed consistenc y . 

follows the D-drive and is used to develop a consistent set of 

primary input values which will account for all lines set to O o r 

l during the D-drive. In this example there was an arbitrary choice 

as to which singular cube to use : an equivalent assignment would 

have been to set line 4 to 0, in which case T ' would be llxO and 

c(T ' , F) = DlxODOD. Finally, one might pick 1100 as a test T ''. 

The resulting c(T" ,F) : D100D0D is contained in (actually D-con­

tained cf. t)loth, 66) ) both c(T ,F) and c(T' ,F). 
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3.4 D-Algorithm Version 11 (DALG-11) 

A variation of the D-Algorithm Version ll(DALG-11) suitable 

for manual implementation will be presented first via an example. 

This is followed by a description of the APL rendition of DALG-11. 

It will. be seen that although DALG-11 contains substantial im-

provements alli changes over the version presented in reference 

t)loth, 66J (DALG-%), the basic philosophy is the same : first 

1 

2 

3 

4 

D D 
l AND -------

5 

0 
AND~-----

6 

(a) 

NOR 
D 
., 

1 2 3 4 5 6 7 1 2 3 4 5 6 7 
1 1 l 

0 0 
0 0 

1 1 1 
0 0 

0 0 
0 0 1 

1 0 
1 0 

(b) 

1 D 
D 1 
D D 
D "D 

1 D 
D 1 
D D 
D "D 

D 
D 
D 
0 

D 
D 
D 
0 

O D D 
D O D 
D D D 
D D 0 

Fig 3. 2 Circuit illustrating properties of c(T, F). 
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se l e ct a pri rr 1 ti ve O-c ubc f fa ilure , th e n tr v suc ces sive l y to 

D - inte rs ect witl1 O- c ube s a nd 1inguJar c uhe s of th t: logi c b lock s 

in orde r to ge n r a te c (T . H. 

~:_!.l Manua l Exa mpl e of DALG -_':.!__ T hr ee• of tl ,t• sa li e nt fea tur es 

of DALG-11 will now be dis c us s e d wh il e, for th e be n e fit of thos e 

famili a r with DALG-1, c o ntr a sting th e m wid the ml'thods us e d 

in [Roth, 66). 

Th DALG-11 a lgorithm d e fines tlt e a cti \ ·ity ve ctor A to con­

s 'ist of a listing of a ll thos e blocks which , a t th e gi \'e n sta ge of 

the computation, ha\' e D ' s(or D's) on th e ir inputs , a n x on th e ir 

01,tput , a nd whos e pd c inte rs e ction into th e te st cube has not been 

found to lead to a n inconsiste nt line a ssignment. Tl us the a cth·e 

blocks ar e on the D-frontie r, or le ading e dge s of tlte conne cte d 

D-chain that the algorithm is dri\'ing to t he primary outputs: 

decisions must he made conce rning wl •a t to do r e ga rding dri,·i ng 

th O's t i. rough th e s e blocks. 

Th e se cond fea tur e is tlia t a s soon a s a d e cision to drh·e a 

D through a block is m a d e (in othe r words to D - inte :·s e ct with a 

primith· O- c ube for th a t block) th e full impli ca tions of th t> r e sult­

ing lin as signme nt :,, from x to 0 , l. D , o r D a r t> ca rri e d tl1roug l, ­

out th e c ircuit. ! !P r " impli ca tion s m a ns a ll o the r lin e ass ign ­

m •nts which ar e a forc e d conseque nc e of the totality of assign-

m e nts a lr eady m a de up to this point. For example , if an AND 
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block with an output equal to x receives a O input, its x output must 

be set to O, or if an AND block with all inputs x receives a 1 out­

put, all its inputs must be set to 1, or whenever au AND block has 

all its inputs set to 1 or D, the output must be set to a D, etc. 

The use of the implication concept at each step should make 

DALG-II several orders of magnitude more efficient than DALG-1 

since inconsistent decisions will be discovered much sooner in 

the processing. This is the maJor innovation of DALG-11 over 

DALG-1. 

The third change involves the order in which active 

blocks in A are processed in the drive to the primary output•. 

Discussion of this will be reserved for later: let it suffice to say 

that DALG-11 picks the lowest numbered block, skipping ove·r 

those it has ah:eady found to lead to an inconsistency. 

The tnanual variation of the algori'thm to be used here will 

proceed roughly as follows: A primitive O-cube of failure (pdcf) 

will be selected and all singular cube• or D-cube1 whose choice i1 

implied by pdcf placed in a set I0 (pdcf). Then an initial teat cube 

tcO = pdcf n /i1°(pdcf)J ii formedt and the activity vector A0 

defined. At the kth step in the algorithm a primitive O-cube pdck 

is developed for some block in the activity vector Ak-1. Then the 

set Ik(tck-l, pdck) of all those cubes which are new implications 

1. We define ~C to be tr~ D-inter1ection of .~11 the ~ube I in the 

set C .:. f c1, cz. . . . . . , 1. e. JC .a c1 n cl 1 1. . . . . . . . . . • 
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of what has b n don to date, is g ne rate d. Fina lly, tli e tes t 

cube tck: tc k-\n pdckn [-Ik(tck - l, . pdck)] is form ed a nd Ak 

defined. The iterations c a s e whe n a primary output has been 

reached with the O-chain of tck. At this point, blocks wliicli were 

a11i1ned output values 0 or l by the D-dri e without l1a ying 

appropriate inputs to account for this output., have their signals 

"driven" back towards the primary inputs. This is done by ge n­

erating intersections with the appropriate singular cube s in an 

attempt to find a consistent assignment of the primary inputs 

which will provide the desired signals. Because the implication 

proces1 was used during the D-drive, this consistency operation 

will alway• involve a choice of one of several possible singular 

cubes for each block it encounters, i.e. if there is no choice , the 

implication process would have already used the singular cube in 

forming some tck. 

When either the O-chain 11 dies 11 (A becomes empty) or an in­

consistency is discovered, the process must back up to th e last 

arbitrary choice of pdck or singular cube and make an alternate 

selection. 

With thes points in mind 1 t us begin th construction of a 
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test for the failure "line 6 stuck-at-0" for the circuit in Fig. 3.3 

To test a line for be;.ng stuck-at-0 it is necessary to force a 1 on 

that line in the good circuit, so pdcf must be xOOxxDxxxxxx. Since 

there are no implications for these three line assignments, 1° ■ (), 

tc0 = pdcf, and Ao= [ 9, 10 J. In picking the block in AO for which 

pdc1 will be generated, the first arbitrary choice arises, DALG-11 

would pick the lowest numbered entry in A, line 9, and form 

pdcl:: Oxx.xxOxxDxxx. The output of block 5 is forced to be a 1 

since both inputs are now O, and this assignment in turn forces the 

output of 8 to 0. Thus 11(tc0
, pdc1) : (OxOxlxxxxxxx,xxxxlxxOxxxx}. 

The new test cube tc1 is constructed as indicated below. 

x OOxxDxxxxxx 
OxxxxDxxDxxx 
0x0xbt..Jr_YJCXXXX } n xxxxlxx Oxxxxx 

tc1 OOOxlDxODxxx 

The activity vector A1 becomes f 10, 12 j. 

tc0 

1 pdc 

11 

Again, picking the lowest numbered active block, in thi1 

case 10, pdc2 = xxxOxDxxx.Dxx. The O's at cooordinate 2 of tc1 and 

coordinate 4 of pdc2 imply a 1 on line 7 which in turn implies a 0 

on line 11. At this point, line 9 and 10 are D and line 8 and 11 are O, 

thereby forcing a D on the PO line 12 . Thus 12 (tc1, pdc2
)~0x0xxbtJCXXX; 

·xxxxxxlxxxOx; xxxxxxxOODODf and tc2 is, 
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1 

2 
3 

4 

--

-
-

--

NOP 5 

-
6 

NOR 

7 
NOR 

8 
NOR --

r 

9 
NOR - - 12 - NOR ----10 --NOR 

LNOR 11 
--

Fig. 3. 3 Example illustrating the D-Algorithm (DALG-1 U. 

000xlDx0Dxxx t C: 
J 

xxx0$xxDxx pdc2 

x Ox Oxxlxxxxxx 
xxxxxx I xx xx OK J 12 

n xxxxxxx0DD0D 

tc
2 

: 00001D10DD0D 
The D-chain lias r eache d the primary output so th e consistency 

op ration wouJd normall y be started. HoweYer, in thi s example al] 

blocks with outputs 0 or I have their signals already acc:ounted for 

by tbeir inputs. Thus tc
2 

is c (T ,F') , with input test pattern 

r: 0000. 
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It is informative to examine what happens if block 12 in A~, 

instead of block 10, is sele cted for forming pdc 
2 

Then pdc2 : 

xxxxxxx0D00D and the following initial implications may be noted; 

the 0 on line 11 forces a 1 on line 7 (line 3 ii fixed at 0) and the 0 

on line 10 forces a 1 on line 4 (line 6 is currently a D). When block 

7 is examined for implications it is found to be inconsistent: the 

NOR gate cannot have an input value 1 and an output value 1. 

The lack of success in the second part of the example serves 

to illustrate that, for the given failure, the only test that exists de­

pends on having the failure signal propagate through a chain which 

reconverges at block 12 , "sensitizing" any single path will not produce 

a test! 

The results of these examples will be used to illustrate the 

key features of OALG-11 and point up contrasts with DALG-1. Al-

though the D-chain in the successful teat passes through three 

blocks (9,10, and lZ), only two decisions had to be made; implica­

tion automatically extended the D-chain through block 12. The 

implications process used during the D-dr.ive of DALG-11 really 

amounts to a mixture of D-drive and consistency as defined for 

DALG-1. Next to the use of implication, the biggest change in 

strategy is the method in which the choices ~re made during the 
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extension of the D-chain to the output. Because DALG-11 a lways 

selects the lowest numbered block in A (which i t has not found to 

lead to an inconsiste ncy) and becaus e th e block numbe rs are order­

ed as previously mentioned, the extens ion of the D-chai n is an or -

derly level by level progression to the outputs. Fur ther, DALG- U 

atop• as soon as any segment of the D-chain reaches a PO since 

leaving any other segments of the D-chain uncomple te d cannot r e ­

sult in any contradictions to the t e st as cnrr e ntly deve loped. By 

leaving such segments uncompleted we give them don ' t car e status 

(they may or may not reach other PO's depending upc.,n what is done 

in con1i1tency.). 

An alternate strategy for selecting blocks from A would be 

to pick the highest numbered one. This would amount to giving 

priority to a rapid 11 plunge 11 to the outputs along a sensitized path. 

At this point in the development it is now known which of the two 

strategies is more efficient in circuits with fan-out. In ci r cuits 

without fan-out the methods are identical since A will only contain 

one block number at any given time. 

4:4: 

------
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3. 4. 2 The APL Rendition of DALG-11 Appendix 

1.1 contains a detailed APL [FL 66 ; IVERSON, 62; FIS,64] 

specification of DALG-11 and its support functions together with a 

glossary of key terms. Here we will just summarize the major 

functions and the tasks they perform. This is followed by an exam­

ple illustrating how the interactive computation provided by these 

APL functions facilitate diagnostic test generation. 

A "stand-alone" function, CIRCUIT, is used to provide inter­

active communication for entry of the information necessary to de­

fine the circuit. The actual APL rendition of DALG-11 is viewed 

through the function DALG-11, which reads in the failure informa­

tion, establishes the pdcf' s, calls upon six other functions to exec­

ute the actual algorithm, and then prints the results. The six 

major functions used to compute the test have a hierarchy as shown 

in Fig. 3. 4. They use 13 subordinate functions also listed in Appen­

dix 1.1. DALG controls the D-drive to the primary outputs. DB -

DRIVE is the function which carries out all implications that can be 

made in the direction of forcing signals back towards the pTimary 

inputs during the D-drive. DF DRIVE is a similar function for forc-

ing implied signals forward towards the primary outputs. CD DRIVE 

is used to p~rform the .;onsistency operation whenever DALG en-
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I 
DBDR IVE 

I 
CIRCUIT 

I 

I 
DALG 11 

I 
DALG 

I 
DFDRIVE 

I 
I 

CDR IVE 
I 

DBDR IVE I 
CBDR IVE 

I 
1 

CFDRIVE 
I 

CBDR IVE 

Fig. 3. 4 Function structure of DALG-11. 

counters a primary output in D-drive . It us e s backwa r d (CB DRIVE) 

and fo r ward (CF DRIVE) implkation functions in a manner similar 

DALG. The chie f differences betwe e n the DB DRIVE, CB DRIVE 

and the DF DRIVE, CFDRIVE functions will be discussed later. 

Fig. 3. 5 shows the computer-user communication gener 1ted 

during a typical APL run for the example circuit used in th e pr e -

vious 1:1ection. When CIRCUIT is executed, the function is•sue s a 

command followed by the O: symbol denoting that it is ready to 

accept the requested information from the u .. er. Through this 

back-and-forth communication the circuit structure is define d in 
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the computer. Next, DALOII is executed and through two more 

interactions the list of failures are defined. Then the algorithm is 

sequentially executed on the failure list just entered. For each, it 

prints out the failure followed by a sequer.tial listing of all line 

values it specified during the test development, i.e. the contents 

of the final test cube tc. If a test does not exist for the given 

failnre, the statement NO TEST appears. 

Thus ·with the relative ease provided by preplanned interactive 

computation support. a designer can enter his circuit definition and 

rapidly obtain diagnostic tests for whatever 11et of failure ■ he de­

sires. The actual CPU time required by DALGII to generate the 

six tests shown in Fig 3. 5 was one minute; Ba1ed on preliminary 

experimental results (for circuits of 100 block■ or le11) it appears 

that the D~LGII execution time (in ■ ecoms) per test is roughly 

equal to twice the number of li"nes in the circuit. However, there 

is a marked tendency for the data to be more 1cattered for lar1e 

circuits, fodicating that a dependence on circuit structure may alter 

the linear relation. 
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CIRCUIT 
ENTER PRIMARY INPUTE. 
0: 1 2 3 4 
ENTER PRINARY ouTeurs. 
0: 8 11 12 
El'IER LOGIC. 
0: 8oNOR 
EITER PREDECESSORS FOR THE INDICATED BLOCK. 
BLOCX 5 
0: \ 3 
BLOCX 6 
0: 2 3 
BLOCX 1 
0: 2 1t 
B£0CX 8 
0: 2 s 
BLOCK 9 
0: 1 6 
BLOCX 10 
0: It 6 
BLOCX 11 
0: 3 7 
BLOCK 12 
0 : 8 9 10 11 
EID OF CIRCUIT DEFINITION. 

DALCII 
llfER LINES TO BE TESTED. 
0: 6 6 1 2 3 4 
BITER STUCK VALUES FOR THESE LINES. 
0: O 1 O O 1 O 
'11ST FOR LINE 6 STUCX-AT-0 

0 0 0 0 1 D 1 0 ~ ~ O D 
'/EST FOR LINE€ STUCK-AT-1 

0 1 1 O O ~ 0 O D D O " 
TEST FOR LINE 1 STUCK-AT-0 

D O O X ~ 1 X D O O X X 
TEST FOR LINE 2 STUCK-AT-0 

X D O O X ~ ~ X X D D X 
TEST FOR LINE 3 STUCK-AT-0 

O O D X » ~ X D D X X X 
TEST FOR LINE It STUCK-AT-0 

X O O D X 1 ~ X O O D X 

Fig. 3. 5 Typical computer-use, intercommunication 
during a DALG-11 execution. 
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3.4.3 Multiple-Failure D-Algorithm. In an LSI or even MSI (M for 

Medium) environment the occurance of any one of several possible 

failure& is sufficient to require replacement of an entire circuit 

module. Thus, it would be des.irable to have a means whereby the 

previously described D-Algorithms could be modified so aa to de­

velop one test T which will diagnose the occurance of any one of a 

set of failures; the set usually, but not necessarily, being assoc-

iated with a single replaceable module. Thi• would be of use in 

reducing the 1,umber of tests required for diagno■ ia. 

The multiple-failure D-algorithm or m.f.DALG deacribed 

he-re doe ■ the following: given a category f" of failure ■ of an acyclic -
logic circuit, m.f. DALG computes a single testT, if one exists, 

which will detect any ~ of this category F of failures; if no such -
test exists I it will so ascertain. 

The trick of this variant of D-algorithm can be under stood by 

considering the case where F consist■ of two failures, say A and -
B. Let TA denote a Test Cube (formerly denoted TC) being deve­

loped for failure A; concurrently being developed is a Test Cube 

TB for failure B. Along-side of each is a third test cube TC which 

keeps track of the constraints being "interleavedly" imposed upon 

the response pattern of the correctly functioning circuit by the 
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de v t> Jopmt>nl f 1,o t l TA ,rnd TB . If co nfl ic t :,; oc n 1r i r. t! i " pantlfrl ' ' 

d \ ' t• lopmt.•nl (of TA a nd TB ) l1 1t· 11 ti L' i.1. lgorilhm " s t t> ps ha ck ' ' int! , (:• 

d e cision p roc t- dur t· - e itl ,c· r for t i v TA-p rocc·dure or tlit.· TB- p roct' ­

dur e o r , possiblv , ho tli c1 nd pro c·ed s a ga i n a long t l,is '' lD br a ncl -

mg pro c dur e . TC is e xpli ci tlr computt.-d according to tl tt' follow­

ing formu lac- : 

'JA TA /7 ➔ 8 TB = TC 

wh r :;,ATA is a n "opt>ra tor ' consis ting of r t' pl ac-i ng eac:1- coo rdi -

n t e having \·a lue D wit!t a l, eacl: coordinate l a , ·ing \·a lu t' D wi t! 

a 0, a ll other coo rdin a tes r e m a ining fix t>d . Simi la rly for dB TB . 

And n i s ti c' " D- c u e int t>rsec ti on '' . [ cf. section 3. 3 ]. 

3. 5 TEST DETECT 

TEST-DETECT is a kind of co n-.·ers e of the O-Algoritl •m : 

given a test T it computes the set 0£ all failures detected by T. A 

m e thod for as certaining all failur e s F detec t e d by T would be to 

construct c(T, F) for each F and assay whether o r not any PO -

coordinate had va lue Dor D. TEST-DETECT is a substanially 

r e fine d version of this procedure. 
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3 . 5 .1 Test Detect Alaor ithm . If TC denote ■ the vector of •i1nal• 

.u signed by the test T to each line of the lo1i<: circuit, then, if 

TCi ha ■ the value a= 1 or 0, T cannot te ■ t for the failure "line i 

stuck-at-a" ■ ince the 100d and failina circuit■ would appear iden­

tical. Thu■ if Fi denote• the f~ilure line i a tuck-at-a , we need 

only concern our1elve1 with inveati1atin1 ■ uch Fi. Further, the 

■ et of failure• detected by T can now be •niquely apecified by a 

vector FD of line• on which T detect• a failure: if i. (. FD and 

TCi •a then T detect• the failure Fi. 

We now de ■ cribe a method for effectively computiq c(T,F.), 
l 

hence for computin1 whether or not i can be placed in FD. We do 

thi11 by conatructin1, ala the D-alaorithm, the D-chain emautiq 

from line i. The activity vector A and it• uae in produciq an orderly 

level by level march to the PO'• i• aa before. Uowever, all line 

1i1nal value ■ are fixed •o th•t we are only concerned with wllether 

or not the D-chain propa1atea thro111h the 1iven block, i.e., whether 

or not_ the input• correapond to the inp\lt aection of a pclc which haa 

a D or D at it• output coordinate . For. the aake of atora1e effi-

ciency, c(T, Fi) ia .never explicitly 1enerated. In1tead we record 

that a line in TC has a D or D on it by pladn1 the lin• n\lfflber in 

a li•t DL. Thu•, if i . a. DL and TC;= 1 ( or 0) then coordinate j 

in c(T, Fi) i1 D (or oi otherwi1e TC and c(T, Fi) aaree. Since we 
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are only interested in those lines for which a ctive computa tion is 

being ca..rried out, the definition of DL (and its us e in th e APL pro-

gram) will be modified so as to exclude those lines which have a l-

ready been processed and do not have successors in A. 

When the D-chair. reaches a PO, DL n PO -:i:Q , we can con­

clude that T detecu F . and stop the generation of c(T ,F . ). If the 
1 l 

D-chain dies, A .. (), before this occurs, T does not detect F . . 
l 

These are the two basic. criteria for stopping computation. If the 

line• are examined for inclusion in FD in numerical order, starting 

with the hi1he ■ t numbered one, the status of line J(j > i) has been 

determined before that of line i. Then the following lemma can be 

u■ ed to develop a third criterion for stopping which t runcates the 

formation of c(T, Fi) and greatly increases the efficiency of TEST-

DETECT. 

Lemma 3.1 If at any stage in the computation of c(T, Fi) there is 

only one line J in DL, then i is in FD if and only if J £ FD. 

Proof For the portion of the circuit corresponding to those blocks 

wtth number greater than j, the inputs ( 0, 1, D or D) are exactly 

the same as when j was ori1ina.lly examined since, by hypothesis, 

•,:J'\' . 

J is the only hrie in DL. Hence c(T, Fi) must agree with c(T, F .) 
J 

in these positions and any cone ; 1sions made regarding j being in FD 

will also hold for i. 
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As an illustration o:f TEST-DETECT, let us examine the cir-

cuit in Fi&, 3.6 wherein the te1t T a11igns the value 1 to all the 

Pl' 1. For all line•, the appropriate entry in TC ii 1hown as the 

number above the line. When the fir1t two line•, 1.2 and 11, are 

procea1ed, placin1 their numbe rw in DL automatically 1atilfie1 the 

te1t DL fi PO t- f) , i . e. if i ., . PO it can in1mediately be placed in 

FD. Line 10 ha1 only one 1uccea1or, 12, and when thi ■ entry in 

A ia examined it i1 found that no pdc for block 12 exi1t1 which ha1 

a 0 at coordinate 9 and a D or D at coordinate 12. Hence A b,ecome1 

empty and 10 cannot be placed in FD. Simila.rly line 9 i1 found 

not to be in FD while line 8 i1. When line 7 ie proce11ed, DL : 7 

and A : 11. A .pdc with the required value• (a D on line 7, a l on 

line 3, and a D on line 1 ! ) exi1t1 for block 11. Thu• DL = 11 and 

A =12. Since DL ha1 been reduced to a 1in1le entry which i1 in FD, 

we conclude, u1in1 Lemma 3 .1 that 7 mu1t be in FD, 

lnve1ti1atin1 line 6 mean, that initially DL • 6 and A ={9, uj 
Since appropriate pdc' s exilt for both 9 and 10, two iteration• in the 

in the D-chain exten1ion will produce DL = 9, 10 aail A ■ 12. The 

cube lDDU> i1 a pdc (involvin1 coordinate ■ 8 throu1h 12 re1pective-

ly) for block 12 10 the D-chain can be extended throu1h 12. Now 
/ 

DL = 12 and Lemma 3. l can a1ain be applied tc, •how line 6 i1 in FD . 

Proceedin1 in a similar manner, line ■ 4 and 2 are found to 

be in FD while lines 5, 3 and 1 are not. 
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Fig. 3._6 Example used to illustrate TEST-DETECT. 
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3. 5. 2 Use of APL Rendition The APL rendition of TESTDETECT 

and it• support functi.>n1 are li1ted in Appendix 1. 2 to1ether with 

a 1101 sary of pertinent te r m•. Fi&, 3. 7 illultrate1 the computer-

u1er interaction required to execute the1e function• for the circuit 

in Fia. 3. 6. Since the only difference between the circuit uaed a1 

an example in Section 3. •. 2 and the circuit u1ed here i1 that the 

lo1ic o each block i1 different, there i1 no need to reexecute the 

function CIRCUIT (the two example• were run con1ecutively); only 

the lo1ic i1 re1pecified. Then the 1upport function PATTERNS i1 

u1ed to enter the valw,1 of TC [ PIJ for which TESTDJ:TECT r1111• 

are reque1ted. In thi1 example all 2 ~ -- 16 po11ible input• are beiq 

u1ed. Executin1 DETECT cau1e1 TESTDETECT to be run for each 

pattern entered. The re1ult1 are di1played in tablllar form &I 

1hown with each row repreaentin1 one rua. The left portion of the 

table give• the input pattern. ·column i of the ri1ht portion of the 

table indicate• the 1tatu1 of line i for the 1ivcn teat accordiq to 

the following rule•: 

0 ; te1ted for 1tuck-at-O 

1 = 
(blank~ 

teated for 1tuck-at-l 
not tested. 
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1 · 

L+O,o,o.o.xoR,OR,NAND,OR,NAND,XOR,NAND,AND 

PATTERNS 
EN'tER PRIMARY INPUT PATTERNS, ONE AT A TIME. 
't1PE ALL IF ALL 2•pPI PATTERNS ARE DESIRED. 
T1PE END TO STOP DATA ENTRY. 
0: 

ALL 

DET!CT 
1 2 3 .. I 1 2 3 If 5 6 7 8 9 0 1 2 

------- - -♦------------------------
0 0 0 0 1 1 1 1 1 0 1 
0 0 0 1 1 1 1 1 1 0 1 
0 0 1 0 1 0 0 0 0 ~ 1 ~ 

0 0 1 1 1 1 0 0 0 0 1 1 
0 1 0 0 1 0 1 1 0 0 0 0 0 0 
0 1 0 1 0 0 0 0 1 0 1 
0 1 1 0 0 1 0 0 1 1 
0 1 1 1 0 0 0 1 0 1 0 1 
1 0 0 0 0 1 1 0 0 1 0 1 
1 0 0 1 0 1 1 0 0 1 0 0 0 0 0 
1 0 1 0 0 1 0 1 0 1 1 1 
1 0 1 1 0 1 0 1 0 1 1 1 
1 1 0 0 0 1 0 1 0 1 . 
1 1 0 1 0 0 0 0 1 
1 1 1 0 0 0 1 0 0 1 1 
1 1 1 1 0 0 0 1 0 0 1 

Fig. 3. 7 Computer"."user interaction for a TESTDETECT 
execution on the circuit of Fig. 3. 6 . 
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The CPU time coneumed during the running of thil 

ex~mple wa1 three minutes. Experimental results on circuit■ 

with le11 than 100 lines indicate ■ that the execution time, in 

second■, per teat ii roughly e qual to the number of line ■ in 

the circuit. A1 with DALGll there is a tendency for the 

data to become more 1cattered a1 larger circuit■ are u1ed, 

indicating a dependency on circuit structure. 

3. 5. 3 Strategie1 Two objective, of an efficient dia1no1tic 

test generation procedure are to develop rapidly a 1mall 

number of te1tl which will detect all failure, in the circuit 

and then develop a 1omewhat lar1er 1et which will be capable 

of locating the 1ite of the failure down to th• 1malle1t re­

placeable module. Several 1tra.te1ie1 may be employed in 

utilizin1 DALG-11 and TEST-DETECT in 1uch a procedure. 

The1e 1trategie1 muat all provide a mean■ for a11igntng 

value a to the un1pecified PI• s (i.e. the one• that are x) in the 

te1t1 produced by DALG-11 1ince the pre1ent ver1ion of TEST-

DETECT require• all PI 11 to be 0 or 1. (A ver1ion of TEST­

DETECT without thi1 restriction ii under development). They 

1hould aho make u11e of the greater ■peed of TEST-DETECT 

relative to that of DALG-11. 
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Three s trate gies for assi 5nin, the 's in the tests 

generated by DALG-II will be dis c uss e d. lt is possible to 

assi gn values t o the x' s and simultaneously to reduce the 

number of tests by replacin g a subset of tests by their inter-

section. 

l 2 

For example , let T = xx0d and T = lOOxx. 

Then their intersection, l 00l ! , can be used in their stead. 

T he difficulty with this strategy is that finding a minimum set 

of intersections which can replace a large number of tests, 

re1ult1 in a "covering' ' problem [Roth, 59]. 

A second strategy would involve assigning the x's in 

such a manner that tests become rotations of each other, 

again reducing the number to be stored. In the previou. s 

e xample the test O00 l l is obtained from T
1 

by assigning the 

2 
lfthetwo } 1 S in 1 areassignedthe 

x•• the value 0. 

values 0 and l, T2 is a 1-bit right rotation of 0001 1. 

58 



-------

Finally, the concept of "deadening" can be u1ed to remove x 1 

from the telt1 developed in DALO-II. In deadenin1, an attempt i1 

made to place at lea1t two O • on the input, of each AND (NAND) 

gate with a 0(1) output and at lea1t two l' 1 on the input• of each OR 

.(NOR) 1ate with a l ( 0) output. Thi1 could be accompli1hed in a 

po1t prece11or u1in1 an al1orithm 1imilar to con1i1tency. The 

• effect of deadenin1 i1 to tend to make the 1iven te1t in1en1itive to 

other failure, that may al10 be pre1ent. 

A 1trate1y for combinina DALO-II and TEST-DETECT which 

. appear, to be efficient involve• uaina DALO-ll to develop te1t1 for 

primary input•. Then the above three 1trate1ie1 are 111ed to 

produce a 1et of te1t1, with no x;1, which can be r11n throu.ah 

TEST-DETECT to determine all the failure■ which are det,cted. 

When the D- chain• u1ed in DALO-II to develop th••• Pl te1u do not 

have point• of reconvergence, TEST-DETECT will dl■cover· that, 

at the very lea1t, all block• on the■• chain• are al10 -te1ted .. If 

' 
any fail11re1 have not been detected• DA_LO-II l1 u■ed to prod11ce 

tests for them and the proce11 repeated until all failure, have been 

detected (or DALO-II returns information 1tatin1 that no teat exi1t1). 
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The faul t location problem can be approa ched b y d ve lo ping a 

fault locatic n table (GNR, 6-'] with each failur e a s a r ow , each col ­

umn as a T 1, 1t-Re sponse pair, and a m . ..L rk a t a r ow-column inter 

section if thl~ teat produces the corresponding respons e with the 

1ivt:n failure. It i• necessary to add tests t> the set used for de ­

tection until each row ha• a unique pattern of marks. When cir -

cuitl are packaged in modules, two rows may have the same pattern 

of mark• if they correspond to failures in the same module. 

]. 1§. t Te1t-Re1p0n1e Al1orithm. 
TEST-DETECT is set up (and 

pro1ramed) solely to determine which of a category! of failures are 

detected by a 1iven test Ti no information is specified as to which 

outputs signal the presence of the failure, i.e. , contain a D or D. 

For purpose• of diagno1i1 or failure location, as contrasted with 

detection alone, it ii important to have the discrimination obtain­

able from knowledge of the actual response (cf. section 3 . 5. 3). 

A 1mall modification to TEST-DETECT can provide such response 
l 

information. 

In the present TES'F-DETECT one ha•, for each test T and 

line 1. a 1ingle symbol 

. !x ( or blank) 

FD(T ,l .)• 
,l(, 0 or 1) 
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The Teat-Respon1e algorithm would store a vector TR(T ,1) of 

length ('PO with the ith entry containin1 the value of FD(T l ,) for 

the circuit viewed a1 having only the ith primary output available 

for uae in the TEST-DETECT algorithm. The modification• to 

TEST-DETECT to achieve thi1 new algorithm are the followin1: 

1. When the D-chain defined by DL reaches a primary output 

the FD computed for thi1 PO i1 entered into the appropriate 

TR poaition and the TEST-DETECT procedure continued until 

all branches of the D-chain "die out" (A become• empty) or 

the primary outputl are reached. 

2 . When the condi tion1 of Lemma 3 .1 are aatilfied, DL ! line j, 

the non-x entrie1 in TR(T, j) are entered into TR(T ,I). 

Condition l in1ure1 that all output• which 1i1nal the preaence of 

the failure, not juat the fir at one encountered, are di a covered. 

The 1econd condition me rely expand■ the .&mount of information 

one can obtain from Lemma 3 .1 when TR.(T, l) ia available. 
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3. 6 Cycli c Circuit Diagnos is 

This s e ction is primarily concerned with showing how the pre­

viously spe cif i. e d D-ca lculus a nd a cyclic circuit diagnos :s algorithm, 

DALG-11, can be extended to develop a q,clic circuit Diagnosis Al­

gorithm, to be called CD-Algorithm I. A brief review of the pr~­

s e nt stat -of-the-art in cyclic diagnosis and several example s 

illustrating how cyclic circuits are diagnosed by CD-Algorithm I 

are also included. 

3.6.l State-of-the -Art The classical approach to cyclic or sequen-

tia l circuit diagnosis [ Hennie, 64] uses state diagram or state 

tabl mode ls of the machine to b e tested [Moo re, 56 ; Huffman, 54 : 

Mea ly , 55]. Time seque nces of inputs, derived from the state 

table , are sought which place the good m achine in some known 

state. Then a checking sequence of inputs is developed which, when 

preceeded by the state synchronizing sequence , allows the outputs 

to distingui h the good and failed machines. A second, and more 

difficult appr oach i s to seek a sequence of inputs which never allows 
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the u■er to actually know whc1t state the m.:1chine ia in but does c; u■ e 

the good and failed machine• to generate different output ■ equence1 

(c.f. Example 1, Section 3.6.3). 

There are thr e e basic difficulties in applyin1 the ■ e technique■ 

in practice. First, in almost all computer de•ian• the circuit i ■ not 

specified in term• of classical ■tate dia1ram■ or table■ and 1enerati• 

them proves to be an enormo11 11 cnmoutational task. ~econd, the 

claHical al1rorithm1 to date work well for machine ■ with a very 1mall 

number of 1tate1, say le ■■ than ten, but encounter tremendou• combina­

tional problem■ and very lon1 te ■ t ■ equenu1 wh~n practical circuit• 

are tested; here practical implie1 more than a thou1and 1tate1 &I in 

any circuit wi•h only 10 independent bit• of ■ tora1e. Finally, it i■ 

impoa ■ ible to auarantee findin1 a te ■t for a circuit failure from a ·1tate 

diagram or table alone without -exhau1tin1 all pouible 1tate tran1ition1 

and input 1equence1j the actual circuit implementation mu1t be known 

to avoid exhaustion. Th• al•or•ithm to be developed here will ue a 

lo1ic block pr edec·e ■ 1or li ■ t de ■ cription of the circuit and only reqwre 

state table ·or ■ tate diagram 1pecification1 for relatively 1mall 1ub­

portion1 of the circuit (e ·I. the latch corifi1uration1 defined in 1ection 

3.6.l). 

A different attack on cydic circuit dia1no1i■ which ha1 found 

wide use in practice i• the ■oc allerl SCAN ~echnique [.. CMPR, 64 ,; 
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HS, 65J. Here enough extra inputs and outputs are added to tht 

cyclic circuit to provide the ability to scan data into the storage 

elements of the circuit so that all states become known. Then the 

test is applied and the results scanned out for analysis. In effect, 

the circuit is rendered acyclic for diagnostic purposes. The main 

disadvantage of this technique has been its heavy use of extra input 

and output lines, something not appealing when pin-limited tech­

nologies are used. e.g. LSI. 

In general, the problem of failures which produce new feed­

back loops have been avoided. Races and hazards, either already 

present in the model or introduced because the actual circuit 

doesn't obey the model, also prove not to be amenable to most 

diagnostic algorithms. In this connection it may be that the good 

circuit with proper inputs does not exhibit races or hazards but 

when the failure occurs or illegal (say bad parity) inputs are applied 

to it, such problem8 are manifested, e.g. a failure or ille1al in-

put could caus E an RS flip-flop to receive both SET and RESET in­

puts causing , at best, an unknown output. The CD-Algorithm I 

to be developed also excludes failures which introduce new feed­

back ! s::. p.ii and unspecified race conditions. 

3. 6. 2 The Synchronous Model To develop a cyclic circuit diag-

nosis algor ithm which will be an efficient useful toC'l, the nature 
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of the cyclic circuit• actually bein1 de1i1ned 1hould be incorporated 

in the model upon which the al1orithm i1 ba1ed. The maJority of 

the circuitry is clocked synchronous loaic. Synthesizin1 such cir­

cuit• is strai1htforward, thereby allowing the average de1i1ner 

to carry out an implementation in a short period of time with a 

minimum number of errors. Since the 1tructure of 1uch circuit• 

is readily apparent, en1ineerin1 chan1e1 are ea1ily executed on 

a local ba1is somethin& far more difficult in cla11ic.:l a1ynchronou 

de1i1n. By controllina the tran1fer or time of propa1ation for da 

at well defined interface• , the problem of correctly treatin1 ill­

defined component and wirin1 delay• (which may not even be known 

until final layout) can be reduced to a local ba1i1 wherein it become• 

more amenable. Control over data propaaation will al10 be re­

quired in ultra-reliable computers to prevent the proliferation of 

erroneou1 data [c.f. Cha~ter s]. The two major drawback• of 

1ynchronou1 de1i1n are the alower function execution and the 1li1ht 

increa1e in circuitry o~r ·an a1ychronou1 impldmentation. 

The typical 1ynchronou1 circuit in Fi1. 3. 8 will be u1ed in 

all 1ub1equent example• in thil chapter. Thu1, it merit• 1ome di1-

cu11ion. Dependin& on the value of SR, either b 1, bz (SR • 1) or 

b2 , b 3 (SR • 0) are brought to pointl a 1, az. When control line• 

Ks ii 1et to 1 the1e values are then entered into the R-S flip-flop• 
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FUNCTIONS 

&, 2 (I"" bi )v ( ii "b,.,) 

f, • "K • • , ,., V R, ( .. II, V ., J,) 
v 1<, a, J, 

F. • f, c, ➔ v f, c,., 
c, • K4(llj ,. V f, c, .. ) 

Figure 3. 8 Typical Synchronous Cyclic Circuit: A Function Accumulator. 
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as " 1, '-2. The control line• K 1, Kz, K3 permit fi to become 

any one of 8 po• a ible function■ of Ji and , i. The value of Ci ii 

controlled by K4 ; when K,6 = 1, Ci : O; when K4 = 0 and 

fi = ~, i V; i ;i, Ci ii the carry out of the ith 1ta1e of an adder. 

The value of Fi can be made equal to fi by 1ettina the carry line• 

to O (K4 : 1, Co = ,O_) or to the exclu1ive -OR of fi and Ci-1 • When 

control K
0 

drop, from 1 to O the currentvah1e of fi i1 entered 

into the output re1i1ter, becomin1 the new 'i· Thua the circuit 

is a functional accumulator, one of who1e function• ii addition. 

Set and reaet line• are alao provided on the accumulator re1ilter. 

Before developin1 the circuit model to be uaed in th• CD-Al­

gorithm I, aeveral fundamental term• will be defined. Liberal 
~ 

uae will alao be made oi Che exi1tin1 terminolo1y in the cla1·1ical 

literature. 

The notion of what con1titute1 a te1t mu1t be expanded. for 

cyclic circuits. A te•t T will now be defined to be a time 1equence 

of primary input v~lue ■ T = ( T 1, T 2 .,. ~ .-· , Tnf 1uch tlw.t after the 

application of the complete 1equence, the 100d and the failed 

machine■ have diffe M-nt primary output valu~•. Sl1per1cript1 will 

denote the time sequencing and 1ub1cript1 will be uaed to denote 

distinguish different tests. 

Consider a circuit composed of lo1ic blocks interconnected to 
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po11e11 feedback loops such that informatio.n st>rage or memory 

ia provided. Two types of control over this circuit 1 s storage 

capability will be defined. We will say injection control exists 

if, by appropriate selection of primary input values, we can 

atore known data into the feedback loops. _Inhibition control exists 

when the primary inputs can be appropriately chosen S<> as to 

inhibit or block the propagation of data through the feedback loop 

at aome point in the loop. For example, in the circuit of Fig . 

3. 8 ., inhibition control is provided over all feedback loops by 

primary input& Ko and Ks, tht: clock line• for the upper and lower 

re1iatera respectively. Injection control for the upper register is 

obtained throu1h the combinational logic trees defining a 1 and a 2 , 

and for all other feedback loops by primary inputs S and R. 

A latch configuration (LC) is an ensemble of logic blocks 

interconnected so as to posseu information storage capability and 

a well specified transfer and state tranajtion function. In order 

to give an LC the status of a functional storage 1 1atom 11
, it is cus­

tomary to restrict the amount of circuitry being called an LC by 

requiring that it should not be partitionable into disjoint LC 1s 

which also have a well defined functional meaning within the con­

fines of the circuit. At the same time the circuitry which facilitates 

effective injection and/ or inhibition control is usually included in 
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the definition of the LC. Thus, exactly what the designer chooa e1 

to call an LC is subjective, based more on functional intent than 

invariant con1traint1. s;,nce the cyclic diagnoais alaorithm to 

be developed next will view latchea as indivisible functional unitl, 

just aa DALG 11 viewed AND, NAND, etc., blocks, a complete 

functional specification (e.g. a state table} will be required for 

every LC. Keeping thi1 specification compact i1 the major moti­

vation for re1tricting the size of the LC' 1, to 1torage ato~s. 

The two configurations shown in Fig. 3. 9 are functionally 

meaningful LC's for the circuit of Fig. 3.8. Since it is poa1ible 

to •elect the primary inputs so that S 1, R 
1 

input combination• of 

0, 1 , 1, 0 and O, 0 can occur on all type l latche1, both injection 

and inhibition control exiats. The second latch type wa1 defined 

to include a complete clutter of three interconnected RS flip-flop• 

since it is at thia level that the true functional characteri1tic1 

appear: when Sz : 0 and Rz = 0 , Kz provides inhibition control 
. z · 

by gating Dz into the latch a1 Kz drop• from 1 to O, and Sz 

and ~ provide injection control. lnaertin& theae latch definition• 

into the circuitry re1ult1 in the dia1ram of Fi1, 3.10. 

In Fi1, 3. 9 the 1ingle data line Dz can be replaced by a 1et of 
line•, with the re1ult that the data gated into the latch i1 the OR 
of the1e 1ignall. 

µ 
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S1 R1 

.2 1 
-°' °' 

D 

.2 

S1 R1 

LATCH 
TYPE 1 

at °' 

• LATCH 
TYPE 2 

Fig. 3. 9 Latch configurations for circuit of Fig. 3. 8. 
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Figure 3. 10 Function Accumulator with Latches lnaerted. 
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It ii relatively ea1y to provide the transfer function, state 

tr a nation table, pdc' s, and ldcf' 1 for these two latches: Table 

3. Z illustrate• the required quantities for latch type 1. The only 

new concept• entering the picture are that of next state variables, 

denoted with • 1uper1cripta, and time sequences of variables, 

denoted by a time occurance indication with tyit1• The last two 

row• in the tranaition table describe the latch operation subject 

to the normally forbidden input 1, l. By itself this input does not 

cau1e trouble. it only develops outputs which are not complements 

of each other , but when followed by a O, 0 input an unknown output 

re1ulta. The pdcf ' • are generated by locating a one or two step 

1equence of inputs which will force the output in the good and failed 

circuit to differ (as before D mean• l in the good circuit, 0 in 

the failed circuit). When testina either of the two outputs for a 

:•tuck-at-0 failure it is mandatory that an output of OD or nO be 

gene rated even though this means uncomplementary outputs will 

xi1t in the failed circuit. 

The pdc ' s shown in Table 3.2c are the type which always 

present complementary values on the latch outputs, something the 

designer generally expected the circuit to have. In most cases these 

will be the ody pdc' s used. They are developed by placing com­

binations of O's, D's and D s on the inputs of the latch and comput-
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0( « • • * s R 0( & s R 0( 0( 

- 'fl X 0 0 b b b b D D 
0 1 X X 0 1 n D X 1r 
1 0 X X 1 0 D 0 0 D --- -- - ---
1 1 X X 0 0 lJ 0 0 lJ 
0 0 b b X X 0 D 0 0 

b • 0 or 1 0 1) 0 0 

TRANSITION TABLE D 0 1 1 

(a) o 0 1 1 
0 D 1 lJ 

S R Ol ii • • oc ZI Time 0 n 1 D 

cc s-a-1 0 1 X X DD t1 or t2 
D 0 D D 

D D - 1) 0 D 0 0 0 D D t ---- - -- - rr - ~-- 0 D D 0 iRs-a-1 1 0 X X t1 or t2 - 0 n D D 0 0 D D D D t 

°' s-a-tr 1-0-x -x D-0- f, 
i_ - D 0 D 1 

1 or t2 
D ff n o n n 0 0 D 0 t 

i s-a-:o or -x-x tr o - t -- 0 D 1) n 
1 or t2 - 0 n n 0 0 0 0 D D D t2 

(c) PDCs 
(b) PDCFs .., 

s R °' a r: -1. 

1 D X X 1> 0 t1 
0 D 1> 0 15 D 

t2 
0 0 n o X X 

(d) EXTENDED PDC 

Table 3. 2 Functional description of LATCH TYPE 1. 
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ing the next state for all poasible preaent dates. The first row 

of Table 3.Zd is an example typical of a set of extended pdc's 

characterized by a posaible 1, l input in either the good or failed 

machine. If a lD input occurs at the time t.l the resulting latch 

outputs become Dt). If the next input, at time t 2 , is OD a stable 

output of DD i• reached. However, if 00 is applied at t 2 the 

output becomes unknown. Inclusion of these extended pdc's has 

the advantage of extending the number and type of tests which can 

be developed. ThP. diaadvantages are that 1) an abnormal condition 

of identical latch outputs \lccurs, something which may cause sub-

1equent difficultie1 in completing the test since the designer pro­

bably didn't expect this, 2) when the next input is applied the latch 

output become•, at best, unknown and 3) the number of pdc ' s be­

comes very large 3 , e.g. even with the normal pdc's in Table 3.lc 

one mu1t now provide for the fact that the previous state 1 atch 

output• are not neceuarily complementl. In the algorithm des­

cribed in aection 3. 6. 4 it will be propo1ed that one first try ob­

tainin1 a test using the normal pdc' s and only when no test can be 

found with these, resort to the extended pdcf' s. 

The cyclic circuit diagnosis algorithm of the next sectio1 re-

There exi1t1 a total of 166 pdc' s for latch type l if ex­

tended pdc' s are used. 
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quires that the circ:uit me et the following restrictions~ 

1. Each feedback loop contains at least one LC which has in­
jection control. 

2. Each feedback loop contains at least one LC which has 
inhibition control. 

3. The state transition function, pdc's pdcf's and all forbidden 
I 

inputs are specified for each LC. 

4. All forbidden circuit inputs, if any, are specified. 

An optional requirement which would make any programmed ver­

s ion of the algorithm more efficient would be the prior specification 

of those lines which have the special status of "control lines", 

e.g. clock lines, latch pulse lines, etc, 

Almost all synchronous computers meet restrictions 1 and 2 

governing the ability to bring data into the loops and the prevention 

of uncontrolled data flow through them, a condition characteristic 

of races. The de1igner constructs his circuit using a relatively 

■mall number of basic LC' s for which he has available well defined 

transition and transfer functions and a list of forbidden LC inputs. 

Using the1e functions, it is 'a simple, though time consuming, 

process to generate the pdcf and pdc tables. Fortunately this 

need only be done once, 1ay when the LC is added to the library of 

b«i°sic logic module• available to the designer. Specification of all 

fo11bidden circuit inputs is required to prevent generation of a test 



' .. ' 

which could never be applied in the actual machine, e . g. involve 

illegal sequencing of certain primary inputs. Thes e restrictions 

will be used to determine inconsistencies during the algor i thm 

execution. 

An algorithm , called RELABEL, for sequentially numbering 

the blocks in the circuit while simultaneously testing the circuit 

for satisfying restrictions 1 and 2, is outlined in Fig. 3 . ll. First 

the primary inputs are assigned integer labels from the set { f Pl. 

These line• are then placed in the set of initially !_abelled logic 

~locks LB
0

; LB
1 

is defined to be set of blocks labelled during the 

1th algorithm interation. Then the set LB is expanded by the 
0 

sub-algorithm LABEL which implements the following labelling con-

dition: 

' 'A logic block (line) can be labelled if, and only if, all i ts pre-

dece11or1 are labelled. ,: 

The 1
th 

!_abel _!:ontier, LF1, is defined to be the set of all unlabelled 

blocks which have at least one labelled pr.edecesaor. If, after 

termination of the LABEL process for I • 0, LF O is empty the cir­

cuit is acyclic. When LF1 is not empty, all controllable latches 

in LF1 are located and placed in a set of Frontier Control Latches 

FC1,. When FCL
1 

is empty the circuit does not meet the restric­

tions previously outlined and the circuit is rejected. Otherwise 
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FC1, is labdled and placed in LB1+l • I is incremented by 1, and 

the LABEL procedure reexecuted. The proces1 proceed■ until 

the whole circuit is labelled or determined not to be controllable. 

With the current definition of control, i.e. controllable dir-

ectly from the primary inputs through LB
0

, when LF1 is not 

empty FCL is automatically empty. This tiomewhat parochial 
l 

view of latch control was imposed to facilitate the implementation 

of the first cyclic diagnosis algorithm. If the definition of injec­

i.lon and inhibition control used in generating FC½ i1 expanded 

from use of LB 0 to all of LB 
O

, LB
1

, - - - , LB
1

, a larger class of 

circuits can be tn ~ated. An example of the topology of such a cir­

cuit is indicated in Fig. 3 .12 where each block contains an indica­

tion of its 1tatu1. Diagno1ing 1uch a circuit greatly increase ■ the 

algorithms computational complexity since data can only be injected 

into the 1econd loop by prior injection into the fir ■ t loop; the com-

binations involved in this process are great. 
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LABEL 

Find LFI 

>-·
0___., I-CYCLIC 

Find 

UNCONTROLLED 

LB1 - blocks labelled during 1th iteration. 

LF 1 - labelled forntier of the labelled subgraph 
the I th iteration. 

FCL I - controlled latches contained in LF 1. 

I-CYCLIC - exists a loop which is controlled through 1-1 
other loops by tte Pis. 

Fig. 3. 11 RELABEL algorithm. 
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Fig. 3.12 Example d extended control In circuit. 
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Because of the present state, next state specification of the 

latch'• functions, pdc, and pdc!
1
it will be necessary to introduce 

the concept of having successive time intervals or time frames, ti, 

during which the test is developed. Corresponding to each such time 

frame ti we as ■ociate a test cube TCi. Whe n a test is developed by 

CD-Algorithm I it will appear a■ the TCi ( Pl ~./ values for the time 

i 
■ equence of TC developed in he algorithm. 

~ 6. 3 Examples Three examples illustrating how DALG-11 can 

be extended to diagno■ e circuits modelled as in the previous sec-

tion will be presented. The basic attack will be to use DALG-11 

on all combinational c i. rcuitry (i.e., those logic blocks not in LC' s) 

in an attempt to drive D's to the PO's or to a controlled latch's 

input (i.e. a block in FCL0 ) where it can be inserted and stored 

for u■ e in the next time interval. 

When the numbering algorithm is applied to the circuit of Fig. 

3 .10 we obtain the renumbered circuit in Fig. 3. 13. The sets which 

this algorithm developed, in ter~s of the new numbers, are: 

LBo ,- 27 
F O "- - ( 2 7 + ?_l 3), 4 3, 44 , 4 5 , 4 6, 5 2 , 5 3 

FCLO ""- 28 29 30 31 32 
LB- 4 - 27 +- l 26 
Fl} ,-°}) 

The forbidden input combinations are those which set TC [1, 3j to 

1 and those which do not put complementary values on TCZ: { J and 
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LIITCH Z 
3Z .. 

14 11 

LATCH 2 
31 

.1 

IZ II 10 41176 54' 3Z1 

LftT~H Z 
30 

,I ,I 

Figure 3. 13 Relabeled Function Accumulator Circuit. 
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TC 5 J in the good circuit. 

For the first example consider the failure line 11 stuck-at-0. The 

decitiion sequence used in obtaining a test is shown in Table 3. 3 Steps 

1 
1 through 6 illustrate the TC assignments made due to pdc intersec-

tion and re&ulting implication as DALG-11 extends the D chain from 

line 11 through 16, 24, 3 3 and 43. At step 5 the initial decision was to 

drive the D through block 35 (the lowest entry in the activity vector) 

but this caused the D-chain to "die" at block 41. Step 7 is used to 

inset the D into the latch. To do this requires a second time interval 

and thu1 a second test cube TC
2

. Since the D has reached a primary 

output, no further D-drive by DALG-ll is required on either TC
1 

or 

TC2 . The only remaining task is to perform consistency on the 

l TC (30.1) vale of 0. Examination of the state table for latch ty!>e 

Z shows this is accompli1hed by setting TC
1 

C 1, 3 j to 1, 0 i.e. by 

resetting the latch. The test for this failure is 

Tc1 Cu4J ~- 11001 01xx1 nxx1 

TC2 f2!4J ,-· 000XX XXXXX XXXX 

Next consider the failure line 28.1 stuck-at-0 (i.e. the -< 1 , out-

put of latch 28 stuck-at-0) which results in the formation of the diag­

no1tic test generation decision sequence in Table 3 .4 The pdcf used 

in the first step is obtained from Table 3. Z The implications result­

ing from this pdcf are shown in the second part of step 1 and the re­

maining TC1 as1ignments generated during the D-drive through blocks 
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33 , 41 and 43 ar e shown in steps 2, 3 and 4 respe ctive ly. At ste p 5, the 

D at the input of latch 30 is gated th r ough into the next time int~ rval, 

thereby fo 1 ming a n~w TC 2 . Sinc e the D h~ s reached a primary output, 

only consiste ncy on blocks 16, 17 and 30 nee d be performe d ; the re s ults 

a re a s shown in ste ps 6-8 r e spe ctivdy. This comp1e tes the test. 

Th n twork fo r m ed by line s 11 th ro L.gh 21 is similar to those 

us e d in Cha pte r 5 for bus s reconfigu ration. It is inte r e sting to note 

that in such a pplica tions , a furthe r restriction might be placed on what is 

to cons titute a legal t e st, i. e . at some times SR will a lways be a 1 and 

b
3 

will be uncontrollable , and at other times SR will always be 0 and b
1 

with then be uncontrollable . Problems now aris e wh ~n rnnsiste nc" is 

performe d on blocks 16(which requires 11 or 14 to be zero) and 17 (which 

requir e s 12 to be 0 or 14 to be 1). ThP only wau to meet both the input re-

strictions a nd the consistency require ment is to us e b
1 
• 0 when SR • 1 and 

b2 • 0 when SR = 0 (b1 is uncontrollable he e) . Clearly the need to 

store mor e tha n one test depe nding on the state of the SR line is costly 

in both te st 2e ne ration tim e ~nd t e st stora ge. 

Fina lly,, . conside r the cas e wh 0 re the latch control K (line 2) is 
0 

stuck- a t-1. The pdcf shown in step 1 of Table 3.5 spans two time inte r -

vals , a nd, in fact, places a D on a PO in TC2 so thdt only consistency 

need be pe rforme d. The remaining steps illustrate the consistency 
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decision• for blocks 16, 17 and 30 together with their implications. In 

this example it was the correct u1e of the pdcf which permitted diag­

nosis of a control line failure, som ething usually quite difficult to do. 

Suppose that in the previou r, example no Set or Reset line (3 and 1 

respectively) existed. Then it would be impossible to finii a test 

using CD-Al~orithm I even though one exists. The reason for th is is 

that the only tests depend upon examining the latch 30 output in two suc­

cessive time intervals during which the output m nst exhibit a change in 

value. What the two values are is not important and can, in fact, 

never be establi1hed. (One test requires that Fi • f3., which can be 
1 

obtained hy aetting ci-l = 1 and f = 'i or b3bzb1K5K3K2K1ci-l =l, then 

a change frcm 1 to O in the control lirie ia attempted. If the Yi output 

switches value the circuit is good ; if not, it has failed.) Thia type of 

test is not within the confine• of those obtainable through the D-calculue. 

3. 6. 4 CD-Algorithm I With this background of definitions and examples 

it is now pouible to state in more detail exactly how DALG-11 is ex­

tended to ~evelop the cyclic circuit diagnosie algorithm, CD-Algorithm I. 

The first task in the algorithm is the numbering process for deve­

loping the circuit model as outlined in Fig. 3 .11. One of tht! phase a of 

this task ii the location of the controllable latches in LF 
O 

which are 

to be uaed in forming FCL0 • Thia requires examining the atate table• 

for the LCELF to find which latch input pattern•, if any, are required 
0 
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to provide inhibition and/ or injection control. Then a consistency opera-

tion i1 performed to see if the circuitry in LB
0 

can yield an output to 

match thi1 latch input pattern. If so, the LC is placed in FCL
0

; if 

not it ii left in LF . It is highly desirable to save the results of these 
0 

computation• for later use in CDALG-1 since they can shorten many of 

the consistency operations. 

The next task is the selection of the pdcf for the given failure. If 

the failure occurs in the combinational circuitry, the pdcf is selected as 

in DALG-11. Otherwise, the pdcf is selected from the list which is 

provided for the failing LC . 

The major tasks performed b'y CD-Algorithm I are essentially those 

of DALG-Il; drive the D-chain from the site of the failure to a primary 

output and verify that ail line assignments are consistent. Again dur-

ing both D-drive and consistency there will be places where decisions 

must be rn.)de a1 to which of several paths the algorithm should follow, 

e.g. when the activity or consistency vectors or pdcf list have more 

than one entry. As in DALG-II the order in which these paths are 

examined is a 1trategy which sets up a decision tree for the algorithm 

to follow. Upon encountering an inconsiatency, CD-Algorithm I backs 

up the deci1ion tree to the next highest mode having an unexplored 

path. 
, 

Perhap1 the major innovation of CD-Algorithm I over DALG-II is 
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that if a D cannot be driven to a PO and it is possible to drive 

it to the input of an LC wherein it can be 1tored, thi1 1tored D together 

with a new set of circuit signal value• can be used in a new attempt to 

drive the ~chain to a PO. Thia brings up the prospect of having D'• 

combining which actually arose from manifestations of the failure at 

different time intervals. The result is an enhancement of the types of 

teat• which can be obtained. Unfortunately, a corre1ponding increa1e 

in the combinations is involved in obtaining the teat result,. 

When it is not poa ■ible to reach a PO with the D-chain or store 

a D in a latch, CU-Algorithm I cannot find a teat for the given failure. 

Since every loop ha■ injection control, we know it i ■ always 

po11ible to enter data into the loops, for testin1 purpo■ e• from the pri­

mary output•. The inhibition control which exiata in each major loop 

usually exi■t• becau■ e the 1ynchronou1 machine baa clock or control 

line• for 1ating signals at the interface ■. Inhibition control over the 

loops is u■ ed to prevent the uncontrolled looping of D'• b4ck onto the 

lite of failure or the point of injection. It further 1erve1 to cut down 

the combinatoric• by localizing the computations. 

A whole new apectrum of 1trategie1 for 1ettin1 up the al1orithm 11 

deciaion tree now ariae. Moat are baaed on the new concept of having 

multiple teat cube a; one for each time interval. 

1) It appears clear that if a teat can be obtained uaing a D-chain 
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existing in only one time interval then this is most desirabl e . The pro-

blem is to store all the decision pa•t-is that lead to injecting a D into an 

LC as they are encountered. This will save massive re computation 

when, at a later point L. the algorithm, it is discovered that it is not 

pos1ible to get a one time interval test, thus requiring D's to be 

"latched", i.e., stored in a latch. 

2) In order to prevent an uncontrolled time segment growth or 

oscillations of the type where Tei • TCj i ; J, it is necessary to impose 

a restriction on the maximum number of time intervals which will be 

generated. 

3) When a new time interval ti'T' 1 and associated test cube 

TCi-r-l are developed during the D-drive, a decision must be made to 

either continue the D-drive on TCi-t-
1 

or perform consistency on TCi. 

I • h D d • • TCi-t l • f bl • h • d h t appears t at - riving 18 pre era e Blnce w at 1s one ere 

help• restrict what constitutes a permissible consistency in TCi. How­

ever, this preference is not absolutely clear and must be subjected to 

experimentation. 

4) When a test is initially sought without using the extended pdc' s 

then, if no test was found,a •cond pass must be made using these new 

pdc' s if one is to expand the domain of failures for which the CD-Algorithm 

can develop a test. 

I 

5) A new restriction on what constitutes a permissible test can 
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arise when it is known that each test must be exactly some specified 

length, e.g. if a four phase clock is uaed and the output i1 examined only 

at the fourth interval every te1t must be of length four; D11 on the o_ut-

puts at earlier times are lo1t. 

· 6) Suppose tests for failures in the latche1 Gre obtained first. 

Then these te1tl must contain the informatioii a1 to how a D i• driven 

from a l°'tch to the primary outputs. Now when te1t1 are being 1ou1ht 

for failures outside the latches and a D from the D-chain ie 1tored into 

a given latch, it i• pos1ible to "look-up" how the D wa~ driven from 

this latch to the PO'• when it• teat wa1 generated. If thil method of 

reaching the PO is conliatent with the failure out1ide the latch now beina 

considered, the same input sequence can be \lied to complete thi1 te1t, 

thereby saving large amount• of computation. 

7) As1ume that when the teats are actually applied to the hard­

ware they are executed in some sequence one ri1ht after another. Then 

if test T teats the set. of latch line• .A, the value• on the1e line• at 
i · • 1 • 

the completion of the test Ti could be used to shorten the next teat 

Ti+ 1, i.e. the1e values might help by not requiring 1pecial let• 

and/or Resets to be given for the latches. rhe value• T. leave• on 
1 

latches outside tho1e actually tested are not available for use 1ince they 

may not be correct. 

The clcus of circuits which the CD-Algorithm I can dia1no1e ii 
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restricted to those which fit the control model; most synchronous cir­

cuits fall in this category. The restrictions are used strictly to cir­

cumvent the problem of having to know timing and delay information in 

a circuit which has races. It should be possible to run an extension of 

DALG-11 on any race-free circuit. However, the consistency problem 

of findina a previous state and input pattern which can result in the cur­

rent 1tate would tend to be a heavy computational burden in asynchronous 

circuits. 

Aleo restricted is the category of failures which can be tested, 

i.e. failure• which introduce new feedback loops are, in general, not 

allowed. Tests which require examination of a sequence of outputs, as 

wa1 mentioned in the last example of the previous section, are not 

allowed either. 
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4. Reliability / Evaluation 

4.0 Summary 

4.0. l Need for Reliability Evaluation and Prediction 

The ARC specifications (see section 5. 1) require that 

the probability of the ARC functioning correctly for 10,000 hours 

be . 997. A reliable comparable simplex commercial computer 

which is expected to fail four times a year will function cor­

rectly for only 6. 59 hours with a probability of . 997 (section 

5. 4. 3). 'Standard' TMR 'd computer& appeared initially not to 

have sufficient survival time, and in section 5. 4. 3 this gue11 is 

verified. (The predicted survival time lies between 180 and 270 

hours.) Forbes, et. al. [FRST, 65] have shown that an exten-

sion of reliability techniques is necessary if ultra-reliable 

computers are to be built. The question is, which mix of self­

repair techniques will achieve a specified availability. A second 

related question is, which self-repair techniques will be best for 

a given application in the ultrareliable computer specification. 

Guidelines are needed for estimation and prediction. It must be 

ascertained that work on the project is proceeding in the right 

direction. Knowledge of what is required for any success (lower 

load estimates) is needed as well as upper load estimates - what 

was not to be done because of limitations. 

Such· questions can best be answered by constructing 

mathematical models and formulae .which will show the relation­

ships of various parameters to increased availability. These 

models can be used to produce quantitative estimates of relia­

bility improvements. Only by performing this evaluation and 

prediction can stringent goals be met by an efficient, not over­

designed, computer organization. To perform this efficiently, 

these models must be used in procedures which may be used 
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interactively by the designers. Devising and properly using 

automated support procedures is the first task to be performed 

in design of such computers. The importance aud necessity of 

these procedures can 1t be overemphasized. Human beings 

themselves cannot perform the amount of accurate, complex, 

detailed work required. The possibility of an error in a support 

program inducing a failure in the computer system is very real, 

and must be guarded against. However, this is much less than 

the probability of human error in design. 

4.0.2 Brief Review of Previous Work 

4. 0. 2 .1 Use of Mathematical Statiatics 

As machines and electrical equipment became 

more complex, the problems of reliability (a.nd overloading) 

were faced. Typically it was the telephone companies which 

first felt the problem seriously enough to call for predictions of 

reliability and overloading. Engineers tackled these problems 

empirically - and in general obscurity. Theoretical bases for 

what is now called queueing theory seem to begin with Khertichine 

[ Khertichine, 32; BP, 65]. The mathematical description of 

renewal theory with applications to replacement problems began 

with Feller [Feller, 41] and is well described by him in 

[ Feller, 57; Feller, 67]. 

In 19 52 Davis [Davis, 52] published a paper presenting 

failure data and the results of several goodness-of-fit tests for 

various computing failure distributions. These data, and the 

engineering explorations, seemed to give a distinct edge tc the 

experimental distribution. In 1951 Epstein and Sobel [ ... _J , 53] 

began work in the field of life-testing, and provided further 

impetus for the exponential distribution. "The fundamental 
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reason for the popularity of the exponential distribution and its 

widespread exploration in reliability work is that it leads to 

addition of failure rates and makes possible the compilation of 

design data in a single form" [BP, 65]. It should be empha­

sized, following Davis [Davis, 52], that this property follows 

naturally from the type of data considered, and the mathematical 

model is natural and a good fit,- as well as mathematically con­

venient. 

With the introduction of complex missile and apace 

systems, interest in reliability and availability has risen. 

Reports have poured out, with an increasingly mathematical/ 

statistical impact, and with less and less concern for ·engineer­

ing or direct mathematical modeling of physical processes. 

4.0.2.2 Computer Reliability Work 

Tube computers were unreliable, and as soon aa 

the "gee-whiz" stage of computers was passed, reliability 

he came a favorite topic. In those days, the idea of diagnoitic 

programs were new, so many papers treated reliability with a 

diagnostic program title. The 1953 IRE Symposium [SYMP, 53] 

contains papers by J. P. Eck~rt, M. U. Nilkez, G. Estain, 

L. R. Walters and N. L. Daggett describing their experiences, 

together with discussions from the floor. The 1953 EJCC 

[ Each 11s, 153] had a similar discussion, and Wheeler and 

.Robertson [WR, 53] discussed the Illiac. The major problem 

was with tubes, and using computers to check and diagnoae them-

selves. (Epstein and Sobel [ES, 53] were also studying tubes.) 

No mathematical techniques were used except MTBF, number of 

failures per week and simple definitions of availability. 
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The 1957 WJCC returned to this theme, [WJCC, 57) 

with A. W. Boldyriff, Willis, Wave, H. T. GlantzandB. K. 

Smith di1cussing actual experience with little mathematics and 

no prediction. However, H. J. Zoaer [·Zoger f 57) discussed 

the evaluation of failure data (using [Feller, 57; preliminary 

edition) but not [Davis, 52] ). Joan Rosenblatt [Rosenblatt, 57) 

pre1ented an interesting pa.per in which she attempted to pre-

dict 1ystem performance in a detailed way from component fail­

ure data, 1howing many of the difficulties. Fein [Fein, 157) 

while talking about real-time computers introduced the term 

1eelf-repa.ir 1, used replacement of modules explicitly and dis­

cu11ed the need for error-detection, error-diagnosis, and error­

repair. 

Basic work in combining these unreliable components 

wa1 publi1hed by von Neumann[vonNeuma~,56) and Moore and 

Shannon [MS, 56] • This initiated the work on unit/ component 

redundancy. Thia work was continued and resulted in the 1962 

Symposium on Redundancy Technique• for Computing Systems 

held by the Office for Naval Research [Tryon, 62; GMR, 62; 

Ka l.tz, 62; Kemp, 62; Mann , 62] • 

However, interest in computer reliability from an engin­

erring point of view began dying out with the introduction of the 

tran1iltor and the performance of the TRADIC [Felker, 54). 

Commercial reliability problems seemed solved. 

Mathematically-oriented work continued [Flehinger, 58 ; 

Lewis, 64] and models derived from mathematical statistics 

we~e used in the analysis of idealized computers. 

Lewis showed that, to the accuracy of the observed data, 

the exponential failure rate is valid. 
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The recent work with the complex systems for defense 

and space has shown that reliability and availability are once 

again problems. New work from an engineering viewpoint has 

begun; for example, three sessions at the First IEEE Computer 

Conference (1967) will be devoted to computer reliability • 

4. O. 3 Summary of Newly Developed Formulae 

In order to determine the relationships between param­

eters of the ARC, mathematical models had to be devised which 

contained specific and valid representations of the parameters. 
It was necessary to be able to choose the amount of detail 

required , and the accurracy available. 

To facilitate the discussion, the following notation has 

been adopted: 

X. failure rate during power-on • 

.,. failure rate during power-off. 

K - J/;b (usually > l). 

m - number of spares initially available. 

q - number of modules required to be operating at 

all times (power-on). 

n - total number present (m+ q). 

f number of failures each unit can withstand before 

malfunctioning . 

T - mission time. 

c - failure coverage, or probability, that given a 

failure occurs, it is detected by the checking 

and/or diagnostic tests a.nd that successful 

recovery occurs. 

D - duty cycle or fraction of time the machine is 

required to be on. 
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T he parameters which effect the form of the reliability 

equations a,r e m, q, c , and f. In order to display the status of 

thes e paramete rs each reliability equation will be written as 

f R q. w ·nen any of the parameters q, c, or f are elided, 
C m 

convention will be used to establish the value s q = l, c = l, and 

f = o. 
A new recursiYe formulation of an integral equation to 

express reliability with space modules with power turned off 

was devised. Solutions were found to express R q for any 
m 

~ • .,., m, q, and D in closed form. Then R q was proved to 
C m 

be expressable as a sum, with coefficients powers of c multi-

plied by binomial coeffid.ents of cRl for j varying between 0 

and m. Approximations, valid for the region of interest, we re 

found for fR q. 
m 

Dividing a multiplexed computer's unit into segments increases 

it• reliability, New formulae were developed for such divisions. It 

was also shown that while division into equal parts is best, 

small deviations from equality produced smaller reductions in 

reliability increase. There must be explicit use of parameters 

and an interaction between the designer, his design and the 

mathematical model. A program, REL, using these models 

f R q, with explicit entrance of parameters, has been written 
C m 
in APL (A Programming Language derived from the Iverson 

Notation) and run on on-line consoles by the system designers. 

Methods of using REL are described in this chapter (and results 

in chapter 5). 

In order to give general guidelines for desirable self­

repair techniques, analyses were run of several well-known 

techniques. 
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1) It was proved that for X. T < . 1, and 

equal 1, using two spares gave greater reliability than 
TMR as long as the extra switching required for two 
spares was less than 2 48. 3% of the total original equip­
ment . 

2) It was proved that it is always worthwhile for 
reliability (as well as power consumption) to turn unu&ed 
spares off. If K = X./ ~ then for rn = 2 half the ultimate 
improvement is reliability is reached by K = 1. 7 and 3/ 4 
by K = 3. Experimental measurements seem to show K 
varying between 5 and 10. In the case of m •pares the 
ultimate reliabilit·v 

3) It is shown that if the coverage decrease, from 1 
to • 9, then the length of survival time is decreased from 
T to values varying from • 35T to • 75T. The fewer the 
spares the greater the effect. 

4) If X circuitry has reliabilfty such that its probability of not 

malfunctioning for 10,000 hours is . 997, then by using two 1pare 

modules· , it is shown that . 85X cl rcuitry will satisfy the same re­

quirements if c=l. As c •• -, . 9, the amount of circuitry available drop• 

to .42X. 

5) The reliability c R 2 and the reliability of TMR' d computers 

were compared. If c > .9, then for .·) T? .02, cR 
2 

is greater and 

for jT • • .• 02, the maximum difference of reliability values is 8 x 10"' 5 • 
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If c > .9, R
2 

is greater for.,.\ T > .003, and for 
C -

-1 T < . 003 the maximum differ enc e of reliability values 

-b 
is 5 X 10 . 

Methods of deriving models for Markov processes usi ng 

state transfer methods were derived. These methods are 

simple to apply to reliability situations. They were used to aid 

in doing the models for fR q with f > 1. 
m 
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4. J. J.ntroduction 

The major problem to be considered is evaluating the 

ability to sustain information processing capability, i.e. 

providing the ability to maintain a certain minimum system 

information handling function which is capable of doing the 

critical task (defined by the user) in the presence of malfunc­

tions. A malfunction may cause data or procedures to be 

destroyed as well as incapacitating, temporarily or perma­

nently, the ability of part of the system to process information. 

This section will consider preparing tl-.e hardware design tech­

niques necessary to overcome loss of function. Information 

contamination will be considered in a later phase. 

For correct continuation in the presence of malfunction■, 

the foll owing system functions are required: 

l) Detection of malfunctions 

2) Neutralization of the effects of the propagation 

of erroneous 1ignals 

3) Localization of the malfunctioning element 

4) Determination of the relative time of occurrence of 

the malfunction 

5) Bypass, by repair or masking, the malfunctioning 

element. 

These functions may be fulfilled by the introduction of pro­

tective redundancy* into the sy1tem. A computer sy1tem 

contains protective redundancy if the effects of component mal­

function■ can be tolerated because of the use of additional 

components or algorithms, or the use of more time for 

information processing. These additional components, 

* Thia term was . introduced by A. Avizienia, [Avizienis, 66] . 
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algorithms, and time are not required by the system in order 

to execute the specified tasks a s long as no failures or transient 

malfunctions occur. The techniques of protective redundancy 

may be divided into two major categories: masking (sometimes 

called massive) redundancy and stand-by (sometimes called 

selective) redundancy. 

In the masking redundancy appr.:>ach the system tunctlons 

necessary for correct cor.tinuatior.. in the presence of mal­

functions are performed by the .i.nstantaneous masking of the 

effect of malfunctions by permanently connected and concur­

rently operating replicas of the unit one of whose elements is 

malfunctioning. The level at which replication occurs merges 

from individual circuit components to entire systems. The 

principal classical techniques of masking redundancy are: 

1) Replication of circuit components; eg "quadded" 

logical elements [ Tryon, 62]. 

2) Replication of logic signals ; eg use of multiple 

channels and voting elements[MS, 56] or use of error 

correcting codes [Peterson, 61]. 

3) Replication of entire sys tems with comparison and 

voting or diagnosis at system level; eg the classical 

comparison of unit output (originally UNIVAC I). 

In the stand-by redundancy approach, all of the system 

functions for continuation must be individually performed. The 

principal classical techniques of stand-by redwi.dancy are: 

l) Replacement of the faulty element or unit by a 

stand-by spare (self-repair)[Fein, S?, Graveling, 56]. 
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2) Reorganization of the system into a different 

computer configuration; eg multiprocessors. 

The use of these two methods presuppose s that in addition 

to the circuitry and procedures to carry out the continuation 

functions there are switches and status registers to implement 

the replacement or reconfiguration and keep track of the 

present configuration. 

• ln the general comparison of stand-by and masking re­

dundancy which follows, the basic theme h hardware ver1us 

procedures or hardware versus time. 

The advantage .s of the masking redundancy approach are 

the following: 

1) The presence of concurrently operating replicas 

means that the system functions for continuation 

are performed by hardware and the system rune with­

out interruption until catastrophic breakdown. Carryin1 

out the continuation functions in the stand-by ca1e take ■ 

time, complex procedures and careful design. 

2) During normal operation there h no need for dla1noah. 

After breakdown, however, reconstruction and repair 

are very difficult unle II still more hardware has been 

added. Effective diagnosis ii a problem in any system. 

3) All parts of the system are eqm, lly protected, there la 

no "hard core" which must wc,.rk to perform the switch­

ing and reorganization function•~ 

4) The conversion of a non-redundant de1:i1ign to a masking 

redundant one ls relatively straightforward. The 

design of stand-by redundancy demands novel design 

techniques. 
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The advantages of the stand-by redundancy approach are 

the following: 

1) Power requirements are less because only one c opy 

of each replaceable unit requires power at a time. 

2) The replacement switch provides fault isolation be­

tween subsystems, Such isolation is essential for 

recovery after catastrophic or multiple failures. 

3) Masking redundancy assumes independent single 

failures, which are not probable if the failures are ex­

ternally induced. Moreover, unless additional hard­

ware is added transient failures (4 to 10 times as fre­

quent as solid failures) will disrupt masking redun­

dancy recovery far more than stand-by redundancy 

recovery. 

4) Theoretically, all spares can be utilized in stand-by 

redundancy, only a majority in masking redundancy. 

5) The designs of individual units, and their number, may 

be more easily altered in stand-by than massive 

redundancy. 

6) Masking redundancy makes premission checkout and 

"burn-in" more difficult. The s ystem must be exer­

cised until all components have passed their initial 

high fc.ilure rate. 

7) The replication in masking redundancy tends to in­

crease fan-out and fan-in requirements which decrease 

circuit tolerance and increase power requirements. 

8) The failure rate for components in the stand-by units 

is less than the failure rate in the units with power on. 
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4.2 Evaluation Techniques ----------
As the requirements for reliability become more strin­

gent, deciding upon the best design parameters becomes more 

difficult. In order to do this, mathematical models must be 

devised for each of the types of redundancy. The relationship 

of each unit to the others needs to be known and predictable. 

There must be explicit use of parameters and an interaction 

between the designer, his design and the mathematical model. 

This has been done by developing a series of mathematical 

formulations which can be applied to different designs. A pro­

gram, REL, using these models, with explicit entrance of 

parameters, has been written in APL (A Programming Language 

derived from the Iverson Notation) and run on on-line consoles 

by the system designers. In this section (and associated append­

ices), the mathematical models will be discussed and derived, 

REL will be described and results of the parameter studie i, · 

shown. 

As an aaide. this is one of the basic automated _support 

procedures needed for !Jelf-repairing computer design. Devis­

ing and properly using such support procedures is the first task 

to be performed in design of such computers. The importance 

and necessity of these procedures can't be overemphasized. 

Human beings themselves cannot perform the amount of accurate, 

complex, detailed work required. The possibility of an error in 

a aupport program inducing a failure in the computer system is 

·very real, and must be guarded against. However, this is much 

less than the probability of human error in design - see section 5. 4 • f 
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4. 3 Mathematical Models 

4. 3.1 Power On 

This set of models should give a general set of guide-

lines. It is assumed that all systems are put through a rigorous 

system test long enough so that all components pass the period 

of rapid initial failure and most cold soldered points and poor 

connections are found (shock and vibration tests are a necessity). 

Under these assumptions, the exponential failure distribution 

(Poisson) for components and units can be assumed. In addi­

tion,for masking redundancy the voters will be assumed to be 

distributed so that the amount of equipment between voters is 

approximately equal (following the paper by Gurzi [Gurzi, 65]. 

Because failures in the voting circuits only produce errors in 

the driven channel, voter failures are induded in with those in 

driven channel. The extra checking circuitry and switching 

within the stand-by units which perform equivalent functions 

cannot be dis regarded when comparisons are made. 

With these assumptions, the reliability of a single unit 

which malfunctions after a single failure is given by 

where 1 / >,. is the mean time between failure. The reliability of a., 

triple modular redundancy system fron Neuma~, 56 J is, 

4. 1) 
-2>,.T ->,.T 

RTMR = e (3-Ze ) 

An improvement proposed recently consists of adding detection 

circuits on the multiplexed output lines, and when a unit is in the 

106 



• 

minority dis carding the failing unit and one of the other units. 

This is called the TMR/Simplex system. The reliability RTS of 

this system may be calculated using the methods due to B. J. 

Flehinger (Flehinger, 58] . R TS is equal to the reliability with 

no unit failures (three good) plus the integral from O to T of the 

probability that the surviving unit will last from time t to time 

T. 

4. 2) RTS 

In .:~eneral, if 2N + 1 units are used in a voting circuit, 

N 
RV(2N+1) = I: (2~+l)R2N+l-i (1-R)i 

. 0 1 1= 

as proved in Appendix 2. 1. 2. 

The behavior of the reliability estimates for X. ':' small 

h h • • l'd . -X.T b d enoug so t at 1t u va 1 to approximate e y a truncate 

power series is indicative of more precise results. In this case, 

4. 3) 

4.4) 

RTMR 
2 

: 1 - 3 ( X. T) 

RTS : 1 -

RV(2N+ 1) : 

These approximations approach the actual value3 from below. 
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In addition, if X. T , 0, 

2 

RTS - RTMR = 3/2 e ->..T (1- e ->..T) > O 

RTS - R 

RTMR - R = (l-e->..T)(2e ->..T_l)> 0 only when 

->..T 
e > 1/ 2, or >,.T < .68. 

In the case of M stand-by spares (M + l units) assuming 

that all units have the same failure rates, the reliability is given 

by 

The improvement in reliability by adding one stand-by 

unit at the (M-1) 
st 

stage is shown by 

M 
RS(M) = RS(M-1) + e->..T(l-e->..T) 

We have investigated a method for healing and sparing 

which uses four replicas of logic, four voters and triplication 

of lines. The mode of operation is TMR using three circuit 

units. When a circuit unit fails, the spare one is cyclically 

switched in. In this case the approximation becomes 
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where RS= e-X.T is the reliability of a single unit. 

If there are n units of logic, then the same techniques 

can be used, and 

4. 5) 

4.6) n-1 : 1 - n(x_T) 

4. 3.2 Power On or Off 

These models for reliability using spares employ equa­

tions which assume that the spares deteriorate as rapidly as the 

units being used. This is too pessimistic, so a more realistic 

equation which employs two failure rates; X., the failure rate 

during power-on use and µ , the failure rate during ,power-off 

idleness will be developed. To facilitate the discussion, the 

following notation has been adopted: 

X. - failure rate during power-on. 

µ - failure rate during power-off. 

K - X./µ (usually > 1). 

m - number of spares initially available. 

q - number of modules required to be operating at 

all times (power-on). 

n - total number present (m + q). 
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f number of failures each unit can withstand before 

malfunctioning. 

T mission time. 

c failure coverage, or probability, that given a 

failure occurs, it is detected by the checking 

and/or diagnostic tests and that successful 

recovery occurs. 

D duty cycle or fraction of time the machine is 

required to be on. 

The parameters which effect the form of the reliability 

equations are m, q, c, and f. In orde:t' to display the status 

of these parameters each reliaoility equation will be written as 

f R q. When any of the parameters q, c, or f are elided , 
C m 

convention will be used to establish the values q = 1, c = 1, 

and f = O. 

A recursive formulation can be given to derive formulae 

for 

R q and 
m 

The probability of successful operation with n spares during 

the time interval O < t < T is equal to the probability of 
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successful operation with (n-1) sparea during the time interval 

plus the probability of a failure in the (n-1) spa re system at 

time t < T multiplied by the probability that the n
th 

spare lasts 

from t to T. Let R (t) be the probability of successful 

"' 
operation with m spares, and assume an exponential failure 

rate. Then the probability of successful operation of a single 

unit is e->..t and the probability of successful shelf life is e -~t. 

The formulation may be written mathematically for fixed X., ~ 

as: 

4. 7) 

ST 
->..T 

= R (T) -e 
m-1 O 

Its general solution is 

R q (T) = e-qX.T {l + 
m 

i - 1 
1f (j+qK)]} 
j=O 

as proved in Appendix Z. Z, equation Z. Z. If the effect of error 

coverage, c, is inserted into this formulation, the equation■ 

become 

and 

-'\T 
= e " 

The most concise form for stating the general solution ii in 

7 
terms of R. (t): 

1 
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This formula is proved in Appendix 2.3, equation 2. 14. 

The improvem ent in R q (T) by adding one stand-by 
m 

unit at the (M-l) st stage is given by 

For purposes of comparative analysis it is useful to have 

approximations which are valid for small ) i T. One i s 

4.9) R q (T) 
m 

(q~T)m+l m • 

: 1 - (m+ 1) ! if (1 + q
1

K) 
i = 1 

This formula is proved in Appendix 2. 2. 3, equation 2. 1. 1 

and the remainder term in che series expansion is shown to be 

positiv . . 

If the coverage is considered, then 4 . 8) s ows that terms 

in the power series ;ire contributed by R~, for O < j < m. Equa-
l - -

tion 4.9) shows that these contributions begin with the (j+ l)
st 

terr.1. In Appendix 2. 2 methods are given for deriving approxi­

mation equations, and the actual approximations are derived for 

m = 1, 2, and 3. A typical expression may be written form= 2 

as 

4. 10) 

where all the b
2

. are positive quantitie s for O < c < 1. In fact, 
.1 -

2 
b

21 
:-: (1-c) , 2b

22 
= (1-c) (l-c(3+ 2,/q)), 

• 2 2 
&b

23 
= (1-c) - Zc(l-c) (l+ "/q) (l+ y'~ + [c · (l+ 6-/q) (l+ 2'7'q)] 

24b
24 

= 6b
23 

+ Zc(l+ 6-/q) (1/q) [c(1 + Zi/q) - (1-c)/q] 
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J 

As c approaches 1, the b
2

j approach the values in equation 

4. 9). A numerical study of these approximations and coeffic­

ients will be discussed later. 

Since the failure rate, X. and the mission length, T, 

only occur as a product , halving one means the other must be 

doubled to maintain the same reliability and this is true regard­

less of the type of multiplexing employed. 

As a measure of availability improvement we have taken 

the ratio of mission lengths attainable at constant reliability. 

For simplex systems this factor is also the ratio of failure rates. 

4. 3. 3 Segmentation 

It is well known [Gurzi, 65] that dividing a TMR computer 

into appro.icimately ·equal parts and voting after each part gives 

increased reliability. This is also true fot rtuplex, triplex, and 

higher multiplexed computer systems. Since it is not practic­

able to divide a real computer into parts that are exactly equal 

(or rather, that have the same failure rates) we investigated the 

effects of asymmetric division. If a computer system is divided 

into two parts, of size a and b then the failure rates of the 
a b 

two parts are a+ b \ and a+b \. For simplex systems 

a b 
--\T -\T 

a+ b X ea+ b R = e = e 

and no ilnprovement results. For duplex systems on the other 

hand, 

and the improvement ratio is 

113 
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(a+ b)
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This improvement attains a maximum value of tt~ when 

a = b; i.e., when the two parts a re equal. If the parts a re 

unequal, the improvement factor varies slightly for a duplex 

■ystem, and more strongly for a higher multiplexed system. 

The variation is not sufficient to impose a severe restriction on 

the computer design. 

For a system with m spa res, 

and the improvement ratio i1 

I _ atb 
- (a'\ b.,1/ .. 1 

m 

• h • 1 f Zm+ l h h 1 wit maximum va ue o w en t e two parts are equa . 

lf a unit is divided into S segments, then ~ is 

replaced by ~/S in the basic reliability calculation (using equa­

tions 4. 7 or 4.8) and this reliability is then raised to the sth 

power. 

In general, for m spares and S segments, using equation 4. 9), 
5 

4. 11) R q {T) : 
m 

(qx_T)ri:t+ 1 Tfm iG 
1 - ----------- (1 + - ) 

Smtl(m+l)I i=l q 
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The improvement factor due to this dividing becomes 

4. 12) 

If the coverage is c . and equation 4. 10) is used, 

4 . 13) 

i . 
( .,,.. ( 1+LG)) l 

j = 1 q 
K If K is the first term s..:> that the coefficient of (q X. T) ii not 

negligible (0 ~ K ~ m), then, using 4.12), the improvement factor 

is 
K 

4. 14) I q : SK+ l 
cm 

4. 3. 4 Duty Cycle 

When the computer is to be run under a duty cycle which 

has a periodicity much much less than the mi11ion time T, it ii 

possible, as a very good approximation, to replace X. in all of 

the previous equations by 

4.4 • Computational Evaluation 

In order to guide the design of ail ultra-reliable computer 

system, the formulae developed in the last section were u1ed in 

special cases. 

4.4.1 TMR vs. Two Spares 

TMR was until recently considered a •standard I for relia­

ble computers. A ffrst calculation was made to determine under 
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what conditions the reliability using two spares is superior to 

the TMR reliability or the reliability vf a single unit. It was 

assumed that the failure rate of systems using spares would be 

r>.,, r ~ l since extra checking and switching circuitry would be 

incorporated. The voting circuitry was disregarded. If R is 
s 

the reliability of the single unit and RT is the reliability of the 

TMR unit, then F = R~ - max (R.T,RS) is a function of >.,T, r, 
8F aF 

and >.,/µ. It can be shown that ar<O, a(>../µ) >O, so if 

F(r, >../µ, >.,t) is greater than zero for O ~ >.. t ~ >.. T, then Fis 

greater than zero for all smaller values of r and larger ratios 

of >../µ. Because the failure rate of passive components (con­

nections, resistors), is unaffected by shelf life whereas the 

failure rate of active components is affected, µ was computed 

by assuming · that xo/o of the unit circuitry ha d a failure rate 

>..Ip, p > 1 and the remainder had a failure rate of >.,. The 

results are shown on Oaph 4.1. Each curve is labeled with values 

for (r,p). Clearly the length of the interval O ~ >.,t ~ >.. T 

increases most rapidly with a decrease in r. If the amount of 

checking circuitry can be kept small the potential rewards a.re 

great. As a maximum, if r ~ 3.483 (i.e., the added circuitry 

is Z. 483 times as much as the original for each unit, 10. 449 

times as much total equipment), then Fis greater than zero for 

0 ~ >.. t ~. 1. This shows the superiority of the spa ring technic. .. ue 

assuming perfect error detection and recovery. 

4. 4. 2 Effect of Variation of >../ µ on R! 

Since sparing appears to be the most desirable app1·oach 

for ultra reliability, the effect of variations in >.,/µ • on values of 

R 
1 

should be evaluated. 
m 

As proved in Appendix 2. 2. 2, equation 2. 11 

ll6 
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1 (\t)n+l 
Rn (\,µ,t) = 1 - (m+ 1) (1 + 1/\/µ) (l+ Z/\/µ) ••• 

(1+ n/\/µ) +. ·• 

thus 

1 
1 - Rn (\, µ, t) l 
------=---1 {n+l) 
1 - R (\,\,t) n 

(1+1/\/µ) (l+Z/\/µ) ..• (l+n/\/µ) 

+ higher order terms 

1 
(n+l) 

as \/µ increa1e1. 

The extra reliability due to the lower failure rate for 

unused spare• can be seen by plotting 

l 
1 - R2 ( \, ~• t) 

1 
1 - R

2 
( \, \, t) 

This value ii labeled 'Ratio' in Qraph 4. 2. 

From the formula the extra reliability i1 a function of 

) Iµ. For design purpose• it is u1eful to determine the percent­

a ge of the total improvement which has been reached by a given 

value of \/µ. This graph is labeled ,,., in 0-aph 4. l 

Another set of calculation• were made to determine the 

effect of sparing and the ratio \/fl. on the length of mi11ion1 

with a prescribed probability of 1uccess. The resultl are shown 

in 'Dlble 4.1. The results show that the higher the delired proba­

bility of success, the more benefit is obtained from additional 

spares. Leas benefit is obtained from having the spare element• 

have a slower rat~ of failure but once again the mo1t benefit i1 

derived when trying to design to a higher specified probability of 
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success. As these figures show, the percentage of improve­

ment in mission length increases more slowly than reliability 

as >../ µ increases. 

4.4. 3 Effects of Coverage, c, on 

The equation 

m m i m-i q 
:E ( i ) c (1-c) R .. 

. 0 1 1= 

shows that as the coverage c decreases, the reliability 

decreases. In fact, as c - 0, R q - Rq
0 

. The effect of c 
C m 

can be seen by comparing these :lpproximate expressions _for 

the two spare case 

3 
R., = 1 - (>..T) (1 +.l.) (l+~) 
~ 31 K K 

Z (>..T)
2 

1 cRz=l-(1-c) >..T-Zc(l-c) ZI (l+K) 

Z ( >..T) 
3 

1 Z 
-c 3! O+K>O+K> 

The equation for cRZ contains terms involving >..T and (>..T)
2

, 

something we tried to avoid by going to a two-spare system• 

Figures 4. 3 and 4. 4 are plots of 

1 - R 
C Z 

VS. C 

1 - R z 
which show just how much and how fast the probability of failure 

increases as the failure coverage c decreases from 1. As to be 

expected, these curves show that when the modules are small 

(small >..T) or when the off-time failure rate is small (large K) 

lZl 
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Figure 4. 3 Hardware Increa1e by Triplexing 
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f 

the relative change in r e liability is greatest. 

The general expansion formulae 2. 16-2. 18 in Appendix 

2.2.3 supply further results. 

b . 
mJ 

It is easily seen that if c > 0. 9, then the coefficients 

of all powers of (q>..T)j for 1 < j < m+l have the same 

sign, and the coefficients of 
m+l - m+2 

(q>..T) and (q>..T) have 

opposite signs. This says that, since the rest of the terms in 

the series have alternating signs, using the first m+ 1 te rmHn 

the series for R q gives a reasonable approximation, with 
C m 

errors leas than the first discarded term (with q>..T raised to 

the (m+ztd power). The effect of c on mission times is a 

reasonable way of obtaining its effect in prca.ctica.l cases. In 

Figure 4. 5 the ratio of mission times is plotted for c varying 

between • 9 and 1. 0. The triplets which identify the graphs a re 

(m,q,G). It is clt,ar that the number of spares is most import­

ant, and that the effect of poor coverage ill most impressive for 

the case of one spare. The reasons for this can be seen from 

Flgure 4.6 in which the coefficients b defined in equations 
m• 

16-18 are plotted. As the coverage inc~eases, the coefficients 

of tennaof powers of q>..T less than m+l approach zero, but 

the (m+1)
8

t term increases. If all terms are Rm,:-.11-as in the 

case of 3 spares -the variance of CR 5 wili. be less with c. 

4. 4. 4 Amount of Hardware Available for use if Stand-By 

Redundancy is used to Achieve Reliability 

The first comparison considers the following question. 

Assume a specific reliability (.997) is desired. This can be met 

by using a certain amount of hardware in a simplex fashion; i.e., 

>.. T : . 003). However, this amount of circuitry will certainly n.>t 

be enough to construct a good computer system. How much more 

124 
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circuitry will be available if the modules are duplexed or 

triplexed? Let each module have DEL more equipment than 

the basic system, so that ( )..T)module = (. 003) x DEL. First 

the duplex case. Let c and k = )./)II. va.ry, and determine DEL 

so that R 
1 = . 997. The results are shown in Table 4. Z. The 

C 1 
amount of extra hardwar ~ ava ilable depends strongly on c and 

k (as our previous gr~phs would indicate). 

Now consider the triplex caae, as ahown in Table 4. 3. 

In this case, the dependence on c and k is not as atrong, as 

expected. 

4. 4. 5 Comparison of TMR ReliabiJ.ity With c R~ 

The comparisons between TMR and sparing which were 

discussed in the previous section are extended to include the 

failure coverage effect. The reliability RTS for TMR/simplex 

is 

Let 

and note that 

g(0) = 0 

In gene ral, the function g has the form shown in Fie, 4. 7 

g 

0 

Figure\7 - Comparison of TMR and Sparing 
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As done pr viously, u se n. (r > 1) instead of X. in cR~ in 

ord r to account for the extra checking and diagnostic circuitry 

which a !iparing nyst m would need. The results of an APL 

analysi~ of the function g can be summarized by the following 

table where (X.T) 
1 

and (X.T)
2 

are the values of x.T for which 

g = O; i.e., cRl = RTS as shown on the graph. 

-~·-·-i=·----·_ ---·-·c:--·---·-g------ --:.~(D)J _____ (AT);, ____ ___ • 

-5 
< 2 >.9 > -SX 10 <.0?. >.5 

< 2 >.95 > - 5 X 1 o-6 <.003 >.5 

2, 5 .85 ncg?.tive 

2 • 8 -.0022 . 155 >. 5 

1. 4 . 8 >-. 0009 • 0789 >. 5 

--- -- ·--------------~ 

This indicates that high values of failure coverage c are 

essential (in other words the detection and recovery must be 

good) if sparing is to be more reliable than TMR. 
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4. 5 Mathf!matical Models for Modules Which Can Tolerate Multiple Failures 

4. 5. l Exact Formulae The solution of the ·integral equations which 

led to equations 4. 8) and 4. 9) depended upon the fact that the deri va­

ti ve of the probability of failure has a simple expression. As shown 

in ~pendix 2. 2, 2.; this formula could be proved by mathematical 

induction and the resulting integrals could be integrated by inspec­

tion. 

When each unit under consideration has some error-correcting 
f or healing properties, f becomes non-zero. The value for R

0 
is ob-

tained from the first f + l terms of the PoiBSon distribution. 

Taking into account the fact that the f failures could occur in both the 

power-off and power-on states, there exist1 ·no such simple formula­

tion for the probabWty density of failure _d - (l - f R i (t) ) 
cit C m-1 

where f > 1. The number of states-configuration in which the (q-1) 

units are when the last spare is needed depends upon q and f, and is 

combinational. The direct attack on this problem is to use a next 

state transformation analysis. This does not seem reasonable as will 

be shown. 

The integral equation recursive formulation for c • 1, i = 1, is: 

where 
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11 the probability that exactly i failures have occurred in the spare in its 

power-off state before the switch-over and 

-\ (T-t) f-i 
e j~O 

p. cr_-t> l i 
j ! 

i1 the probability that that spare will survive the mission after turning its 

power-on. 

To date, no general, closed form expression has been found for 

f I R . Even for the relatively simple case off= 1 the task of computing 

~m l "I and R bu proven to be formidabk, as can be seen from the results 

below: 
2 

lR (T) • e -\ T (1 + 'X. T) 
0 

(µT) 2 
-µT 1 

+ 2 (l - K) [l - e (1 + µT + - 2-!-- ) l J 

+ l 2K (1-K) 
2 

+ (1 + AT) (l+ K' ~ l [l - e -µT (1 + µT) ] 

+2 (1-K) (l+ K1 (1 - e -µT (1 + µT + (µT)
2 

21 , l 

1 2 
- 4 ( 2K (1 - K) + (1 + ~T) (1 + 2K - K2) ] [ 1 -e -2µT (l + 2µT) ] 

" 

1 
- 4 

2 

l (1 - K) (1 + 2K -K1 + (1 + ) .T) (1 + K) l [ (1 - e -
2
µT (1 + 2µT + .l;:<

2
c.:"1\:.o1-! -~,i 

3 2. '>uT (2µT) 
2 

- -:-(1
8 

- K ) (l - e -...,. (1 + 2µT + - 1 2. 
+ 

3 
(2µT) >JJ • 

3! 
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2 
2R (T) = e -). T ( 1 + ). T + ll.!}_ ) 

1 2 

+ K3 e - \ T [ [ I + \ T + (~ 1) 
2 

] [ I - (I + µT + ~ 2, e - µT ] 

~ ~ -µT 
- 3 (K - 1) (1 + T) [l+ µT + 

2 
+ 

6 
) e ) 

+ 6 (K -1)
2 

[l - (1 + µT + ~ + ~ + ~ e -µT)J 
2 6 24 

4. 5. 2 Approximation Methods Thea special cases show the difficulties 

in deriving a general formula involve f, q, µ and \. To derive an approxi­

mation, 

expanding fRq ()., µ) aboutµ= O gives 
m 

Using 

fR q ()., µ) can be linearly approximated by 
m 

Since fRq (\, µ) is an increasing function ofµ, fRq (\. 0) )\µ (\, \), 
m m I m 

and µ /). i.e. betweeen O and 1, 
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In Appendix 2. 1. 1, direct c a lcula tion has shown the erro r to be small. 

Consider fR q (\ , \). Since \ =µ , this reliability can be expressed in 
m 

terms of combinations of the basic module reliability fR (X., X.). As proved 

in 2. 1. 2 

4. 16) f R q m (\ , \) = (f R (>,. , \) ) q f1 
j = 0 

with an alternati~ expression 

f q . 
It is also shown in Appendix 1. 2 that R (\, \) is approximated from 

m 
below by 

4.17) fRqm(\, \) ~ 1- (m + ql 
q - 1 [ 

f+ I J m tl (\ TI 
(f + 

Increasing f is obviously an efficient way to obtain more reliability. 

Expressions for fRq (\, 0) will be derived using a next state transfor­
m 

mation analysis and by solving a set of linear differential equations. The 

• problems encountered are enoug:h to discourage an immediate attack on the 

general problem involving fRq (>.., µ) 
m 

The general method followed is to set up a next state transformation in 

the form 

4.18) ES • S (t + b) • S (t) + h T S (t) + o (h ~ BS (t) 

where S is a n dimensional state vector, T is a n x n matrix, E is a next 

state operator and his a small increment of time. The probability that more 
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than one malfunction occurs is his O(h)[Feller, 67 ] . 

This leads to the differential equation 

dS 
dt 

= TS 

with boundary conditions S = S(o) when t • o. As shown in Appendix 2. 2. 4 

this has a solution of the following form, writing p-= (f + 1) m + f q 

f _ A.T (f+l) (rnH) 
4. 20) R q (>.. , 0) = e 9 [ l. 

m 
i = 0 

Where 1 > aj > aj + 1 > 0 for (f + 1) (m + 1) -~ j ~ p. 

If a is written as 1 - p ( see Appendix 2. 2. 4) then for (f + l)(m + 1) f (q - 1) + 1 , . 

small 

4. 21) 
f q ~ 
R m ().' 0) /\- 1 - Pf(q - 1) + 1 

(q ). T) (f + 1) (m + 1) 

[ (f + 1) (m + 1) ] ! 

The general procedure is carefully derived in Appendix 2. 2. 4. The 

following example will illustrate the procedures. Consider the assemblage 

with q = 2 and m • 1 whose modules tolerate one error (f • 1). The procedure 

is to consider the set of 2 active units and 1 reserve unit. Tht> state of the 

set will change as malfunctions occur. If the assemblage has had exactly j 

errors, and the assemblage will operate correctly, call this state S j" 

] 

Represent the failed state by F. Each state may be represented by the "error 1.lat" 
th 

(a, b, c,) where the i entry gives the number of failures existing in module-

i, and - indicates the module is a spare. 

laitially there are no malfunctions. The probability that a module 
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failure occurs in the time interval h is X. h. The possible changes, occurring 

in the internal h, are shown by the following Fig. 4. 8 where each level 

represents the occurrence of an error; the particular configuration of errors 

is shown as (a, b, c,). Any active unit is equally likely to malfunction. 

For each level, the corresponding error lists, state, and number of 

distinct paths leading to the state will be listed. 
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~------------------

Total Number 

Errors State Error List of Paths 

0 so (0, 0, -) 1 

1 Sl ( 1, 0, - ) 2 

2 sz (2, o, 0) 2 

(1,1,-) 2 

4 4 

3 s3 (2,1,0) 8 

4 s4 (2,1,1) 8 

F (2, 2, 0) 8 

5 F (2,2,1) 8 

The error list configurations and number of paths are 

important because the next state transformation depends upon 

the probability of going from one state to the next. 

are: 

The next state transformations with associated probabilities 

5. 
1 

1 - 2~h 

2~h 

1 - 2~h 

~h 

~h 

1 - 2~h 

2~h 

1 

5 . 
1 

5i+1 O<..i<-2 

53 

5 
4 

F 

~ 54 

~ 
F 

F 

(~h is the probability a module failure occurs in interval h). 
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Equation 4. 18 now becomes: 

F F 0 2). X. 0 0 F 

s4 s4 0 -Z>.. ). 0 0 0 s. 

s3 • s3 th 0 0 -Z>.. Z>.. 0 0 s3 

s2 sz 0 0 0 -Z>.. Z>.. 0 sz 

Sl Sl 0 0 0 0 -Z>.. Z>.. 51 

so so 0 0 0 0 -2). so 

and equation 4. 19 i1 obvious. To solve 4. 19 a non1iqular 

matrix P must be found such that 

where J is the Jordan normal form for T. 

The initial state is repre1ented by 

The solution for equation 4. 19 i1 given by 

4. 22 PS 
tJ 

= e Pl 
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T he corre sponding M atrice s J and P a r e : 

' • 

0 0 0 0 0 : 1 1 1 1 1 1 •. 

0 -2X. H . 0 0 ( 0 2 0 0 0 0 

J • 0 0 -2X. 2X. 0 ·1: 0 1 0 0 0 

0 0 0 - 2X. ZX. 0 0 0 1 0 0 

0 0 0 0 -ZX. 2X. 

~ 
0 0 0 l 0 

0 0 0 0 0 -2X. 0 0 0 0 1 

li x.i 
j e 0 0 0 0 0 

; 
(2~t) 

2 
(2 U) 

3 
(2X.t) 

4 
I 0 1 2~t 

21 31 41 

• 0 0 l ZX.t ( 2 ~t) 
2 

( 2 ~t) 
3 

I 

tJ -ZX.t ' 21 31 
e • e I 

(2~t)
2 ' 

0 0 0 1 2X.t 
21 

0 0 0 0 1 2U 

) 0 0 0 0 0 1 

\ 

' . 

4 \ 
+. I:o s . l 

1• 1 

2S
4 

0 

PS= s3 Pl= 0 

s2 
0 

Sl 
0 

. ·I 
s 1 

0 \ 

\ 
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The probability that the assemblage will be in state S. may 
1 

be determined by finishing the multiplication shown in 

equation 4. 22 • 

IF+ ~ S. 
• 0 1 lZ 

254 

53 

52 

51 

so 

4 
E 

i = 0 

=e 

S. = e -2M ( 
1 

-2M 

3 
~ 

i = 0 

2M 
e 

(2U)
4 

41 
(2u>3 

31 
(2>..~) 2 

2! 

u 

1 

(2U)i + 1 
i I 2 

There are two feasible sets of formulas which have been 

derived. The first set f :a: 1 and derived formulas for small 

values of q; 1, l, 3, 4, and 5, and arbitrary values of m. 

The second fixed m at small values, 1, 2, and 3, and 

derived approximations for small values of f (1 and 2) and 

arbitrary values of q. In each case, general forms were 

found for T, P and J which depended upon >.., q, m and f. 
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4. 5. 3 Specific Aeproximations Formulae 

4. 23) small q, f • 1, m arbitrary. 

a) q - 1 

1 1 µ - \ T 2m+-l (\ T)j r, \ T + ;J 
R m (\ 'µ) .. (1 - / \) e l. if + i t1 - (1 - e - (1 + \ T) ) m J 

j = 0 

c) q • 3 

d)q•4 

1a 4 " , • -4\ T !1 _,,'/ )(
2
~ + l (4\T) \ 7/ (l _ 1 -\(4\ T) 

2
m+-

2 

m',. ,µ, e C \ 
1

• 
0 

i! 8 ,;m + 3'(2m+2)! 

(1 + 2\ T +' (\T) 
2 

) ) + µ/2 (l + \ T) 4 l-m O + 3) (j + 2) (j + 1) 
-~ 1 ··(2m+ 3')(2m+l)J J • 0 6 

[I - • -\ T (I + \ T) I j f 
The fonunlas for larger values of q will be considered only in 

the cue of utmost necesaity. 
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4. 24) Small m, most f as shown, 

a) m • 1, f C lo 

b) m • 2, f • 1 

2 6 
lR q (\ ) ...., l _ l 5q (q - 1) + q (\ T) 6 _ ( !: ) q(X T) 

2 ,µ - 720 ' ~ 720 (75q + 1--

c) m • 3, f • 1 

2 
lR q (\ ) l _ (10~ (q - 1) (q - 2) g + 63g (g - l) + q (\ T) 8 

3 'µ f:s 40, 320 · 

8 
- f ~) g (\ T) (1050q2 + 567q + 902) 

\ 40, 320 

cl) m • 1, f • 2 

6 
2R...q(\ )1t'l _ q(l0q - 9) (\T)6 _ (µ/ )19g (\T) 

--1 ' µ 7 2 0 ~ 720 

These formulas have been il1corporated in the REL program for 

calculating fR q 
c m. for the ARC system. Using the exact expreHiona derived 
1 1 2 

earlier for ~• R
2

, R
1
, Rm the following approximate equations were 

derived for small ~ T. 

4 
(~T [ l+ 2G+ 301 
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l n, T\ 
6 2 3 4 

R2 • 1 - i:~ ( 1 + 6G + 21G + 32G + 300 ) 

2 ~ 
RO• 1 - 3! 

2 ~T\
6 2 3 

R • 1 - l.'.!..!.L-. ( 1 + 3G + 6G + 100 1 
1 6 ! 

{\T)2 
1 - 2! 

3 
R •l-~ 

2 3 ! 

4 
R •1-~ 

3 4! 

( 1 + G) 

2 
(1 + 3G + 2G ) 

2 • 3 
(1 + 6G + 11 G + 6G ) 

In general they are close to the other approximations fm~ fRq 
m -

i 
just set q • land replace G by G. 

The ratios of the probabilities of failure, 

1 - R 
l - R (K = 1) 

were computed and are shown in Figure 7. Write 

1 -1aq JQl as Ra fFq l 
m m 

1 - f Rq (1) 
m 

/· '-

then the limits approached in Figure 4. 9 a i·e shown in the following table. 
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Ratio Limiting Value 

RA F
1 

v 
1 2 

Ra F2 '6 
Ra lF 'l 

1 1 16 
Ra Fl /6 

2 1 
Ra F

1 
120 
1 

Ra F3 1i4 
1 1 

Ra F
2 1

90 
1 1 

Ra F
2 

1
90 

1 
Ra F

5 
1720 

It must be remembered that these coefficient are multiplied by 
n 

(>. T) /n! as shown in the graph or e equations, so that variations in the 

approximations to fRq are made that much smaller. 
m 
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4. 6 Computing System Reliabilities 

The previous equations for the re li ability of units and 

modules were augmented by approximations for the busses 

and status registers and incorporated into a computer program 

called REL [See Appendix 3]. This program was in APL 

language [Iverson, 62] and was put on the APL Terminal System 

[FI, 66] which is a time-sharing interpreter employing linear­

ized AP L programmed on an IBM System 360/ 50 or 6 7. 

This REL program was used in an interactive procedure 

to determine the system reliabilities. Initializing is done by 

executing the SETUP program. Then any desired parameter 

or input values are changed from the base values. (For details 

see the program in Appendix 3). Then the RELIABILITY 

program is executed which does the calculation and prints out 

the results. The value of any variable at any time may be dis­

played for examination and change. The u1e of REL in balanc­

ing a computer system design is described in detail in 

[BCRS, 67]. The highly non-linear characteristic ■ of the reli­

ability equations make it impouible to gue1s at the number of 

spares or amount of segmentation required to "balance" a 

system design. "Balancing" a design con1i1t1 in determining 

the configuration that meets the reliability, milsion time, and 

duty cycle specifications, with each unit contributing close to 

its predetermined share to the probability of failure. 

As an example ·of this, typical values for the Normalized 

(to 100) Probabilities Of Failure (NPOF) of the PCU are 191, 

4. ~ and. 23 for 1, 2, and 3 spares respectively, where 

NPOF = 100 X (1-R[UNIT])+ (1-R[SPEC. ]). 
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The variation of the NI- OF ' s with the change in the numbe r 

of segments is not nearly so sharp as in the case whe n the 

number of spares is changed. Typical results for the NP OF' s 

for the PC U are 15. 4, 7. 9, 4. 9, and 3. 4 for segme ntati on 

into 2, 3, 4, and 5 parts. 

Neither of these last two observation : : s surprising, since 

they merely quantify the analytical results of the improvement 

factors of equations 4. 9 and 4. 11 . 

4. 7 Circuit Reliability Application of State Transfer Model 

4. 7. l General Model A similar mathematical model has 

been applied to the analysis of the error process in a chain 

of n binary logic functions. The inputs and outputs are 

vector functions of logic variables, one on each ll_ne. The 

input for the (ntl )st element in the chain will be the output 

from the nth element. Let G (n) be the good output at the 
0 

nth step, G. (n) be the good input at the nth step, and B (n), 
1 · 0 

(B .(a)) be the corresponding bad outputs (inputs) at the nth 

1 

step. Let P (G IG.) be the conditional probability of good 
0 1 

outputs given good inputs at any step. Then in matrix 

formulation, 

=M 
G . (n) 

1 

B.(n) 
1 

(G 0 IG
i) 

(B IG.) 
0 1 
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P (G jB . ) 
0 1 

p (B IB . ) 
0 l 

G . (n) 
l 

B . (n) 
1 
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The mathematical model giver an expression for G (n) in 
0 

terms of the characteristic roots and vectors of the matrix, 

and the initial states of the lines, 

P (G jG.) etc,, may be evaluated using assumptions about 
0 l 

the independence of failures and conditional probabilities, The 

expression fol' G (n) is dependent upon these probabilities, 
0 

a.nd this dependence seems important and has not been men-

tioned explicitly in the literature, 

Assume, as usual, that the failures on input lines and in 

the logic are independent, Let the probability of failure of the 

logic be a in each logic func t ion, and the probability of an 

initial error in the lines be µ , 

In the literature a usual assumption has been that the 

probability of good outputs given good inputs P (G IG.) is 1-a, 
0 1 

the probability of no failures of the logic circuits, In addidion, 

it is assumed that bad inputs always give bad outputs. Under 

t hese assumptions the transformation matrix is: 

and the expression for G (n) is: 
0 

G (n) = (1-µ)(l-a) 
0 

B (n) = 1-G (n) 
0 0 

n 

Since 1- a < l, G {n) approaches O as n takes on higher and 
0 

higher values, while B (n) approaches l at a rate determined 
0 

by 1-a . 

In practical cases it is known that sometimes a failure in 

the logic will not result in a failure in the output if the inputs 
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are good. This conditional probability of good outputs given 

good inputs but a failure in the logic is called P 
2

• Now 

P (G jG,) equals the sum of no failures in the logic unit plus 
0 1 

P 
2 

times a • 

Thus 1 

and 

G
0

(n) = (l-~)(l-(l-P
2

)a) 
n 

B (n) = 1-G (n) 
0 0 

G (n) still approaches zero as n increases, but at a 
0 

slower rate. Since logic can be designed so that P 
2 

> 0 (for 

example, use all prime implicants in the construction of each 

logic function), a degree of reliability can be simply introduced 

in the logic de sign independent of the components. 

Another assumption made in the literature is that compen­

sating errors can occur. Using von Neumann's method, 

(cf. Pl, page 151) the probability of good outputs given 

bad inputs is the probability of a failure in the logic, or a. 

Now 
M ={1-a a) 

\ a 1-a 

and 

n 
G (n) = 1/2 + (1/2 - ~)(l-2a) 

0 

B (n) = 1-G (n) 
0 0 

In this case if: is usually assumed that a < 1/2, so G (n) 
0 

approaches 1/2 as n increases, but at a faster rate than in 

the previous cases. 
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Examining the conditional probabilities as before, there is 

no reason for P 
2 

to be zero. In addition, the conditional 

probability of good outputs given bad inputs and bad logic is 

called P 
3 

and it is a conditional probability which is 1 only 

in an improbable limiting case. 

Now, 

and 

G (n) = 
0 

p3 l-P2 n 
-1 -_ p_2_+_P_3 + (1-P 2 + p 3 - ..,_ )( 1- ( 1- p 2 + p 3 )a) 

B (n) • 1-G (n) 
0 0 

In this case, with a < 1/2, ai n become• large G (n) 
0 

approaches p 3 at a speed governed by l-(l-P2 +P 3) a. 
l-P2 +P 3 

The limiting value is still determined only by the a11umption1 

about the values of the conditional probabilitie1 and doe1 not de­

pend upon values of a . 

So far we have con1idered the conditional probability of 

good outputs given correct input values but a failure in the logic 

(P 
2

) and the conditional probability of good outputs given a failure 

in the logic a _nd some incorrect-input values (P 
3

), and we have been 

assuming impU.citly that the conditional probability of good 

outputs given correct inputs and correct logic is one. The re­

maining conditional probability is that of correct outputs, given 

good logic and some incorrect input values. Call this P 
1 

, 

and, by experience, P 
1 

is not always zero. 
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In this case 

The formula for the good output at the nth step, G (n) may be 
0 

written a ■ 

v,·here 

or 

r=P
1
(1-a)+P

3
a 

r
1 

= (l-P
2

)a 

a = probability of circuit failure 

P 
1 

a: conditional probability of good outputs given 

good logic but bad inputs 

P 
2 

• conditional probability of good outputs given 

bad logic and good inputs 

P 
3 

= conditional probability of good outputs given 

bad logic and bad inputs 

µ a probability of bad inputs 

n n n 
G ( r) ::a: (1- µ )( 1- r ) + µ[ ( 1- r ) - ( 1- r- r ) ] 

0 1 1 1 
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Term 

n n 
µ[ {l - r) - ( 1- r- r ) ] 

1 

[ 1-

Function 

"Fail sure" term, limit as n increases 

is zero. 

Possible correction of erroneous input 

values. 

r 
rl +l r{l-r

1
-rt- {l-r

1 
t] Possible correction of errors in earlier 

elements in the chain by later elements 

in the chain. 

The values which may be assumed for the various conditional 

probabilities should be studied. The following table 1how1 how 

P (G I B . , G1 ) is computed for a single OR gate with the 
0 1 

probability of an error or an input .i ine being. " • 
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Corre ct Erroneous p (erroneous Input Output 
Input Ineut Input) State State 

00 00 ( 1 - V) 
2 

Good Good 

01 v(l-v) Bad Bad 

10 v(l-v) B B 

11 
2 

B B V 

01 00 v(l-v) B B 

01 (1-v) 
2 

G G 

10 
2 

B G V 

11 v(l-v) B G 

10 00 v(l-v) B B 

01 
2 

B G V 

10 (1-v) 
2 

G G 

11 v(l-v) B G 

11 00 v2 B B 
I 01 v(l-v) B G 
; 

i 
10 v(l-v) H G 

11 (1-v) 
2 

G G 

p (Bad Input)= P (B.) = 2v-v 
2 

; 

i 1 
:. 

Bad lnout I Good Logic) = P { G , B . j G'J. ) z v - 1/ 2 v 
2 t p (Good Output, 

0 1 

p (GO, Bi jGl) 
= 1/2 p {G IB., Gl) = 

,1 , 
0 1 p (B.) 

1 
I 

r, 

'( 

' 
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The predic tion parameters may be summarized as in the 

following table. 

Conditional 
Output Logic Input Probability 

Good Good Good l 

Good Bad Bad ? 

Good Good Bad 1/2 

Good Bad Good ? ? 

A parameter study was made by computer program for 

the following paramete r.s. 

P 
2 

z: o. 0, o. 1, o. 3. o. 5 

a s 0.1, 0.01, 0.001, 0.0001, 0.00001 

r = 0. 2, 0. l, 0. 01, 0. 001, 0. 0001, 0. 00001 

~ s 0. 0, 0. l 

n • 1, 2, 3, 4, 5, l 0, 20 

The study showed the following results: 

1. The dominant effect is due to the conditional probability 

of good output given good logic and bad inputs. If this 

conditional probability (CP) is greater than the probability 

of circuit failure (a), the probability of good output from the 

chain (>..
0

) is high. The bi~gest change in >..
0 

comes when 

CP is less than a, >..
0 

is close to the •fail-sure' value, 

the value taken when all conditional probabilities are effec­

tively zero. 

2. A small effe·ct was due to changes in either the conditional 

probability of good outputs given bad logic and bad inputs. 

3. If the a is about 1/10 of the probability of erroneous 

input , then the probability of the correction of erroneous 

input is about equal to the probability of the correction of 

errors in the chain. 
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The effect of this is to show that w he neve r 

p (G IGJ.,B . )> 
0 l 

-8 
a ~ l 0 

the prediction results are strongly affected. 

Following Feller [Feller 57) this formulation can be 

related to the usual reliability equations in the standard way. 

As Feller say 1, * "The difference between the {Markov) chain 

and our proceas (birth/death} lies in the fact that, with the 

latter, changes can occur at ,\rbitrary times, so the number of 

tran1ition1 during time t is a random variable." 

Replacing the conditional probabilities by functions assuming 

whatever the changes during (0, t), the probability approaches 

zero linearily with h plus termu O(h) and the probability 

that mortf than one occurs is O(h) (Postulates for the Poisson 

Proce111)* the following set of equations is obtained. 

(

PG(t+h)) = f-(1-Pz) czh+O(h) 

PB(t+h) ((t-P
2
)a + O(h) 

The1e lead to thoe equations 

PB(t) • 1 - PG(t) 

1 PG (t) + [(l-P
2

) a+ P
1
(1-a) + P 3

a] PG(t) = P 1 {l-a)+P 3 a 

or, using previous notation, 

1 
PG (t) + (r

1 
+ r) PG(t) = r 

If the : r,itial. conditions are PG(O) = 1, 

rl 
PG(t) = {l--- )+ 

r 
1 

+ r then 
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which differs from the expression for G (n) only by the term 
0 

which approaches zero, as expected. 

This result emphas~s that approximation of the conditional 

probabilities is jmportant, and that the conditional probabilities 

approach zero as t increases. Handling these mathematically 

is not sinple, however work will continue along these line1. 

Establishment of reasonable values for these conditional 

probabilities will enable field and laboratory results to be 

reconciled. At the present time the situation is described a1 

follows in reference 51, p. 6. 11 Any attempt to compute the 

reliability of the Timing Generation and the complex logic it 

feeds, without making a great number of simplifying assumptions, 

would lead to a mathematical expression containing literally 

thou~ands of terms. For practicality, a program has been 

written for the IBM 7090 Computer, which is capable of evaluat­

ing the reliability of complex logic, up to and including Triple 

Modular Redundancy. This program was used to obtain all 

reliability estimates except a few special cases. 

The basic operation of the program is to randomly fail 

component parts, both open and short, and trace the re1ultant 

logic failure through Guidance Computer or Data Adapter logic 

simulated in the prcgram, to see if a system failure would 

result. This i :3 accomplished many times (normally 20,000), 

System reliability is then computed by dividing the number of 

times no system failure occurred by the total number of times 

it was tried, 11 

This approach gives a method of prediction-after the tech­

nology is chosen and prototypes are built. 
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Practically speaking, as these component failure rates are 

measured from the performance of components in ~ystems, the 

effec:t of all conditional ::-,robabilities are included, and the usual 

reliability calculations give good results. However, component 

life as measured directly on the components will tend to give 

too pessimistic results if standard calculations are made, and 

these different values remain unreconciled. 

Reconciliation is important, since, from our results, the 

component fa ilure rates are clearly dependent upon the particular 

way the logic is designed. Guides are needed during computer 
.. 

specification and design so that reliability requireme nts will be 

met without overdesign. 

Conversely, with a theoretical foundation values can be 

established for the conditional probabilities using results like 
·, 

the Saturn V data and component data. With these values, 

reliability predictions can be made without excessive simplifica­

tion before prototypes are built. 

4. 7. 2 TMR Reliability Application 

Special cases were computed for TMR for two cases. 

Case 1, conditional probabilities of correction due to TMR are 1. 

Case 2, worst case, all conditional probabilities of good output 

given a failure in logic or inputs are zero. The results are as 

follows, where line triple refers to the three lines carrying the 

same signal. 
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Case 1 Case 2 

G
0

(n): All outputs go1..1d (1-E) 
3 3 

(1-E) R 

G
1

(n): 
2 2 One error or at least 3E(l -E) 3E(l-E) R 

one line triple 

G 
2 

(n): 2 2 Two errors on at least 3E (1-E) 3E (1-t)R 
one line triple 

G/n): Three errors on at 
3 3 

( t R + (1-R) 
least one line triple 

where E is the probability of voter failure, and the other terms 

are as previously defined, and 

2 3 2 2 3 R = r (3-2r)/[2X (1-E + r/ >..) - 3).. (1-t + r/>..) + 1 + 3r -Zr ] 

X.=l-r
1
-r 

where r 
1

, r were defined earlier. 
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5. Structure/ Organization 

5. 0 Summary of Architecture/Organization 

5. O. l Evolution of ARC Deaign 

The design of ARC started with dividing a standard computer 

for ■pace applications into functional units to facilitate hardware 

cont1~olled retry within the unit. Standby redundancy and seg­

mentation were then assumed for each unit and the program 

REL u1ed to determine the ARC I configuration and analyze 

variation,. This technique of standby redundancy depended upon 

an eff i.ci~nt design of reconfigur;, ~ion switches to effect self-­

repair. 

Improvements in the ratio of mission time obtained to 

equipment employed were obtai nt"!d by redesigning memorie.s 

a nd arithmetic tJnits which could tolerate one or more errors. 

The following table shows the various design configurations 

con■ide red. 

R = . 997 

Configuration Time 

Equip­
ment Time+ Equipment 

Simplex 

TMR 

ARCI 

ARCll 

>../.., • l >../ .... 5 

D•l D•. 25 

6. S9 14. 5 

205 431 

3483 9068 

4097 10879 

1 

3. 5 

3. 5 

2. 5 

>../ µ • l 

D= 1 

6. 59 

59 

995 

1170 

Table 5. O Mi s sion T ime for Various Organizations 
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51 O. 2 New Design Techniques 

5. O. 2. 1 Reconfiguration Switches Reconfiguration switches 

to effect standby redundancy self repair techniques were designed 

with the property that a failure in the switch caused one of the 

modules being used to be unavailable. Since the exponential 

failure rate for components was assumed, this allowed the failure 

rate for circuitry for the correct fraction of the switch circuitry 

to be added to the module failure rate and the reliability of the 

computer computed in this way. The status registers can be 

designed to be error correcting using masking redundancy. With 

careful design techniques using TEST DETECT to determine the 

effect of component malfunctions, reconfiguration switches can 

be designed so that single component failures will disable only a 

single module and most double failures will have the same result. 

By using a switching scheme which permit, switching only to 

adjacent lines but which will overcome m failures with m spare lines, 

the total amount of added circuitry is reasonable when measured 

by the criteria of (Mission Time/Equipment). 

5. O. 2. 2 Error Tolerant Memory Unit Using the same 

type of reconfiguration switching it is easy to design a recon­

figurable bit plane memory unit. This is superior, in circuitry 

needed and speed of response, to error correcting coding of 

memory words. A new method of dynamic storage address block­

ing achieved error toleration in the addressing circuitry. Using 

these techniques, an assemblage of memory units could withstand 

several circuit malfunctions with small loss of capacity and no 

loss of speed. 
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50 0. 2. 3 Ultra Reliable ROS Configurations The same 

techniques whic h made a memory module ~ore reliable can be 

used in a simplified form to make a ROS used for computer 

control error tolerant. The major modification is in the 

output reconfigura tion network with minor savings in the 

address bloc king. 

5. O. 2. 4 Error Tolerant Byte ALU (BALU) The BALU is 

designed so that its bit planes are relatively independent (this 

affects ?rimarily its adder). By adding a spare bit plane and 

changing the carry and shifting circuitry a reconfiguration 

switch can be used to switch bit planes and make the BALU 

tolerate a single component malfunction. 

5. O. 2. 5 TMR/ Sparing Using ideas derived from the recon-

figuration switching, it is possible to combine the features of 

TMR and standby redundancy to design error tolerant circuits 

called TMR/ Sparing. Their reliability is approximately 
n-1 n.±1....... 

1 - (),.T) instead of 1 - (>..T) zlor n odd and greater 

than three. 

5. O. 2. 6 Designing ARC Methods of designing and operating 

ultra reliable computers are studied. It is shown by example 

how to use TEST DETECT to design completely checked com­

binational circuitry. The checking circuitry output could be 

checked by a simple diagnostic test. Operating ultra-reliable 

computers is discussed. The necessity for a: 11entinal' to 

operate during turn off periods is shown, and the similarity 

between computer •being up' procedurea after turn off and after 

an error signal ii treale• .The design of special hardware and 

the storage of te t. ts in the ROS to facilitate these procedures is 

discussed. 
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5. 1 Introduction 

5. 1. 1 Description of Architectural System Goals The goal 
of this chapter is to formulate a description of the architectural 
characteristics of a self-repairing computer. To achieve the 
high availabilities required of planned space-borne computers 
with the technologies available either now or in the indefinite 
future, it will be necessary to employ a variety of organizational 
techniques to handle failures in the various elements composing 
the computer. These failures are basically of two kinds; inter­

mittent (transient) or solid (permanent). For intermittent 

failures it is only necessary to detect and overcome error, 

introduced by the temporary malfunctioning of a component, 

but when the failures are soJid it it is usually nece11a.ry to 

repair the computer in 1ome manner. 

Since these compute re will be operating in environment. 
where it is either impo1sible or infea1ible to ha.ve manual inter­
vention, high availability mu1t be attained by a.utoma.tic detec­
tion of errors (hardware or progrlL!ll) 1elf-dia.guo1il a.nd 1elf­
repair. Several organizational technique• a.re .1.vailable to do 

each of the chores of error detection, error lo ~ation, erro1· 

correction and repair. 

Detection of errors by pal'ity checking i1 a n efficie·,1t and 
widely used technique. It has been u1ed exten11ively in data 
storage elements and channels and to some extent in arithmetic 
units and control circuitry (CMPR, 64). In a. highly available 
computer it should undoubtedly be employed throughout. 

Another method of error detection is to have duplication of 

every organ and then do everything twice. A compari1on of 
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the two outputs then reveals the existence of errors f Kemp, 62; 

:,c, 66; Saturn, 6 5]. A r elated m e thod is the use of two rail 

logic. A fourth method of error detecti on, whic h is onl y 

applicable to solid type failures, is the us e of dia gnos tic te sts 

[ CMF- R, 64 ; Roth, 66 .: MA, 6 3 ]. 

Location of errors can be accomplished to some extent by 

parity checking and to ,a. much greater extent and precision 

through the use of '.uagnostic tests. 

Correction of errors is possible in many ways. Maski.ng 

redundancy (Saturn, 65] has been widely used. Three ways 

that have in common the virtue of healing the effects of both 

intermittent and solid type failures are 1) the use of error 

correcting codes and associated error correcting cin:uitry 

[Brown, 60 ·; Kautz, 62], 2) the use of triple modular redun­

dancy together with voting elements [BH, 66] and 3) quadding 

[ Ty rem, 62] many analysis have been made of systems using 

replication of logic signals [Saturn, 6(; FRST, 65]. Such 

system I proved inadequate to meet a stringent requirement of 

• 997 for a mission time of 10,000 hours with a duty cycle of 

• 25. Not only was the number of replicated signals high, but 

in a practical envirorunent the probability of errors induced by 

external sources become relatively great. The problems of 

continuation after such errors, or a sudden burst of transient 

errors, were difficult to solve efficiently. However, these 

techniques can be used to design some parts of an ultr , -reliable 

computer. 
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If stand-by redundancy is used, thi~ involves replacing 

the unit or module containing the failing component with a 

spare one. Since spares are limited, it is highly desirable to 

be able to differentiate between the two kinds of failures. An 

alternative strategy is to employ spares in a cyclic manner 10 

that once switched out they can be switched in again. 

Another method which may be used is to replace the logical 

transfer function of a unit by a combination of the tranlfer 

function• of other units. This is usually done by having 1everal 

c ontrol paths to carry out a single instruction; and using the 

control path which uses correctly functioning unita 0 If the errora 

are known to be the result of a transient failure, then instruction 

retry is a feasible method of correcting the errors. In some 

cases where the data has been contaminated, a program recovery 

method can be employed. If the failure ii of a 1olid type, the 

program recovery mu1t await a repair before it can be 1ucce1aful. 

Our study has encompassed most of these techniques, applying 

them to apecific organs of a computer. 

The baaic goals of this Automatically Repaired Computer 

(ARC) system are: 

1. Increased hardware reliability and self-repair capability 

through: 

a) redundant components {TMR), duplicate memory module•, 

and other devices , 

b) error detection and correction coding implemented in 

circuitry, 

c) diagnostic procedures to determine the precise nature 

and extent of component malfunctions, 

d) partitio~ing and reconfiguration of redundant units to 

provide graceful degradation. 
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2. Increased system reliability and self-repair capability 

through: 

a) hardware controlled micro instruction and instruction 

retry, and possible alternate instruction sequencing 

selection, 

b) hardware controlled 1/0 data checking, certification, 

and retry, 

c) information protection by hardware/ supervisor program, 

d) planned recovery, rollback, and restart procedures 

after catastrophic errors. 

5. 1. 2 Definition of Terms. In an ARC organization, the 

computer consists of a number of functional units, or simply 

units, suitably interconnected: each unit consists of an appro­

priately chosen number of modules. The modules are chosen 

so that when a given module malfunctions it is relatively easy 

for the computer to detect the error and diagnose the unit to 

ascertain which modu!.e malfunctioned. To implement automatic 

repair, replicas of the modules are joined in segments. Seg­

ments are disjoint except for wires, and are composed of 

modules which are individually replaceable by switching. After 

detection of an error and diagnosis, repair is effected by auto­

matic switching. The number of modules in a segment depends 

upon the reliability requirements. The wires connecting seg­

ments are called switchable interfaces. The lines currently 

active are defined by status registers. 

The functional units of the ARC considered are shown in 

Figure 5. 1. A more detailed description of the functions of 

the units will be given later. The basic logical and data path 

interconnections are also shown. 

166 



.. 

w 
Read - Only 

Store 

POW 
Power 
Supply 

ll 
Secondary 

Store 

PCU 
Program 

Control Unit 

~ 
Main Store 

ALU 
Arithmetic 
Logic Unit 

C1 
Clock 

~c.u 
Channel 

Control Unit 
1 

1/0 
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Figure 5. 2 shows the segments of a particular unit - the 

PCU. Each segment contains three modules. The three 

modules in each segment perform the same transfer function. 

For example if data is processed by module #1, segment #1, 

then hy module number #2, segment #2, then by module # 1, 
segment #3 a correct result will be obtained if all modules 

function correctly. Clearly there are 27 pouible paths through 

the PCU to use the correct module. 

5. 2 Architecture Organi z.:.H.on 

5. 2. 1 Overall Organization 

The basic concept of this organization is one of distributed 

function, distributed control, and variable sequencing. The 

system will consist of various varieties of units of the following 

types:: 

1. Modules of main memory. 

2. Modules of Bulk Memory (large capacity, for storage 

of files as necessary). 

3. Channel Control Units (includes connections to all 

1/0 Units) (CCU). 

4. Arithmetic and Logic Units (ALU). 

5. Console and Display Units. 

6. Program Control Units (PCU). 

7. Switchir.g Controls, Control Memories and Multiple 

Busses to se-.uence, control and pass information 

among the above. 

169 

I 

l 

. 

: 

j 



-----------------------

Eac h unit contr ol res ponds t o external stimulation, and the 

a ti on m a y va ry with control inform ation, but control rests 

within c h unit to perform given functi ons. Input and output 

interfaces a re defined and s t andard. A block diagram of such 

a system is shown as Figure 5. l. 

The mem ory orientation of the system shows clearl y in the 

block diagram. As always, the control of this computing system 

lies in the set of program s , p rocedures and information that are 

used for total system control. These progr;ims op P.rate on 

their "state vector"; e.g., all values of all variables and 

other information which, together with the program itself, 

determines the further c ourse of computation.. Thus control 

i s in the supervisory program through thick and thin, good 

a nd erroneous signals. 

Recovery from an error involves: 

l. Detection of the malfunction, together with the prevention 

of the unbounded propagation of erroneous data and/ or control 

information. 

2. Assessment of the damage to critical hardware, and 

possible reconstruction of critical information concerning 

hardware (e g. status of earlier failed modules). This is the 

diagnosis process. 

3. Self-repai r of critical hardware, if necessary. 

4. Assessment of the darrage to critical information (i.e., 

program s and data). 

5. Reconstruction of critical information, if necessary. 

6. Re starting of critical t a sks. 
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T his organization was chosen to facilitate carrying out 

these tasks. After a description of the units, methods of using 

these units to achieve the goals will be discussed and a rationale 

for choosing this organization given. 

5. 2. 2 Description of the Units 

5. 2. 2. l Main Memory Modules 

Essential information will be stored in duplicate with 

information protection bits and error det\'!ction codes (probably 

parity) to detect some error•. Both cop;.es of the inform.ation 

can be accessed and the copies compared to detect the re1t of 

the errors. The driver lines addres ■ing memory can be 

parity checked (only one should be up) to detect addre11 1election 

failures. A method of de ■igning 1uch decoders 10 that all 

single failures can be detected or bypa1eed. will be given later 

(cf. section 5. 4. 7). Hardware echo checking can be done after 

the storage of data. 

Address error masking can be done by being able to 

independently di1able module 1. The paging concept of addre1-

sing may be used to carry out thi1 procedure with a minimum 

of inconvenience to the user a1 _ long a1 1pare capacity i1 avail­

able. If the paging device uses an a1sociative memory to 

determine the base for input selection, changing the ba1e i1 

easy for local control. Such change• would follow from the 

parity check on the devices combined with diagnosis. A more 

sophisticated method of bypassing errors in addressing for 

each Basic Operating Memory module (BOM) will also be 

described (cf. section 5. 4. 3. 3). 



A majority ( 7 %) of the failur es in a I30M r esul t in a n 

error in a single bit pos i tion of a word. Err or co rre c ting 

coding can be used, however a new and more e ffi cient method 

will be described in section 5. 4. 3. 2. 

The distributed functi~ns of this main memory are: 

a) reading of information, with parity error detection and 

correction as necessary of data, with distribution of data 

to both the PCU and CCU. 

b) storing of information with hardware echo check that 

information has been stored, from both the PCU and CCU. 

c) detection of information protection bits. 

d) validation of commands to change these bits (comparison 

of table names with timing update for example·). 

•) detection of errors in selection circuitry. 

f) updating of error correction information. 

g) supplying program control units when necessary with 

coded information describing the memory s tatus. 

b) reconfiguration of main memory to bypass some mal­

functions after diagnosing a permanent error. 

5. 2. 2. 2 Modules of Bulk Memory 

On an extended mission, bulk backup storage of files of 

programs, constants and data becomes necessary. The files 

of programs and constants can be read only (with a section for 

modification due to the discovery of program errors). Roll­

back information must be dynamically stored, and data gatherec 

during flight saved for later use. 

The functions to be performed are similar to those per­

formed by the modules in main memory. However, the 

initiation of control is done by the CCU. 
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s. z. z. 3 Program Control Unit (PCU) 

In a nutshell, the PCU will contain the scratchpad memory 

(General Purpose Registers), index registers, program 

counters, interrupt masks _and status bits, and in general the 

hardware necessary t contain the information necessary to 

control the execution of an algorithm in the presence of noise. 

The real worth of the PCU is to focus attention on the 

program being executed by the computer. Think of the pro­

gram a1 a tree structure with the computation and data transfer 

being done at the branch points. For micro reliability the 

branch point operations - computation and data transfer - must 

be locally retriable. Thus the PCU initiates in1truction retry. 

The next problem in reliability con1iats of over1eeing the paths 

joining the branch points - especially as several paths will be 

tranaversed in parallel. This control is the function of the 

PCU. When an error occur1, recover, or restart mu1t be 

begun. Thus the PCU has the further function of maintaining 

data in duplicate in memory modules so that checkpoint and 

recovery operations may be initiated after cata1trophic failure,. 

So it must store and protect the 1ystem state. 

Another basic function of the PCU is to control the diag­

nosis and ,elf-repair procedure,, including bringup. After 

an error signal, an ARC bootstrappll its way into operation. 

Forbes et al [ARSY, 65] have derived such a procedure. Such 

procedures must avoid ''hard core"- defined ~s any modules 

whose failure will cause the computer to cease reliable opera­

tion. There must be at least two diagnostic sub-systems, 

each capable of controlling the diagnostic process, verifying 

status informa.tion, and setting reconfiguration circuitry. 
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If the entire c omputer does not operate continuously, then it 

must contain a clock and network which respond to external 

or lock induced stimuli. After the initiating stimulus, the 
procedures outlined previously must be followed. These 

procedure!& will be performed by the PCU. 

In addition, the PCU will fetch instructions from main 

storage, decode instructions and status indicators, activate 

the control memory, store data in main storage, and initiate 

1/0 and secondary storage activities. 

The PCU contains a scratch pad duplicated memory, with 

all the error detection and correction features described before 

for memories. For effective program control this memory 

will contain locations for the following: 

1) Instruction Counter (IC) - include paging and memory 

protection. 

2) Instruction History Counter (every time a branch 

occurs, the former contexts of the IC are stored here). 

3) Index Registers (like System/ 4w - C32 [Vandling, 66~. 

4) Clock and instruction execution counter capable of 

interrupting program status. 

5) Program Storage Word Information - 1/0 mask 

information. 

6) Interrupt Registers (as needed). 

7) Arithmetic Back-Up Registers: 

data storage register (memory) 

accumulator 

accumulation extension 

status bits 

8) I0CC 1 s (several). 
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9) IOCC History Re ~istera. 

l 0) Information for the Diagnostic Program. 

11) ALU error status information. 

12) CCU error status information. 

13) Storage and l/O error status information. 

14) Alternate PCU information (for u1e if 1upervi1or 

program is using PCU). 

15) Partitioning and paralleling ALU information. 

In summary, the distributed functions of the PCU are: 

a) fetch instructions and data from main memory, 

executing the paging algorithm and memory protection. 

b) activate the control memory and 1witching controh. 

c) store data in the main memory, using the pa1in1 

algorithm and memory protection 1cheme1. 

d) activate CCU• s, provide them with IOCC• •• 

e) update the contents ·of all register• previoualy li1ted­

when done automatically by hardware control. 

f) transfer program control in all branchin1 and inter­

rupt situations. 

g) provide diagnostic and bring-up control. 

h) provide fail-safe switching of program control and 

automatic reconfiguration upon detection of an error; 

a single error must not hang up the 1ystem. 

Each PC U will -contain or point to the information neces1ary 

a) Control a program (including paging algorithms~ 

b) Retry macro instructions. 

c) Supplement CCU and memory retry capabilities. 
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d) Conne c t ALU 1s in parallel, and c ontrol their action. 

e) Partition the c omputer after error detection. 

f) Initiate recovery from catastrophic errors. 

a) Control and call diagnostics. 

5. 2. 2. 4 Arithmetic and Logic Units 

Conventional computer instructions will be stored in main 

memory. The1e will activate variable micro instruction se­

quence• depending upon the hardware available. The ALU•s 

will execute the micro instruction sequences which make up 

the variable instructions. 

During the execution of a micro instruction sequence an 

ALU will remain connected to a control memory. The ALU 

will store input information and temporary results in internal 

regilter1. It will get its input information from a PC U and 

will store its output there. 

Each ALU will be 9 bits wide (8 information bits and 1 

parity bit)~ tor . this reason, they will be referred to .- Byte 

ALU'• or BAL Us. One, two or four ALU's will be able to work 

in parallel on a micro instruction such as ADD and will ~ass in­

formation from one another. The operations performed by each 

ALU will be checked , and error signals sent to the approrpiate 

PCU. 

The che cking of arithmetic operations i• well covered 

in the literatur e . The main problem in designing such units will 

be in the partitioning and interconnection, and in the ffficient 

che cking o f logical and shifting ope ration . 
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The distributed functions of this control unit _are: 

a) addition, subtraction both l ' s and 21 s complement 

(for partitioning and combining). 

b) accepting sequences of micro instructions and signals 

for multiplication and division from the control memory. 

c) logical operations; AND, OR, XOR, NOT. 

d) shifting operations. 

e.) comparison operations, indication of branching 

conditions. 

f) accepting control signals from the control memory. 

g) partitioning and passing sign~ls and data for parallel 

processing (this is discussed under switching 

controls in section s. 4. 2). 

h) checking for the above operations. 

i) passing the results of operations and status information 

such as overflow, number of shifts, branch conditions, 

occurrence of error, to the PCU. 

j) retry of micro instructi?ns after detection of error; 

passing of error status information to the PCU. 

For higher reliability such BALU's can be designed so that 

they can tolerate at least one error. This design will be de­

scribed later~cf. section 5. 4. 5). 
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5. 2. 2. 5 Switching Control and Control Memories 

The switching control is activated as shown on the block 

diagram, initiates distributed control, and monitors the dis­

tributed control. The control works through standard inter­

changeable interfaces in each type of unit. This switching 

control will be checked and will have error correcting features. 

It is discussed in more detail later. 

Common control information is stored in the control 

memory. In particular, diagnostic control and tests are 

stored here for activation by the diagnostic interrupt. This 

interrupt is time controlled, so that the frequency of tests may 

bP. increased as the reliability degrades. 

5. z. 2. 6 Channel Control Units 

The commands for a CCU are the 1/0 Control Commands 

(IOCC) which it receives from a program control unit. 

These co...,mands identify the 1/0 operation, 1/0 device, 

core storage, address and information protection status 

(like System/4 ,r - C32 [Vandling, 66)). 

The channel control unit carries out these commands, 

checking the information received for satisfaction of a checking 

algorithm (parity for example) and for reasonableness (upper 

and lower bounds for sensed information, for example). 1/0 

units may be polled, and the PCU interrupted only when a 

significant change occurs. The new values and the time since 

the last change will be available. An associative memory will 

allow such tasks to be performed quickly and cheaply. The 

information in the reasonableness checking portion of the 

associative memory will come from the PCU and this check 
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may be disabled upon command. 

If an error is detected, the CCU will notify the PCU, store 

appropriate status infor!Tlation there, and take independent 

retry action, as dictated by the command and 1/0 unit. For 

example, information from ' l/0 sensors may be reread, using 

an alternate connection path. Information from bulk memory 

can be treated similarly. The ability to uae alternate path■ is 

extremely important fo r. r e covery from errors (a1 well as in 

the diagnosis of equipment failure,). If the CCU cannot obtain 

correct information by retriea., it will notify the PCU 10 that 

recovery action may be started. 

If no errors are detected, after the succeaaful execution of 

one comman<l b a chain, the· control unit gets the next IOCC 

from the same PCU. Control information requeated by the PCU 

will also be obtained. The console and di1play device• are 

treated as 1/0 units. 

The distributed functions of the Channel Control Unit are: 

a) input transmiuion of data with parity error detection, 

reasonableness, and significance check• on data 

(where applicable). 

b) output transmission of data, with parity error detection. 

c) set ·up path for input tran1mia ■ ion of data. 

d) set up path for output transmission of data. 

e) remove path (or section• of path) from pool of paths 

available for use. 

f) sense interrupts from 1/0 devices, with ma.1king a.a 

directed by PCU or own logic (e.g., during retry 

analysis). 
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g) cause selected device to make its current status 

available. 

h) retry IOCC a number of times specified by the PCU, 

storing status information in the PCU as directed. 

i) execute diagnostic commands affecting the PC U, 

ALU, main memory and other CCU•s as necessary. 

j) poll attached 1/0 as required. 

k) be able to be electrically disconnected from foe rest 

of the system in case ~f permanent malfunction. 

5. z. z. 7 Console and Display Units 

These will be treated as 1/0 units and controlled with the 

CCU•s. In the ab.sence of a specific environment no further 

planning ·ha.s been done for this. 
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5. 2. 3 E1timates of Circuitry Needed for ARC Implementation. 

In order to estimate the reliability of the ARC, the inter­

connections between buss widths were estimated, the 

individual units were assumed segmented for reliability and 

the extra switching control necessary was e1timated, and the 

number of units needed for necessary thruput were estimated. 

Number Number of 
Unit Required Sesmentl 

MS 2, 3 8 K capacity 

ss 2, 3 16 K capacity 

PCU l Z-8 

CCU 1 2-6 

ROS 1 2-4 

BALU 4 1 

Clock l 4 

Power 1 

Bu111es Width 

PCU-ROS 92 

BALU-ROS 15 

PCU-ROS 12 

MS-PCU 36 

MS-CCU 36 

CCU-SS 9 

The amount of hardware necessary was estimated using 

the 4 w / EP as guide. The unit !or estimating is pages of logic 

(475 circuits) or circuih. 

The B USSES exert a substantial effect on the system re­

liability: spare lines are required. The reliability formula !or 
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the busies weresplit into a buss-status register portion and a 

buss-line portion. The failure rate for the buss register is 

proportional to the number of lines and the total number of 

terminal modules. The failur~ rate for each bun line is pro­

portional to the number of terminal modules on the buu. 

Unit 

BALU 

PCU 

CCU 

ROS 

MS 

Clock 

Buss 

EP ARCI 

pages ea~es X No.= total 

8 1 1/2 X 6 = 9 

7 10 X 3 = 30 

4 5 X 3 = 15 

Crushed Core Stack 

5 6 X 4 = 24 

Core Stack + 

. 2 X 3 . 25 X9= 2. 25 

Core Stack + 

. 2 X 3 . 25 X 8 = 2 

1 3 

26. 2 85. 25 

3 circuits X width X (sources + 
1inks) 

Reason for 
Augmentation 

Checking and 
Operand Storage 

Addition of general-
purpose register for 
certain checking and 
diagno1tic s 

Retry diagnostics 

Divided Control 

Added bussing 

Only circuits that 
will bring bus line 
down 

Partitioning 
Switching 

Parametrical - multiply number of pages by 
1. 1, 1. 2, 1. 0 . 
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The failure rat•• uaed in the calculation are ahown 

in the following table. 

TECHNOLOGIES 

TYPICAL FAILURE RATES / 10
6 

HOURS 

1968 

Page of Logic 6 

2K. ROS 20 

Power Supply 15 

16 K. Drum 15 

8 K. Core Storage 

Lo1lc 
47J 59 

Array• 12 

POWER-OFF EFFECTS ON ). 

Solid State De vice• - )./ 5 - )./ 10 

Corea, Connection• - ). (No chana•) 

FAILURE DISTRIBUTIONS • 

POISSON STILL VALID 
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1970 

3 

14 

10 

9 

38J 49 
11 



5.3 Determining ARC Configurations Using REL 

5 . 3 .1 Specifications and Parameters The computer design specifi-

cations call for a reliability (probability of success) of .997 for a mis­

sion length of 10,000 hours. The duty cycle, the assumed date for the 

component failure rates, and the value of the ratio of the power -on to 

power-off failure rate values ( ,>, y'< ) were all parameters of the 

inveatigation. The calculations centered around a duty cycle of O. 25 , 

a date of 1968 and a value of 5 for ~ ~ . ~nother important para­

meter, which was discovered during the course of the work, is the 

checker and diagnostic coverage discu11ed in section 4. 3. 2 . 

For a given system configuration, the mission time that JUSt 

meetl the specified system reliability was computed as being the most 

informative way of seeing the significance of any parameter change. 

5. 3. 2 Ha Niwa re Involved Four designs were considered. The first 

one was a simplex computer system consisting of a CPU, storage and 

channels with a performance and capacity about the same as that of 

an IBM System 360/44. As implemented in IBM 4 Pi Technology 

[BCJ, 67] this simplex system has the failure rate values of column 1 

of Table 5 .1. 

The second computer was designed by simply assuming that 

a TMR1d v6rsion of the first was available. The TMR•d system was 

considered to have the same failure rates and be segmented in the 

same way that ARC ll, the last design, was. 

184 



[ GuJ'zi, 65 J. The iaturn study [ BH, 66; AES-EPO, 65] showed 

that in a practical case building a TMR 'd computer with 7 section• took 

4. 5 times as much equipment as a correspondin1 simplex computer. 

The third computer, ARC I, wae de1igned by eeparating computer 

function• into group1for ease of implementing retry by hardware. The 

ALU lost its index and other re1i1teu, becomin& a unit for performin& 

arithmetic and loaic function• on 1iven operand• ( to facilitate micro 

in1truction retry). Extra hardware was a11umed for the retry, oper-

and 1tora1e for retry and extended checkin&. Thia ALU lo1t hardware 

in toto, and 10 the failure rate decline of tlil and other failure rate• 

are 1hown in column 2. oi Table 5 .1. The PCU aained the re1ilter1 

(index, etc.) which control the proaram, additional checkin1 circuit• 

and hardware to control diagno1tic1 and computer turn-on and brina-up 

(in1truction retry would be implemented here). The increment I i1 a 

parameter of the study,· and i1 the increment added to account for the 

ex.tra 1witchin1 circuitry when a unit is eegmented. The CCU'• hardware 

wa1 increa1ed becau1e the channel had independent retry control and 

additional diaano,tic facilities. The ROS logic hardware i1 increa1ed 

becaue of divided control and more checking abilitie1. The ROS i1 
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FAILURE RATES /106 HOURS FOR VARIOUS ORGANIZATIONS 

UNIT 

ALU 

PCU 

CCU 

ROS 
Logic 
Arrays 

MSTORE 
Lo1ic 
Arrays 

SSTORE 
Lo1ic 
Arra ya 

CLOCK 

POWER 

BUSSES 
Switch 
Status Reg. 

Table 5. 1 

SIMPLEX 

37.6 

32. 9 

18. 8 

23.5 
20 

47.94 
12 

47.94 
8 

4.7 

10 

ARC I 

28.2 

47 -t- I 

2 3. 5 ·+ I 

28. 2 
20 

48 .175 
12 

48 .175 
5. 31 

15 

. 06 X No . of terminal mod11les 

ARC 11 

32 

47 -t- I 

23.5+I 

32. 9 -,. I 
20 

49.35 
12 

49.35 
5. 38 

4. 7 + I 

15 

. l X No. of terminal modules X buss width 

6 
Failul'e Rate•/ 10 Hours for Various 
Organisation• 
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i s also segmented. The Main Store and Secondary Store lo1ic were in­

creased because of additional checking. The clock i1 1e1mented and 

TMR 'ed. 

The fourth computer, ARC II, was designed by makin1 certain 

of the ARC I module• tolerate one circuit malfunction 10 that a mini-

mum of two malfunction• are required before the module muat be re­

placed. { .f: 1 in the calculation,). The width of the ALU module• are 

increased from 8 bit& to 9 and one decoder i1 duplicated (see 1ection 

5. 7. 5). The increaie in failure rate, and all ARC II failure rat-., are 

11hown in column 3 of Table 5 .1. The ROS addre11in1 and core atoraae 

are ma.de error tolerant, a• deacribed in aection 5 .4 ,4 and the failure 

I 

' rat•• -ate,.meeea-- •f0ll't' .... 114Me r.aa1(i•'·-'ction 5 .4. 3). l 

The failure rate• for the bua•e• were eatimated from the hard-

ware necesaary to switch connector:, from one line to another• and 

record the change in a 1ta~u• reaiater (see Section 5.4.Z). 

~_3 The Simplex Computer T-he reliability of the almt,lex confiaura- • 

tion of Table 5.2 waa computed and the miaaion time that gave the re­

quired sy1tem reliability wa1 6. 59 hour ■. Thil correa_pond• to a Mean 

T ime Before Failure (MTBF) of 2200 hour•, or 4 failure• per year. 

When the 1970 failure rate, were a11umed, the miaaion time incr-,aaed 

to 8. 82 hours. At lower sy1tem reliability specification value, the 

minion time went up to 2 . 4 houri for R = . 99 and 112. 5 houri for 
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R = . 95. This ratio of 20 improvement in mission time, aa the relia­

bility requirements were lowered to . 95 is discuased later in section 

5. 3. 5 with a much lower change obtained with the ARC I (and ARC II) 

organizations. 

5. 3.4 The Triple Modular Redundant Computer The aame computer 

organized in a TMR manner of 15 segments has a mission time of 

181 hours. If no overhead for bussing, partitioning and voting is as­

sumed , then this value goes up to 271 hours. While these mission 

times are a significant improvement, they fall far short of the 

specified requirement of a 10,000 hours. A TMR design also requiree 

at least four times as much power as a simplex one I whic'h is a lia-

bility for space computers. 

5. 3. 5 The ARC I Computer A functional di ■ cription of the ARC 

computer was given earlier in this section. Fig. 5. 3 show■ the or­

ganization of these units and their buas connection•. The data path• 

are solid lines and the control paths are dotted lines. The small 

boxes below the 1witche1 represent statua regiatert1. 

The proce11 of determining an appropriate number of ■ pare 

unit■ to employ in a balanced design has been fully described in re­

ferencer BCRS, 67]. The configuration of ARC I i ■ given in 

Table 5. 3. Thi■ repre ■ ents a hardware increa■ e over the ■ implex 

deaign by a factor of 3. 5. The minion time achievable by thi ■ orga-
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nization is 9068 hours. In this computer printout NPOF stands for 

the normalized probability of failure, REL stands for the .r.,tliability 

and POF ( = 1 - REL} for the probability of failure. In RELs the - - -
digit before the N is the number of leading nines and in POF' s the 

digit before the Z is the number of leading zeros 

Several parameter runs were made, the fir st of which was 

to determine the influence of the overhead re qui red for segmenting 

a functional unit. The equation used to determine the failure rate 

of a module of a segmented unit is 

11 module = ~nit/ S) A 1 +I (S - l~~. 

The calculated reliability was then raised to the sth power to get 

the reliability of the unit. A value of .1 for I was assumed as the 

best ensrneering approximation. For values of I of O, .1, . 2 and 

. 3, the corresponding mission times became 9317, 9068, 8774 and 

8442. Thus an estimate which is wrong by a factor of 2 of the amount 

of hardware required for segmenting only changed the mission tirre 

by 3. 3o/e. 

The next parameter varied was the duty cycle. For values 

of D of .25, .50, .75 and l.00 the corresponding mission ti~s b e -

came 9068, 6614, 5142, and 4189 hours. 

The value of ,>,J~ is not known precisely so a parameter 

run was made varying this ratio. For values of K of ~O, 5, 2 and 1 
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mission times became 11188, 9068, 5694 and 3483 hours. The ad­

vantages to be gained by shutting power off on the spares are very 

large. On the other hand, the values of is still unknown . 

Also ,if the phenomena involved consist solely of temperature ef­

fects, then the value might well be different in a space environment 

than surface measurements would indicate. 

The component failure rate predictions (Table 2 .1) are lower 

for 1970than for 1968. A calculation employing these lower values 

gave an improved mission time of 12487 hours. This was about 

what was expected. Since the mission time T and the failure rate 

X. always occur as the product ~ T, in a ll formulae and approxi-

mations, a decrease by any factor in the failure rates will manifest 

itself by that same factor increase in the mission time. 

The mission time became 12427 hours with a s ystem relia­

bility of . 99 and 18551 hours with a system reliability of . 95. The 

ratio of improv(;ment of 2 contrasts with a rat.io of 20 obtained for 

a simplex computer. This reflects the fact that in the ARC orga­

nizations, the reliability is approximated by 1 minus a constant 

times X. T raised to a power which is 1 for the simplex computer 

and higher than 3 for the ARC I(see Eq. 4. 17 or 5. 1 ). 

The last parameter varied was the checker and diagnostic 

coverage C. As C degraded becoming succesdvely 1, .99, .98, 
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.95, .90, the mission time decreased from 9068 to 8572 , 8945 , 6348 

and 3720 hours. These results illustrate the importance of achiev-

ing very high coverage in both the dynamic checkers and the diag­

no1tics. 

These results are summarized in Table 5 .4. 

Mi11ion time• for ARC I Paramater Changes 

I T D T K T C T 

0 9317 .25 9068 10 11188 1.00 9068 

.1 9068 .so 66f.i" 5 9068 . . 99' 8572 

.2 8774 .75 5142 2 5694 .98 8045 

. 3 8442 1.00 "189 1 3483 .95 6348 
.90 3720 

• 
y T R T 

.997 9068 

1968 9068 .99 12427 

1970 12487 .95 18551 

Table 5. 4 Mil1ion Times for ARCI Parameter Change• • 

5.3.6 The ARC II Computer Next, the value of th, .. failure toler-

ranee parameter F was increased to 1 for the BALU, ROS, MS TORE 

and SSTORE to reflect the improved design• described in sections 

5.4.~, 5.4.4, and 5.4.5. Table s·.s shows the calculated results 

with theARC I config,.iration. An examination of the NPOF values 

for these improved units shows that they contribute nothing to the 

failure of the sy1tem, indicating too many spares. Similarly the 

large BPR (PCU-ROS) buss value indicates a weak point in this 
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_ ....... ___________________________________ ... , ... _____ _ 

design. The numbe rs of s pare units was reduced to thos e indicated by 
the configuration of Table 5. 6. While the amount of hardware per indi­
vidual unit i1 up (see Table 5 .1 ), the numb e r of units is down and the 
amount of bussing required is considerably less. The total hardware 
required for the ARC II is 2. 5 times the simplex computer and is 5 /7 
of the ARC I. Nevertheless, the mission time was improved, and the 
rea1on for this behavior is the smaller sized buss from the PCU to the 
ROS(BPR). 

Parameter runs similar to those Sllmmarized in Table 5. 4 
were made and the results are listed in Table 5. 7-

MISSION TABLES FOR ARC II PARAMETER CHANGES 
I T D T K T y T R 0 11450 .25 10879 10 13484 1968 10879 .997 
.1 10879 .so 7771 5 

T ..., 

10879 10879 1970 15897 .99 15537 
.2 10271 .75 6022 2 6762 . 3 9653 1.00 4909 1 4097 .95 24289 

Table ·5. 7 
Mlalion Table• for ARC II Parameter Change,. 

S. 3. 7 Balancina the Computer Configuration 
As mentioned ear-

lier in section 3. 6, the NPOF of a unit varies strongly with the num­
ber M of aparea provided. Table 5. 8 lish the NPOF' s of four units 
for both ARC l and ARC II configurations, first with one less spare 
each , then with the number designated in Tables 5. 3 and 5. 6, and 
la1tly with one mo re spare each. 
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M - l M M + l 

ARC 1 183 7.67 . 27 BALU 
ARC 11 53 .OS .00 

1 298 12. 73 .59 PCU 
11 424 21. 66 1.15 

1 64 4.60 .33 ROS 
11 229 9.54 .39 

1 71 18. 55 4.63 MSTORE 
11 292 12 .88 .58 

Table s. 8 Effect of Failure Tolerance· on ARC. 

As can be seen, the variation is stronger for the improved units 

and leas for the PCU which baa fewer spares in ARC 11 then in ARC 1. 

Thia behavior is explained by expressing Eq. 4 .17 by the following 

simplified equation, where B is slowly varying. 

Eq. 5.1 R Z°l-B(,,)T )(F+l)(M+l) , 

As can be seen, when F : 1, as for the improved BALU, a variation 

of l in M varies the exponent by 2. Therefore, while it might have 

previously been thought that the configuration of ARC 11 was ovep. 

designed by having too many spare BALU ' s, in a ctual fact this is 

not the ca1e, and the design is balanced as well as is possible. The 

BPR bun s till needs improvement. 
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5. 4 Engineering Specifications 

5. 4. 1 Introduction 

In this section a set of detailed engineering specifications 

will be given for units which posed reliability problems as 

shown by use of the REL program. These specifications are 

new, improved and more reliable w~ ys of designing units to 

meet the previously outlined functi )nal specifications. They 

are not complete engineering designs, but the essential parti­

culars to solve reliability problems are detailed. The first 

unit specified is the switchable h1~.erface-the key to implemen­

tation of a computer using stand-by redundancy to achieve 

reliability. Three kinds of interfaces: module-module, 

module-buss and buss-module are treated. Reliability tradeoffa 

are shown. The .second unit specified is a BOM-because of 

this modules relatively low intrinsic reliability. The modules 

are specified so that malfunctions in either core storage or 

addressing circuitry could be bypassed. These techniques are 

then applied to the ROS to achieve sufficient reliability. The 

nature of the ROS allows simplifications to be made. So far 

reconfiguration and multiplexing of equipment has been on the 

level of large functional units. The replacement techniques are 

then extended to encompass the design of the BALU. 

A merger of TMR with Sparing with reconfiguration (called 

TMR/Sparing) is specified. This has the advantages of provid­

ing 1) a uniform treatment for transient and solid failures 

2) immediate hardware detection for most failures, and 3) a 

reliability approaching that of sparing with reconfiguration for 

approximately the same amounts of hardware inve1ted. 
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When assemblages of circuits are being logically designed, 

a question which arises is, how many malfunctions will not be 

caught. by the checking circuits? If they are not caught, is 

erronuous information dessiminated? If no information is 

erront:ous, will a second malfunction be cau.ght, and what 

furth,:r implications must be considered? The sixth section 

sh ws a technique for designing decoders so that all malfunc­

ti•.ms will be detected. To do this, extensive use must be made 

of the program TEST DETECT. As shown by the tradeoffs, a 

mixture of checking and diagnostic tests are most efficient. 

The final section discus~es the design of har'dware to generate 

diagnostic tests (when activated by the ROS) and thus drastic­

ally reduce the storage requirements for diagnostic tests, 

especially when used with circuits designed using the techniques 

of the previous section. The hardware designed will test parity 

checking circuits efficiently. 

Each individual unit will now be described in detail. 
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5. 4. 2 Switchable Interfaces 

5. 4. 2. 1 Introduction 

The key concept of an Automatically Repaired Computer 

using stand-by redundancy is the replacement of the failt,d 

module by a stand-by spare. In order to maximally improve 

reliability the switches and status registers to implement the 

replacement and keep track of the present configuration must 

be efficiently designed. The fan-in/fan-out requirements are 

crucial. If m general purpose spare line• are used for q 

information lines, where each spare can rep ace any of the 4 

lines, then every one of the switches controlling the action of 

the m spares must have a fan-in of q and a fan-out of q. 

Adding powering requiremenh to this will clearly defeat the 

desired gain in reliability. 

The scheme us~d is to switch the ~ line to line j, j+l, 

j+2, ... , j+m, 0~ j ~ q . Since m is much leu than q 

(typically 1 or 3 against 9 to 36) this reduces the fan-out 

to manageable proportions and doe• not increa1e the power 

requirements much. 

Figure 5. 4 shows the case for qa:3 and m::112. The top diagram 

illustrates a simple implementation of the switching circuit. This 

implementation is for explanation only, and is not an example 

of a reliable • switch. The number of state triggers is choaen 

for simplicity of the switch. For example, if there is an error 

in B
2

, then the state triggers are set to 00, 01, 01 and 1
1 

i1 

connected to B 
1

, 1
2 

to B 
3 

and 1
3 

to B 
4

. 
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11 0 0 "' 01 11 

12 0 0 01 

00 

1 1 

01 1 1 

Figure 5. 4 Switchable Interface Illustration for q • 3, m • 2. 
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5. 4. 2. 2 Basic Analysis 

There are three basic ways in · 'Nhich information is trans­

ferred between units in ARC. They are shown in the following 

table: 

MAPPING 

1) Module 

Z) Bu11 

3) Module 

- Module 

- Module 

- Bu11 

LINES 

1 out of N -N 

M - N (M > N) 

N - M (N < M) 

The1e mapping• are performed by 1witche1 which are 

controlled by 1tatu1 reghter1. The ba1lc around rule1 for 

de1ignlng •witches h to delign the 1witch 10 that a failure ln 

the switch will disable only the device receiving information. 

In this ca1e the circuit i compri.aing the 1witch may be added to 

the circuit• in the receiving device for purpo1e1 of reliability 

calculation■• In general, the rule for constructing the ■witch 

at a device interface is that only the 1ource line• may be fanned 

out. No switch gate can have it1 output fanned out or a 1in1le 

gate failure will affect more than one module, 

1 • 

203 



5, 4. 2. 3 Simplex De sign 

5, 4, 2. 3, l Mapping Information fro, M odule t o Module 
l l 

In Fig. 5, 5 two identical modules in segment one, m 1, m 2, 

are being connected to two identical modules, m ~, m ~. in 

segment two. 1 he j
th 

output line from m 
1 

is denoted d ~J-• 

k l th 
Generally, d,. specifies a line which is the j- output from module 

lJ 

i in segment k. The status register has two states S , n = 1, 2, 
n 

depending upon whether module n is being used. The device status 

register SR is a two stage shift register with states 10 and 01. 

k The lines d , and the lines defining the states S , are 
ij n 

routed into the switches in front of each module. To get infor-

1 1 
mation from dll during state s

1 
or from d 21 during s2, t he 

1 1 
line dll i ANDed with s

1 
and d

21 
with s2 and these outputs 

are ORed t~ form the input information line r:1 , the first input 

line for module one in the second segment. 

To prevent one circuit from bringing down the system, 

there is no need to provide additional lines for intercon­

nection because a line going down simply means that one 

of the units connected to the line cannot be used further 

and a spare must be switched in. 

Uaing status registers with error correcting coding 

will provide more reliable mappings. However, the de­

signer must be alert to remember which data is being 

transferred. Many times the grouping of terms to replace 

equipment will result in the fundamental ground rule being 

broken and the design of a switch which is part of the 

computer hard core. 
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I, 

I 

2 
Module Ml 

1 
Module Ml 

- d,: .. 
d' ll I 

d:, I 
L d,1 

d~ I 0 
du .. ' G 

I 
C 

1, 
I 

1 d,1 
Module M2 I 

du I 
da, 
d;, 

I 
du 

' 
2 

I, 

Module M 

Same as Module M1 ' • 

Module SR 

Figure 5. 5 ARC l Reliability Calculation with Failure Tolerance. 
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5. 4. 2. 3. 2 Mapping Information from Buss to Modulr 

The difference between buss interconnection and direct 

interconnection between units is that if a buss line goes 

down, all units are down, and no spares can be switched in. 

Thus tu avoid hard core, there must be spare lines in the 

buss, The basic buss interconnection is shown in Figure 5. 6 

with three information lines and one spare. 

The gating function for each information line I l {j
th 

j 
input information line to the first module) is 

l -I. = b . S. V h. l S. 
J J J Jt J 

and the triggers S. defining the states are shown below. 
J 

Buss Line State 
Made Idle S1 S2 S3 Trigger 

b4 0 (, (, 

b3 0 0 1 

b2 0 1 1 

b 1 1 1 1 

If Eb . stands for the signal showing the detection of an 
1 

an error on buss-line b . , then the setting functions for the 
1 

S. are as follows: 
1 

Sl equals Eb 
l 

s2 equals Eb
1 

v-Eb ., .. 
s3 equals Eb vEb vEb

3 l 2 
The triggers S. are initial! y reset. 

J 
A stuck at one error in the switch circuitry shown will 

result in the receiving device being put in a failed state. 

A stuck at zero error can be circumvented by changing 

the buss status. 

An error in the buss status register clearly limits the 

pos s ible buss states. 
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SAME AS MODULE l 

Figure 5. 6 Buss-Module Switch 
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5. 4. 2. 3. 3 Maµping Information from Module to Buss 

The basic method followed is different in this case. The 

basic rule is that each input to the buss switch must have 

no fan out. 

A detailed logic structure is shown in the Figure 5. 7 

The buss lines are controlled as in the previous design. 

The device status register, SRD, is a three stage shift 

register with states 1, 0, 0; 0, 1, 0; 0, 0, 1. The output 

signals from switch l (SW l) are defined by 

1 j 1 = D/ j 1 J = 1, 2 or 3 • 

The signals 1.. are duplicated to avoid fan out from a 
. Jl 

single logic gate, since, for example, 1
11 

is connected 

to bo,th b
1 

and b 2 • A stuck at one error in SWB will 

incapacitate a buss line. A stuck at zero error in an AND 

gate can be compensated for by using another buss line or 

a different input unit. A stuck at zero error in an OR gate 

necessitates using anothr.: r buss line. 

A stuck at one error in a SWl AND gate necessitates 

using another buss line. A stuck at zero error in a SW l 

AND gate can be compensated for another buss line or a 

different input unit. An error on the output of a unit 

necessitates using another unit. 

The following Figure 5. 8. 1 shows how the two input AND 

gates determining the flow of the same information (eg 1
11

) 

can be elided to reduce the amount of circuitry. 
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Figure s. 7 Module to Bu11 Switch. 
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A second configuration, with three spares, will illustrate 

the problems well. 

For the purposes of the initial discussion of the reconfigura­

tion it will be assumed that the wi~th of the data buss is q and 

that m = 3 spare bit planes are included in the buss. This 

latter assumption is not a restriction to the scheme and modi­

fications to cover other than 3 spare lines will be di1cu11ed 

after the initial presentation. These bits are u1ed to record 

which line in the buss this particular data line is connected to; 

either its primary line or one of its three possible alternates. 

Figure 5.8.2 illustrate, the encoding scheme u1ed in the 

status regi1ter (SR) . The bitl in the status reailter a11ociated 

with data line a., denoted SR.
1 

and SR. 
2

, are shown inlide 1 1 1 

the table at row i. During initial operation, when no 1olid 

failures have occurred, all entries in the SI\ are zero. This 

mean• data line a. is connected to bu11 line b . i • l, ••• , q • 
1 1 

Now suppose buss line b. has been found to have a 1olid failure. 
. J 

Then all status register position• i > j have their ntrie1 

changedfrom 00 to 01. This leaves a
1

, •.• ,aj-l connected 

to b 1, ••• , \-l but connects aj, ••• , aq to bj+l' •••• , bq+l' 

thus by-passing the failed line b .• 
J 

Assume the second 1olid failure occurs in line bk and, 

since the order of occurrence is not important a1 far a1 the re:. 

sulting state of the !SR is concerned, assume j < k. Then the 

connections are: 
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• 

' • • • ' a. 1 J- - bl , ••• ,bj-1 

b j+l' • • • , bk-1 

b kt 1 ' " • " ' b q +2 

Finally assume 

become: 

fails with j < k < .l. The new mappings 

'•••'a. 1 J- -
-

bl , ••• ,bj-1 

b j+l ' • • • , bk-1 

bk+l' • • •, b/.;l 

~+l'"""'bq+3 

The sequence of status register contents and mappings for 

a bu11 with q = S and m = 3, subject to the failure sequence 

bS, b2, and bS is shown below. 

bl b b b b b b b 
.. ... - _ _ l_ __ ,l___ .:.S.. .. ~ .. . L 

01 
j = 4 

Initial After b4 Fails 

bl b2 b3 b 4 bS b 6 b7 b8 bl b2 b3 b 4 bS b6 b7 b8 
al al 

a2 01 ½ a2 '--r 
a3 L. 11 a3 

a4 11 L a4 

as 11 as 10 

J • 2 k•4 j :I: 2 k:i::4 • 5 

After b
2 

and b 4 Fails After b 2, b 4 and bS Fails 
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Although the preceding discussion was slanted towards the 

input mapping, an identical discussion is valid for the output 

!l ince they are duals. 

The switching in the network necessary to perform the 

mappings implied by the ISR is shown in Figures 5. 8. 3. In 

Figure 5. 8.3 only the end cells of the network are shown; the 

cells for b 5, •.. ,bq-l are similar to the ones for b 4 and bq. 

The logic was shown in terms of AND and OR gates in order to 

keep the networks as general as possible. However, conversion 

to established technologies provides no problem, e.g. in the 

usual transistor technologies b oth the AND and OR gates would 

be replaced by NANO gates with no resulting cha nge in transfer 

function. 

The sequence 00, 01, 11, 10 which was used in the status 

registers was selected only by convention. In any particular 

implementation the sequence could be changed wit_h no loss in 

the overall system. Although using more bits in the status 

register than would theoretically be required to record all 

possible n: .1ppings, the reconfiguration scheme described here 

has the advantage that it reduces the total equipment used in 

both the status register and the reconfiguration switch. Thus 

while more efficient encodings exist, the resulting i!lcrease in 

hardware required to decode these states more than offsets any 

apparent gain. Further, only two levf."ls of delay are inserted 

into the data paths. Finally, using a s hift of connections to 

by-pass a failed line uses far less circuit fan-out and associated 

powering than is used by having three general purpose spares 

each of which can replace any of the planes b 
1

, ••• , b q • 
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5. 4. 2. 3. 4 Generalizations to M Spares For the general 

case with q data lines and m spares it is necessary to have 

~ = [ log
2 

(m+l) Il bits per data line in the status registers. 

As before, the sequence of states used to define the mapping 

of each data Hne to its initial bit plane and m possible 

alternate positions is determined by the particular hardware 

implementation, i.e. using an extension of the sequencing 

employed in section 2 one might select 000, 001, ••. , 110, 111 

for the sequence to be used with m = 7, ~ :z 3 . 
~. 4. t.. 4. Z Status Register for Module to Module Connection 

The shift register will consist of two parts. The first is a 

core logic shift register using a ''ladder'' core technique. The 

shifting will be done on this core register, using a voting 

techni-1ue· (each input line will supply 1/3 of the energy necessary 

to shift the register). Ladder Core technique has the property 

that as a l shifts from one core to the next, the first core is 

set to a O by the physical circuit (multi aperture cores are 

used). The cores will store the state of the status register, 

The second part consists of electronic flip flops which can read 

the information from the cores, store it, and provide this 

information for use in the electronic switch. 

5. 4. z. 4 Error Correcting Design 

5. 4. z. 4. 1 General Method 

The switching units will be implemented using the redundant 

signals directly, so as to avoid fan out and the resulting hard C( re. 

The implementation of status registers will be examined 

more closely. If they are TMR 1 d the reliability ii; satisfactor :', 

but either much storage or much decoding is required. If error 

correcting codes are used, again storage may be traded off 

against decoding, or vice versa. 
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s. 4. 2. 4. 2. l Initial lmt'lementation An initial 

implementation uses TMR1d shift registers 

with the states 1, O, O; O, 1, 0; O, O, 1 . Tht initial setting 

line will set the state 1, C, u. The following drawings 

shows one of the TMR•d registers. 

SihFr 

/-------,.-------,~----~ 
.2 --------t~-------+--------....... -. 
3 rt I 

......... 
o,__....,.. 

s It. f 
Fr Fr 

The 3 TMR 1d registers will be written as 

GJ [a,~] [ab] 
S· J GJ [;] B 
~ I [Ci~] B 

where j • 1, 2, 3 refer to the appropriate section. There 

are 9 output lines. 
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5. 4. 2. 4. 2. 2 Second Possible Tradeoff 

l'he two stage shitt register with states 1, O; O, 1; 

1, 1 may also be TMR•d. If x
0

, x
1 

are the stages 

and E> is EOR, the implementation is as follows: 

X, 

The three TMR•d registers may be written as: 

There are six output lines, with the three states 
- -defined by TMRing the logical functions XO X l' XO X l, 

X l, X 
1 

. Only six storage elements are used, and three 

EOR•s. 
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5. 4. 2. 4. 2. 3 Third Possible Tradeo!f 

lfthe states 1,0,0; 0,1,0; 0,0,l on digits x
0
,x

1 
and X 

2 
are taken as basic an error correcting shift 

register may be implemented by adding three parity 

check digits x
3 

for X
0

, .X
4 

for X
1 

and X
5 

for X
2 

. 

The valid code vectors using odd parity are: 

XO 

l 

0 

0 

Xl 

0 

l 

0 

xz 
0 

0 

l 

X3 

0 

l 

1 

xz 
l 

0 

1 

XS 

l 

1 

0 

and the parity check matrix (following Peter1on) ii 

H• 

1 

0 

0 

0 

l 

0 

0 

0 

l 

1 

0 

0 

0 

1 

0 

0 

0 

1 

If G stands for exclu1ive OR (EOR) the 1hift 

register including correction digits is given by 

X, x,. 

The nine bits of TMR•d storage are replaced by 

six bits and six EOR• s . 
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The parity checks are given by pc
1 

= x
0 

EOR x
3

, 

pc
2 

= X
1 

EOR x
4 

and pc
2 

= x
2 

EORX
5 

Let X. st&nd for the corrected signals X . • The 
lC 1 

equations to produce these signals can be found from 

an examination of all possible single errors which may 

occur in the valid code vectors and the corresponding 

parity check signals. (The erroneous sj gnals are 

underlined). 

V PC 1 PC PC 

l lJ O O l 1 l l l 

(, 0 0 0 l l 0 l l 

l l O O l l l 0 l 

1 l, l u l l l l 0 

1 0 0 l l l 0 l l 

l 0 0 0 0 1 l 0 1 

l 0 0 0 l 0 1 1 0 

V PC 1 PC PC 

0 1 0 l O 1 1 1 l 

110101 0 1 l 

000101 1 0 1 

011101 1 1 0 

0 l 0 0 0 1 0 1 l 

010111 1 0 l 

0 l O 1 0 0 1 l 0 
-:--
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V PCl PCZ 

0 0 l l l 0 l 

l O 1 1 1 0 0 

011110 1 -
0 0 0 l l 0 l 

0 0 1 0 1 0 0 

0 0 l l O 0 1 -
0 0 1 l 1 l 1 -

= (x0/\ pc 1) v - -x
0

c pc l (X 1A Xz) 

x
1 

c • ( x1 I\ pc zJ v pc Z (XO,\ Xz) 
- -X

2
c • ( x 2/\ pc 3} v pc 3 (X(Y\ X1) 

• ( x 3A pc 1J V - -X
3
c pc 1 (X

4 
V X

5
) 

- -x.c -= ( x
4
/\ pc z) v pc Z (X

3 
V X

5
) 

• l x 51\ pc 3) v - -x
5
c pc 3 (X

3
VX

4
) 

The signals to be used in the switch are: 

XOc • XO X3 V 

Xlc • Xl X4 V 

XZc • Xz X5 V 

XO xl xz V xl x2 x3 - - - - -
XO xl x2 V XO x2 x4 - - - - -
XO xl x2 V XO xl x5 

l 

1 

0 -
1 

l 

0 

l 

PC3 

l 

l 

l 

0 

l 

l 

0 

Then there are nine signals (three for each corrected signal) the 
same as the number from the TMR•d switch. A double error 

may be detected if desired. 
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5. 4. 2. 4. 2. 4 Fourth Possible Tradeoff 

If a single two stage shift register with states 1, O; 

0, l; 1, 1 is used, then three parity check digits may be 

added. The correction equations become much more 

complicated. For example with check digits x
2

, x
3

, 

- - - - -x
0
c=x

0
x

2 
v x

0
x

1
x

4 
v x

0
x

1
x

4 
vx

1
x

2
x

4
v x1x2x4 

The small gain in storage ( l bit) is submerged in the extra 

switching. 

5. 4. 2. 4. 3 Switch for Module to Module Connection_ 

For a TMR 1d status register call the input lint:s a
11 

through c
13 

as defined previously. Figure 5,9shows the 

details of the logic structure. Clearly a single error in 

each stage of the TMR 1d status register can be tolerated 

if there is no error in the switch. Any error in the OR 

gates or a stuck at 1 in the AND gates will cause the unit 

to have to be switched. A stuck at O will cause no 

problems until there is an error in the status register, 

where 2/ 3 of the time it will cause the units to be 

switched. The terms a
11

, b
11

, c
11

, etc. may be re­

placed by any other terms defining state l in an error 
0-0 

correcting way. For examplt: a
11 

by X
O 

X 
1 

, b 
11 

by 

X~ x: , c
11 

by X~ x:
1

2 
in which case five input AND 

gates would be needed or a good voter circuit. 

In another implementation a
11 

could be replaced l>y 

- - -x
0
x

3
, b

11 
by x

0
x

1
x

2 
and c

11 
by x

1 
x

2
x

3 
etc. 

This requires four input AND gates. There are many 

choices,all implementation dependent. 
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5. 4. 2. 4. 4 Status Register Switching Buss Lines with Three 

Spa re s t o a Module 

Let there be w information line s . Each information 

line i . may be connected to one of four buss lines b ., 
J J 

b. 
1

, b.+
2

, b. 
3 

. If the first error is in buss line b. 
J+ J J+ J 

then the information lines i. k' k•O ... , w-j must be con­
J+ 

nected to buss lines b j+k+l . Let the second error be in 

buss line b if v< j-1, then lines i , k=O, ... , j-v-2 
v v+k 

must be connected to lines bvtktl while lines ijtk' 

k=-1, 0, 1, ... , w-j must be connected to lines bjtk+2 • 

If v•j-1, then lines i . k' k= -1, 0, 1, ... , w-j must be 
J+ 

connected to lines b. 
2 

. If v > j , then all lines 
J+k+ -

i vf-k'• k•O, ..• , w-j must be connected to b vf-k+2 • The 

cases may be summarized in the following table : 

Information Lines 
No 

Error 

i 
j Error 

Connected Buss Lines b . 

b. 
J 

i • b 
a ' a 

a< j • b • a 

Errors 
b., b 

J V 

v~ j-1 

a< v; b 
a 

J 

v~j 

a< j ; b 
a 

v<a<j-l;b 
1 - a+ j~a<v-l;ba+l 

µ ~ j-1 

a<µ ; · b 
a 

µ~a<j-1 :; ba+l 

j-1 ~ a< v-2 ; b a +l 

j-l<a·b 
' a+2 

Errors 

b., b, b (assume j < v without loss of 

J v µ generality) 

j~µ~ v-1 

a_<j-1 ·b • a 

j~ a <µ-1 ; batl 

µ-1~ a< v-2; ba+l 

224 

j < v< µ 

a ~ j-1 ·b 
• a 

j~a<v-1 ;ba+l 

v-l<a<µ-2;ba+l 

µ-2 < a· b 
- ' at3 

.. 



C I 

c· IJ 

c,;,., 

.. 

The status registers will be made of multi-aperture cores 

as before, and there must be four poosible correct states of 

each register. If there are w inform~tion lines in the buss, 

then there will be w such status registers. The shift signals 

for the w registers will be derived from three registers 

c 
1
, c 

2 
and c 

3 
each of length w {these registers will have 

other uses). A one in the j~ position in c
1

, c
2

, c
3 

will send 

shift signals to the 3 j status registers. See the drawing 

below (for the status register with states l, O, 0, o, 
0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1) • 

Ca. c., I 
I . 

~ . - ' ' c,; CJ, ..... 

-~ 
! ~ ~ 
~ 

... ""I ·-

~ 
I H ~ 

,., ~ 
-H I H • ... ~,,, cy,, 
~ .. H 

j , H 
' 

~ - a 

H 
-- ' ' 

I 
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The status registers will b? set to their initial state. The 

• SR h • th • h ' f • notation . means t e 1- mt 1s set o status registers. 
l 

The shifting of the •3tatus registers will be controlled by a 

microprogram in the ROS, and by the contents of those (tri­

plexed) registers 1
0

, \, and 1
2

. When information line ij 

is determined to be in error because a buss line is down, the 

number of the information line, j, is put into the register 1
0 

and control is transferred to a micro-program in the ROS. 

The work to be done is the following: 

First error 

Second error 

Third error 

Error is at location j, shift all registers 

SR where y ~ j . 
y 

Store j. 

Error is at location v, shift all registers 

SR where y > v. Let z = max (v,j)-1, 
y -

shift SR • Store v, j in order of 
z 

magnitude as b
1

, b
2

• 

Error is at location µ. Shift all 

registers SR where y ~ µ • Let 
y 

z = max (b
1

, µ) -1 . Shift SRz. Let 

t = max(b
2
µ)-2. Shift SRt . 

A possible microprogram to perform the switching of buss 

status registers will now be given. The contents of 1
0

, 1
1 

and 

1
2 

at the end of each error correcti on step will be given below. 

Step 1 

10 j 

1i j 

12 j 

Step 2 

V 

bl 

b2 

Step 3 

µ 

max(b
1

, µ) 

max(b
2

, µ) 

The following 

information will be stored in w bit words in the ROS. 

C(X) means the contents of memory locatiou x. 
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S01 1 0 0 ... 0 

S02 0 1 0 . • • 0 

sow O O O •.. 1 

SDl 1 1 l •.. 1 

SD2 0 l l •.• 1 

SD3 0 0 l .•• 1 

SDw 0 0 0 .•• 0 l 

Tl Transfer C(SD1
0

) into c
1

, c
2 

and c
3

, 1hiftlng 

T2 

T3 

T4 

TS 

T6 

the appropriate 1et of 1hift regilter■ 

C(SRW) • 0010 - go to TZ 

C(SRW) 11: 0010 - go to T3 

C(SRW) • 0001 - go to T6 

11 - c(l
0

), 1
2 

-c(l
0

), go to END 

c(l 0) ~ c(l
1 

), go to T4 

c(l 0) > c(l
1 

), go to TS 

1i - c(l 0), go to · T9 

12 - c(l
0

), to to T9 

c(l
0

) ~ c(l 1 ), to to TlO 

c(l 1 )< c(l
0

) < c(l
2

), go to T7 

c(l
2

) < c(l
0

), go to TS 

T7 11 - c(l 0), go to Tl 0 

TS 11 - c(l 0), 12 - c(l
0

), go to TIO 

T9 x - c(SD1
2

) -1 

Transfer C(SD0x) into c
1

, c
2

, c
3

; shift the 

appropriate shift register, go to END. 
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Tl 0 • 
Transfer c(SD0x) into c

1
, c

2
, c

3 
and effect shift, 

go to Ti l 

Tl l x-c(SDl
2
)-l, goto T l2 

Tl2 x-x-l 

Transfer c(SD0x) into c
1

, c
2

, c
3 

and effect shift, 

go to END. 

5. 4. 2, 4. 5 Status Register Implementation for a Buss 

Since ea·ch information line may be connected to one 

of four buss li-nes, jf there are w information lines 4w 

states must be identified. 

A first implementation is with a four stage shift 

register, each of whose states is TMR 1d. The states are 

defined by 1, 0, 0, 0; 0, 1, O, 0; 0, 0, 1, 0; and 0, 0, 0, 1. This 

design simplifies the switch for the buss to device or 

device to transfer, uses l Zw stages of shift register 

storage for w information lines. 

A second implementation notation is to consider the 

three stage shift register (x
0

, x
1

, x
2

) with the following 

four states : 1, 0, 0; 0, l, 0; 0, 0, l; l, 1, l . Add check 

digits x
3
, x 

4 
a"ld x

5 
and the following parity checks: 

pcl = XO EOR X3 

pcz = xl EOR x4 

pc3 = xz EOR x5 
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If odd parity is used the following code vectors 

are valid: 

l 0 0 0 l 

0 l 0 1 0 

0 0 1 1 1 

l l l 0 0 

l 

l 

0 

0 

A shift register to give these vectors is the follow­

ing, using & for 'EOR. 

X, 

l 

The initial state must be 1, O, O, O, 1, l • Six 

storage elements and eight EOR logic devices must be 

used. 
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s before the corrected signals may be written as x . 
lC 

and their equations derived from a study of the possible single 

error vectors. 

xOc =( xO pc 1) V pc
1

(x
1
x

2
V xl x2) 

X l C =( X l pc 21 V pc
2 

(x
0
x

2 
V x0x2) 

x2c :::(xz pc3) V pc 
3 

(x
0
x

1 
V XOXl) 

- - -
xOc = x0x3 V xOxl x2 V x0xlx2 V xlx2x3 V xlx2x3 

- - - - -
xlc = xlx4 V xOxl x2 V x0xlx2 V XOX2X4 V XOX2X4 

- - - -x
2

c s x 2xS V x0xlx2 V xOxl x2 V XOXl XS V XOXl XS 

In this case, the correction signals are more complicated than 

the TMR 1d case, but the storage requirements are smaller. 

A third implementation is to consider the four stage shift 

register (x
0

, x
1

, x
2

, x
3

) with the following four stages 

l, O, O, O; O, 1, O, O; O, 0, 1, O; O, O, O, 1. Add check digits 

x4, xs• x6' x7 and the following parity checks 

pcl = XO EOR x4 

pc2 = xl EOR XS 

pc3 = x2 EOR x6 

pc4 = x3 EOR x7 

(no lesser number of stages gives an appreciable saving). 

The valid code vectors are the following: 

1 0 0 0 0 1 1 1 

0 l 0 0 1 0 1 l 

0 0 1 0 1 1 0 l 

0 0 0 1 l 1 1 0 
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X, 

The initial storage status must be 1, O, O, O, O, 1, 1, 1. 

The corrected 1ignals are a1 follow■: 

X : 
Oc xOpcl V pc 1 (il iz i'3) 

xlx • xlpcz V pcz {io iz i'3) 
X :r:: 

2c x2pc3 V pc 3 (io il i3) 

x3c • X3PC4 V pc 4 (io il iz) 
- - - - - -X • Oc XOX4 V XO xl Xz x3 V xl Xz x3 x4 - ··- - -X :a: 

le xlx5 V XO xl Xz x3 V XO Xz x3 X5 
- - - -

XZC • x2x6 V XO xl x2 x3 V XO xl x3 x6 - - - - - - -
x3c • x

3 
x

7 
V xO xl xz x3 V x

0 
x

1 
x

2 
x7 

The implementation using least storage is a TMR1d two 

stage 'l"ing counter. The states are defined by O, O; 1, O; 0, 1; 1, 1. 

This uses 6 w stages of storage for w information bits. 
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5. 4. 2. 4. 6 Switch for .Switching Buss Lines with Three Spares 

to a Module 

Each element of the switch is straightforward 

(given the previous work). The only problem is the 

t d ff • l d C • d h ·th • f • ra eo s invo ve . onu er t e J in ormatlon 

line and the four buss lines b ., b. 
1

, b . 
2

, b.+
3

, 
J J+ J+ J 

which may be connected to it. Each buss line may be 

connected to three other information lines {b . to i. 
3
, 

J J-
i. 

2 
or i. 

1 
etc. for all positive indices). The 

J- J-
buss fan outs will not be shown. In addition each buss 

line must go to all devices to which it is attached. 

L h .th . b . et t e J- TMR'd status register e written as: 

SR . 
J 

The necessary logic detail for the switch is 

shown in Figure 5. l O. 
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b 
j 

b . 1 J+ 

b 
j+2 

a• . 
J 

b•. 
J 

c• . 
J 

2 
a. . 

J 
b2 

j 
2 

c. 
J 

3 
aj 

3 
b. 

J 
3 

c. 
J 

4 
a . 

J 
b4 

j 
4 

c. 
J 

Figure 5. 10 
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As before, a single error can be tolerated in each stage 

of each SR . if there is no error in the switch. An error in 
J 

the OR block or a stuck at 1 in an AND block will cause the 

unit to be down. A stuck at O in an AND block will cause no 

error if there i s no error in the status register stage. If 

there i s an error in the status regi ster stage there is a 2/ 3 

chance that this will caus,• an error in the device. This can 

be corrected by using a ·,1 alternate buss line or by using another 

module. 

If the three stage shift r egister is used for a buss status 

register, then the 3 three-wayAND blocks at each line b. 
J 

must be replaced by five four way AND blocks. 

If the four stage shift register is used for a buss status 

register then the 3 three-way AND blocks at each line b. 
J 

must be replaced by 3 five-way and bloc ks (or however they 

are implemented). 
1 

If the TMR1d two stage ring counter is used then a . is 

1 d 0 - 0 1 1 - 1 1 b 2 - 2 J l'h' 
rep ace x

0 
x 

1 
, bj by x

0
x

1 
and c j y x

0 
x 

1 
. 1s 

direct implementation needs 3 five-way AND circuits - however 

better TMRing can probably be done. The savings in storage 

(50%) is impressive. However, only one error per shift 

register, not one error per stage, can be tolerated. 

Tradeoffs will depend upon technology, circuit implementa­

tion, and possible reliability requirements. Seven extra buss 

lines could be handled with six bits of storage per informa lOn 

line, but plenty of switching. 

234 



'I 

' 

------------

5. 4. 2. 4. 7 Switch for Switching a Modul_e to a Buss 

Line with Three Spares 

In order to avoid a hard core this takes lots of c 

circuits. Figure 7 will show one information line 

from one of these devices and this line will connect 

with one of four buss lines as labeled. Both the de­

vice and buss status registers will be assumed to be 

TMR 1d single shift registers. 

Each output line 1.. from the device now drives 
11 

four identical sets of 3 t.hree--way AND gates (12 in all). 

The input to the buss line consists of ORing together 

the output from four sets of lines with the activated 

set of controls from TMR 1d Buss Status Input defining 

one of four states. (See Figure 5. 11) 

The inputs to b
4 

consist of TMR 1d lines 1
14 

from line 4, unit 1, TMR 1d line s 1
24 

from line 4 

unit 2; and TMR• d lines 1
34 

from line 4 unit 3 • In 

state l, any inputs from these lines go out onto the 

buss. The input& which are used depend upon the state 

of the module status register. In state 2, inputs come 

from line 3 from the e.ppropriate unit; in state 3 from 

line 2 and in state 4 from line 1. 

The possibilities for tradeoffs are many, and 

depend upon the technology. The problem is to avoid 

creating hard core by fanning out to several modules. 

In the diagram shown, an error in 1
14 

output line 

from module l or 1
14 

input line to the buss would 

result in 1
24 

being used, and so unit 2 will be 

activated. An error on b 
4 

would result in b 
4 

being 

skipped and 1
14

, 1
24 

and 1
34 

being attached to 

buss b
5 

(whole status register would then be in state 2). 
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TMR•d 
MODULE 

•' -----1--1-
b• ___ ....,-+--( 

C' 

STATUS 
lt,CP UTS 

J4 

STATE 

STATE l 

131~ 

TMR•d BUSS 
STATUS REG. 
INPUTS 

STATE 4 

Figure 5. 11 Switching Module to Buss with 3 Spare• 
( 1 lnf orm ation Line). 
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5. 4. 2. 4. 8 The Buss Line Number Problem 

This design, if implemented directly would need the 
number of buss lines shown in the diagram below. 

PCU q + 3 
BALU 

Busa SR 

Clearly this can be partially solved by replicating the 
Buss SR with each Wlit. More work will be performed to 
evaluate this problem. 
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5, 4. 3 Error Tolerant BOM•, 

5. 4. 3. l Introduction 

Because of the BOM module's low intrinsic reliability, the 

modules were changed so that malfunctions in e1ther core 

storage or addressing circuitry could be bypassed. 

A majority of H.e failures in a digital computer storage 

module manifest themselves as an error in a single bit position 

of all words read out of the module. Error correcting codes 

(Hamming, block codes, etc. (P eterson, 6li have proven 

useful in combating this problem, especially in the area of 

transient failures. However, such an encoding scheme be-

comes very inefficient once a solid error has occurred: even 

though the site of failure is well known, the data must always 

be run through the corrector before use, thereby wasting time, 

and subsequent new failures will cause the coding to miss errors. 

The probability of incorrect correction of malfunctions must also 

be dealt with. 

5. 4. 3. 2 Basic Configuration 
' ( 

5. 4. 3, 2. 1 Core Storage Reconfiguration The first part of this 

specification describes a scheme employing spare storage bit planes, 

reconfiguration networks, and status registers which can be used 

with error correcting codes to extend their effectiveness or be 

used with diagnostic tests to extend the useful life of a storage 

module. 

Figure 5. 12 contains a block diagram of the type of storage 

system to be dis c: ussed. The ~asic 9perating ~odule (BOM) may 

contain any writable storage medium, e.g. cores, plated wire, 

thin film, flip-flop, etc. At the input to the BOM there is an _!nput 
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Output Data 

Basis Configuration for an Ultra-Reliable Storage Module 

Figure 5. 12 

239 

1 



I 
1· 

~econfiguration ~etwork (IRN) and its associated _!nput ~tatus 

~egister (ISR). Similarly, the output has an 9utput ~econfigura­

tion ~etwork (ORN) and 9utput ~tatus ~egister (OSR). Attached 

to the output buss there may or may not be an error corrector, 

depending on whether or not the data is coded. The structure 

of the a ddressing circuitry will be ignored .mtil section 5. 4. 3. 3 • 

The 1tatus registers and reconfiguration network are good 

examples of switchable interfaces between modules and a buss of 

width ,+m. These switches and registers were discussed pre­

viously in sectionS.4.2.3.2 and 5.4.2.3.3 .. 

5. 4. 3. 2 .. ~. Strategy for Reconfiguration As a first case assume 

error correcting codes are being used. Then as soon as a solid 

failure is located, the ISR is changed to its new state, the OSR 

remaining unchanged. Next, each word in memory is read out, 

corrected by passage through the corrector, and then returned 

back into the same word location. Finally the contents of the 

ISR is transferred into the OSR. The result of this operation is to 

correct and shift each word in the reconfigured BOM, thereby 

removing the faulty bit plane and data from subsequent use by the 

computer. 

If error correcting codes are not being used, the solid failures 

are located by diagnostic tests. A software recovery procedure 

should be initiated to reestablish the data in the failed BOM. Re­

onfiguration now becomes a one step process; the ISR is changed to 

its new state. In this mode of operation the ISR and OSR are always 

identical so only one such register is required. 

In mo :c. t practical computer applications the frequency of 

storage failures is low enough so that reconfiguration via changing of 

the status registers only occurs after relatively long time periods 

240 



(on the order of several days). For this reason high speed 

access into and out of the status registers and special circuits 

to compute their new states is not required; i.e. the computer 

itself can perform the computation and feed the new state into 

the register serially. 

5. 4. 3. 2. 3 High Reliability The reconfiguration scheme 

described in this disclosure permits correct operation of a 

storage device even after multiple bit failures have occurred in 

the BOM. Since simultaneous multiple failures have an ex­

tremely low probability of occurrenc~, thi1 means a single error 

correct.ing code can be made to look like a multiple error 

correcting code with no increase in complexity of the encoder­

decoder and a minor increase in the number of bit planes in the 

BOM. Further, after a solid bit failure occurs the immediate 

reconfiguration permits continued operation with no time degrada­

tion since the data no longer has to pass through the corrector 

before use , When error correcting codes are not used, one still 

has the adv.intage of being able to use the BOM after it has 

several bit failures. 

The ability to tolerate failures and still function provides 

extremely large gains in reliability for the BOM. If P is the 

probability of a single bit failure and m spare plane, exi1t, the 

probability of the BOM becoming defunct because of bit failure, 

is Pm+l . If, for example, a BOM with three 1pare bit plane, ha1 

P -::;.. 01, this means the probability of the reconfigurable sy1tem 

failing because not enough good planes exist is • 000000001. 

Essentially, bit failures in the BOM, which were the moat 

probable, can now be ignored in the reliability calculations. 
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The reliability of the storage device becomes the 

reliability of the addressing and reconfiguration circuitry. 

5. 4. 3. 3 Dynamic Storage Address Blocking to Achieve Error 

Toleration in the Addressing Circuitry. 

5. 4. 3. 3. 1 Basic Configurat~ J This section will illustrate 

a method for automatically corr!'tiYuing u Be of many of the words 

in a main store after part of its addressing circuitry has 

failed so ~.s to preclud,, correct accessing of a subset of the 

words. To do this, extra circuitry will be added at the address 

input section of the store. Well known methods can be applied 

to improve the reliability of such circuitry, whereas none 

exists for the actual storage devices. 

The addressing structure of the high availability store is 

organized around an existing ~asic Operating ~odule (BOM) as 

shown in Figure 5. 13. The ~ddress ~egister (AR) receives 

the input address from the central processing unit. The switch­

ing network generates an effective address which does not access 

any of the BOM addresses lying within a previously determined 

failed block. This effective address is placed into the ~ffective 

address ~egister (ER) for actual BOM i\ddressing. The switch­

ing netwnrk is indirectly controlled by information derived from 

the ~ddress ~locking ~egister (ABR) and the ~ask ~egister 

(MR). The contents of these two registers will be described 

■ ubsequently. The switching logic is directly controlled by 

register B, which contains the Block definition bits (i.e., the -
bits in ABR which correspond to 1 1s in MR) and by the con-

tents of the ~tatus registers (S). There is one S for each entry 

in B. The AR, ER, ABR, MR, and S are all q bits wide. 

The funct;_on of the switching network and control registers will 
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BASIC 
Mask Rf lster OPERATING ( M ) MODUll 
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BOM Address Reconfiguration 

Figure 5. 13 
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become more clear after an example. 

The ABR and the MR are used to define the loc a tion of 

eac h block of addresses which has previously been determined 

(by diagnostic testa or checkint1 witht diagnostic circ uitry) to 

produce erroneous outputs due to the exista nce of failures in 

the accessing. These blocks are not to be. addressed, and are 

defined by the contents of the MR and ABR. The MR contains 

l 11 in the bit positions which define the block, eg those bit 

positions whose values have been constant through all previous 

malfunctions. In those positions where the bits in the MR are 

1, the ABR contains the corresponding bit values; where the 

MR bits are zero, ABR can contain only value. 

5. 4. 3. 3. Z Example, q = 5. For example, in a 5 bit address 

BOM assume tests have found malfunctions in the addresses 

8 ( 01 000) and 28 ( 11100). 

The MR will contain 01011 and the ABR will contain 01100. 

This register f&ir define• the blocked locations to be those 

addresses which are specified by: 

i. e. 

:xl:xOO 

01000 

01100 

11000 

11100 

or address locations 8, 12, 24, 28 respectively. All other 

addresses can be used. 

The tes.t which can be used to examine an address for 

falling outside a block is, in Iverson notation, 

V /MR/\ (AR ,j. ADDRESS). 
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It is important to real.i.ze that when blocks are defined 

using this scheme, the address locations are~ necessarily 

physically contiguous nor do they correspond to sequential 

addresses. They do, however, correspond to locations which 

would be logically grouped together by a failure in the addres­

sing circuitry of a BOW T e '1umb r 0f s\1r-h ~P, gi stfir pairs 

depends on the span of the address space and the desired 

reliability; as each becomes larger more pairs would become 

necessary. 

The algorithm for determining the contents of the ABR 

and MR, after a failure, is defined recursively. When the 

first failed address is diagnosed it is placed in ABR and MR 

is 1et to all l's. After the k~ failure, MR is respecified to 

be 

MR/\(ABR • FAILED ADDRESS) 

while ABR becomes 

ABRI\F AILED ADDRESS. 

F-0r a BOM, the addresses used by the program (in the AR) 

must be sequential, and the addresses used by the ER mu1t 

be outside the blocked l0ications. The contents of the 51 s and 

B control the switching utwork to perform this transformation. 

The contents of the i th status register, 5., is determined 
• I 1 

by the position of the ith l in MR (counting from MR
1 

to 

MR q) • If this l occurs at MRk then, denoting the /h entry 

in S. by s
1

. , 
1 J 

S .. • l 
lJ 

s .. = 0 
lJ 

j = 1, ••• ,k 

j=k+l, ••• ,q. 
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If MR does not contain at least i ones, S. is set to all 
1 

ieros. Similarly bit Bi in B, which corresponds to Si' is 

set equal to ABRk where k is as above. The next two 

sections show that using this particular method of defining 

S. and B. simp1ifies the address mapping algorithm and its 
1 1 

associated circuitry. 

Continuing the previous example, the three status registers 

will have the following contents. 

51 11000 

sz 11110 

S 11111 
3 

and B will contain 100. • The S. and B will be used as 
1 

follows to define the mapping from AR to ER. 

Case 1. Let the program addresses range from 0 to 15. 

To get the ER addresses put the negation of the contents of 

the first bit position in B (in this case 0) into the bit position 

corresponding to the last 1 in s
1 

(in this case position 2) 

and map as shown. 

AR 

ER 

In numeric values, 

AR - ER 

0-7 0-7 

8-15 16-23 
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Case 2. Let the program addresses range from 16 tO 23. 
To get the ER address use registers s

1
, s

2 
and the values 

in the first two bit positions in B to define the following 
mapping. 

1 0 

/ 

AR 

ER a ..... b =l 
2 1 a" b =l 3 2 

In numeric values 

AR - ER 

16, 17 1 o, 11 

18, 19 14, 15 

20, 21 26, 27 

22, 23 30, 31 

Case 3. Let the program addre1ses range from 24 to 27. To 
get the ER address use registers 5

1
, 5

2
, s

3 
and the value, 

in th,~ first three bit positions in B to define the following 
mapping. 

AR 

ER 

In numeric _values 

AR - ER 

24 9 

25 13 

26 25 

27 29 
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Case 4. If the program addresses equals or exceeds 28, 

overcapacity is signalled. 

AR l l l a
3 

a 
4 

OVERCAPACITY 

The example in Figure 5. 14 illustrates the register 

definition and address mapping described by this algorithm for 

the case where only two status r egisters are present. The 

remainder of Figure 5. 14 illustrates the contents of the 

registers, the blocked locations defined by ABR &. MR, the 

mapping of the 2.4 permitted input addresses, and the four 

good addresses unused by the algorithm. (The reason the 

latter exist is because only two instead of three status r~gisters 

were used in this.) Now assume another failure ·occurs at 

addre11 location 14 in the BOM. Then ACR and MR are modi­

fied 10 a1 to generate the new set of registers and mappings 

1hown in Figure 5. 14b. Now there are no unused good 

addresses since the number of l Is in MR equals the number of 

status registers. Again the address mappings performed by 

the a.witching network are given. 

5. 4. 3. 3. 3 Algorithm for Address Mapping Figure 5. 15 

1hows a sample ABR and MR for a 12 bit address together with 

the s
1

, s
2

, s
3
, and B generated from them. If more than 

3 status regist rs existed, all S. for i > 3 would be set to 
1 

zero. 

Figure 5. 16 shows how the S. of the previous example 
1 

are used to perform the mapping from AR to ER. 
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.._....:.:. ___ .,... __ ...., ____________________ -------- ----

1 2 3 4 5 6 7 8 9 10 11 12 

I- 0 1 1 - I 

(o o 1 0 0 0 0 1 0 1 o o I 

( 1 1 1 1 1 1 1 1 1 l 0 0 ] 
[1 1 1 1 1 1 1 1 0 0 0 0 I 
(1 1 1 0 0 0 0 0 0 0 0 0 ] 

[ 0 l 1 I 

Bgure 5.15 Contents of Control Registers 
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l 2 3 4 5 6 7 s 9 10 

l l l l l 1 1 1 1 1 

1 1 1 1 l 1 1 1 0 0 

l 1 1 0 0 0 0 0 0 0 

.. 
Case 1 

0 a4 a5 a6 a7 as a9 alO 
s1 

a4 a5 a6 •1 as a9 alO 1 

Case Z 

1 

Sl, Sz 
a3 

Case 

Case 4 

1 1 

{ Overcapacity . } 

Figure 5.16 Example of Address Mappings 
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0 0 
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all alZ 

•11 alZ 

s3 

s., ... 
Sl 

AR 

ER 

AR 

ER 

AR 

ER 

AR 



_____________________ ....,,,_ 

Case l a 1 :.:0. The contents of s
1 

is qsed to m ap input 

addresses from O to 2
11 

-1 to the unblocked locations speci-

fied by xxB l xx.xxxxxxx. A 1 bit at position s
1

k means a 

ak is to be shifted to ek- l; a 0 means ak goes directly t 0 

ek. High order bits are shifted out and dropped. At the point 

where the transition from 1 to 0 occurs in s
1

, i.e. where 

value is inserte d into 

ek in order to insure that ER is disjoint from the blocked 

loca tions. 

Case 2 a1az=l0. 
11 11 10 

Addresses from 2 to 2 + 2 -1 are 

mapped into locations xxB 
1 
xxxxB 

2
xxx using s

1 
and s

2 
. 

The amount each ak is •hifted is now determined by the 

change o.f value points in s
1 

and s
2 

respectively. 

Case 3 a 1a 2a 3 s 110, These leading digits characterize the 

addresses ranging from 21 l + zl O to zl l + zl O + 29 -1 which 

5
1

, 5
2

, and 5
3 

map to the unblocked addresses specified by 

xxB 
1 

XXX1B 
2
xB 

3
xx. The shifting and bit insertion follows an 

extension of the previous algorithm; bit shifting is determined 

by the number of ones in 5
1

, 5
2

, 5
3 

and bit insertion by the 

~hanges in value. 

Case 4 a 1 aza3 • 111. The address in AR is beyond the 

allowed range for the failed BOM so an overcapacity is 

indicated. 

In the general case where r status registers are avail­

able, the following algorithm prescribes their use. When no 

failures exist, all 5 . i -= l, ••• r are set to zero . . Now 
1 

assume a· failure has occurred, MR has been defined, and 

that MR contains n ones. Let m be the minimum of 
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n and r. Then all S. i > m are set to zero while the S. for 1 1 
i < m are defined as prescribed in the previous section. The 
values of B 

1
, ..• , B m are also specified as in the previous 

section; if m < r then B . i > m are arbitrary. When an 1 
address is entered into AR and the first m bits · are 1, an 
overcapacity is signalled. Otherwise, if j is the length of 
the sequence of leading l's, i.e. a

1 
/\ ... /\a./\a z 1, 

J ·+1 status registers s
1, s2, .•• 5jtl and bits B 1,a 2/ ..• ,Bjtl 

are used to perform the shifting and bit inse1·tion. Again the 
length of the shift of ak is equal to the number of l's in 

5li, •.• , 5j+li and the point where bit Bi is in1erted is at 
the location k where 5 i k S ,&+1 = 1. Only the bit B m is 
inserted complemented. This algorithm will allow input 

m . 
addresses from O to ( I: zm-1)- l to be used in the BOM. 

i= 1 
For a q bit addreu 2q word BOM, use of 5

1 
alone 

permit• zq-l words to be available up until 1uch time a1 
enough failures occur 10 that MR contains no ones. If two 
regist_ers 5

1 
and 5

2 
are used, it is poasible to access 

zq- l + zq-Z locations until MR contains exactly one 1, at 
which time 5

2 
is not used and only zq-l locations can be 

addreased. In general, if there are r registers it is possible r 
to access E zq-i locations as long a1 there are r one• i=l 
in MR. It is important to realize tt:at as the number of the 
register• increases ·the incremental inves_tment in adding an 
extra registier produces an exponentially decreasing incre­
mental gain in addressable storage. For example, in an 
SK BOM, 51 allows 4K to be used after the first failure, 
adding 52 allow• 6K to be used, adding 5 3 allows 7K to be 
used, etc. Thu1, it i1 felt only a few such regi■ter1 will be 
employed in practice. 
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5. 4. 3. 3. 4 Switching Network Implementation. The 

equ~.tions describing the switching network when one status 

register is used are shown in Figure 5. 17. A general circuit 

implementation for the i 
th 

cell of the network is also given. 

Figures 5. 18 through S. 20 illustrate the structure of 

the switching netwol"k when two status registers are employed: 

this structure is easily generalized for r > 2. The variable 

B 
1 

V is the value of B 
1

, either true or complemented, which 

is to be used in forming ER, i.e. when only s
1 

is involvt,d in 

forming ER, B 
1 

is used; when both s
1 

and s
2 

are involved, 

B 
1 

i1 used. Only the first three don't care conditions shown 

in Figure 5. 18 were used in setting up the network d~scrip­

tion of Figure 5. 19. In this graphical description of the net­

work an OR operation is perforn' ed at the nodes in the middle 

anc bottom leveh. The equatio11s written along side each line 

are the conditions for gating that line value into the OR gate; i.e., 

each condition is ANDed with its line value. Subject to the 

don't care condition,, it is seen that these gating conditions at 

each node are disjoint. At the middle level B 2 is inserted at 

its correct position and all lower order positions are shifted 

one left, as determined by s
2
• The lower level uses s

1 
to 

insert B 
1 

and left- shift all positions to the left of this point 

one bit. When s
2 

is all O the identity -transformation occurs 

at the middle level. Similarly s
1 

being all O causes the 

lower level to generate the identity transformation. Figure 5. 20 

shows a circuit implementation for the /h cell of the network; 

the two end cells do not use all the indicated AND gates. 
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Switching Network .,..---1B 

Overcapacity 

e = 
i i = 1, ••. , q-1 

aj +.l 

'S'li + 1 B 

AND AND 

Figure 5. 17 General Structure of Switching Network for a q Bit Addre1a 
with one Register 
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. . . . 

Switching Network 

.... 

OVERCAPACITY :: s
21 

a
1 

a
2 

v 'SZl s 11 a1 = (a 2 v 'S 21) s 11 a1 

B 
1 

v :s B 
1 

('S 
21 

v i' 
1 

) v B 1 S 2.l a1 

The following don't cares exist: s 2,k sz. k+l 

~lk Sl k+l 

s21 511 

S ll ~22. 

Figure 5.18 Basic Two Status Register System 
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,· 

------

When r > 2 the iterative network described by Figure 5. 19 

generalizes to one involving r gating levels with S. con-
1 

trolling the shifting and gating of B. V j nto the ith level up 
1 

from the bottom. 

If a la r ge enough fan-in and fan-o ut exists, it would be 

possible to produce a two level circuit implementation for the 

cell of Figure 5. 20 • However, the delay will still be limited 

by the fact that a 1, must be used throughout the network to 

specify the gating conditions • Thus little gain in speed would 

be achieved. 

5. 4. J. 4 ~vailability The dynamic address blocking and 

relocation scheme described here can be combined with the 

bit plane reconfiguration algorithm in order to produce BOM 1 s 

which will continue to function in the presence of most failures. 

Such BOM• s adhere to the philosophy of "graceful degradatlon" 

as the number of failures mount. 

A1 mentioned earlier, the extra circuitry which was added 

in order to generate the effective address can be made more 

reliable u1ing well known techniques, something that cannot be 

done to the failure prone BOM itaelf. 

In most practical computer applications the frequency of 

storage failures i1 low enough so that reconf.~guration via 

changing of the status registers only occurs after rela tively 

long time periods (on the order of aeveral day.s ). 'fo·or this 

reason high speed access into and out of the otatus registers 

and special circuits to compute their new states is not required; 

i.e. the computer itself can perform thi1 computation (say by 

ROS microprogram) and feed the new state into the registers 
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OR 

To next 
stage 

AND 

8
21+1 

.. 

- Input from !!
1 

.---------.. - Input from Previous 
Sta1e 

Input from B V Busa _,. 

OR 

Figure 5. 20 Impleme,ntation of i 
th 

cell for the Switching Network ci·f 
Figure · • 
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lie riall y. If all the registers (S . and B) are viewed as one 
1 

big regi11ter, 2. single buss line can shift the data into all 

register positions. This buss can then be made ultra- relic:1.ble 

u1ing standard multiplexing or TMR techniques. It is also 

clear that MR and ABR do not have to be in high speed 

circuitry 1ince they are only used indirectly. As each error 

is diagnoaed in the addressing circuitry, their contents are 

updated and used as an aid in generating the correct contents 

of the regi1ters S. and B. 
1 
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5. 4. 4 Ultra-reliable ROS Configuration (URROS) 

5. 4. 4. 1 Introduction. In an. ultra-available computer em-

ploying a !ead-9nly-~tore (ROS) it is necessary to have more 

than one such ROS present in the machine in order to guarantee 

correct bit failures, but the required decoding introduce s delay 

in the output. Such codes are also of little help in correcting 

failures in the addressing circuitry. 

Figure 5. 21 illustrates the basic structure of the high 

availability ROS configuration discussed in this disclosure. 

Each of the n modules is composed of a ROS, its ROS 

~ddreSB !egister (ROAR), and its ROS Data Register (RDR). 

The ~OS ~ddress ~lock (RAB) is used to select those ROS 1 1 

for which the current address is legitimate, i.e. will not pro­

duce an erroneous output by accessing a failed port~on of the 

ROS 1 s addressing circuitry. The 9utput ~econfiguration 

~etwork (ORN) is used to selectively gate the correct bits 

from the n RDR• s onto the output buss. 

Use of the RAB and ORN will be shown to provide a 

correct ROS function even in the presence of multiple fa ' lures 

in the individual ROS modules. The reliability of the whole 

configuration will depend primarily on the RAB and ORN, de­

vices which crn be made reliable using well known techniques, 

5. 4. 4. Z ROS Address Block (RAB) • The RAB performs two 

basic functions. First, it stores, in registers, the location 

of each block of addresses which has previously been deter­

mined (by diagnostic tests) to produce erroneous outputs dub 

to the existence of failures in the accessing. Second, as 

each address enters the ROS, the RAB tests it for inclusion in 

an inaccessible block and then eignals the ORN of i s decision. 
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If the address does fall into such a block, the ORN is told to 
ignore the output of that particular ROS. 

Two registers, the ~ddress ~egister (AR) and the ~ask 
~egister (MR), which are the same size as the ROAR, are 
used in the RAB to define each block of locations which is not 
to be addressed, in just the same way as for the BOM. As in 
the previous section, the test which can be used to examine an 
address for falling outside a block is, in Iverson notation, 

V / MR ,I\ (AR ~ ADDRESS) • 

Since the ROS addresses don't change, a circuit implementation, 
for a general r bit address, is shown in Figure S. ZZ . The 
first level XOR gates produce l's when the addre,u bits and 
AR disagree. The AND gates pass the l's on only if these 
are positions to be tested. ORing the outpus of these AND1 
produces a 1 if there is a 'disagreement at any tested bit 
position, i.e. if the address falls outside the block. 

The algorithm "for determining the contents of the AR and 
MR, after a failure, is exactly the same as that for the BOM. 
To repeat when the first failed addres-s is encountered it ii 
placed in AR, and MR is set to all l's. After the ~ 
failure, MR is respecified to be 

MR /\ (AR = ADDRESS) 

while AR becomes 

AR /\ADDRESS • 
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ADDRESS
1 

ADDRESS 
t' 

AR 
r ,. 

- ' I ' 

XOR ••••• XOR 

MR
1 

' I I 

AND ••••• AND 

• • • 

OR 

NOT-IN-BLOCK 
-

LATCH - PASS SIGNAL 

Figure 5. 22 Address Test Inside a RAB 
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The worst case addressing failures occur when the first 

two failed addresses are complements of each other. Since 

the expression AR • ADDRESS contains all zeros, MR be­

comes zero and all addresses are blocked. When it is desired 

to handle this as a special situation, the complementary 

address would be loaded into AR and MR. The modification 

to the test circuitry is as shown in Figure s. 23 • .Fixing 

T = 0 provides the normal mode of operation depicted in 

Figure 5. zz. The special case is handled by setting 

T = 1 and sequentially applying AR and then MR to the 

inputs labelled AR; the inputs labelled MR can continue to 

receive the output of MR. Since these test■ are being applied 

concurrently with the ROS access, there is more than enough 

time to perform sequentially this test for matching ad-iresses. 

It is important to realize that when blocks are defined 

using t~is scheme the address locations are~ nece1sarily 

physically contiguous nor do they correspond to sequential 

addre~ses. They do, however, correspond to locations whic~ 

would be logically grouped together by a failure in the addres­

sing circuitry of a ROS. 

The number of such register pairs in a typical RAB de­

pends on the span of the address space and the desired reli­

ability; as each becomes larger more pairs would become 

necessary. 

In most practical computer applications the frequency of 

storage failures is low enough so that reconfiguration via 

changin.g of the status registers only occurs after relatively 

long time periods (on the order of several days). For this 

reason high speed access into and out of the status registers 
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r 

ADDRESS AR
1 ADDRESSr ARP' 

T _ _,,_.,..... ___ .,....-+----------+--+----

XOR OR ..... XOR OR 

••••• AND 

• • • 

OR 

NOT-IN-BLOCK ,..__~ PASS SIGNAL 
LATCH 

Figure 5, 23 Special Case of Complement Addresses 
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and special circuits to compute their new states is not 
required; i.e. the computer itself can perform the computation 
and feed the new state into the register serially. 

5. 4. 4. 3 Output Reconfiguration Network (ORN). Thi! ORN is 
used to selectively gate to the buss the output of the ROS which 
both the RAB and a check of the RDR determine to be correct. 
Figure 5. 24 contains a typical circuit implementation. The 
outputs of the RAB•s are labelled P

1
, ••• ,P n; th, outputl of 

the checkers (denoting a passed check) are c
1

, •.• , c ; the . n 
buss outputs b

1
, ... , b s; and the output of j th ROS, RDR.

1
, ••• , 

J . RDR. • The function implemented by the ORN is JS 

Thus only those ROS• s which are specified to be operating 
correctly by both the RAB and the RDR checker will have their 
outputs gated onto the buss. (Gating the OR of aeveral correctly 
operating ROS•s will not affect the buss output.) 

5. 4. 4. 4 Operation and Reliability. When diagnosil discovers 
and error in a particular ROS it is classified as to whether it ii, 

1. a failure which will b~ detected by the RDR checking 
(e.g. simple parity failure~ ) or, 

2. an addressing failure which will cause either the 
wrong word to be accessed, a combinat ion of words to 
be accessed, or some other such failure not detected 
by parity. 

In the former case there is no change in the RAB since the 
checking will block the ROS output when this situation ari•••• 
Only in the latter case must the registers it. the RAB be up­
dated, using the previously described algorithm. 
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Consider the usual n ROS sparing scheme where only 

one ROS is active and when it fails it is replaced by one of 

the spares. If P is the probability a ROS has a failure, 

then the probability of failure of such a structure is Pn . 

The ROS configuration described in this disclosure has a 

much lower probability of failure; each of the n ROS•s can 

fail and the system will continue to function correctly. What 

is required for failure is that all n ROS•s fail in a manner 

such that the same word be erroneous or be blocked for all n 

ROS•s; a far less likely specific event than just having all n 

ROS•s fail. 

The probability of failure of the n ROS structure in 

Figure 5. 21 becomes so low that reliability is bounded by the 

reliability of the RAB and ORN, which is far higher than that 

of a core storage array. Further, well known techniques 

exist for improving the reliability of circuits such as the RAB 

and ORN. 

The system structures diagrammed in Figures 5. 21 

5. 24 assumed that the data output was the complete s bit 

wide ROS output. A higher reliability is achieved by segmen­

ting the ROS by bit planes and using the previous techniques 

on each segment as 1hown in figure s. 25. For example, 

suppose the ROS put out an 80 bit word. Then a segmentation 

into 10 bytes would involve having separate RAB1 for each 

byte and groupiag, at least conceptually, the existing parts of 

the ORN by bytes. The reliability improves because the pre­

viously discussed combinations of failures which bring the ROS 

structure down must now occur in one segment, i.e. in a much 

smaller module, hence a less likely event. 
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5. 4. 5 An Error-Tolerant BALU 

The techniques of multiplexing, and reconfiguration can 

be extended so as to allow an ALU to tolerate failures and 

still function correctly. An ALU .can be designed so that the 

bit planes are relatively independent, being coupled mainly 

for the purposes of shifts and carry propagation. By switching 

between bit planes the effect of a failure on that plane or in a 

position of control logic can be overcome. Thus _the recon­

figuration switch must not only bu11 the data into and out of the 

correct planes, it must also change the point where the carries 

and shifted bits are sent. 

For purposes of this ARC a byte ALU (BALU) design will 

be given. Thia deaign follo·ws closely the ALU design for the 

360/model 40 including all external control sign.ala, but with 

the addition of one spare bit plane and a duplicated internal 

control register. Since the 360/model 40 ALU can carry out 

all 360· ALU instructions, no time will be spent tn proving that 

a true ALU has been designed. 

The basic BAL U schematic i11 shown in Figure 5. Z6. The 

numbers in parenthesis indicate the nwnber of bit po1ition1 

in each register or data path. For error detection, the BALU 

is asswned built using two wire logic (a1 is the model 40 ALU). 

At the input, the data is transformed from parity checked to 

two wire logic information. Following the model 40, the BALU 

carries out the ari thmetic operations using two wire logic for 

checking its operations. The checked information is then 

transformed from two wire form back to parity checked form 

and t ransmitted over the multiplexed buss. This design, already 

covered in the model 40 and section 5. 4. 2. 3 is not repeated here. 
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In Figure 5. 26, Bl and B 2 are buffer registers used for 

four bi t shifting. P and Q are input registers, YC is the 

carry buffer also used for communication bet een BAL Us. 

F (4 bits) holds the "func tion code" received from t he PCU 

(F 1 is th,, spare). The bit positions of T generate any func­

tion of two variables; G performs pass through, complement, 

2 bit right shift (end around) or all zero output; S performs 

exclusive-OR; and C contains the carry circuitry. These 

functions, with the proper ROS microcode, carry out all the 

S/ 360 instructions. 

The logic for each position in T and S is the same as 

before, since the bit positions are independent (there is one 

more such bit position however) . 

T . = k P . Q. V 1 P. 0. V rn P . O.vn P. Q. i • 0, ••• , 8 1 11 11 11 11 

S.•T.C, \.· T
1
.Ci i•0, ••• ,8 1 1 1 

The control signals k. l, m, n, y, (d), x, w, and the F combina-

t.rnns are explained in Figure 5. Z7 taken from the model 40 

ALU description. F is duplicated (F and F•) and the outputs A 1·~, 

are inhibited if an error is detected in either box. The end 

around carry (YC) is TMR•d. 

The BALU status register has 9 positions. Eight bits 

refer to the data paths and 1 bit to the use of F or F• • The 

usual table shows the plane made idle. 
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F Mnemonic -
0 OR 

1 EO 

2 DSQ 

3 SUQ 

4 p 

5 AND 

6 DSP 

7 SUP 

8 PNQ 

9 Q 

10 XOR 

11 QNP 

12 RSH 

13 LSH 

14 DAD 

15 ADD 

Direct Functions 

P + 0 (hex) 

P - Q (hex) 

F .'\Q 

p~ Q 

Function 

PV 0 

PzQ 

P - 0 (dee) 

P - 0 (hex) 

p 

p I\ Q 

Q - P (dee) 

0 - P (hex) 

P/\Q 

Q 

PIO 

p /, Q 

1/ 2 Q 

20 

P + Q (dee) 

P + 0 (hex) 

ADD 

SUQ 

AND 

INDIRECT (F) 

Figure 5. 27 
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Controls • 

kl m 

kn • 

kn y (d) 

kny 

k ./ 

k 

kn x (d) 

knx 

, tm 
k rn 

.l 
rn 

w 

X 

l rn x (d) 

f rn X 

ALU Control 
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" 

I State Trigger Bit Plane 
Made ST ST ST ST ST ST ST ST 
Idle 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 1 1 

3 0 0 0 0 0 1 1 1 

4 0 - 0 0 0 1 1 1 l 

5 0 0 0 1 1 1 1 

6 0 0 1 1 1 1 1 1 

7 0 1 1 1 1 1 1 1 

8 1 l 1 1 1 1 1 1 

The logic function■ determining which plane ii idle are 

The logic functions for G can be ■een ea■ily after con­

■ idering the following table of ■ hift connection,. Each row ln 

the table ■pecifie s the output bit or data plane to which that 

input pla.ne is to be connected when the shift is performed. 

For example, input plane 1 • s normally shifted to output plane 

3 unles 1, 2, or 3 are idle. If 1 is idle the shift is ignored; 

when 2 or 3 are idle the shift must skip over on.e extra plane, 

so the connection is to 4. 
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Bit Plane Made Idle 

Input 
Data Plane 0 1 2 3 4 5 6 1 

0 3 3 2 2 2 2 2 

1 3 4 4 3 3 3 3 

2 4 4 5 5 4 4 4 

3 5 5 5 6 6 5 5 

4 6 6 6 6 7 7 6 

5 7 7 7 7 7 8 8 

6 8 8 8 8 8 8 0 

7 1 0 0 0 0 0 0 

8 2 2 1 1 1 1 1 1 

The equations repre1enting thh shift are 

v(ILi- l v IL1_ 2) 01_
3

] i•O, 1, •. , , 8 mod 9 

The carry trigger• are similarly modified 

The four bit 1hifting or pau through on the input line to Q i1 

shown 1chematically in Figure 5. 28 , If the bit positions are num­

bered as ahown and the input lines are called I
1
, i • 0, ... , 8, the 

logic is as follows. 
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-
BO = 1

0 
ST 

4 
V 18 ST

4 -
Bk = lk (ST 4_k v ST9-k) V lk-l ST 4_k ST9 _k k=l, 2, 3 

B4 = 14 
ST

5 
V 13 ST S 

-
BS = 15 

ST
4 

V 1
4 

ST 
4 

- -
Bk • lk ST9-k ST 13-k v Ik-1 (ST9-k V ST ) 

13-k 
k•6, 7,8 

Ok • SH .A Ik V SH A B 
ktS mod 9 

(SH ! l ogic signal indicating a 4 bit shift is requested) 

The setting of the status register is discussed in section 

s. 4. 2. 3. 

This design can be easily extended to an ALU with q data 

bits and m spare bits in a word, by enlarg.· ng the size of the 

status register and permitting the carries and shifts to enter 

any one of m+l adjacent bit planes. 
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5. 4. 6 TMR/ Sparing. 

5. 4~ 6. l ' Background. Masking redundancy schemes based 

on voting ( !_riple ~odular Redundancy - TMR, etc. ) have been 

known for a long time [N. 1] . They have the advanta1e of 

providing quick, easily implemented solutions to the problem 

of correct computer operation in the presence of both solid 

and transient failures, but suffer from a low reliability for the 

amount of hardware invested, i.e. if n logic module• with 

probability of failure P are being used, n being an odd 

integer greater than l, th~ probability of the voted 1y1tem 

failing is 

n 

:t l 
i • 2(n+l) 

which, for small P, approache 1 

n+l 
p -r 

Sparing, or standby redundancy, activates only one module 

at a time. When a failure is detected by hardware implemented 

checking vr diagnosis, the active module is switched out and one 

of its spares switched in. The main disadvantages of ■paring are 

that it requires the computation and storage of dia1no1tic te1tl, 

or the implementation of comprehensive checking circuitry, and 

that transient errors are very easily overlooked. lt1 primary 

advantage is that the probability of failure can be made to approach 
n 

P where, again, P is the probability of the individual module 

failure. 
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! nis section describes a scheme, called TMR/ Sparing, 

which combines the failure-handling ability of masking redundancy 

with the high reliability of standby redundancy for computer 

applications requiring ultra-high availability and reliability. 

5. 4. 6. Z Basic TMR/ Sparing Configuration. Figure 5. 29 

depicts the general TMR/ Sparing configuration. Each data path 

ii actually compo1ed of many individual data lines, so the paths 

1hown in Figure 1 must be thought of as representing vectors of 

line,. Thus A
1

, A
2

, and A
3 

are identical input vector-busses, 

or ju1t bu11es, and B
1

, B
2

, and B
3 

are identical output busses. 

Each of the n logic modules (LM) has a vector-voter (V) at its 

input in order to generate the majority function 

A1jAZj v Alj A3j v AZj Alj for each line j in the input 

vector. The status register (SR) is used to select three of the 

n logic modules and the reconfiguration network (RN) connects 

these three module's outputs to the three output busses. A trio 

of vector-discrir.ninator1 n
11

, D
12

, and n
23 

are connected 

acro11 the output bu1ses in a delta arrangement in order to detect 

disagreement among the three outputs. 

5. 4. 6. 3 Reconfiguration: Special Case of n:::r4. The structure 

of the RN and SR shown in Figure 5. 30 is treated as a special 

ca1e when n=4, (Section 5. 4. 6. 4 handles n > 4). Using the 

state mapping table, the following configurations are allowed. 
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Status RP-gister Buss Connections Idle 
SR

1 
SR

2 
SR

3 Bl B2 B Module 3 

0 0 0 LM
1 

LM
2 

LM
3 

LM
4 

0 0 1 LMl LM
2 

LM
4 

LM
3 

0 1 l LM
1 

LM
3 

LM
4 

LM
2 

1 1 l LM
2 

LM
3 

LM
4 

LM
1 

The selection logic shown in Figure 5. 30 show, how the RN 

convertl thh SR information into the mapping of the three 

chosen module outputs to the three busses. Switching cells like 

this one are used for each data line in the vector making up the 

module•• output, they all share the common SR. 

Initially LM
1

, LM
2

, and LM
3 

are connected to the 

busies; SR is _all zero. When a failure is signalled by the dis­

criminators, SR is changed so that the failed module now be­

comes the idle one. This algorithm can be specified in Iverson 

notation as 

•(~v/F•(D12,D13),(D12AD23A~013),D13AD23A~012)/NOFAILVRF 

SR+(F[1J,(F[t]vF[2J),v/F)A~FASR 

where DIJ is the output of the discriminator across busses I 

and J (DIJ = l when the busses disagree), and F[K] denotes 

the condition, "buu line K has failed" . A typical circuit 

implementation for this algorithm is shown in Figure 5. 31 

wherein it is assumed that the setting of the bit positions in SR 

is controlled by a latch signal (not shown). Such a latching or 

change of configuration should occur at some convenient point, 

such as the end of a macro-instruction in the computer. 
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0 1 ~ ~ 
~ ~ 0 1 

~ '~ 0 

Status Regieter States 

LM
11 
------------t A 

N 
s~-------n 

LM21...,.-+-------1 

LM 

'SR.2 ----. N 
D 

SR A 
2 ----- N 

D 

3i ..... ....---...--....----.. 

A 

~ ~ 
~ 

~ 
1 

0At---.. 

N .,.._ _ ___,. 

LM4i 

r----....... D OR,---...,. 

SR.---D 

Figure 5, 30 SR and RN for n = 4 
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When the second module failure is encountered, returning 

to the currently i cile module means using the m odule that failed 

first. If this first failure wa just a trans ient, c orrect operation 

will now result. If it was a solid failure, another rec onfiguration 

re1ults as soon as the failure produces an erroneous output. Thus 

the 1econd failed module is brought back to see if it can be used; 

i.e. if lt1 failure wa1 tran1ient. It la in this way that th1! 

TMR/Sparing 1cheme handles transient failures; by temporarily 

removing a module and bringing it back again when needed. 

After two module ■ have solid failures thi.- a.l orithrn for 

operation re1ulta in a continual swapping of module f as their 

failure ■ generate erroneous output ■• It would be possible to con­

trol thil cycling by placing an extra input, say C, in all three 

upper AND gate ■ in Figure 5. 31. When C • 1 the normal 

reconfiguration action re1ulta: when C a O all error signals 

are 1uppre11ed and the configuration remains fixed. Setting 

C • 0 could be controlled by a counter which records the r. umber 

of reconfigurations occurring in some fixed time, say an hour; 

if too many occur, C could be made O. 

It ii important to realize that 1lnce all four modules are 

receiving data lnput, there ii no need to halt normal computer 

operation in order to perform a system update whenever a 

reconfiguration occurs. Becau1e of the simplicity of the cir­

cuitry, no extra time need be u1ed to set the SR after a failure 

either. Thu1 reconfiguration can occur with no time degradation. 
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D12 Dl3 
Dl2 D23 

Dl3 Dl3 
• 

AND AND 

.. 
Fl F 

2 

NAND OR NAND 

AND AND AND 

Set Set Set 

s~ SR
2 SR

3 
• 

with 
with with 
this this this 

Figure 5. 31 Circuit used to set new SR state after a failure occurs. 
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5. 4. 6. 4 Reconfiguration: General Case n > 4. The RN is 

constructed so that each buss Bk9k=l, 2, 3, can be connected to 

any of the logic modules LM .,J=l, 2, ... , n. The SR contains 
J 

three segments SRk, each containing [log 
2 

n) bits. When the 

contents of SRk equals j- 1, buss line k is connected to module 

j. Allowing each buss to span the complete set of modules 

limplifie1 the reconfiguration algo.rithm to be presented next. 

Thus, although it means a larger SR, the net circuitry in both 

the SR and its reconfiguration mechanism becomes small. The 

encoding of the states in the SRk was also determined by the 

ease of specifying this algorithm: the encoding could be c- hanged 

if it facilitated implementation in some particular tech~logy. 

Figure 5. 32 shows the SR states and their mapping interpretation 

together with a typical RN cell for the specific value n=6. The 

general case is merely an extension involving more states in the 

SR table, therefore, more AND gates in the RN cell. 

It is convenient to carry along two auxiliary registers to 

speed the reconfiguration after a failure. The first, called 

,., MASK, contains n bits with MASK. = 1 if and only if LM. has 
~ 1 1 

failed. The second, called LAST, contains a binary number 

specifying the last failed module which the algorithm has tried to 

use. Initially LAST ■ 0 and remains so until the n-2 module 

failure, i.e. when a module fails and there are no more untried 

spares. The reconfiguration algoz-ithm carried out afte r a failure 

occurs must perform the following three register updates (as 

specified in Iverson notation), 
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000 001 ClO 011 100 

000 001 010 011 100 

000 001 010 011 100 

StatuE-' Register States 

-

. 
LM2i -

LM -

3i 1~ 

-
LM4i -

-
LM5i -

--

• I • I 
I ' 

I 
SRkl SRk2 SRk1 

101 

101 

101 

,---
A 
N 

l.12. 
r--
A 
N -

Ll2.. 
-A 
N n D -

,---u A 
N 
D --
A 
N -
D --A 
N 
D -

SR
11 

SR
12 

SR
13 

SR21 SR22 SR23 

SR31 sr~32 SR33 

~ -- 0 
R - ,-... Bki 

... -

Typ th ical cell for the i 
data line of bus• k ln the 
RN. 

Figure 5. 32 SR and RN for n • 6 
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•((~v/tAST)Av/(N-1)=21SR)ISTA RTLAST 
LAST• ( ( p LAST) o 2 )T ( ( tMAS KI , pMASK), 0 )[ (MASK I , o MA SK) 1 2 1LAST] 
+INSERTMA SK 

STARTLAST:LAST•((pLAST)p2)1(MASK/10MASK)[l] 
INSERTNASK:NASK[1+21SR[F/13; 1]•1 

SR[F/13;]+-1+21LA ST 

where F ia a• la Section 5. 4. 6. 3 and SR is viewed as a 

binary matrh with the reghter SRk as row k. 

Figure 5. 33 contains the 1equence of SR states for a 

typical set of failure occurrence, when n•6. As the first three 

failure, occur in LM
3

, LM
1 

and LM
4 

the usual shifting to the 

nest unused module takes place. Then when LM
6 

fails it is 

neceuary to back up and try to use one of the previously failed 

module,. (As wa1 stated in Section 3, this is the way modules 

which only experienced transient failures can be recovered.) 

The last three state mappings in Figure 5. 33 show the progres­

sion of retries using LM
1

, then LM
3

, and finally LM
4

, which 

h auumed to function correctly. As before it would be possible 

to uae a control signal to inhibit cycling by blocking F when it 

ia a1certained that n-2 modules have solid failures. The same 

comments made in Section 3 concerning time and speed of re­

configuration apply here. 

The register LAST may be visualized as a ring counter as 

is shown in Figure 5. 34 fo r the case n•6. Each state is trig~_ 

gered to the next state after a failure occurs. Before releasing 

from the initial state 000, one of the SRk must indicate that 

the la1t module is currently being used. When a failure triggers 

a change in state the regilter proceeds forward only stepping at 

a atate for which the MASK co..-1trol bit is a 1. 

288 



1 2 3 4 5 6 5) I _0_0_0_0_0_1_0~1-0 ________ 1 :~ 

MASK f O I O I O I O I O I O J MASK I" I I O I ' I I I O I I I 
LAST _ 0 0 0 . LAST . 0 0 l _ 

1 2 3 4 5 6 6) 
000 ~ B

1 
001 ~ B 2 
~ 011 B

3 

MASK I o , o I ' , o , a , a I MASK I ' r o I ' 1 , 1 o 1 , 1 
LAST _ Q O O . LAST . o 1 1 _ 

1 2 3 4 5 6 7) 1 3 4 5 6 
~ ~ 100 B1 ~ 001 ~ B 2 % ~ 011 B

3 

~ ~¼ 100½ 0 001o/// ~ 
~oi1 ½, ~--......... --

MASK [ 1 I O 11 I O I O I O I MASK 11 I ~ 11 I 1 0 I 1 
LAST _ 0 0 0 _ LAST . 1 0 _ 

4) 1 2 3 4 5 6 

:~ I~ 001 ~ 100 IOI 

MASK I ' 0 I ' I I O I O I 
LAST . 0 0 0 . 

Figure 5. 33 Sequencing of SR when n :s 6 for a typical set of failure 
oc currences 
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\ 
\ ' 

\ \ 

' \ 
\ I 

\ I I 

\ ' \ I ;/ 
I 

\ ' \ I I 
I I 

~ I l I 
1 

I ' I 
l. 

I ' I MASK I 
1 2 3 4 5 6 

Fig. 5. 34 LAST register states viewed as a 

controlled ring counter. 
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5. 4. 6. 5 Reliability. Let P be the probability of failure for a 
logic module and its input voter (failures in V. are indistinguiah-

1 
able from failures in LM . ). Then if the SR and RN function 1 

perfectly, the reliability of a TMR/Sparing configuration as shown 
in Chapter 4 is, 

n-1 R=l-nP (1-P) 
and the probability of failure approaches nPn-l . If the SR and 
RN do fail, it requires a specific combination of LM failure• to 
bring the system down; i.e., an event with a low probability of 
occurrence. Further, it is pos1ible to de1ign the SR and RN, 
using redundancy, so that even when single failure• occur, 
correct operation by these device• en1ue1. 

All these reliability calculation• are somewhat pe11imiatic 
when the vector nature of the data path1 are con1idered. For 
many situations where two, or even all three, of the TMR 
modules have failed, correct ,operation can occur. What ii re­
quired for system breakdown ia that two (or three) module1 have 
erroneous outputs in the ~ component of the vector of output 
lines. 
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5. 4. 7 Design of Completely Checked Decoders 

. The operation-code decoder, addres s de.code r, and m a ny 

other such function s in a compute r can b e characte riz e d by a 

circuit which accept s an n bit input and the n cau se s exactly 

one of Zn pos .sible lines to be brought up. In what follow s , 
• . 

unless otherwise stated, "failure " will m ean a single stuck-at-1 

or stuck-at- 0 failure i~ a logic block. Then it will be shown 
" 

that it is possible to de sign decoders with 100% dynamic decoder 

error detection and complete error detection in the checkers 

through diagn•Jsis. 

For the special case n=Z a typical decoder, corn, tructed 

from NOR gates,is shown in Fig. 5. 35a extens_ion to n> 2 is 

~traightfo .. ·ward. Since all re suits to be developed concerning 

~estability are independent of n, n> Z, this circuit will be used 

as the starting point for all subsequent ana lysis. Various tech­

niques for providing dynamic checking will be propos ed and 

examined for effectiveness us i.ng !he TESTDE TECT algorithm . 
. . 

Then trade-offs concerning the amount of ~xtra equipment required 

and the ~egr"ee of checking obtained ca n be weighe<l. 
I 

\ The circuit in Fig. 5. 35a produces errone ous outputs whenever 

any of its components fails. Placing an odd-parity check or. its 

output a·s in FigS.JS'bprovid€:s the ability to dynamically check all 
. . 

failures occurring in the NOR gates a n<l in XOR gates 9 and l O. 

Failures in the two input lines cannot be checked since they will 

always produce anothe r legal or permissible input. The output 

XOR cannot be tested for a stuck- a t-1 failure; this, in itself, 

does no harm since the circuit would continue to function 

correct~y. but any seco:id failure would go undetected. 
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1 2 

NOR 
5 

1 2 ' ' " 

1 4 3 2 3 4 

I INI: I I NOR ~ 
Basic decoder for n • 2. 

Figure 5. 3 5 a 
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1 2 

1 2 1 4 3 2 3 4 

NOR NOR 
5---

NOR 

6 

NOR 

7 __ .... g 

XOR 
9 ....__ 

XOR 
--10 

XOR 
11 

1 2 1 2 3 4 5 6 7 8 9 0 1 

0 0 
0 1 
1 0 
1 1 

0 0 0 1 1 1 0 1 0 
0 1 1 0 1 1 0 1 0 
1 0 1 1 0 1 1 0 0 
1 1 1 1 1 0 1 0 0 

Checked decoder for n • 2. 

Figure 5. 3 5 b 

294 

,I 



If an extra odd-parity line is added to this input, the basic 

decoder appears a,s in Fig. 5. 36a. All failures except a single in­

verter stu¼k-at-0 will cauEe errors in the output. In Fig. 5. 36b 

a parity check circuit has been placed across the four output 

lines. Now all failures except an inverter stuck-at-0 (which 

does not produce erroneous output) and the output XOR stuck-at- . 

1 (which only causes trouble when a second failure occurs) are 
. .. 

dynamically checked. The·se four unchecked failures can be 

tested by forcing the illegal even-parity input of all zeros to 
• I 

. occur. Thus the proposed mode of operation would be to let the 

checker detect all failures which can produce erroneous outputs 

and then periodically ruri. the illegal parity input to test for those 

unchecked failures which only become ~ problem in the presence 

of a second failure. 

• By adding a second parity check circuit across the outputs of 

the inverters,as in Fig. 5. 37 a dynamic test of all decoder failures 

can be obtained. AE before, it is necessary to periodically use 

the all-zero-input test to check the ·two parity circuit outputs. The 

price paid for.obtaining this extra check on the inverters is that 

two output's must be scanned. This obstacle is overcome in Fig.5. 38 

by ANDJ.ng the two checking outputs. Now all decoder failures are 

dynamically chec},·.ed at the s ingle AND output. However, even 

when illegal parity inputs are used to diagnose the checking cir­

cuitry there is no way to test blocks 13 and 16 for stuck-at-1 or 

block 15 stuck-at-0; failures which in themselves do not produce 

errors but do mask detection of second failures. The solution to 

this problem involves insertion of an OR of the two checker outputs 

in the drcuit as shown in Fig 5. 39. Under normal ope ration the 

single output of the AND is monitored to check for a decoder failure. 
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NOR 
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1 2 6 

Ir Nf ~ r I 

2 

1 5 3 

I 
1
Nf ~ 11 

NOR 
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4 2 3 
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1
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3 

NOR 

6 

4 5 6 

rSk1, 
~ 

Basic decoder with an Input parity llne. 

Figure 5. 36 a 
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NOR 
4 

2 

NOR 
5 

3 

NOR 
6 

1 2 6 1 5 3 4 2 3 4 5 6 

8 

XOR 

11 
XOR 

13 

NOR 
9 

XOR 
12 

1:2 3 123 4567890123 

0 0 1 1 1 0 1 0 1 1 1 0 1 0 
0 1 0 1 0 1 1 1 0 1 1 0 1 0 
1 0 0 0 1 1 1 1 1 0 1 1 0 0 
1 1 1 0 0 0 1 1 1 l 1 1 0 1 0 0 ,., ___ _ 
0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 

Checked decoder with parity on lnpul 

Figure 5. 36 b 
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1 

1 2 6 

__ ....__ ________ .._ ___ _ 

NOR 
4 

1 5 3 

NOR 

8 

2 

NOR 
5 

4 2 3 

• NOR 

9 

3 

4 5 6 

6 

NOR 
6 

4 5 

XOR 

XOR 
11--

XOR 
_ __, 12 

XOR 

15 

XOR 

13 
NOR 

16 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 

0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 
0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 
1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 
1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 

0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 

Doubly checked decoder. 

Figure 5. 37 
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NOR 
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4 2 3 

3 

4 5 6 

NOR 
6 

4 5 

NOR NOR XOR 

8 9 10 6 14 

XOR XOR XOR 

11 12 15 

XOR NOR 
13 16 

AND 
17 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 

0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 
0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 
1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 
1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 0 

000 1 1 1 0 0 0 1 

Double check with a single outpul 

Figure 5. 38 
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1 5 3 

NOR 
8 

NOR 
5 

4 2 3 

NOR 
9 

3 

4 5 6 

6 

NOR 

6 

4 5 

XOR 
14 

XOR 
15 

OR 
18 

AND , 
17 

NOR 
16 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 

0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 
0 1 0 1 0 1 0 1 0 l O 1 1 0 1 0 0 1 0 0 0 
1 0 0 0 1 1 1 0 0 1 1 0 1 l O O O l O O 0 
l 1 l O O O 1 1 1 1 1 1 0 l O O 1 1 0 0 0 

0 0 0 l 1 1 0 0 0 l 1 l 1 l 1 l l O l 1 l 

Double check, double output decoder. 

Figure 5, 39 
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At periodic inte1·vals the' checker outputs are diagnosed by placing 
all zeros and then all ones on the inputs; in the former case both 
checker output~ should be 0 and in the latter, 1. 

A second method for improving the circuit of Fig. 5. 38 is shown 
in Fig. 5.40.A pair of illegal even-pal"ity tests are used to selec-, . tively te ~~t each of the two checkers independently of the other;· the 
extra AND gates at 17 and 19 are used to inhibit one of the checker 

' .. 
outputs. Only one circuit output is used for both the dynamic de­
coder checks and thP. diagnosis of the checkers. The basic problem 
with this circuit is there is no way to test the AND gates used for 
selection purposes, 1 7 and 19, for stuck-at-0 failures. This is 
not too heavy a burden since unchecked system errors only result 
when the following sequence of errors occurs; one of the AND• s 
fails stuck-at- 0, the11, the output of the checker in .the opposite 
branch fails stuck-at-1 , and finally, a failure in the decoder occurs. 

The question now arises as to exactly how much circuitry is 
required to do the checking illustrated in each of the previous ex-., 
amples. Let n be the number of bits to be decoded. Then a 
basic decoder, as in Fig. 5. 35a requires n+2n gates. Including an 
input parity linP. requirei; 1 extra inverter be added to the circuitry. 
Checking the 2n decoder output~ using t~o input XOR1 s in a tree 
arrangem~nt uses 

n 
E 

i=l 

Checking the outpu'ts of the n+l inverters _r~quires n+l XOR gates. 
With this data, the amount of hardware required for each of the 
previous 8 circuit types and the resulting fractional increase in 
hardware over the basic decoder is tabulated in Table 5. 1. For all 
of the checked decoders, Figures 5. 36-5. 40, this extra investment in 
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1 2 3 

1 2 6 1 5 3 4 2 3 4 5 6 4 5 

NOR NOR XOR 

8 9 6 

XOR XOR XOR 

11 12 15 

XOR 1 2 6 4 2 3 NOR 

13 16 

NOR NOR 

20 18 
NOR 

21 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

0 0 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 0 t , 

0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 0 
1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 0 1 1 0 
1 ,, 1 0 0 0 1 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 

0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 -1 

1 1 0 0 0 1 1 1 0 1 0 1 1 0 1 

Selectlvely checked decoder. 

Figure 5. 40 
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hardware is nearly equai to the hardware in the basic decoder. 

One might ask why the decoder isn't just duplicated. The 

obvious answei: is that 1) zn· xoR gates would still be required 

to test for disagreements, 2) input failures would not be de­

tected unless each decoder had its input generated independently, . • 

and 3) diagnosis of the Zn XOR gate s would still be required . 

. Figure 5. 41a shows a decoder with two-rail inputs and fully 

checked outputs. Even with this circuit configuration it become s 

necessary to force illegal input pa~terns {all zeros, say) in order 

to test the checker outpnt. Further, the amount of hardware re­

quired for the check;.ng 'is compa • .-able with that used in the pre­

vious examples employing parity checked inputs. In fact, if two 

' rail outputs were also required from the decoder the hardware 

costs would be very much larger. 

It is important to realize that once a circuit and its checking 

equipment has been designed, minor perturbations in the structure 

can radically redllce the checking coverage. The circuit in Fig. 5. 42 

was obtained from the one in Fig. 5. 36 by replacing the decoder's 

NOR gates by· AND gates with the inputs compiemented (De Morgan's 
I 

Law). Now th-:1 inverters are not checked for stuck-at-1 failures. · • 
I . 

As before,· these unchecked inverter failures do not"produc e erron-

eous outputs but do prevent checking of subsequent second faih,1res . . 
However, in this case it takes two special even-pa rity inputs to 

diagnose these in~erters,. as seen in the bottom of the TESTDETECT 

table, ne ither of which is the ali zero input. The conclus ion i s tha t 

one must be ext:remely careful in changing circuit topologies even 

when the functional characteristi, s of the ~ircuit rerr.ain fixed. 
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1 2 3 4 

NOR 
5 ...__ 

NOR 
6 

NOR 
7 

NOR I 
__ 18 

XOR 

9--

XOR 

XOR 

--10 

11 

1 2 3 4 1 2 3 4 5 6 7 8 9 0 1 
0 1 0 1 1 0 1 0 0 1 1 1 0 1 0 
0 1 1 0 1 0 0 1 1 0 1 1 0 1 0 
1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 
1 o 1 o o 1 o 1 1 1 1 o 1 o o_ 
0000 0000111 

(a) 

HARDWARE • 2" + ( 2" -1) 

INCREMENT• 1 - Zrfl 
(b) 

Two rail decoder with checking. 

Figure 5. 41 
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,· 

NOR 

4 

2 

NOR 

5 

3 

NOR 

6 

4 5 3 4 2 6 

AND 

1 5 6 1 2 3 

8 

XOR 

11 

XOR 

13 

AND 
9 

XOR 

12 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 2 3 

0 0 1 1 1 0 0 0 0 1 1 1 0 1 0 
0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 
1 0 0 0 1 1 0 0 1 l O 1 1 0 0 
1 1 1 0 0 0 1 1 1 0 1 0 0 

0 0 0 1 1 1 1 1 1 1 1 1 1 
0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 
1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 

Effect of a change In topology. 

Figure 5. 42 
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s. 4. 8 Design of Circuits to Generate Diagnostic Teats. 
One of the initial steps necessary for computer testing ls 

to test the parity check circuitry so it can be. used in further 
test proceedures (the Bootstrap approach). Since the step is 

initial, test storage must be minimized, and the addjtion of 
circuitry to generate these tests should be considered. A 
specific test and test circuitry was devised for a specific (but 
typical) parity test circuit, The i:nethods used can easily be 
generally applied, and will be stated later, 

Figure 5. 43 shows module fZl, a 3-way exclu■ive OR 
circuit in a standard technology. If the exclu■ i've OR •aired· 
is written aa 

f = A EOR B EOR C 
then the following necessary input connection• muat be made: 

Input Connection Variable 

004 A 
C04 B -B04 C 
C0l B 
B0l A 
001 C 

The output • f is given on 002 and f on 003, 

To implement a nine bit parity checking circuit 
g = A

1 
EOR A

2 
EOR A

3 
EOR A

4 
EOR A

5 
EOR .A

6 
EOR A

7 
EOR A

8 
EOR A

9 
use a cascade of #Zl modules with A

1
, A

2
, A

3 
properly 

connected to the f:rst module, A
4

, A
5
, A

6
. to the aecond and 

A
7

, A
8

, A
9 

to the last. The outputs from these modules are 
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connected to a fourth module to produce g and g • 

g 

The first step is to produce a complete set of tests for a 

f _21 module. The AND/OR direct logic representation for th-, 

module ls . 
f = (A Cl. B u C) (Au B u C) (A V B V C) (A V B V C) 

The' minimum set of tests for a three W-d.Y OR gate is 

given by (1, 0, 0), (0, 1, 0), (0, 0, l) and (0, 0, 0). The minimum 

set of tests for a four way AND gate consists of (1, 1, l, _l), 

(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1) and (1, 1, l, 0). 
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Becau1e of the input interconnections a complete set 

of tests for #21 module can be determined from Figure 5. 44 . 

In the figure A, B, C correspond to 11 2, 3 respectiveily . 

.7o derive a complete set of tests for the parity check circuit 
4 3 

g, consider the four sets of tests necessary to test M
21

, M
21

, 

• Z 1 ' 
Mil, M21 . Choo~e the first test pattern necessary to test 

M
21 

(pattern 100). This pattern may be produ~ed by choosing 

patt~rn 100 for M~1• 000 for M~1 and 000 for M11 . The 

inputs for this first test pattern for g are (1000 000 000). 

Check the fact that the appropriate patterns have been used in 

the sets o! tests for Ml1, Mi1 and Mli, Choose the second 
4 test pattern necessary to test M21 (pattern 010), This 

pattern may be produced by choosing pattern 000 for Mh, 

100 for Mi 1 and 110 for M!
1 

(unused patterns are chooaen 

when possible), This gives the second input test pattern for g, 

(000 100 110). By continuing in this way it can be shown that 

a set of 8 input test patterns will test the parity check circuit 

completely. 

So far no extt=nsive use has been made of the freedom of 
' 1 · Z 

choice Jn choosing input patterns for the modules M
21

, M
2

. , 
3 • 4 .l 

and M
21 

to produce proper input patterns for M
21 

; .and no 

use has been made of the fact that the sequence o! tests appli~d 
4 

to M
21 

is arbitrary. 

To reduce storage from 7Z bits, try to produce one test 

pattern from the previous test pattern by shi!ting the first . . 
pattern l bit and forming the new bit from a combination of 

aome Mts in the previous pattern, Suppose the initial pattern . 

contains three consecutive l •s and three consecutive O•s and 
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1 

NOR 
4 

2 

NOR 
5 

3 

NOR 
6 

1 2 3 3 4 5 2 4 6 1 5 6 

~ 7 

AND 
11 

1 2 3 1 2 3 4 5 6 7 8 9 0 1 

0 0 0 1 l l l l 
O O l l l O O 0 0 0 0 0 0 
O l 0 l 0 l 0 0 0 0 0 0 0 
0 l l l 0 0 l l l l 
l O 0 0 l l 0 0 0 0 0 0 0 
l O l 0 l O l l l l 
l l 0 0 0 l l l 1 1 
l l 1 0 0 0 0 0 0 0 0 

Fig. 5. 44 PC - Parity Check. 
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these strings ol 11s and 01s are ol maximum length. Then 

the easiest way to pn,duce a new bit Crom an old pattern is by 

end around·shilting using the initial 8 bit pattern :1 :o l 1 l O O O. 

When inserted into the proper circuitry and llhilted this scheme 

defined a complete set ol tests !or . g. 

Circuitry: 

d 
r-

A7 A3 I A4 I AS A6 ! I 

:A. ~5 ~6 
J . 

3 . 'A7 

l . l 

. 
Tho lines A

1
• Az, A

3
, A

4
, A 5• A6• A

7
, A8, A

9 
are 

used as input to the parity check circuitry, and the line g is 

used to test the output for error. 
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The basic pattern is 10111000. The tests and correct 

output are shown below. 

Test Nui,ber g Al. AZ A3 A4 AS A6 A7 AS A9 

1 1 1 0 1 l l 0 0 0 1 

2 0 0 l 1 1 ,0 0 0 1 0 

3 1 1 1 l 0 0 0 l 0 l 

4 1 l l 0 0 0 l 0 1 1 

5 1 1 0 0 0 l 0 1 l l 

6 0 0 0 0 l 0 1 1 1 0 

7 0 0 0 l 0 1 1 l 0 0 

8 0 0 .1 0 l l 1 0 0 0 

Figure 5. 45 shows the set of errors caught by each test. 

The numbering of lines is 1-9 for inputs, then x+6 for the pc#l 

lines from Fig. 5. 44, then x+l4 for pc#2 lines, then x+22 for 

pc#3 and x+30 for pc #4. 

1) 

2) 

3) 

The basic rules (not developed to an algorithm) are: 

.. Get a complete set of tests for a module. 

lrribe·d the module in the tree structure. 

Develop fosts by specifying output from the module and 

choosing the set of module inputs which give this 

autput. Choose each set of inputs as in!reqµently 

as possible. 

4) Use these tests as a basis !or tests with other desirable 

properties, using the freedom of choice in choosing 

tests, symmetries, human pattern recognition, etc • 
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5. 5 ARC Operation 

5. 5.1 Normal Operation 

5. 5.1.1 General Procedures 

When the ARC is carrying out procedures, it acts 

similarly to any computer. However, it is emphasized - again -

that the control of a computing system lies in the set of programs 

and procedures that are used for total system control. For 
(2) . 

example; J. McCarthy defines the "state vector" of a program 

as all values of all variables and all other information that 

together with the program itself determines the further course of 

the computation. Most functions will occur, a:nd methods to 

detect malfunctions and restore a correct environment must be 

devised. The possibility of a malfunction at any time increases 

the information in the "vector". Computer configuration infor­

mation must be included. A first step is to determine an overall 

strategy. Recovery from an error involves: 

1) Detection of the malfunction and preventing the 

propagation of erroneous information. 

2) Assessment of the -damage to critical hardware 

(diagnosis). 

3) Replacement or self-repair of critical hardware, 

if necessary. 

4) Assessment of the damage to critical information 

(i.e. , programs and data). 

5) Reconstruction of critical information, if necessary. 

6) Restarting critical tasks. 

The ARC general organization was chosen to facilitate 

carrying out these tasks. The first problem to be faced is that 

of detection of a malfunction. 
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5. 5. l. 2 Error Detection Parity 

It is "well known" that parity check circuits will 

"detect the occurrence of a single error" and will "not detect the 

occurrence of a double error"C Peterson, 61J. What doe s this 

mean in terms of computer component malfunctions? Will a 

parity check detect a malfunctioning component? If not, what 

may happen when two components fail? 

A natural circuit to look at is a de coder, with n inputf' 
n 

and 2 outputs, only one of which should be one at a time. As 

shown in section 5.4. 7, just adding a parity check across the 

output" will not check the 'circuit - specifically t!le inp.it. The 

circuit shown in Figure 5. 36b (reproduced here as Figure s. 46) 

checks all elements except the three inverters stuck at zero. 

U one of these fails the circuit still operates correctly, and a single 

test will check for all errors. These properties begin to look 

foolproof, until the effect of double errors is shown. In Figure 

5. 46 a correct set of inputs with the accompanying Test Detect 

pattern is shown in the top section of the table. All elements 

except the inverters 41 5 and 6 stuck at zero are tested. Since 

the circuit is symmetric, assume here that 4 is stuck at ze ro. 

Use line 4 as an input, and run Test Detect again obtaining the 

results in the lower tabh~. Now line l is not tested for stuck at 

zero. In the lower part of the table it is seen that the erroneous 

input combinations O, 0, 0 and O, 1, 1 will not produce an error 

signal. T hus, during the interval between testing, half the err­

oneous patterns will not be caught. If the error signal fails the 
l 

same statement can be made. This information can be contamin-

ated without error signal. Clearly it is not enough to blindly insert 

parity tests and declare "the machine will catch single errors". 
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1 

1 2 6 

2 

1 5 3 

NOR 
8 

4 2 3 

NOR 
9 

3 

4 5 6 

XOR 
11--

XOR 
_ __, ·12 

1 2 3 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

0 0 0 

1 2 3 4 

0 0 1 0 
0 1 0 0 
1 0 0 0 
1 1 l 0 

0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 0 

XOR 
13 

1 2 3 4 5 6 7 8 9 0 1 2 3 

1 1 0 1 0 1 l f O 1 0 
101 1 1011010 
0111 1101100 
0 O O 1 1 1 l l 1 O 1 0 0 

l i 1 0 0 0 1 1 1 1 1 1 1 

1 2 3 4 5 6 7 8 9 0 1 2 3 

1 0 1 0 1 1 1 0 1 0 
l 101011010 

111 1101100 
0 0 l 1 l 1 l l O 1 0 0 

l O O 1 1 0 l l O 0 
l 1 1 1 1 1 0 1 0 0 

0 1 0 0 1 1 l 1 1 1 1 
001 01111111 

Fig. 5. 46 Effect of double error,. 
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The circuit shown in Figure 5. 3-7 will signal an e rror if any 

elemr nt fails, xcept one of the che cking signal output. If line 16 

ii stuck at 1, then this circuit has all the propertie s of the former 

circuit without error. If line 13 is sbck at 1, then only inv e rte r 

failures are checked. Information can still be contaminated 

although with more difficulty. It is clear that the checkers must 

be checked periodically (with diagnostic patt P. rns) and that contami­

nated information must be stored for roll-back procedures. 

The frequency of testing will be a function of the probability of 

circuit failure, the numbe r of circuits which can fail without error 

indication, and the procedures devised to indicate externally induced 

failures (reasonableness checks, etc.) which are application 

dependent. 

The deleterious effects of topology changes were shown in 

section 5. 4. 7, Figure 5. 42. Because of this, and the preceding 

discussion, it is clear that to design an ARC which uses replace­

ment repair, a procedure like the one outlined in Figure S. 47 must 

bf: used. 

The fact that decoders can be designed with 1000/o dynamic 

decoder error detection and complete error detection in the checkers 

through diagnosis (and with a simple test) shows that the procedures 

in Figure s. 47 are feasible. The use of on-line computing fac:ilities 

and TEST DETECT are ess e ntial. The error coverage must be 

determined - and the percentage of error signals produced by single 

failures determined. 

5. 5.1. 3 Sentinel Turn-On Procedures 

As planned, the ARC will not operate continuously; 

however, the clock and a small amount of hardware must be operat­

ing so that the ARC can be rea dy for correct operatioa at 
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Derive each set of error signals received 
when a single malfunction occurs (consider 
what happens with multiple failures). 
Consider each unit and all interfaces. 

For each set: Devise or improve local­
ization procedures; Devise or improve 
tests for information contamination; Devise 
or improve recovery procedures. 

For each: Assess duration and frequency; 
Calculate reliability and availability; 
Coll&ct test patterns. 

No 

Determine 
Cause 

Yea 

Fig. 5. 47 
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pred termin d times or after the receipt of external signals. 

The procedures to b follow d ar similar to those discussed 

ins ction 5.5.l, Diagnosis. 

5.5.l Diagnosis 

5.5.l. l General Statements 

After an error signal has been initiated, electri-

cal isolation m ·1st be initiated to prevent propagation of errors 

in infom1at:on - either data or machine configuration. This 

must be planned using general strategies such as shown in 

Figure 5. 47. Electrical isolation is possible· (ns, 66J but is 

specific design dependent. Dividing the computer into 

independent sections, as in ARC, helps, as does the recon­

figuration switches. Now, information about the computer 

state must be collected. This is called 'log-out' in System/ 360. 

Next, the location of the malfunctioning component must be 

' determined. Ideally, in the ARC design, failures in the inter-

face switches will look like module failures. So Lhe first step 

is to determine the unit which contains the malfunctioning ele­

ment. Experience with the FAA 90lO.[Wood, 6~ has shown 

that s ; gnals to aid in analysis for error location must be 

designed from the first design specification stages. 

Planning diagnosis is to a large extent dependent upon 

detailed engineering and application specification. However, a 

few general statements can be made. 

a) U a procedure such as that outlined in Figure 

5. 47 is used, circuitry can be built so that the existancc 

of an error signal will initiate a micro-instruction 

retry as described in section 5. 5. 1. 3. 
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b) Following similar procedures, circuitry can be 

designed so that an instruction retry can be initiated, 

as discussed in section 5.5.1.3. 

c) If a micro-instruction or instruction retry is not 

indicated by hardware, programs have been devised to 

analyze the error indications (which are stored) and 

determine if aingle is possible or if rollback pro-

cedures are recessea(Wood', 65]. 

d) If a rollback procedure must be initiated, then 

a connect hardware computer· configuration must be 

determined. The problems of information contamina­

tion and recovery will be discussed later, in section 

5.5.4. 

5. 5. 2 . 2 Diagnosis Ab Initio 

To determine a correct hardware computer con­

figuration, the status information in the status registers must 

be specified, and a set of correctly functioning modules determined 

so that computer functions can be correctly contained. These basic 

procedures must be stored in the ROS. The ROS replication 

insures that they are stored at least twice and will 

several errors. If more detailed analysis is necessary, it 

must wait careful identification of the procedur~. 

The ARC begins by bootstrapping its way into operation. 

A procedure to be followed has been described by Forbes, ,t. al !AFS ;6iJ 

Aa stated in (AFS, 67], there must be at least two diagnostic 

subsystems, and each must perform the functions: 

F 1. Supply the linkage to enable expectation of a 

given sequence conlieting of the operations FZ, 

F3, F4, FS appe::iring in any order. 
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F2. Transmit predetermined stimuli to all, or a 

sele ct ed portion, of the inputs of the subsystem 

s . 
.F 3. Obtain the outputs of the subsystem S and com­

pare them with given patterns. 

F4. Proceed to the next operation in the sequence or 

branch to a different point in the sequence of 

operations, depending on the result of the last 

F3 operation. 

F5. Employ an alternate diagnostic subr.ystem. If 
-
results agree and no ... rror is signaled, r e configure 

ARC or state status is correct as found. If 

results disagree, use the signal without error 

indication. If all results have error indications, 

signal the external world and try again. 

The control to carry out Fl through F5 is simple enough. 
The real problem is obtaining and storing the predetermined 

stimuli - or diagnostic test patterns. 

The previous design work, using TEST DETECT and 
occasionally DALG~i. will have provided a set of diagnostic 

test patterns. The main problem is storage. 

One step to reduce storage is to test the parity checking. 
circuits, then use them to signal the existance of malfunctioning 
elements. In section 5. 4. 8 it is shown that test patterns could 
be simply ,g enerated to test 9 bit parity check circuits. In 
section 5. •l. 7 and this section the design of circuits so that 

malfunctioning components could be detected was discussed~ 

Note that for successful testing the expected output signal must 
be stored and compared with the output received. The fewe r 
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status registers to be examined and the fewer tests to be stored 
the better. If t e sts are to be read from external storage, then 
all paths leading to the storage must be checked before the 
tests are read. Then the tests must be verified (say, with two­
dimensional parity coding) before they are used. 

If t.he diagnostic tests have been employed or. a regular 
basis, diagnostic analysis is aided. The best way is to employ 
.. 1e diagnostic tests a portion at a time. The basic idea is that 

not all of the computer need be r.liagnosed at the same time. 
We have termed this technique "interleaving" because the 
diagnostic procedure is interleaved with the ,operational' pro­
gram. Several mechanisms suggest themselves as possible 
ways of interrupting the operational program in order to do 
some diagnosis. One method depends on the clock; after a pre­
determined span of time, a diagnostic interrupt occurs. 
Another method is to have an instruction counter which causes 
a diagnostic interrupt after a predetermined number of in■truc­
tions have been executed. Since the switching repair action 
can take place in a matter of micro seconds, it be.hooves us to 
speed up the diagnosis in order to know precisely what self­
repair adion to take. Interleaving the application of various 
portions of a complete set of diagnostic tests not only serves to 
monitor the computer and validate its correct performance but 
also e nables the diagnosis to concentrate on those computer 
elements that have been suffering intermittent errors. This 
will speed up the diagnosh if the speculatiou is correct that many 
solid type failures start as transient ones. This does not mean 
that anything so complex as recording the history of errors is 
involved, but rather that a unit status register for each unit 
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must be provide d fc:- and employe d i.1 the manner d esc rib ed 
next. 

The dis tributed functions which are joined together to 

form the ARC are each self checking. The assessment of 

malfunctioning h rdwa re is made easy by a consideration of 

the history of past succese ful dynamic checking and diagnosis. 

Building a few types of units, each of which has some 

parallel operation (multiples of 9 bits) appears to simpliiy the 

design and checking, aid in the diagnosis (n identical relative­
ly small objects), simplify the micro programming problems 

of control, and allow speed by parallel operation. Using 

the diagnostic aids, the efficiency of checking can be deter-
' mined. Good diagnostics to determine the nature and location 

of malfunctions can be stored in the control memory, and use 
data from the bulk memory. The diagnostic aids will allow an 

exhaustive testing of each distributed function unit. The next 
step is to use these algorithms to test the interconnections 

(which should increase less rapidly than the combinatorial 

number of all possible inputs). By putting more and more 

function into distributed hardware control, but leaving flexible 

interconnections, with all interfaces defined accurately, the 

individual interconnecting steps are simple, and can be diag­

nosed by our algorithms. 

Dividing the system int.-> distributed functions aid:s in the 
assessment of the damage to critical information by localizing 

the effects of the error. Rigidly defined interfaces and proce­

dures aid in this. 

One important hardware control feature is that during 

tests all checking circuits should have time to react before the 
next test begins. 
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5. 5. 3 Retry 

If a failure is intermittant, then a dynamic form of 
error detection, like parity checking with carefully designed 
circuits, is necessary to detect it. As stated in section 2, 
the ratio of intermittant to solid failures is measured to be at 
least 5 to 1. While detection is a problem, correction is not. 
If the er:ror can be localized, one form of correction of the induced 
errors is to do the process a second time and see if the failure 
has gone away. Any successful retry operation must have 
uncontaminated initial data and control information. For instruc­
tion retry much information which ie discarded by conventional 
computer organizations must be saved. If this is done, how-
ever, computer control is n.~1.atively unimportant since most 
operations essentially start from s c ratch. For micro instruc-
tion retry, lese. information must be saved, since the opera-
tional time is less. However, the detection of an error must 
be rapid, and control information which guides the next micro 
instruction step must be preseryed (e.g., the micro instruction 
steps in a multipli cation are interrelated adds and shifts). 
Selection of the proper mix of such retrys depends upon the 
computer organization, since no single method is universally 
best. 

Operation retry • s one means of trading extra speed for 
higher reliability. Since the present speed requirements for 
space-borne computers is not excessive, this exchange is a 
worthwhile design obj~ctive. 

Reconstruction of critical information is also eased by 
the distributed fundion and rigidly defined interfaces. Thus 
reconstruction is simplified. The amount of information to be 
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stored for restarting is easily specified and may be stored 

asynchronously. Reinitialization will follow rigid rules. A 

detailed discussion t an only follow a specification of the con.­

puter command and micro command codes - and this specifi­

cation will be influenced by the retry necessity. 

5. 5.4 Reconfiguration 

T he hardware and procedures for individual switchable 

inte'daces were di scussed in section 5.4. After diagnosis (see 

section 5. 5.2) has determined the desired correct state of the 

ARC, then control stored in the ROS must be used to carry 
. 

out the necessary steps. While these steps are very design 

dependent, it is clear from section 5.4 that much information 

will have to be transferred unless status registers are distribu­

ted. If there are shift registers, then hardware is increased 

but information transfer is reduced. 

In any case, after reconfiguration verification of correct 

operations must be performed. For specific applications there 

may be considerable time pressure if all these operations are 

carried out serially. The ARC must have circuits and units 

which are designed for complete dynamic checking, fast diagno­

sis, rapid repair, and efficient veri fication of correct operation. 

5. 5. 5 Information Recovery 

Recovery is defined as the continuation of system func­

tions after an error. From a total systems point of view, the 

levels of continuation may be defined as follows: 

Unchanged: 

Restart: 

Continues at same level of time and 

space after error handling. 

Continues at the same level of time 

and space but at a different program 

point after en·or handling. 

326 



Degraded: 

Termi nated: 

Continues at lower level of time and/or 

space and/ or different program point 

after error handling. 

Ended with notification and attempt at 

information retrieval. 

Clearly, continuation (in general} implies certain requirements. 

The effects of incomplete jobs must be removed from the system. 

Jobs that cannot be restarted must be analyzed. To perform 

the s e tasks irvol es the reconstruction of secondary storage as 

well as a re-analysis a nd resubmission of the job. 

After an error has occurred, a 'damage report' must l•e 

available which will show first, los of function and, secondly , 

ext e nt of contamination. Loss of function has been well treated 

from the hardware design view, and is eased with the UAC 

organization. 

Information contamination is another problem. The 

operating environment is asynchronous. How immediate is 

'immediate detection of errors I and how fa.st must it be to pre­

vent error propagation and global contamination? What about 

a programming or procedural error and its effect on secondary 

storage? The proposed distribution of function in the UAC 

design aids greatly in preventing the spread of contamination of 

information, particularly if the error detection procedures 

recommended by Davis and Stafford are followed (DS', 1:>6]. 
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Recovery implies the existence of state information. For 

an analy■h of system recovery, it is necessary to return to the 

concept of ■y ■tem state vector. Consider the information which 

■hould be available to make system restart possible. 

Level l. 

Level 2. 

Level 3. 

Registers acceaaible to the user, program status 

information (PSW), etc. both old and new ... 

Program Control Blocks - for example: 

a) Job Management 

b) Task Informatio 

c) Data Mai gernent 

d) Phy■ical Channel and Unit Management (Queues 

and Table•). 

Input Journal 

a) This journal of ay■tern input activity includes 

all data which enter• the system via the jo"!:> 

■trearn and from the terminal•. (Input to main 

■torage from secondary storage is not a sy■tem 

input. ) 

b) Secondary Storage Activity Journal. This 

records all newly entered data sets, changes to 

exhting data sets, and deleted data- sets. 

In terms of Levels 1-3, restart capability requires state 

information for CPU, core, . and secondary storage. Further, 

total state inforr.iation cannot be provided by a user checkpoint 

(a1 normally understood) alone. 
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Assuming the availability of the above information, job 

states within the system state vector can be considered, For 

example: 

Job States Description 

so Waiting in Input Job Stream 

Sl Read in, not queued 

S2 Enqueued, not allocated 

S3 Enqueued and allocated 

S4 In Execution 

S5 Step terminated 

S6 Unallocated 

S7 System Output enqueued 

S8 System Output active 

S9 Job complete 

Fig. 5, 48 shows the paths that control should follow in 

progressing through th~se states, The lines labeled 'e' are 

followed in case of error, the others, if there is no error, 
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The action to be taken at' each step clearly influences the 

information saved. It should be noted that if S4 is long, it needs 

its own initiation of checkpoint(s), which must be supported by 

system state information. Much analysis haa been spent on thil par­

ticular case. For many cases, a set of simple and satisfactory 

restart points are lhose starred before S2 and S8. Much of the 

information on the action to be taken depend• on the operating en­

vironment and will be discussed in the next section. Before turning 

to this question, some general remark• are appropriate concerning 

the time correlation of state lnformationi data integrity, data set 

redundancy and data set dependenciesj and 1ome basic 1tep1 re­

quired for recovery. 

The item a in the Jour;.1ah mu■ t be time stamped to permit 

correlat ion of the secondary storage rollback. Journal content■ are 

related to checkpoints. 

For data integrity the following rules are nece11ary: 

l. All critical data sets are Read Only from back up between 

ch~ckpoints. 

2. A data set is updatable in back up at checkpoint only. 

3. Checkpoint is on a system basis. 

In general, there mu1t be two copies maintained of all vital 

sys tem information (e.g. , Job Queue, Task Queue with dependencie1, 

Secondary Storage Activity Journal ... ) . Keepin1 1y1tern statu1 im­

plies a real need for duplication on the fly - or in a fall 1afe way -

in order to keep the time of non-reconstructability short. 

Rules l and 2 above show that the record hold and interlock 

problems apply to secondary storage. The ARC design allows the CCU 

to solve these problems with its own control. 

The effects of data contamination are a direct function of depen­

dencies between data sets. There are three basic types of dependency: 
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a) Ancestry - one t a ks generate s anot J-.er, or one da ta set is 

used to generate other(s). 

b) Common - inform a tion or t as ks used together, explicitly 

or implic itly sta ted. 

c) Common physic al resource s . 

Such dependency rel a tions show tlfat c ontam ination can spre a d 

rapidly. However, the relatively independent CCU can s top most 

of it, using ite detailed local control and checking. The alternate 

paths will aid in recovery information. 

The basic recovery steps are: 

1. Purge and unallocate volumes. 

2. Re1tore secondary s t orage. If impossible, collect information 

to aid in the information retrieval p1·oblem. 

3. Refresh jo!:> queue. 

4. Refresh control. 

5. Restart uain.g specified initial conditions (not reset conditions). 

In state S4, in Figure 5. 48 the time between checkpoints must 

be a USER input. The user must epecify his rollout points. However, 

the system must use them with discretion to protect the user against 

gliche1 occurring during the system opeT'ation of his program - errors 

in the supervisor, his own program, or in other multiprogrammed 

tasks. This makes for an interesting accounting problem. Other user 

input will be discussed in the environment section. 

It is clear that the ability to restart implies: 

a) System status information in (.;Oncise form and readily available. 

b) The ability to do a "warm start" - i.e., to begin at arbitrary 

points with non-empty queues, etc. 

c) F or efficiency, the functions of the CCU should be included 

(needed for ultra availability anyway). 
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The type of system env!ronment most frequently met in 

spaceborne computers is that of a dedicated system with cyclic 

input. In these systems there is one main job, repeated fre­

quently. The in.put arrives in quantity and disregardirg the input 

for a short period of time does no harm. Processing can begin 

without reconstruction. Examples of this type of system are 

the FAA, orbit tracking, and many types of industrial control. 

These systems have high vulnerability (they can't go back in 

time), low file orientation and usually require a fast response 

time. 

Recovery Procedures: 

Requirements: 

a) Back up of critical files. 

Algorithm: 

a) Run the program to access damage report, 

Teconfigure sy■tem and report results. 

b) Reconstruct core contents, bring in back up 

program. 

c) Start with new cycle c.,f data. 

The length of time available for recovery must be specified 

by the u■er. If it is short (e.g., FAA) then problems may aririe, 

but they have been eolved in all cases to date. 

Step a) in the algorithm is by far the most difficult, and 

is still application dependent, except for hardware retry. 
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APPENDIX 1 - DALG II and TESTDETECT 

Appendix 1.1 DALG-11 

Glossary of Major Variable• 

L - a vector whose 1th entry specifies the logic associated 

with line l ; entries wh 0 -rP. T e PI can be any value. 

Pl - a vector containing the line numbers of the primary 

inputs. 

PO - a vector containing the line numbers of the primary 

PL 7 
IPL J 

SL L 
ISL J 

LINES 

outputs. 

- the predecessor list (PL) vector and an index vector 

(IPL) on PL such that the predecessors of block I are 

stored in PL from PLQ.PL [I] -t 1 J through 

PL[iPL [i +- 1J] ; no predeceuor entries are made for 

the primary input lines, i.e. for I c fP 1. 

- same as PL, IPL except the succeuors of block 1 are 

stored. 

- a vector of line number• which are to be tested. 

VALUES - a vec k>r with the 1th component giving the value the 

1
th 

line specified in LINES is asaumed to be stuck at. 

PDCFIN - a vector giving the line numbers for the inputs in the 

primitive D-cube of failure (pdcf). 

MPDCF - a matrix with each row containing the actual line values 

for a given pdcf in the order specified by PDCFIN, PDCFO. 
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PDCFO 

TC 

A 

C 

- a scalar giving the output line number for pdd. 

- a vector of rank equal to the number of lines in the 

circuit (it correspond• to tck of the manual method). 

- activity vector. 

- the "consistency vector" containina a list of tho1e 

blocks whose coordinates in TC are 1 or O and who1e 

inputs cannot account for this value without makin& an 

arbitrary decision, e , g. an AND with a O output and 

all inputs x. 

DB - the block for which a pdc is being generated in DALO 

(during D-drive), or the one for which an arbitrary 

decision is being made in CDRIVE(during con1i1tency). 

INC - a list of line number• which have been u1ed to incre­

ment A (during D-drivf'I~ or C (durina con1iltency) lince 

the las arbitrary deci1ion. 

DEC - a list of line numbera which have been u1ed to decrement 

SETCO 

JINT 

A or C since the laet arbitrary deci1ion. 

- a list of the numbers of those line• which have been 

set or changed from x to 0, 1, D, or D 1ince the la1t 

arbitrary selection of a line in A: these lines must be 

checked by one of the BDRIVE'si. 

- an index on SETCO which points to the last entry which 
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MODIN 

POTEST 

FAIL 

was examined by a BDRIVE function. 

- a list of the line numbers of blocks which have had 

some of their inputs (predecessors) modified or set 

since the last application of an FDRIVE function; these 

lines are candidates for a forward implication. 

- an indicator to signal that a primary output has been 

reached by the D-chain. 

- an indicator wh ;ch when equal to 1 denotes then an 

incon1istencv ha• been encountered. 

Subordinate Function Descrip,ion 

Since the major functions used in DALG-II (circuit, DALG-II, 

DALG, DBDRIVE, DFDRIVE, CDRIVE, CBDRIVE, CFDRIVE) were 

briefly di1cus1ed . in section 3.4.2, only the subordinate functions used 

by the1e will be described here. 

DEFINE: All variables are defined in thia function. In the APL des-

cription, it turned out to be convenient to encode the variables O, l, A , 

D and D a1 o, 1, -1, 2 and -2 respectively. Then use could be made 

of the fact• that D: -D and that adding +3 to a line signal value would 

make this value available as a subscript in the XOR table lookup with 

the matrix XORM. The coding for the logic function names was arbi­

trary. Implementing some of the tests in implication was eased by 

defining the matrix M which was then used in classifying the four vertex 
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functions. 

P: The predecessors of block B are extracted from PL and returned. 

S : The successors of block Bare extracted and returned . 

CLIP: the first N components of the vector V are clipped off the 

V and the result used to respecify Z. 

LMERGE: The two low order sorted vectors V and W are merged to 

form a low order sorted vector Z. UThen du,~licate entries appear in 

V and W, only one such entry is placed in Z. 

HMERGE: This function is similar to LMERGE except it uses high 

order sorting on all vectors. 

AUGMODIN: All the successors of the blocks listed in the first argu­

ment, V, which are not already in MODIN or are not equal to the second 

argument, B, are placed in MODIN. In practice, V will be the list of 

predecessors of block .B which were just set to 1 or O. When MODIN 

is updated, there is no reason to add B to MODIN since it has just 

been checked. 

ADEC: If B is in the activity vector, A, it is deleted and the increment 

and decrement lists updated: if B is in INC, it is deleted , if not, then 

B is added to the decr ,ement list. 

STORE-EXTRACT: These are a complementary pair of functions for 

storing and extracting the lists necessary t o record the status of the 

solution at a given point. The particular catenation process for stor-
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ing vectors which is used here was nec t ssary beca.use the APL inter ­

preter did not have a "list of lists" feature. The saving of SETCO, 

INC., and DEC are rather obvious. The variable TAG is used to 

record information concerning why this particular save was made : 

TAG : 0 first pdc intersection for an exclusive -OR. 

= 1 activity vector had mo r e than one entry. 

: n the input being examined on DB during CDRIVE . 

Before STORE is executed, it is customary to store the decision block 

number, DB, in a list LDB . During CDRIVE , it is stored negatively 

in order to distinguish thi1 mode. 

CLEARIJST: The li1ts used to store the statu1 of the global variables 

are initially cleared with this function. 

CDEF: The initial consistency vector C is defined with this function. 

Onlv those blocks below the latest block for which pdc was formed need 

be examined. 

CDEC : If block B is in the consistency vector, it is deleted and either 

t.he increme nt or de crement list updated depending on wh0 re B is stored. 

CHANGEPL: The predecessors for block I can be respecified in PL. 

SLDEF : Given PL and IPL, SL and ISL are defined. 

LIST PL: The predecessors for each block are listed. 

LISTSL: The successors for each block are listed . 
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V nALr.IJ; J ;nV;R;LI 
[1] LI+tpL 
[2] I+0 
[3] ' ENTF.R T,INF.S TO RF. TESTED.' 
[ 4] [, INES+ ,, □ 
[5] 'F.NTF.R srucx VALUES FOR TRP.SE LINES.' 
f6] VALUF.H+, □ 
[7] DGT ~+(I~pLINES)/0 
[BJ I+ l +1 
[9] ~PCFO+LINF.S[I] 
[10] Pn GFIN+P PDCFO 
[ 11 ] VAL Ur,+ VALUES [ I] 
[12] ('TF.ST FOR T,INE ';PnCPO;' STUCX-AT-';VALUF') 
[13] nv+(D,-D)[VAT,UE+1] 
(14] +(L[PnCFO]•XOR)/nr.v 
[15] MPDC,P+(2 3)p1,VAT,UE,DV,0,("".VAT,UF.),nV 
[16] +nr.c 
(17] Dr.V:R+pPDCFIN 
[ 18] -t-( ( ( ~VAT,l!F.) "L[ PnCFO] l NAND, OR )v VAT,UP. "Lf PD CFO] tA ND, NOP) /Dr.M 
( 19] MPnCF+(1,R+1)p(R~LrrncFO] t AND,NANn),DV 
[20] -t-DGC 
(21] DGM:MPDCF+(R,R+1)p(L[POCFO]tOR,NOR),(R+1)p1 
[ 22] MPnCF[;R+l]+PpnV 
(23] DGC:nALr. 
f24] +FAII,/DGN 
[25] (' DX01D')[1+((2x(pLI))p O 1)\TCfLI]+3] 
[26J .. nr.r 
[27] nr.N:'NO ~EST' 
[28] -t-nGT 

V 
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[ 1] 
r21 
r 3 J 
[4) 
f5] 
[ f> l 
[7) 

re J 
[q) 
[10) 
[11] 
r12J 
[13) 
r 1 4 1 
(15) 
[16) 
[17) 
f18] 
(19) 
[20) 
[ 21] 
(22) 
[23) 
[24) 
(25) 
[26) 
[ ?.7] 
[ 28] 
(29) 
(30) 
(31) 
(32] 
(33] 
(34] 
(35] 
(36] 
(37] 
f. 38] 
[ 3 9) 
(40] 
(41) 
(42) 
(43) 
(44) 
(45) 
(46) 
[47) 
(481 
r 49 J 
[50) 
[ 51] 
f52J 
[53] 
[54] 
[ 5 5] 

~ r Ar, r., r r, pryn , rr nx 
r.LP.A.r:? f, TST 
F' r +o 
nPnr.r:+(Pr =p«rn r.rr .1J>1 nrAr r, 
Pr> '.i."P.ST+O 
VC+Fr.+1 
TC+( p T, )p X 
rcr r nr.Pr 1 , Pnc roJ+~PnrPr Pr. ,J 
SF:TCO+PnCPO,(TC[PDrFT N]•X)/?D CFT~ 
A+S Pnr.ro 
TNC+A 
Af()n[N+DF:C+,o 
SP.TCO AUGMonrN pnrPn 
JIMT+1 
n.'lf+PnCF'O 
+f)RPO 
DP.XT:+(O=pA)/nPArKUP 
D.R+A[1] 
'l'AC+O 
+(LfDR]•XOR)/nSTOR~ 
l)A'T'P.ST: TAG+1 
+(1:pA)/DRI VP. 
DSTORP.:LDB+nR.inR 
STORP. 
SF:TCO+I~C+n~c+,o 
nRIVF::PD.R+P DR 
PnBX+(TC[PDB]=X)/?nR 
TC[PDBX]+(pPDRX)p(TA ~. i [nR]tANn, MAMn)[1+T,[ryRJ•XOR] 
TC[ DR]+( D •- Ii )[ 1 + ( v /TC[ Pl'R] =D) = ( L [ n,n £NOR• NA ND) v ( L[ DB] =XOR) AT t1 r,: 1] 

'f} 

DUPDATE:JINT+l+pSETCO 
SF:TCO+SF:TCO,DR,PDRX 
ADP.C DR 
(PDBX,DR)AUCMODIN nR 
DDPO:+(-nDtPO)/DRDRIV 
POTP.ST+1 
DRDRIV:D.R+DB 
DTJDRJVF: 
+PAIT, /TJBA CKUP 
DFDRTVF: 

'\. 

+(PATLvA/TC[PO]t O 1)/nRACKUP 
+(-PnTP.ST)/D'f.XT 
r, rrP+DR ,LnR 
STORr. 
CDRTVF. 
+(-PAIT, ) /0 
POTP.ST+O 
DRACKUP:+(O=pT.TAr.)/nPnCP 
M() lJ Pl+, 0 
TC[S P.TCO]+(pS~Trn)rX 

1 A+((-AEINC)/A) LUF:R~F: 
~XTRACT 
TJTJA r.K+ DRA r.r.+ 1 
+( ~ TAr. ) / DATP.S'J' 
Anr::c nR 
+nr.x r 
.TJFAI T, : F'A IT,+1 

nrr. 
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[ 1] 
r2J 
[ 3] 
[4] 
[5) 

rsJ 
r 1 J 
[8) 
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(10] 
[11] 
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TAr:+pPnRX 
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SF.TCO+PDRX 
+CINT 
CVPRT:TC[PnPX[TAr.l]+r,[ryR]tOR. NOR 
SF:TCO+ • T>nRX[ ~".4/il 
C Jr!T: J J.VT+O 
SF:TCO AUr:Honrv DR 
JVC+tO 
nr.c+,o 
CBDRIVP. 
+F'AIT,/CRACKUP 
CF'DRJVP. 
+PAIT,/CRACXUP 
LDB+( -nR) ; r,m? 
C+C CT,IP 1 
DP.C+nR • p-,;:r, 
STORF: 
C+((-CinF:C)/C)"MF.Rr:F: IMC 
+CNF:XT 
tBACXUP:MODIN+,O 
TC[SP.TCO]+(pSP.TCO)pX 
TAG+TAr:-1 
+( O •TAr:) /CSF.T.PI 
F:X'!RA CT 
CTJACX+CRACK+1 
+(nB>0)/0 
oq+-nR 
C+((-Ctl ~C)/C)"~-,;:Rn~ nr.r. 
PnRX+(TC[P DR)=X)/P nR 
+CRACKUP 
CTP.ST:F'AIT,+O 
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[20] 
(21) 
(22] 
(23] 
(24] 
(25] 

V nBnRJVP. ;J ;LI IP. ;PRP.n ;XPRP.n ; rcv 

V 

nRBRA' 4p nRFl'tI!, , nP.xrm . nR8TP.P , nRD TP. P 
J+-J I T 
DB TF.P :•( J =pSP.TCn )/nRP.Nn 
J+-J+t 
Lr P. +- S'P.TCn[J] 
•( L P. iPI )! nRSTP.P 
PRr.'D+P LINP. 
XPR F.n+(TC[PRP.n ]=X)/PRP.n 
'.fOnI N+ ( MOn I N • LIN P. ) n.tnn I f 
+(L[ LINF.] • XOR )/nRVF.RT 
+DRBRAN[XOR'.f[TC[PRP.ry[ t]]+3; C[PRP.n[2]]+3;TC[LINP.]+2]] 
nBXOR: TC[ XPR!rnl+TC[ l,INP. ] •TC[ ( PR F. n•XPRF.n) /PRFW ] 
+DB{IPfJ ATF. 
nR VER T:TC V+(v/ M=L [lIN P.])/TC[LINF.],~TC[LillE] 
+((TCV=L[ LINP. ]£ OR, NOR),(v/TC[PRF.n]£D,(-n).~TCV),(O=pXPRP.n),1)/ 
DRTWO,DBFAIL,nRSTF.P,nRSF.T 
DRTWO:+(((v/TC[PRF.D]=TCV)V1<pXPRF.n),0=pXPRP.n)/DBSTF.P,nBFAIL 
DBSF.T:TC[XPRF.n]+(pXPRF.n)pTCV 
DBUPnATF.: P.TCO+SF.Tr.n,XPRF.n 
XPRF.n AUCMODIN LINF. 
+DRSTF.P 
DBFAIL: FAIL+1 
+O 
DB F. ND:FAIL+0 

V CRDRIVE;J;LINF.;PRF.niXPRF.niTCV 
CBBRAN+4pCRPAIL,CRXOR,CRSTF.P,CBAnTOC 

V 

J+JINT 
CBSTF.P:+(J=pSF.TCO)/CRF.r n 
J+J+1 
LINF.+SF.TCO[tl] 
+(LillF.ePI)/CRSTF.P 
PRF.D+P LINF. 
XPRF.D+(TC[PRF.D]=X)/PRF.n 
MODIN+(MOnIN•J,INF,)/MODIN 
+(L[J,INF.]•XOR)/CBVF.RT 
+CRBRAN[XORM[ TC[PRF.n [1]]+3iTC[PRF.n[2]]+3iTC[LINF.]+2]] 
CBXOR:1'C[XPRF.n]+TC[I,INF.]•TC[(PRED•XPRF.D)IPRF.D] 
+C8llPDATF. 
CBVF.RT:TCV+(v/M=L[LINF.])/TC[LINF.],~TC[l,INF.] 
+((TCV=L[l,INE]£OR,NOR),(v/TC[PRED]£D,(-D),~TCV),(O=pXPRED),1)/ 
CBTWO,CBFAIL,CRSTF.P,CBSF.T 
CBTWO:+((v/TC[PRF.n]=TCV),(0=pXPRF.n),1=pXPRF.D)/CRSTF.P,CRFAIL, 
CBSF.T 
CBADTOC:INC+INC HMF.RnF. LlNF. 
+CBSTEP 
CBSF.T:TC[ XPRF.n]+(pXPRF.n)pTCV 
CBUPDATE:SF.TCO+SF.TCO,XPRF.D 
XPRF.D AUCMODIN J,JNF. 
+CBSTEP 
CRFAIL: FAIT,+1 
+O 
ClJENn: FAI L+0 
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[ 1 ] 
[ 2 ] 

[ 3 ] 
[4] 
[ 5 ] 
[ 6] 
[ 7] 
f.B] 
[ q ] 
[10] 
[ 1 1 ] 
[ 1 2] 
(13] 
[ 14] 
[15] 
[16] 
[ 1 7] 
[18] 
[19] 

[20] 
[21] 
[22] 
[23] 
[24] 
[25] 
[26] 
[27] 
[28] 
[29] 
[30] 
[31] 
[32] 
[33] 
[34] 
[35] 
[36] 
[37] 
[38] 
[39] 
[40] 
[ 41] 
[ 4 2] 
[43] 
[44] 
[45] 
[46] 
[47] 
[48] 
[49] 
[50] 

V l)FDRI VF.;L inR ;PR Pn ;XPRP.D ;VI; VC 
DFRRAN+9pDFFAIL,DXJ.nFSTF: P,DFfiTF:P.nxn . nxn . nXDR , DFSTF:P , nFADA 
DFSTF:P :+(0=pMO DIN )/ DFF:ND 
LINF:+MODIN[1] 
MODIN+MODIN CLIP 1 
PRF,TJ+P l, TNF. 
XPRF:l)+(TC[PRF:D]=X)/PRP.D 
+(L[LINF:]~XOR)IDFVP.RT 
+l)FRRAN[XORM[rC[PRP.D[1]]+3;TC[PRPD[2]]+3;TC[LINE]+2]] 
l)XJ:TC[XPRRD]+TC[LINF:]~TC[(P~F:n•XPRF:D)/PRF:n] 
+DF/t!O l) 
DXO:i'C[L INF.]+TC[PRF:D[1]]itTC[PRF:D[2]] 
+DFDF.C 
DXD:TC[LINF.]+n 
+DTPO 
DXDB:TC[LINF.]+-n 
+DTPO 
DFVF.RT:VI+L[LINF.]£0R,NOR 
VC+L[LirE]£NAND,NOR . 
+(((v/TC[PRRn]=V.[)v(v/TC[PRF.D]=D)Av/TC[PRF:D]=-D),(1=pXPRF.D), 
O=pXPRF.D)/DFOUT,DFONF.X,DFNOX 
+(TC[LINF.]itX)/DFSTEP 
DINTF.ST:+(A/TC[PRF:D]£ O 1 ,X)IDFSTF.P 
DFAnA:+(LINE£A)/DFSTF.P 
A+A LMF.RGF. LINF. 
INC+INC LUF:RGF. LINF. 
+DFSTF.P 
VFONF.X:+(TC[LINF:]=X)/DINTF:ST 
TC[XPRED]+VI 
DFlfOD:JINT+pSF:TCO 
SETCO+SF.TCO,XPRP.D 
XPRTm A l/CMODIN LINF. 
DBDRIVE 
+FAIL/0 
+DFSTF:P 
DFNOX:+(TC(LINE]itX)/DFFAIL 
+(A/TC[PRF:D]=-VI)/DFSF:TO 
TC[LINF.]+((v/TC[PRF.D]=D)=v/M=L[LINF.])/D,-D 
DTPO:+(~LINEtPO)/DFDF.C 
POTEST+1 
DFDEC: ADF.C LI!IF. 
DFUPDATE:SF.TCO+SF.TCO,LINE 
LINF. A UGf,fODIN O 
+DFSTF.P 
DFSF.TO:TC[LINF.]+VI=VC 
+DFUPDATF. 
DFOUT:+(TC[LINF.]itX)/DFSTF.P 
TC[LINE]+VI•VC 
+DFDF.C 
DFFAJL: FAll+1 
+O 
DFF.ND: FAIL+O 
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' ; 

[ 1 ] 

[ 2 ] 
[ 3 ] 
[ ., ] 
[ 5 ] 
[ 6] 
[7] 
[ 8 ] 
[ 9 ] 
[ 10] 
[11] 
(12) 
(13] 
(14) 
(15) 
[16] 
(17] 
[18] 
[19) 
[20) 

[21) 
[22] 
[23) 
(24] 
[25] 
[26] 
[27] 
[28] 
[29] 
(30] 
[31] 
(32] 

(33) 
[34] 
(35] 
[36] 
[37) 
[38] 
[39) 
[40) 
[41] 
(42] 
(43) 

V CFnRI VF: ; l[IF: ;PRPn ;XP rPn ; V[ ; Vr 

V 

r: FR RA N .. g p r: F p A Ir, • r: X [ • r: F {) F: r: .r. FF A [{, • r, X (} • r: X n . , X /) R • r: N i 'fl,,' p ,r: FD 'i' pp 

CFST F: P:+( 0=n MO nI M)/ r: FF:Nn 
l I NE+MOnI N[1 l 
MO nIN+UOnJN ClI P 1 

( LINF. >DR)/ CFSTF:P 
PRF.n+P LTNF: 
XPR F. D+( TC[PR F: D]= X)/ PRF:n 
+( L[ LINF:] • XOR )/ CFV F:Rr 
+CFRRAN[XORM[ TC [PRPD[ 11] +3 ;TC [ PRF:n [ 2 ]l +3 ;TC [ LIMF: ]+2]] 
CXI: TC[XPR r n l+ TC[lIIF: ]• TC [ ( PRF:n • XpRF:n )/ PPF:n ] 
+CFMnn 
CXO:TC [LINF:] ~rc [ PRF:n [ 1] l• TC[ PRF: n[ 2l ] 
+CFADD 
CXD: TC[ LI NF: ]+ n 
+CFADD 
CXDB:TC[LINF.]+-n 
+CFADD 
CFVF.RT :VI+L[ LI NF.]€OR, NOR 
VC+L[LINE]€NAN D, NOR 
+(((v/TC[PRF.D]=VJ )v( v / TC[PR F: D]= n )AV/ TC [PRF: D1=-n),(1< pX?RF:n ) 
,0=pXPRF.D)/CFOUT,CFSTF.P,CPNOX 
+(TC[LINF.]=X)/CFSTF.P 
TC[XPRED]+VI 
CFMOD:LINF.+LINF. 
CDEC LINF. 
JINT+pSF.TCO 
SETCO+SF.TCO,XPRRD 
XPRF.D AUGMODIN LINF. 
CBDRIVE 
+FAIL/0 
+CFSTRP 
CFNOX:+( TC[LIN F. ]•X)/CFFAil 
TC[LINE]+((A/TC[PRF.n]=-VI),(v/TC[PRF.D J•~VJ)A(V/TC[I'RF: n]=D)= 
v/M=L[LINF.])/(VI=VC),n,-n 
CFADD:SETCO+SRTCO,LINF. 
LINF: A UGMODIN 0 
+CFSTEP 
CFOUT:+(TC[LINF.]•X)/ CFDF.C 
TC[LINE]+VI•VC 
+CFADD 
CFDEC:CDEC LINF. 
+CFSTEP 
CFF.ND: FAIL+0 
+O 
CFFAIL: FAI l+1 
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'ii DF:FINE 
[1] D+2 
[2] X+-1 
[3] AND+1 
[4] NAND+2 
[5] OR+3 
[6] NOR+4 
[7] XOR+S 
[8) M+(2 2)pOR,AND,NOR,NAND 
[9) XORM+(S 5 3)p 5 3 1 9 1 1 7 1 1 6 1 1 5 1 3 .. 9 1 1 ij 4 4 8 2 2 8 ?. 2 9 1 1 7 1 1 8 2 2 5 

3 1 5 1 3 6 1 1 ~ 1 1 A 2 2 5 1 3 5 3 1 7 1 
1 5 1 3 9 1 1 6 1 1 7 1 1 5 3 1 

[10) ALL+12321 
[11) F:ND+98789 
(12) TIME+NUM+CLOCX+9p0 

V 

V CLF:ARLIST 
[1] LDB+LTAG+t O 
[2] LNSET+LNINC+LNDEC+t0 
(3) LSF:TCO+LINE+LuF.C+,o 

V 

V Z+P B 
[1] Z+tO 
[2] +(O~B+B-pPI)/0 
[3] Z+PL[IPL[B]+,IPL[B+1]-IPL[R]] 

V 

V Z+S B 
[1] Z+SL[ISL[B]t,ISL[B+1]-ISL[R]] 

V 

V Z+V CLIP N 
[1) Z+("'(pV)aN)/V 

V 
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V 7,+ V l ,Mrrnr, F, II ; J( 

[1] K+O 
[2] Z+,V,W 
[3] +(O=pV)/0 
[ 4] W+, II 
[5] +(X=pW)/0 
[6] X+X+1 
[7] Z+((Z<W[K])/?.),W[K],(?.>W[K])/7, 
[ 8] +5 

V 

V Z+V HMF.Rr.F. 1-l;X 
[1] K+O 
[2] Z+,V,W 
[3] +(O=pV)/0 
[ 4] W+, W 
[5] +(X=pW)/0 
[6] K+K+1 
[7] Z+((Z>W[K])/7,),W[K],( Z<W[K])/7, 
[8] +5 

V 

V V Allr.uonIN R;K 
[ 1] V+, V 
[2] X+O 
[3] +(X=pV)/0 
[4] K+K+1 
[5] MOnIN+MOnIN LMF.Rr.F.((S V[K])-R)/S V[K] 
[6] +3 

V 

V AnF:C B 
[1] +(,..BtA)/0 
[2] ~+(A•FJ)/A 
[3] +(BtINC)/6 
[4] DF.C+DF.C LMF.RfrF. R 
[5] +O 
[6] INC+(INC-B)/INC 

V 
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[ 1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 

V cnrF;X;PK;PXX;DT 
C+tO 

V 

K+nPI 
+(K~Dn-1)/0 
K+K+1 
+((~TC[K]£ 1 0),L[K]=XOR)/ 3 7 
+(((TC[K]=1)Al[K]£ANn, NOR)v(TC[K]=0)AL[X]£OR,NAND)/3 
PK+P K 
PXX+(TC[PX]=X)/PX 
+(((L[X]=XOR)A2=pPXX),T,[K]=XOR)/ 12 3 
nI+T,[X]£OR,NOR 
+((0=nPXX)v(v/TC[PX]=DI)v(v/TC[PX]=D)Av/TC[PX]=-D)/3 
C+X,C 
+3 

V CDF.C n 
[1] +((R£C),(B£INC),1)/ 2 4· 0 
[2] DF.C+DF.C HMF.RnF. R 
[3] +O 
[4] INC+(INC•B)/INC 

V 

V STORF. 
[1] LTAr.+TAr; ,LTAr. 
[2] LNSF.T+(pSF.TCO),lNSF.T 
[3] LNINC+(pINC),LNINC 
[4] lNDF.C+(pDF.C),T,NDF.C 
[5] LSF.TCO+SKTCO,LSF.TCO 
[6] LINC+INC,LINC 
[7] LnF.c+nF.C,LDF.C 

[ 1] 
[2] 
[ 3] 
[4] 
[5] 
[6] 
[7] 
[ 8] 
[9] 

V 

V F.XTRACT 
TAr;+T,TAG[ 1] 
L'FAG+LTAr; Cl,IP 1 
DR+T,DR[1] 
LDR+LDR CT,IP 1 
NSF.T+l,NSF.T[1] 
LNSF.T+LNSF.T CT,IP 1 
NINC+LNINC[1] 
l,NINC+LNINC CLIP 1 
NDF.C+LNDF.C[1] 

[ 1 0] 
[11] 
[12] 
[13] 
[14] 
[15] 

• [ 16] 

1,,·,1 n F. ~+ !,!/ n F.C C T,I P 1 
SF.TCO+LSF.TCO[,NSF.T] 
LSF.TCO+LSF.TCO CLIP NSF.1 
DF.C+LDF.C[1NnF.C] 
lDF.C+LDF.C CLIP NDF.C 
INC+l,J!IC[ 1NINC] 
T,INC+T,JNC CT,JP NJNC 

V 
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V CIRCUIT;I;V 
'ENTER PRIMARY INPUTS.' 
I+pPI+,0 
'P.NTER PRIMAR! OUTPUTS.' 
PO+,n 
'F:NTER LOGIC.' 
L+(IpO),(L•O)/L+,0 

[1J 
[2J 
[3J 
[4J 
[SJ 
[6J 
[7J 
[8J 
[9J 
[lOJ 
[11J 
[12J 
[13J 
[14J 
[1S] 
[16J 
[17) 
[18J 
[19J 
[20J 

'F.NTER PREDECESSORS FOR THP INDICATED BT,OCY.' 
PT,+SL+,IPL+IST,+O 

V 

( 'BLOCK ';I+I+1) 
PL+PL, □ 
IPL+IPL,pPT, 
+(I<pL)/9 
I+1 
SL+SL,(pPI)++/((PT.=l)/1pPL)•.>IPT, 
ISL+ISL,pST, 
+((pL)~I+I+l )/14 
'END OP CIRCUIT nr.FIWITION.' 
+(O=pI+(L=XOR)/,pL)/0 
+(A/2=IPL[I+1J-IPL[I+I-pPI])/O 
'INCORRECT NUNBP.R OF INPUTS ON XOR.' 

V CRAIIGP.PL I ;J 
[1) I+I-r,PI 
[2) J+pPL 
[3] PL+PL[,IPL[I]], □ ,PL[IPL[I+1]+,(pPL)-IPL[I+1]] 
[4] IPL+IPL+(IpO),((pIPL)-I)p(pPL)-J 

V 

V SLDBF;I 
[lJ SL+,ISL+O 
[2J I+1 
[3J SL+SL,(pPI)++/((PL=I)/1pPL)•.>IPl 
[4J ISL+ISL,pSL 
[SJ +((pL)~I+I+1)/3 

V 

V LISTPI,;I 
[lJ I+l+pPI 
[2J (I;' : ';PI) 
[3J +((pL)~I+I+l)/2 

V 

V LISTSL;I 
[1J I+l 
(2) (I;': ';SI) 
[3J +((pL)~I+I+l)/2 

V 
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l 

Appendix 1.2 TESTDETECT 

Glouary of Major Variable• 

TESTDETECT u1e1 many of the defined in DALG-11 plu1 the 

followina: 

FD - a vector of lines which are failure detected by the 1iven 

teat. 

DL - a vector containin1 a liat of lines which have D'• on 

them and 1ucce11or1 in A. 

FO - the fan-out or number of 1ucce11or1 in A for each cor-

re1pondin1 line in DL. 

Al - the fir1t (and loweat) element in A: the one for which 

D-chain extenaion ia beiq aoqht. 

PAl - the list of predece11or1 of Al. 

PDL - the list o_f predece11or1 of Al which are al■o in DL, i.e. 

the one• which are thou1ht of aa havin1 D and/or D values. 

PNDL - the list of predece11or1 of Al which are not in DL 

SAl - 1ucce11or1 of Al. 

TM - a matrix with each row containin1 a teat for which TEST­

DETECT ii to be run. 
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--------- --

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
(10) 
(11) 
(12) 
[13) 
(14] 
[15) 
[16) 
[17) 
(18) 
[19) 
[20) 
(21] 
[22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28] 
(29] 
(30] 
(31] 
(32] 
(33] 
(34] 
(35] 
(36] 
[ 37] 
[38] 
(39] 

V TESTDETECT;I;DL;FO;A1;PA1;PNDL;PnL 

V 

TDRit'F, 
·FD+PO 
I+1t(pL)[1] 
NEXT:•(O=I+I-1)/PRINT 
•(IlF'n)/NF,XT 
Dl+I 
A ·--S Dl, 
FO+pA 
PI C X: A 1 +A [ 1 ] 
A+A CLIP 1 
PA1+P A1 
PNDL+(-PA1£DL)/PA1 
PDL+( PA 1l DL) IPA 1 
FO+FO-(DLtPDL) 
DL+(FO•O)/DL 
FO+(FO•O)/FO 
+(L[Al]=XOR)/TXOR 
+(O=pPNDL)/DTEST 
+{L[Al]v.=OR.NOR)/TOR 
TAN:+(A/TC[PNDL])/DTEST 
+DLTF:ST 
TOR:+{v/TC[PNDL])/DLTF.ST 
DTRST:+(l=pPDL)/AlTF:ST 
+((A/TC[PDL])v(A/-TC[PDL]))/AlTEST 
+DLTEST 
TlOR:+(1•pPDL)/DLTF:ST 
AlTEST:+(AllPO)/AUG 
DL+DL.Al 
SAl+S Al 
FO+FO.pSA 1 
A+A LNERGF. SA 1 
DLTEST:+(l<pDL)/PICX 
+{O=pDL)/NKXT 
+((DL~I).-DLtFD)/PICX.NF:XT 
AUG:FTJ+I.FD 
+NEXT 
PRINT:A+(tpL)tFD 
I+(l+TC[PI]),3.(AATC)+2•AA-TC 
(' 011')(1+((2xpI)p O 1)\I] 

V TDRIVK;I;T 
[1] I+(p.PI)[1]t1 
[2] 7'+TC[P I] 
[3] TC[I]+(L[I]=AND,NAND.OR.NOR.XOR)/(A/T),(-A/T), 

(v/T).(-v/T).(•/T) 
[4] +((pL)~I+I+l)/2 

V 
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[ 1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[14] 
[15] 
[16] 
[17] 
[1A] 
[19] 

V PATTF:RNS;I;J 
'J.'M+,J+O 

V 

'F:NTF.R PRIMARY 
'TYPE ALL IF 
''!'YPF ENn TO 
I+, □ 

INPUT PA'J'TERNS, ONE A'!' A Tl'-'E.' 
ALL 2•pPI PA'!'~ERNS ARF nF.SIRF.n.' 
STOP DATA F:~1TR Y. ' 

•(I[1]=ENn,ALi)t O 16 
•((pI)=pPI)/10 
'INCORRF.CT NUMBER OP DIGITS. REENTER.' 
•5 
• ( o;, ( p TM )[ 1 ]) / 14 
TM+(l,pPI)pl 
•(J:;0)/5 
•17 
TM+ (( p TM)+ 1 0 )p ( , TM), I 
•12 
J+O 
•<C2•pPI)<J+J+1)/0 
I+((pPI)p2)TJ-1 
•10 

V DF.TF.CT;I;END 
[1] I+(' 01234567A9')[1+((2xpL)p O 1)\1+10ltpL] 
[2] I[,2xpPI],' l',I 
[3] ((2xpPI)p'-~),'-+',(pI)p'-' 
[ 4] I+O 
[5] TC+(pL)pX 
[6] •C((pTM)[1])<I+I+1)/0 
[7] TC[PI]+TM[I;] 
[8] TF.STDF.TF.CT 
[9] •5 

V 
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Appendix 2, Reliabil i ty Derivations 

2. l Derivation of Miscellaneous Formulae 

2. 1. 1 A bound for the approximation e rro r in equation 4. 15 

for l R1 (>.., µ.). 

As shown previous ly, if K = >../ µ., 

1 - >.. T 2 - >.. T - ·µT 
R 1(>.., .,.) :s e (1 +>..T) + K e { 1 + >..1)(1-(lt~T)-e ) 

-2 (K-D[l-(l + µT t ... T) 2 ) e-.,_T]} 

2 

So, 

•--12 

~ 2 
• -2T • - >.. T [ 1- ( l + >.. T + ( \T) ) e - >.. T] 

1 
If T :s 10,000, >..T :s. 3, a R1(>.., O) = -16. 7, 

a~ 

1 
a R 1 ( >.., >..) • - 54 • The error lies in the triangle shown, 

a.,. 

• 001 

• 00003 

The max f!rror is . 00005 or 5% of the failure (. 001 ). 
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An APL program was written to determine bounds in 

following cases: 

q 

l 

2 

3 

4 

1 

2 

3 

4 

2 

3 

4 

1 

1 

l 

l 

l 

1 

1 

1 

l 

1 

2 

2 

2 

2 

>.. T 

. 3 

. 3 

. 3 

. 3 

• 2 

. 2 

. 2 

. 2 

. 3 

. 3 

. 3 

. 1 

f R ~ (>.., 0) 

o. 99973 

o. 99812 

o. 99527 

o. 99280 

o. 99994 

0.99958 

o. 99892 

o. 99830 

o. 99979 

o. 99989 

o. 99972 

l-l.3Xl0- 9 

Error Bound 

0.00110 

o. 00211 

o. 00306 

o. 00546 

o. 00025 

o. 00049 

o. 00072 

o. 00126 

o. 00017 

o. 00037 

o. 00064 

l.OlXl0- 7 

For all other cases with larger rn or smaller >.. T the 

error bound was less than • 00008 • A more typical value is 

show above for q = 1, rn :a: 2, and ). T = o. l • 
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2 .. 1.) Algebraic Manipulations 

The manipulations necessary to obtain eqs. 4. 16 are 

based on the foll owing ide ntities, which can be proved by 

mathematical induction. The notation ( ; ) stands for a 

binomial coefficient. 

X 

a) I; 

j = 0 

X 

c) I; 

j. 0 

f 
I; 

i = 0 

( z.+j) • (z+x+l) 
J X 

X 

I; 

j. 0 

If .,_ • X., the assemblage with q active elements and m spares 

is operative as long as any combination of q modules is 

operative. 

m 
= (fR(~, ~))q :t 

j = 0 

Using a), 

which is equation 4. 16) . 
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Representing the reliability as l minus the probability 

fa i lure, 

Using a) again 

which is equation 4. 16 . 

To prove equation 4. 17 use c) in the summation term in 

equation 4. 16 . 

q -1 
mtq 

( / = :E q-1 
j:ir:O 

Write b) as 

and note that 

equation 4. 16 

s, 

0 <: S < 1 for >.. T < l . So, eiubstituting in 

ftl rntl 
fRq(>..,>..)=l-((>..T)) (1-S)mtl B 

rn (f+l)! 

s 
1 

_ ( m tq ) ( >.. T) f +l m +l 
q-1 [(f+l)1 ] 

[ ( ~ 1}..,Jl I")+ I._ : ,: (C m +q ) - B ( l - s )m + 1 ] 
( f ~ 1 ) ! ' ' q - l 

m+l 
Since (l - S) < 1, equation 4. 7is proved. 
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2. 2 Derivation of _~pproximation Equat ions , Markov Process 

l. 2. l Introduction 

The models for reliability using spare s e mploy equations 

which assume that the spares deteriorated as rapidly as the 

unit& being used. This is too pessimistic, so a :.n ore realistic 

equation which employs two failure rates; X., the failure rate 

durina power-on uae and ~. the failu r e rate during (power-off) 

idleness will be developed. To facilitate the dis c ussion, the 

following notation has b.een adopted: 

l. - failure rate druing power-on 

~ - failure rate during power-off 

K- l./t1, (usually> 1). 

rn - number of spares initially available. 
\. 

q - number of modules required to be operating at all 

times (power-on). 

n - total number present (rn + q). 

f - number of failures each unit can withstand before 

malfunctioning. 

T - mission time. 

c - failure coverage, or probability, that given a 

failure occur a, it is detected by the checking and/ or 

diagnostic tests and that successful recovery occurs. 

D - duty cycle or fraction of time the machine is 

required to be on. 

The parame +:ers which effect the form of the reliability 

equations are m . q, c, and f. In order to display the status 

of these parameter's each reliability equation will be written 

as f R q . When any of the parameters q, c, or fare elided, 
C m 

convention will be used to establish the values q = 1, c= 1, andf= O. 
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2. 2. 2 Formulas for R ci 
The formula Rq(T) = e-q>..T 

0 
m -µ T i i= 1 . 

Rq (T)=e•q>..T{l+:E [(l-~ ) .II (J+qK)]} 
m i=! 1! p:0 

m>O 

will be proved first. The first equation is well known. The 

formulation is recursive for the second. The probability of 

successful operation with m spares during the time interval 

pl us the probability of a failure in the (n-1) spare system at 

time t < T multiplied by the probability tha.t the m th is good 

at time t, and the probability tha.t the refreshed system lasts 

from t to T. 

Assume an exponential failure rate. Then the proba-

bility of successful operation of a q unit is e -q>..t and the 

probability of successful shelf life of one unit us e -µ~. The integral 

equation to be solved is written as 

This integral equation has as solution R q ( T) as expressed in 
m 

equation 2. 1), and moreover, 

d - X.T(l -e-µT)m m 

d
-tRq(T)=-qX.eq 

I 
lr.

1
(j+qK) 

m m . J• 
m > 1 

The proof is by induction. If m = 1, 

Ri (T) = e -qX. T + ~X.e -q>..t . e -µt . e -q(T-t) dt 

a e - q >.. T ( l + q K( l - e - µ T)) 

d q -qX. T -µ T 
~R1 (T)i: -qX.e (l+qK)(l-e ) 

and the formulae hold. 
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Given equation 2. 3, the ind,1ction step for equation 2. 1 
follows directly from equation 2. 2, since the terms e -q>..t 
and e q>..t cancel and the integral left has the form of 

which easily reduces to the correct form. 

Differentiating equation 2. 4, 

-.,i.T -.,i.T [q>..(1-e ) - (m+l).,..e ] 

which reduces to the form given in equation 2. 3) • 
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For further use consider the following recursive 

relationships. 

2. 5) 
2 -µTm~ 
~ Rq ( T) = 2 },, 2 - q X. T (1 - e ) U (( . + K) 

dT 2 q e I . 1 q 
m m . . 

1 J= 

-qX.T (l-e-µT)m- 1 m 
-qX.µe ( -l)I ~ (ktqK) 

m • y=l 

d q d q 
= -qX.dt Rm (T) tµ(m tqK) dt Rm-l (T) 

for m-1 > 0 . -
In general, now, 

for 1~ n ~ m-tJ.. i=O 

Using induction again, it is true for n = 2. For the induction 

step, 

d
n+l 2 n-1 

Rq (T) = (-lt-1 X.n-1 ~
2 

Rq + !: (-l)n-1-j( n~l )X.n-1 j 
dTn+l m dT m j=l J G 

( ddT
2 

2 R9 . (T)) ,r (m-itq) 
m-J l•O 
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Substituting for 2. 5) and collec ting term s , equa.tion 2. 6) 

c an be s een t o be true. 

From equation 2. 1 ), 

R q ( 0) = 1. 
rn 

From equation 2. 3), ddT R! ( T ) IT= 
0 

= 0 for m > l 

2. 8) 

From equati on 2. 6 ), 

dn 
2. 7) dTn R! (T) jT=O =O for n < m 

m-1 
II (m-itqK) 

i=O 

Further derivations may be obtained by writing 

dm+l d 
-..,,,.,,...~ R9 (T) = (-l)m >.. m_ R q (T) 
dTmfi m dT m 

and differentiating both s ide s of thi s expression. 
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2. 9) 

d
x 

R q (T ) = (-l)m >..m 
m (T ) 

m-2 2. 1 0) 
R[ (T) l ) ff (m-itqK) 

T=0 is0 

= >..m+2qm+2(1+1E) :0+1.c) 
q i=l q 

Using Mc Churirl'k series, 

d2 
( R q ( 0)) 

dT 2 m 

and substituting from equations 2. 7) and 2. 8) , 

2. 11) (q >.. T)m+l R q (T) ~ 1 - .... _...__ ___ _ 
m (m+l)l 

m 
ff 

i = 1 
(1 + Ic) for m > 1 q 

while equation 2. l_ 0) shows that the remainder term is positive. 
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2. 2. 3 Formulas for R q c m 

If the effect of error coverage, c, is inserted into this 

formulation, the ba1ic equation becomes 

and equation , . 2 becomes 

2.13 1 Rq (T) 1r Rq 
1
(T) +JTc -·µt ->..(T-t)q :r[l- Rq 

1
(t))dt. 

c m c m- 0 e e c m -

The most concise for:n for stating the general solution 

ii in terms of R~(T) : 
1 

2. 14) 
m 

= E 
i•O 

Equation 2. 14 is again proved by induction. If ms::l, substituting 

in equation 2. 13 and using equation 2. 1 gives 
T -

Rq(T) a: -q>.. T ( -µ t -q>..(T-e) >.. -q>..t dt 
cl e +} 0 ce e qe 

-q>..~ -µT = e L 1 tc Kq (1 - e ) ] 

-q>..T -q>..T -µT -- q>..T = (1-c)e + c[e + qK(l-e )e ] 

= (1-c) Rq + c 
0 
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For the induction step, assume formula 2. 14 for msn-1 

and differentiate both sides. 

2, 15) 
d 

dt 

Subs.tituting this in equation 2. 13 , 

d q -µt • ~q( T-e) 
dT Ri e e dt 

Substituting from equation 2, 2), and using the induction step 

and adding the terms together finishes the proof. 

T o get an approximation for small ~ T, R~ must be 

expanded in powers of (~ T)y for i + l ~. y < m+l about T = O. 

375 



,· 

Now, 

from equation 9, 

and 10 

d
4 

q 4 4 l 1 1 
- R (O) = -q ~ (1 t- G)(l+- + -2 
dT4 l q q q 

Using equation 2. 9 again, 

n-2 
tX.

2
G

2
(2+qK)(ltqK) d 

dTn-2 

376 

Rq (T) for n > 2 . 
0 



By direct differentiation 

Using equation 2. 9 again, 

n-3 
-3X. 

3
G 

2
(3+qK)(2+qK) :Tn-1 R{ (T) 

n-3 
+ X. 

3 c 3 
(3+qK)(2+qK)(l+qK) L_ R9

0 
(T) 

dTn-3 

for n > 3. 
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6 ' ' 
3 

i 3 6 d Rq (O)= -q X ,r (l+-G)(l+- + -2 dT6 3 i= 1 q q q 

Using these derivations, equation 2. 14 may be expanded for 
different amall orders of rn. 

2. 16) 

2. 17) 

1 ( l~ T) 2 • 1 - (~•c)q~T+(l-c-c(l+ ,))-' 
q 2 

1 1 (q~T)3 - (l-c-(.(1+ q G)(l+ q , ) 
6 

+ ... 

= 1 - bll q~T - bl2(q~T)2 + bl3 (q~T)3 + • • • 

2 1 (q~T) 2 • 1 - (1-c) q~ T + (l-c)(l-c-2c(l+q Gl) 
2 

3 - [(l-c)
2 

- 2c(l-c)(l+!G)(l+!) + c 2 (1+!G)(l+~G)](q~T) q q q q 

+ [(l-c)
2 

-2c( 1-c)(l +! G)(l +! + !.
2

) 
q q q 

4 + c
2

(1 + .!_G)(l+~ G)(l+~)] (q~!) + ••. q q q 

(ci~ T)2 3 4 • 1 - b 21 q ~ T - b 2 2 - b 2 3 ( q ~ T) + b 2 4 ( q ~ r) + . • . 
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I 
I. 

2. 18) 3 2 l qX.T)
2 

= 1 - ( l - c) q X. T t (1- c) ( 1- c - 3c ( l t ~)) z 

2 l 1 2 l 2 ( qX. T) 3 
-(1-c)[(l-c) - 3c(l-c)(l+ - G)(l+-) + 3c (l+..:.C)(l+-G) 

6 q q q q 

3 2 l 1 l 2 . 1 2 2 
+ [(1-c) -3(1-c) (l+qG)(l+q+q2)+3c (1-c)(l+qG)(l~G)(l~) 

4 
c 3(1+!. G)(l+~ G)(l +le)] (qX.T) 

q q q 24 

3 2 1 1 1 1 
[(1-c) -3c(l-c) (l+-G)(l+- + -2 +-3) 

q q q q 

2 1 2. 3 2 3 t 3c (1-c)(l+ - G)(l+- '-1)(1+- G)(l+- + ;i ) 
q q q q q 

3 1 2 3 . , ] (qlTl) 
5 

- c (l+ - G)(l+-G)(l+-G) + ..... 
q q q 
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l. l. 4 Solution of the Equation 

2 ... 4. l General F o rm 

ds 
- TS 

dt 

The problems of determining T and initial conditions will 

be s olved after the form for the solution of the differential 

equation is determined. This solution wi ll be in a form con­

venient for computation, ba se d upon reference [CL, '55, P. 75) 

Let J~ • >... E + a Z where r. is the dimension, 
J J rj r . J 

E is a unit matrix and Z is -.t matrix with f. . + 
1 

= 1, 
r . r . 1,1 

otti'er elements O. It is well 1mown that there exists a non -

singular matrix P such that 

T = p-l / p 
j 

where the >.. .1 s are the-_characteristic roots of T and r . 
J J 

depends upon T 1 s invarient factors [ v •. d. Waerden, 40) 

The solution S(t ) is given by PS (t) • /J PS ( 0) 

where 

1 nt ••• 
(o.t{-1 

(r-1)! 

0 1 at ••• (o.t{-2 

(r-2) I 

0 0 l at ••• (at{- 3 

(r-3)! 

• • • • 
• • 

1 at 

• 
0 ••• • 1 
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To determine the general form for T, reconsider the 

definitions made previously. Begin with an assemblage of n 

modules, each capable of cor re ct operation until f + 1 mal­

functions occur, with the requirement q modules must be 

correctly operating fo r the ass mblage to function correctly. 

In this case, m = n - q modules are spares. If the assemblage 

has had exactly j errors, and the assemblage will still operate 

correctly, call this state S .. 
J 

Each state may be represented 

by the 'error list 1 (a
1

, a
2

, ... , an) where h 
.th . 

t e 1- entry gives 

the number of failures existing in the ilb. module. Since µ = O, 

a - indicates that the module is a spare tthey never fail). Let 

F represent the failed state. 

Initially there are no malfunctions. Any active unit is 

equally likely to malfunction, and the probability that a module 

failure occurs in the time internal h is X.h . 
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From the definition of S ,, it ia clear that, in the interval 
J 

h, Sj may map into Sj, Sj + 
1

, or into F. Sj can map into F 

only if j ~ (f+l)m +f. If p•(f +l)m +fq, 1tate1 Sj in which 

the 1y1tem continue• to operate exist until j • p. 

If l ~ j ~- p + 1, let p j be the p robabi .ity that in the event 

of a malfunction a module in the assemblage in state S 1 j p+ -

will cea1e correct operation. The probability of module mal-

function h ~h, and there are q operating independent modules. 

Thus the probability that state S 1 j la mapped into F h 
p+ -

pjq~h. 

Write the 1tate ve ~tor S aa 

s. 

F 
Sp 
Sp-1 
Sp-2 

• 

Tht: general form of the matrix T is: 

Pzq~ •••.••..•.•.••••••••••••••• Pp+l 

T• 
R 

where R :s - q ~ E tl + (1 - p j) q ~ 6 j, j + 1 

where 2 < j < p + 1, and 6 j , j + l = l • 
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Since if there have been j) malfunctions any additional one will 

cause the assemblage to fail, p
1 

= 1 • 

. The smallest number of malfunctions which cause the 

assemblage to cease cor rect operation is 

(f+l)(m+l ). Since }tl-((f+1 )(mEl)-l) = f(q-l)tl, p . .. 0, 
J 

when l ~ j ~ f(q-1) + l and p. = 0 otherwise. 
J 

The solution of the diffe rential equations has 

0 0 0 0 0 0 

0 

J = 

-qX.E p+1 + qX.Z f+l 

0 



,· 

The matrix P so that PT= JP can be found by assuming 

that F has l' s in the first row and otherwise the only non­

ze r o elements are on the main diagonal and these are clearly 

l Is for j ~ f(q-1) + l . By multiplication and solution of the 

two equations for each row, 

( l l l 1 

0 al 0 

L 

0 

0 0 a2 

a p = 

i 
I 
i f( q-1) 

l ) 
0 

I 
0 0 l 

I 
I 

I 

i 
Where a = ----------

j f ( q - 1 ) (1- pi +l ) 
,r 

i = j 

and the p
1
•s are given by T • 

l 
Using the previous notation of S for S transpose, 

The initial condition (assuming no malfunctions) is 

,. 
S ( 0) = ( O, 0, 0, •.. , 0, l) 
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I 
(F S(0)) = (1, 0, 0, ••. , 0, 1) 

" 

e 
qX.t 

0 0 0 
I 

0 1 I .. I 

i 
I 0 0 

tJ -q X.t \ e = e 

qX.t (qX.t)P 
... 

(p)! 
1 q>..t (qx.tf-1 

(p-1)! 
: I • 

.. 
\ • 1 q>..t 

\ 0 • • • 0 1 

p-1 

[e tJ PS(O))/ -- e-qM[eqX.t, . _(qpX.t!)P' (qX.t) . \ I) 
(p-1)! , ••• ,ql\t, 

So, 

- X.t f(q-1) _(q,, >..t/+1-j 
S • 1 •e 1 [ .11'. (1-p.+l)] 

p-J+ l=J l (ptl-j) ! 1 ~ j ~ f (q-1) 

S = -q>..t ( X. )p+l-j '+l e q t 
p-J (-p-+-1--j-) .-, - f(q-1) +1 ~ j ~ p+l 

f p+l -q>..t (ftl)m+f 
R

9 
(>--,0)• I: S l .=e [ I: (q>..t)i 

m j=l p+-J i•0 i! 

P f(q-1) i 
+ ~ [ 11' (1-p )] 19>.t) ] 
ia(f+l)(m+l) le: p+l-i k+l ii 
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This may be written a 

co 
f q (X. t (f-1-l)(m t' l) (ftl ){m+l) 
Rm (X., O) = l -[(f+l)(m+l) ! j;O (ftl)(m+l)+j 

p 
-qX.t 

+ e ~ 

f( q -1 ) 
1f (1- )) {qX.t) 

Pk+l • 1 

j = (f+l)(m+l) k = p+l-j 
J . 

j 

Since e -qX.t < 1, if thi s term is not expanded, then the series 

representing fR q (X., 0) ha s alternating signs, s o 
m 

A < f R q ( X., 0) < B 
m 

- (qX.t)(f+l)(m+l) [ -qX.t 
A =l ((f+l)(m+l))I l-e (l-pf(q-1)+1)] 

B •A+ (qX.t)(f+l)(m+l)+l (f+l)(m+l) + (l-pf(Z-1)+1) (1-pf(q-l))e- ),t] 

((f+l)(m+l))I Cf+l)(mtl)tl (f+l) (m+J\ ' 1 

For small X.t, 
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2. 2. 4. 2 Determination of the Probabilities p . 

2. 2. 4. 2. l Introduction 

The probabilities pk depend upon the state S ., the •error 
P-J lists• or c onfigurations for the s tate S ., and the number of 

P-J paths by which S . may be reached from the initial configuration. P-J 
There are two feasible sets of formulas which derived. The 

first is to set f • 1 and derive formulas for small values of q, 
say 1, 2, 3, 4, and 5, and arbitrary values of m. The second 
is to fix m at small values, 1, 2, and 3, and derive approxi­
mations for small values of f(say l or 2) and arbitrary values 
of q. To derive · these formulas, general forms will be derived 
for the p. in the matrix T. 

J To determine these coefficients, 
in the case of fixed q and arbitrary values of m, difference 
equations will be derived to determine the number of paths to 
each configurations in each state Sj until configuration F may 
be reached. The probabilities of transfer to F can then be 
determined. These probabilities determine the coefficients in 
the expression for fR q (X., O). In the case of arbitrary q and m 
fixed values of m, the values of p. for small j will be deter­

J 
mined by beginning with the states F and S and progressing 

p through the states s . 
pj 
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2. 2. 4. 2. 2 Example 1 

Begin with fixed q as stated above , the p. are determined 
J 

by a consideration of the configurations of active, spare and 

discarded units in the state S .• A simple but non-trivial 
p-J 

example will show the p r oblem. 

Let f = 1, q = 3, m be arbitrary. To get the feel, do a 

few special cases . 

m = 

* 

1 State 

so 

Sl 

s2 

s3 

s4 

ss 

.th 
Again the 1-

Number 
Error T .... ist>~ of Paths 

0, 0, 0, - 1 

1, 0, o, - 3 

1,1,0,- 6 

2, o, o, 0 3 

1,1,1,- 6 

2,1,0,0 21 

2,1,1,0 60 

F 21 

2,1,1,1 60 

F 120 

entry in the list gives the total number of 

failures in the i!!:_ module and members means the number of 

distinct paths or ways to get to the given S. from the initial 
J 

state s
0 

• 
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m = 2 State Error List Number of Paths 

o,o,o,-,- 1 

1,0,0,-,- 3 

1,1,0,-,- 6 

2, O, O, 0, - 3 

1,1,1,-,- 6 

2, 1, o, o, - 21 

2. l. 1. O. - 60 

2, 2, o, o, 0 21 

2,1,1,1,- 60 

2, 2, 1, o, 0 183 

2, 2, 1, 1, 0 546 

F Ill 

2, 2,1,1,l 546 

F 1092 

F 

The structure of the error list is now fairly clear. As m increases 

SO-SS remain unchanged.' 

m = 3 State Error List Number of Paths 

s6 2, 2, 2, o, 0, 0 183 

2,?.,1,1,0,- 54~ 

s7 2, 2, 2, 1, 0, 0 1641 

2 I 21 1, 1, 1, - 546 
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State Error List Number of Paths 

ss 2, 2, 2, 1, 1, 0 4920 

F 1641 

s9 2, 2,2,1,1,1 4920 

The pos s ible last list ending s for s
2
m+l are 1, 0, 0 and 

1, 1, 1, - . If G(n) is the number of lists ending 1, 0, 0 then 

H(n) = 3n - G(n) i s the number of lists ending with 1, 1, 1, - . 

The probabilities of next state transfer are: 

s . 
J 

s 
2m+l 

l - 3Ah s. 
J 

3Ah sj+l 

1 - 3Ah 

2G(2m+l) + 3H(2m+l) 

G(2m+l) 

3
2m+2 . 3>..h 
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Slmtl has erro r lists ending in 1, l, 0. The probabilities 

of next s tate transfer are: 

l - 3X.h 5
2m+2 

s 
2m+2 

X.h s 
2m+3 

2X.h F 

➔ - -
1 - 3X.h s 

2m+3 

> 
s 

2m+3 

3X.h • F 

> 
T he large st number of members in each state configuration 

after n = l can be seen to satisfy the recurrence relation 

G(n+2) = 2G(n+l) + 3 G(n) 

This corresponds to the difference equation 

2 
(E - 2 E-3) G(n) = 0 

if G(n+l) = E G(n) . The equation has solution 

n n 
G(n) = 3/4 [3 - (-1) ] (n ~ 0) 

6(2m+l) 

/m+2 

l 
. 3 X.h = 3 / 4 ( l + 2 l ) X.h 

3 m+ 

2G(2m+l) + 3H(2mtl) 
2m+2 

3 
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0 3~ 2~ 3/,t( l + 
l o ... 0 

3
2m+1 

0 -3~ ~ 0 o ... 0 

0 0 -3~ 
l 

9/ 4(1- . 2m+2 
3 

o ... 0 

0 0 0 -3~ 3~ • 
Ts 

• 

-3~ 3~ 

u 0 -3~ 

Enough examples have been given to motivate a more 

general approach to handling error lists. Error lis is can be 

divided into three part~ - the part called •retired' which cor­

responds to inoperable units, the q active units, and the as 

yet unused spares. Methods of handling the number of paths 

will be derived. 
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2. 2. 4. 2. 2 Case 1 

f = 1, q = 2q I (i. e . q even) no error lists mapping into F. 

State 

s2i+1 

Error List Number of Paths 

Number Active Number (NP) 

Retired Configurations Spare 

(NR) (AC) (NS) 

# l's # 01 s 

i 1 q-1 m-i NO 

i-1 3 q-3 m-i+l Nl 

i-2 5 q-5 m-i+Z NZ 

----------------------------------------

i-j 2j+l q-2j+l 

i-!+1 q-1 1 
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m-i+j 

m-i+c{-1 

N. 
J 

N '1 q-



,' 

State NR 

i+l 

i 

i-1 

i-j 

• I 1 1-q+ 

i+l 

i 

i-1 

i-j+l 

0 

2 

4 

. . . 
2jt2 

• • • 

q 

1 

3 

5 

• • • 

Zj+l 

• • • 

q-1 

q 

q-2 

q-4 

NS 

m-i-1 

m-i 

m-1+1 

q-2j-2 m-itj 

0 

q-1 

q-3 

q-5 

m-i+~-1 

m-i-1 

m-i 

m-i+l 

q-Zj-1 m-itj-1 

1 N ;a; N 
0 -1 

N1 =J, q-1 q-1 

I I 
qN_

1 + 2N
0 

I I 
( q - 2) NO + 4N l 

I I (q-4)N
1 

+ 6N
2 

(q-Zj) N~ 
1

+(Zj+Z)N~ 
J- J 

1 I I I I rn-i+q -2 2Nqt 2 + q N q-1 

Since the error lis t s in SZi+l and SZi+
3 

are the same, using the next 

state operator E recurrence relations can be set up in the numbers 
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.. 

If N. (2j+3) = E N.(2j+l), then 
l l 

2x3 0 0 0 NO 

(q-l)(q-2) -Et7q-18 4x5 0 0 • ... ~ij l 

0 = 0 (q-3)(q-4) -Etllq-50 6x7 • • 
• 

• . . • . 
0 3x2 

Nql-1 

where the /h now is 

0 ••• 0 (q- 2j)(q-2j+l) -Et(4jt3) q-2(2jtl)
2 

(2jt2)(2jt3) O ••• 0 

The determinant must be zero, giving a difference equation 

for t he N. which can be solved as before. 
l 
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2. 2. 4. 2. 3 

Case 2 

'• ,- • . -
f=l, q=Zq+l (1. e. q odd) no error lists mapping into F. 

State 

6 

5 21+1 

. .. . , .. -

NR 

i 

i-1 

i-j 

' i-q 

itl 

i 

i-j 

#1 's 

l 

3 

2j+l 

q 

0 

2 

q-1 

q-3 

• • • 

q-Zj-1 

. . . 
0 

; 9 

NS 

m-1 

m-i+l 

m-i+j 

m - itq 

m-i-1 

q-2 m-i 

q-Zj~ m-i+j 

N? 

N . 
J 

N J q 

I 
N =N 

0 -1 

N~= {q-2j-l)N. 
J J 

+(2j+3)N. l 
J+ 

-------------------------

• I l 
1-q + 

i+l 

i 

i-j 

• I l 
1-q+ 

q-1 

1 

3 

2 .+l 
J 

q-1 
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l 
, I 

m-1+q 

q-1. 

q-3 

m-i-1 

m-i 

• • • 

q-2.-1 m-i-j-1 
J 

1 m-i+q'-1 

,w' I 1= ZN / l+qN/ / 
q - q - q 

l l 
q~l + 2NO 

1 l 
(q-2)N

0 
+ 4N 1 

,, 



As before, 

-E + 3q - 2 2 X 3 0 0 0 /NO 
I 

(q-1 )(q-2) -E+7q-18 4 X 5 0 0 I Nl 

0 (q-3)(q-4) -E + llq - 50 6X7 1 I • 

• • • • • 

• 
• 
0 0 2-E+q N 

1 
q' I 

th 
where the F now ls 

o ••• 0 (q-2j)(q-2j + 1) -E+(4j+3)q-2(2J-l? {2j +2)(2j+3) O ••• O 

The determinant must be ~ero, giving a difference e quation 

for the N. which can be solved as before. 
l 

2. 2. 4. 2. 4 Now pK can be determined, if the mapping• into 

F are derived. 

Case 3 f = 1, An error list map• into F. 

For states S., 2M + 1 ~ j ~ 2m +q, one error li1t will 
J 

map into F. The number retained in 1uccessive steps will be 

best found by proceeding backward• from s2 + to S 
1

. 
m q Zm+ 

No general formula is easily available, 10 the 1tep1 will be 

carried out in special case•. 
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Numb e r Transfers 
(t0i next 1tep) 

State NS # 1 IS #O•s NR NP NT 

s 0 q 0 m N (2m+q) N
0

(2rn+q) Zrn+q 0 

s 
Zrn+q-1 0 q-1 1 rn NO ( 2m +q - 1 ) ( q -1) NO ( 2m +q - 1) 

s 
Zm+q-2 

0 q-2 2 m N 
0

(2rn+q-2) (q-2)N 
0

(2m+q-2) 

l q 0 rn-1 N
1 

(2m+q-2) 

s 0 q-3 3 m N (2rn+q-3) (q-3)N 
0

(2rn+q- 3) Zrn+q-3 0 

1 q-1 1 rn-1 N1 (2m +q-3) 

s 
Zmtq-4 

0 q-4 4 m NO ( 2m +q - 4) ( q- 4) NO ( 2m +q - 4) 

l q-2 2 m-1 N
1 

(2m+q-4) 

2 q 0 m-2 N
2

(2m+q-4) 

• • • 

5
zrn+q-2i 0 q-2i Zi rn N0=(2i+l )N~ (q-2i)N

0 
+(q-Zi+l)N. 

1 

1 q-2_i+2 Zi-2 m-1 N l = ( 2i- l ) N: 

+(q-2i+3)N~ 

• • • 

j q-2i+2j 2i-2j m-j N.=(2i-Zj+l)J. 
J JN! 
+(q-2i+2j+l) j+l 

. . . 
i 0 m-i I q N. = N. 

1 1 
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Number Transfers 
(to next step) 

State NS #1 1 s #0 1s NR NP NT 

s . 0 q-2i-l 2i+l m N~=(2it2)r{' (q-2i-l) NI 2m+q -21-l 0 

+(q-2i)rf 

1 q -2i+l 2i- l m-1 NI= 2'NII 
l 1 1 1 

+(q-2i+2)N~ 

. . . 
j q-2i+2j-l 2i-2j+l m-j N~ =(2i-2jt2)J.I 

J +(q-2i+2j)~!f 

. . . 
i q-1 1 !"n -i N~ 

,, .,, 
= 2Ni + qNi+l 1 

s2mtq-2i-2 0 q-2i-2 2it2 m NII. (q-2i-2)N'._I 
0 0 

l q-2i 2i m-1 Nil 
1 

• • • 

j q-2it2j-2 ~; -~j, a m-j JI 
J 

. . • 
i+l q 0 "'1-i-1 NII 

itl 
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State 

s 
2m+l 

NS 

0 

1 

2 

i 

# 11 s 

1 

3 

5 

2i+l 

#0 1 s 

q-1 

q-3 

q-5 

• • . 
q-2i- l 

. . • 

NR 

m 

m-1 

m-2 

m-i 

NP 

* N. 
1 

Number Transfers 
(to next step) 

NT 
,:c 

NO 

The exact configuration in the last step depends upon whether q is odd 

or even. 
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2. 2. 5 Specific Solutions of d$/dt :;: T S 

2. 2. 5. 1 Specific Examples, q small, m arbitrary, f= l • 

First the previous example will be redone, using the general solution 

methods, then more special cases will be solved. 

Clearly, Si is transformed into Sj+l 

\h and. l - X.h respectively. So 

Example l ci....:,_3. 

' q = l (-E+4) N
0
(2i+l) = 0 

N
0
(2i+l) = a .i 

2m+l 
2: 
i=O 

or S. , with probabilities 
l 

when i = 0, N
0
(l) = 2 = a, so NO (2i+l) = 2Zi+l 

For th . transformations to F, 

S2m+l 

NS 

0 

0 

p = 
2 

2 

l 

2
2m+l 

2
2m+2 

l 2 -2X.T 2m+l 
[ 2: R (X., 0) = e 

m 
i=O 

= 

401 

NR NP N # 

0 m 

l m 2
2m+l 

2
Zm+l 

l 
2 

(2X. T)i l (ZX. T)2m+Z 
] 

ii + 2 (2m+2) l 



Example 3. q = 3 

.9.....:....~ 
-E+7 

( 2 

(E
2 

-1 OE+ 9) N. (2j+l) = C 
l 

N.(2j+l) = a. 9j + b. 
1 l l 

The initial conditions are 

6 = 9a 1 + bl 

60 = 8Ja1 + bl 

a
1 = 3/4b

1
: -3/4 

N l ( 2 j +l ) = 3 / 4( 9j - 1 ) 

1'i
0
(2j+l) = 3/4(3-9j +l) 

For the transformations to F, 

State 

s 
2m+2 

s 
2m+l 

NS 

0 

0 

0 

1 

3 

2 

1 

3 

402 

0 

1 

2 

0 

21 = 9a 0 • b O 

183 = 8la
0 

+ b
0 

a
0

= 9/4 b
0

::s 3/4 

NR NP NT 

rn 3/4(9m+l_l) 3/4(9m+l_l) 

m 3/ 4(9m+l -1) 3/2(9m+l_l) 

' 

m 3/ 4(3,9rn+l) 3 / 4( 3 2m +l + 1 ) 

rn-1 3/4(9m -1) 



I 

1n 
3/4 (3•9 + 1) 1 

P3 = 
9
m+l = l / 4 (l+-

3
-zm_t_l) 

2mtl 

1R3 (X.,O)=e•3X.T I: 
m 

i 
(3~T) . + 3/4(1--1-

1 ! 
3

zm+2 
i = 0 

Example 4. q = 4 

q=2 

The difference equation to be solved i.s 

with solution 

N. ( 2i tl ) = a. • 4 i + b . 16 i 
1 l l 

No(3) = 40, No(5) = 544, Nl (3) = 24, Nl (5) = 480 

NO ( 2i +1 ) = 2 • 4 i ( 4 i + 1 ) 

N
1

(2i+l) = 2°i(4i-l) 
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0 

Example 5. q = 5 

The difference equation to be solved is 

with solution 

0 

6 

-E+17 

2 

0 

20 

-E+S 

N
1 
(2i+l) = -r{ 25i+l - 1 S•ef - 1 O] 

N(2·+1) .2.[2si -3•9i+z] 
2 1 = 16 
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.. 

p = 2 

p = 3 

• 

p = 
4 

= 

' 

!.[ 5• 25m+2 -15• 9m+l +l 0 
4 = 
2[5•25m+2-15•9m+l+l0 

16 

,! [25m+2 -15• 9m +l _ l 0] 
8 

6 

9
m+l 

11 - 12 - l 
m+l 

-3•9 -2 

4 

9m+l+2 
= .l.[1 +---] 

10 5•25m 
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(1 )( 
(5X.T)2 - +(l-p4)(l-p3) (5>.T)3 ] 

+ -P4 l-p3) -- --
( 2m + 3 )( 2m +4) 5 ( 2m + 3 )( 2m +4 )( 2m + 5) 

where p
3 

and p 
4 

are given above. 
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2. 2. 5. 2 Specific Examples, m small, f small, q arbitrary. 

Fo r approximations to (>.., 0) the probabilities p f(q-l )+l 

and p f(q-l) must be calculated. The probability p f(q- l )+l is the 

probability that a member of state S(f+l )(m+l )-l is transferred 

to F (eg. that the system fails aEi soon as possible), and pf(q-l) 

is the probability that a member of state S(f+l )(m+l) is 

transferred to F. Let f = 1, q, m be arbitrary. 

The easiest way to do the calculations is to de:fino Nij as the 

number of configurations with i units with a single failure 

(q active) during the /h state, and compile a list. 

State 

s 
4 

409 

NC 

Noo = 1 

Nll = q 

Noz = Nll = q 

N
22 

= (q-l)Nll = q(q-1) 

N
13 

= q N
11 

+ ZN
22 

= q(3q-2) 

N33 = (q-2)N22 = q(q-l)(q-2) 

N04 = Nl3 = q(3q-2) 

N24 = (q-l)Nl3+ 3(q-2)Nzz=q(q-1)(6q-8) 

3 
N44 = ,r (q-i) 

i=O 



State NC 

2 
N

15 
a qN

04 
+ 2N

24 
= q[15q - 30q + 16] 

N
35 

= {q-2)N
24 

+ 4N
44 

= q{q-l){q-2){10q-20) 

4 
N = ,r {q-i) 

55 iaO 
2 

N
06 

= N
15 

= q(l~,q -30q + 16) 

2 
N

26 
= (q-l)N

15 
+ 3N

35 
= q(q-1)[45q -150q + 136] 

N46 = {q- 3)N35 + 5N55 

= q{q-1 )(q-2){q-3)(15q-20) 

5 
N 

6 
= ,r (q-i) 

6 • 0 
1= 

3 2 
N

17 
= qN

06 
+ 2N

26 
= q[l05q - 420q + 588q - 272] 

2 
N

37 
= (q-2)N

26 
+ 4N

46
= q{q-l){q-2)[105q -410qt376] 

N 
5 7 

= ( q - 4) N 46 + 6 N 
6 6 

= q ( q - l )( q - 2 ){ q - 3 )( q - 4 )[ 21 q- 5 0 J 

N = ~ (q-i) 
77 i=0 

Nos= Nl7 = q[l05q3 -420q
2

+588q - 272] 

3 2 
N

28 
= (q-l)N

17
+3N

37
=q(q-1)[420q -2280q +417q-1024] 

2 
N 

48 
= {q-3)N

37 
+ SN 

57 
=_q{q-1 )(q-2){q-l[ 21 0q -1080q 

+1376] 

N68 = (q-S)N 57 + 7N77 

= q(q-1 )(q-2)(q-3){q-4)(q-5)(28q-92) 
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Q 

0 

Since f = 1, f(q-1) + 1 = q, and clearly 

rn = 1. 

rn = 2. 

rn= 3. 

N•Z(rn+l) 
2rn+2 

q 

ZNZ 2(rn+l) 

2rn+3 
q - qNoz(rn+l) 

p = 3q-2 
q 3 

q 

2 
lS(q-1) +l 

p = 
q 5 

q 

P = 2[459
2

-1509 +136] 

q- 1 ti q 4 +q 3 +q 2 - l 4q + 16] 

p = 
q 

2 
l 0S(q-1) (q-2)+ 63(q- l )+l 

q7 

2[ 4209,
3 

- 2280q 
2 

+ 4176q - 1024] 
6 5 4 3 2 

q[ q + q + q + q - l 04q + 3 16 q- 26 7] 
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Iff=l, 

_,· 

l q : l - C m +q R p,., >-) 
m m+l 

l R q ( >- 0) : 1 - p 
m ' q 

(q).T )4'n+1) 

[2(m+l )] I 

e) m • 1, q arbitrary. 

f) rn • Z, q arbitrary 

g) rn • 3, q arbitrary 

lRq (>- X.)'; l _ q{qtl){q+2){q+3) 
3 ' 384 

2 
lRq (>- O) ~ l _ {l0S)(q-1) (q-2)q+63 q{q-1)±3_ {>-T)8 

3 ' (105)(384) 
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h) f • 2, m • l, q arbitrary (without de rivation here ) 

• 

J 
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z. 3 State Variable Transform Models 

One method of studying computer system architecture is 

to identify the set of states of the system with a finite dimen­

sional vector space over a fidd and the transformations be­

tween states with linear transformations. A practi ~al 

technique using this idea is called System Effectiveness Evalua­

tion, [US, 65] and this technique has been used for planning, 

design optimization, procurement, and system management 

in a variety of applications. To quote the originators, 11A 

principal concept underlying the SEE technique is the fact that 

its evaluation is performed in terms of system states and 

their tran■ition1, not in terms of the subsystems or black 

boxes. By breaking the system dowr. functionally by system 

states rather than structurally, the technique obviates any 

need to assume that subsystems function independently, thereby 

avoiding many computational problems concerned with inter­

dependence or coupling among subsystems. 11 However, the 

implementation is by computer program and simulation, and 

the mappings and their effects are obscured. 

A new method, outlined here, is to identify the linear 

transformations with Boole's displacement operator. The 

advantage of a displacement operator is that in this case it 

leads to a set of finite difference equations whose solution is m 

finite form, is easily expressed and manipulated, and 

depends upon the characteristic roots of the mapping. This 

allows a wide body of mathematical knowledge to be used and 

combined with the usual properties of solutions of linear dif- · 

ference equations (similar to the better known properties of 

linear differential equations). The general and abstract 
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properties of the system are made clear and available for 

analysis. Classes of inputs can be considered. These 

properties are typical of mathematical models and is the 

justification for the time spent in developing them. They 

must describe the physical situation accurately, be able to be 

used for calculations, and allow the effect of parameters to be 

clearly delineated. 

The use of the Boole displacement operator E [Boole, 72) as a 

formal next state operator for linear transformations over a 

vector space leads to the following equation: 

2. 3. 1) S(n+l) = ES(n) = MS(n) 

where S(j) is the /h state vector and M is a m X rn 

matrix. Since M satisfies its characteristic equation, Z. .3. 1) 

defines a linear difference equation in S(j). There alway• 

exist characteristic vectors V. which transform M into the 
1 

third normal form F 
3 

(as defined by van der Waerden) • 

( v. d. Waerden, 40) and which have the property that 

2. 3. 2) MV. = V. "A. i = 1, ... , me 
1 1 1 

for each characteristic root \ .. 
1 

m-1 
2. 3. l S(n) = :E 

i a 0 

The expression 

where the '3 . are constants to be determined by the initial 
1 

conditions satisfies 2. 3. l)for all n since 
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z .. 3. 4) 
m-.1 

M5(n) = :t 
i=0 

n+l 
~.V . X. . = S(n+l)=ES(n) 

1 1 1 

This vector solution is analogous to the usual scalar solution 

of a difference equation. 

The initial conditions are 

z.. 3. 5) • S(i) a: Mi5(0), i = O, ... , m-1. 

IM I , O, solve 

z. 3. 6) 
m-1 

5(0) = I: 
i::s0 

~.V.= V 
1 1 

~o 

The ~. are unique, depend upon 5(0) except in the exceptions 
1 

proved later and by z. 3. 4)eatisfy z. 3. 1) and the initial conditions. 

If equations Z. .3. 3,) and 2 •. 3.,6)are used to find a solution, 

then the characteristic r oots and characteristic vectors must 

be found, and then a set of linear equations solved. An alterna­

tive method of calculation is frequently simple and is interesting 

theoretically, Write 

m-1 
Z. 3. 7) 5(n) = (S .{n)) = :t 

J i 1 • 0 , J 

n 
a. . X. . . 

lJ 1 

Using 2. 3. 5.) develop the following set of equa tions to determine 

the a . . • For each j, 0 < j < m-1, 
lJ 

2. 3. 8) 
m-1 

S.(n) = ~ 
J i=0 

O<n<m-1 
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The determinant of the coefficients is a Vandermonde 

determinant, and all >.. . are roots of tht: characteristic 
1 

equation g(>..) = jM- )JI = O. In this case a simple formula can 

be found for the a. . • Divide g(>..) by the factor >..- >... to obtain 
lJ 1 

f. ( >..) = 
J 

m-2 
'E 
k=O 

d >..k 
k . 

J 

Now, it can be shown that [ Cart~~ ~2] 

{-l)i ~ dk S .{k) 

z. 3. 9) 
k=O i J 
g ( >... ) 

1 

where g'(>... ) is the derivative of g(>..) evaluated at >.., . This 
1 1 

equation allows the characteristic roots and corresponding 

coefficients to be found or anaiyzed one at a time. 

There are many theorems which allow an estimation of 

the relative absolute values of the characteristic roots of a 

matrix or the roots of an arbitrary polynomial. Choosing 

>... , 
1 

2.3 .. lO)S(n) 
n 

= >..o ( ~o v o + 

gives a u:;eful approximation. 

In the second case, 

if jMj=O and M has rank m -- 1, solve 

m-1 
2. 3. 11) S{l ) = I: 

l=O 
P. V. >.. , \\ ~th solution 

1 1 1 
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2 .. 3. 12) 

Since F 
3 

may be chc~en to have a first row of zeros 

when M has rank m-1, ~O:; 0 as well as >.
0 

• 0, and the 

solution 2. 3. 11) depends upon (m-1) non zero constants, The 

solution z .. 3. 3) with constants determined by 2. 3. }4 satisfies 

z. 3. l)and all initial conditions except S(O). However, this is 

precisely the property of the solution desired in most cases, 

as will now be shown. 

Let M be a column stochastic matrix, Then its greatest 

po■ itive root is 1, and 1 is greater than the absolute value 

of all the other roots. Moreover, (X.-1) appears only linearly 

in the list of elementary divisors of M->J , Chcose x.
0 

= 1, then 

z. 3. 13) lim S(n) = l:'
0 

V
O

= S 

n - CD 

The values of V
O 

are proportional to cofactors _ of (M-1), 

so V
O 

is independent of S(O), Let J be the matrix with all 

elements 1. Then, since J = JM, and S(n) = (S.(n)), 0 < j < m-1, 
J - -

z. 3. 14) 
m-1 
E 
j=O 

1 
S .(n)=(l, ... ,l)S(n)= - (l, ... ,l)JS(n) 

J m 
1 rn 1 

= - (1, ... , 1) JM S(O):: - (1, ... , l)JS(O) m m • 

m-1 
= E 

j• 0 
5 .(0) 

J 
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f 

. . 

using the definition of a column stochastic matrix, JM = J . 

Write the left hand side of 2. 3. 14) as: 

m-1 
:E 

j=O 
S . (n) = 

J 

m-1 
2: 

i=O 
P. x.. 

l l 

n 
m-1 

E 
jzO 

v .. 
lJ 

m-1 

and evaluate for n = 0, ... , m-1; writing :E S/0) = s
0 

j=O 

m-1 m-1 m-1 

So= . Po :E 
j=O 

E Vlj + ... 
jsO 

+P 1 EV 1. 
m- . m- J 

J•O 

m-1 m-1 m-1 

so= Po 2: V Oj + X.l pl E V lj + ... + k p :t 
j=O j=O 

m-1 m-1 
j=O 

V 

m-1 
X.m-lp 

m-1 m-1 
+X.m-lp E 

so= Po 2: V Oj + 
j=O 

1 1 

This set of equations in 

m-1 
2: 

j=O 
V Oj' 1\ 

2: V lj + ... 
j=O 

ml m-1 . 
0 J= 

i a: l, ... ,m-1 

has a Vandermonde determinant, non zero, and thus 

m-1 m-1 
2 .. 3. 15) Po ~ V Oj = I: S/0) = s 0 

j=O j-=O 

m-1 

P. I; V .. = 0 i • 1, ... , m-1 . 
1 lJ 

j=O 
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m-1 
If I: 

·=o 
particullr 

S.(O) is a cons t a nt, ~O is indepe nde nt of the J ' 
initial configuration S

0
(0), . .. , Sm-l (O) . The 

limiting solution S = ~O V 
0

, given in 2 •. 3. 13) thus is i nd pen­
dent of the particular initial configuration, a nd d pends only on m-1 

.1: Sj(O) •. 
J•O 

Since M ia defined to be column stochastic if and onl y if 
JM • J, the convene ia true. 

For the iniportant apecial ca11e of Markov processes or m-1 
Markov chaina, J: 5.(0) :a 1. Now the limiting or steady j•O J • atate probability of atate occurrence is independent of the 
initial configuration. 

The limiting state may be calculated by finding the charac­
teriatic vector c orresponding to >.. = l and then calculating 
1!1

0 
using 2. ). 9) since the formula holds except for the obvious 

caae of ). 
1 

= O. In this case it was shown that ,, 
1 
~ O. m- m-

The solution 2. 3. 3)of the next state transformation equation 
2 •. 3. l)has the advantage that it is in finite form, and is easily 
expreued and manipulated. All the prope rties of linear differ­
ence (or differential) equations are available-the sum of two 
aolutions is a solution for example. The behavior of the solu­
tion with increa.aing n is frequently obvious and more straight­
forward than the treatment in terms of powers of the matrix M. 
The treatment in terms of powers of M has been detailed in 
the caae in which M is stochastic and the proceu is one of 
Markov chains. Relative changes with n are easier to follow 
using 2.3. 1). Equation 2· •. 3. ))has another advantage~the 
coefficients of the powers of characteristic roots are expressed 
in terms of the initial state and characteristic matrices ~quation 
l,.3.6)01 in terms of the characteristic equation and the first m 
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states (equation 2. 3. 9). As is more convenient either case can 
be used to evaluate the effect on S(n) of changing either M 
or the initial state. 

In most cases of computer desi gn analysis what is desired 
is not a detailed step by step considerati on (simulation is good 
for this), but a knowledge of the limiting case together with an 
estimate of the speed of convergence of S(n) to this case. 
The limiting case was given by 2.3.10) for the general case and 
Z. l 13) for Markov chains. 

Since VO corresponds to the charac teristic root 1, the 
steady state solution of 2. 3.13) for Markov processes may be 
obtained by solving the equations 

(M-1 ) V = 0 (VO = (V Oi)) m 0 
2. 3. 16) 

m-1 
~ = I: V Oi 0 

i=O 

The value of ~O assumes that the sum of the limiting 
probabilities is one. 

Howard[Howard, 60] calls the transpose of the matrix (M-1 ) the 
m 1rate matrix• corresponding to the Markov process defined by 

M and uses it as a basic tool for analysis. 

A convenient method of determining the speed of convergence 
of S(n) to the limiting case is to consider the sizes of the 
largest and next to the largest characteristic roots. Much work 
has bt..en done to determine bounds for these roots by eminent 
mathematicians. This work can be applied effectively to the 
analysis of models of computer processes as shown by Durney. 

[Durney, 63) 
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Determining the speed of convergence is important in 

practical examples. For Markov processes, if S.(n) > S. 
1 l 

and approaches Si slowly, then if such an s
1 

is used to 

estimate the capacity of a system, the system will tend to be 

overloaded. Knowing S. (n) > S. would allow a design to 
1 1 

avoid this overloading. 

A final advantage is that in many cases of interest the 

number of states is related to some 01:1tside parameter say k. 

For example, the number of people u1ing a time-sharing system. 

Now ~O V 
0

, ~l V 
1

, and x.
1 

will vary with k. For a Markov 

process x.
0 

:s 1, and variations in JS 
O 

V
O 

and x.
1 

as k and n 

both vary can frequently be handled, and prove interesting. 
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Appendix 3 The REL Program ---------------

HOTI 

SYSTEM RELIARILI TY CALCULATION 

FUNCTIONAL UNI T NAMES AR F. AS FOLLOWS: ~ALU(BYTE ARITHMETIC LOGlC UNIT), PCU(PROGRA M CONTRO ~ UNIT), CCU(CHANNEL CONTROL UNIT), ROS(READ ONLY STOR E), MS(MAIN STORF.), SS(SECONDARY STORTO, DR( DRUM), CL (CLOCK), POf✓ ( POTIER SUPPLY) ,AND BPB ,BPR, BBR,BPM,BCM,RCS,RCD(ALL RU, SES WITH THE LAST TWO LETTERS BE­ING THE FIRST Lr.TTRRS OF NAMES OF THE TERMINAL UNITS). 
PARAMETERS ARr.:R[SPF:C]=SPECIFIED SYSTEM RELIABILITY, Y=YEAR ( FAILURE RATES LAMBDA (LA) AND MU DEPEND ON DATE), X=LA +MU= RATIO OF POWER ON TO POWER OFF FAILURE RATES, D=DUTY CYCLE, Q=REQUIRED NO. OF UNITS FOR ADEQUATE FUNCTIONING, M=NO. OF SPARE UNITS, S=NO. OF MODULES INTO WHICH THE UNIT IS SEG­MENTED, I=INCRTWENTAL lf ARDWARF: FACTOR FOR SEGMENTING MOD­ULES, C=COVERAGE OF CHECKERS AND DIAGNOSTICS, F=FAILURE TOL­ERANCE, SEL=A VECTOR THAT SELEr.Ts PRINTOUT CONTENTS, AND R CONTAINS ALL RELIARILITIF,S(UNI1S,SYSTEM,SPEC). 1,D,X,AllD T(MISSION TIME) ARE SCALARS, ALL ELSE ARE VECTORS. 

INSTRUCTIONS FOR USE 

1.EXECUTE FUNCTION 'SF.TU?' TO INITIALIZE PARAMETERS. (DISPLAY SETUP FOR DETAILS) 
2.MODIFY PARAlfETERS AS DESIRED. 

EXAMPLES:M[BALU,HS]+2 3 ;T+6500 ;R[SPEC]+.98 3.EXECUTF. 'RELIARILITY' FUNCTION. 
4.AT ANY TIME P.:-,.T' 'T' ANY QUANTITY. 

1'.' .\· .' ' ':'LES : S [ PC U] ; T ; R ; Q [ RP 1J ] ; LA [ DR] ; K ; SF: L 5. +2 

THE 'TIME' FUNCTION FINDS A MISSION TIME THAT ACHIEVES THE SPECIFIED SYSTEM RELIARILI~Y. 

THE 'DISPI,AY' FUJU':TION PRINTS OU'!' Tl/E FOLLOWING COMPUTED RESULTS DEPENDING ON TllE COMT~llTS OF S~L: 
1(SfL ;CRITICAL 8YSTEM I'ARAf.fr:TERS A!ID RF.Sl!LTS. 2(SEL ;NORMALIZED PRORAfULITIJ-:S OF FAILlJRF. FOR UNITS. 3(SRL;R AllD 1-R FOR EAr.H UNIT. 
4(SEL;THF. SYSTrU CONPIGURATI0r. 
5(SEL;TnE SYSTEM nr. L. AND NORMALIZ ED PR0R.OF FAILURE. 
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V SETUP 
[1) 
[2] 
[3] 
[4] 
[5) 
[6] 
[7] 
[8] 
(9) 
[10) 
[11) 
[12) 
[13) 
[14) 
[15) 
[16) 
[17) 

[18) 

[19) 
[201 

V 

T+10879 
D+0.25 
1+1968 
K+S 
INDEX 
SEL+13 
EXP+4 
R+(17p0),0.997 
M+ 1 2 2 2 2 O 2 O 2 3 3 3 3 3 3 3 
Q+ 4 1 1 3 1 3 3 0 1 12 95 36 15 36 36 0 
C+16p1 
S+ 1 3 4 1 2 4 1 1 1 ,7p1 
I+ 0 0.1 0.1 0 0.1 0.1 ,10p0 
F+ 1 O 1 1 0 0 1 ,9p0 
PRINTOUT+(Q~0)/116 
CHARS+' 0123456189.IQWERTJUIOPASDFGllJKLZXCVBNM[]()x++' 
UNAMES+( 16 7 )p' BALU PCU ROS MSTORF: CCll CLOCK 

SSTORE DRUM POWER BPB BPR BPM RRR BCM 
BCS BCD 

QQ+'BALU PCU ROS MSTORE CCU CLOCK SSTORE DRUM POW 
ER ' 
HEAD+QQ,' BPB RPR BPM BBR BCM BCS BCD 
WIDTH+(! 1)p'WIDTH ' 

V INDEX 
[1] POW+1+DR+1+SS+l+CL+l+CCU+1+MS+1+ROS+1+PCU+1+BALU+1 
[2] SWC+1+SWP+1+PAGE+l+CIR+1+BCD+1+BCS+1+BCM+1+BBR+1+BPM+1+ 

BPR+1+BPB+10 
[3] SPEC+1+SYS+11 

V 

V RELIABILITY 
[ 1] FAILRATES 
[2] RELCALC 
[3] DISPLAY 

V 

V RELCALC 
R[,17)+0 [1) 

[2] 
[3] 
[4] 
(SJ 
[6] 
[7] 
[8] 
[9] 
[10) 
[11] 
[12) 
[13] 
[14] 

R[BALU]+RMQCSF BALU 
R[PCU]+(RMQCSF PCU)xRSW SWP,PCU 
R[ROS]+RROS 

V 

R[MS]+RUQCSF MS 
R[CCU]+(RMQCSF CCU)xRSW SWC,CCU 
R[ CL ]+RTMR CL 
-.(Q[SS]<1)/10 
R[SS]+RMQCSF SS 
-.(Q[DR]<1)/12 
R[DR]+RMQC DR 
R[POW].-RMQC POW 
R[BUSS].-RBUSS BUSS 
R[ SYS]+x/R[Ull ITS,BUSS] 
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I 

J 

(1] 
[2] 
(3] 
[4] 
[SJ 
[6] 
[7] 
[8] 
[9] 

(10] 
[11] 
(12) 
(13) 

[14] 
(15) 

(16) 

(17) 

(18) 
(19) 

(20) 

(21) 

[22) 
(23) 

(24) 
(25) 
(26) 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 
(9) 
(10) 
(11) 
(12] 
(13) 

V FAILRATES;YY;F 
INDEX 

V 

YY+Y-1966 
G+1tK 
F+(2 1)p(D+(1-D)xG),C 
£+(2 20)p 6g 31.47 
N+M+Q 
UNITS+(Q[,9]~0)/19 
~VDS+ ,( Q[ 9+17]~0)/(9t17) 
SAS++/((1 2)pN[PCU,BALU,PCU,ROS ,PCU,MS,BALU,ROS,CCU,MS, 
CCU,SS,CCU,DR])[BUSS-9;] 
L[;PAGE]+(S 4.7 3.7 2.6)[YY]xF 
L[;CIR]+L[;PAGE]t415 
L[ ;BALl']+L[ ;PAGE]x1. 5 
L[;PCU]+(L[;PAGS ]x10x1+I[PCU]x(S[PCU]-1)• 
0.S)tS[PCU] 
L[;SWP]+L[;CIR]x8xN[PCU] 
L[;ROS]+(((((S 11)t16)x(20 20 17 14)[YY])+L[;PAGE]x 
3.S)xl+I[ROS]x(S[ROS]-1)•0.S)tS[ROS] 
L[;MS]+((50 47 42 37.S)[YY]xF)+( 
15 12 12 11.5)[YY]+0.SxL[;,PAGE] 
L[;CCU]+(L[;PAGE]x5x1+I[CCU]x(S[CCU]-1)• 
O. 5) t S[ CCU] 
L[;SWC]+L[;CIR]xaxN[CCU] 
L[;CL]+(L[;PAGE]xl+I[CL]x(S[CL]-1)• 
0. 5) tS[ CL] 
L[;SS]+((50 47 42 37.5)[YY]xF)+0.5xL(;,PAGE]+ 
0.67x(15 12 12 11.5)[YY] 
L[;DR]+(15 10 9 8)[YY]+((5 5 5 4)[YY]xF)+ 
O. 5xL[; ,PAGE] 
L[;POW]+(20 15 13 12)[YY]xF 
L[;BUSS]+(2,pBUSS)p((6xQ[BUSS]),(pBUSS)p10)x(2xpBUSS)p 
SASxL[1;CIR] 
L+Lx1E-6 
LA+L[1;] 
MU+L[2,] 

V DISPLAY;I;LI 
I+0 

V 

LI+(0 4 6 8 
+LI[I+I+1] 
PRI!ITSYS 
+LI[I+I+1] 
PRINTNPOF 
+LI[I+I+1] 
PRINTREL 
+LI[I+I+1] 
CONFIG 
+LI[I+I+1] 
PRINTTOT 
+LI[I+I+1] 

10 12)[1+SEL].0 
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[1] 
[2] 
[3] 
[4] 
[ 5] 
[ 6] 
[7] 
(8) 
(9) 

[1] 
[2] 
(3] 

[1] 
[2] 
[3] 
[4] 
[ 5] 
[6] 
[7] 
[8] 
[9] 
[10] 

[11] 
[12] 
[13] 

[14) 
[15] 

[ 16) 

[17] 
[18) 

(19) 

'iJ R+RMQCSF U 

'iJ 

V 

V 

V 

V 

-+ ( F[ U] = l 2 ) / 4 8 
R+RMQCS U 
-+0 
R+RMQCP U 
-+(S[ U]=1)/0 
R+l1*S[ U] 
-+0 
IF> 1 I 
-+R+0 

R+RMQCS U 
R+RMQC U 
-+(1=S[U])/0 
R+R•S[U] 

R+RMQCF U;l;J;LAT 
-+(C[U]=1)/4 

-+R+0 
I+0,\1+2>eM[U] 
J+0,\M[U] 
LAT+LA [ U] >e T 
-+(Q[UJ=,4}/ 10 12 15 18 
'Q.it\4' 
-+R+0 
R+(•-LAT)x(((1-G)>e(+/(LAT•I)t!I))+G>e(1+LAT)>e+/(1-(•-LAT 
) >e 1 +LAT) •J) 
-+0 
R+((2>eLAT)•2+2>eM[U])t2>e!2+2>eM[U] 
R+(•-2>eLAT)>e(((1-G)~(+/((2>eLAT)•I)t!I)+R)+G>e((1+LAT)• 
2)>e+/(J+1)>e(1-(•-LAT)>el+LAT)•J) 
-+0 
R+(3t4)>e(1-3•-2+2xM[U])x(((3>eLAT)•2+2>eM[U])t!2+ 
2>eM[U])>e1+LATt3+2>eM[U] 
R+(•-3>eLAT)>e(((1-G)>e(+/((3>eLAT)•I)t!I)+R)+G>e((1+LAT)• 
~)>e+/(2!J+2)>e(1-(•-LAT)>el+LAT)•J) 
-+0 
R+(7t8)>e(1-2•-3+2>eM[U)),c(((4>eLAT)•2 +2>eM[U])t!2+ 
2xM[U])>e1+LAT>e(2t1+2xM[U])+LATt(3+2>eM[U])>e2+2>eM[U] 
R+(•-4>eLAT)>e(((1-G)>e(+/((4>eLAT)•I)t!I)+R)+G>e((1+LAT)• 
4)>e+/(3!J+3)x(1-(•-LAT)>el+LAT)•J) 

V R+RMQC U;I 
[1] -+(l=C[U])/5 
[2] I+O,,M[U] 
[3] R++/(I!M[U])>e(C[UJ•J),c((1-C[UJ)•M[U]-I)>eRMQ U 
[ 4] -+0 
(5) R+(RMQ U)[1+M[U]] 

V 
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I 

V R+RMQ U;I 
[1] R+,•-Q[U]xT,A[U]xT 
[2J ~<o=u[uJ>10 
[3] I+1M[U] 
[4] R+Rx+\1,(x\(Q[U]xLA[U]tUU[U])+I-1)><((1-•-J.!U[U]><T)•I)t?I 

V 

V R+RTUR U 
[1] R+(1-((1-•-LA[U]xT)•ll[U]-1)x1+(N[U]-1)x•-LA[U]xT)•S[U] 

V 

V R+~<ROS;L1;L2 
[1] L1+1 
[2] L2+2 
[3] R+(1-(1-(•-L[Ll;ROS]xT)x(•-L[L2;ROS]xT)xl+L[L2;ROS]><T)• 

N[ROS])•S[ROS] 
V 

V R+RSW V 
[1] R+(1-(1-(•-LA[V[1]]><T))•2)•S[V(2]]-1 

V 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
(10] 
[11] 

V TIUE;PS;T0;R0 
FAILRATES 
PS+1-R[SPEC] 
RELCALC 

V 

T0+T 
R0+R[SYS] 
(8p' ';+LT+(TSO)+(T>O)><T) 
T+Tx(PSt1-R[SYS])•1tEXP 
RELCALC 
EXP+(e(1-RO)t1-R[SYS])teTOtT 
·+4xl( ITO-T)>1 
( ' TIME = ' ; T+ L T + 0 • 5 ; ' HOURS ' ) 
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V PRINTSYS ; fl 
[ 1] " 
[2] QQ+' TOT SYS RF. L. =.' 
[3] ( QQ ;LlOOOOxR[SYS j~ ' PROD OF FAIL .= '; 

0.1xL1000x(1-R[SYS])t1 - R[SPF.C ]; ' ( NOR!AL IZ 1D ~O 100 ) 
YEAR= '; Y} 

[4] QQ+' SYS RF:L SPEC=. ' 
[ S J ( QQ ;L0. 5+1000 0xR[SPRC] ;' UISSIOll DURATIO M='; LT ;' 

HOURS DUTY CYCLE= ';D;' LAt MU= '; K) 
V ) 

V PRINTNPOF;N; Z 
( 1) I I 

(2) N+1+(5p10)REP.L0.5+10000x(1-R[. PRJNTOUT] ) t1-R[ , SPEC] 
(3) N[;l]+N[;l]-Z+N[;l]=l 
[4] Z+Z/t(pN)[l] 
(5) N[Z;2)+N[Z;2]-N(Z;2]=1 
(6) N+(l 1 1 O 1 1)\N+l 
[7] N[;4]+((pN)(1].1)pCHARSt'.' 
(8) ' ' •• ((16 6)pHEAD)[ PRINTOUT ;] 
(9) NPOF'.CHARS[.N] 

V 

V. PRINTREL ;REL ;M;N ;RF.M 
(1) REL+,R[PRINTOUT]-1E-13x R[PRINTOUT]=1 
[2] M+((pREL).6)pCHARS1' xNxxx' 
(3) M[;2]+2+N+((9=(9p10)REP .L1000000000xREL )JO TA 0)-1 
(4) M[;3+t3)+2+((pRF.L),3)p(3p10)REPLREM+1 000x( RELx 

lO•N)-(lO•N)-1 
[5] RELS'.CHARS[,M] 
[6] M[;3+t3]+2+((pREL).3)p(3p10)REP 1000-LREM 
[7] M[;3]+CHARS1'Z' 
(8) POFS'.CllARS[,M] 

V 

V CONFIG 
[ 1] INDEX 
(2) ,, 

[3] UNITS+(Q[,9]~0)/19 
[4] BUSS+(Q[9+17]~0)/9+17 
(5) (16p 1 '),' UNIT N /.1 Q 100xC 

S 100xI F 
[ 6) ( 16p' 1
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