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FOREWORD 

This report was prepared by Hughes Aircraft Company, Culver City, California, 

under Contract Number AF 33(615)-2460. The contract was initiated under 

Project No. 7381, 'Materials Application," Task No. 738103, "Materials Infor¬ 

mation Development, Collection, and Processing." The work was administered 

under the direction of the Air Force Materials Laboratory, Air Force Systems 

Command, Wright-Patterson Air Force Base, Ohio, with Mr. R. F. Klinger, Project 

Engineer. 

The Electronic Properties Information Center conducts documentary research 

based on the collection, analysis, and review of the scientific and technical 

literature relevant to the electrical, electronic, and magnetic properties 

of materials. The primary objective of this program of evaluation and cor¬ 

relation is to provide a source of competent information to the DoD community. 

By means of several series of publications such as Data Sheets, Special Reports, 

Interim Reports, and several services such as Computer Bibliographies, tech¬ 

nical question answering services, and special studies, research and develop¬ 

ment support is made available to this extended community. 

The initial step in the preparation of this data sheet was retrieval, by means 

of a modified coordinate index, of all boron nitride literature in the 

EPIC file. Bibliographies were also reviewed to ensure the inclusion of all 

relevant literature. Papers containing primary experimental data were selected. 

Secondary reviews and evaluations were considered during the data inalysis. 

In all, 52 references were used from EPIC holdings, totalling 132. 

In general if data available from several sources are judged to be equally 

valid, then all are given. Data are considered questionable and are rejected 

for inclusion because of faulty or dubious measurements, unknown sample com¬ 

position, or if more reliable and inclusive data are available from another 

source. Selection cf data is based upon evaluation of that which is most 

representative, precise, reliable and inclusive over a wide range of parameters. 

In the case of boron nitride however, the paucity of data caused inclusion 

of all available information. 
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Within every property section we have tried to include every parameter and 

range of experimental condition found in the literature. Measurement environ 

ment and sample specification are included when available. Some alterations 

in units and presentation may be made to facilitate comparison with other 

experimental data. 

This report consists of the compiled data sheets on boron nitride. A full 

list of EPIC publications to-date appears at the end of the report. 

The author wishes to acknowledge the contribution of Dr. J. J. Grossman and 

Dr. Sheldon J. Welles in the review of the experimental data and the final 

compilation. The supporting assistance of another member of the EPIC staff, 

Mrs. Marjorie Dunn is gratefully acknowledged. 

Acknowledgement is also made for the assistance of Dr. Y. S. Touloukian of 

the Thermophysical Properties Research Center at Purdue University in supply 

ing some of the thermal conductivity information. 

The assistance of Mr. R. C. Olsen and Mr. N. J. Morante of The Carborundum 

Company in supplying data on boron nitride is gratefully acknowledged. 
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ABSTRACT 

These data sheets present a compilation over a vide range of electronic 

properties for Boron nitride. These properties are compiled over the 

videst possible range of parameters and are then agglomerated in several 

large groups as follows: Optical Properties include absorption, reflection 

and refraction. Transport Properties include electrical conductivity and 

resistivity. Energy Band Stricture includes energy gap values. Phonon 

Branch Distribution appears separately. Both Photon and Electron Emission 

data are represented including Spectral Emissivlty. Thermal Propertied 

include Debye temperature, thermal conductivity, and thermal emf. There 

are other individual properties and effects included, especially dielectric 

constant and dissipation factor. 

The Introduction discusses the two polymorphic boron nitride forms; their 

crystal structure, lattice parameters and transition points. The isotropic 

and anisotropic boron nitride prepared by chemical vapor deposition is are dis 

cussed from the mechanical and electrical standpoint. Information is given 

on a number of boron nitride cevices and applications. A table of the 

best values available for physical and electronic properties is given. 

This report has been reviewed and is approved for publication. 

Project Manager 
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PHYSICAL AND ELECTRONIC PROPERTIES 

Physical Properties 

Symbol Value Unit Temperature 

Formula 

Molecular Weight 

Density 
Hexagonal 
Cubic 

Color 

Melting Point 
(Commercial) 
(Pure) 

Lattice Symmetry (hexagonal) 

Lattice Parameter 
Hexagonal 

Cubic 

Hardness, Mohs scale 
Hexagonal 
Cubic 
Cubic (microhardness) 

o 

B-N 

ao 
B-N 

BN 

10.82+14.008*24.828 

2.25 
3.45 

White, transparent 

2730 (subi.) 
3000 (subi.) 

C6m2(Djh)Z=2 

2.51*0.02 
6.69*0.04 

1.446 

3.615*0.001 

1.57 

Specific Heat (hexagonal) 

CVD I 
Pressed Powder | 

CVD - Specific Heat Coefficient 
0.214+5.25xl0-4T-2.59x10'7T2 

10 
7300-10,000 

0.24 

0.418 

Coefficient of Thermal 
Expansion 

CVD Hexagonal tlo 
-o 

Hot Pressed (hexagonal) 

Cubic 

-2.9xl0”6 
+40.5xl0-6 

+10.2X10-6 

+7.5X10"6 

+3.5xl0-6 

g/cm3 
g/cm3 

°C 6 1 atm. 
^C 6 1 atm. 

kg/mm2 

cal/g/°C 
cal/g/°C 

cal/g/°C 

/°C 
/°C 

/°C 
/°C 

/°C 

20°C 
25°C 

20°C 
20°C 

25°C 
25°C 

20°C 
20-2200°C 

20°C 
20°C 

25-350°C 
25-1000°C 

0-400°C 

Refer¬ 
ence 

29709 

12808 
12808 

*26 

*1 
*1 

22943 

29709 
29709 

29709 
*3 

26546 
12808 

21962 

4878 
4878 

*26 

*26 

28367 
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Physical and Electrical Properties (continued) 

Symbol Value Unit Temperature Refer¬ 
ence 

♦References found on pages 20 and 21. 





INTRODUCTION 

I. CRYSTAL STRUCTURE 

a. Hexagonal and Cubic Boron Nitride 

Although boron nitride has a much lower electrical conductivity 

and diamagnetic anisotropy than carbon, the resemblance between the two 

is strong. Like carbon, boron nitride occurs in two forms; the stable 

form is a white solid ("white graphite") with hexagonal symmetry, a 

density of 2.Í5 g/cm3 at 20°C and a hardness of Mohs 2. The "diamond" 

or zincblende (fee) form has a density of 3.45 g/cm3 at 25°C and a hard¬ 

ness close to Mohs 10 [Ref. 29709]. 

Hexagonal Boron Nitride 

[Ref. 22943] 



Hexagonal boron nitride has lubricating properties based on cleavage 

and a crystal structure similar to that of graphite. The molecule com¬ 

prises boron and nitrogen atoms alternating in stacked sheets of six- 

membered rings with: 

a0 = 2.50399*0.00005 X 

C0 = 6.6612*0.0005 8 

These values are for 35 °C. Measurements are mada on recrystallized 

commercial material, density = 2.29*0.03 g/cm3 with about 0.6% by weight 

impurities. [Ref. 4878] 

Later values are given by Donnay,1 who quotes an average: 

a = 2.51*2 X o 

c0 = 6.69*4 X 

Other crystal structure parameters for hexagonal boron nitride are: 

B-N = 1.446 X 
Layer separation = 3.33 X [Ref. 22943] 

These values are confirmed by EPR measurements on sintered powder 

hexagonal boron ritride: 

B-N = 1.45 X 
Layer separation = 3.35 X [Ref. 27881] 

Efforts to obtain the molecular spectra by intense surface heating 

with a laser beam resulted in the boron oxide spectra and no boron nitride 

bands were seen.2 



The above graph on the distribution of electron density in a 

boron nitride crystal indicates that 15 to 16 percent of the total 

electron density, corresponding to two electrons from each pair of 

boron-nitrogen atoms is found between the network layers. The bond 

between the boron and nitrogen atoms in the network is ionir rather 

than metallic which accounts for the fact that boron nitride is a 

typical semiconductor rather than a metal. The heat of formation 

from the elements is 60.7 kcal per mole20 and this has led to the 

conclusion that there are double bonds between the boron and nitro¬ 

gen layers.26 



Electrical resistivity as a function of excess nitrogen 

content in atomic percent. 

Hexagonal boron nitride has a large region of homogeneity; the 

rearrangement of the boron lattice during nitrogenation leads to the 

formation of melts in the nitride homogeneity region with predominance 

of electron (n-type) conductivity. With an increase in the nitrogen 

content of the nitride, the electrical resistance of the compound 

increases sharply at first, but after reaching 35-38% nitrogen, resis¬ 

tance increases more slowly. It is believed that electron participation 

in conduction affects the bonds between the plane layers of atoms in the 

nitride structure. 

[Ref. 30176] 
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Crystal structure parameters for the zincblende (fee) form are: 

a_ = 3.615*0.001 % (25°C) 
o 

B-N = 1.57 i [»«f- 

These cubic crystals have been studied ly N.E. FilonenKo et al.3 

and shou a prinary habit of positive (111) and negative (1-11) tetra- 

hedra. Their microhardness was 7300 to 10,000 kg/mm2. 

Kudaka et al.4 from observations of the crystal surfaces of the 

cubic form similarly conclude: 

1. The (111) face is the most stable crystal plane. 

2. Although (110) faces are rarely found in diamond, they 

appear more often than (100) faces in cubic boron nitride. 

3. The triangular growth layers are positively orientea to 

etch pits on (111) faces in diamond, but are negatively 

oriented to etch pits in cubic boron nitride. 

4. There are a variety of shapes of growth layers ¿n cubic 

boron nitride. 

5. There are two kinds of triangular pyramids positively and 

negatively oriented to (Hi) face in cubic boron nitride. 

6. Spiral patterns have been observed on (111) face. 

From the morphology of these features described above it Is conjectured 

that the crystals of cubic boron nitride have been formed due to the growth 

of various shapes of layers or triangular pyramids on (111) faces. 



The crystal characteristics and habits of the boron nitride forms 

both cubic and hexagonal have been well studied. R. Sato5 in a dis 

cussion of stacking faults in the hexagonal form states that x-ray 

diffraction patterns Indicate ■•displacement" stacking faults as -ell 

as the "turbostratic" faults reported by J. Thomas et al. 

This structure shows further analogies bet-een boron nitride and 

carbon. It is synthesised by controlled reaction bet-een fused urea- 

boric acid and ammonia at 500-950 °C. 

I I 

The layers which comprise B-N rings, are stacked 

roughly parallel to each other but with random 

T I T rotation and translation around the layer normal. 

^ 'Y't' The average stack height is 14 Ä and the average 

layer diameter is 46 %. 

This turbostratic form may be transformed by heat in the presence of 

boron oxide in a nitrogen atmosphere between 1450 to 1850 °C, to the 

ordered layer-lattice hexagonal form in a "graphitiwtion" process. 

A pseudocubic hexagonal form is given for a boron nitride polymer 

(BN)X*. 7 

10 



A semiconducting cubic form of boron nitride can be prepared by dopi 

the hexagonal form. Several patents have been issued to R.H. Wentorf, Jr 

for the process, (U.S. 3,192,015; 3,078,232).8>9 

Beryllium and lithium additions give p-type crystals, of deep blue 

color with resistivities as low as 200 ohm-cm at 25 °C; more typical is a 

resistivity of 10* ohm-cm. The conduction activation energy for these sai 

is about 0.2 eV and it is suggested that the beryllium forms acceptor levi 

Sulfur additions yield n-type crystals of pale yellow color, resistivity 

about 104 ohm-cm at 25 °C and an activation energy of 0.05 eV. U.S. patei 

3,142,595 describes bulk p-n and p-p boron nitride junctions that have 

excellent rectifying properties.10 

The reversible transformation between cubic and hexagonal boron nitr 

has been well investigated. The hexagonal form is heated from at least 

1350 °C to 1800 °C under pressures of 62,000 to 85,000 atmospheres to yie 

the dark cubic form. With increase of temperature to 2500 °C and pressun 

increase to 50,000 atmospheres, the cubic substance reverts to the soft, 

white hexagonal boron nitride. [Ref. 29709] 

In the cubic-hexagonal transformation, the following table is given 

by H.J. Milledge et al.11 

Temperature (*20oC) Time (min.) 

1500 °C 

1650 °C 

1800 °C 

2000 °C 

2200 °C 

5 

3 

1 

1 

instantaneous 

The hexagonal form so produced in vacuo is not th< 

a graphite form with a different x-ray diffractio: 

Effect on cubic boron nitride 

no change 

partial conversion to hexagonal 

complete conversion to hexagonal 

11 



b. Effect of Pressure 

Percentage change in c-axis 
and a-axis with volume change. 

Percentage change in volume with 

pressure at 20 °C. 

4 30 

The effect of pressure has been measured on the lattice parameters and 

the volume of hexagonal boron nitride by x-ray diffraction method at 20 °C. 

The volume decrease with pressure comprises a large decrease in the c-axis 

and a small one in the a-axis as seen in the table below. 

Lattice parameter* md comprewibility of BN. 
-|,r.- "" " .. The transition from hexagonal to 

V/Vt 

1.0 
0.9* 
0.96 
0 94 
0.92 
0.90 
0.88 
0.86 

Marken 
U«d 

«/*,• a/o.k («/<•)/(«/••) P(kbar) 

1.000 1.000 
0.9821 0.9989 
0.9641 0.9979 
0.9461 0.9968 
0.9282 0.9956 
0.9102 0.9944 
0.8922 0.9931 
0.8743 0.9918 

1.000 0 
0.9832 4.5 
0.9661 12.3 
0.9491 25 
0.9323 44 
0.9153 68 
0.8984 MOO) 
0 8815 

NaF, LiF 
MgO 

cubic symmetry shown in the work 

of Wentorf [Ref. 29709] is seen 

at 68 kbar at which point the 

data is terminated. 

•«-1.MM. * 
*•-61*11. t 

[Ref. 24M34] 
MN**m aMk taraiMM* 
O*»*#*© 19*6 ÜMTM** IratiMW •* «*»••*• 
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Solubility and x-ray diffraction studies by Kudaka and Konno12 

indicate that the structural change of boron nitride under high pressure 

is different from that of graphite. Using the following samples: 

1. Untreated hexagonal boron nitriae 

2. Hexagonal boron nitride treated at 20 °C and 50 kbar 
pressure 

3. Hexagonal boron nitride treated at 1500 °C and 50 
kbar pressure 

these investigators find that the 3-dimensional order of the crystal 

is lessened in sample 2, but sample 3 shows high order with residual 

stress along the c-axis. 

The large compressibility in the basal plane is about 10 times 

the theoretical, calculated from equations relating empirically the 

force constants of bonds to the bond length. It is suggested that the 

compression causes a change in the bond character. In boron nitride 

the bonds are between atoms of different electronegativity and there is 

an increase from 22% to 33% double-bond character for each bond.^ 

The increase in melting point of boron nitride with pressure indi¬ 

cates that molten boron nitride has lower density than either the solid 

hexagonal or cubic form.14 

Melting Point 

(*100°C) Pressure 

3200 °C 
3400 °C 
3500 °C 
2730 °C (sublimes) 

30,000 atm 
65,000 atm 
80,000 atm 

1 atm 

The sublimation temperature for the pure 

material is 3000°C at one atmosphere but 

the usual commercial powder sublimes at 

about 2730°C. [Ref. 12808] 

13 



Recent work by G.A. Adadurov, et al., has produced a wurtzite 

modification of boron nitride by impact compression. 

Specific volume (cm3/g) 

Shock adiabatic curve of boron nitride 

The change in specific volume is shown as a function of static 

pressure. (Data taken from reflectivity measurements.) Phase trans- 

ition is indicated at 128 x 109 dyne/cm2 for a volume of 0.352 cm /g. 

Shock wave propagation = 4.68 km/sec 

Pressure = 128-192 x 109 dynes/cm2 

The lower pressure limit marks a sharp discontinuity in the 

pressure-volume curve;an extrapolation to zero pressure gave a specific 

volume for the new phase of 0.3 cm3/g, (specific volume of the cubic 

and hep forms is 0.287 cm3/g). The infrared absorption spectrum showed 

a change from two intense lines at 12.4 microns and 7.19 microns to 

weaker lines at 21.3, 19.6 and 9.1 microns. 

, [Ref. 30001] 

cotXmqT*¿Tr:», i—mm» •» 
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II. PYROLYTIC (CVD) BORON NITRIDE 

The high thermal conductivity and low thermal expansion of hexa¬ 

gonal boron nitride, coupled with its high mechanical strength, give 

this material outstanding resistance to thermal shock. However, the 

hot-pressed powder requires binding and fluxing agents that decrease 

its purity, with a resultant property degradation. 

Recent developments in boron nitride research have replaced the 

hot-pressed powder form with chemical vapor-deposited (CVt) boron 

nitride, also called pyrolytic boron nitride. 

The chemical vapor deposition method of boron nitride production 

yields bulk or film material of highly superior quality with the 

following advantages: 

1. High purity 

2. High density 

3. High dielectric strength 

4. High temperature strength 

5. Microwave and infrared transmission 

6. Resistance to thermal shock 

7. High crystallite orientation 

8. Variety in shape and thickness 15 and [Ref. 21962] 

This method yields all thicknesses from film to bulk of a non- 

porous material. With a Hohs hardness of 2, it machines easily to 

close tolerances with a smooth finish. It is much less brittle than 

the usual silica ceramics although its electrical resistivity is 

approximately that of porcelain. It has good oxidation resistance 

and is inert to almost all reagents even at high temperatures. Its 

excellent dielectric properties are discussed in the corresponding 

section of these data sheets. 

15 
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The compound is prepared from the gas phase by the reaction between 

boron chloride and ammonia at 1900°C and 1 mm mercury pressure. The 

polycrystalline deposit is pure and highly oriented giving the anisotropic 

properties of single crystal material.16 As the temperature of the deposi¬ 

tion increases, the nitride can change radically both in appearance and 

properties. At lower temperatures between 1000 and 1600°C, the material 

is hard, glassy, yellow-brown vith some transparency but still crystalline 

with definite grain boundaries. Above 1600°C the material is white or 

cream-colored, dense and highly anisotropic. The a-direction of this 

form has minimum expansion.15 

T 

DIRECTIONAL PROPERTIES 
OE PYROLYTIC BORON NfTRCE 

• Um Hw mm 
T H if U cfflhp# rtr 

DtrfftUa *rff«rtlft 

[Ref. 21962] 

Coffrit** (J) IM4 MtifflaU EffMMrlaf 

Thermal expansion of pyrolytic and hot- 

pressed boron nitride. For "c" ar ' "a" 

0 200 400 «00 «X> OOO COO 
4. 

direction, see adjoining graph. Parallel 

and perpendicular refer to orientation set 

up in the hot-pressing process. 

[Ref. 22943] 
Temperature (°C) 



Variation of a-dimension 
with temperature. 

Variation of c-dimension 
with temperature. 

The variation in the a- and c-axis of hexagonal boron nitride 

with temperature is shown in commercial pyrolytic boron nitride disks 

by x-ray diffraction. The thermal coefficient of expansion for the 

lattice parameters: 

a0 = (2.50424-7.42 x 10"6T+4.79 x 10*9T2)X = -2.9 x 10~6/°C at 20°C 

The contraction is not linear and becomes constant at about 800°C. 

co = (6.6516+2.74 x 10-4T)8 = 40.5 x 10-6/°C [Ref. 4678] 

The pyrolytic (CVD) boron nitride is far superior in high temperature 

behavior to the hot-pressed material as shown with regard to expansion 

[Ref. 22943] and deformation [Ref. 2992u]. In tbis latter study, hot- 

pressed boron nitride deformed at 2200°C although the "melting point" 

was 2990°C. Material failure was seen far below the melting point although 

thermal treatment will raise the failure temperatures. 

17 



As mentioned on page 16, chemical vapor deposition at lower temper¬ 

atures (1500°C) and higher deposition rates, results in a randomly oriented 

fine-grained material with a density of about 0.6 that of the high density 

oriented boron nitride. This polycrystalline material however, is not 

porous and its physical and electrical properties are isotropic. At 

1065°C, the resistivity is 8 x 107 ohm cm and at 1355°C, the value drops 

to 1.6 x 106 ohm cm. [Ref. 30877] 

The average dc dielectric breakdown strength of this material varies 

between 3 and 6.6 kV/mil, depending on the deposition temperature. [Ref. 30878] 

Isotropic pyrolytic boron nitride is practically unaffected by humidity 

until temperatures above 800°C are reached; surface resistance measurements 

of 1010 ohms/sq. have been obtained after 24 hours exposure to 100% humidity. 

There is also no detectable helium permeability at 20°C. This material 

also has excellent shock resistance; samples at 1400°C are quenched in cold 

water without damage. Finally, electron irradiation by 4 kV in vacuo and 

at 1500°C showed no damage. [Ref. 30877] 

This resistivity to irradiation damage is also true of commercial pressed 

powder boron nitride. Massive exposure to beta-particles caused only nominal 

decrease in resistivity. [Ref. 6138] 

Boren isotrope B10 is an effective absorber of thermal neutrons and 

is present as 'v 19% of boron compounds. It has an absorption cross section 

of 3990 barns and its low density makes it highly efficient on a weight 

27 basis. 



III. APPLICATIONS 

The major application of boron nitride is in electrical insulation 

but several other uses are to be found in the literature. 

1. Infrared transmitting optical filter. Based on the IR Christian¬ 

sen Filter effect, selective transmission at 9-12 microns is possible with 

powder boron nitride in an IR-transparent matrix. [Ref. 29708] 

U.S. 2,986,527 17 is a patent for such an optical device. 

2. A boron nitride-octadecane slurry is a pressure transmitting 

medium for single crystals.18 

3. U.S. 3,297,470 19 gives a method of producing lubricating glass 

or quartz fibers that maintain 85% tensile strength at 1500°F. 

4 High density boron nitride is used as an insulating sheath in a 

spiral high flux electric heater, in order to attain a low temperature 

difference between spiral and sheath.20 However, efforts to deposit boron 

nitride as an insulating coating on metal wires have been unsuccessful. 

Both chemical vapor deposition and immersion coating yield layers that 

spall and react with the metal. They also oxidize at high temperatures.21» 22 

5. Fr. 1,440,917 outlines a production method for 0.07 mm. thick 

boron nitride sheets.23 

6. Fr. 1,196,188 is for an electroluminescent cell comprising zinc- 

doped, p-type boron nitride and tellurium-doped n-type boron nitride. This 

cell responds to continuous or direct current.24 U.S. 3,278,815 is a recent 

patent for a capacitor, resistant to extremes in environment. This device 

can operate at less than 3 kv and below 500°C at a few microfarad capacitance.28 
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U.S. 3,240,614 [R«f. 26645] la a modified boron nitride mixture 

comprising 40% boron nitrlde-60% silicon dioxide designed for electrical 

applications under severe moisture conditions. At a bulk density of 

2.18 g/cc, there was no change in dissipation factor (‘v 3 x lO'** at 1 kc) 

and the dielectric constant at that density showed an increase of less 

than 0.1.

In the search for a radone material with acceptable dielectric proper

ties in addition to an ability to withstand a severe thermal environment, 

engineers have turned to isotropic CVD boron nitride. In all respects, 

high thermal conductivity, low coefficient of thermal expansion, high 

thermal shock resistance and low loss dielectric stability, this material 

is apparently outstanding. Initial investigations indicate also, that this 

material can be made efficiently in the required size and shape for radome 

application.^*
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OPTICAL PROPERTIES - ABSORPTION COEFFICIENT (a) 
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Absorption coefficient of polycrystalline hexagonal boron nitride samples with 

a preferential orientation of the c-axis. Data taken at 300°K, with linearly 

polarized light normal and parallel to the c-axis. Major peaks are seen near 

the infrared eigenfrequencies as determined from the reflectivity spectra on 

page 29. Minor peaks are attributed to high density of 2 phonon processes as 

indicated. These 2-phonon peaks are of greater intensity for illumination 

normal to the c-axis than for illumination parallel to the c-axis. (see page 

29; discussion of reflectivity curves) Absorption curves for these same samples 

at wavelength from 14 to 100 microns is shown on following page. 

[Ref. 25245] 

Ptayato« 
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OPTICAL PROPERTIES - ABSORPTION COEFFICIENT (a) 

Wavelength (y) 

Absorption coefficient of boron nitride 
samples as above, for polarized light 
normal to the c-axis, for a segment of 

the wavelength range from 12.5 to 100 
microns. T = 300°K. 

[Ref. 25245] 
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Wavelength (y) 

Absorption spectra as a function of 
wave number at 20°C for several samples 
of boron nitride under shock compression. 

1. Initial substance, density = 
2.27 g/cm3. Two intense bands 
are seen at 12.3 and 7.16 y, 
characteristic of the hexa¬ 
gonal boron nitride. 

2, 3. In the shock-compressed samples, 
density rises with increase in 
the wurtzite form and new bands 
appear at 21.3, 19.6 and 9.1 y 

which may be assigned to the 
wurtzite form. 

[Ref. 30001] 
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OPTICAL PROPERTIES - ABSORPTION COEFFICIENT 

Wavelength (y) 

Absorption in single crystal cubic boron 
nitride as a function of wavelength at 

300°K. 

- pure material, p'ulO^ohm-cm 

-* beryll5urn-doped, p’vl04ohm-cm 

[Ref. 28367] 

Absorption coefficient as a 
function of wavelength for 
chemically vapor-deposited 
boron nitride at 300°K. The 
material is the hexagonal 
form and is polycrystalline, 
but the crystallite structure 
is highly oriented. This 
is evident in the anisotropy 
for incident light, normal 
and parallel to the c-axis. 

[Ref. 21962] 
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OPTICAL PROPERTIES - ABSORPTION COEFFICIENT 

Photon energy CeV) 

Absorption coefficient as a function of wavelength for chemically vaP°^' 
deposited boron nitride at 300°K, 1 mil thick film, pM.0 ohm^cm. This 

process yields highly oriented films. 

[Ref. 29402] 
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OPTICAL PROPERTIES - ABSORPTION COEFFICIENT 

Frequency (cm"1) 

Absorption coefficient of a boron nitride film 

deposited on a tungsten substrate at 1950°C. 

The higher temperature of deposition yields a 

more crystalline film of appreciably higher 

hexagonal content 

[Ref. 21330] 
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OPTICAL PROPERTIES - TRANSMISSION 

Transmission measurements on high purity hexagonal boron 

nitride powder disks have been carried out by Brame et al. 

[Ref 29728]. They report transmittance measurements in t',. 

wavelength range 2 to 16 microns at 300'K. Their results 

show a strong absorption band at 7.28 microns and a medium 

absorption band at 12.3 microns; transmittance drops to 

approximately 20% at 7.28 microns and to 60% at 12.3 microns. 

A region of high transmittance, greater than 90%, is observed 

In the range 4 to 6 microns. 
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OPTICAL PROPERTIES - REFLECTIVITY 

Photon energy (eV) 

Reflectivity and optical 
constants of cubic5boron 
nitride as a function of 
wavelength at 300°K. The 
slope in the refractive 
index curve between 5.6 
and 6.9 microns is seen 
on page 33. 

[Ref. 28367] 

Reflectivity of cubic 
boron nitride at 77 and 
300°K. Measurement at 
low temperature shows 
very little change in 
reflectivity, indicating 
the strong bonding of 
the structure. Anneal¬ 
ing eliminates surface 
conditions which caused 
the structure in the main 

band. 

Photon energy (eV) 

[Ref. 28367] 
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OPTICAL PROPERTIES - REFLECTIVITY 

The reflectivity of polycrystailine hexagonal boron 
preferential orientation of the c-axis. Data taken « 3°0 K with H y 
Dolarized light, normal and parallel to the c-axis. The spectra were 
analyzed by »eais of an optimum fit with the classical dispersion formula: 

Wavelength (y) 

0-0 ■UM-ks+ 
Wi’—w*+»w7i 

L» = optical dielectric constant 

ui * frequency of the incident light 

sv » oscillation strength 

wv = eigenfrequency 

Yv * damping constant of normal mode 

V * normal mode 

The following values were used in the calculations: 

«.-4.10, «.-5.09, 
m(1—"83 cm*', «„-828 cm-\ i,*-3.26X10> cnr', 
«„-1510 cm-', «N-1595 cm“', i,'-1.04X10* cm“*, >,-80.0 cm'. 

"T 1. 
- Ele J 

-r--—i 1 1 

pt.PMONQNPCAK 

,.,1,,1 1,1,,,,1-.1 ¿Ti i i i i i r^fisi 

Wave number (cm* 

«.-4.95, 
w,i-767 cm-', 
«„-1367 cm”' 

«.-7.04, 
«„-778 cm-' i,*—1.23X10* cm~ 
«„ -1610 cm"', st* - 3.49X ’.O* cm 

7,-35.0 cm“', 
7,-29.0 cm-'. 

The longitudinal frequencies of the various lattice modes were derived fro. the poles_ 

of The complex dielectric constant of the classical oscillator fit. The g y _ 
tíopX Sítêre of the boron nitride requires highly enieotropic normal modes^ There- 

fore the modes with slightly different frequencies have to be considered as o 
normal mode of the lattice. The weaker modes in the infrared spectra are then probabiy 
due to the misorientaticn in the polycrystailine sample. The sm»11 shift ^ 
frequencies, as compared to the stronger modes, may be due to the angular depen 

of the extraordinary waves. 

[Ref. 25245] 
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OPTICAL PROPERTIES - REFLECTIVITY 

Reflectance as a function of wavelength for 

pyrolytic boron nitride at 300°K. 

as, the solar absorptance * 0.325 

[Ref. 30876] 
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OPTICAL PROPERTIES - REFRACTIVE INDEX 

Value 

ui = 2.20*0.05 

E a 1.66*0.02 

Sample 

BN - hexagonal powder 

Temp. 

300°K 

< 10 y size crystallites 

Birefringence * w-c * 0.54*0.07; uniaxial negative 

n * 2.22 

2.117 Single crystal 

cubic 

p % 1010 Q cm 

for cubic form 

1. Bechc method 300°K 

(matching of indices 

with a standard) 

2. Reflectivity meas, at 

X * 5-25 y 

Ref. 

29726 

29702 

28367 
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OPTICAL PROPERTIES - REFRACTIVE INDEX 

Photon energy (eV) 

Wavelength (y) 

Refractive index as a function of wave¬ 

length at 300°K for single crystal cubic 
boron nitride. The dispersion is cal¬ 
culated and equals 0.0377, somewhat less 
than that of diamond. 

[Ref. 20367] 

Transmission spectra of the boron nitride showed a well defined peak near 

5.5 microns, regardless of the preparation methods. However, when measured 

in a series of matrices, the peak wavelength varies from 4.89 to 10.15 microns. 

This is the Christensen Filter Effect and has device possibilities. (Patent 

U.S. 2,986,427) 

Additional data from this paper gave refractive indices at 300°K for pressed 

and sintered hexagonal boron nitride in the infrared range, utilizing potas¬ 

sium halide matrices. The curve showed the 1,7 value at about 4 microns and 

two sharp minima at 6.5 and 12 microns. There are also two maxima at 8 and 

13 microns. 

[Ref. 29708] 
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DIELECTRIC CONSTAKT 

Symbol Value 

7.1 

4.5 

Samplt Measurement 

Single crystal 
p 'v 101° ü cm 
cubic 

tan 6 

tan 5 

5.12 

0.00014 

4.777 

0.00033 

CVD hexagonal 

hot-pressed 

hot-pressed 

Damped oscillator 
analysis 

Reflectivity 
A * 5-25 u 

4.8 Gc 
E parallel to 
deposition plane 

4.8 Gc 

4.8 Gc 

Temp, Ref. 

300°K 

20-500°C 

20°C 

20°C 

28367 

17357 

17357 

17357 

- Static dielectric constant 

Coo s High frequency (optical) dielectric constant 
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DIELECTRIC CONSTANT 

Dielectric constant as a function of frequency for several temperatures 

between 23 °C and 480 °C. The boron nitride samples are hot pressed 

disks. 

[Ref. 12124] 
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DIELECTRIC CONSTANT 

Dissipation factor as a function or frequency for several temperatures 

between 23 °C and 480 °C. The boron nitride samples are hot pressed 

disks. 

[Ref. 12124] 
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DIELECTRIC CONSTANT 

Dielectric constant as a function 
of temperature for commercial hot- 

pressed hexagonal boron nitride. 
The A-direction is the plane of 
deposition and is normal to the 
c-axis. The bulk material, 
therefore, is a highly oriented 
polycrystalline mass. Data 
taken at 4 frequencies as 
given. 

Frequency 

o 102 cps 
A 103 cps 
• 104 cps 
o 105 cps 
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DIELECTRIC CONS^ANT 

Dissipation factor as a function 
of temperature for commercial hot- 

pressed hexagonal boron nitride. 
The A-direction is the plane of 
deposition and is normal to the 
c-axis. The bulk material, 
therefore, is a highly oriented 
polycrystalline mass. Data 
taken at 4 frequencies as given. 
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Field perpendicular to direction A 
200 400 600 

Temperature (°C) 

800 

Frequency 

o 102 cps 

A 103 cps 
■ 104 cps 
o 105 CpS 

[Ref. 9178] 
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u> 
.13 
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.0049 

• 0010 

0009 - 

Temperature (°C) 

Dissipation factor as a function of temperature for hot pressed 

boron nitride at the three indicated frequencies. A and B are 

two disks from the same sample and indicate the inhomogeneity 

arising from this method of preparation. The powder was hot 

pressed at 1800 °C and 2000 psi for 125 minutes. This is appar¬ 

ently the optimum time, temperature and pressure. The heating 

volatilizes some of the impurities but also introduces others 

from the surrounding equipment. 

[Ref. 4709] 
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DIELECTRIC CONSTANT 

Dissipation factor and dielectric constant as a function of 
temperature for chemical vapor deposited and hot pressed boron 
nitride at 4.8 Gc. The field is parallel to the deposition 

plane of the highly oriented pure chemical vapor deposited material 
and therefore normal to the c-axis. The low, constant dissipation 
factor and the low temperature coefficient of the dielectric 
constant, indicate the superiority of the chemical vapor deposited 

material. 

[Ref. 22943J 
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DIELECTRIC CONSTANT 

Dissipation factor and dielectric constant 
as a function of temperature for chemical 
vapor deposited boren nitride. Electric 
field parallel to deposition plane and 

normal to c-axis. 

Density = 2.135 g/cc 

Frequency = 4.83 to 4.77 Gc 

The low, constant dissipation factor and 
the low temperature coefficient of the 
dielectric constant are seen here as 

in [Ref. 22943]. 



Frequency (cps) 

Anisotropy in chemical vapor deposited boron nitride is shown in curves of 

dielectric constant and dissipation factor as a function of frequency at 

several temperatures between 25°C and 1000°C. The electrical field is 

normal and parallel to the deposition plane. This latter is normal to the 

c-axis of the hexagonal boron nitride. 
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These two p ints show low 
temperatur coefficient 

the didlectric constant 
between /5-1375°C. 

. . i 
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[Ref. 22816] 
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DIELECTRIC CONSTANT 

e0 tan 6 
Cu Mo Cu Mo 

Diel. 3tr. V/m 
Cu Mo 

p C cm 
Cu Mo Freq. Temp. Ref. 

5.7 4.4 

4.5 

4.4 

4.4 

.011 .003 

.0045 - 

.0056 - 

.011 - 

3900 

2900 

1500 

5000 

3800 

3400 

3000 

1017 1017 

1014 1016 

1013 1015 

- 10^4 

Ikc 25°C 

125°C 

175°C 

250°C 

17737 

Table shows dielectric properties of 0.5 micron thick boron nitride films, 

deposited on copper or molybdenum substrates by chemical vapor deposition. 

Films are deposited on the copper at 900-1000°C and on the molybdenum at 

1400°C. 
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Temperatur« (°F) 

Capacitance and dissipation factor as a function of temperature 

for chemical vapor deposited boron nitride samples, 1.12 mil 

thick. Measured at 10~7 torr and 1 kc. 

[Ref. 25502] 
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Temperature (°C) 

ll«5 9fTT 898 72? 657 566 

The de bulk electrical conductivity of isotropic chemical 

vapor deposited boron nitride as a function of temperature. 

Comparison is made with a hot pressed sample. 

Density * (2.06 g/cc) 

[Ref. 29976] 
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TRANSPORT PROPERTIES - ELECTRICAL CONDUCTIVITY 

2000 MO »GO 1630 M30 030 1280 °K 

Electrical conductivity at three frequencies as a function of reciprocal temperature 
for pyrolytic boron nitride under an argon flow of 2.0 cfh (ft3/hr). CVD boron nitride 
is strongly oriented along the c-axis which was parallel to the deposition surface, and 

measurements were made in this direction. 

The sample had an impurity level of 113 ppm. Activation energies are shown, and the 
highest value of 3.79 eV corresponds to a band gap of 7.58 eV. It is suggested that 
intrinsic conduction sets in at 1500 °K as seen by the change in slope at that temper¬ 

ature. 

[Ref. 29801] 
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TRANSPORT PROPERTIES - ELECTRICAL CONDUCTIVITY 

Temperature (°C) 

Electrical conductivity as a function of reciprocal temperatwe 
for pyrolytic boron nitride. The field is applied parallel and 

normal to the deposition plane which is the "a" direction (low 
resistivity). Data taken in a nitrogen atmosphere. Microwave 
data show a minimum probably due to some impurity loss. 

[Ref. 17357] 
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TRANSPORT PROPERTIES - ELECTRICAL RESISTIVITY 

Electrical resistivity as a function of reciprocal temperature in CVD 
(pyrolytic) boron nitride, measured parallel to the c-axis. 

A • CVD boron nitride [Ref. 22943] 
B --- Pure, pressed powder boron nitride (Ingles 6 Popper)* 

(Prepared by mixing borcn nitride with 15% B^O^ and heating to 1800°C 

in nitrogen atmosphere for 4 hours) 
C o Hot pressed boron nitride [Ref. 22943] 
D - Hot pressed (900°C) boron nitride (Ingles & Popper) 

A Hot pressed boron nitride 
[Ref. 29802] 

*INGLES, T.A. and P. POPPER. Special Ceramics- [Ref. 22943] 

Proceedings of a Symposium by the Br. Ceram. 
Res, Assoc., Academic Press, Inc. New York, 
1960. p. 144-169. 



TRANSPORT PROPERTIES - ELECTRICAL RESISTIVITY 

1/Temperature (103°^1) 

Electrical resistivity as a function of reciprocal temperature for hexa¬ 
gonal pyrolytic boron nitride discs, in nitrogen atmosphere containing 
500 ppm hydrogen. Direct current parallel to the "c" or high resistivity 
direction. Cooling cycle curves. 

Electrical resistivity measurementr were made during heating and cooling 
cycles and tended to improve, probably a'S a result of decrease in impurity 
charge carriers. Various atmospheres (hydrogen, nitrogen, argon) had little 
effect on resistivity, it was rather the theimal treatment which affected the 
current voltage curves. These were linear for the first hours and at low 
voltages and temperatures, but above 1300°C the curves became non-linear as 

they did also above 180 volts. 
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A Measured || to moulding pressure 

B Measured ]_ to moulding pressure 

Electrical resistivity as a function of 
temperature in hot pressed boron nitride. 
This graph is drawn from data given in 
vendor literature of the Carborundum Co. 

Further data from the same company is 
seen in the table. 

Volume Resistivity 

(Measurements made with electric field parallel to pressing direction) 

Temperature, °C 

25 
500 

1000 
1500 

Resistivity, ohm-cm 

1.7 X 1013 
2.3 X 1010 
3.1 X 10** 

6 X 102 

[Ref. 298023 

hkIMMR altk parailMlM 
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PRIPARtO BY ELECTRONIC RRORERTIKB INFORMATION CENTER • HUGHES AIRCRAFT COMRANV. CULVER CITY, CALIFORNIA 

TRANSPORT PROPERTIES - ELECTRICAL RESISTIVITY 

Optimum temperature, time and pressure parameters in the preparation 
of hot pressed boron nitride are seen in this curve of log electrical 
resistivity as a function of temperature. 

The boron nitride is hot pressed in degassed graphite die at IBOO^C 
and 2000 psi for 125 min. 

[Ref. 4709] 
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ENERGY BAND STRUCTURE 

BNiM 

Band structure oí boron nitride. Computed values are indicated by '^clesand 
result from OPW method applied to zincblende lattice. Split in state to 

- a _1__in ( oV ^ 
X^“X3 is seen, Inserted values are given in (eV) 

(eV) 

3.469 
4.982 

16.74 

Ryd 

0.257 
0.369 

1.24 

(eV) 

3.288 

4.188 
11.651 

Ryd 

0.243 

0.305 
0.863 

(eV) 

4.104 

8.829 
17.766 

Ryd 

0.304 

0.654 
1.316 

[Ref. 14587] 

MS MurlW 
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\m 

ENERGY BAND STRUCTURE - ENERGY GAP 

Symbol Assignment Value (eV) Determination Ref. 

Eg (direct) ri5-ri5 

Eg1 (indirect) ri5~Xl 

7.533 

2.7 

OPW (calc.) 
for hexagonal 
boron nitride 

14587 

Conduction band 
splitting 

xrx3 
4.73 

Eg (direct) 7.8 CVD sample 
electrical 
resistivity 
1250oK-1800°K 
at frequencies 
of 1 to 100 kc 

29801 

-g ^5 CVD (isotropic) 
electrical 
resistivity at 
1065oC-1355°C 

30877 

Eg 10 Calc, for 
cubic 
boron nitride 

452 
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PHOTON ELECTROLUMINESCENCE 
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Spectral distribution curve of 
the field-excited-emission from 
boron nitride. The powder is 
suspended in an oil medium. 
Voltage to 1200 volts. Fre¬ 
quencies to 30 kc. T = 300°K. 
The bands are numbered in order 
of increasing wavelength from 

1 through 17. Emission extends 
from 2950 A to about 6500 A. 

- Uncorrected 

-- Corrected 

[Ref. 18594] 

Excitation spectra of two 
bands of the electrolumi¬ 
nescence spectra rf boron 
nitride shown above. 

[Ref. 6446] 

NiAIIMH Mill MflUlMlM 
CanrliMQ 1*59 RCA ft**)«« 

Photon energy (eV) 

Exciting wavelength (Ä) 
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PHOTON ELECTROLUMINESCENCE 

ROR AFT COMRANT. CUI-WBR CIT», CAUFORNIA 

Erightness-voltage relationships 

at frequencies from 10 c/s to 
10 kc for field excited emission 

from boron nitride powder at 

300 °K. 

[Ref. 18594] 

Wavelength (y) 
Cathodoluminescence intensity as a 

function of photon energy in boron 
nitride at 20 °C. Data taken from: 

•• 

Tiede, E» and H. Tomaschek. Über 
das aktivierende Element im leuchtenden 
Borstickstoff. Zt. F. Anorg. Chemie, 

V. 147, 1925. p. 111-122. 
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PHOTON LUMINESCENCE 

Photon energy (eV) 

Spectral distribution curve of the photo- 

luminescence from boron nitride for var¬ 

ious exciting ultraviolet-photon energies 

at 77 °K. The relative intensities of the 

photoluminescence bands from boron nitride 

are dependent on the energy of the excit¬ 

ing photons. The average radiance was 

maintained constant for each exciting 

wavelength. 

Peak wavelength (in A) of emission bands 

from boron nitride excited by ultraviolet 

photons «it various wavelengths, at 77 °K. 

1Italics denote major bands.) Numbered 

bands on graph are indicated. 

26S0 A 

3200 

3JS0 
3400 Ö) 
3520 
3555 
3Ó1S14} 
3690 
3*20 
.W70(® 
3950 

4/00(0 

4JS0(n 

29*0 A 

3145 
3200 
3250 
JJJtf 

JS20 

3620 
3M0 

WO 

4100 

sink 

3400(11 

3S50 
3615 
36S3 
3*30 
W0 a) 
3955 
4045 
4095(41 

4275 
4360 4345(« 

4500 
4610(4) 

4775 
495P 

5150 

1140 A MM A 

WO 3870 
3930») 

4110 4110«) 
4170 4530 

4350 

4665 
4775 

:m1S 
5180 

Excitation (¾) Band Intensity 

26.-2A 5 highest 

7 greatly reduced 

3125A 5 greatly reduced 

6 highest 

7 shows additional 

structure 

The emission spectrum remains fairly 

invariant as to band position after 

treatment and as a function of type 

of excitation, indicating that the fine- 

structure emission is inherent to the 

boron nitride molecular layers. 

[Ref. 18594] 

3650A 5 highest 

5-9 

displaced to higher 

wavelengths. 

56 



AIR FORCE MATERIALS LABORATORY 

B (LllCTWOO^DO© 
p KoiPÊifênroK© 
I [RiPOKîlMIÂTÔOtFsQ 
C a^TKt^ 

•‘niPAKgû «y CLCCTNONIC ATU* INFORMATION CINTCR . HUOMCS AIRCRAFT COM FA Nv CULVCR CITT. CALIFORNIA 

Photon luminescence of boron 
nitride after x-ray irradiation. 
The powder was sintered at 2000°C. 
After irradiation, it shows inten¬ 
sive peak in the glow curve at 
200°C. 

Manie, W. and H. Peter. Thermo- 
lumineszenz und Dosimetrie. 
Thermoluminescence and Dosimetry. 
Oberhessische Ges. f. Natur, u 
Heilkunde, Ber.; Naturwiss. Abt., 
Giessen., v. 29, 1958. p. 105-110 

Some carbon-doping is apparently requisite for the luminescence 
which shifts in color from blue to a yellow green. The green 
band is always present and stable, the violet also, but the latter 
varies greatly in intensity. 

[Ref. 11988] 
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SPECTRAL EMISSIVITY 

Spectral emissivity of anisotropic pyrolytic boron nitride 

heated in air. The intensity curves show the two parameters 

of sample temperature and emission wavelength. The deep 

minimum at about 7-8 microns is deeper for the pyrolytic 

material than for the hot-pressed and corresponds to an 

absorption band. It is evident that the emittance mini¬ 

mum shifts to longer wavelength with the temperature in¬ 

crease. 

[Ref. 30876] 
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MNCMARCO MT ELECTRONIC RROMERTII« INFORMATION CENTER • MUOSEE AlRCEiAFT COMRANT. CULVER CITT, CALIFORNIA 

SPECTRAL EMISSIVITY 

Photon energy (eV) 

Spectral emissivity of bulk commercial boron nitride heated 

in air. The intensity curves show the two parameters of 

sample temperature and emission wavelength. The IR wave¬ 

length of the emission shows a sharp drop at about 7 microns, 

corresponding to a strong absorption band. This minimum is 

due to internal reststrahlen effects and depends on sample 

purity and temperature. [Ref. 17412] 

[Ref. 18070] 
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SPECTRAL EMISSIVITY 

Photon energy (eV) 

Spectral emissivity of polycrystalline, hexagonal boron 

nitride in bulk form. The samples included about 2.5% 

boron oxide. T - 1300 °K, 50 u pressure. Measurements 

made in vacuum. Spectral emissivity runs parallel for 

rough and polished samples, with the former always the 

larger. The difference between the two samples, how¬ 

ever, increases greatly in amount between 6 md 10 

microns. Surface finish is 2.8 microns (110 micro¬ 

inches). 

[Ref. 22695] 



AIR FORCE MATERIALS LABORATORY 
Ain ronce • v■t c m a commaao 

R (Lil(gT[^©0^10S 
P [°K3)Pii[°nro(!ffi 
I [^^©l^Ô^D^TO©!^ 
C 

nnrnAneo »v tLicxnoNic nnontnTita in ron mat ion ccntka » muohes a men aft company, culvca city, caliponnia 

SPECTRAL EMISSIVITY 

Temperature (°C) 

Spectral cmissivity as a function of temperature in polycrystalline pure CVD 
boron nitride. The material is hexagonal with a high degree of crystallite 
orientation. 

[Ref. 26546] 

Temperature (°C) 

531 1090 1641 2200 

Total normal spectral emittance of 
polycrystalline bulk boron 
nitride polished to a 1 micron 
surface finish. The samples 
were heated in an Argon atmos¬ 
phere with tantalum and tungsten 
contact discs (rather than in¬ 
ductively) . 

[Ref. 12808] 
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SPECTRAL EMISSION COEFFICIENT 

Value 

0.58 

0.59 

0.59 

0.59 

0.60 

Sample 

Powder paste applied 
to a tungsten cylinder 
in a thickness of VLOOy 
Emitted light had wave¬ 

length X=.65y 

Temp. °C 

850 

950 

1050 

1150 

1250 

1350 

1450 

1550 

Ref. 

29703 
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ELECTRON THERMIONIC EMISSION 

Value Sample Temp. Ref. 

*0.04 amp cm“2 °K*2 

'v 50mA/cm2 

Coating on a tungsten wire. 2000°K 15528 

Material evaporates rapidly 

at low emission temperature. 

1700°C 15528 

* Saturation current 
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SECONDARY ELECTRON EMISSION COEFFICIENT (6)

Value Sample

Experimental

Conditions Temp. Ref.

2.9 at 600V (max) hot pressed disk 

1.7 at 300V

P=2xl0“^ torr 300°K 26078

.

■:

. .

. .
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THERMAL PROPERTIES - DEBYE TEMPERATURE Öq 

Value °K 
Temp. °K Ref. 

Calculated from J.N. Plendl. Some New 
Interrelations in the Properties of Solids 
Based on Anharmonic Cohesive Forces. Phys. 

Rev., V. 123, no- 4, Aug. 15, 1961- 

p. 1172. (cubic boron nitride) 

Calculated from Elastic constants for 

cubic material with a0 = 3.615 « _ 
c0 (elastic constant) = 3.83 x 10 dyne/cm 

28367 

29676 

*28 

598*7 Hexagonal polycrystalline 

* Reference on page 21. 
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THERMAL PROPERTIES - THERMAL CONDUCTIVITY 

Value 

W/cm°K Heat flow Sample 

remp. 

(°c> Symbol* Ref. 

0.150-0.285 p 'v lo10 fi-cm 20 I 17923 

<0.2 

>0.3 

11 rod-axis 

]_ rod-axis 

Hot-pressed rods, 
density = 2.14 g/cm3 

50 • 24396 

0.015 

0.030 

0.65 

|_ a-axis 

1 1 a-axis 

Hexagonal, polycrystalline, 
CVD commercial "Boralloy" 
(High Temperature Materials, 

Inc.), High crystalline 
orientation. 

0 

800 

0-800 — 

26546 

0.795 

0.711 

11 a-axis Hexagonal, CVD, highly 
oriented crystallites. 

200 

845 

X 22943 

0.151 

0.142 

0.134 

0.126 

0.121 

! 1 moulding 
direction 

Hot-pressed, commercial 
boron nitride 
(Carborundum Co.) 

300 

500 

700 

900 

1000 

0 29802 

0.289 

0.280 

0.272 

0.264 

0.268 

j_ moulding 

direct ion 

300 

500 

700 

900 

1000 

• 

* Symbol on accompanying graph 
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THERMAL PROPERTIES - THERMAL CONDUCTIVITY 

Higher temperature measurements of the thermal conductivity 

of polycrystalline rods of boron nitride show that the 

thermal conductivity varies from 0.262 W/cm-°K at 829°C 

to 0.194 W/cm-°K at 1853°C. 
rr>_£ i oonoT 

□ ■ [Ref. 29802] 

X [Ref. 22943] 

• [Ref. 24396] 

[Ref. 26546] 

I [Ref. 17923] 
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THERMAL PROPERTIES - THERMAL EMF 

Thermoelectric emf measurements were made on polycrystalline boron 

nitride rods held between graphite rods. The voltage output was 
the sum of the Th mpson effect plus the hot junction output and less 
the cold junction value. This voltage output was divided by the 
temperature difference between the two junctions and plotted as a 
function of the mean temperature. The high electrical resistivity 
indicates high internal power l^ss. At high temperature, the sample 
was blistered and split. 

Electrical resistivity Temperature 

micro ohm-cm °F °C 

1.05 X 1010 
.94 
.45 

6.52 X 10s 
1.74 X 106 

3330 1849 
3380 1860 
3490 1920 
410C 2260 
4100 2260 

[Ref. 12808] 
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PHONON SPECTRUM

Value* Sample Method Tenm. Ref.

In plane Out of plane

(cm-^) (eV) (cm“^) (eV)

1610 (.199)
828 (.103)

hexagonal

polycrystal

reflectivity 300®K 25245

X=3-20y

1367 (.163) 
1370 (.196)

783 (.097)

A,B

C

1300 (.161)
II-: .

680 (.084)

optical or acoustical phonons mm
D.E

F,G

240 (.029)

100 (.0124)

Photon Emission of several types (electro, cathodo- and photon luminescence) 
at 77* and 300*K at X=.256-.6u indicates a predominant differential between 
major emission bands of 1400 cm“* (.1736 eV) in boron nitride powder.

[Ref. 18594]

*Have number in cm“^ is given first, with equivalent photon energy (eV) 
in parenthesis.
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MAGNETIC SUSCEPTIBILITY (x) 

Value 

■0.4*0.IxlO"6 cgs (gram susceptibility) 

-9.9x10"6 cgs (mole susceptibility) 

Ref. 

4878 

71 
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WÊÊtm^mÊÊÊimÊÊÊÊÊÊÊÊÊmiBÊÊÊmÊmimÊmmmm 

Value Temp. °K Sample Method Ref. 

2.0023 0.0010 1.7 

2.0052 0.0020 77 

2.0027 0.0003 300 

Hexagonal: *EPR at 
powder and sintered powder 9.4 Gc 
x-rays, ÜV and 

Y-radiation - also 
heating tb^1850 °C 
yields EPR-centers. 

27881 

* Electron Paramagnetic Resonance 
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