
UNCLASSIFIED 
 

AD NUMBER: 

LIMITATION CHANGES 

TO: 

FROM: 
 

AUTHORITY 

 

 
THIS PAGE IS UNCLASSIFIED 

AD0810815

Approved for public release; distribution is unlimited.

Distribution authorized to US Government Agencies and Contractors only; 
Administrative/Operational Use; 2 Aug 1967. Other requests shall be 
referred to Office of Naval Research, Arlington, VA 22203

USNRL ltr dtd 2 Aug 1971



AD 810 815



LUMPED PARAMETER BEAM MODELS BASED 

ON MECHANICAL IMPEDANCE 

by 

Vernon H. Neubert 

and 

Hae Lee 

Department of Engineering Mechanics 

The Pennsylvania State University 

Reproduction in whole or in part 

is permitted for any purpose of 

the United States Government. 

Office of Naval Research 

Contract No. Nonr-656(28)(X) 

Interim Report No. 6 

February 1967 



TABLE OF CONTENTS 

Lumped Parameter Models Based cn Mechanical Impedance. , , 1 

Introduction. 1 

Background . 

Clamped-Clamped Beam . 

Comparison of Transient Response . 

Summary and Conclusions . 7 

Tables I-V.  8-10 

Figures 1-6.11-16 

Appendix A - Beam Models for Various Boundary Conditions 

using Impedance Methods . 17 

Hinged-Hinged Beam. 17 

Table A-I. 20 

Clamped-Propped Beam. 20 

Clamped-Guided Beam. 21 

Clamped-Free Beam. 21 

Figures A-l through A-7.22-28 

Appendix B - Bar Models Using Mobility. 29 

Transient Response. 31 

Tables B-I through B-III.32-3*+ 

Figures B-l through B-L.35-^0 

Appendix C - Optimum Models Based on Shock Effective Mass 

Approach. 1+1 

Uniform Beams. 1+1 

Lumpec Mass Beam. 1+2 

Development of Lumped-Mass Models. 1+3 

Tables C-I and C-II.1+7-1+8 

Figures C-l through C-1+.1+9-5L 

References 55 



1 

Lumped Parameter Beam Models Based 

on Mechanical Impedance 

Introduction 

A new method has been used to derive Limped parameter beam and bar 

elements which represent accurately the dynamic response of a beam or 

bar having uniformly distributed mass Although a general approach 

suitable for various inputs has been devised, the dynamic loading of 

I 

greatest interest is assumed to be translational ground shock. The 

present report summarizes all the approaches that have been developed 

and published during the past several years, but emphasizes the im¬ 

pedance method, which is demonstrated to be most promising. 

The approaches used are based on the idea of improving the ac¬ 

curacy of stresses and deflections predicted using lumped parameter 

models by developing better basic elements. The lumped parameter 

models are developed so that certain parameters in the equations for 

the dynamic response of the model will be exactly the same as those 

for the simulated uniform bar or beam. 

Since the input of primary concern is ground shock, some of the 

first work involved making the natural frequencies, shock effective 

mass (or shear factor''and shock effective inertia (or moment factor) 

accurate. Some results of this work are summarized in Appendix C and 

1 2 
in published reports. ’ Although the approach has the advantage that 

the important parameters are directly involved, it was found that the 

response of combinations of the elements was not necessarily improved. 

The method that has been most fruitful is based on the concept 

of making the impedance at the ends of the bar and beam segments 
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accurate. The general mobility approach and results of application to 

bars was published in references 2 and 3, and is summarized in Appendix 

B. The impedance approach to beams was recorded in references and 5> 

with application to a clamped-propped beam. The impedance method is 

summarized in the main body of this report, and models are indicated 

for the clamped-clamped beam. Results for other boundtry conditions 

are summarized in Appendix A. 

Background 

It can be readily shown that if several linear, elastic bodies are 

to be connected, the impedance of the interconnected system may be pre¬ 

dicted if appropriate impedances of the separate bodies are known. 

Points at which impedances must be determined are connection points 

and load points. Since bodies may be further subdivided at load 

points, the problem can be reduced to the determination of impedances 

only at connection points. 

Thus the idea of developing lumped parameter elements which ade¬ 

quately represent boundary impedance of beam segments has a firm mathe¬ 

matical basis. Through Fourier transform techniques it can also be 

demonstrated that if the lumped parameter model accurately represents 

impedance characteristics in a certain frequency range, it will also 

adequately represent transient response, if the Fourier transform of 

the forcing function is limited to the same frequency range. 

Impedance here is defined as force or moment due to displacement 

or rotation which vary as sinusoidal functions of time. The difference 

between impedance and mobility is the same as the difference between 

stiffness and flexibility in static 
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problems. To find terms in an impedance matrix, only one point is 

allowed to move while the others are held fixed against translation or 

rotation. Thus, the clamped-clamped beam perturbed at the supports is 

the most basic element in the impedance approach, and is discussed in 

detail. Results for beam elements with other boundary conditions are 

summarized in Appendix A. 

Clamped-Clamped Beam 

The sign convention is indicated in Figure 1(a). For the 

Bernoulli-Euler beam with uniformly distributed mass, the relationship 

between forces {F} and displacements {w} at the beam ends is given by 

{w} = [Z]{F} (1) 

or 

r -\ 
w 
0 

w 

M 

M 
(2) 

The impedance matrix Z., is given exactly by: 

[2 ] = — X,_t»)3 
1 iJJ ( 1-Cos $£ Cosh ßO 

{Ch*S+OSh) rKSh-S) ß-KCh-C) ^ -(Sil+S) 

ß"1 (Sh’S) ß-2 (Ch-S-Sh*C) ß-2(Sh-S) -ß-KCh-C) 

ß-l (Ch-C) ß-2 (Sh-S) ß-2(Ch*S-Sh-C) _ß-l(Sh-S) 

-(Sh+S) -ß-1(Gh-C) -ß_1( Sh*S) (Ch.S+C.Sh) 

(3) 
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By virtue of Maxwell's reciprocal theorem and symmetry, the matrix 

is symmetric about both the major and minor diagonal, so there are only 

six original elements in Eq. (3). These are, for example, Z , Z , 
11 22 

Z , Z , Z ) z ■ 
12 13 23 14 

The form of the lumped-parameter model developed is shown in Fig. 

1(b). It is symmetric and carries two intermediate masses m and two 
1 

end masses m . The sum 2(m + m ) = the total mass of the beam, 
2 12 

or if m = ayî,, then m = (0.5 -a)\i!L. The distance of m from the 
1 2 1 

support is ££. There are then two parameters to be determined: a and 

Ç. The six impedances for the lumped parameter system in terms of a, £, 

EI, ß and l are given in Table I. 

The expressions of Z. from Table 1 are equated to the correspond- 

ing expressions in Equation (3), and the values of a and £ determined 

which lie in the region 0 < a < 0.5 and 0 < Ç < 0.5 when ß£ is varied. 

Since there is one equation associated with each Z. and two unknowns, 

the equations are solved by choosing a value for £ and determining the 

resulting value of a. Results are shown in Figure 2. 

As seen in Figure 2, there are two separate regions cf promise for 

a model. Point A(Ç = 0.281+, a = 0.1+08) is common to the curves for 

M Vj V Mj 
— *— , and — and is near to — . Point BU = 0.311,a = 0.361+) 
w * w w w 
OOO 0 

M 
is approximately common to all curves but that for — - Z 0. 

o 

Since the bending moment introduced due to translation is import¬ 

ant, the model designated 0P2 is based on Point A. The model CG2 has 

center of gravity positioning with Ç = 0.333 and a = 0.333. When two 

0P2 models are connected, the combination is designated 0P6. 
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Comparison of Transient Response 

The accuracy of the representation of the impedance Z is direct- 
^ J 

ly related to the accuracy of the transient response. The impedance 

expressions of Eq. (3) may be expanded in a power series in terms of 

gt, to indicate their variation at low frequencies, namely: 

El 

£3 

aQ + a^ßt}4 + a2(ßi)8 + ... (4) 

As shown in reference 4, the aQ coefficients are the elements in the 

static stiffness matrix and the a1 coefficients are the elements in 

o 
the non-diagonal inertia matrix suggested by Archer and Leckie and 

Lindberg.Thus, if a model could be developed in which the a2 co¬ 

efficients were also accurate, this would represent an improvement 

over existing techniques and would have the advantage of being 

associated with a physical system. 

The coefficients a^ of the power series for impedances of various 

models are shown in Table 11(a). Comparison shows that the 0P2 model 

is superior to the CG model for Z^, and Z^^ as expected. The 

values for a model 0P2B based on Point B are also given. 

Natural frequencies, shock effective mass, and shock effective 

inertia or bending factor (see Appendix C or Reference 11 for defi¬ 

nition) are given in Tables III, IV and V. As is seen in III, CG 

models give better values for natural frequencies than OP models. 

There is no consistent trend in the models regarding shock effective 

mass and bending effective factor. 

Now suppose the various models are submitted to a transient in¬ 

put in the form of a translational, half-sine, ground acceleration. 

namely, 
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Ht 
s(t) = A Sin 

0 T 

= 0 

0 <_ t <_ T 

t > T 

(5) 

Then the normal mode solution for the shear force and bending moment 

at the clamped end becomes 

V(0,t) = 8wïï A I 
(ß O2 n 

n=l,3,5 n 

R (t) (6) 

M(0,t) = -8pJl2A y -— R (t) 

°n_i , , (ßn03 n 
n-1,3,5 n 

(7) 

where oin and 13^ are the same values tabulated by Young and Felgar, 

and 

R (t) = 
n 

Sin — - -Sino) t 
tut n 

n 
1 - 

U)2T2 

1 

0 < t < T (8) 

R (t) -- 
n ai t 

n 
Sinu) t + Sinu) (t-x) 

n n 
1 - 

U)2T2 n 

-1 

t > T (9) 

ym2)l4 
o4b4 _ n 
*nl - El 

or w = ß2Ji2 / EI_ 

n n ' y£4 
(10) 

/ El 
Note that / - t is a non-dimensional time. 

y£4 

The half-sine input has a Fourier spectrum with relatively little 

content for > 3, so ü>c might be called a cut-off frequency. If 

u>c = ß2*'2 = 15 , then the cut-off value is 6 £ = /If 
C y£4 1 y£4 c 

= 3.87. This case is plotted in Figs. 2bh. Note that for a clamped- 

clamped beam the value of ß £ for n=l is 1+.73. An input with ß £ = I.73 
n c 

is also considered. (Figs. 5 & 6). 
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Summary and Conclusions 

The impedance method is demonstrated to yield beam models that 

represent the low frequency shock response more accurately than center- 

of-gravity type models. In addition, the error may be anticipated from 

the Fourier integral relationship of the type: 

00 

x(t) = r“ f H(ü>)F(u>)elü>tdu> 
' —00 

Models suitable for practical analysis are developed for the 

clamped-clamped beam and, in Appendix A, for other beam boundary 

conditions. 

For the clamped-clamped beam there are six elements in the 4 x It 

impedance matrix to be matched. With two parameters available, five 

elements are matched fairly well. It therefore appears worthwhile to 

consider using a model with three parameters. 

The impedance method lends itself to development of accurate 

elements in any frequency range. The power series would be expanded 

about some frequency other than zero and model parameters chosen for 
« 

matching. 

The examples, and the basic theory, show that if all the im^ 

pedances are accurate at the boundaries for a simple model, combina¬ 

tions of the simple models will also be accurate. 



8 

Table I 

Impedances of Lumped Model 

El A 

£3 
= - aÇ3(l-03(6A)Vl8 + a2t4(ß£)0j3(l-O4 

+ 6Ç(1-Ç)3 - 3(1-03 - 12Ç(l-05 - 20(1-203 /i+32 

ZilA = 1 “ Í2Í " 0(l-02a}(e£)4 + {c3(l-03a/36 - Ç3a2|2(l-6Ç2 + 6ç3) 

+ 12(1- O3 - 3O1-2O3 - 3(8ç2 - liç + 4 

{çV 

/72}(3£)8 

20(1-203 + I2OI-O5 + 3(1-203 - 35(1-203 

- 3(1-5)4 - 35(1-25)3]/864 - 55a3j45(l-25)3 + 12(l-5)2(l-652 + 653) 

+ l8(l-5)(l-25)3- 125(1-5)(1-25)3 - 6(l-5)2(852 - 115 + 4) 

- 6(l-25)3]/864}(ß£)12 

Zi2A = |+ a5{-l + 25 - 252 + 53}(804/12 

+ o254{-2 + 105 - 1552 + 453 + 454}(ß£)8/72 

Zi3A = |+{o52(l-5)2/l2Kß£)4 + {a255(l-25)3/72}(ß£)8 

Z^A = -1+ |o52(l-5)2/2}(ß£)4 - {o254(l-25)3/24}(ß£)8 

Z22A = i - a{53(l-5)3/l8 + 5(1-5)/12 - 5(1-35 + ^52 - 253)/12 

- 52(l-5)2/12}(ß£)4 - a253{53(l-5)3 + 65(1-5)4 

+ 3(1-25)3 - 35(1-25)3 - 3(l-5)2(l-35 + 452 - 253) 

- 353(l-25)3}(0£)8/2l6 

Z23A = |+ {o53(l-5)3/l8}(ß£)4 - {o256(l-25)3/2l6}(ß£)8 
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Table II. Power Series Coefficients Clamped-Clamped Beam 

a 
0 

a 
1 

a 
2 

Z 
11 

Exact 

0P2 

0P2B 

CG2 

12 

12 

12 

12 

-0.371^28 

-0.371338 

-0.371070 

-0.372241 

-0.0003646 

-0.0004024 

-0.0003778 

-O.OOO3563 

Z 
12 

Exact 

0P2 

0P2B 

CG2 

6 

6 

6 

6 

-0.052381 

-O.O52372 

-0.046959 

-0.042940 

-O.OOOO765 
-O.OOOO796 

-0.0000794 

-O.OOOO78I 

Z 

13 

Exact 

0P2 

0P2B 

CG2 

6 

6 

6 

6 

0.030953 

0.030592 

0.031038 

0.031023 

0.0000723 

O.OOOO687 

0.0000724 

0.0000736 

Z 

14 

Exact 

0P2 

0P2B 

CG2 

-12 

-12 

-12 

-12 

-O.128572 

-O.128665 

-0.128929 

-0.127759 

-O.OO3298 

-0.0003272 

-0.0003310 

-0.0003268 

Z 

22 

Exact 

0P2 

0P2B 

CG2 

h 

h 

k 

k 

-O.OO9523 

-0.010009 

-O.OO9551 

-0.009524 

-O.OOOOI62 

-O.OOOO578 

-O.OOOO361 

-0.0000215 

C
O
 

CsJ 
tSJ 

_
1 

Exact 

0P2 

0P2B 

CG2 

2 

2 

2 

2 

0.007143 

O.OO6861 

O.OO7163 

O.OO7298 

0.0000135 

0.0000159 

0.0000150 

0.0000158 



10 

Table III. Natural Frequencies, Claaped-Clamped Beam 

Uniform 0P2 CG2 0P6 CC6 

ß i 
1 

ß l 
3 

ß 1 
S_ 

it. 7300 

10.9956 

17.2788 

it.7359 it. 7309 it. 7269 

11.3588 

16.3847 

it. 7291 

10.8634 

15.2244 

Table IV. Shock Effective Mass, Clamped-Clamped Beam 

Table V. Bending-Ëffective Factor, Clamped-Clamped Beam 

Mode Uniform 0P2 CG2 0P6 CG6 

I 

III 

V 

Sum 00 

l 
n=l 

0.07300 

O.OO6O 

0.0002 

0.0792 

0.08333 

O.O83O 

0.0830 

0.0730 

0.0730 

0.0740 

O.OO9O 

0.0002 

O.O832 

O.O743 

O.OO6O 

0.0007 

O.O8IO 

I 



■B Mir»>feinte .i »mciá ../rt.: ..■■ ..-.:...-. 
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(a) UNIFORM BEAM SEGMENT AND SIGN CONVENTION 

Í 
FI -*t*-(l-2?)l ? Í 
---j 

m. m * m, in, 

">, * a/it m, ■ (0.5-a)Mi 

(b) LUMPED MODEL 
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RG. 2 OPTIMIZING CONDITION, CLAMPED-CLAMPED BEAM 
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Appendix A 

Beam Models for Various Boundary Conditions 

using Impedance Methods 

Theoretically, the impedance matrix for beam elements having the 

usual simple boundary conditions may be determined from the matrix for 

the clamped-clamped beam. In terms of the six basic impedances, the 

matrix for the clamped-clamped beam is: 

1 <Z Z 
11 12 13 

Z Z Z 
12 22 23 

z z z 
13 23 22 

Z -Z -Z 
14 13 12 

(A-l) 

Hinged-Hinged Beam 

For the hinged-hinged beam Mq = M1 = 0. The variables <j>o and ^ 

may be related directly to wq and w1 , and the impedance matrix for 

the hinged-hinged beam is then a 2 x 2 matrix. 

In terms of the six impedance coefficients in (A-l), the value 
V 

of — for the hinged-hinged beam is 
o 

V 
o 

w 
0 

Z 
11 

+ 

2Z Z Z - Z2 Z - Z2 Z ' 
13 23 12 12 22 13 22 

Z2 - Z2 
22 23 

(A-2) 

If the actual values for the uniform beam are introduced, some can¬ 

cellation occurs and identification of terms leads to: 
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V 
o 

V 
o 

1 
2 

Z Z 
13 14 

12 

Likewise 

(A-3) 

V 

w 
o 

2Z13Z12Z22 " Z12Z23 " Z13Z23 

Z2 - Z2 
22 33 

(A-4) 

and 

Z 
14 

Z Z 
11 13 

12 

(A-5) 

The detailed expressions are 

V 
o 

w 
o 

El(6¿)3 

43 

CosßtSinhßt - SingfcCoshBt 

2Sinß£Sinhß£ 
(A-6) 

w 
o 

EI(ß&)3 

£3 

Sinhßt - SinB¿ 

2Sinß£Sinhß£_ 
(A-7) 

The moment at the centre-line is considered and is 

EI(ß£)2 

4n2 

Cos - Cosh -y1 

Cos y1 Cosh -y- 
(A-8) 
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For the lumped model as shown in Fig. A-l, the corresponding ex¬ 

pressions are 

V o 
V 

o 
•A S 0(-1+25 - 252)(0O4 + o2(l-55 + 852 - H3)52Ui)8/3 

- (ßJl)4(0.5 - o)A (A-9) 

V, 
— -A = o(2Ç - 252)(0)l)4 + a2U2(l-25)3}(0*)8/6 (A-10) 
w 

- a5(0JO4/2 + a2{4ç5 - 4ç4 + 53}(ßll)8/12 (A-ll) 

A = 1 - (l-5)2(e*)4 + a254 ["3-165 + 2852 - 1653J(0£)8/36 (A-12) 

V 
The values of a and 5 which make — for the model and the uniform w 

0 

beam exactly the same for 04 = 1 and 04 = 3 are shown in Fig. A-l. The 
V, 

curve for — is slightly different, but to plotting accuracy the 
w 

0 

.curves are practically identical. There is a crossing sufficiently 

close to the point 5 * 0.284 and 0 = 0.408 that a model was investiga¬ 

ted for this point - which happens to be the same mass distribution 

and positioning as used for one of the clamped-clamped beam lumped 

models. The coefficients of the power series for the 0P2 hinged- 

hinged beam models are given in Table A-I. Unfortunately Figure A-l 

shows that the moment at the center-line, which is the high stress 

point, is not well matched by the model chosen. 
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Table A-I. Coefficients of Series Solution 
Hinged-Hinged Beam 

V 
0 

w 
0 

a 
0 al a2 

Exact 0. -0.166Ó7 -0.00205 

0P2 0. -0.16593 -0.00205 

CG2 0. -0.11+793 -0.00170 

2i 
w 

0 

Exact 0. +0.33333 +0.00212 

0P2 0. +0.331+07 +0.00212 

CG2 0. +0.35207 +0.00172 

In Figures A-2 through A-lt, the inçedance ratios are plotted as a 

function of ßH. As expected the 0P2 model represents the low frequency 

Vo 
ratios — and — very well, but the moment MU/2)/w shows only w w o ^ 

O 0 

slight improvement over the CG model. 

Clamped-Propped Beam 

In Figure A-5 the optimizing condition for a clamped-propped beam 

is shown as taken from References ^ and fj. Note that L = 24 or twice 

the beam length. The model investigated was based on shear only, that 

V4 V3 V3 
is Z = —- ; Z = — ; and Z = — . The values used are o = 0.20 

44 w 34 w 33 w 
4 4 3 

and £ = 0.368. In terms of 4 the distance from the left end to m is 
2 

then 0.3164 and the masses are: m3 = 0.l+0u4 and m2 = 0.60p4. 
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Clamped-Guided Beam 

The optimizing condition for the clamped-guided beam is shown in 

Figure A—6. In this case a reasonable choice is a = .85 and Ç % .535, 

M V 
based on curves for and — , which deal with values at the 

w w 
O 0 

clamped end. Here the curves are for ßt = 1 and ßfc = 2. 

Clamped-Free Beam 

In Figure A-7 are given curves for the clamped-free beam for 

V M 
— and — . Here taking a = .83 and Ç = 0.6l yields a model for 
w w 

o o 

low frequency response. 
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FIO, A-7 OPTIM1ZNG CONDITION FOR CLAMPED-FREE BEAM 
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Appendix B 

Bar Models Using Mobility 

The development of bar models using the mobility is discussed in 

detail elsewhere?’3Point mobility at the end of a free-free uniform 

bar may be expressed in the following alternate ways: 

M (B-l) 

where p = — , A is cross-sectional area, p is mass density, & is the 
Si 

bar length, and a is the speed of sound in the material. 

In terms of normal modes, the general form of the series is 

M = Ju> 
11 -V s y ur n=l ’o 

1 

Y ( 
TU,nv n 

(B-2) 

For the bar, the series is 

M 
11 

00 

The power series is 

M = > 
11 

a 
+ a + a + a 0)^+. •. 

„2 12 4 
(B-3) 

Also, in terms of natural frequencies and antiresonant frc' 

quencies qn 
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Models were derived to match various quantities. The models 

carried two to four masses as shown in Fig. B-l. The models are 

designated by two letters and a number. The number indicates the 

number of masses in the model. A CG indicates the usual center of 

gravity positioning. Some of the models developed and the quantities 

matched are summarized in Table B-I. For example, for Model ARl+ the 

total mass, or yo; two natural or resonant frequencies, pJ and p2; and 

one antiresonant frequency, q2, were matched using a symmetrical model. 

The values of y are modal effective masses, as in (B-2) associated 
11,n 

with point mobility for the first mode. Effective masses for transfer 

mobility between the two ends of the rod are indicated as y 
13, n 

Some combinations of models were considered as indicated in Fig. 

B-l. The basis for connecting two segments of uniform bar or two 

models is indicated in Figure B-2. In Table B-II, some of tue para¬ 

meters of the derived models are compared with those of the uniform 

bar. Other results are given in Ref. 3 for combinations of models. 

Mobility curves are also shown, which dramatically demonstrate the 

advantages of the various derived models in certain frequency ranges. 

In Table B-III, the coefficients of the power series ex-pansion 

(B-3) are compared. No models were derived specifically by matching 

terms in the power series except BP-2. The success of this model in 

predicting low frequency transient response led to the use of the 

power series approach and the a-£ plots for beams reported in the 

first part of the report. 
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Transient Response 

The input to the end of the bar was a half-sine pulse, or 

F (t) = f Sin — 0 < t < t 

1 1 T ~ " (B-5) 
= 0 t <_ T 

Impulses of two different durations were considered. For one = 0.1333 

a/9 and for the other — = .7833 a/Jl. Note that the first bar natural 
* T 

frequency occurs at w = "tT • In Figs. B-3(a) and B-3(b) the response 

to the lowest frequency input is compared for various models. The exact 

normal modr> series converges rather slowly, so the sum of 100 terms is 

conçared with the sum of 20 terms. The response of CG7 was almost 

identical to the exact solution. The most important result is that the 

accuracy of the response of the models is directly related to the ac¬ 

curacy of the low frequency mobility, as indicated in Table B-III. 

Also, it is significant that the derived two or three mass models were 

as adequuate as the six or seven mass CG models. 
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Table B-I. Model Designations with Quantities Matched and 
Resulting Values of Masses and Spring Constants. 

Desig. 
m2/mb Kl K2 

Quantities 
Matched 

CG2 

0P2 

BP2 

CG3 

OP 3 

AP3 

CGU 

KPb 

ARlt 

0.5000 

0.3333 

0.5000 

0.2500 

0.2500 

0.2143 

0.1667 

0.1066 

0.1597 

O.5OOO 

0.6667 

0.5000 

0.5000 

O.5OOO 

0.5714 

0.3333 

0.3934 

0.3403 

1.0000 

2.1932 

0.7500 

2.0000 

2.4674 

2.1149 

3.0000 

3.3112 

4.2909 

none 

none 

none 

none 

none 

none 

3.0000 

2.7124 

2.9249 

Y0. sym. 

V pi 
Yo, al, sym. 

Y0, sym- 

Yo* Pl* Yll,l* sym- 

Y0, ?!> qj, sym. 

Yo, sym. 

Yq* p1* p2* ^1* 8ym* 

Y0, ?!» p2, q2, sym. 
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Table B-IIl(a). Natural Frequencies pn and Effective Masses Yjj n and 

Y13 n for Various Models for n = 1, 2, 3. 

No. of 
Masses 

First Mode Seconc Mode Third Mode 

System 
pi Yn,i/mb p2 vn,A P3 Y11.3^ 

1* 

5 

5 

5 

7 

7 

7 

7 

0P3-0P2 

CG5 

0P3-0P3 

AP3-AP3 

CG7 

AP3-AP3-AP3 

APU-APU 

ar4-ar4 

1.1174 

0.9745 

1.0824 

1.0000 

0.9886 

1.0158 

1.0000 

1.0978 

0.4815 

0.5000 

0.5000 

0.5357 

0.5000 

0.5129 

O.5360 

0.4867 

1.0000 

0.8533 

1.0000 

1.0000 

0.9549 

0.9771 

1.0000 

1.0000 

O.5OOO 

0.5000 

O.5OOO 

0.4286 

0.5000 

0.5930 

0.5794 

0.5918 

O.9O2O 

0.7842 

O.871O 

O.8165 

O.9OO3 

1.0000 

0.9237 

1.0000 

0.3421 

O.5OOO 

0.5000 • 

0.3571 

0.5000 

0.4286 

0.9094 

O.9227 

Table B-III(b). Natural Frequencies p and Effective Masses Yn and 
n ii ,n 

Y,, for Various Models for n = 1, 2, 3. 
13 ,n 

No. of 
Masses 

Fourth Mode Fifth Mode Sixth Mode 

System 
P4 

Y /m. 
11,4 D ps Yn.5/mb P6 Yn,6/Bb 

4 

5 

5 

5 

7 

7 

7 

7 

0P3-0P2 

CG5 

OP3-OP3 

AP3-AP3 

CG7 

AP3-AP3-AP3 

AP4-AP4 

AR4-AR4 

• • • • 

O.6366 

O.7O72 

0.6614 

O.8270 

0.8635 

1.0000 

1.0000 

• • • • 

1.0000 

1.0000 

0.7500 

0.5000 

0.3355 

0.2710 

0.4692 

• • • • 

• • • • 

• • • • 

• • t • 

0.7379 

0.7673 

0.8222 

0.8455 

• t • • 

• • • • 

• • • • 

• • • • 

0.5000 

0.3681 

0.1559 

0.3193 

• • • • 

• • • • 

• • • • 

• • • • 

O.6366 

0.6614 

0.6990 

4.3551 

• • • a 

• • • • 

• • • • 

• • a • 

1.0000 

0.7500 

0.3373 

O.6938 
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SIMPLE MODELS 

TWO MASS 
m, m, 

•—VvVVWW\/-• 

THREE MASS 
m, k( ma k( m, 

•-AAA/V » -AAAAr-t 

FOUR MASS 
m, k, mg kg m* k, m, 

COMBINATIONS 

OP3 - OP2 

4,9348EA 4,9348 4.3864 

m. m. 

OP3- OP3 
9 8*8 

m 
_b 
4 

4.9348 EA 4.9348 4.93 48 4.9348 

FIG. B-1 
• .¾. 
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Appendix C 

Optimum Models Based on Shock Effective Mass Approach 

Uniform Beam 

As an end result, it is desired that improved models more ade¬ 

quately represent the response of structures to ground shock input. 

It is well known that modal shock effective masses and natural fre¬ 

quencies are important parameters, and in fact some design methods 

assume knowledge of these parameters for shock analysisFor ground 

shock in which variation of ground velocity is a step function of 

magnitude vo, the relative elastic displacement of the beam is 

Y V 

y(x,t) = -1 <f>n(x) Sinu>nt (Cl) 

n 

The <l>n(x) is the mode shape and is the modal pajticipation factor: 

/ M $ (x)dx 
o_n 

n I1 u (Ji^(x)dx 
o n 

( C2 ) 

The natural frequencies u)n are related to the beam stiffness El and 

beam mass per unit length y by 

00 
Bn EI 

2 - _2_ 

The shear at the base is 

(C3) 

V(x,t) = EI y'"(x,t) = - I 
n 

The general form of (CM is that 

Ely V 

-— <fr"’U)Sin«t (CM 
U Tn n 
n 

of force is equal to mass times 

accelerations, or 



V(x,t) = 

For bending moment, the 

T (mass) (vwSinuit ) 
t* ' non n 
n 

equation is 

B(x,t) = I (mass x arm)n(voa)nSinaJnt) 
n 

At the base of a clamped-free beam: 

(C5) 

(C6) 

v(o,t) 

B(0,t) 

ï 
4a2(yî,)2 

n 

M (Sr,^)2 n n 

V u> Sinu) t = 
on n 

h£(p4)2q 
n V m Sinu t = 

on n 

ï 

I 

V Sinui t 
on n 

B Sinu) t 
on n 

(CT) 

(C8) 

The values of a , ß , and (J) (x) are given in tables by Young and 
n n n 

8 
Felgar. 

For a hinged-hinged beam, the shear at the support and the moment 

at the center point are 

V(0,t) * 

B(f,t) = 

J 1 ~ V u> Sinu) t = - y V Sinu) t (C9) 
‘<,oon n t*on n 

y ^ Sin V uiSinuit = I B Sinuit (CIO) t<33 2 on n ‘'en n 
n3n3 

Lumped Mass Beam 

For a weightless beam carrying lumped masses, in^, the dynamic 

force F, , at the ith mass for the nth mode, associated with a step 
in* 

velocity base motion is 

in 

P m.(|). n iTin 
M 

V ui Sinu> t 
on n 

(Cll) 



1+3 

where 

and 

M = T m.$? n ‘t irin 

P = y m.é. n I iyi in 

(C12) 

(C13) 

For a cantilever beam with one mass m a distance h from the base 
1 1 

(Fig. C-l) the shear and bending moment for the n mode is 

V(0,t) = - m,v u) Sinu t ’ ion n 

B(0,t) = m.h.v w Sinco t * l+on n 

For the cantilever with two masses (Fig. C-l) 

P 

V(0>t)n = - if VcSin“nt(ml*ln + 
n 

P 
B(0»t) = ~~ V U Sinm t(m.(J). h. + h„m„(ii0 ) 
' * ' Mon n 1 In 1 2 2T2n 

(C14) 

(C15) 

(Cl6) 

(C1T) 

For the hinged-hinged beam with three masses (Fig. C-2): 

V(0,t) = - 

,1 

y F + — F 
L -ln 2 2n 

B(f.t) = Î Fjh, + 
n 

(C19) 

(C20) 

Development of Lumped-Mass Models 

A lumped-mass model of a cantilever beam is assumed to carry a 

mass m a distance h from the support on a beam having a fictitious 
1 1 

bending stiffness E'l'. To match (Cl4) with the first term in (CT): 

V 
"Q ... = .6131 pt = m 
Vi 1 

(C21) 



hb 

For bending moment, from (C15) and (C8) 

B 

.445^ ul2 = m^hj 

From (C21) and (C22) 

= .6131 y& and h1 = .7265 i 

The frequency for the lumped mass system is 

9 3E'I' 
i»r = - 

1 m h3 
1 1 

(C22) 

(C23) 

(C24) 

To have also the same as for the uniform system, one might 

choose E'l' = .9686 El. The idea of using a value of El different 

from that of the original beam has not been pursued in general. 

The first two lines in Table C-I are associated with this example. 

In the first line E'l' = El and in the second line, the case where 

E'l' = .9686 El is shown. In the bottom line are listed the values 

for the first two modes of a uniform beam. 

For a two mass cantilever the positioning is already much more 

difficult. There are now four parameters available - magnitudes and 

positions of the two masses. The numbers matched are the value of 

base shear for first and second modes (C25) and (C26), the first mode 

moment factor (C27) and the first mode frequency (C28). These are ex¬ 

pressed in terms of the modal amplitudes If * 1 and $ = 1, 

then ()) and <|> are two additional unknowns, bringing the total to 
21 22 

six. Two additional equations are required involving the orthogo¬ 

nality of the modes (C29) and (C30). 



!*5 

m24i2 + mm$ $ 
1 11 1 2 11 21 

m di2 + m d>2 
111 2 21 

+ 

m m $ ^ + m2d)2 
1 2 11 21 2 21 

m <\>2 + m d>2 
1 11 2 21 

.6131 uA (C25) 

m2<|i2 + m m $ (j) 
1 12 1 2 12 22 

m <|i2 + m 4>2 
1 12 2 22 

m m <|i + m2è2 
1 2 12 22 2 22 
+-- .1883 y A 

mi))2 + m if>2 
1 12 2 22 

(C26) 

/•m (ji2 + m m <)) $ 
1 11 1 2 11 21 

m <\>2 + m (¢12 

1 11 2 21 

h + 
1 

m m <|> <f> + m2<|>2 ^ 
1 2 11 21 2 21 

m 4>2 + m 62 
1 11 2 21 

h2 = .l*ii54uA2 (C27) 

m2<(»2 6 + 2m m ()) (^ Ô + m2<))2 â 
1 11 11 1 2 11 21 21 2 21 22 

m (()2 + m ò2 
1 11 2 21 

(C28) 

mi)><¡) +mi))()i =0 
1 11 12 2 21 22 

(C29) 

m2<|> ¢6 +mm(|)à6 +mmd)(()6 + 
1 11 12 11 12 12 21 21 12 11 22 12 

m2<|> ()) 6 = 0 
2 21 22 22 

(C30) 

The values of 6. are flexibilities and functions of h , h and 
1 2 

El. Cubic powers of hj and h2 are involved. To solve the six equa- 
m 

tions, the value of a = is chosen. If (C25) and (C26) are added, 

the result is 

m + m = .8014 yA 
1 2 

(C31) 



k6 

Having chosen a, (C3l) is solved for m . The value of <j> is deter- 
2 21 

mined from (C25) and <|> from (C29). Equation (C27> is then solved 
22 

for h in terms of h . The value of h is then found from (C30). If 
2 1 1 

the correct value of a is chosen, (C28) will be satisfied. 

In Table C-I values are tabulated for a = 0.1), 1.0, and 1.5. For 

this large range of a, varies only slightly. In Figure C-3(a), the 

values of h /1 and h /£ which satisfy the conditions imposed are shown 
1 2 

versus a. A similar plot for B is shown in Figure C-3(b). The dotted 
02 

line indicates the value of a to be chosen to make B agree with that 
02 

for a uniform beam. Figures C-3(c) and C-3(d) show variation of w 

and a) with a. 
2 
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FIG. 02 HINGED-HINGED BEAM I 



a 

FI6rC-3(o) MASS POSITION VS. a 

TWO MASS, CLAMPED-FREE SEAM 

R6. C-3(b) SECOND MODE BENDING MOMENT VS. a 

TWO MASS , CLAMPED- FREE BEAM 

I 
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FIG. C-3(C) FIRST NATURAL FREQUENCY VS. a 

TWO MASS , CLAMPED - FREE BEAM 

F!G. C- 3(d) SECOND NATURAL FREQUENCY VS. a 

TWO MASS, CLAMPED- FREE BEAM 



# 

R8.C-4M) POSITION OF MASS m, VS- a 
■ r 

THREE MASS, HNGED-HNGED BEAM 

FK3. C-4(b) FIRST MODE BENDING MOMENT VS, 0 

THREE MASS, HINGED-HINGED BEAM 



1¾ 10 

J_L 
0.5 1.0 1.5 

FIG.-C-4(c) FIRST NATURAL FREQUENCY V& a 

THREE MASS, HINGED-HINGED BEAM 

RG. C-4(d) SECOND NATURAL FREQUENCY VS. a 

THREE MASS, HINGED-HINGED BEAM 
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A new approach has been used, based on an impedance method, to develop 
accurate lumped parameter models of uniform Bernoulli-Euler beams. By adjust¬ 
ing the parameters so that the impedance of the models is accurate at tne 
boundaries, it is demonstrated that they will also be accurate for ground 
shock loading if the spectrum of the loading indicates low frequency con¬ 
tent. Improved models for clamped-clamped, hinged-hinged, clamped-free, 
clamp^d-propped, and clamped-guided beams are presented. Some previous 
results for bars are summarized. Also some previous results based on match¬ 
ing modal parameters are included, so that the report summarizes most of the 
work by the authors to date. 
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