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ABSTRACT 

The longitudinal and transverse time-dependent spin correlations of 
Heisenberg spin systems with cylindrical symmetry and with both uniaxial and 
exchange anisotropy are evaluated in the limit of elevated temperature, by the 
method of frequency moments. The zeroth, second, and fourth frequency 
moments are determined by thermal expansions of commutators of equal-time 
spin operators and their time derivatives. The frequency wave-vector spectral 
functions are established by these moments via the hydrodynamical representa¬ 
tion, based on a two-parameter Gaussian diffusivity. The moment equations in 
a generic form apply for all spins, for arbitrary range of the exchange inter¬ 
actions, and for arbitrary dimensionality and lattice structures and are 
particularized with next nearest neighbor interactions for a linear chain, a two- 
dimensional net and a simple cubic lattice. The effects on the correlation 
functions of varying the axial anisotropy, the exchange anisotropy, and the 
interaction range are investigated. The resulting time-dependent correlations 
and their Fourier transforms are calculated, exhibiting features predicted by 
theoretical considerations and pointing to several conclusions; i.e., (1) The 
effect of increasing the axial anisotropy upon the longitudinal correlations is 
similar to that of decreasing the exchange anisotropy; (2) In contrast, the 
behavior of the transverse correlations is similar for increasing axial anisotropy 
or for increasing exchange anisotropy; (3) The anisotropic effects on the corre¬ 
lations are decreased as the strength of the exchange interaction is increased or 
its range is extended to the next nearest neighbors. 
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INTRODUCTION 

The thermodynamics of interacting spin systems is, in general, too com¬ 
plicated to be exactly soluble. Of the many approximate solutions which are 
known, only those relating to low temperature and to high temperature are 
reliable, and the dynamics of these systems are even more complicated. None¬ 
theless, the dynamical properties of Heisenberg spin systems have been the 
subject of much theoretical study in recent years, 1-9 stimulated by the 
appearance of inelastic neutron scattering data at high temperaturesl®"12 and 
by the computer simulation calculations of precisely defined models.1 ” The 
various methods used include diagrammatic perturbation theory,® interpolation 
schemes, 6*^ frequency moment calculations, It4,7 and microscopic theories 
of spin diffusion. 2,3 a useful review of much of this research is given by 
Marshall and Lowde.8 

In exchange-coupled paramagnetic spin systems, the time-independent spin 
correlation functions have been accurately determined with the pertinent high 
temperature series expansion of the equilibrium density matrix. However, the 
dynamical time-dependent correlation functions have not been rigorously 
treated, even in the region of high temperatures, although several approaches5»® 
attack the problem from first principles, utilizing self-consistent Green func¬ 
tion analysis. 

A highly successful phenomenological approximation of the dynamics of 
Heisenberg spin systems has been the frequency wave-vector-dependent 
diffusivity represented by a two-parameter Gaussian.3This method circum¬ 
vents much of the calculations! difficulty in the extensive resummations of 

1. P.O. de Oennet, J. Phys. Chem. Solids4, 223 (1958). 
2. H. Mori and K. Kawasaki, Prog. Thao. Phys. 31,629 (1962). 
3. H.S. Bennett & P.C. Martin, Phys. Rev. 13g, A608 (1965). 
4. M.F. Collins ft W. Marshall, Proc. Phys. Soe. 92, 367 (1967). 
5. P. Resibois ft M. De Leaner, Phys. Rev. 152. 306; 318 (1966). 
6. H.S. Bennett, Phys. Rev. 174, 629 (1968)-,122,660 (1968). 
7. R.A. Tahir-Kheli and D.Q. McFadden, Phys. Rev. 178,800 (1969); 182,604 (1969); Rl, No. 7, 

3178 (1970); IM, No. 9, 3649 (1970); &J, No. 9, 3671 (1970). 
8. W. Marshall ft R.D. Lowde, Rapt. Prog. Phys. 31, 705 (1968). 
9. M. Blume ft J. Hubbard, Phys. Rev. Rl, No. 9, 3815 (1970). 

10. C.G. Windsor, G.A. Briggs and M. Kestigan, J. Phys. C (Proc. Phys. Soc.) Ser. 2,1,, 940 (1968). 
11. C.G. Windsor, Proc. Phys. Soc. 87, 501 (1966); 89, 826 (1966); 91, 353 (1967). 
12. D. Cribier and B. Jacrot, in Inelastic Scattering of Neutrons in Solids ft Liquids. 2,309 (I.A.B.A., 1963). 
13. R.E. Watson, M. Blume, and O.H. Vineyard. Ays. Rev. 181. ¿11 (1969). 
14. C.G. Windsor, in Inelastic Scattering of Neutrons. 2.83 (I.A.E.A., 1968). 
15. F. Carbon! and P.M. Richards. Phys! Rev. 177.889 (1969). 
16. B. Streib, H.B. CaUen and G. Horwits, Phys. Rev. 122,1798 (1963). 
17. H.B. CaUen ft E. CaUen, Phys. Rev. 122, A1675 (1964). 
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F. ynman diagrams, used in many-body physics. This approximation has 
been seen to yield adequate to excellent agreement with several restrictive 
cases where the dynamics have been solved exactly and with experimental 
results of neutron scattering of exchange-coupled systems. In this present 
study the emphasis will be on the dynamical correlation functions of Heisenberg 
spin systems with uniaxial and exchange anisotropy, a problem area which has 
never before been treated adequately in the literature. This study will Involve 
a kind of many-body physics technique arising from the statistical mechanics 
calculation of thermal averages of products of spin-paired exchange sums, and 
will treat specific solid-state magnetic structures. 

An example of a uniaxial structure with a large anisotropy energy is FeFg. 
Several papers 18,19 deal with FeF2 by the method of Green functions. It has 
bee*; pointed out by Lines19 that this anisotropy presents a new difficulty in 
the Green function treatment, namely, how to decouple the higher-order Green 
functions which appear in conjunction with the anisotropy. Tanaka et al.20 
applied a cluster-variation method to FeF2 in the region of the Néel tempera¬ 
ture by considering spin correlations between nearest and next nearest 
neighbors. 

Terbium and other rare earths, also examples of axially anisotropic roin 
structures, have recently been the subjects of experimental investigation,21 
particularly neutron scattering studies“*24 and theoretical studies based on 
scattering data and utilizing the method of moments.26-27 These scattering 
studies attempt to formulate various parameters for exponential time decay 
and truncated Lorentzians, based on measured values of the exchange Inter¬ 
action and axial anisotropic constants, with some anomalous results. Several 
frequency moments for the axially anisotropic Hamiltonian are given by 
Sears,26 Collins,26 and Lindgärd. 27 in addition, Sears has calculated the 
first-order temperature correction term of the zeroth and second moments. 
It must be emphasized that all of these moment calculations were performed 
with isotropic exchange, a less general case than that treated in this study. 

18. A. Narath, Phys. Rev. 140, A854 (1965). 
19. M.E. Linea, Phya. Rev. 156, 534 (1967). 
20. T. Tanaka, L. Libelo, and R. Kligman, Phya. Rev. 171, 531 (1968). 
21. D.E. Hegland, 8. Legvold, and F.H. Spedding, Phya. Rev. 131,158 (1963). 
22. J. Ala-Nielaen, O.W. Dietrich, W. MarahaU, and P.A.LindganT Solid State Comm. £, 607 (1967); 

J. Appl. Phys. 39,1229 (1968). 
23. T.M. Holden, B.M. Powell, and A.D.B. Woods, J. Appl. Phys., 39,457 (1968). 
24. O.W. Dietrich and J. Als-Nielsen, in Neutron Inelastic Scattering. 2, 63 (I.A.B.A., 1968). 
25. V.F. Sears, Can. J. Phys. ifi, 2923 (1967). 
26. M.F. Collins, <1. Appl. Phys. 39, 533 (1968). 
27. P.A. Lindgard, in Neutron Inelastic Scattering, 2.93 (I.A.E.A., 1968). 
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Although several cas^s exist In which spin correlations have been 
calculated exactly, they are highly restrictive in their system assumptions 
and do not permit generalizations to more realistic spin systems without 
excountering prohibitive computational difficulties. Still, these results are 
valuable for checking on the limiting cases of approximate phenomenological 
schemes. Carboni and Richards1** exactly calculated the frequency-dependent 
spin correlations, the spectral functions, and the time-dependent correlations 
for a linear chain consisting of a finite number N of spins with S=l/2. These 
spins were considered to be in contact with a heat bath and to interact by a 
nearest neighbor isotropic exchange. The eigenfunctions and eigenvalues were 
evaluated and the results extrapolated to the thermodynamic limit, N-*oo. 
This method presented the frequency Fourier transform of the temporal spin 
correlations in the form of histograms. 

Another model with exact results, in the sense that no theoretical approxi¬ 
mations are introduced except those related to the numerical calculation, Is 
the Windsor formulation11* of ihe classical Heisenberg paramagnet. This 
model was constructed with a thousand classical spins situated on a simple 
cubic lattice and interacting with isotropic, nearest-neighbor exchange, at 
infinite temperature. The time development of the classical spin correlations 
were then calculated in the thermodynamic limit, i.e., with N->oq. These 
results can then be compared to the infinite spin, S-*oo, correlations of approxi¬ 
mate, phenomenological schemes, applied to the same lattice structure. 

In addition, the so-called XY model 28 affords another exact computation, 
giving considerable insights into the temporal correlation functions, hi this 
model no exchange coupling exists between the z components of the spins, 
while the x and y components are assumed to be bllinearly coupled among 
themselves by pairwise exchange potentials. For the particular one-dimensional 
case with S=l/2, the analysis of this type of spin coupling can be reduced to that 
of a system of non-interacting fermions so that the dynamics of the XY model 
can be solved exactly. 29,30 

Many of the approximate, phenomenological approaches to the study of 
spin correlations have been related to the hydroclynamic limit of the spectral 

]]■ ^n<taor* P«»«- Phy»- Soc. 87, 501 (1066); 89, 826 (1966); 91, 353 (1967). 
14. C.G. Windsor, in Inelastic Scattering of Neutrons. £, 83 (I.A.E.A. 1968). 
15. F. Carboni and P.M. Richards, Phys. Rev. 177, 889 (1969). 

28' fsoin ^ AnD¿^ (N Y ) ^ 407 <1961>:8- Phy. R«v. 127, 
Japan 2162140 (^966)* ^ £•1091 U»«*): M. Suzuki. J. PhyTToc. 

29. T. Niemeijer, Physics 36, 377 (1967); £2, 313 (1968). 
30. S. Kataura, T. Horiguchi, and M. Suzuki, Physica 46, 67 (1970). 
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function. The usefulness of the two-parameter Gaussian representation of the 
generalized diffusivily, in the construction of spectral functions, has been 
demonstrated by Tahir-Kbeli and McFadden, ^ particularly in those cases for 
which excellent comparisons have been shown with the exact calculations of 
Carboni and Richards in the one-dimensional, isotropic array with S=l/2 spins 
and with the exact classical spin results of Windsor for infinite spin. There¬ 
fore this phenomenological construct is adopted in this study, since its basic 
simplicity and its proven ability to give adequate-to-excellent meaningful 
results permit its application to more realistic spin systems, which would 
involve, at present, vast difficulties in exact calculations. 

The general plan of this study is as follows: The section "Formulation" 
introduces the pertinent Hamiltonian with both exchange and axial anisotropy. 
Then the analytical relationships between temporal spin correlations, fre¬ 
quency wave-vector-dependent spectral functions, and frequency moments in 
a high-temperature expansion are discussed. Physical arguments are then 
presented to justify the phenomenological representation of the spectral func¬ 
tion for low frequency and long wave length, as a generalized diffusivity In the 
hydrodynamic limit. A two-parameter Gaussian representation of the 
diffusivily is then related to the diffusivily moments and frequency moments. 
In the section "General Form of the Frequency Moments", the frequency 
moments are derived in a generic form, and some intermediate calculations! 
details are shown. Next, high-temperature spin correlations based on the two- 
parameter generalized diffusivity Gaussian are particularized in the three 
sections that follow for one, two, and three dimensions with the inclusion of the 
effects of a larger range of the exchange interactions (extended to next nearest 
neighbors), axial anisotropy, and exchange anisotropy. The last section, 
"Concluding Remarks", summarizes results. Appendix A presents a listing of 
repeatedly applied traces of products of spin operators. In Appendix B some 
details of the application of the frequency moments to various lattice structures 
are presented. 

7. R.A. Tahir-Kheli and D.O. McFaddan, Phy«. Ra». 178,800 (1969); 182,804 (1969): B-l. No 
3178 (1970); B4, No. 9, 3649 (1970); !M, No. 9, 3671 (1970). - 
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FORMULATION 

The Heisenberg Model 

We shall study, as the most general case, the anisotropic Heisenberg spin 
systems, where the Hamiltonian is in the form 

» = -E I1*™ (¾s;+ ss sp) + '• ^ sg sp] - aL(sí)’ c. , 

or, alternatively 

I+(gP) Sg Sp + I0 H = - 

(2.2) 

by the use of the raising and lowering operators 

This Heisenberg model assumes both exchange anisotropy, i.e., I+ ^ Iq, and 
axial anisotropy through the A term. Here g and p are the spin sites, I(gp) is 
the exchange interaction integral between the two spins at sites g and p, 
the a component of the spin vector associated with the lattice point g, and A is 
the axial anisotropy constant (energy) characterizing the strength of the 
crystalline field. This latter type of anisotropy Is often referred to as uni¬ 
axial, crystal-field or single-ion. We assume that the exchange integrals 
depend only upon the spatial separation of the positions and that 

lo(gg) = M8g)= 0 

The integrals Iq and I+ are, in general, allowed to be different. In the limit¬ 
ing case when I+=A=0, this magnetic spin system reduces to a nondynamical 
Ising model, whereas the other limiting case of Iq=A^0 corresponds to the XY 
model. 



In the calculations of the spin correlations, the Heisenberg system is con¬ 
sidered to be at infinite temperature. Moreover, the range of the exchange 
interactions includes next nearest neighbors. The spacing between the spins 
is assumed to be uniform for the one, two, and three (simple cubic) dimensional 
lattices, and distances will be measured in the units of these spacings. Periodic 
boundary conditions will apply. Furthermore, we assume that the spins are not 
vlbrationally coupled to the lattice so that it is sufficient to consider the strength 
of the exchange integral to be a suitable scalar function of the temperature in 
order to describe any spin-lattice coupllnb. The Dirac system of units with 
ft=l is used throughout. 

Correlations, Spectral Functions, and Frequency Momen s 

The space-time dependent spin correlation function is defined as 

(2.4) 

where a and a' = x,y, z. Correlations with a ¿ a' vanish because of the 
assumed cylindrical symmetry. For the same reason, correlations with 
a=x and a=y are equivalent and are called the transverse correlations. In 
the general anisotropic cases, the correlations with a=z differ from the 
transverse correlations and are called the longitudinal correlations. The 
time dependence of the spin operators is in the Heisenberg representation with 
respect to the Hamiltonian. The angular brackets denote a statistical thermal 
average over a canonical ensemble and the straight brackets denote a 
commutator. 

The translational invariance of the system Hamiltonian determines the 
dependence of these correlation functions upon space and time. This fact is 
most conveniently incorporated by introducing the spectral Junction, Faa (K, w), 
which is the Fourier representation of the spin correlation function 

g-w 
(2. 5) 
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» 
where K is the inverse lattice vector, and «.> is the frequency. This summa¬ 
tion consists of N allowed K-vectors falling within the first Brillouin zone and 
becomes an appropriate integral for large N. 

From the definition of the spin correlation function Foa (g-w.t-f) in 
Equation (2.4) and from the invariance of the spin system under spatial inver¬ 
sion, the relevant symmetry properties are obtained 

Faa(g- w, t- (w- g,t’- t) 

= Fao(w- g, t- t') = -Faa (g - w, t'- t) 
(2.6) 

If these properties are used in Equation (2.5), the symmetry properties of the 
spectral function result 

Faa(itw) = Faa(-K,«) = -Fao(k,-w) (2.7) 

-+ 

showing that the spectral function is even in K and odd in «>, similar to the spin 
correlation function's relation to space and time. 

The commutator correlation Faa (g-w,t-f) is closely related to the 
statistical correlation function 4>aa (g-w,t-t'), defined as 

♦aa(g- w.t- t')^sJ(t)S“(t')^ 

If two general time-dependent operators, say A(t) and B(t), develop in the 
Heisenberg picture, then the well-known statistical mechanical identity 

(2.9) 

results, by noting the invariance of the trace under cyclic permutation. Using 
this result with Equations (2.8), (2.5), and (2.4), we find that 

4»aa(g- w, t - t*) —f dwe-»"**- t’VsJoS“«’) N 
w /w (2.10a) 

7 
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where 

K (2.10b) 

Here the quantity ß =(kBT)_1, where Boltzmann constant and T= temperature. 

The definition of the frequency moments of the spectral function is, for 
integer n 

<->: ■/: F®0 (K, cj) w0”* dw 

(2.11) 

Since the spectral function is odd in u>, the odd moments vanish. 

Time-independent statistical averages determine the frequency moments of 
the spectral function. If the time derivatives of a corresponding Fourier 
representation of the spin correlation function in the following form are 
determined 

F^ig-w,t-t') * ¿y;c^*tt-w)J Faa(K,w)e"iw(t" t')dw 
V -oo (2.12) 

then it can be shown, from Equations (2.4), (2. S), and (2.11), that one obtains, 
by proceeding to the limit t'=t 

=j F00 (K, w) wn dw * ^n+‘^ 
(2.13) 

Here the indices n and r are non-negative integers such that n > r, and the sum 
over all position vectors g-w includes the origin. The significance of this 
result is that to compute, for example, the second moment, it is necessary to 
consider only the first time derivatives of only one of the spin operators in 
Equation (2.4). 
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Therefore, when the temperature is finite, the moments should be 
calculated from Equation (2.13), where, it is possible, in principle, to 
calculate the moments to any desired order in ß (inverse temperature), al¬ 
though the amount of calculations grows rapidly with the expansion in ß. How¬ 
ever, if the high-temperature limit is of primary interest, then a simplification 
in the moment calculation can be effected. Equation (2.10b) becomes, for large 
temperatures 

lim 
0-0 

“ ic 

F^qc.fa?) 
0(0 

(2.14) 

and, with Equation (2.10a), one obtains 

Ey® -s> 

eiK‘(g-w) «fetta^g-Wj t_ =du ) E— 

g-w L (2.15) 

The time derivations of this expression lead to 

lim 
0-0 s-4»-[(^y (i - (g- W, t- t’) 

g-W t=t’ 

Faa (K, co) co0"1 
(2.16) 

with the same restrictions on n and r, as before. The appearance of l/ß as a 
factor of the moment can be explained by the fact that the statistical correlation 
function <t>aa (g-w.t-t') contains products of spin operators, for which the 
trace is finite, as contrasted to the spin correlation function Faa (g-w.t-t') 
which contains commutators, for which the trace vanishes but the first con¬ 
tribution to the thermal average arises from the next term, -£H, in the ex¬ 
pansion. Equation (2.16) therefore avoids considerable commutator algebra 
but is valid only at elevated temperatures. 

The method for the computation of the frequency moments first involves 
the repeated application of the von Neumann, quantum mechanical equation of 
motion to the spin operators 

(2.17a) 
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{'í) s“«>=[[s>h].h] 
(2.17b) 

Next the time-independent statistical thermal averages <Q>, where Q is a 
generalized spin operator product (or commutator), are computed by the usual 
high temperature expansion procedure, with the density matrix 

p = e 0H 

Therefore 

<Q> = Tr je"0H q} /Tr {e'^H} 

Trjl [l - 0H + ß2 Ha - ...] 
Ql 

T,\ [l-0H + -|i0J H2 - ... 

Tr {q- 0HQ +jß2 Ha Q- ... 

Tr {1 } 

ILllM 
\ Tr)l| 

+ [(ir(íh| y - 4Tr jdH j / Tr J1 ( + .... j 

The computation of the zeroth moment 

<->: ■/: Faa(K, «) 
Ü) 

dw 

(2.18) 

(2.19) 

(2.20) 

or wave-dependent susceptibility, involves a special case. From Equations 
(2.4, 2.5, and 2.20), one finds 

4-)“ ^ ^ L * ([%»•*>)) 
\ /K -ioo \ '(2.21) 
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A contour integration yields 

lim f d¿je^U)t _ J_ 0 (-1) 
€-*0 J 2fr(a>+ie) i 

-00 

where the step function 0(t)=l, for t>0 and =0, for t<0. Now using the inter¬ 
changeability of the symmetric spatial variables g and w in the correlation 
function and the identity of Equation (2.9), one obtains 

aa = 4_ ^eiK.(g-;>y0 dt ^ (0) [eiH(t+^) s® (0)¿-imm 

K ■* - oo 
g-W 

-emt S“ (0)e-iHt]^ 

and by a change of variable, t+1/î *ím, the following relation results 

(2.23) 

g-w 

(0) e-^H S“ 

(2.24) 

which is valid for all temperatures. In a second-order temperature expansion, 
Equation (2.24) becomes (omitting the unnecessary equal time specification of 
the spin operators) 

«4 

g-w (2.25) 
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The Hydrodynamic al Representation of Spin Diffusion 

The knowledge of the short time behavior of the correlation functions is of 
limited usefulness. Low-frequency phenomena, such as the magnetic scatter¬ 
ing of slow, long-wavelength neutrons, the electromagnetic field resonance 
experiments, and various transport phenomena in fluid mechanics applications 
depend upon the long-time behavior of correlations. 

The frequency moments actually yield no information about the behavior 
of the spectral function, as shown by Grant, 31 but do point out unreasonable 
representations of the spectral function. The moments also provide only 
limited information about the time dependence of the correlations Far (g-w,t-t' 
and 4>aa (g-w, t-t'). As shown by Tahir-Kheli and McFadden,7 the expansion 
of the correlations in terms of the first few frequency moments adequately 
determine only their short time behavior. 

In some respects, the spin diffusion process would be a difficult part of 
the long-time, large-distance behavior of spin correlations, if conventional 
perturbation theory requiring integral equations or extensive resummation of 
diagrams were applied. The long-time description of an Interacting many- 
particle system is dominated by many inter-particle collisions. 

The possible analogy of such a collision in the spin system is a mutual 
exchange of a single spin-flip. However, such a collision dominated behavior 
can be described in terms of hydrodynamics, which refers to a system in local 
thermodynamic equilibrium, produced and maintained by frequent collisions 
between particles. Therefore, in the limit of long wavelengths (small K 
vectors), the behavior of the spin correlations relates to the appropriate 
hydrodynamic description of the diffusion of the magnetization density in 
equilibrium. 

The required formulation, therefore, should couple the rather limited 
information available in the first three non-vanishing frequency moments, 

nri 

wjnV , n=0,1,2, with the limiting hydrodynamic behavior of the spin 

K 32 
diffusion. Kadanoff and Martin have described the prediction of the spin 

7. R.A. Tahir-Kheli and D.Q. McFadden, Phya. Rev. 178, 800 (1969); 182, 604 (1969); BT, No. 7, 
3178 (1970); B;!, No. 9, 3649 (1970); IM, No. 9, 3671 (1970). 

31. W.C. Grant, Phyaica 30,1433 (1964). 
32. L.P. Kadanoff and P.C. Martin, Ann. of Phya. 24, 419 (1963). 
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diffusion process by hydrodynamic equations. The theory begins with the 
conservation of the total z component (Sip) of the spin, or 

(2.26) 

In the direction of quantization z, the magnetization density mz(r,t) and the 
total magnetization Mz(t) are related by 

Mz(t) =y*d3r mz(ít) =^St) 
(2.27) 

With this, Equation (2.26) can be expressed in the differential form, a continuity 
equation 

j¡- mz (r, t) + V • j (r, t) = 0 (2.28) 

where j(r, t) is the magnetization spin current. When the properties of the 
system vary slowly in space and time, local equilibrium occurs, and the spin 
current is proportional to the gradient of the magnetization density, that is 

t(r, t) = - Dz V mz (r, t) 29) 

where the analogous transport coefficient Dz is now called the spin diffusion 
coefficient. Combining Equations (2.28) and (2.29), one finds the diffusion 
equation for the magnetization density 

7fm’(M)-D* V’mz(M) (2.30) 

If we now define a combined wave-vector Fourier transform and frequency 
Laplace transform of the magnetization density as 

dt mz (r, t) 

(2.31) 
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and then substitute Equation (2. 30) and integrate by parts, we find 

a'i = 0) mz(K, 0) = 
Dz K2 - i6 

(2. 32) 

To connect this result to the spectral function, suppose that a weak space- 
time varying field hz(r,t) has been turned on at time t, such that 

hz(r, t) = hz(r)e"et;t> 0 

= 0;t< 0 
(2.33) 

where < is an infinitesimal positive quantity. First-order perturbation theozy 
yields the response of the system 

m' ;6t) = i Jdr J dt' ([s* (t),sj.(t')] ) hz(ít) 
(2.34) 

If the spectral function from Equation (2.5), along with Equation (2.4) is used, 
one obtains 

nr (K,0) = f dwhz (K) FZZ(5-~T 
J kj(cj-d) 

where 

hz(K) = y* dre_i^'r hz(r) 

If the following identity, implied for integrations, is used 

(2.35a) 

(2.35b) 

lim 
e*0 

—;—1.. = P —r--^ in5(w - w') 
cj - cj t le cj - cj (2.36) 
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where P denotes the principal value, we find from Equation (2.35) that 

= „h*(k, fíiiiüí) 
to 

(2.37) 

Comparing Equation (2. 32) with this result, then we obtain 

Fzz (K, cj) = mz (K, 0) Dz KV>r 

w hz(R) 00^(0¾2)2 (2.38) 

Or, if we denote the static wave-vector dependent susceptibility by X g in the 
relation 

mz(K, 0) = hz(ÍC) (2.39) 

then Equation (2.38) becomes 

FZZ(K, q>) _ XK Dz Ka/»r 

w w2+(DzKa)* (2.40) 

It is noted here that the zeroth frequency moment is equivalent to this suscepti¬ 
bility, i.e., = . The quantity on each side of Equation (2.40) is 

often referred to as the spectral line shape function 

S(k,w) = Fzz(K,u)/w (2.40a) 

The hydrodynamic limit expressed in Equation J2.40) is valid for slowly 
varying disturbances, i.e., for small o> and small K. Under these conditions, 
the value of the spectral function is sensitive to the relative magnitude of to 
andk. Ifoj« DZK2 

Fzz (K, <o) a 

jr Dz Ka 
(2.41) 
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at 
(2.42) 

FZ2(ÍU) 
u 

Xk Dz K* 
77J— 

Although only the longitudinal spectral function Is shown In Equation (2.40), the 
transverse spectral function, in the isotropic case, will possess the same 
hydrodynamic limit. 

For computational purposes, the zero frequency behavior of the frequency 
Fourier transform of the longitudinal correlations given in Equation (2.14) can 
be roughly described in their variation with lattice dimensionality. Since in 
this case, Equation (2.41) shows that Fzz(K,u)/w~K~2, then 

dK 

where n is the dimensionality. Therefore, in one and two dimensions these 
transforms will diverge as less rapidly so in two dimensions. For 
three dimensions no divergence will be exhibited. 

The Gaussian Diffusivlty Method 

The generalization of the spin diffusion constant so that it could be a 
function of K and o> was first suggested by Martin and Bennett,3 with a 
postulation of a two-parameter Gaussian form. 

The objective here is to develop a representation of the spin and spectral 
correlation functions, in terms of a generalized frequency wave-vector 
dependent diffusivlty, Daa (K,<u), which reduces to the hydrodynamic limit 
of Equation (2.40) for small u and This phenomenological representation 
of the well-behaved function Daa (K,u) might then pose fewer hasards in Its 
application than the rattier singular spectral function Fao (K, w). 

3. ILS. BmumU 4 P.c. Kutin, Phy*. Rot. 138, A606 (1966). 
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If a retarded double-time Green function, utilizing the spin correlation 
function, is defined 

<|s“(t>, S“ (t)]^ 

where 6 is the Heaviside unit step function, then its Fourier transform is 

/00 
eMt-t) M^(t-Od(t-t') 

(2.43) 

g-w (2.44) 

Now, if Equations (2.4), (2.12), and (2.43) are substituted in Equation (2.44), 
and if this resulting Fourier transform is extended into the upper half of the 
complex plane by means of the complex quantity 

z = « + ie 

where « is a positive infinitesimal, one obtains the following spectral 
representation 

M“(K, z) = r enlalfc J Z- CJ 
(2.45) 

The generalized diffusivity Doa(K, tu) can now be defined as 

Maa(k, z) = Maa(k, 0)^1-(1- J ] 

(2.46) 

Now Equations (2.45) and (2.46) relate the diffusivity and the spectral function, 
thi’cugh the frequency moments in Equation (2.11) and the now defined diffusion 
moments 

<r>“ = tjT ) wan du 

(2.47) 

It should be noted that the functions Faa (K,w )/a> and Daa (K,w) are both even 
in a). 
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If large z expansions are 

we note that 

performed on Equations (2.45) and (2.46). and If 

Maa(K,0) = - ^ /“° 

aa 

(2.48) 

then we find, for Equation (2.46) 

M(K, z) 

M(K, 0) 
= 1 [>- ¿/’ d“] 

-1 

m=l 

aa 

n=0 

^Dîn^ It 
m 

In a similar manner. Equation (2.45) becomes 

M(K, z) 

M(K, 0) <-->r /' -oo n= 1 

dw 

oo 

L <-">I 
.m 

(2.49) 

(2.50) 

vfl_i8h Equating relations (2.49) and (2.50), 
where the odd frequency mome^ jX oa^ n=4 
we find for equivalent powere of 1/Z . 

aa 

K (2.51a) 

«:/«: ■ «r • «->:)' (2.61b) 
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(2. 51c) 

2 

+ 
(2. 51d) 

Therefore, with the frequency moments determined from the thermal expansion 
of the time-independent spin correlations, these equations yield the dlffusivity 
moments. It can be seen that the higher order dlffusivity moments are essen¬ 
tially given in terms of the lower order dlffusivity moments, this fact leading 
to a significant computational convenience in the final calculation of the time- 
dependent spin correlations. Solving Equation (2. 51) for the second and fourth 
dlffusivity moments, one obtains 

/ \aa . <"‘>r 
V f«)“ / 

(2. 52a) 

/ \aa 
<DV = 
' / K 

<->“ <->; 
<“>k 

(^¡\ (Wi\ 
u->r 

aa r / \ aa 

K 

aa -i 

(2. 52b) 

If the identity in Equation (2.36) is applied to the Integral in Equation (2.46), 
then 

rf d0 0) = CKw) + 1 D^iK, w) 
4* - zJ w (2.53a) 

where 

CK«) = P / di. D^il 
n (j)2 - (jj2 

(2. 53b) 
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From Equation (2.45), we find 

F^OC,«) = lim i j Maa(K, CJ + ie) - Maa(K, co - ie)l 
e-o L J (2.54) 

which« when used with Equations (2.46) and (2. 53), yields the spectral function 
in terms of the generalized diffuslvity 

Faa(K, u) = -2M(K, 0) ^(K.fa))_ 

w “ WJ[1+Q(W)]J(25J 

The usefulness of this representation depends critically upon whether the 
function Daa (f£,w) turns out to be simple and well-behaved or not. 

In complete analogy with the above formulation, a variety of existing 
phenomenological theories of equilibrium phenomena can also be conveniently 
cast in terms of the generalized diffusivity.33»34 In these analyses, the usual 
choices for the functional form of the diffusivity are the two-parameter 
exponential33 or the two-parameter Gaussian.3*33, 3” Since the latter 
has been used quite successfully, it will now be discussed. An adequate 
representation of generalized diffusivity by a two-parameter Gaussian is 

D^otw) = Aaa(k) rao(k) exp |-rrao(k)wla( 
( L J ) (2.56) 

where the normalization and collision parameters, Aaa (K) and raa(K) are 
functions only of K, through their relation with the previously determined 
frequency moments and diffusivity moments. The parameter raa (K) can be 
considered as a quasi-collision time. 

3. H.S. Bennett à P.C. Martin, Phys. Rev. 138, A608 (1965). 
6. H.S. Bennett, Phya. Rev. 174, 629 (1968); 176, 650 (1968). 
7. R.A. Tahir-Kheli and D.Q. McFadden, Phya. Rev. 178. 800 (1969):182. 604 (1969); B4, No. 7, 

3178 (1970); IM, No. 9, 3649 (1970); B4, No. 9, 3671 (1970). 
33. P.C. Martin, in 1967 Lea Houchea Lecturea. ed. by C. DeWitt and R. Balian. New York: Gordon and 

Breach, Science Publiahera, Inc., 1968. 
34. P.C. Martin A S. Yi", Phya. Rev. 170,151 (1968). 
35. B.J. Berne, J.P. Bo. id S.A. Rice, J. Chem. Phya. 46,1086 (1966). 
36. R.A. Tahir-Kheli, J. Aypl. Phya. 40,1550 (1969). 



To determine these parameters, we use Equations (2.47) and (2.56) and 
find 

(2. 57a) 

(2. 57b) 

(2. 57c) 

and, solving for the parameters from Equations (2.51a) and (2.51b) or (2. 52a), 
we obtain 

and 

Aaa(K) =\/ír 
<¿y¡ 

<“•>; 
aa 

-* 

K 

raa(K) = 

aa 

K 

[•(<••>: «WJ) 

½ 

(2. 58a) 

(2. 58b) 

Performing the principal parts integration in Equation (2.55), we obtain as 
the final form of the spectral function 

F^iK.w) - 2Maa(K, 0) Poa(K, to) 

“ ,, [, 2^1 '“r“(K> 
A / 

0 

exp[x*] dx 

(2. 69) 
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This relation specifies the spectral function completely. The essential proce¬ 
dure is then to calculate in the following order: 

1. The frequency moments by the time-independent Equation (2.13) or 
(2.16) , which involve the thermal expansions embodied in Equations 

(2.17) and (2.19). 

2. The Gaussian parameters by Equation (2.58). 

3. The Gaussian diffusivity by Equation (2. 56). 

4. The spectral function (actually line shape function) by Equation (2.59). 

5. The Fourier transform of the spin correlations by Equation (2.10b) 
or (2.14) and the time-dependent spin correlations by Equation (2.10a). 

In this manner temporal spin correlations are constructed from time- 

independent spin correlations. 

GENERAL FORM OF THE FREQUENCY MOMENTS 

Although it is simpler to use the statistical correlation function of 
Equation (2.8) In the moment expression of Equation (2.16) in the infinite 
temperature computation of the frequency moments, the more complicated 
relation valid for any temperature, Equation (2.13), with the commutator spin 
correlation is used, in order to open the possibility of performing tempera¬ 
ture expansions of the moments. 

The procedure for calculating the moments by Equation (2.13) Involves 
first finding the time derivatives by the equation of motion, Equation (2.17) 
and then computing the resulting time-independent statistical averages by the 
high temperature expansion of Equation (2.19). Considerable commutator 
algebra must be performed. With the notation now that Sj refers to the 
a - component of the spin at site 1, some of the more important basic 
commutator relations are 

[Sf.Sjl = isfs,, 

[s+,s;i = 2SJ«,, 
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ist,s+] = [s;,s;i =isf,sfi = o 

This procedure also requires the evaluation of traces of products of spin 
operators with highly variable permutations and combinations of site indices. 
For the lower order moments of present interest, the products are short to 
moderate in length, and fortunately, have been tabulated by Ambler et al. 
in a form, however, which requires some modification. Since the Heisenberg 
Hamiltonian in the form of Equation (2.2) is applied for overall computational 
convenience, the results of Reference 37, which give the traces of products of 
powers of Sx, Sy, and Sz, are reformulated in terms of S+, S", and Sz by the 
defining Equation (2.3) for the raising and lowering spin operators, by the 
ancillary relations 

S+S~ = (Sx)2 + (SV)2 + Sz (3. la) 

S'S+ = (Sx)2 + (sy)2 - Sz (3. lb) 

and by the various symmetry and permutation rules, regarding the spin 
exponents, given in Reference 37. A listing of repeatedly applied traces is 
given in Appendix A. 

The special case of the zeroth frequency moment at infinite temperature 
follows, from the first term of Equation (2.25) 

(U0)** = 0 e^- <8-^ TrtS“ S“ ) / Tr(l) = 0a 

g-w (3.2) 

where 

a = jS(S+l) (3.3) 

and, of course, 

Tr(l) = 2S+1 (3.4) 

37. E. Ambler, J.C. Eisenstein, and J.F. Schooley, J. Math. Phys. J3,118 (1962). 
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If the distinct components a a' in Equation (2.4) are extended through 
Equations (2.5) to (2.13) and are interpreted as "+ it can be shown that the 
transverse moments are 

(3.5) 

To calculate the non-vanishing second and fourth, longitudinal moments, 
the time derivatives of (t) are found by Equation (2.17). Thus 

and 

'K‘-Ms;vs;sr] 
f 

= -2A^4<l0[sfSg - S* S'J 

f 

(3.6) 

- +s*s*sf ' sZfSfs« ' sfs*s’f] 
f 

- 2£m*o {M">o[sJs;sg + sjsjs;] 

- Mmg>[s*s;sm + S^s;s-] I 

- ^Mgolymg)- [„(mo](s;s;Sg + S2mS;s-f) 

fm 

- 2^r i+<gf> i0(go[sgsj - S+S’l 
f (3» 7) 

These equations omit the specification of time t in the spin operators on the 
right-hand side, since it is immaterial in the equal-time commutators of 
Equation (2.13). 
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If these results are used in the following specific forms of Equation (2.13) 

(3.8) 
g-w 

and 

(„.yz e-iK-(g-w) slm]) 

g-w (3.9) 

and 

and if the thermal expansion of Equation (2.19) is performed for Infinite 
temperature, then the longitudinal frequency moments are found to be 

(-):2 = 

R 

R 

R 

+T?(eik'ft ' ') 

+(i6 t|)i;(R)| 

+ 2 I+(R+U) I+(R) I+(U)[l0(U)- I0(R)] 
^ -4 * 
RU 

+ 2(1-eá,è)la+(R) I0(Ú)[l0 (U)-I0(R+U)] 

+ ^1 - e*‘ ^ 1+ (R) [s - Se1^* iV (U) j 

(3.10) 

(3.11) 
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where R is the lattice vector between sites g and w, and U is the lattice vector 
between site g and all other sites included within the range of the exchange 
interaction. 

Following the same procedure for the second and fourth transverse 
moments, we obtain, in order to proceed in alternate forms, the time deriva¬ 
tives of both S+ (t) and (t). Thus, the first derivatives are 

= 2ASzS+ - A S+ dt g g g g 

- 2 £ MW s' sj ♦ 2 53 !. «e> sí s* 
f f B 

(3.12) 

or 

i£s;(t)-2AS^S-w- as; 

+ 2E'+<*m)S^S; -2^1, (n,w)S'mSw 
m m 

(3.13) 

The second derivatives are 

(‘ sr)’ s¡(» = - “aEmw S¡ s? sf + SA 21, (ig) sf $1 s* 
i i 

+ 4aJ] 4(ig) Szs^ - 4a2i0^>S?S¡ 
i i 

- 4a£ l+(ig)S^S*S+ + 2a£ 4(ig)[s+ s; - s?] s* 
i i 

+ 4AJ SZSZS^ - 4AJ sfst + Aa S+ 
g g g g g g 
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+ 4 2 4(jg)l+(«i)S*s'V 

+ 2 £w*>4<ii>[sgs:- s+ s‘]s* 

- 4£4äg)i„üi>s‘s*s* 
« 

-»S 1,08)4(¾) SjS^ S* 

+ 2^'" 
« 

os) 4<ii)[sf s: - s¡ s:] s; 

+ l,(jg) l,(i8)S*sV 

ÿ (3.14) 

(‘i)! S'w«) - - 4*E4<™,S;sX + 8a5]i0(™,S-wSZwSJ 

+ 4A^4(rw)S;sz - 4a£i0(™,s;sÍ 

- 4A2Mn»)S-rSzwSi, 
r 

+ 2ALMrw)[s-wS+wS;- Sw S; SW] 

+ 4AJ S" SZ Sz - 4A2 S" SZ + A2 S" WWW w w w 
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+ 4^4(sw)I+(rs)S‘rS^S 

rs 

+ 4(rw)J+(sw)[s"rsVw- S; S; S_s] 

rs 

+ 4 Yi 4(sw) I0(rs) S¡ SX-42;I0(sw) 4(nv) S; S; 

rs rs 

2^10(Sw)Mrs)[swS^S;- SwsV] 
rs 

+ 4 2^ I0(sw) *o (rw)SwSs Sr 
rs 

The transverse moments are, by Equation (2.13) 

or 

and 

(3.15) 

g-w 

' / K 
g-w 

(3.16) 

(3.17) 

g-w (3.18) 

or 

g-w (3.19) 



After the commutators and traces are performed, the transverse moments 
are finally found, as follows: 

•èAî ('- ¿)+ tL fa«» ♦•;<*> 
R 

2e 
iK-R 

(3.20) 

and 

<->; 
XX 

■4 

K 

64^ a3 
= A (1 - i) L{t R ['i «> - K,h '■> «>] 

3 - . ) 
+fl5.(R) l0 (R)j 

* 
R 

+t'í<*>+tc';<*>} 
*«(-22_ . _22_ + S' \ 
A y 140 280a 2240aay 

£ {- To (3 + -s)1: «> - T (1+«r) ■; <Ä> 

+ tõ(8+-&) «*'r4(R)i;«) 

- -ra-(4+ i)1;«»1;«» 
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♦ £ I i 'î W <û) +T 'i(Ä) '+<Cl> 
RÚ ^ 

- I* (R) 4 (Ú) 4(R+U) 

- 4 (R) loíRÍIJíU) 

- e*‘ ^ 4(R) 10(R) íoíR+U) 

+ e1^' ^ 4(R+U) 4(U) I0(U) [y I0(R+U) + I0(U)] 

+ ^eiK-R !,£) i+(Û)4(R+Û) + yI2+(R)IJ(Û) 

- 4(R)4(U)4(R+Û) I0(R+Û) 

+ eÄ‘RP (Ú)4(R)I0(R+U) 

- 3 e*“ ^ P (Û) 4(R) I0(R) 

It is noteworthy that two necessary conditions for the correctness of these 
results for the moments have been satisfied. The first of these is that the 
moments must be independent of axial anisotropy for a system with S=l/2. In 
this case, the quantity 4^=1, and the terms in the moments, containing the 
axial anisotropy constant A, vanish. The second condition is that the moments 
must contain no terms in N, the number of spin sites. A large number of 
terms in N and N2 evolve during the course of calculation but manage to finally 

cancel. 

However, other criteria for attesting to the probable correctness of these 
final forms of the moments can be applied. For example, in the limit of axial 
Isotropy, i. e., A^O, the transverse and longitudinal moments correspond to 

(3.21) 
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the calculations in Reference 7. If, in addition, the exchange becomes isotropic, 
i. e., I+(R)=Io(R), the transverse and longitudinal moments become equivalent 
and correspond to the calculations of Reference 4. 

Finally, in the case when axial anisotropy is still finite but only the 
exchange is isotropic, these results converge to the limiting condition given 
by Lindgãrd27, where all of the moments agree, except the fourth longitudinal 
moment, where Lindgard gives a value of the AI2(R) term of Equation (3.11), 
which is 1/2 of the present result. However, several checks on this calcula¬ 
tion have sustained a conclusion that Equation (3.11) is correct. The exchange- 
anisotropic nature of the axial anisotropy terms in the moments is entirely new. 

It can be noted that in the axially isotropic case the longitudinal moments 
vanish in the long wavelength limit, i. e., K<< 1. This does not occur for the 
transverse moments, except under the additional condition of exchange 
isotropy. 

In the calculation of these moments, a great amount of diagrammatic 
analysis is still present. However, it is at a lower level of complexity than 
in direct approaches, since the time-dependence in the Heisenberg representa¬ 
tion of the dynamical spin operators has been removed from the structure of 
the moments. Even so, the moments given here are only about one twentieth 
as long as their most expanded forms, before combination and cancellation 
of terms occur. 

CORRELATIONS IN ONE DIMENSION 

The final forms of the infinite-temperature frequency moments expressed 
in the "General Form of the Frequency Moments" section are general, In the 
sense that they apply to any lattice structure, for arbitrary range of the 
exchange integrals and for any spin magnitude. In order to study the correla¬ 
tions in a certain structure, it is necessary to particularize the various 
moments for that lattice. To assist in this calculation, Appendix b discusser 
the geometrical ideas and presents some results. It Is convenient to introduce 

4. M.F. Collins & W. Marshall, Proc. Phyg. Soc. 92, 367 (1967). 
7. R.A. Tahir-Kheli and D.G. McFadden, Phys. Rev. 178, 800 (1969); 182, 604 (1969); B4, No. 7, 3178 

(1970); B-l, No. 9, 3649 (1970); IM, No. 9, 3671 (1970). 
27. P.A. Lindg&rd, in Neutron Inelastic Scattering, 2, 93 (I.A.E.A., 1968). 



a few new definitions. Defining the nearest neighbor distance as (1) and the 
next neai’est neighbor distance as (2), and, in addition, normalizing the 
energies by the nearest neighbor z-z exchange, Iq(1), that is 

G = 
4(D 

l0U) 
H = - 

U2) 

1,0) 
L = 

4(2) 
1,(1) 

D = 1,(D 

and introducing, for a linear chain, 

(4.1) 

u, = cos(K) ; Vj -• cos(2K) ^ ^ 

we can, with the considerations of Appendix B, recast the longitudinal frequency 
moments in the following one-dimensional form for a linear chain, 

0[4aIoO)l2 

(1- u1)Gî +(1- v,)^ 

(4.3) 

and 

1280aM4o(l) 
' JD (l- ^-) [(u,- IIC- +(,,- 1)L»h] 

+ TD’(l'ir)[<,'u',G’+<1'v'>L’] 

+ 2 (v, - u,) GJ L (1 - H) + 2(Ul - 1) G* H 

+ (v, - 1) L* +-2-[(u, - 1)GJ + (Vj 1) L1 HJ] 

+ 2^(1 - u, )GJ +(1 - v, )LJJ(1 +H*)-j-|(l - u, )G4 +(1- Vj )L4] 
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1 

+ 5(GJ +LM2 +3(Uj GJ +v1L2)2 - 8(u,G2 +v)L2)(G2 +L2) 

+ [(u,- 1) (G4+ - 1)(L4+|l2H2)] 
(4.4) 

The transverse moments become 

16(Ja2I2(l) 1 ’4¿) = 1SDV- ^i-KG + v.HL) 

+ -j(l +H2 + G2 + L2 ) (4. 5) 

and 

XX 

■4 

K 

128ßa* I4(l) 
" D('- i)[5-<u.G,+v.L’> 

+ -¿(u, G + y, H’ L) + -5-(61 + L1 H)! 

+ 2D4 

^(1- ^r-joi,G + v|HL)+f(G1-M1)+ .H1,] 

[27 39 , 51 1 
560 ' 1120a 8960a2 J 

+ ¿(6 + t)(- * ” H4 + 4u,C* + 4 V, L*h) 

+ m(I6+t)(“.C+''.LH,-2G'-ÍL’H’) 

- 7(^+7)(04+*-4)++H1) ^.L.J’^u.O.v.Lh)' 

- 4(u1G + v1LH)(l +H2) + 3(G2 +L2)(1 +H2) 

- 6(u, G + V, HL) (G2 + L2 ) 
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+ G L^u, (2 - G2 +L+H) + v1G(l -yL)- GH- 2cj 

+ Gh|u1(Gî - 2) + v1(G + ^H)j- VjHL 
(4.6) 

These results exclude exchange interactions beyond the second nearest neighbor. 

Therefore the temporal correlations are determined numerically as func¬ 
tions of the energy ratios G, H, L, and D, and of the magnitude of the spin 
variable a. The non-dimensionallzing exchange integrals, in this case Iq(1), 
with its nearest interspin separation, do not give rise to any explicit dependence 
but rather determine a reduced set of units in which space and time are meas¬ 
ured, according to the "law of corresponding states", discussed in Reference 7. 
This’law postulates that there exist appropriate reduced scales for ttie correla¬ 
tions and for the frequency w and time t, such that correlations |or different 
spin magnitudes S are approximately the same. This is accomplished for the 

Fourier transform by plotting I <S“(t) s;«)) >„ (4af1/2 versus o,[l(4a) 

and for the time correlation, by plotting < S“(t) 8^(0) > (a)" versus It(4a) . 

This law was found to have greater validity as the dimensionality and range of 
the interaction is Increased, since the double sums in the fourth moments given 
in Equations (3.11) and (3.21) become more important, under these conditions, 
than the single sums, which are spin-dependent. 

For two cases, infinite spin and unity spin, the correlations have been 
calculated for a linear chain under various conditions. These results are 
given in Figures 1 through 12. The curves for 8=1 are not displayed except 
in one case in Figure 2, since they are quite close, usually within a few line 
thicknesses, to the infinite spin curves, in accordance with the above state¬ 
ments. However, as the axial anisotropic constant, D, increases (or decreases 
to large negative values), the unity spin curves will show mi increased separa¬ 
tion from the infinite spin curves, due to the dependence of the D terms in the 
moments upon the spin parameter, a. 

For vanishing axial anisotropy D=0, nearest neighbor exchange only, 
H=L=0, the line shape is a function of G. Where G, under these conditions, 
is large, i.e., IA- 0, the system approaches the XY model, having only 
transverse exchange; but when G - 0, i. e., I+ - 0, the system reduces to a 
nearest neighbor Ising model with only longitudinal exchange. 

Figure 1 displays the infinite spin results for the Fourier transform of 
the longitudinal self-correlation function under nearest neighbor interactions 

7 RA Tahir-Kheli and D.G^McFtdden, Phy«. Rev. 178, 800 (1969); 182, 604 (1969); B4, No. 7, 8178 
' (1970); hi, No. 9, 3649 (1970); B^, No. 9, 3671 (1970). 
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(H=L=0) and isotropic exchange, (G=l) as a function of frequency and the axial 
anisotropic parameter, D. It is noted that two values of D result in the same 
Fourier transform. This can be easily explained by observing the quadratic 
dependence of the D-terms in the fourth longitudinal moment, Equation (5.4). 
In this case, with G=l. L=H=0, these terms have a dependence upon D, given 
by the relation, 2D-Inconstant, and the D-terms reach a maximum for D=l. 
As D increases to large values or decreases to large negative values, the 
frequency spectrum of the Fourier transform becomes compressed toward 
lower frequencies and appears to be approaching the limiting case for the 
Ising model, which would show a delta-function at the origin. 

In Figure 2, the value of G is changed to 0.5. Here we see that the curves 
have shifted still more toward lower frequencies. (Note the change in scale. ) 
We also show the separation of the unity spin curve from the infinite spin curve 
in the case when D=6(or -4). This separation is probably the largest one of all 
the cases considered herein, and since most unity spin results are considerably 
closer to those of the corresponding infinite spin cases, the correlations will 
henceforth not display the S=1 calculations. 

In Figure 3, where G=2, it can be seen that for large G, the effects of 
changes in D are highly mitigated. It has been shown that the curves for large 
G appear to be approaching the corresponding results for the XY model. 

The combined effects of G and D are shown in Figure 4, where, for D=0, 
curves of G=. 5, 1, and 2 are given and for G=l, curves of D=1 and 6(or -4) are 
included. The results for G=. 5, D=0 are quite similar to those for G=l, D=6. 
It can be concluded for the longitudinal transforms, that large values of axial 
anisotropy, (positive or negative) yield results similar to those obtained with 
small exchange anisotropy, whereas the large anisotropic exchange behavior 
cannot be duplicated by any axial anisotropy. 

Note the divergences of these Fourier transforms of the longitudinal 
correlation for w ^ 0 as discussed in the Section "Formulation" under "The 
Hydrodynamical Representation of Spin Diffusion. " A proof of the logarithmic 
nature of this divergence has been given by Fernandez and Gersch.3 

Continuing the study of this nearest neighbor case (H=L=0), we next exam¬ 
ine the structure of the transverse self-correlations. First, the transverse 
correlations will be approximately the same with a large absolute value of D, 
as can be ascertained by examining the transverse frequency moments in 
Equations (5.5) and (5. 6), where it is seen that the second moment includes 
a D2 term and the fourth moment contains terms in D, D2, and D . For large 

38. J.F. Fernandez and H. Gersch, Phys. Rev. 172, 341 (1968). 



(D), the linear term in the fourth moments becomes less important relative to 
the D2 and D4 terms. In Figure 5, the frequency Fourier transforms of the 
infinite spin, transverse self-correlation arc plotted for various values of the 
axial anisotropy, ItO, 1, 2, 4, -1, -4, under the conditions of exchange 
isotropy (G=l) and nearest neighbor interaction range. When the system is 
completely isotropic (D=0, Gkl), this resulting curve is identical to the 
corresponding results for the longitudinal self-correlation. However, when 
D/0, both the small frequency and large frequency behavior of the transverse 
auto-correlations differ from the corresponding longitudinal results in two 
ways. First, for large/d| , the transverse curves show no divergence for to -0, 
whereas the longitudinal cases do diverge (See Figure 1). Secondly, the trans¬ 
verse curves, for large |D/, undergo a flattening and the cutoff frequency, 
i. e., where the correlation approaches zero, is greatly extended, as contrasted 
to the longitudinal curves. 

This behavior can be explained by the fact that the z-component of spin is a 
constant of the motion. Therefore, this fact will usually give rise to a spin 
density diffusion, i.e., in the longwave length, long-time limit, the local 
density of the z component of spin will follow a diffusion equation. In contrast, 
the X and y components of spin are not constants of the motion unless the 
system is completely isotropic (G=l, D^O). Therefore the transverse com¬ 
ponents of spin density do not follow a diffusion equation. In Figure 5, the 
closeness of the EM and -4 curves agree with previous comments, regarding 
the approximate quadratic dependence upon D, when D is large. 

In Figure 6, the only change from Figure 5 is that the exchange anisotropy 
is introduced, by a decrease with G=. 5. Here the transverse curves experience 
only a slight shift to lower frequencies, (note the change in scale), and for 
large Id/ , a broad maximum has appeared. In Figure 7, the exchange 
anisotropy is increased to G=2, and the effects of changing D, it is seen, are 
greatly reduced, as expected, by the previous discussion, and by the corres¬ 
ponding results for the longitudinal correlation. 

The frequency Fourier transform of the nearest neighbor transverse 
correlation is displayed in Figure 8. Here many of the above-mentioned trends 
are evident. In order to preserve the sum rule 

(4.7) 

this curve must go below the frequency axis. 



It is seen that these nearest neighbor correlations become quite small for 
large values of axial anisotropy D, as can be expected from the functional 
dependence of the frequency moments in this limit. 

In Figure 9, the effects of varying the nearest neighbor exchange anH axial 
anisotropy are explored in the transverse self-correlation. Here, we allow 
G=l, 2, .5, for D=0, and, in addition, D=2, 4, for G=l. These effects for the 
transverse case are quite different from those of the corresponding longitudinal 
results in Figure 4. First of all, the transverse correlations in the high fre¬ 
quency region for large exchange anisotropy (G=2, D=0) can be simulated with 
large axial anisotropy (D=2, 4; G=l). Also, at least to a limited extent, the 
moderately-low frequency results obtained by decreasing G to a value of . 5, 
can also be simulated roughly by a limited increase in the axial parameter D, 
to a value of approximately 2. In addition, the flattening of the transverse 
correlation for large |d/ is similar to the corresponding results for large G. 
(It is not shown, but the G“4, D=0 curve lies somewhat below and above the G=l, 
D=4 curve for low and high frequencies, respectively. ) 

The effect of next nearest neighbor exchange upon the previous results is 
examined in Figure 10, where H=L=1. All of the results become highly con¬ 
stricted, as expected, showing that the inclusion of higher range order lessens 
the effects of both nearest neighbor exchange anisotropy and axial anisotropy. 

The time variation of the temporal, transverse self-correlations are shown 
in Figure 11, for nearest neighbors and various parameters of anisotropy, l.e., 
G=. 5, 1, 2, 4 with D=0, and B=2, 4 with G=l. These curves are the appropriate 
inverse Fourier transforms of the corresponding curves in Figure 9. It is seen 
that the decay rate of the time-correlation increases and decreases directly as 
G increases or decreases from its exchange isotropic value of 1. Variations 
in the axial parameter D cannot duplicate the decreased decay rate for small G, 
but the increased decay rate for large G can be simulated with large D. 

Finally, in Figure 12, we examine the time-variation of the longitudinal, 
time-dependent self-correlations for nearest-neighbor exchange and various 
values of the anisotropic constants, i. e., G=. 5, 1, 2 with Dt=0 and Ifcl, 4, 6, 8, 
10 for G=l. These curves show decay rates which increase or decrease 
according to the change of G from its isotropic value of 1, similarly to the 
transverse correlations in Figure 11. The curve for G=. 5 is approaching the 
structure of the Ising limit, where the decay would cease completely, since the 
z component of each spin would be a constant of the motion. (For the Ising 
model, i.e., G=0, D=0, the curve would be merely a straight line with the 
ordinate =1. ) The principal result is that increasing the value of /D / to large 
values also decreases the time-decay of the longitudinal correlations, similar 
to decreases in G. This expected result is the reverse of the transverse 
correlations. 



An additional limiting case of the present results is to consider the spin 
correlation for the purely crystal-field Hamiltonian. If the exchange vanishes 
in Equation (2.1), the Hamiltonian becomes 

This simplified spin system admits an exact solution for the transverse spin 
correlation in the unity spin case. The longitudinal spin correlation vanishes 
due to the fact that the trace of S* to any odd integer power equals, zero. 

In order to study the thermodynamics of this system, we shall*use, as in 
Equation (2.43), the temperature-dependent, double-time retarded “Green 
functions,39 in the general form 

(( C(t); B(t'))) = - ifl(t - t ') ( [C(t), B(t')] ) (4# 9) 

The relevant thermodynamic averages or statistical correlations Introduced in 
Equation (2.8), are determined from the Fourier transform of these Green 
functions in the usual manner, i. e. 

Im «C; B», (tj+ie) 

1 - e-*« •] 
(4.10) 

Here we have used the notation 

2n /"« 
•/_oo 

C(t); B(t 
eiE(t- t ) d(t_ 0 

(4.10a) 

The quantity < < C;B> is the analytic extension of the Fourier transform of 
the Green function into the upper half of the complex energy plane. 

39. D.N. Zubarev, Soviet Phyaica Uapekhi, 3, 320 (1960). 



Tf 

It is convenient to define two dififerent Green functions,40 namely 
G(n> (t-f) with n=0 and 1, where 

G(n) (t- I') = ^(c(n)(t);S“(t ))) , C(n)(t) = [sz(t)] n S+i (t) 
(4.11) 

The equations of motion of these Green functions are now determined under 
the Hamiltonian (4.8) and their energy transforms are found according to 
Equation (4.10a). With the property common to all unity spin Ising systems,' 
that is 

41 

G(i)(t- t ) = G(,) (t- f) 

one obtains the following relationships, 

(4.12) 

G(o)(E)[e +a]= y+ 2AG(i)(E) (4.13) 

G(l ^E) [e " a] = (3m + 0-2) 

where G^^(E) Is the Fourier transform of G^n^(t-t'), that is 

G(n)(t- t ) = 

and 

-f G(n)(E) c',E(t_ ! ^dE 
BO 

» - (s') 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

Now Equations (4.13) and (4.14) are readily solved, and the use of Equation 
(4.9) along with the unity spin kinematic relations leads to the following40 

= 0 (4.18) 

m = 
2 + e"0A 

(4.19) 

40. O.B. Taggart and R.A. Tahir-Kheli, Physica 44, 321 (1969). 

41. R.A. Tahir-KhaU, Phya. Rev. 169, 517 (1968). 
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"0 

Using these two simple results for the purely uniaxial case in Equations (4.13) 
and (4.14), we obtain for G(°)(E), the Fourier transform of the Green function 
equivalent to the transverse correlation of interest 

G(o )(E) = ( 2+6e_M - 2) (E + AME - A) 

In the form of partial fractions, this becomes, 

G<0><E) * ' ')(' + ñh) 

(4.20) 

(4.21) 

For the transverse spin operators. Equation (4.10a) can be written as 

G(o)(E) =((s+;S")) 
(E) 

= «S+(t);S"(t ))) tm' n d(t- t ) 

^ (4- 22) 

The specific form of the statistical spin correlation is then given by Equation 

(4.10), in the following form 

( «S+;S"»,B4, , -«S+;S"»iP. 
^ S+(t')S‘(t)') = ij 

e^E - 1 
kiL-®«- «' ) dE 

(4.23) 

where, by Equation (4.21) 

«S+;S'»(B«.> ■ + TÁrx) 

«S+;S'»(E-i.) ' t(-^ - >) (- ™) (4_ 
24) 
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Applying the delta function 

6(x) 2ni (4.25) 

in the limit of « ^ 0 to the integral of Equation (4.23), we find that the time- 
dependent transverse correlation is finally 

where the times t and t' have been changed to 0 and t, respectively. In the limit 
of infinite temperature, this equation becomes simply 

cos (At) 
(4.27) 

and the transverse correlation, according to Equation (3. 5) is 

cos (At) 
(4.28) 

Note that the amplitude of 2/3 is the spin parameter, a, for unity spin. 

This exact harmonic result can then be compared to the transverse 
correlation based on the approximate two-parameter Gaussian diffusivily with 
the derived frequency moments. To do this, the frequency moments of 
Equations (4.5) and (4.6) must be renormalized with powers of A instead of 
Iq. Then the transverse frequency moments, with the exchange terms vanish¬ 
ing, become 

(4.29) 

and 

= 280" 560a 4530? 
27 39 ^ 51 

1280a3 A4 (4.30) 
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Note that these moments are independent of the wave-vector so that only the 
self-correlation is non-zero. 

With the same procedure, the longitudinal moments go to zero. 

In Figure 13, the time-dependent transverse correlations for the purely 
uniaxial Hamiltonian are presented. The exact result of Equation (4.28) is 
followed reasonably well by the approximate diffusivity-frequency moment 
result for short times. However, the long-time behavior of the approximate 
correlation only qualitatively reproduces the exact result. 

CORRELATIONS IN TWO DIMENSIONS 

In a manner similar to the one dimensional case in the previous chapter, 
the frequency moments may be particularized for a two-dimensional, simple 
quadratic net lattice structure. We still maintain the general conditions of 
axial and exchange anisotropy, and next nearest neighbor interactions. With 
redefinitions in two-dimensional wave vectors, 

u2 = cos kx + cos ky ; Vj = cos kx cos ky (5.1) 

the longitudinal frequency moments, by Equations (3.10) and (3.11) and the two- 
dimensional results of Appendix B, become 

= (2- Uj)G’ +2(1- v2)La 
160a2 Ij(l) (5.2) 

and 
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Figure 13. A Comparison of the Unity Spin, Time-Dependent Transverse 
Correlations of the Exact Harmonic Solution of the Pure Uniaxial 

Hamiltonian and of the Approximate Two-Parameter Gaussian Diffusivlty 
Based on the Zero-Exchange Frequency Moments Retaining Only the 

Uniaxial Terms. 
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+ 4GJL(1 - H)(2vJ-ua) + 4^(uI-2)G*H + (v2- 1)L3J 

+ |[(u2- 2)G3 +2(v2- 1)LîHî]-|[(2-u2)G4 +2(I-v2)L4] 

+ 4 [(2- u2 )G2 +2(1 - v2 )L3] (1 + H1 ) + 20(G2 + L3 )3 

+ 3 (u2 G3 + 2va L3 )3 - 1 6(u2 G3 + 2v2 L3 )(G3 + L3 ) 

+ ¡¿[(u2 - 2) (G4 +|g3) + 2(v2 - 1) (L4 L3H3)] 

The transverse moments are 

<->;x 3 / , \ 
= ^rD3( 1-¿1- (u2G + 2v.LH) 

ain/n 20 \ 4a/ ’ » 160a3 IJ(1) 

+ 1 + G3 + H3 + L3 

and 

XX 

K 

1280a314(l) 
= TD('- ¿)}u,Gs+2»,L>-2(u,G + 2»,H>1) 

+ 2 (G2 +L3H) 

(5.3) 

(5.4) 

"|D3(l-¿) i" (uJG + 2vJLH) + 2(G3 +L3)+|(1+H3) 

+ 2D4 1 =¾ - rÆ- + 51 560 1120a 8960a3 

lo(6tr)(- I - H* + 2“îG* + 4.J L1 H ) 

2õ(l6 +a") (U'G + 2,>‘H’ - 3Ga +3L’H’) 
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+ 12 (G1 + L2 ) ( 1 + H1 ) - 12 (Uj G + 2v2 LH) (G* + L* ) 

_ -1-^4 + i^G4+L4^+lO^G2+L2y +6(1 + H2)* 

- 8(uîG + 2vILH)(l + H2) + 3 (u2G + 2va LH)2 

+ GL[u2 (-2G2 + 4 + 2H + 2L) + v2G(4- 2L)- 4GH- 8G] 

+ GH[u2(2G2 - 4) + v2G(4 + 2H)] - 4v2 LH (5> 6) 

The correlations based on these moments are now calculated under many 
conditions of the dimensionless parameters. For nearest neighbor exchange, 
some of these results are shown in Figures 14 through 17. Many of the features 
observed for the one-dimensional case carry over into the quadratic lattice. 
The behavior of the Fourier transforms and time-dependent forms of the longitu¬ 
dinal self-correlations in Figures 14 and 15 (compare to Figures 4 and 12) 
possess many of the features of the one-dimensional case. The Fourier trans¬ 
form, for example: (1) still diverges for the zero frequency limit, (2) shows 
a similarity of behavior for small G and large D in its narrowing toward the 
origin, and (3) exhibits a decreasing divergence at zero frequency and a 
broadening of its spectrum to higher frequencies, when the exchange anisotropy 
is increased, with no possibility of approach to this result via the axial anisotropy. 
However, two slight differences in the transforms in two-dimensions, as com¬ 
pared to the linear chain, are that the zero-frequency divergence is less severe 
and that the results for unity spin and infinite spin are even closer in two dimen¬ 
sions than in one dimension. Hence these results agree with the previous state¬ 
ments concerning the divergence and with the aforementioned "law of corres¬ 
ponding states". The unity spin results are again not shown because of this 
reason. 

The time-dependent, longitudinal self-correlation in Figure 15 again exhibits: 
(1) a similar behavior for large D and small G in decreasing the decay rate from 
the isotropic case, (2) a large increase in the decay rate for large G, a result 
which cannot be simulated by variations in D. However, the effect of the higher 
dimensionality is to make the longitudinal time correlations less sensitive to 
Increases in D, relative to corresponding changes in G. More specifically, the 
G=l, D=6, curve in two dimensions is much closer to the G=l, D=0 (isotropic) 
curve and farther from the G=. 5, D=0 curve than the corresponding one¬ 
dimensional results. 



'V 

w />. 1/2 -=- (4a) 
1o 

Figure 14. The Frequency Fourier Transforms of the Longitudinal Self- 
Correlations versus Reduced Frequency, Exchange Anisotropy G With D=0, 

and Axial Anisotropy D With G=l, for a Simple Two-Dimensional Net 
of Infinite Spins, V/ith Only Nearest Neighbor Interactions (K-“-L=0). 
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Figure 15. The Variation, With G and D, of the Temporal, Longitudinal Self- 
Correlations versus Reduced Time, for the Simple Two-Dimensional Net 

With Nearest Neighbor Exchange and Infinite Spin. 
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Figure 16. The Variation, With G and D Considered Separately, of the Frequency 
Fourier Transform of the Transverse, Self-Correlation, for a Simple Two- 

Dimensional Net of Infinite Spins With Nearest Neighbor Interactions. 
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Figure 17. The Variation, With G and D, of the Temporal, Transverse Self- 
Correlations versus Reduced Time, for the Two-Dimensional, Infinite Spin, 

Simple Net With Nearest Neighbor Interactions. 
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The behavior of the frequency Fourier transform of the transverse correla¬ 
tion in two dimensions is shown in Figure 16, and also exhibits features analogous 
to its one-dimensional counterpart. (See Figure 9.) The transforms at zero 
frequency are smaller than in the linear chain, and the cutoff frequencies are 
slightly larger. The transforms for large exchange anisotropy can be simulated 
with large axial anisotropy. 

The temporal transverse correlations are exhibited in Figure 17, where it 
is seen, in a comparison with the linear chain (see Figure 11), that the time 
decays are generally more rapid for the same conditions on the parameters, and 
that the large axially anisotropic cases tend toward similarity with the results 
for large exchange anisotropy. One interesting feature, however, is that the 
time decay of the G=l, D=4 curve is more rapid than the <3=2, DtO curve, con¬ 
trasting with the corresponding results of the linear chain. 

CORRELATIONS IN THREE DIMENSIONS 

We now particularize the general form of the frequency moments to a simple 
cubic lattice structure. With the aid of Appendix B and the following redefini¬ 
tions in terms of three-dimensional wave-vectors 

u3 = cos kx + cos ky + cos k7 

v3 = cos kx cos ky + cos kx cos kz + cos ky cos kz 
(6.1) 

the longitudinal frequency moments become 

160aalJ(l) 
(3- u3)Ga +2(3-vs)La 

(6.2) 
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and 

<“)• i \r 1 
= iDV-4rJL(u’'3)G’+2<,’'3)L'HJ 

+ TD’(1'4r)[<3'u>)G’ + 2<3"'>)1'’] 

1280a31,(1) 

+ 8(u3 - Vj )G3 L( 1 - H) + 8(u3 - 3)G3 H + 4(v3 - 3)LJ ( 1 + 2H3 ) 

+ -2- [(u3 - 3)G3 +2(v3 - 3)L3h]+ 6 [(3- u3)G3 +2(3- v3)L3] 

X (1 + 2H2) - j [(3 - u3 )03 + 2(v3 - 3)L4 ] + 45(G3 + 2L3) 

+ 3(u3 G3 + 2v3 L3 )3 - 24(u3 G3 + 2v3 L3 ) (G3 + 2L3 ) 

+ [(u, - 3) (GA +|g3) + 2(v3- 3)(L4 +|l3 H3)] 
(6.3) 

The transverse moments are 

= (usG + 2v#LH) 
.aia/n ¿u \ ' 160a313(l) 

+ y (1 + 2H3 +G3 +2L3) 
(6.4) 

and 

<«•>“ , \r ! 
k = -joy!-¿j[usG3 + 2vsL3 - 2(u,G + 2vsH3L) + 3(G3 +2L3H)J 

+ 1-1)3 u3G- 2vsLH + 3(Ga + 2L3) + j (1 + 2H3)j 

1280a314(l) 
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+ 2D4 F _21 39 51 1 
L 560 ' 1120a 8o60a2J 

é\6 + 7)(3- “.C’ + J », L’H - 2H’ - 1) 

¿(16+í)(U3GOv.LH1-TG‘-9LIH!) 

l(4 +t) (g‘ +2l,) + t(i + 2H‘) ' + f"(G' + 2L') ’ 

12 ^3 G + 2v3 LH^ 1 + 2H^ + 3 ( U3 G + 2v, LH^ * 

27 ^GJ + 2L^ + 2H2j - 18 fu3 G + 2v3 LH^ ^GJ + 2La) 

GL[4u3(2" G2 +L + H^+2v3 G^2 - - 12G (H + 2^J 
(6. 5) 

For the case of nearest neighbor exchange only (H=L=0), the correlations 
are presented in Figures 18 through 21, where the results follow the general 
pattern established In one and two dimensions. 

The Fourier transform of the longitudinal self-correlation is shown in 
Figure 18, where it can be seen that the zero-frequency values are now finite 
for G/0 or IVO. (The G=. 5, D=0, curve does actually intersect the ordinate axis 
at value of approximately .122, which is off the scale.) Therefore the higher 
dimensionality has flattened the curves and extended them toward higher fre¬ 
quencies. The similarity of the behavior of the transforms for decreased G and 
for increased D is again present. The curve for G=2, Dt=0 is now quite flat, 
varying slowly over ihe indicated frequency range, and showing the approach to 
the XY model for large G. In this limit, the transform would approach very 
small values, maintained constant but extending over increased frequencies. 

In Figure 19, the temporal, longitudinal correlations are exhibited. The 
time decays are somewhat more rapid in three dimensions than in two, but the 
similarity of results obtained by decreasing the exchange anisotropy and by 
increasing the axial anisotropy can again be observed. 

In Figure 20, we note that the Fourier transforms of the transverse, self¬ 
correlations are also compressed toward the frequency axis and extend to higher 
frequencies. The simulation of large G behavior with large D behavior Is again 
noted; e. g., the G=2, I>=0, curve is fairly close to the G=l, B=4 curve. This 
same similarity can be observed in Figure 21, where the time-transverse 
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Figure 18. The Frequency Fourier Transforms of the Longitud Ina] Self- 
Correlations versus Reduced Frequency, Exchange Anisotropy G With D=0, 

and Axial Anisotropy D With G=l, for a Simple Cubic Lattice of Infinite 
Spins, With Only Nearest Neighbor Interactions (H=L=0). 
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Figure 19. The Variation, With G and D, of the Time Dependent, Longitudinal 
Self-Correlations are Considered for the Three-Dimensional Infinite Spin, 

Simple Cubic Lattice With Nearest Neighbor Interactions. 
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Figure 20. The Variation, With G and D Considered Separately, of the Fre¬ 
quency Fourier Transform of the Transverse, Self-Correlation, for a 

Simple Cubic Lattice of Infinite Spins With Nearest Neighbor Interactions. 
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Figure 21. The Variation, With G and D, of the Temporal, Transverse Self- 
Correlations versus Reduced Time, for the Infinite Spin, Simple Cubic 

Lattice With Nearest Neighbor Interactions. 
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correlations are presented and show approximately the same increase in the 
decay rate for the two curves alluded to in the previous statement. These 
results show that the decay rates for corresponding cases, in three dimensions 
are somewhat larger than in two dimensions. (Compare with Figure 17 and 
note the scale change. ) 

Finally it should be mentioned that the infinite spin correlations for vanish¬ 
ing axial and exchange anisotropy in the frequency moment equations have been 
studied in Reference 7 and yield excellent agreement with the classical limit of 
Windsor,11*14 as applied to a simple cubic structure. 

CONCLUDING REMARKS 

In these calculations in one, two, and three dimensions, two approximations 
frequently encountered in similar studies in the literature have not been used. 
The assumption of a spherical continuum model was not applied in any calcula¬ 
tions. Instead, the precise contributions from the exact lattice sites were 
computed. The random phase approximation, which simplifies the long calcula¬ 
tions of the thermal averages by factorization or decoupling procedures was also 
avoided. The thermal averages of the spin operator products were, Instead, 
calculated precisely for their given length. Therefore, a fair assessment of 
this study is that it involves a relatively exact calculation of an approximate 
phenomenological representation of space-time-dependent correlations for a 
very general Heisenberg spin system at high temperatures. 

In this study we have evaluated the longitudinal and transverse spin correla¬ 
tions of Heisenberg spin systems with both uniaxial and exchange anisotropy in 
the limit of elevated temperature by the method of frequency moments, utilizing 
the zeroth, second, and fourth moments in the frequency wave-vector spectral 
function, based on the hydrodynamical two-parameter Gaussian dlffusivity. The 
moment equations are valid for all spins for arbitrary range of the exchange 
interactions and for arbitrary dimensionality and lattice structure. These 
moments are judged to be likely correct, even though a discrepancy was noted 
in the literature, because of the agreements with certain necessary conditions 
and approaches to various limiting cases. These moments were particularized 
to one, two, and three dimensions, including the next nearest neighbor 

11. C.o. Windsor, Proc. Phys. Soc. 87, 601 (1966); 89,826 (1966); 91, 863 (1967). 
14. C.O. Windsor, in Inelastic Scattering of Nsutrons, 2, 83 (I.A.E.A. 1968). 
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interactions; and the resulting time-dependent correlations and their Fourier 
transforms were calculated, exhibiting features predicted by theoretical con¬ 
siderations, and pointing to several conclusions: 

(1) The effect of increasing the axial anisotropy upon the longitudinal 
correlations is similar to that of decreasing the exchange anisotropy. 

(2) In contrast, the behavior of the transverse correlations is similar for 
increasing axial anisotropy or for increasing exchange anisotropy. 

(3) The anisotropic effects on the correlations are decreased as the 
strength of the exchange interaction is increased or as its range is 
extended to the next nearest neighbors. 

The fact that the present approximate phenomenological theory appears to 
give a satisfactory representation of some limiting cases of isotropic Heisenberg 
systems gives hope that the present results are equally meaningful for more 
general cases for which direct solutions are not available, since they cannot be 

carried out, in any practical sense. 



APPENDIX A 

TRACES OF SPIN OPERATOR PRODUCTS 

The traces of the spin operator products tabulated by Ambler et al.37 are 
reformulated, as explained in the section "General Form of the Frequency 
Moments." 

All factors of (2S+1) are omitted, since they cancel with the Tr(l) term 
in the denominators of the thermal expansion. With the previously used 
definition of 

a - -j- S(S+1 ) 

some of ihe traces repeatedly encountered In these calculations are listed: 

Tr(Sz)’ = a 

Tr S+ S~ = 2a 

Tr S+ S' Sz = a 

TrS" S+Sz = -a 

TrS+S"S+S‘ = y a(6a + 1 ) 

TrS+S" S" S+ = J-a(4a- 1) 

TrS+ S" SZSZ = -|-(6a+ 1) = TrS" S+SZSZ 

Tr (Sz)4 = y (9a- 1) 

TrSzS+ S~ S“ S+ = 0 = TrSzS~ S+S+S" 

Tr Sz S+ S S+ S = y a (6a + 1) 

Tr(Sz)> S" S+ = (9a- 1) 

Tr (Sz)s S+S~ = y (9a - 1 ) 

TriS2)6 = ¿.(278* - 9a+ 1) 

37. E. Ambler, J.C. Eiaraatein, and J.P. Schooley, J. Math. Phya.,3,118 (1962). 
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Tr (Sz)4 S+ S" =^- (54aî + 24a - 5) 

= Tr (Sz)4 S“ S+ 

TrS+S' S+S' (SZ)J = ¿-a (36aJ +30a- 1) 

Tr S" S+ S+ S“ (Sz)’ = Js * (36aJ - 33a + 6) 



APPENDIX B 

FREQUENCY MOMENTS APPLIED TO LATTICE STRUCTURES 

In applying the frequency moments in their general forms derived in 
"General Form of the Frequency Moments" to specific lattice structures, it is 
necessary to consider the range of exchange interaction to the desired n^ 
nearest neighbor. In this study, n=2, so that interactions extending to first 
and second nearest neighbors are considered to be dominant, in agreement with 
considerable experimental data. 

In one dimension, there are two first nearest neighbors and two second 
nearest neighbors. In the two dimensional net, these numbers are four and 
four, respectively; and for the simple cubic case, they are six and twelve, 
respectively. The symmetries which exist reduce the distinct K-vector terms 
to the uj , Vj types given previously. 

The following three summations will now be taken as examples, applying 

to the one, two, and three dimensional cases: ^ Ia (R) IJ (R) ; Ia (R) IJ (Û) ; 

- .... R RU 
/1 (R) I0(U) I0 (R+Ü). We shall also illustrate these three expressions with 
* «♦ 

RU - — 
*♦ 

the ciK* ^ factor. 

With the same definitions introduced in "Correlations in One Dimension" 
for (1) and (2) indicating the separations from the reference site to the first 
and second nearest neighbors, the above summations become, for a linear 
chain 

£p.(R)IJ(R) = 21a+(l)lJ(l) + 2Ia+(2)IJ(2) 

R 

2 P(R)IS(U) = [2Ia (1) + 2Ia(2)J[21a(1) + 2Ia0(2)j 
* * 
RU 

2 IJ.(R)I0(U)I0(R+U) = 2 2 Jl3+(R)[l0O) I0(R+1) + I0(2)I0(R+2)][ 

RU R 
Î 
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= 2IJ+( 1 ) l0 ( 1 ) I0 (2) + 2I’+( 1 ) I0 (2) I0 ( 1) + 21^(2) I0 ( 1 ) I0 ( 1 ) 

= 4P(1)I0(1)I0(2) + 2P(2)IJ0(1) 

The other sums with the wave-vector are, by the definitioas of Equation (4.2) 

IJ(R) = 2Uj 1^(1) Ij(l) + 2v1Iî+(2)IJ(2) 

R 

P(R)IJ(U) = [211,1^(1) + 2v1P+i2)][2I30(l) + 2IJ(2)] 
•4 

RU 

2 c^*\(R) I0(U) I0(R+U) = 2 2 eiK* R4(R)[l0(l) I0(R+1) +10(2) I0(R+2)] 

RU + R 

= 2u, I2+(l) I0(l) I0(2) + 2U, P(l) I0(2) I0(l) + 2V, P+(2) I0(l) I0(l) 

= 4u1P(l)I0(l)I0(2) + 2v,I2+(2)IJ(l) 

For the two dimensional net, we have 

2f(R)IJ(R)= 4I2+(1)IJ(1) + 4I2+(2)I20(2) 
•4 

R 

2 I2+(R) IJ(U) =[4F(1) + 4I2+(2)] [4IJ(1) 4IJ(2)] 

RU 

2l2(R) I0(R) I0(R+U) = 4^ j I2+(R)[l0(D I0(R+1) +10(2) I0(R+2)] { 
RU R 

= 8F(1)I0(1)I0(2) + 8I2+(1)I0(2)I0(1) + 8I2+(2)I0(1)I0(1) 

= 16I2+(1)I0(1)I0(2) + 8P(2)IJ(1) 



~ 'V 

By the definitions of Equation (5.1), the other sums, involving the wave-vectors, 
become 

2 e,K‘RP(R) Po(R) = 2u2P(1)IJ(1) + 4v2P(2)IJ(2) 

R 

2eiK,RP(R)P0(Û) =[2u2F(1) + 4v2P(2)] [4IJ( 1 ) + 4IJ(2)] 

RÜ 

2 elK*RP(R)I0(Û)I0(R+Ü)=4 J] e^’ Rp(R) [lo(l) lo(R+l) + Io(2)I0(R+2)] 

RU R 

= 4u2P(1)I0(1)I0(2) + 4u2Ij+(1)I0(2)I0(1) 

+ 8v2P(2)I0(1)I0(1) 

= 8u2P(1)I0(1)I0(2) + 8v2P(2)IJ(1) 

For the simple cubic case, we have 

2 P(R)IJ(R)= 6P(1)IJ(1) + 12P(2)IJ(2) 

R 

£ P(R)I2(Ú) = [ól^í 1)+12!* f 2)] [ólj (1)+ 12IJ(2)] 

RU 

£ la+(R)I0(Ù)l0(R+Ù)= Ç P(R)[6I0(l)l0(R+l)+12I0(2)I0(R+2)] 

RU R 

= 24P(1)I0(1)I0(2) + 24P(1)I0(2)I0(1) 

+ 24P(2)I0(1)I0(2) + 48P(2) 10(2) I0(2) 
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'll 

and with the definitions of Equation (6.1) 

2 c^‘RP+(R)IJ(R) - 2u3P(1)I20(1) + 4v3I’+(2)Ia0<2) 
-♦ 

R 

2 j*’* I2+(R) l20(Ú> = [2u3P+(1) + 4v3P(2)] [6120(1)+ 12IJ(2)] 
■4 4 

RU 

2 eiR,RP(R) I0(U)I0(R+U)= ]C e^*RIa+(R)[4I0(l)l0(R+l) + 4I0(2)I0(R+2)] 

RU R 

= 8u3 Ia+(1)I0(1)I0(2) + 8u3I2+(1)I0(2)I0(1) 

+ 8v,P(2)I0(!)I0(l) + 16v3P (2)1,(2) I0(2) 

To assist in these summations, Table I presents a listing of the multiplicity 
of terms of the above kind as a function of dimensionality and of the allowable 

permutation of vectors. When the summation Includes e as a factor, then 
the number of terms are determined by the number of cos terms. For instance, 
u2 includes two terms but v2, only one term. In three dimensions, both u3 
and Vg contain three cos terms, and the last term given above, the 
+16v3i2(2)Iq(2)Iq(2), is in agreement with the value of 48, given for the 
correspondingly structured summation for the simple cubic case in Table I. 
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TABLE I. 
Multiplicity of Exchange Terms 

Number of Terms 

Exchange Sums 

£I(fi) 
R 

^I(R)I(U) 

RU 

I(R)I(U'I(R+U) 

RU 

^ Linear 2-Dim. 
|R| |U| |R+U| Chain Net 

Simple 
Cubic 

6 

12 

36 

72 

72 

144 

24 

24 

24 

48 

Table L The multiplicity of terms in three kinds of e>change interaction 
summations, given for various dimensionalities and for specific, non-vanishing 
combinations of first and second nearest neighbor distances. The notation 
here is that |r| = 1 and 2 denotes the first and second nearest neighbor dis¬ 
tances, respectively. 
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