BEST

AVAILABLE

AD-773 049

CLASSIFICATION OF CHEMICAL REACTIVITY HAZARDS

James P. Flynn, et al

Dow Chemical Company

Prepared for:

Coast Guard National Academy of Sciences

December 1970

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

1. Report No.	2. Government Accession No.	
	2. Government Accession No.	3. Recipient's Catalog No.
CG-D-29-74		AD 773 049
I. Title and Subtitle		5. Report Date
	December 1970	
Classification of Chemica	al Reactivity Hazards	6. Performing Organization Code
		8. Performing Organization Report No.
Author's		
James P. Flynn, Harold E.		
Performing Organization Name and Addr	ress	10. Work Unit No. (TRAIS)
Dow Chemical Company		11. Contract or Grant No.
Midland, Michigan 48540		DOT-GG-11,775-A
		13. Type of Report and Period Covered
Sponsoring Agency Hame and Address		
National Academy of Scien	nces	Final Report
Washington, D.C.		14. Sponsoring Agency Code
with the adjacent loading	g of bulk chemicals on :	re the potential hazards associate ships & barges. The data generate
regulations for bulk ship chemicals of most interes to classify reactivity ha The developed classif experimental program to t Early in the work, th for possible utility. A the potential hazard of t	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t	nined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to the Early in the work, the for possible utility. All the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differential also determined. Following the accumu procedure was developed	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic	ater transport. The original 209 mere used in the development program bined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining they have limited use in dealing with rity hazards, the 209 chemicals wer structure. A representative working the experimental work was performed lity of each working chemical was
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to the Early in the work, the for possible utility. All the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working the	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals.	The original 209 were used in the development program bined chemical information with an pressure changes. Thermodynamic energies was explored ons have some value in determining they have limited use in dealing with they have limited use in dealing with they hazards, the 209 chemicals were structure. A representative working they of each working chemical was impact and spark sensitivities were working chemicals, an experimental
regulations for bulk ship chemicals of most interest to classify reactivity ha The developed classif experimental program to r Early in the work, th for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals.	The original 209 mere used in the development program of the development of the development of the of the development of the development of the development of the development of the development of the development of the development of
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to r Early in the work, th for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working in Key Work	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture, e	The original 209 mere used in the development program of the development of the development of the of the development of the development of the development of the development of
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to the Early in the work, the for possible utility. All the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differential also determined. Following the accumu procedure was developed mixtures of the working of Key Works Chemical, tempers reactivity, pressur hazard,	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture, e	The original 209 mere used in the development program bined chemical information with an pressure changes. Thermodynamic energies was explored ons have some value in determining they have limited use in dealing with they have some value in dealing with they have some value in determining they have some value in determining with the same some value in determining with a same some value in determining with the same some value in determining with a same some value in determining with the same some value in determining with a same some some some value in determining with the same some value in determining with a same some some some value in determining with the same some value in determining with a same some some some some value in determining with a same some some some some some some some so
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to r Early in the work, th for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working Keywork Chemical, tempers reactivity, pressur mazard, shipment,	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture, e	The original 209 mere used in the development program of the development of the development of the of the development of the development of the development of the development of
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to the Early in the work, the for possible utility. All the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentian also determined. Following the accumu procedure was developed mixtures of the working Keywork Chemical, tempers reactivity, pressur- nazard, shipment, measure,	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture, e the Nat	The original 209 mere used in the development program of the development of the development of the development of the development of the development of the development of the development of the development of the development of the develop
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to r Early in the work, th for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working Keywork Chemical, tempers reactivity, pressur hazard, shipment, measure,	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture, e	reter transport. The original 209 mere used in the development program dined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining they have limited use in dealing wi with hazards, the 209 chemicals were structure. A representative working the experimental work was performed lity of each working chemical was impact and spark sensitivities were working chemicals, an experimental cal reactivity hazards from binary motion Sistement th is available to the public throu choical Technical Information Service field, Va. 22151
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to the Early in the work, the for possible utility. All the potential hazard of st the problem of chemical of To accomplish the classe seperated into 60 groups chemical was chosen from with only the working che determined by differential also determined. Following the accumu procedure was developed mixtures of the working Key Works Chemical, tempers reactivity, pressur hazard, shipment, measure, Chemical to the seperation	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture. e 20. Security Classif. (of this p	reter transport. The original 209 mere used in the development program dined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining they have limited use in dealing wi with hazards, the 209 chemicals were structure. A representative working the experimental work was performed lity of each working chemical was impact and spark sensitivities were working chemicals, an experimental cal reactivity hazards from binary motion Sistement th is available to the public throu choical Technical Information Service field, Va. 22151
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to r Early in the work, the for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working with the working the accumu procedure was developed mixtures of the working with the work Chemical, tempers reactivity, pressur- nazard, shipment, measure, 2 Server, Classified	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture. e 20. Security Classified	reater transport. The original 209 rere used in the development program ined chemical information with an pressure changes. Thermodynamic energies was explored ons have some value in determining they have limited use in dealing with they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have lin they have limited t
regulations for bulk ship chemicals of most interest to classify reactivity he The developed classif experimental program to r Early in the work, the for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working with the working the accumu procedure was developed mixtures of the working with the work Chemical, tempers reactivity, pressur- nazard, shipment, measure, 2 Server, Classified	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture. e 20. Security Classif. (of this p	reter transport. The original 209 mere used in the development program dined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining they have limited use in dealing wi with hazards, the 209 chemicals were structure. A representative working the experimental work was performed lity of each working chemical was impact and spark sensitivities were working chemicals, an experimental cal reactivity hazards from binary motion Sistement th is available to the public throu choical Technical Information Service field, Va. 22151
regulations for bulk ship chemicals of most interest to classify reactivity ha The developed classif experimental program to r Early in the work, the for possible utility. At the potential hazard of it the problem of chemical of To accomplish the classeperated into 60 groups chemical was chosen from with only the working che determined by differentia also determined. Following the accumu procedure was developed mixtures of the working in Key Works Chemical, tempers reactivity, pressur mazard, shipment, measure, Server's Classified orm OOT F 1700.7 (8-72) Reproduced by	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture. e 20. Security Classified Reproduction of completed pog	Pater transport. The original 209 pere used in the development program bined chemical information with an pressure changes. mermodynamic energies was explored ons have some value in determining they have limited use in dealing with rity hazards, the 209 chemicals were structure. A representative working the experimental work was performed lity of each working chemical was impact and spark sensitivities were porking chemicals, an experimental cal reactivity hazards from binary button Statement t is available to the public through field, Va. 22151 page) 21. No. of Pages 22. Price 163 21. No. of Pages 22. Price 5.00/1.455
regulations for bulk ship chemicals of most interes to classify reactivity he The developed classif experimental program to to Early in the work, the for possible utility. At the potential hazard of st the problem of chemical of To accomplish the classe chemical was chosen from with only the working che determined by differentia also determined. Foilowing the accumu procedure was developed mixtures of the working of Keywork Chemical, tempers reactivity, pressur- nazard, shipment, measure, 2 Seron'y Classified arm OOT F 1700.7 (8-72)	pment of chemicals by w st to the Coast Guard w azards. fication procedure comb measure temperature and he use of calculated th lthough such calculatio individual chemicals, t cargo compatibility. assification of reactiv according to chemical each group & subsequen emicals. Thermal stabi al thermal analysis. I lation of data on the w to determine the chemic chemicals. ture. e 20. Security Classified	reater transport. The original 209 rere used in the development program ined chemical information with an pressure changes. Thermodynamic energies was explored ons have some value in determining they have limited use in dealing with they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with the second spark sensitivities were they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have limited they have limited use in dealing with they have lin they have limited t

28 NOV 1973

The work reported herein was accomplished for the U.S. Coast Guard's Office of Research and Development, Marine Safety Technology Division, as part of its program in Cargo Safety Technology.

The contents of this report reflect the views of Dow Chemical, Company, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Coast Guard. This report does not constitute a standard, specification, or regulation.

Reviewed By: J.M. CECE, LCDR, USCG Project Officer 5er/

Submitted By: -E. L. JONES, CDR, USCG Chief, Marine Safety Projects Branch

Released By:

C. J. GLASS, CAPT., USCG Chief, Marine Safety Technology Division Office of Research and Development U.S. Coast Guard Headquarters Washington, D.C. 20590

14

December, 1970

CLASSIFICATION OF CHEMICAL REACTIVITY HAZARDS

for the

Advisory Committee to the U. S. Coast Guard National Academy of Sciences Washington, D. C.

by

James P. Flynn Harold E. Rossow

The Dow Chemical Company Midland, Michigan 48640

ib

FOREWORD

The work reported in this document was sponsored and monitored by the Committee on Hazardous Materials of the National Academy of Sciences, Advisory to the U. S. Coast Guard, under Contract Nr. CCT-40-69-15.

ACKNOWLEDGMENT

The authors wish to acknowledge Mr. Robert B. Clipper, Mr. E. D. Prueter, and Mr. Werner J. Jensen, for their assistance in obtaining some of the experimental data.

TABLE OF CONTENTS

1.	INTRODUCTION AND SUMMARY .	• • •		• •	•	•	•			•			1
II.													3
	A. GROUPING OF CHEMICALS											3	-
	B. ACQUISITION OF WORKING											ر 4	
	C. SELF-REACTIVITY OF WORK	CING C	HEM.	TC A	IS	•	•	•	•	•	•	4	
	D. REACTIVITY OF BINARY SY	STEMS	OF	MO	ראס	INC	1					4	
	CHEMICALS	• • •	•	• •	•	•	•	•	•	•	•	10	
III.	DISCUSSION OF RESULTS	• • •	•	•••	•	•	•	•	•	•		• •	16
	A. PRESENTATION OF DATA .						_					16	
	B. ASSIGNMENT OF HAZARD DE	GREE		•					•	•	•	17	
	C. INTEGRITY OF CHEMICAL G			•	•	•	•	•	•	•	•	+7 18	
	D. REDUCTION OF CHEMICAL G			•	•	•	•	•	•	•	•	23	
IV.	CONCLUSIONS AND RECOMMENDAT				•	•	•	•	•	•	•	-	07
v.				•	•	•	•	•	•	•	•	•••	•
۷.	APPENDICES	•••	• •	•	•	•	•	•	•	•	•	• •	28
	A. REACTIVITY DATA	•••	• •				•					28	
	B. INDEX OF CHEMICALS	• • •	• •	•	•		•					151	

I. INTRODUCTION AND SUMMARY

The purpose of the work was to develop and use an experimental procedure to determine chemical reactivity hazards of specific chemicals and their binary mixtures. Of particular concern to the U. S. Coast Guard are the potential hazards associated with the adjacent loading of bulk chemicals on ships and barges. The data generated are to be used by the Advisory Committee to the U. S. Coast Guard in formulating regulations for bulk shipment of chemicals by water transport. The original 209 chemicals of most interest to the Coast Guard were used in the development program to classify reactivity hazards.

The developed classification procedure combined chemical information with an experimental program to measure temperature and pressure changes.

Early in the work, the use of calculated thermodynamic energies was explored for possible utility. Although such calculations have some value in determining the potential hazard of individual chemicals, they have limited use in dealing with the problem of chemical cargo compatibility.

To accomplish the classification of reactivity hazards, the 209 chemicals were separated into 60 groups according to chemical structure. A representative working chemical was chosen from each group and subsequent experimental work was performed with only the working chemicals. Thermal stability of each working chemical was determined by differential thermal analysis. Impact and spark sensitivities were also determined.

Following the accumulation of data on the working chemicals, an experimental procedure was developed to determine the chemical reactivity hazards from binary mixtures of the working chemicals.

-1-

The procedure was a simple, practical method that measured temperature and pressure changes and can be used with the large variety of reaction types encountered in the work. Finally, using the experimental data generated, a degree of hazard was assigned to those binary systems which exhibited reactivity between room temperature and 46° C. (115°F.).

II. DEVELOPMENT OF EXPERIMENTAL PROCEDURES

A. GROUPING OF CHEMICALS

It can be calculated that, from the original 209 chemicals under review, 21,736 binary systems are possible. To evaluate all possible binaries would represent a monumental task. However, a large reduction in the number of binaries for study was accomplished by separating the 209 chemicals into groups of similar chemical reactivity based on chemical structure. For example, chemicals having a hydroxyl group only were placed in one group; chemicals having only an amino group in another; but chemicals having both a hydroxyl and amino group were placed in a third group.

Initially, 56 groups were formulated from the 209 chemicals and group sizes varied from a single member to as many as 25. Later it was found necessary to increase the number of groups to 60.

A representative chemical was chosen for each of the 60 groups. Selection of this working chemical was based upon an expected high level of reactivity for its group and upon the ease with which it could be handled at ambient conditions.

The immediate result of the chemical grouping was to reduce the number of binaries to be studied, from 21,736 to 1770. For the present study, a further reduction was made in the number of binaries by excluding the following from the experimental program: aluminum triethyl, lead tetraethyl, chlorine, nitrous oxide, ammonia, hydrogen chloride, and hydrogen fluoride. Each of the fore-going are the working chemicals and the only members of their respective groups.

The members and working chemicals of all 60 chemical groups are presented in the Appendix.

-3-

B. ACQUISITION OF WORKING CHEMICALS

Approximately one quart samples of each of the working chemicals were acquired for the experimental work. Some of the working chemicals are products of The Dow Chemical Company and, in these cases, production samples were obtained. The others were obtained from the Curtin Scientific Company in 500-1000 g. samples of "practical" and "technical" grades which closely approximated the quality of bulk shipments. In a few cases, reagent grade materials were used. The source and quality of the working chemicals are indicated in the Appendix.

In addition, chemicals such as ethers, which are considered "peroxide formers" were analyzed for peroxide. The results are the ported as parts per million of hydrogen peroxide in the Appendix.

C. SELF-REACTIVITY OF WORKING CHEMICALS

Laboratory tests were performed to determine the behavior of the individual working chemicals when subjected to thermal, compressive (impact), and electrical energy inputs. The data obtained in the work are recorded in the Appendix of Reactivity Data.

1. Thermodynamic Calculations

It is generally recognized that the sensitivity of a chemical to detonation appears to be directly related to how near its composition approaches a monopropellant. The relation is often referred to as the "oxygen balance". The concept was applied to the present work.

This concept was applied using the proliminary methods of Dr. D. R. Stull*. In Stull's method, a computer program is used to calculate ΔH_D , the equilibrium heat relase upon self-decomposition of a

[&]quot;"Identification of Potential Chemical Reaction Hazards," D. R. Stull, Loss Frevention, Vol. IV (1970), a CEP Technical Manual, published by the Americas Institute of Chemical Engineers, 435 E. 47th St., New Yors, New York.

material, as well as $\Delta H_{\rm b}$, the heat release when the decomposition is performed in the presence of oxygen. For a monopropellant, the difference between $\Delta H_{\rm D}$ and $\Delta H_{\rm 0}$ is small; but for a stable, insensitive material, such as a hydrocarbon, the difference is large. When the difference, $\Delta H_{\rm 0} - \Delta H_{\rm D}$ was plotted vs. $\Delta H_{\rm D}$ for compounds for which sensitivity data are available, Stull found that zones of relative sensitivity to detonation appeared. The zones were even more apparent when the temperatures and pressures corresponding to $\Delta H_{\rm 0}$ and $\Delta H_{\rm D}$ were used.

When the Stull technique was applied to the working chemicals, it was found that almost all the chemicals fell into the insensitive areas of the Stull diagram. There were a few cases, however, which either fell into a possible sensitive area or were marginal. The latter chemicals are shown in Table I.

Another way of using thermodynamic calculations in indicating detonability, is to view the value of ΔH_D as the energy available for propagating a detonation once a reaction is initiated. In this view, it is assumed that, for a chemical system to detonate, a certain minimum amount of energy must be available. Lack of sufficient experimental data prevents a good test of this hypothesis. Some guidelines are available, however. For example, the Dow computer program calculates a ΔH_D of -40 kcal./100 g. for ammonium nitrate which can be detonated under confinement when sufficient energy is applied.

Assuming that -40 kcal./100 g. energy release is near the minimum required for propagation, the values of ΔH_D for working chemicals were examined. The review showed that most of the chemicals were low-energy materials and probably were not detonable. The exceptions were acrylonitrile, nitrous oxide, ethylene cyanohydrin, and ethylenimine, which are included in the list indicated by the approach of Stull.

As will be discussed later, none of these chemicals show a sensitivity to detonation in laboratory tests.

-5-

Group No.	Working Chemical	Structure	ΔH _o Kcal./100 g.	ΔH _D Kcal./100 g.
12	Acetonitrile	O " CH3C-C≡N	-331	-36
13	Acrclein	O CH2=CHCH	-312	-31
14	Acrylonitrile	CH ₂ =CHC≡N	-336	-6 8
34	Epichlorohydrin	CH2CHCH2C1	-209	-26
36	Nitrous Oxide ^a	N=N=O		-44
43	Vinylidene Chloride	CH2=CC12	-117	-39
46	Ethylene Cyanohydrin	HOCH ₂ CH ₂ C≡N	-294	-79
		NO2		
49	2-Nitropropane	CH3CHCH3	-257	-3 5
51	Propylene Oxide	CH3-CH-CH2	-3 57	-36
52	Ethylenimine	CH2-CH2 N H	-394	-56

Chemicals Selected by Thermodynamic Calculations

Table I

^aNot tested in program; will detonate in vapor phase with hot wire initiation.

2. Compressive (Impact Sensitivity

The effect of compressive energy input on the stability of selected working chemicals was determined with a JANAF liquid impact tester and, in some cases, with No. 8 du Pont blasting caps. In both tests, the liquid samples are confined.

a. JANAF Impact Test

In the JANAF procedure, 0.03 ml. of the liquid to be tested is placed in a specially designed holder which is then sealed with a neoprene O-ring and stainless steel diaphragm. Impact to the sample is delivered by a free falling calibrated weight dropped from a succession of known heights. The impact energy (weight x height) is increased until the sample decomposes, reacts, or detonates. The energy required to produce a reaction 50% of the time is reported as the impact sensitivity.

Impact tests were performed on those chemicals selected on the basis of chemical structure and thermodynamic potential. Tests were run at room temperature. None of the working chemicals tested were sensitive to impact at the maximum limit of the apparatus.

b. Elasting Cap and Booster Tests

With the exception of nitrous oxide, the working chemicals listed in Table I were also subjected to a No. 8 du Pont blasting cap. In the test, about 10 ml. of liquid were placed in an aluminum holder made from 0.5" O.D. x 3" rod, by drilling a 0.219" diameter hole to within 0.25" of the bottom. The opening of the aluminum holder was enlarged to accomodate a No. 8 cap snugly. A positive test result is indicated by a shredding of the aluminum holder. No detonations of the chemicals tested were detected.

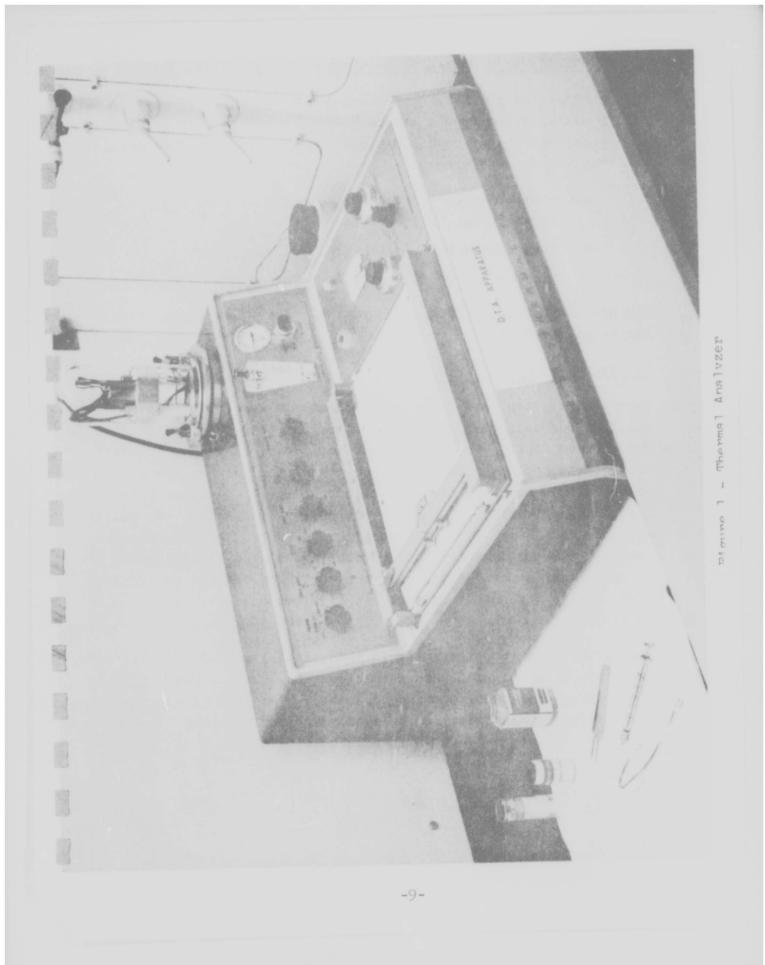
In a follow-up <u>unconfined</u> test on the chemicals in Table I, 146 ml. samples of the chemicals were put into 1.875" I.D. polyethylene bottles. A No. 8 du Pont blasting cap was suspended 0.5" below the surface of the liquid and supported by the container lid. The bottle and contents were placed on a lead witness plate and fired. No

-7-

detonations were detected in the experiments. The experiments were repeated using a 40 g. tetryl charge in place of the blasting cap. Again, none of the chemicals detonated, but all appeared to have burned.

3. Electrostatic Spark Sensitivity

An electrostatic spark testing apparatus described by the Bureau of Mines* was modified to blanket the sample and spark source with nitrogen. Initial tests done in air served only to ignite flammable vapor-air mixtures. Since the interest was in determining whether the <u>decomposition</u> or self-reaction of a chemical could be initiated by a spark, the modification was made to provide a nonreactive atmosphere.


Spark tests were performed on the working chemicals selected on the basis of their structure or the thermodynamic calculations. The only chemicals which gave a positive response below the 14 joule limit of the apparatus were trichloroethyelene (3.12 joules), vinylidene chloride (0.013 joules), sulfolane (3.13 joules), and creosote (coal tar) oil (3.13 joules). In all cases, the decomposition was non-propagative, that is, reaction only occurred in the path of the spark.

4. Thermal Sensitivity

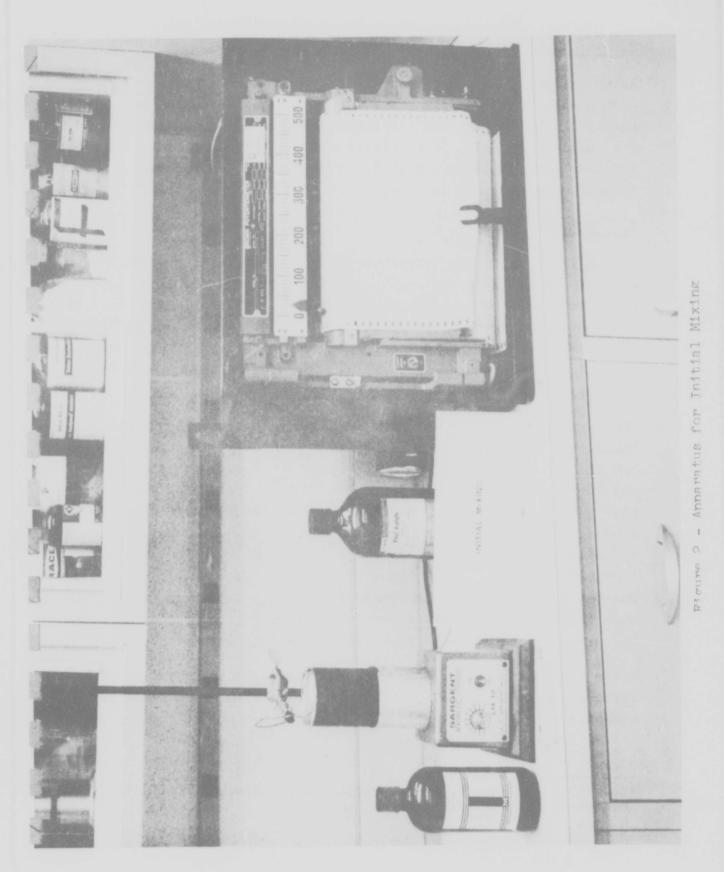
Thermal testing of working chemicals was done with a duPont Model 900 Thermal Analyzer. About 10-12 milligrams of liquid sample were placed in a glass capillary which was then sealed by fusion. The sample was heated at a rate of 20°C./min. to 300°C. or until an exothermic reaction ruptured the glass capillary. A thermal record was obtained for each working chemical. If an exothermic selfreaction (usually decomposition) occurred with any chemical, the onset temperature was recorded and can be found in the Appendix of Reactivity Data. The thermoanalytical equipment is shown in Figure 1.

*"Sensitivity of Explosives to Initiation by Electrostatic Discharges", F. W. Brown, D. J. Kusler, and F. C. Gibson, Report of Investigations No. 5002, Bureau of Mines, 1953.

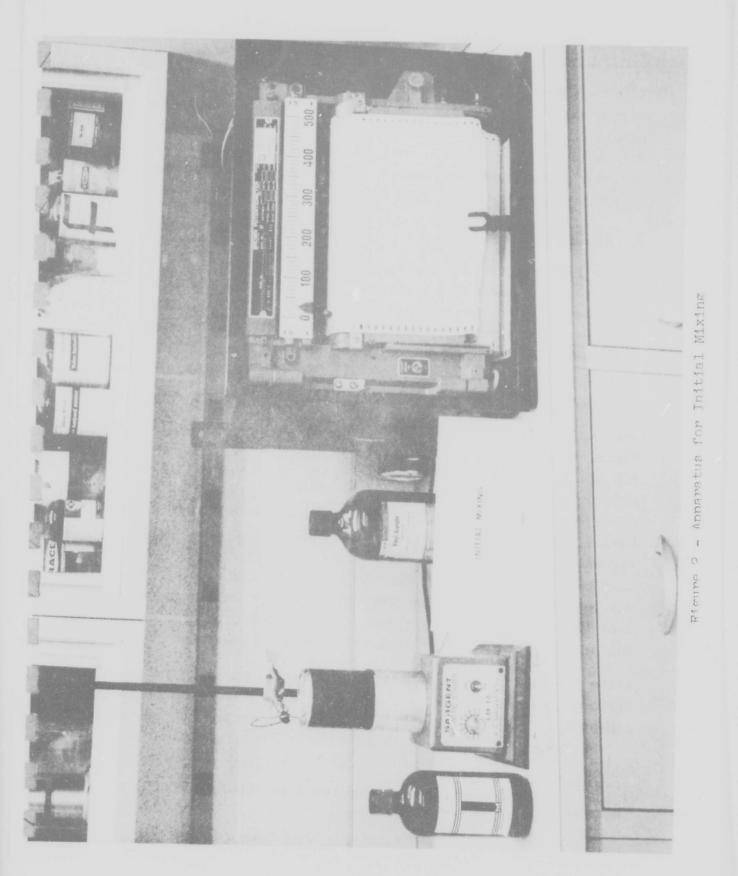
-8-

D. REACTIVITY OF BINARY SYSTEMS OF WORKING CHEMICALS

The experimental program for determining the reactivity hazards of binary mixtures required a simple procedure which would be useful on a great variety of reaction types and rates. Specifically, it was required to determine:


- a. whether an exothermic reaction occurs when two working chemicals are mixed;
- b. the maximum rise in temperature, ΔT_{max} ; and
- c. whether gas is generated in the reaction.

The procedure developed for the study of binary reactivity consisted of three steps.


1. Step 1

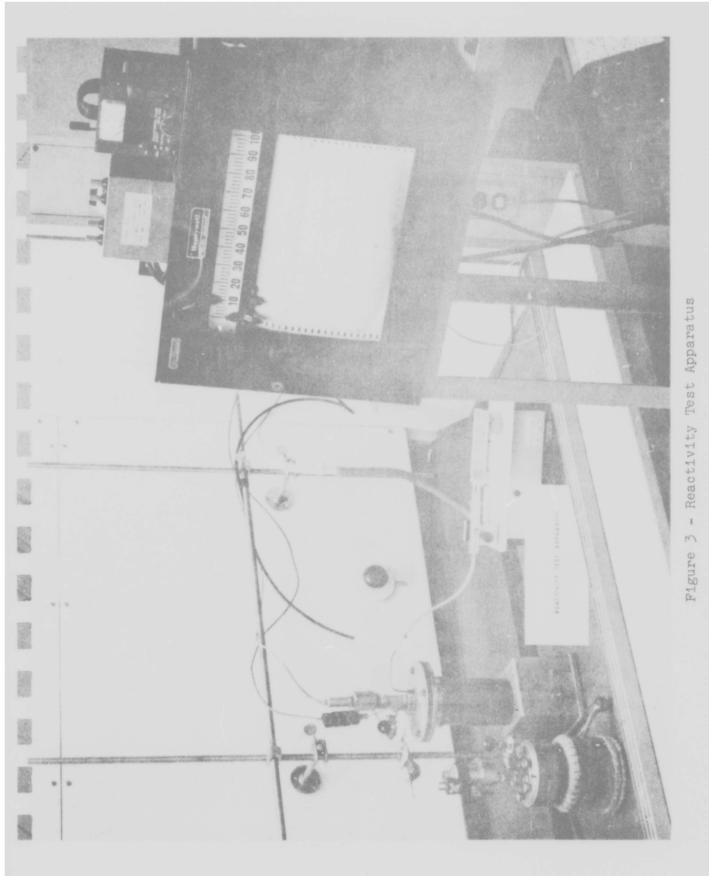
In the first step, the two working chemicals were mixed together by simultaneous delivery from graduated syringes into a 300 ml. silvered Dewar flask. The working chemicals were delivered in a 1:1 molar ratio and the volumes of each calculated so that the final volume was 10 ml. The binary was thoroughly mixed with a Tefloncoated magnetic stirring bar. A No. 30 iron-constantan thermocouple, sheathed in a 2 mm. O.D. glass capillary, sensed any temperature change. Temperature was recorded continuously on a strip-chart recorder. When an exothermic reaction occurred, the maximum temperature reached was noted and the change in temperature, ΔT , was calculated.

The duration of the experiment in this initial mixing step was normally about 1-2 minutes when a reaction took place. However, all mixtures were allowed to stand at least 5-6 additional minutes to permit time for secondary or delayed reactions to occur. The equipment used in Step 1 is shown in Figure 2.

-11-

2. Step 2

If no exothermic reaction occurred in the mixing experiment, or if only a small exotherm was observed and a liquid mixture remained, a sample of the mixture was taken for differential thermal analysis. The sample was heated at a rate of $20^{\circ}/\text{min}$. to 300° C. or until an exothermic reaction took place*. Figure 1 is a photograph of the Thermal Analyzer used in Step 2.


3. Step 3

In the last step of the experimental procedure, measurements of pressure and temperature increases were made on those binaries found reactive between room temperature and 46° C. (115°F.). For the measurements, the reactivity apparatuses shown in Figure 3 were constructed. Measurements on most reactive binaries were performed in an instrumented Dewar flask, whereas the violent reactions were run in a Parr bomb.

The design details of the Dewar reactivity apparatus are shown in Figure 4. The stainless steel retaining ring was fastened onto the 300 ml. silvered Dewar flask with epoxy resin cured in place. The retaining ring served as the means by which a stainless steel head plate was bolted to the Dewar flask. A silicone rubber gasket was used between the retaining ring and head plate. The head has four threaded openings to accomodate: (i) an inlet tube for addition of chemicals to the reaction vessel; (ii) a stainless steel sheathed, No. 30, iron-constantan thermocouple; (iii) a 0-50 psig range pressure transducer; and (iv) a vent arm with pop-valve set at 40 psig. The 310 ml. capacity Parr bomb was similarly instrumented.

After the reaction vessel was charged with a measured volume of one working chemical (normally less than 5 ml. of the more volatile or the more reactive chemical), the apparatus was bolted together. The

^{*}Toward the end of the study, samples were taken to 200°C. to hasten completion of the work.

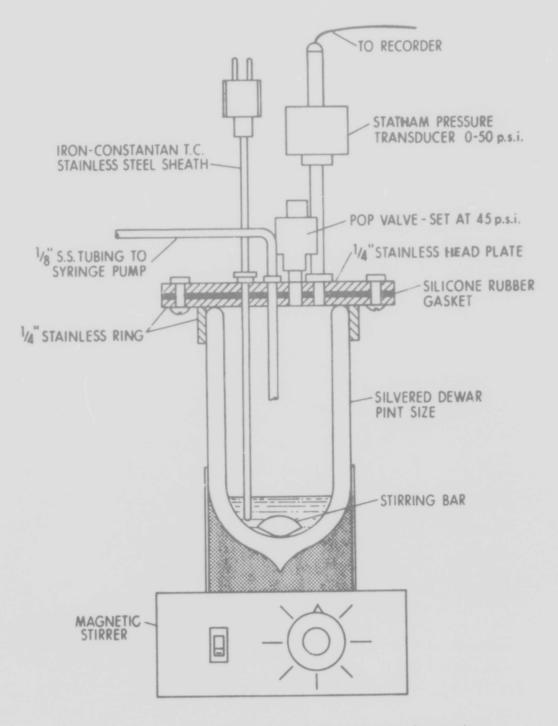


Figure 4 - Design Details of Reactivity Apparatus

second working chemical was then added in known amounts through the inlet tube by means of a syringe pump. Final volumes were kept close to 10 ml. for uniformity of the ullage to sample volume ratio. Agitation was provided by a Teflon-coated magnetic stirring bar. Time to run experiments varied from 20 to 45 minutes, depending upon the nature of the reaction.

A continuous record of change in temperature and pressure (ΔP) was made during the addition and mixing of chemicals. The maximum temperature (ΔT max.) attained was recorded for each reaction studied and compared to the value of ΔT max. obtained in the initial mixing step. The two values were not always the same, because the maximum temperature need not be that measured in Step 1 where a 1:1 molar ratio was used in all experiments and where heat loss by volatilization was sometimes a factor. In the third step, a "titration" of one chemical with another occurred, and if a greater temperature rise took place at a molar ratio other than 1:1, it was observed. In all cases, the largest value of ΔT recorded in the experiments is reported in the Appendix of Reactivity Data.

III. DISCUSSION OF RESULTS

A. PRESENTATION OF DATA

Data on the self-reactivity of working chemicals and reactivity of binary systems formed by the working chemicals are presented in the Appendix of Reactivity Data.

1. Data on Working Chemicals

With the exceptions noted in Section IIA, the name, source, and description are given for each of the working chemicals. In those cases where a peroxide analysis was obtained, the analytical results are reported. The potential energy release upon equilibrium self-decomposition is given in terms of kilocalories per mole and per gram.

Thermal sensitivity is reported if an exothermic reaction is observed during differential thermal analysis to 200° or 300°C., as noted. Where obtained, sensitivity to spark and impact energy inputs are also given.

Finally, a list of the chemicals represented by the working chemical is presented.

2. Data on Binary Systems

The reactivity data on binary systems of working chemicals are presented in a concise manner by using the number of each chemical group. If a binary system was found to be immiscible, the subscript "I" was used on the group number.

The binary reactivity of each group is given in order of decreasing reactivity, as the initiation of measureable reactivity is affected by temperature.

Presented first for each group's working chemical are those groups with which it was found to have an exothermic reaction between room temperature and 46°C. For these reactions, the temperature and

-16-

pressure data obtained in the reactivity apparatus are shown in the second and third columns of the table. It is this temperature category which contains the most probable hazards from reactivity and is the one of most concern.

Following the category of room temperature to 46°C., are the categories: 46°-100°C., 100°-200°C., and 200°-300°C. As mentioned earlier, late in the program thermal analysis was taken to 200°C. rather than 300°C. For the latter binary systems, there are no data for the 200°-300°C. category.

If a binary system was found to have exothermic reactions in more than one temperature range, it is reported in every range it was found to be reactive. Therefore, in using the Appendix, attention should be given to all temperature categories*.

B. ASSIGNMENT OF HAZARD DEGREE

Not all binary systems which exhibit an exothermic reaction should be considered hazardous. Many reactions were found to raise the temperature of binary mixtures incrementally and did not evolve gases. Reactions such as these cannot be considered a transportation hazard. On the other hand, a binary reaction may produce very little exothermic effect but evolves gases in the reaction. Since reactions producing gases can quickly lead to overpressurization of containers, they should be considered a high hazard.

Accordingly, a ranking system was devised for those binaries found to react between room temperature and 46°C. (115°F.). The system suggested to the Advisory Committee is based upon the temperature and pressure data obtained during the course of the work and uses

^{*}The effect of keeping the binary at a temperature for a long time was not studied. It was judged that the thermal analyses, which were run to relatively high temperature, would uncover hazardous chemical reactivity. Binaries containing nitric acid and unsaturated compounds may be an important exception. The only detonation experienced in the work occurred with a mixture of 70% nitric acid and acrylonitrile at approximately 90°C. under dynamic heating conditions. It is very possible that detonation could occur at a much lower temperature following a long delay period.

the hazard degrees: None; Low; Medium; and High. The definitions are as follows:

- a. Hazard degree "None" is given those reactive binaries having a ΔT_{max} . which does not exceed 25°C. and with no gas evolution.
- b. Hazard degree "Low" is given those reactive binaries having a ΔT_{max} . which is greater than 25°C. but does not exceed 50°C. and with no gas evolution.
- c. Hazard degree "Medium" is given those reactive binaries having a ΔT_{max} . which is greater than 50°C. but does not exceed 75°C. and with no gas evolution.
- d. Hazard degree "High" is given those reactive binaries having a ΔT_{max} . which exceeds 75°C. or having gas evolution regardless of the value of ΔT_{max} .

The above system was used to compile the fourth column of the tables in the Appendix of Reactivity Data.

In determining whether gas evolution occurred during reactions, Figures 5, 6, 7, and 8 were helpful. The data for the vapor pressure curves shown in the Figures were obtained by the rapid heating, in the reactivity apparatus, of 5 ml. samples of each of the materials shown. Heating times were about 6 to 12 minutes. The vapor pressure data were obtained on a selected group of working chemicals which represented the variety of chemical and physical properties encountered in the study. The number of gas-generating reactions encountered in the work were small, and most of the observed pressure changes were due to vapor pressure increases caused by temperature rises.

C. INTEGRITY OF CHEMICAL GROUPS

At the start of the program, 56 chemical groups were formed from the 209 chemicals presented for study. Later, propiolactone and 40% glyoxal, originally grouped with aliphatic esters and saturated aldehydes, respectively, were studied separately. Sufficient

-18-

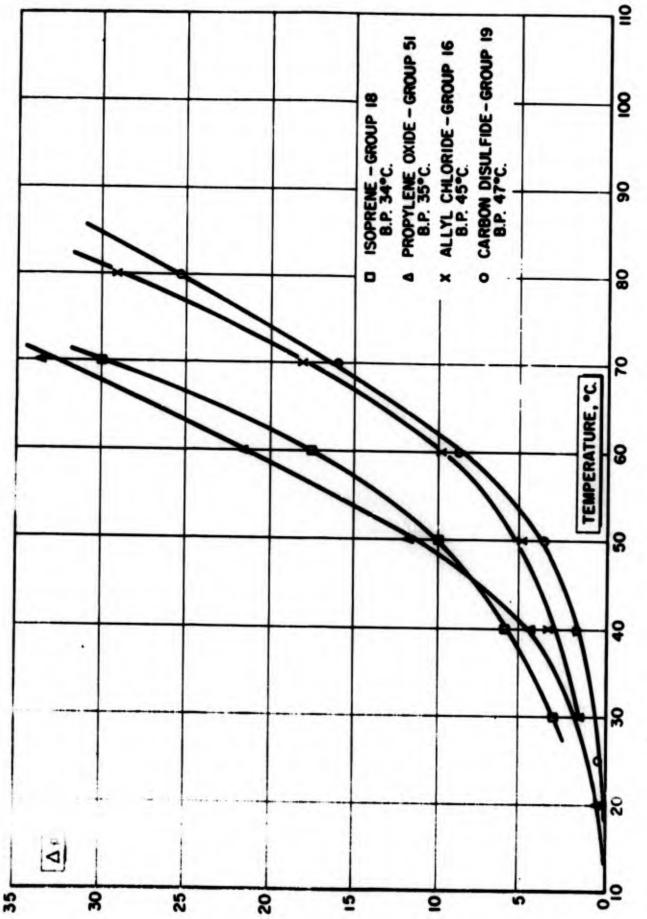
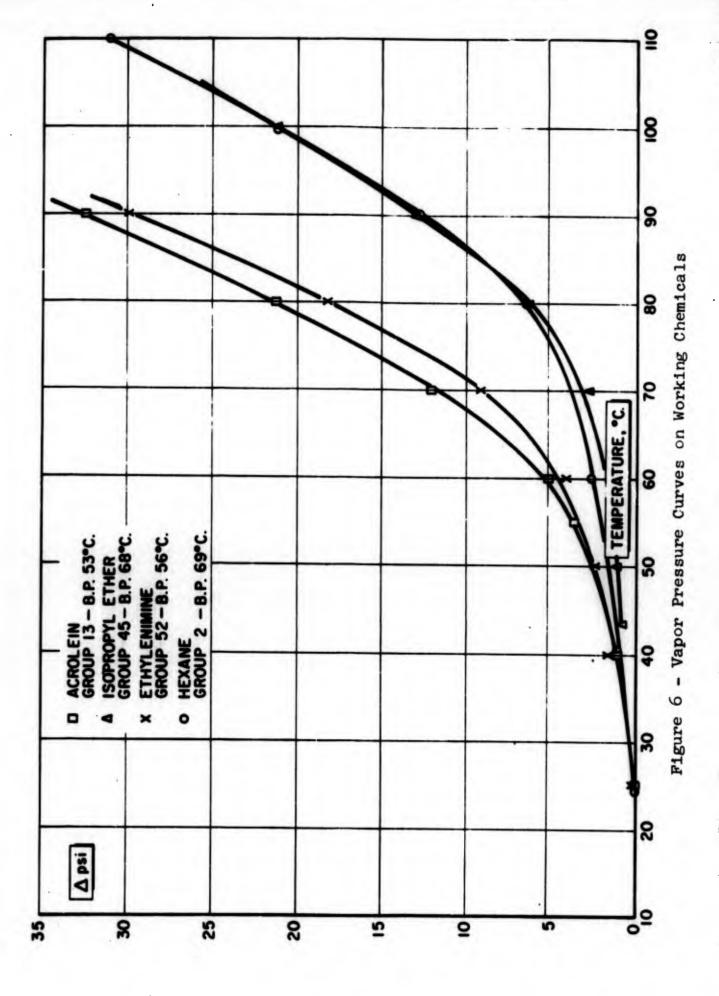
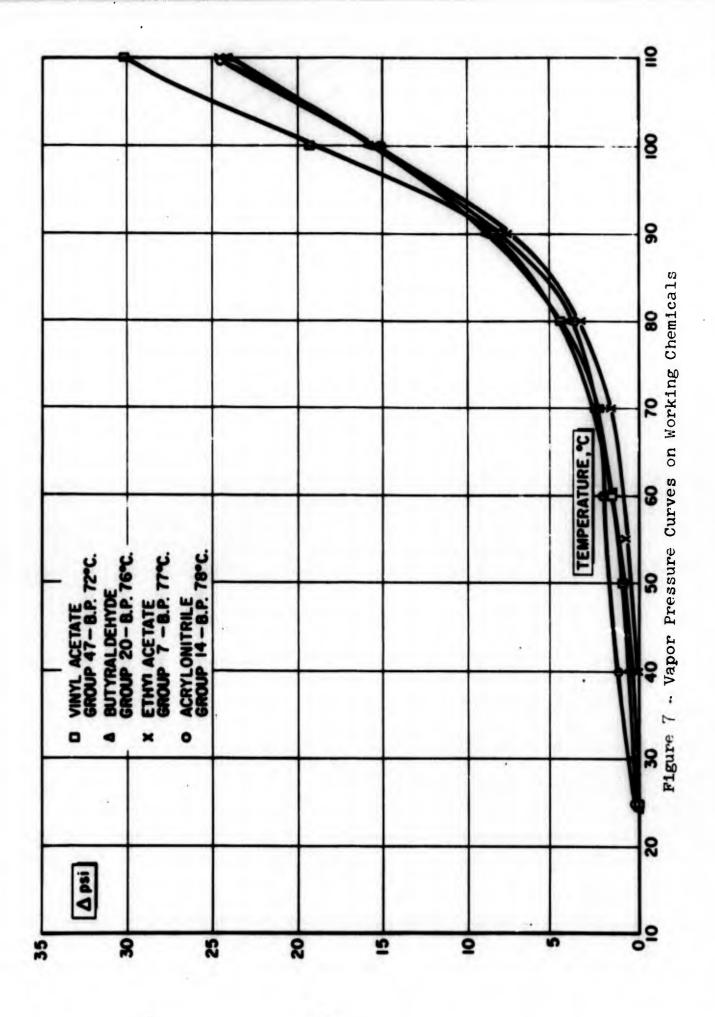
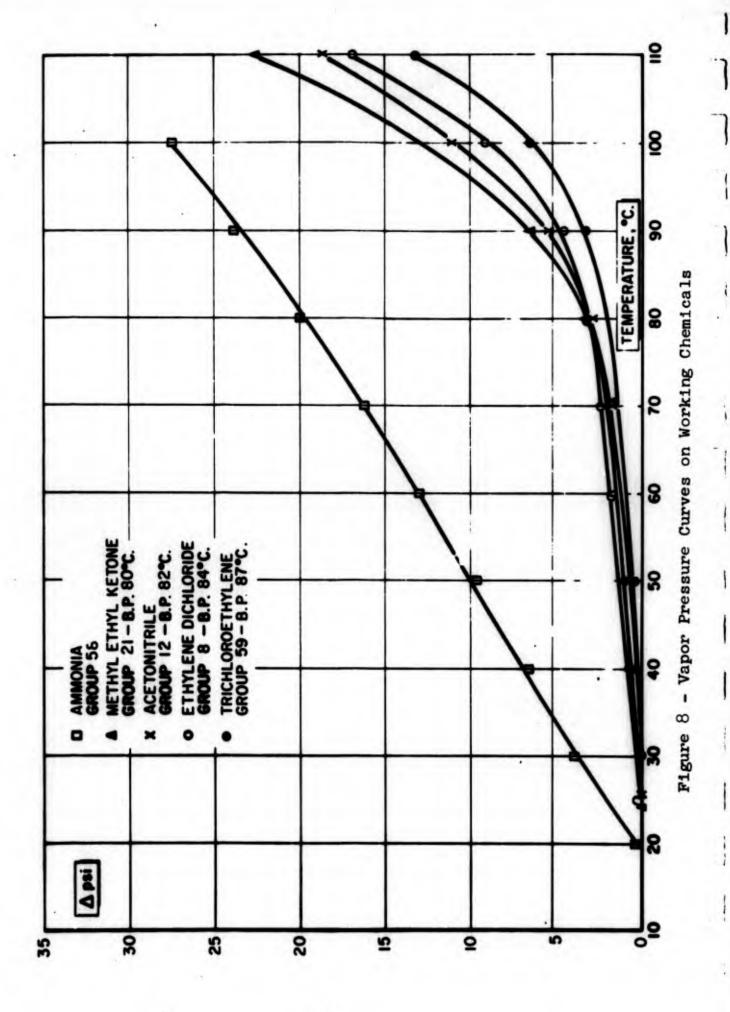




Figure 5 - Vapor Pressure Curves on Working Chemicals



ł

-20-

-21-

-22-

reactivity differences from the working chemical of the respective groups were found that new groups were made. In addition, members of the Advisory Committee suggested that anhydrous ammonia and aqueous ammonia be in separate groups, and that perchloroethylene and trichloroethylene be placed in a separate group.

Toward the end of the program, the reactivity of the chlorobenzenes was found to be different toward chlorosulfonic acid than the working chemical of the group, namely, ethylene dichloride (See Group 8 in Appendix).

Time did not permit further testing of group integrity.

D. REDUCTION OF CHEMICAL GROUPS

A large number of chemical groups were formulated for the reactivity study on binary systems. As stated earlier, this was done to reduce the number of binary systems for experimental review. On the other hand, the 60 groups used in the study is a considerably larger number than the 24 groups currently used by the Coast Guard in its tentative compatibility guide. For convenient use, it would be helpful to reduce the 60 groups by combining groups to the extent allowed by the reactivity data.

The extent to which group combinations can be made is limited by two restrictions:

- 1. The group combinations can only be done within the context of the 209 chemicals reviewed in the work. The addition of a chemical not on the list could require some alterations. For example, molten sodium, not included in the 209 chemicals, would require the formation of a new group since it cannot be placed in any of the present 60 groups.
- 2. The extent to which groups can be combined also depends on how the limits of hazard degrees are set (See Section IIIB). The more restrictive

-23-

the limits, the larger the number of groups that are necessary. If the number of groups are reduced too much, more exceptions will occur to the group generalization.

In Table II the results are shown of a review of the binary reactivity data for 23 group combinations. The combinations were chosen from those suggested by the September, 1969 revision of the Compatibility Guide of the Advisory Committee.

The first column of Table II gives the numbers of the groups under comparison and the second column gives the total number of reactive binary systems found for the working chemicals of the corresponding groups. In the third column, a comparison is made of the reactive binary systems which are <u>different</u> and <u>similar</u>, according to degree of hazard as explained in Section IIIB. The only temperature category used in the comparison was that between room temperature and 46° C.

Although the number of differences noted in Table II for each combination appear to discourage the combining of groups, a different view is obtained when the actual differences are considered in detail. For the most part (but not entirely), the differences noted in the third column arise from two sources:

- A non-reactivity of one group and a reactivity
 of the other such that the latter falls in the hazard degree "None".
- 2. A reactivity on the part of both groups that is different because of where each is placed in the degrees of "Low", "Medium", or "High" hazard.

An example of the above is the comparison of Groups Nos. 26 and 28 (glycols and glycol ethers). A total of eight differences are noted in the table. Of the eight. six are due to the reactivity of Group No. 28 with Group Nos. 1, 3, 27, 46, 58, and 59, and the non-reactivity of Group No. 26 with the same groups. However, in

-24-

Combined (Iroups	Numbe Bin	r of Reactive ary Systems	Hazard Degree				
A	B	A	B	Different	Similar			
18	33	4	3	1	3			
22	23	9	13	8	6			
26	28	13	19	8	11			
8	25	2	5	5	1			
31 ^a	32 ^a	33	31	10	23			
31	52	33	30	11	23			
32	52	31	30	14	19			
53	54	28	25	10	19			
11	30	4	20	18	2			
8	59	2	3	5	0			
la	57 ^a	19	15	10	10			
41 ^a	48 ^a	44	46	23	24			
13	20	12	18	13	5			
12	14	3	6	3	3			
15	26	8	13	6	7			
7	29	7	10	3	7			
10	34	10	9	8	2			
6 ^a	58 ^a	24	17	18	9			
22	27	9	14	6	8.			
18	39	4	4	1	3			
44	47	9	10	10	1			
2	17	0	4	4	. 0			
33	39	3	4	1	3			

Table II

Data Comparison for Combining of Groups

^aWorking chemicals react with each other.

٠

the case of Group No. 28, the degree of hazard is "None" in every case by definition. The reactivity found with Group Nos. 6 and 41 provide the other two differences. In the case of Group No. 6, one hazard degree is ranked "None" and the other "Low". With Group No. 41, the corresponding ranks are "Low" and "High.

The foregoing analysis of the "differences" now would indicate that the two groups could be combined if the ranks of Low, Medium, and High were considered equivalent, and Group No. 28 was placed under the same restrictions as Group No. 26 when it came to Group No. 6.

A similar analysis can be made for the other group combinations in Table II. In some cases, if the groups are combined, exceptions will have to be noted in a compatibility guide for the Coast Guard. However, since data are available for the individual groups, combinations may not be necessary.

IV. CONCLUSIONS AND RECOMMENDATIONS

A chemical reactivity study was made on bulk chemicals to obtain data for cargo compatibility.

The 209 specific chemicals were separated into 60 groups of similar chemical structure and a working chemical chosen for each group. Later, 7 chemicals representing 7 groups, were excluded from the program. Experimental work was performed with only the working chemicals.

An experimental procedure, consisting of three steps, was developed to obtain chemical reactivity data on binary mixtures of the working chemicals. The simple, practical method that measures temperature and pressure changes can be used with a large variety of reaction types.

From the data obtained in the study, a degree of hazard was assigned to binary systems found reactive between room temperature and 115°F.

Although the formation of groups and selection of working chemicals were done with care, the integrity of some groups should be examined. For example, the large Group No. 2 is a possible source of reactivity differences because it contains members which are mixtures of compounds, or compositions can vary. The procedures developed in the work can be applied to questionable cases to test for hazardous reactivity.

The reduction of the 60 chemical groups to some lesser number for use in a simplified cargo compatibility guide must be approached with caution. In general, it is not a recommendation of this report to combine groups at this time. The present study encompassed only 209 of the chemicals shipped in bulk quantities. Additional chemicals or new chemicals not fitting into the 60 proposed groups should be tested with all the working chemicals for complete shipping hazard definition. V. APPENDICES

APPENDIX A

CHEMICAL REACTIVITY DATA

WORKING CHEMICALS OF THE 60 GROUPS

1.	Aniline
2.	Hexane
3.	Glyoxal (40% aqueous)
4.	Aluminum triethvl*
5.	NHa (anhvd.)*
ō.	Hexane Glyoxal (40% aqueous) Aluminum triethyl* NH ₃ (anhyd.)* NaOH Soln. (50%)
, •	Ethyl acetate
3.	Ethylene dichloride
9.	Cl2*
10.	
	Coal tar oil
	Acetonitrile
13.	Acrolein
	Acrylonitrile
15.	Allyl alcohol
	Allyl chloride
17.	Isopropylbenzene
14.	Isoprene
19.	Carbon disulfide
20.	n-Butraldenyde
21.	Methylethyl ketone
22.	Acetic acid
23.	Acetic anhydride
24.	Mesityl oxide
25.	Dichloroethyl ether
20.	Ethylene glycol
27.	
28.	Diethyleneglycol monoethyl
	ether
29.	Ethyleneglycol monoethyl
	ether acetate

- 30. Cresol (ortho) 31. Ethylene diamine 32. Monoethanolamine 33. Diisobutylene 34. Epichlorohydrin 35. 36. Hydrogen fluoride (anhyd.)* Nitrous oxide* 37. Oleum 38. Phosphorus, White 39. Styrene monomer 40. Sulfur 41. Sulfuric acid (98%) 42. Tetraethyl lead* 43. Vinylidene chloride 44. Ethyl acrylate 45. Isopropyl ether 46. Ethylene cyanohydrin 47. Vinyl acetate 48. Chlorosulfonic acid 49. 2-Nitropropane 50. Sulfolane 51. Propylene oxide 52. Ethylenimine 53. 54. HC1 (35% aqueous) HF (70% aqueous) HC1 (anhyd.)* 55. 56. Nitric acid (70%) 57. Pyridine
 - Ammonia (aqueous) 58.
 - 59. 60. Trichloroethylene
 - Propiolactone

*Excluded from the reactivity study. Each of these seven chemicals were the only member of its group.

Working Chemical: Aniline Group No. 1 Source: The Dow Chemical Company Description: Technical grade Boiling point: 185°C. Heat of self-decomposition: -0.25 Kcal./gm.; -23.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Aniline

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	∆Tmax. °C.	ΔP, psi	Hazard
3	7	0	None
13	72	9.0	Medium
20	32	1.4	Low
22	13	0	None
23	120	3.0	High
27	24	0.9	None
28	8	0	None
30	5	0.6	None
31	6	0.6	None
37	45	*	High
41	87	3.3	High
46	5	0.5	None
48	152	*	High
52	6	Vac.	None
53	23	0.8	None
54	45	*	Low
56	101	18.0	High
57	6	0	None
60	188	*	High

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 10, 16, 25, 34, and 44.
- 4. Reactivity between 200° and 300°C. with Group Nos. 43, 47, and 51.

- 5. No reactivity found below 200°C. with Group Nos. 21, 8, 15, 17, 19, 21, 24, 26, 29, 32, 45, 49, 58, and 59.
- 6. No reactivity found below 300°C. with Group Nos. 6_{I} , 11, 12, 14, 18, 33_I, 39, and 50.
- 7. No reactivity found below 60°C. with Group No. 38 $_{\rm I}$ and below 130°C. with Group No. 40 $_{\rm T}$.

Working Chemical: n-Hexane Group No. 2 Source: Burdick and Jackson Description: Industrial grade Boiling point: 68-69°C. Heat of self-decomposition: -0.15 Kcal./gm.; -12.8 Kcal./mole. Sensitivity

Thermal: small exotherm at 235°C. Impact: Not tested. Spark: Not tested.

Group Members

Asphalt (typical) Butane, commercial Casinghead (natural) gasoline Crude oil (petroleum) Cyclohexane Gasoline, commercial Heptane, <u>n</u>-Hexane, <u>n</u>-Jet fuel, JP-3 Jet fuel, JP-4

Jet fuel, JP-5 Kerosene Methane Pentane, <u>n</u>-Pentane, <u>iso</u>-Petroleum ether Propane, commercial Nonane Mineral spirits No. 10

Reactivity Data on Binary Systems

- The working chemical of this group showed no reactivity between room temperature and 46°C. with the working chemicals of the other groups.
- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 48 $_{\rm I}$ and 56 $_{\rm T}.$
- 4. Reactivity between 200° and 300°C. with Group Nos. 22 and
 41.
- 5. No reactivity found below 200°C. with Group Nos. 1₁, 3₁, 6₁, 7, 8, 11, 12₁, 14, 15, 17, 18, 19, 20, 21, 24, 25, 26₁, 28₁, 29, 30, 31₁, 32₁, 33, 37₁, 39, 43, 44, 45, 46₁, 47, 49, 50₁, 51, 52, 53₁, 57, 58₁, 59, and 60₁.
- 6. No reactivity found below 300 °C. with Group Nos. 10, 13, 16, 23, 27, and 34.
- No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁ and below 65°C. with Group No. 54₁.

Working Chemical: Glyoxal (40% soln.)	Group No. 3
Source: J. T. Baker Chemical Company	
Description: Technical grade	
Boiling point: >50°C.	
Heat of Self-decomposition: +0.24 Kcal./gm.; +39.	O Kcal./mole.
Sensitivity	

Thermal: exotherm beginning at 107°C. Impact: not tested. Spark: not tested.

Group Members

Glyoxal (40% soln.) Formaldehyde (37-50% soln.)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
1	7	0	None
6	70	*	High
28	9	0.5	None
. 31	72	3.0	Medium
32	50	1.1	Low
37	*	*	High
41	51	1.8	Medium
48	*	*	High
52	113	10.0	High
56	64	*	High
58	25	1.5	None

*Measurements not made; high temperature or gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with Group No. 60.
- 3. Reactivity between 100° and 200°C. with Group Nos. 10₁, 11₁, 13₁, 14, 16₁, 18₁, 20₁, 21₁, 23₁, 26, 30₁, 34₁, 44₁, 46₁, 49₁, 51₁, and 53.
- 4. Reactivity between 200° and 300°C. with Group Nos. 12, 15, 22, 25_T , 27, 39_T, and 50.
- 5. No reactivity found below 200°C. with Group Nos. 2_{I} , 7_{I} , 8_{I} , 17_{I} , 19_{I} , 24_{I} , 29_{I} , 33_{I} , 45_{I} , 47_{I} , 58, and 59_{I} .
- 6. No reactivity found below 300°C. with Group No. 57.
- 7. No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁, and below 100°C. with Group No. 54.

Working Chemical: 50% Caustic soda Group Wo. 6
Source: Fisher Scientic Company
Description: Lab. prepared soln.
Boiling point:
Heat of self-decomposition: +1.39 Kcal./gm.; +111.1 Kcal./mole.
Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

.roup Members

Caustic potash solution

Reactivity Data on Binary System

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	ΔT , max. °C.	<u>∆P, psi</u>	Hazard
3	70	*	High
10	34	22.6	High
13	84	4.0	High
20	61	5.4	Medium
22	89	3.6	High
23	127	13.3	High
24	13	0.8	None
26	34	1.3	Low
27	25	0.8	None
28	8	0	None
29	3	0	None
30	36	1.0	Low
31	6	0.4	None
32	10	0	None
37	*	*	High
⁴⁰ 1**	None (sample discolored)		None
41	101	15.7	High '
46	31	6.3	High
48	145	76.0	High
53	80	3.9	High
54	*		High
56	90	7.9	High
58	18	4.6	None
60	93	*	High

*Measurement not made; high temperature or gases generated in reaction.

**Molten sulfur (130°C.).

- 2. Reactivity between 46° and $100^{\circ}C$. with Group No. 49_{T} .
- 3. Reactivity between 100° and 200°C. with Group Nos. 7_{I} , 12_{I} , 14_{I} , 15, 21_{I} , 34_{I} , 44_{I} , 47_{I} .
- 4. Reactivity between 200° and 300°C. with no groups.
- 5. No reactivity found below 200°C. with Group Nos. 2_{I} , 8, 11, 16_{I} , 17_{I} , 18_{I} , 33_{I} , 43_{I} , 45_{I} , 50_{I} , 51_{I} , 52, 57_{I} , and 59_{I} .
- 6. No reactivity found below 300°C. with Group Nos. l_{I} , 25_I, and 39_{I} .
- 7. No reactivity found below 60° C. with Group No. 38_{T} .

Working Chemical: Ethyl acetate Group No. 7 Source: U. S. Industrial Chemicals Description: Technical grade Boiling point: 77°C. Heat of self-decomposition: -0.16 Kcal./gm.; -14.0 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: negative

Group Members

Amyl acetate, <u>iso</u> -	Propyl acetate, <u>n</u> -
Amyl acetate, <u>n</u> -	Methyl acetate
Butyl acetate, <u>n</u> -	Methyl amyl acetate
Butyl acetate, sec	Dibutyl-o-phthalate
Ethyl acetate	Butylbenzyl phthalate
Isobutyl acetate	Glycol diacetate
Isopropyl acetate	

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	∆T, max. °C.	AP, psi	Hazard
30	8	0.9	None
37	38	3.0	High
41	44	1.5	Low
48	65	6.4	High
53	9	0.9	None
54	6		None
56	10	1.1	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group No. 6_{T} .
- 4. Reactivity between 200° and 300°C. with Group Nos. 19, 44, 49, and 52.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3, 8, 11, 13, 16, 17, 18, 24, 25, 27, 29, 32₁, 33, 43, 46, 47, 50, 51, 57, 59, and 60.
- No reactivity found below 300°C. with Group Nos. 10, 12, 14, 15, 20, 21, 22, 23, 26, 28, 31, 34, 39, and 58.
- 7. No reactivity found below 60°C. with Group No. 38_I and below 130°C. with Group No. 40_T.

Working Chemical: Ethylene dichloride	Group	No.	8
Source: The Dow Chemical Company			
Description: Technical grade			
Boiling point: 84°C.			
Heat of self-decomposition: -0.11 Kcal./gm.; -11.2 H	Kcal./mo	le.	
Sensitivity	,		

Thermal: none <300°C. Impact: not tested Spark: negative

Group Members

Carbon tetrachloride	Methylene chloride
Chloroform	Monochlorodifluoromethane
l,2-Dichloropropane	1,1,1-Trichloroethane
Ethyl chloride	Dichlorodifluoromethane
Etnylene dichloride	Dichlorobenzene*
Ethylene dibromide	1,2,4-Trichlorobenzene*
Methyl bromide	Chlorobenzene*
Methyl chloride	

*Differ from the working chemical in that they are reactive with Group No. 48.

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room · temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	ΔT, max. °C.	AP, psi	Hazard
· 37 _I	4	3.2	High

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 18, 31, 32, 44, 52, 56 $_{\rm T}$, and 57.

- 4. Reactivity between 200° and 300°C. with Group No. 46.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3_{I} , 6_{I} , 7, 10, 11, 15, 16, 17, 23, 24, 25, 26_{I} , 27, 28, 29, 39, 45, 49, 50, 51, 53_{I} , 58_{I} , 59, and 60.
- No reactivity found below 300°C. with Group Nos. 12, 13, 14, 19, 20, 21, 22, 30, 33, 34, 41, 43, 47, and 48.
- 7. No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁, and below 75°C. with Group No. 5⁴1.

Working Chemical: Ethylene chlorohydrin Group No. 10 Source: The Dow Chemical Company Description: Technical grade Boiling point: 129°C. Heat of self-decomposition: -0.14 Kcal./gm.; -15.1 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Ethylene chlorohydrin

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	<u>∆T, max. °C.</u>	AP, psi	Hazard
6	34	22.6	High
31	194	13.5	High
32	8	0.4	None
37	54	0.9	Medium
41	41	0.6	Low
48	52	78.0	High
52	15	0	None
53	7	Vac.	None
56	6	0.8	None
57	9	0.8	None

- 2. Reactivity between 46° and 100°C. with Group Nos. 32 and 52.
- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 3_I, 18, 23, 56, 57, and 58.

- 4. Reactivity between 200° and 300°C. with Group Nos. 12, 13, 14, 43, 46, 4., 49, and 51.
- No reactivity found below 200°C. with Group Nos. 8, 15, 191, 22, 24, 25, 26, 27, 28, 29, 34, 39, 45, and 59.
- 5. No reactivity found below 300 °C. with Group Nos. 2_{I} , 7, 11, 15, 17, 20, 21, 30, 33_{I} , 44, and 50.
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_T, and below 110°C. with Group No. 54.

Working Chemical: Creosote oil Group No. 11 Source: Reilly Tar and Chemical Company Description: A.W.P.A. #1 Boiling point: none Heat of self-decomposition: -0.33 (est.) Kcal./gm.; -35.3 (est.) Kcal./mole.

Sensitivity

Thermal: None <300°C. Impact: not tested. Spark: 3.12 joules.

iroup Members

Creosote oil Creosote, coal tar

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	∆P, psi	Hazard
37	22	0.7	None
41	24	0.6	None '
48	84	*	High
• 56	72	10.2	High

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with Group No. 60.
- Reactivity between 100° and 200°C. with Group Nos. 3₁, 18, 19, and 27.
- 4. Reactivity between 200° and 300°C. with Group Nos. 13, 14, 16, and 43.

- 5. No reactivity found below 200°('. with Group Nos. 2, 6, 7, 8, 15, 17, 23, 24, 25, 26_{I} , 28, 29, 32, 45, 46, 47, 49, 53_{I} , and 59.
- No reactivity found below 300°C. with Group Nos. 1, 10, 12, 20, 21, 22, 30, 31, 33, 34, 39, 44, 50, 51, 52, 57, and 58₁.
- 7. No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁ and below 120°C. with Group No. 54₁.

Working Chemical: Acetonitrile Group No. 12 Source: Eastman Organic Chemical Description: Practical grade Boiling point: 82°C. Heat of self-decomposition: -0.36 Kcal./gm.; -14.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: negative

Group Members

Acetonitrile Adiponitrile

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	∆T, max. °C.	ΔP, psi	Hazard
37	155	*	High
41	173	>20	High
48	150	14	High

*Measurement not made, gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 61, 53 and 56.
- 4. Reactivity between 200° and 300°C. with Group Nos. 3, 10, 13, 43, 44 and 49.
- 5. No reactivity found below 200°C. with Group Nos. 21, 17, 24, 27, 29, 33, 45, 46 and 47.

- 6. No reactivity found below 300°C. with Group Nos. 1, 7, 8, 11, 14, 15, 16, 18, 19_I, 20, 21, 22, 23, 25, 26, 28, 30, 31, 32, 34, 39, 50, 51, 52, 57, 58 and 59.
- No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁ and below 70°C. with Group No. 54.

Working Chemical: Acrolein Group No. 13 Source: Eastman Organic Chemical Description: Practical grade, inhibited with Hydroquinone Boiling point: 52.5°C. Heat of self-decomposition: -0.31 Kc. ./gm.; -17.3 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 210°C. Impact: negative to No. 8 cap and 40 gm. tetryl Spark: negative

Group Members

Acrolein Crotonaldehyde 2-Ethyl-3-propylacrolein

Reactivity Date on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	∆T, max. °C.	AP, psi	Hazard
1	72	9.0	Med.
6	84	4.0	High
. 31	98	8.0	High
. 32	95	*	High
37	80	*	High
41	144	19.2	High
48	96	*	High
· 52	161	22.2	High
53	33	1.9	Low
54	10		None
56	82	*	High
58	106	14.8	High

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31, 17, 18 and 39.
- 4. Reactivity between 200° and 300°C. with Group Nos. 10, 11, 12, 14, 15, 16, 20, 22, 25, 26, 27, 43, 44 and 49.
- 5. No reactivity found below 200°C. with Group Nos. 7, 24, 29, 34, 45, 46, 47 and 60.
- No reactivity found below 300°C. with Group Nos. 5, 8, 191, 21, 23, 28, 30, 33, 50, 51, 57 and 59.
- 7. No reactivity found below 60°C. with Group No. 38_{I} and below 130°C. with Group No. 40_{I} .

Working Chemical: Acrylonitrile Source: Eastman Organic Chemical Description: Practical grade Boiling point: 78.5°C. Heat of self-decomposition: -0.68 Kcal./gm.; -35.) Kcal./mole. Sensitivity

Thermal:	exotherm	beginning at	270°C.	
Impact:	negative	to No. 8 cap	and 40 gm.	tetryl.
Spark:	negative			

Group Members

Acrylonitrile

Reactivity Data on Binary Systems

 The working chemical of this group reacted between root temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	<u>Δ</u> Τ, max. °C.	ΔP, psi	Hazard
31	106	3.2	High
32	95	3.9	High '
37	137	*	High
• 41	205	49.4	High
48	121	*	High
52	34	3.1	Low

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with Group No. 56 (mixture detonates at 90°C.).
- 3. Reactivity between 100° and 200°C. with Group Nos. 3, 6I, 18, 22 and 39.

- 4. Reactivity between 200° and 300°C. with Group Nos. 10, 11, 13, 16, 43 and 51.
- 5. No reactivity found below 200°C. with Group Nos. 2, 15, 17, 24, 27, 28, 29, 45, 46 and 47.
- 5. No reactivity found below 300°C. with Group Nos. 1, 7, 8, 12, 19, 20, 21, 23, 25, 26_I, 30, 33, 34, 44, 49, 50, 53, 57, 58_I and 59.
- 7. No hazardous reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁, and below 90°C. with Group No. 54.

- 4. Reactivity between 200° and 300°C. with Group Nos. 10, 11, 13, 16, 43 and 51.
- 5. No reactivity found below 200°C. with Group Nos. 2, 15, 17, 24, 27, 28, 29, 45, 46 and 47.
- 5. No reactivity found below 300°C. with Group Nos. 1, 7, 8, 12, 19, 20, 21, 23, 25, 26_I, 30, 33, 34, 44, 49, 50, 53, 57, 58_{I} and 59.
- 7. No hazardous reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_I, and below 90°C. with Group No. 54.

Working Chemical: Allyl alcohol Source: The Dow Chemical Company Description: Technical grade Boiling point: 96°C. Heat of self-decomposition: -0.27 Kcal./gm.; -16.7 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 280°C. Impact: negative to 300 Kg-cm. Spark: negative

Group Members

Allyl alcohol

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	ΔT, max. °C.	<u>∆P, psi</u>	Hazard
20	13	0.6	None
31	16	0	None
37	161	*	High
41	153	+	High
48	150	#	High
52	11	Vac.	None
53	9	0	None
56	77	*	High

*Measurement not made; gases generated in reaction.

2. Reactivity between 46° and 100°C. with no groups.

3. Reactivity between 100° and 200°C. with Group Nos. 6 and 23.

- 4. Reactivity between 200° and 300°C. with Group Nos 31 and 13.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 8, 10, 11, 14, 16, 17, 18, 24, 25, 26, 27, 28, 29, 30, 32, 33, 43, 45, 46, 47, 49, 50, 51, 57, 58 and 59.
- No reactivity found below 300°C. with Group Nos. 7, 12, 19, 21, 22, 34, 39 and 44.
- 7. No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁, and below 100°C. with Group No. 54.

Working Chemical: Allyl Chloride Group No. 16 Source: Eastman Organic Chemical Description: Technical grade Boiling point: 45°C. Heat of self-decomposition: -0.31 Kcal./gm.; -23.6 Kcal./mole. Sensitivity

. . . .

Thermal: exotherm beginning at 230°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: negative

Group Members

Allyl chloride Dichloropropene

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group N	ο. <u>Δ</u> Τ, max.	°C. <u>AP</u> ,	psi Hazard
31	110	22	2.0 High
32	56	11	4.9 Medium
37	3 5	31	4.4 High
41	45	15	5.7 High
48	60		* High
52	176	38	8.2 High
56 1	(exotherm begin	us at 45°C.)* High

*Measurement not made, gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 3_{I} , 22, 44, 47 and 57.

- 4. Reactivity between 200° and 300°C. with Group Nos. 7, 11, 13, 14, 27, 43, 46_I, 51_I, 53_I and 60.
- 5. No reactivity found below 200°C. with Group Nos. 6, 8, 15, 19, 24, 25, 26I, 28, 29, 34, 39, 49, 58 and 59.
- No reactivity found below 300°C. with Group Nos. 2, 10, 12, 17, 18, 20, 21, 23, 30, 33, 45 and 50.
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_I and below 45°C. with Group No. 54_I.

. ...

Working Chemical : Cumene Group No. 17 Source: J. T. Baker Chemical Company Description: Baker grade (high purity) Boiling point: 152°C. Heat of self-decomposition: -0.24 Kcal./gm.; -28.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Benzene Napththalene, molten Cymene, <u>p</u>-Diethylbenzene Etnyl benzene Tetrahydronaphthalene Toluene Triethylbenzene Xylene, <u>o</u>-Xylene, <u>p</u>-Cumene (isopropylbenzene) Eodecylbenzene, commercial

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>∆T, max. °C.</u>	ΔP, psi	Hazard
37	35	*	High
⁴¹ I	6	0.6	None
48	51	34.8	High
56	7	1.1	High

*Measurement not made, gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 13, 27 and 39.
- 4. Reactivity between 200° and 300°C. with no groups.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3, 6_I, 7, 8, 11, 12, 14, 15, 18, 19, 20, 21, 22, 24, 25, 26_I, 28, 29, 30, 31_I, 32_I, 33, 43, 44, 45, 46_I, 47, 49, 50, 51, 52, 53_I, 57, 58_T, 59 and 60.
- 6. No reactivity found below 300°C. with Group Nos. 10, 16, 23 and 34.
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_I, and below 100°C. with Group No. 54_I.

Working Chemical: Isoprene Group No. 18 Source: J. T. Baker Chemical Company Description: Baker grade (high purity) Bolling point: 34°C. Heat of self-decomposition: -0.37 Kcal./gm.; -25.3 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 200°C. Impact: not tested. Spark: negative

Group Members

Butadiene (inhibited) Isoprene

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	ΔP, psi	Hazard
37	118	*	High
41	117	*	High
48	89	>40	High
56	9 0	*	High

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31, 8, 10, 11, 13, 14, 25, 27, 44 and 60.
- 4. Reactivity between 200° and 300°C. with Group Nos. 30 and 50.
- 5. No reactivity found below 200°C. with Group Nos. 2, 6_Ι, 7, 15 17, 19, 24, 26Ι, 28, 29, 33, 39, 46, 47, 49 and 53_Ι.

- 6. No reactivity found below 300°C. with Group Nos. 1, 12, 16, 20, 21, 22, 23, 31, 32_I, 34, 43, 45, 51, 52, 57, 58_I and 59.
- 7. No reactivity found below 60°C. with Group No. 381° below 130°C. with Group No. 401, and below 34°C. with Group No. 541.

Working Chemical: Carbon disulfide Group No. 19 Source: Western Solvents Description: Technical grade Boiling point: 46.5°C. Heat of self-decomposition: -15.4 Kcal./mole (est.) Sensitivity 1

```
Thermal: none <300°C.
Impact: not tested.
```

group Members

Carbon disulfide

Feactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the Jording chemicals of each of the following groups:

timp No.	Δ Τ , max. °(.	AP, pal	Hazard
31	90	>20	High
32 ^I	32	7.4	Low
52	130	>40	High

2. Reactivity between 46° and 100°C. with no groups.

3. Reactivity between 100° and 200°C. with Group Nos. 11 and 44.

- 4. Reactivity between 200° and 300°C. with Group Nos. 7, 48, 51, 56, and 58.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3_{I} , 6_{I} , 10_{I} , 16, 17, 18, 20, 23_{I} , 24, 25, 27_{I} , 29, 30, 33, 37_{I} , 41_{I} , 43, 46, 47, 48_T, 50_T, 57 and 60_{T} .
- 6. No reactivity found below 300°C. with Group Nos. 8, 121, 131.
 14, 15, 21, 22, 261, 28, 34, 39, 49, 531 and 59.

7. No reactivity four: below 60°C. with Group No. 38₁, below 130°C. with Group No. 40, and below 45°C. with Group No. 54₁. Working Chemical: n-Butyraldehyde Group No. 20 Source: Eastman Organic Chemical Description: Technical grade Boiling point: 76°C. Heat of self-decomposition: -0.24 Kcal./gm.; -17.2 Kcal./mole. Sensitivity

Thermal: slight exotherm beginning at 268°C. Impact: not tested. Spark: not tested.

Group Members

Acetaldehyde Butyraldehyde, <u>n</u>-Isobutyraldehyde Isodecaldehyde Isooctyl aldehyde Propionaldehyde Valeraldehyde Furfural Methyl formal Methyl butyraldehyde

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	ΔT, max. °C.	<u>∆P, psi</u>	Hazard
1	32	1.4	Low
б	61	5.4	Medium
15	13	0.6	None
25	11	0.4	None
26	20	2.7	None
28	10	0.5	None
31	74	1.9	Medium
32	65	3.5	Medium
37	124	*	High
41	121	11.1	High
46	6	1.9	None
48	114	*	High
52	60	0	Medium
53 _T	19	1.8	None
54 _I	30		Low
56 ⁻	73	>40	High.
58	26	2.2	High im-
• 59	14	0	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31 and 44.
- 4. Reactivity between 200° and 300°C. with Group Nos. 13, 19, 21, 22, 43, 49, 50, 51 and 60.

- 5. No reactivity found below 200°C. with Group Nos. 2, 17, 23, 24, 29, 45 and 47.
- No reactivity found below 300°C. with Group Nos. 7, 8, 10, 11, 12, 14, 16, 18, 27, 30, 33, 34, 39 and 57.
 - No reactivity found below 60°C. with Group No. 38, and below 130°C. with Group No. 40,.

-66-

Working Chemical: Methylethyl ketone Group No. 21 Source: Fisher Scientific Company Description: Fisher certified grade Boiling point: 80°C. Heat of self-decomposition: -0.19 Kcal./gm.; -13.8 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Cyclohexanone Acetone Camphor oil Methylethyl ketone Methylisobutyl ketone Diisobutyl ketone

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	AT. max.	°C.	ΔP, psi	Hazard .	
30	8		1.2	None	
31	27		2.6	Low	
32	14		1.9	None	
37	76		*	High	
41	46		1.1	Low	
48	60		34	High	
52	12		Vac.	None	
53	16		0.9	None	
54	12			None	
56	13		1.1	None	
*Measurement		gases	generated	in reaction.	į

٦

-1

--1

١

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31, 61, 27 and 43.
 - 4. Reactivity between 200° and 300°C. with Group Nos. 20, 43 and 49.
 - No reactivity found below 200°C. with Group Nos. 1, 2, 17, 21, 23, 24, 29, 33, 45, 47, 51 and 59.
 - 6. No reactivity found below 300°C. with Group Nos. 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 22, 25, 26, 28, 34, 39, 50, 57 and 58_T.
 - 7. No reactivity found below 60° C. with Group No. 38₁ and below 130°C. with Group No. 40_T.

Working Chemical: Acetic acid, glacial Group No. 22
Source: Fisher Scientific Company
Description: A.C.S. grade
Boiling point: 118°C.
Heat of self-decomposition: +0.01 Kcal./gm.; +0.7 Kcal./mole
Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Acetic acid, glacial Formic acid Propionic acid n-Butyric acid

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
1	13	0	None
6	89	3.6	High
31	96	2.4	High
32	105	*	High
37	56	*	High
41	38	0.7	Low
48	75	7.2	High
52	189	33.5	High
57	20	0	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 14, 16, 51, 56 and 60.
 - 4. Reactivity between 200° and 300°C. with Group Nos. 2, 3, 13, 20, 49 and 58.
 - 5. No reactivity found below 200°C. with Group Nos. 10, 17, 23, 24, 27, 29, 39, 45, 46 and 50
 - 6. No reactivity found below 300°C. with Group Nos. 7, 8, 11, 12, 15, 18, 19, 21, 25, 26, 28, 30, 33, 34, 43, 44, 47, 53 and 59.
 - 7. No reactivity found below 60°C. with Group No. 38₁, below 130°C. with Group No. 40₁, and below 110°C. with Group No. 54.

Working Chemical: Acetic anhydride Source: Fisher Scientific Company Description: A.C.S. grade Boiling point: 139°C. Heat of self-decomposition: -0.16 Kcal./gm.; -16.3 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: negative

Group Members

Acetic anhydride Fropionic anhydride

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	ΔT , max. °C.	ΔP, psi	Hazard
1	120	3.0	High
6	127	13.3	High
30	8	0.3	None
31	148	7.5	High
32	144	*	High
37	97	*	High
41	106	3.6	High
48	77	41.4	High
52	153	22.8	High
53	53	12.2	High
54	53		High
56	80	2.0	High
58	17	1.5	Hone

- 2. Reactivity between 46° and 100°C. with Group No. 58.
- . 3. Reactivity between 100° and 200°C. with Group Nos. 3_I, 10, 15, 26 and 44.
 - 4. Reactivity between 200° and 300°C. with Group Nos. 34, 43, 49 and 51.
 - No reactivity found below 200°C. with Group Nos. 8, 11, 19, 20, 21, 22, 24, 27, 28, 29, 45, 50, 57, 59 and 60.
 - No reactivity found below 300°C. with Group Nos. 21, 7, 12, 13, 14, 16, 17, 18, 331, 39, 46 and 47.
 - 7. No reactivity found below 60°C. with Group No. 38_{I} and below 130°C. with Group No. 40_{T} .

Working Chemical: Mesityl oxide Group No. 24 Source: Metheson, Coleman and Bell Description: MX415; unknown quality Boiling point: 128°-130°C. Heat of self-decomposition: -0.23 Kcal./gm.; -22.3 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: negative to 300 Kg. cm. Spark: negative

Group Members

Isophorone Mesityl oxide

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	ΔP, psi	Hazard
6	13	0.8	None
30	12	0.4	None
31	70	*	High -
32	30	2.8	High
• 37	130	*	High
41	94	*	High
48	100	*	High
52	35	1.5	Low '
. 53	19	Vac.	None
54	10		None
56	18	*	High

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group No. 44.
 - 4. Reactivity between 200° and 300°C. with no groups.
 - 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3₁, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 33, 34, 39, 43, 45, 46, 47, 49, 50, 51, 57, 58₁, 59 and 60.
 - 6. No reactivity found below 60°C. with Group No. 38_I, and below 130°C. with Group No. 40_T.

Working Chemical: Dichloroethyl ether Group No. 25 Source: K & K Laboratories; Eastman Kodak Description: Practical grades Boiling point: 178°C. Heat of self-decomposition: -0.15 Kcal./gm.; -21.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: negative

Group Members

Dichloroethyl ether

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	∆T, max. °C.	<u>∆P, psi</u>	Hazard
20	11	0.4	None
37	40	*	High
41	26	0.5	Low
48	30	1.2	High .
56	4	0.7	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 18, 31, 32_{T} , 52 and 56.
- Reactivity between 200° and 300°C. with Group Nos. 31, 13,
 43 and 46.

ł,

- 5. No reactivity found below 200°C. with Group Nos. 2, 7, 8, 10, 11, 15, 16, 17, 19, 23, 24, 26, 27, 28, 29, 30, 34, 39, 45, 49, 50, 51, 53, 57, 59 and 60.
- 6. No reactivity found below 300°C. with Group Nos. 6₁, 12, 14, 21, 22, 33, 44, 47 and 58_T.
- 7. No reactivity found below 60°C. with Group No. 38, below 130°C. with Group No. 40, and below 110°C. with Group No. 54.

Working Chemical: Ethylene/glycol Group No. 26 Source: The Dow Chemical Company Description: Industrial grade, <10 ppm H₂O₂ Boiling point: 198°C. Heat of self-decomposition: -0.17 Kcal./gm.; -10.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Amyl alcohol, <u>n</u>-Butyl alcohol, <u>n</u>-Butyl alcohol, <u>sec</u>-Butyl alcohol, <u>tert</u>-Butyl alcohol, <u>tert</u>-Butyl alcohol, <u>iso</u>-Decyl alcohol, <u>n</u>-Diethylene glycol Dipropylene glycol Ethyl alcohol 1,3-Butylene glycol Ethylene glycol Furfuryl alcohol Glycerine

Hexylene glycol Isopropyl alcohol Isooctanol Methylamyl alcohol Methyl alcohol Propyl alcohol, <u>n</u>-Propylene glycol Tridecanol 2-ethyl-l-hexanol Isodecanol Nonyl alcohol Cyclohexanol

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups.

Group No.	<u>∆T, max. °C.</u>	AP, psi	Hazard
6	34	1.3	Low
20	20	2.7	None
30	6	2.7	None
31	25	0.7	None
32	10	0.6	None
37	110	*	High
41	80	1.7	High
48	66	84	High
52	13	Vac.	None
53	14	Vac.	None
54	6		None
56	14	0.8	None
57	. 7	0	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 3, 23 and 52.
- 4. Reactivity between 200° and 300°C. with Group Nos. 13 and $49_{\rm T}$.
- 5. No reactivity found below 200°C. with Group Nos. 21, 81, 10, 11, 15, 161, 171, 181, 24, 251, 27, 28, 291, 331, 381, 431, 451, 46, 471, 50, 51 and 591.
- 6. No reactivity found below 300°C. with Group Nos. 7₁, 12, 14₁, 19₁, 21, 22, 34₁, 39₁, 44₁ and 58.

7. No reactivity found below 60°C. with Group No. 38_I and below 130°C. with Group No. 40_I.

Working Chemical: Acrylic acid Group No. 27 Source: The Dow Chemical Company Description: Industrial grade; inhibited with 200 ppm MEHQ Boiling point: 141°C. Heat of self-decomposition: -0.20 Kcal./gm.; 14.1 Kcal./mole Sensitivity

-- 1

-

Thermal: exotherm begins at 180°C. Impact: negative to 300 Kg-cm. Spark: negative

Group Members

Acrylic acid

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
1	24	0.9	None
6	25	0.8	None
28	7	0.6	None
29	4	0.5	None
30	3	0.6	None
31	161	*	High
32	109	*	High
37	60	*	High
41	36	0.8	Low
48	146	*	High
52	111	16.4	High
56	4	0.5	None
57	23	1.5	None
58	12	*	High

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 11, 17, 18, 21, 33, 39, 56 and 60.
- 4. Reactivity between 200° and 300°C. with Group Nos. 3, 13, 16,
 43 and 46.
- No reactivity found below 200°C. with Group Nos. 7, 8, 10, 12, 14, 15, 19_I, 22, 23, 24, 25, 26, 34, 45, 49, 50, 51 and 59.
- 6. No reactivity found below 300°C. with Group Nos. 2_{I} , 20, 44, 47 and 53.
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_I, and below 100°C. with Group No. 54_I.

Working Chemical: Diethylene glycol monomethyl ether Source: J. T. Baker Chemical Company Description: Baker grade; 10 ppm H₂O₂ Boiling point: 193°C. Heat of self-decomposition: -0.22 Kcal./gm.; -28.9 Kcal./mole. Sensitivity

Thermal:	none <300 °C.
Impact:	not tested
Spark:	not tested

Group Members

Ethylene glycol monobutyl ether Diethylene glycol monobutyl ether Ethylene glycol monoethyl ether Diethylene glycol monoethyl ether Ethylene glycol monomethyl ether Diethylene glycol monomethyl ether Triethylene glycol Ethoxytriglycol Tetraethylene glycol

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
1	8	0	None
3	9	0.5	None
6	8	0	None
20	10	0.5	None
27	7	0.6	None
30	14	0.7	None
31	13	0.6	None
32	5	0.6	None
37	>94	*	High
41	47	0.8	Low
46	8	0.4	None
48	68	50.0	High
52	6	0	None
53	19	0	None
54	16		None
56	21	0.7	None .
57	6	0	None
• 58	8	0.8	None
59	5	0	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with no groups.
- 4. No reactivity found below 200°C. with Group Nos. 21, 8, 10, 11, 14, 15, 16, 17, 18, 23, 24, 25, 26, 29, 33, 43, 45, 50, 51 and 60.

. .

- 5. No reactivity found below 300°C. with Group Nos. 7, 12, 13, 19, 21, 22, 34, 19, 44, 47 and 49.
- 6. No reactivity found below 60°C. with Group No. 38₁ and below 130°C. with Group No. 40_T.

Working Chemical: Ethylene glycol monoethyl ether acetate Source: Union Carbide Chemical Company Description: Technical grade; 340 ppm H₂O₂ Boiling point: 156°C. Heat of self-decomposition: -0.19 Kcal./gm.; 25.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Ethylene glycol monoethyl ether acetate

Reactivity Data on Binary Systems

The working chemical of this group reacted between room temperature and 45°C, with the working chemicals of each of the following groups:

Group No.	AT, max. °C.	AP, psi	Hazard
· - Ē,	3	0	None
27	4	0.5	None
30	9	0.7	None
37	77	*	High
41	32	o .	Low
48	33	*	High
53	12	0	None
54	9		None
56	14	0	None
59	4	0.5	None

2. Reactivity between 46° and 100°C. with no groups.

.

- 3. Reactivity between 100° and 200°C. with no groups.
- 4. No reactivity found below 200°C. with Group Nos. 1, 2, 3, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26_I, 27, 28, 31, 32_I, 33, 34, 39, 43, 44, 45, 46, 47, 49, 50 51, 52, 57, 58_I and 60.
- 5. No reactivity found below 60° with Group No. 38_{I} and below 130° C. with Group No. 40_{I} .

Working Chemical: Cresols, mixed isomers Group No. 30 Source: Mallinckrodt Chemical Works Description: U.S.P. grade Boiling point: >200°C. Heat of self-decomposition: -0.22 Kcal./gm.; -23.6 Kcal./mole. Sensitivity

Thermal: exotherm begins at 290°C. Impact: not tested. Spark: not tested.

Group Members

Cresols Nonyl phenol Phenol

Reactivity Data on Binary Systems

...

1 -

....

...

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	AT, max. °C.	AP, psi	Hazard
1	5	0.6	None
6	36	1.0	Low
. 7	8	0.9	None
21	8	1.2	None
23	8	0.3	None
24	12	0.4	None
26	6	0	None
27	3	0.6	None
28	14	0.7	None
29	9	0.7	None
31	28	0.9	Low
32	16	0.8	None
37	56	*	High
41	35	0.7	Low
44	4	0	None
45	11	1.5	None
. 48	92	*	High
52	32	1.3	Low
56	87	*	High
57	28	0.8	Low

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31, 51, 52 and 60.

- 4. Reactivity between 200° and 300°C. with Group Nos. 18 and 39.
- 5. No reactivity found below 200°C. with Group Nos. 2, 15, 17, 19, 25, 46, 49 and 53₁.
- No reactivity found below 300° with Group Nos. 8, 10, 11, 12, 13, 14, 16, 20, 22, 33, 34, 43, 47, 50, 58₁ and 59.
- 7. No reactivity found below 60° with Group No. $38_{\rm I}$, below 130°C. with Group No. $40_{\rm T}$, and below 108°C. with Group No. $54_{\rm I}$.

Working Chemical: Ethylene diamine Group No. 31 Source: Fisher Scientific Company Description: A.C.S. grade Boiling point: 117°C. Heat of self-decomposition: -0.27 Kcal./gm.; -16.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Diethylene triamine Dimethylamine Ethylene diamine Diethylamine Triethylene tetramine Morpholine

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	∆T, max. °C	. ΔP, psi	Hazard
1	6	0.6	None
3	72	3.0	Medium
6	6	0.4	None
10	194	13.5	High
13	98	8.0	High
14	106	3.2	High
15	16	0	None
16	110	22.0	High
19	90	>20	High
20	74	1.9	Medium
21	27	2.6	Low
22	96	2.4	High
23	148	7.5	High
24	70	^a	High
26	25	0.7	None
27	161	a	High .
28	13	0.6	None
. 30	28	0.9	Low
32	6	0	None
34	180	15.3	High
37	250	^a	High
38 ^b	None	(Mixture d ar kened)	None
40 1	None	(Sulfur blackened)	None
41	111	11.1	High
44	69	1.4	Medium
46	36	1.0	Low

Group No.	<u>Δ</u> Τ, max. °C.	ΔP, psi	Hazard
47	116	11.7	High
48	164	26.1	High
49	28	1.0	Low
53	81	3.5	High
54	98		High
56	90	6.6	High
60	117	a	High

Continued

^aMeasurement not made; gases generated in reaction ^bMolten, 60°C. ^cMolten, 130°C.

2. Reactivity between 46° and 100°C. with Group No. 51.

3. Reactivity between 100° and 200°C. with Group Nos. 8 and 25.

4. Reactivity between 200° and 300°C. with Group Nos. 43 and 59.

5. No reactivity found below 200°C. with Group Nos. 2₁, 17, 29, 45_T, 52 and 58.

No reactivity found below 300°C. with Group Nos. 7, 11, 12, 18, 33_T, 39, 50 and 57.

-92-

Working Chemical: Monoethanolamine Group No. 32 Source: The Dow Chemical Company Description: Industrial grade Boiling point: 171°C. Heat of self-decomposition: -0.17 Kcal./gm.; -10.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: negative at 300 Kg.-cm. Spark: not tested.

Group Members

Diethanolamine Monoethanolamine Monoisopropanolamine Triethanolamine Amino ethyl ethanolamine Diisopropanolamine

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the groups on the following page.

Group No.	ΔT, max. °C.	AP, psi	Hazard
. 3	50	1.1	Low
6	10	0	None
10	8	0.4	None
13	95	a	High
14	95	3.9	High
16	56	14.9	Medium
19 _I	32	7.4	Low
20	65	3.5	Medium
21	14	1.9	None
22	105	a	High
23	144	a	High
24	30	2.8	High
26	10	0.6	None
27	109	ª	High
28	5	0.6	None
30	16	0.8	None
31	6	0	None
34	240	a	High
37 - b	206	a	High
38 ₁ ^b	None	(mixture darkened)	None .
40 ₁ °	None	(mixture darkened)	None
41	182	a	High
44	60	2.0	Medium
46	13	0.6	Nonę
47.	122	22.5	High
48	a	a	High
49	15	0.7	None
53	80	a	High
54	98	8	High
56	101	a	High
Beneranen	170 ent not made; high I in reaction.	a temperature	High or gases
^b Molten, 6	ö°C.		
^C Molt <u>en</u> , 1	30°C.		

- 2. Reactivity between 46° and 100°C. with Group Nos. 10 and 51.
- 3. Reactivity between 100° and 200°C. with Group Nos. 8, 251 and 431.
- ⁴. No reactivity found below 200°C. with Group Nos. 1, 2_I, 7_I, 11, 15, 17_I, 29_I, 45_I, 50, 52, 57, 58 and 59_I.
- 5. No reactivity found below 300° with Group Nos. 12, $18_{\rm I},\;33_{\rm I}$ and $39_{\rm I}.$

Working Chemical: Diisobutylene Group No. 33 Source: J. T. Baker Chemical Company Description: Practical grade; 300 ppm H₂O₂ Boiling point: 105°C. Heat of self-decomposition: -0.22 Kcal./gm.; -25.1 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Diisobutylene	Dipentene
Ethylene	Heptene
Propylene	Nonene, isomers
Tetrapropylene	Turpentine
Tripropylene	Dicyclopentadiene

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Gı	roup No.	<u>Δ</u> Τ, max. °C.	∆P , psi	Hazard
	37	61 [.]	11.2	High
•	41 _T	34	2.6	High
	48	46	45.2	High

2. Reactivity between 46° and 100°C. with Group No. 56_{T} .

- Reactivity between 100° and 200°C. with Group Nos. 27, 58 and 60.
- 4. No reactivity found below 200°C. with Group Nos. 2, 3₁, 6₁,
 7, 12, 15, 17, 18, 19, 21, 24, 26₁, 28, 29, 39, 44, 46₁,
 47, 49 and 53₁.

-96-

- 5. No reactivity found below 300°C. with Group Nos. 1, 8, 10 I' 11, 13, 14, 16, 20, 22, 23_I, 25, 30, 31_I, 32_I, 34, 43, 45, 50_{I} , 51, 52, 57 and 59.
- 6. No reactivity found below 60°C. with Group No. 38_{I} , below 130°C. with Group No. 40_{I} and below 84° C. with Group No. 54_{I} .

Working Chemical: Epichlorohydrin Group No. 34 Source: The Dow Chemical Company Description: Industrial grade Boiling point, 117°C. Heat of self-decomposition: -0.26 Kcal./gm.; 24.3 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: negative

Group Members

Epichlorohydrin

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT , max. °C.	<u>∆P, psi</u>	Hazard
31	180	15.3	High
32	240	*	High
37	164	#	High
41	240	>17.5	High
. 48	146	36	High
	xotherm begins 43	°C	High
53	75	2.9	Medium
54	75		Medium
56	104	5.0	High

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 3_{I} , 6_{I} , 44 and 57.

- 4. Reactivity between 200° and 300°C. with Group Nos. 23, 43, 46 and 60.
- 5. No reactivity found below 200°C. with Group Nos. 10, 13, 16, 24, 25, 27, 29, 45, 50 and 58_{T} .
- 6. No reactivity found below 300° with Group Nos. 2, 7, 8, 11, 12, 14, 15, 17, 18, 19, 20, 21, 22, 26₁, 28, 30, 33, 39, 47, 49, 51 and 59.
- 7. No reactivity found below 60°C. with Group No. $38_{\rm I}$ and below 130°C. with Group No. $40_{\rm I}$.

Working Chemical: Oleum Group No. 37 Source: J. T. Baker Chemical Company Description: A.C.S. grade; 15-18% free SO₃ Boiling point: decomposes Heat of self-decomposition: +0.32 Kcal./gm.; +57.4 Kcal./mole. Sensitivity

Thermal: decomposes Impact: not tested. Spark: not tested.

Group Members

Oleum

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the groups on the following page.

Group No.	∆T, max. °C.	AP, psi	Hazard
1	45	a	High
3	8	a	High
6	a	^a	High
7	38	3.0	High
8 ₁	4	3.2	High
10	54	0.9	Medium
11	22	0.7	None
12	155	a	High
13	80	a	High
14	137	a	High
15	161	a	High
16	35	34.4	High
17	35	a	High
18	118	a	High
20	124	a	High
21	76	a	High
22	56	a	High
23	97	a	High
24	130	a	High
25	40	a	High
26	110	a	High
27	60	a	High ·
28	>94	8	High
• 29	77	a	High
30	56	a	High
31	250	a	High
32	206	a	High
33	61	11.2	High
34	164	a	High
38 ^b	11		None
39	91	&	High
40 ^b	None(mix darkened	1)	None

^aMeasurement not made; heat and gases generated in reaction. ^bMolten phosphorus (60°C.) and Sulfur (130°C.)

	Continue	d	Group No. 37
Group No.	∆T, max. °C.	AP, psi	Hazard
41	11	1.2	High
43	23	33.4	High
44	55	2.0	Medium
45	97	^a	High
46	186	. a	High
47	127	^a	High
49	43	7.8	High
50	22	^a	High
51	>130	_ _ a	High
52	240 ^b	^a	High
53	44 b	^a	High
54	a	a	High
56	73	^a	High
58	>106	^a	High
60	156	^a	High

^aMeasurement not made, heat and gases generated in reaction.

^bEvolved gases ignited.

- 2. Reactivity between 46° and $100^{\circ}C$. with no group.
- 3. Reactivity between 100° and 200°C. with no groups.
- 4. No reactivity found below 200°C. with Group Nos. 21, 191, 48 and 597.

Working Chemical: Phosphorus, elemental, white Group No. 38 Source: J. T. Baker Chemical Company Description: White elemental, purified Boiling point: 280°C. Heat of self-decomposition: O <u>Sensitivity</u>

Thermal:	not	tested.
Impact:	not	tested.
Spark:	not	tested.

Group Members

Phosphorus, elemental, white

Reactivity Data on Binary Systems

 The working chemical of this group reacted at 60°C. (molten phosphorus) with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
31	None (mixture darkened)		None
32 _I	None (Gp. 32 blackened)		None
37	11		Norie
48	74		Medium
56	111		High

"Measurement not made; gases generated in reaction.

2. No reactivity found at 60°C. (molten phosphorus) with Group Nos. 1₁, 2₁, 3₁, 6₁, 7₁, 8₁, 10₁, 11₁, 12₁, 13₁, ¹⁴₁, 15₁, 16₁, 17₁, 18₁, 19₁, 20₁, 21₁, 22₁, 23₁, 24₁, 25₁, ²⁶₁, 27₁, 28₁, 29₁, 30₁, 33₁, 34₁, 39₁, 40, 41₁, 43₁, 44₁, ⁴⁵₁, 46₁, 47₁, 49₁, 50₁, 51₁, 52₁, 53₁, 54₁, 57₁, 58₁, 59₁, and 60₁.

Thermal: exotherm beginning at 190°C. Impact: not tested. Spark: negative

Group Members

Styrene monomer (inhibited) Vinyl toluene (meta and para, inhibited)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	∆T, max. °C.	<u>AP, psi</u>	Hazard
37	91	*	High
41	1.48	4.3	High
48	156	36.0	High
56 _I	6	0	None

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 13, 14, 17, 22, 27, 44 and 56.
- 4. Reactivity between 200° and 300°C. with Group Nos. 3_{I} , 6_{I} , 30, 49, 52, 57 and 58_{I} .
- No reactivity found below 200°C. with Group Nos. 2, 8, 10, 16, 18, 24, 25, 29, 33, 43, 46₁, 47, 50, 51, 59 and 60.

- 6. No reactivity found below 300°C. with Group Nos. 1, 7, 11, 12, 15, 19, 20, 21, 23, 26_I, 28, 31, 32_I, 34, 45, 52 and 53_I.
- 7. No reactivity found below 60°C. with Group No. 38_{I} , below 130°C. with Group No. 40_{I} and below 100°C. with Group No. 54_{I} .

Working Chemical: Sulfur, molten Group No. 40 Source: Fisher Scientific Company Description: precipitated (lac sulfur); U.S.P. Boiling point: 445°C. Heat of self-decomposition: +0.48 Kcal./gm.; +15.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Sulfur, molten

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	ΔP, psi	Hazard
6 _I	None (Gp. #6 colored)		None
31 _I	None (sulfur blackened)		None
32 ₁	None (Gp. #32 phase blackened)		None
37	None (mix blackened)		None
52 _I	None (sulfur blackened)		None
56	None	*	High

*Measurement not made; gases generated in reaction.

2. No reactivity found at 130°C. with Group Nos. 1, 2, 3, 7, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 33, 34, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 51, 53, 54, 57, 58, 59 and 60.

3. No reactivity found below 60°C. with Group No. 38.

Working Chemical: Sulfuric acid (96%) Group No. 41 Source: du Pont Description: A.C.S. grade Boiling point: ca. 290°C. Heat of self-decomposition: +0.46 Kcal./gm.; +45.8 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Sulfuric acid (77 to 98%)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT , max. °C.	ΔP, psi	Hazard
l	87	3.3	High
3	51	1.8	Medium
6	101	15.7	High
7	44	1.5	Low
10	41	0.6	Low
11	24	0.6	None
12	173	>20.0	High
13	144	19.2	High
14	205	49.5	High
15	153	#	High
16	45	0.6	Low
17 _I	6	0.6	None
18	117	*	High
20	121	11.1	High
21	46	1.1	Low

Continued

Group No.	ΔT, max. °C.	ΔP, psi	Hazard
22	38	0.7	Low
23	106	3.6	High
24	94	#	High
25	26	0.5	Low
26	80	1.7	High
27	36	0.8	Low
28	47	0.8	Low
29	32	0	Low
30	35	0.7	Low
31	111	11.1	High
32	182	#	High
33 _I	34	2.6	Low
34	240	>17.5	High
37	11	1.2	High
39	148	4.3	High
44	33	1.5	Low
45	37	3.2	Low
46	216	*	High
47	110	*	High
48	Slight exot.	24.0	High
49	9	0.4	None
50	20	0	None
51	>110	*	High
52	252	#	High
53	18	17.7	High
54	38	*	High
56	30	1.9	Low
57	106	5.0	High
58	84	*	High
60	127	#	High
Mar a			

*Measurement not made, gases generated in reaction.

2.	Reactivity between 46° and 100°C. with Group No. 10.
3.	Reactivity between 100° and 200°C. with no groups.
4.	Reactivity between 200° and 300°C. with Group No. 2_{I} .
5.	No reactivity found below 200°C. with Group Nos. 19 $_{ m I}$ and 43 $_{ m I}$.
6.	No reactivity found below 300°C. with Group Nos. $8_{\rm I}$ and 59.
7.	No reactivity found below 60° C. with Group No. 38_{I} and below 130°C. with Group No. 40.

Working Chemical: Vinylidene chloride Group No. 43 Source: J. T. Baker Chemical Company Description: Practical grade, inhibited with methyl hydroquinone Boiling point: 32°C. Heat of self-decomposition: -0.39 Kcal./gm.; -37.6 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 260°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: localized decomposition at 0.0125 joules.

Group Members

Vinyl chloride Vinylidene chloride (inhibited)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	<u>∆P, psi</u>	Hazard
37	23	33.4	High
48	19	59.0	High
56 _I	Exotherm be- gins at 35°C.	*	High

*Dangerous combination - nitric acid and unsaturated compound.

- 2. Reactivity between 46° and 100°C. with Group No. 60.
- 3. Reactivity between 100° and 200°C. with Group Nos. 31, 32 and 52.
- 4. Reactivity between 200° and 300°C. with Group Nos. 1, 10, 11, 12, 13, 14, 16, 20, 21, 23, 25, 27, 31, 34, 44, 46₁, 47, 50
 51, 53_τ, 57 and 58.

-111-

5. No reactivity found below 200°C. with Group Nos. 2, 6_{I} , 7, 8, 15, 17, 19, 24, 26_{I} , 28, 29, 39, 41_{I} , 49 and 59.

- 6. No reactivity found below 300°C. with Group Nos. 18, 22, 30, 33 and 45.
- 7. No reactivity found below 60°C. with Group No. 38_{I} , below 130°C. with Group No. 40_{I} and below 30°C. with Group No. 54_{T} .

Working Chemical: Ethyl acrylate Group No. 44 Source: Matheson Coleman and Bell Description: Inhibited with 15 ppm methylethyl hydroquinone Boiling point: 99°C. Heat of self-decomposition: -0.25 Kcal./gm.; -25.3 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 230°C. Impact: not tested Spark: negative

Group Members

```
Ethyl acrylate (inhibited)
Methyl acrylate (inhibited)
Methyl methacrylate (monomer, inhibited)
n-Butyl acrylate (inhibited)
2-Ethylhexyl acrylate (inhibited)
```

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	∆T, max. °C.	AP, psi	Hazard
30	4	0	None
. 31	69	1.4	Medium
32	60	2.0	Medium
37	55	2.0	Medium
41	33	1.5	Low
. 48	116	2.0	High
52	26	1.9	Low
54-	24		None
56	55	2.0	Medium

2. Reactivity between 46° and 100°C. with no groups.

-113-

- 3. Reactivity between 100° and 200°C. with Group Nos. 1, 3_I, 6_I, 8; 16, 18, 19, 20, 21, 23, 24, 34, 39, 45, 49, 50, 51, 58_I and 59.
- 4. Reactivity between 200° and 300°C. with Group Nos. 7, 12 and 13.
- 5. No reactivity found below 200°C. with Group Nos. 2, 17, 29, 33, 43, 46 and 60.
- 6. No reactivity found below 300°C. with Group Nos. 10, 11, 14, 15, 22, 25, 26₁, 27, 28, 47, 53₁ and 57.
- 7. No reactivity found below 60°C. with Group No. $38_{\rm I}$ and below 130°C. with Group No. $40_{\rm T}$.

Working Chemical: Isopropyl ether Group No. 45 Source: J. T. Baker Chemical Company Description: Reagent grade; 50 ppm H₂O₂ Boiling point: 68°C. Heat of self-decomposition: -0.20 Kcal./gm.; -20.0 Kcal./mole. Sensitivity

Thermal: exotherm at about 230°C. Impart: not tested. Spark: not tested.

Group Members

Ethyl ether Isopropyl ether

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	AP, psi	Hazard
30	11	1.5	None
37	97	*	High
41	37	3.2	Low
48	40	*	High
53 _I	8	2.0	None
54 _I	8		None
56	>100	>35.0	High

*Measurement not made; gases generated in reaction.

2.	Reactivity	between	46°	and	100°C.	with	no	groups.	
----	------------	---------	-----	-----	--------	------	----	---------	--

3. Reactivity between 100° and 200°C. with Group No. 44.

1

- 4. No reactivity found below 200°C. with Group Nos. 1, 2, 3_I, 6_I,
 7, 8, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25,
 26_I, 27, 28, 29, 31_I, 32_I, 34, 46_I, 47, 49, 50, 51, 52, 57,
 58_I, 59 and 60.
- 5. No reactivity found below 300°C. and Group Nos. 16, 18, 33, 39 and 43.
- 6. No reactivity found below 60°C. with Group No. 38₁ and below 130°C. with Group No. 40₁.

Working Chemical: Ethylene cyanohydrin Group No. 46 Source: J. T. Baker Chemical Company Description: Baker grade (high purity) Boiling point: 221°C. Heat of self-decomposition: -0.79 Kcal./gm.; -56.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Ethylene cyanohydrin Acetone cyanohydrin

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	<u>∆P, psi</u>	Hazard
1	5	0.5	None
6	31	6.3	High
20	6	1.9	None
28	8	0.4	None
• 31	36	1.0	Low
32	13	0.6	None
37	186	*	High
4 l	216	*	High
. 48	194	>80	High
52	28	2.1	Low
53	11	0.5	None
54	5		None
56	13	0.7	None
57	12	0.6	None

*Measurement not made; gases generated in reaction.

-117-

ļ

]

- 2. Reactivity between 46° and 100°C. with no groups.
- Reactivity between 100° and 200°C. with Group Nos. 3, 52, 53, 56 and 60.
- 4. Reactivity between 200° and 300°C. with Group Nos. 8, 10, 16₁, 22, 25, 27, 34 and 43₁.
- 5. No reactivity found below 200°C. with Group Nos. 2₁, 7, 11, 12, 13, 14, 15, 17₁, 18, 19, 21, 23, 24, 29, 30, 33₁, 39₁, 44, 45₁, 47, 49, 50, 51 and 58.
- 6. No reactivity found below 300°C. with Group Nos. 23 and 591.
- 7. No reactivity found below 60°C. with Group No. 38₁ and below 130°C. with Group No. 40₁.

Working Chemical: Vinyl acetate Group No. 47 Source: Eastman Organic Chemical Description: Practical grade; stabilized Boiling point: 72°C. Heat of self-decomposition: -0.25 Kcal./gm.; -21.5 Kcal./mole. Sensitivity

Thermal: exotherm at 180°C. Impact: negative to 300 Kg.-cm. Spark: negative

Group Members

Vinyl acetate (stabilized)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	AT. max °C.	P, psi	Hazard
31	116	11.7	High
32	122	22.5	High
37	127	a	High
41	110	a	High
48	76	75.0	High
• 52	180	>40.0	High
53	55	13.0	High
54	Exotherm beginning 42°C.		Highb
56	130	>40.0	High
58	43	4.7	Low

^aMeasurement not made; gases generated in reaction. ^bBy analogy with Group No. 53.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. $\boldsymbol{6}_{I}$ and 16.
- 4. Reactivity between 200° and 300°C. with Group Nos. 1, 10 and 43.
- 5. No reactivity found below 200°C. with Group Nos. 2, 3_I, 7, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 24, 26_I, 29, 33, 39, 45, 46, 49, 50 and 60.
- No reactivity found below 300°C. with Group Nos. 8, 22, 23, 25, 27, 28, 30, 34, 44, 51, 57 and 59.
- 7. No reactivity found below 60°C. with Group No. 38_{I} and below 130°C. with Group No. 40_{T} .

Working Chemical: Chlorosulfonic acid Group No. 48 Source: Eastman Organic Chemical Description: Practical grade Boiling point: 152°C. Heat of self-decomposition: +0.23 Kcal./gm.; 27.2 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Chlorosulfonic acid

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	ΔT, max. °C.	<u>∆P, psi</u>	Hazard
l	152	^a	High
3	^a	^a	High
6	145	76.0	High
7	65	6.4	High
8b	43	^a	High
10	52	78.0	High
11	84	^a	High
12	150	14.0	High
13	96	^a	High
14	121	^a	High
15	150	^a	High
16	60	^a	High
17	51	34.8	High
18	89	>40.0	High
20	114	^a	High
21	60	34.0	High

-121-

	Continued		
Group No.	ΔT, max. °C.	ΔP, psi	Hazard
22	75	7.2	High
23	77	41.4	High
24	100	^a	High
25	30	1.2	High
26	66	84.0	High
27	146	^a	High
28	68	50.0	High
29	33	^a	High
30	92	^a	High
31	164	26.1	High
32	a	_ _ a	High
33	46	45.2	High
34	146	36.0	High
381 ^c	74	^a	High
39	156	36.0	High
41	Slight exot.	24.0	High
43	19	59.0	High
44	116	2.0	High
45	40	^a	High
46	194	>80.0	High
47	76	75.0	High
49	137	>20.0	High
50	33	2.6	High
51	132	^a	High
52	158	^a	'High
53	25	122.0	High
54	 ^a	a	High
56	37	56.0	High
57	146	a	High
58		^a	High
60	127	^a	High

^aMeasurement not made, heat and gases generated in reaction. ^bReactive only with the halogenated aromatics of Gp. S. ^cMolten phosphorus (60°C.).

2.	Reactivity between 46° and 100°C. with no groups.
3.	Reactivity between 100° and 200°C. with Group No. 21.
4.	Reactivity between 200° and 300°C. with Group Nos. 19 $_{ m I}$ and 59
5.	No reactivity found below 200°C. with Group No. 37.
6.	No reactivity found below 300° with Group No. 8.
7.	No reactivity found below 130°C. with Group No. 40.

Working Chemical: 2-Nitropropane Group No. 49 Source: Eastman Organic Chemical Description: Practical grade Boiling point: 120°C. Heat of self-decomposition: -0.35 Kcal./gm.; -31.6 Kcal./mole. Sensitivity 1

Thermal: exotherm beginning at 175°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: negative

Group Members

2-Nitropropane

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	Δ Τ , max. °C.	<u>∆P, psi</u>	Hazard
31	28	1.0	Low
32 ₁	15	0.7	None
37	43	7.8	High
41	9	0.4	None
48	137	>20.0	High

2. Reactivity between 46° and 100°C. with Group No. 6_{I} .

- 3. Reactivity between 100° and 200°C. with Group Nos. 3_I, 44, 52, 53_I and 58_I.
- 4. Reactivity between 200° and 300°C. with Group Nos. 7, 10, 12, 13, 20, 21, 22, 23, 26, 39 and 51.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 8, 11, 15, 16, 17, 18, 24, 25, 27, 29, 30, 33, 43, 45, 46, 47, 50, 56, 57, 59 and 60.

-124-

- No reactivity found below 300°C. with Group Nos. 14, 19, 28 and 34.
- 7. No reactivity found below 60°C. with Group No. 38_{I} , below 130°C. with Group No. 40_{I} and below 100°C. with Group No. 54_{I} .

Working Chemical: Sulfolane Group No. 50 Source: Phillips Petroleum Description: Unknown quality Boiling point: 285°C. Heat of self-decomposition: -0.18 Kcal./gm.; -21.2 Kcal./mole. Sensitivity

J

```
Thermal: none <300°C.
Impact: not tested.
Spark: localized decomposition at 3.125 joules
```

Group Members

Sulfolane

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>∆T. max. °C.</u>	<u>∆P, psi</u>	Hazard
87	22	*	High
41	20	0	None
48	33	2.6	High
56	10	0.8	None

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- Reactivity between 100° and 200°C. with Group Nos. 44, 52, 56 and 60.
- 4. Reactivity between 200° and 300°C. with Group Nos. 3, 18, 20 and 43.

5. No reactivity found below 200°C. with Group Nos. 2_{I} , 6_{I} , 7, 8, 15, 17, 19_{I} , 22, 23, 24, 25, 26, 27, 28, 29, 32, 34, 39, 45_{I} , 46, 47, 49, 53 and 59.

- No reactivity found below 300°C. with Group Nos. 1, 10, 11, 12, 13, 14, 16, 21, 30, 31, 33, 51, 57 and 58.
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_I, and below 110°C. with Group No. 54.

Working Chemical: Propylene oxide Group No. 51 Source: Eastman Organic Chemical Description: Unknown quality Boiling point: 35°C. Heat of self-decomposition: -0.36 Kcal./gm.; -21.0 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: negative to No. 8 cap and 40 gm. tetryl. Spark: negative

Group Members

Ethylene oxide Propylene oxide

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	AP, psi	Hazard
37	>130	*	High
41	>110	#	High
48	132	*	High
53	64	*	High
54	70	*	High
56	*	#	High
58 _I	Exot. begins at 42°C.(DTA)	0	None

"Measurement not made; high temperatore or gases generated in reaction.

2. Reactivity between 46° and 100°C. with Group Nos. 31 and 32.

3. Reactivity between 100° and 200°C. with Group Nos. 3_{I} , 22, 30, 44, 52 and 60.

- 4. Reactivity between 200° and 300°C. with Group Nos. 1, 10, 14, 16, 19, 20, 23, 43, 49 and 57.
- No reactivity found below 200°C. with Group Nos. 2, 6₁, 7, 8, 15, 17, 21, 24, 25, 26₁, 27, 28, 29, 39, 45, 46 and 59.
- No reactivity found below 300° with Group Nos. 11, 12, 13, 18, 33, 34, 47 and 50.
- 7. No reactivity found below 60° with Group No. 38_I and below 130°C. with Group No. 40_I.

Working Chemical: Ethylenimine Group No. 52 Source: Matheson, Coleman and Bell Description: Stabilized with KOH Boiling point: 55.5°-57.5°C. Heat of self-decomposition: -0.54 Kcal./gm.; -23.3 Kcal./mole. Sensitivity

Thermal: exotherm beginning at 260°C. Impact: negative to 40 gm. tetryl. Spark: negative

Group Members

Ethylenimine

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following group:

Group No.	ΔT, max. °C.	<u>AP, psi</u>	Hazard
1	6	Vac.	None
3	113	10.0	High
10	15	0	None
13	161	22.2	High
14	34	3.1	Low
15	11	Vac.	None
16	176	38.2	High
19	130	>40	High,
20	60	0	Medium
21	12	Vac.	None
22	189	33.5	High
23	153	22.8	High
24	35	1.5	Low
26	13	Vac.	None
27	111	16.4	High

-130-

Group No.	∆T, max. °C.	ΔP, psi	Hazard
28	6	Ο.	None
30	32	1.3	Low
34	*	*	High
37	240	*	High (fire)
40 ₁ ** (Sulfur blackened)	None		None
41	252	*	High
44	26	1.9	Low
46	28	2.1	Low
47	180	>40	High
48	158	*	High
5 3	84	*	High
54	100	*	High
56	*	*	High
58 _T	10	2.7	None
60	200	*	High

Continued

*Measurement not made; high temperature or gases
generated in reaction.
**Molten sulfur (130°C.).

- 2. Reactivity between 46° and 100°C. with no groups.
- Reactivity between 100° and 200°C. with Group Nos. 8, 25, 26, 30, 43, 46, 49, 50 and 51.
- 4. Reactivity between 200° and 300°C. with Group Nos. 7 and 39.
- 5. No reactivity found below 200°C. with Group Nos. 2, 6, 17, 29, 31, 32, 45 and 59.
- No reactivity found below 300°C. with Group Nos. 11, 12, 18,
 33 and 57.

7. No reactivity found below 60°C. with Group No. 381.

Working Chemical: Hydrochloric acid Group No. 53 Source: E. I. du Pont Description: 36% acid Boiling point: ca. 110°C. Heat of self-decomposition: +0.43 Kcal./gm.; +43.7 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested

Group Members

Hydrochloric acid (28%-36% aqueous) Phosphoric acid (75%-85% aqueous)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	AP, psi	Hazard
l	23	0.8	None
6	80	3.9	High
7	9	0.9	None
10	7	Vac.	None
13	33	1.9	Low
15	9	0	None
20 ₁	19	1.8	None
21	16	0.9	None
23	53	12.2	High
24	19	Vac.	None
26	14	Vac.	None
28	19	0	None
29	12	0	None
31	81	3.5	High
32	80	*	High
34	75	2.9	Medium
37	44	+	High
41	18	17.7	High
45 _I	8	2.0	None
46	11	0.5	None
47	55	13.0	High
48	25	122	High
51	64	*	High
52	84	*	High
56	4	2.6	None
57	61	Vac.	Medium
58	58	*	High
60	77 ^	3.8	High

*Measurement not made; gases generated in reaction.

-134-

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 3, 12, 46 and 49_T.
- 4. Reactivity between 200° and 300°C. with Group Nos. 16_{I} and 43_{I} .
- 5. No reactivity found below 200°C. with Group Nos. 2_{I} , 8_{I} , 11_{I} , 17_{I} , 18_{I} , 25, 30_{I} , 33_{I} , 50 and 59.
- 6. No reactivity found below 300°C. with Group Nos. 14, 19₁, 22, 27, 39₁ and 44_1 .
- 7. No reactivity found below 60°C. with Group No. 38_I, below 130°C. with Group No. 40_T, and below 100°C. with Group No. 54.

```
Working Chemical: Hydrofluoric acid Group No. 54
Source: J. T. Baker Chemical Company
Description: 48.7% acid, A.C.S. grade
Boiling point: ca. 120°C.
Heat of self-decomposition: +0.41 Kcal./gm.; +11.8 Kcal./mole.
Sensitivity
```

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Hydrofluoric acid (48% aqueous)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	<u>∆P, psi</u>	Hazard
1	45		Low
6	*	#	High
13	10		None
50 ¹	30		Low
21	12		None
23	53	*	High
24	10		None
26	6		None
28	16		None
29	9		None
31	98	*	High
32	98	*	High
34	75		Medium
37	*	*	High
41	38	*	High
44 1	4		None
45 _I	8		None
46	5		None
47	exotherm be- gins 42°C.		High
48	#	*	High
51	70	*	High
52	100	*	High
57	47		Low
58	56	*	High
60	80		High

*Measurement not made; high temperature or gases generated in reaction.

· ---

- 2. No reactivity found below 100°C. with Group Nos. 3, 10, 11_I, 15, 17_I, 22, 25_I, 27_I, 30_I, 39_I, 40_I, 49_I, 50_I, 53 and 56.
- 3. No reactivity found with Group Nos. 2_I (to 65°C.), 8_I (to 75°C.), 12 (to 70°C.), 14 (to 90°C.), 16_I (to 45°C.), 18_I (to 34°C.), 19_I (to 45°C.), 33_I (to 84°C.), 38_I (to 60°C.), 43_I (to 31°C.), and 59_I (to 80°C.).

Working Chemical: Nitric acid (70% soln.) Group No. 56 Source: E. I. du Pont Description: Reagent grade Boiling point: <100°C. Heat of self-decomposition: +0.30 Kcal./gm.; +26.4 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Nitric acid (58%-68%, aqueous) Nitric acid (95% aqueous)

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>∆T, max. °C.</u>	<u>∆P, psi</u>	Hazard
1	101	18	High
3	64	*	High
6	90	7.9	High
7	10	1.1	None
10	6	0.8	None
11	72	10.2	High
13	82	*	High
15	77	*	High
¹⁶ 1	Exotherm be- gins 45°C.		High
17	7	1.1	High
18	90	*	High
20 ₁	73	>40	High
21	13	1.1	None
23	80	2.0	High
24	18	*	High
25	4	0.7	None
26	14	0.8	None
27	4	0.5	None
• 28	21	0.7	None
29	14	0	None
30	87	*	High
31	90	6.6	High
32	101	*	High
34	104	5.0	High
37	73	*	High
38**	111	*	High
39 _I	6 -	0	None
40**		*	High

Continued

Group No.	∆T, max. °C.	AP, psi	Hazard
41	30	1.9	Low
43	Exotherm be- gins 35°C.		High
44	7	0.8	None
45	>100	>40	High
46	13	0.7	None
47	130	>40	High
48	37	56	High
50	10	0.8	None
51	*	*	High
52	*	*	High
53	24	2.6	None
57	79	3.2	High
58	*	*	High
60	85	4.0	High

*Measurement not made; high temperature or gases
generated in reaction.
**Molten sulfur (130°C.) or molten phosphorus (60°C.).

- Reactivity between 46° and 100°C. with Group Nos. 14 (detonates at 90°C.), 24, 33_I and 47.
- Reactivity between 100° and 200°C. with Group Nos. 2₁, 8₁, 10, 12, 22, 25, 27, 39, 46, 50 and 59.
- 4. Reactivity between 200° and 300°C. with Group No: 191.
- 5. No reactivity found below 200°C. with Group No. 49.
- 6. No reactivity found below 100°C. with Group No. 54.

Group No. 57

Working Chemical: Pyridine Source: Matheson Coleman and Bell Description: Unknown quality Boiling point: 115°C. Heat of self-decomposition: -0.20 Kcal./gm.; -15.5 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested Spark: not tested.

Group Members

Pyridine 2-Methyl-5-ethyl pyridine

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>ΔΤ, max. °C.</u>	<u>∆P, psi</u>	Hazard
1	6	0	None
10	9	0.8	None
22	20	0	None
26	7	0	None
. 27	23	1.5	None
28	6	0	None
30	28	0.8	Low.
. 37	131	*	High
41	106	5.0	High
46	12	0.6	None
48	146	*	High
53	61	Vac.	Medium
54	47		Low
56	79	3.2	High
50 60	114	#	High
. 00			a in monoti

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 8, 10, 16, and 34.
 - 4. Reactivity between 200° and 300°C. with Group Nos. 39, 43 and 51.
 - No reactivity found below 200°C. with Group Nos. 2, 6, 7, 15, 17, 19, 23, 24, 25, 29, 32, 45, 49, 58 and 59.
 - No reactivity found below 300°C. with Group Nos. 3, 11, 12, 13, 14, 18, 20, 21, 31, 33, 44, 47, 50 and 52.
 - 7. No reactivity found below 60°C. with Group No. $38_{\rm I}$ and below 130°C. with Group No. $40_{\rm T}$.

Working Chemical: Ammonia (28% aqueous) Group No. 58 Source: E. I. duPont Description: Reagent grade Boiling point: None Heat of self-decomposition: +0.56 Kcal./gm.; +33.9 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: not tested.

Group Members

Ammonia (28% aqueous)

Reactivity Data on Binary Systems

1. The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group N	o. ΔT, max. °C.	∆P, psi	Hazard
3	25	1.5	None
6	18	4.6	None
13	106	14.8	High
20	26	2.2	Low
23	17	1.5	None
27	12	#	High
28	8	0.8	None
37	>106	*	High
41	84	*	High
47	43	4.7	Low
48	*	#	High
51 _I	(exotherm begins 42°)		High
52 ₁	10	2.7	None
53	58	*	High
54	56	*	High
56	*	*	High
60	100	15.0	High

*Measurement not made; high temperature or gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with Group No. 23.
- 3. Reactivity between 100° and 200°C. with Group Nos. 10, 33, $44_{\rm I}$ and $49{\rm I}$.
- 4. Reactivity between 200° and 300°C. with Group Nos. 19], 22, 39] and 43.

Group No. 58

]

- 1

- 5. No. reactivity found below 200°C. with Group Nos. 1, 2_I, 8_I, 15, 16_I, 17_I, 24_I, 29_I, 31, 32, 34_I, 45_I, 46 and 59.
- 6. No reactivity found below 300°C. with Group Nos. 7_{I} , 11_{I} , 12_{I} , 14_{I} , 18_{I} , 21_{I} , 25_{I} , 26_{I} , 30_{I} , 50 and 57.
- 7. No reactivity found below 60°C. with Group No. $38_{\rm I}$ and below 130°C. with Group No. $40_{\rm T}$.

Working Chemical: Trichlorethylene Group No. 59 Source: The Dow Chemical Company Description: Industrial grade Boiling point: 87°C. Heat of self-decomposition: -0.10 Kcal./gm.; -12.9 Kcal./mole. Sensitivity

Thermal: none <300°C. Impact: not tested. Spark: localized decomposition at 3.125 joules.

Group Members

Tetrachloroethylene (Perchloroethylene) Trichloroethylene

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	<u>Δ</u> Τ, max. °C.	ΔP, psi	Hazard
20	14	0	None
28	5	0	None
29	4	0.5	None

- 2. Reactivity between 46° and 100°C. with no groups.
- 3. Reactivity between 100° and 200°C. with Group Nos. 44, 56 and 60.
- 4. Reactivity between 200° and 300°C. with Group Nos. 31 and 48.
- 5. No reactivity found below 200°C. with Group Nos. 1, 2, 3_I, 6_I, 7, 8, 10, 11, 15, 16, 17, 21, 23, 24, 25, 26_I, 27, 32_I, 37_I, 39, 43, 45, 49, 50, 51, 52, 53, 57 and 58.

-

- 6. No reactivity found below 300°C. with Group Nos. 12, 13, 14, 18, 19, 22, 30, 33, 34, 41, 46₁ and 47.
- 7. No reactivity found below 60°C. with Group No. 381, below 130°C. with Group No. 401, and below 80°C. with Group No. 541.

Working Chemical: Propiolactone Group No. 60 Source: K and K Laboratories and Eastman Organic Chemical Description: Unknown grade Boiling point: Decomposes Heat of self-decomposition: -0.24 Kcal./gm.; -17.6 Kcal./mole. Sensitivity

Thermal: exotherm begins at 150°-155°C. Impact: not tested. Spark: negative.

Group Members

Propiolactone

Reactivity Data on Binary Systems

 The working chemical of this group reacted between room temperature and 46°C. with the working chemicals of each of the following groups:

Group No.	∆T, max. °C.	ΔP, psi	Hazard
1	188	*	High
6	93	*	High
31	117	*	High
32	170	*	High
37	156	*	High
. 41	127	*	High
48	127	*	High
52	200	*	High
5 3	77	3.8	High
- 54	80		High
56	85	4.0	High
57	114	*	High
58	100	15	High

*Measurement not made; gases generated in reaction.

- 2. Reactivity between 46° and 100°C. with Group Nos. 3, 11 and 43.
- Reactivity between 100° and 200°C. with Group Nos. 10, 18, 22, 26, 30, 33, 46, 50, 51 and 59.
- 4. Reactivity between 200° and 300°C. with Group Nos. 16 and 34.
- 5. No reactivity found below 200°C. with Group Nos. 2₁, 7, 8, 12, 13, 14, 15, 17, 19₁, 20, 21, 23, 24, 25, 27, 28, 29, 39, 44, 45, 47 and 49.
- 6. No reactivity found below 60°C. with Group No. 38_{I} and below 130°C. with Group No. 40_{T} .

APPENDIX B

INDEX OF CHEMICALS

INDEX OF CHEMICALS

Chemical	Group No.
Acetaldehyde	20
Acetic Acid (glacial)	22
Acetic Anhydride	23
Acetone	21
Acetonitrile	12
Acetone Cyanohydrin	46
Acrolein (inhibited)	13
Acrylonitrile	14
Acrylic Acid	27
Adiponitrile	12
Allyl Alcohol	15
Allyl Chloride	16
Aluminum Triethyl	4
Aminoethyl Ethanolamine	32
Ammonia, Anhydrous	5
Ammonia, Aqua (28%)	58
Amyl Acetate, iso-	7
Amyl Acetate, n-	7
Amyl Alcohol, n-	26
Aniline	1
Asphalt (Typical)	2
Benzene	17
Butadiene (inhibited)	18
Butane, Commercial	2
Butyl Acetate, n-	7
Butyl Acetate, sec-	7
Butyl Acrylate, n-	44
Butyl Alcohol, n-	26
Butyl Alcohol, sec-	26
Butyl Alcohol, tert-	26
Butyl Alcohol, iso-	26

Chemical	Group No.
Butylbenzyl phthalate	7
Butylene Glycol	26
Butyraldehyde, n-	20
Butyric Acid, n-	22
Camphor Oil (light)	21
Carbon Disulfide	19
Carbon Tetrachloride	8
Casinghead (natural) Gasline	2
Caustic Potash Solution	6
Caustic Soda Solution	6
Chlorine	9
Chlorobenzene	8
Chloroform	8
Chlorohydrins, Crude	10
Chlorosulfonic Acid	48
Coal Tar Oil	11
Cresols (mixed isomers)	30
Creosote, Coal Tar	11
Crotonaldehyde	13
Crude Oil (petroleum)	2
Cumene (isopropylbenzene)	17
Cyclohexane	2
Cyclohexanone	21
Cymene, p-	17
Decyl Alcohol, n-	26
Dibutyl-o-phthalate	7
Dicyclopentadiene	33
Dichlorobenzene	8
Dichlorodifluoromethane	8
Dichloroethylether	25
l,2-Dichloropropane	8

-153-

Chemical	Group No.
Dichloropropene	16
Diethylamine	31
Diethylene Triamine	31
Diethanolamine	32
Diethyl Benzene	17
Diethylene Glycol	26
Diethylene Glycol Monoethyl Ether	28
Diethylene Glycol Monomethyl Ether	28
Diisobutyl Ketone	21
Diisobutylene	33
Diisopropanolamine	32
Dimethylamine	31
Dipentene	33
Dipropylene Glycol	26
Dodecyl Benzene	17
Ethoxytriglycol	28
Ethylene Dibromide	8
Epichlorohydrin	34
Ethyl Acetate	7
Ethyl Acrylate (inhibited)	44
Ethyl Alcohol	26
Ethyl Benzene	17
Ethyl Chloride Ethyl Ether	8
Ethylene Cyanohydrin	45 46
Ethylene Diamine	
Ethylene Dichloride	31 ·
Etylylene Glycol	8 26
Ethylene Glycol Monobutyl	
Ether Ether	28
Ethylene Glycol Monoethyl Ether	28
Ethylene Glycol Monoethyl Ether Acetate	29
Ethylene Glycol Monomethyl Ether	28

1

Chemical	Group No.
Ethylene Oxide	51
Ethylenimine	52
2-Ethyl-3-Propyl Acrolein	13
2-Ethyl-1 Hexanol	26
2-Ethylhexyl Acrylate	44
Formaldehyde Soln. (37-50%)	3
Formic Acid	22
Furfural	20
Gasoline, Commercial	2
Glycerine	26
Glycol Diacetate	7
Glyoxal (40% soln.)	3
Heptane, n-	2
Heptene	33
Hexane, n-	2
Hexylene Glycol	26
Hydrochloric Acid (aqueous) (28-35%)	53
Hydrofluoric Acid (aqueous) (70%) 54
Hydrogen Chloride (anhydrous)	55
Hydrogen Fluoride (anhydrous)	3 5
Isobutyl Acetate	7
Isobutyl Alcohol	26
Isobutyraldehyde	20
Isodecaldehyde	20
Isodecanol	26
Isopropyl Ether	45
Isophorone	24
Isopropyl Alcohol	26
Isopropyl Acetate	7

Chemical	Group No.
Isooctanol	26
Isooctyl Aldehyde	20
Isoprene	18
Jet Fuel, JP-3	2
Jet Fuel, JP-4	2
Jet Fuel, JP-5	2
Kerosene	2
Methane	2
Methyl Amyl Alcohol	26
Methyl Acetate	7
Methyl Acrylate (inhibited)	44
Methyl Alcohol	26
Methyl Bromide	8
Methylbutyraldehyde	20
Methyl Chloride	8
Methyl Ethyl Pyridine	57
Methyl Formal	20
Mesityl Oxide	24
Methyl Methacrylate (inhibited)	44
Methyl Amyl Acetate	7
Methylene Chloride	8
Methyl Ethyl Ketone	21
Methyl Isobutyl Ketone	21
Mineral Spirits No. 10	2
Monochlorodifluoromethane	8
Monoethanolamine	32
Monoisopropanolamine	32
Morpholine	31
Naphthalene, Molten	17
Nitropropane	49
Nitric Acid, Conc.	56

-156-

Chemical	Group No.
Nitrous Oxide	36
Nonyl Alcohol	26
Nonane	2
Nonyl Phenol	30
Oleum	37
Pentane, n-	2
Pentane, iso-	2
Perchloroethylene	59
Petroleum Ether	2
Phenol	30
Phosphoric Acid (75-85%)	53
Phosphorus, Elemental	38
Propane, Commercial	2
Propionaldehyde	20
Propiolactone, 8-	60
Propionic Anhydride	23
Propionic Acid	22
Propyl Acetate, n-	7
Propyl Alcohol, n-	26
Propylene	33
Propylene Glycol	26
Propylene Oxide	51
Propyl Acetate	7
Propylene	33
Pyridine	57
Styrene Monomer	39
Sulfur, Molten	40
Sulfonane	50
Sulfuric Acid (77-98%)	41
Sulfuric Acid (77-98%)	41

Chemical	Group No.
Tetraethyl Lead	42
Tetraethylene Glycol	28
Tetrahydronaphthalene	17
Tetrapropylene	33
Toluene	17
Trichlorobenzene	8
1,1,1-Trichloroethane	8
Trichloroethylene	59
Triethanolamine	32
Tridecanol	26
Triethyl Benzene	17
Triethylene Tetramine	31
Triethylene Glycol	28
Tripropylene	33
Turpentine	33
Valeraldehyde	20
Vinyl Acetate	47
Vinyl Chloride	43
Vinylidene Chloride (inhibited)	43
Vinyl Toluene (meta and para, inhibited)	39
Xylene	17
Xylene, o-	17
Xylene, p-	17