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IPnCTS or STUAMLINI CUIVATUU ON TUUULDT FLOW 

by 
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1 

Str••line curvature in the plane of the Man 1hear produce, 11&rpri1in1ly larae chanaea in the 
turbulence 1tructure of 1heer layer• ~ flfl'ft chense •r• u1ually an order of uanitude 110re important than 
aorul pree1ure 1radient1 an, other ellplieit tenu a,,-.wi.ae in the mean-motion equation, for curved flow,. 
The er fect1 on 110•ntU11 and heat tran1fer in boundary l1yer1 are noticeable on typical wina 1ection1 and 
are very iaportant on hiply-clllbered turb0111chine bl1de1: turbulence uy be nearly eliminated on hiahly­
conv•x 1urface1, while on hi&hly-concave 1urface1 -ntum tran1fer by qua1i-1teady lonaitudinal vortice1 
doainate1 the ordinary turbulence proce11e1. The areatly enhanced mixing rate, of 1wirlin1 jet• and the 
characteriatic non-turbulent core, of trailing vortice1 are pl10 con1equence1 of the effect• of 1treamline 
curvature on the turbulance 1tructure, Thi • AGAIDoguph ii 1a pro1re11 report, compri ■ i,as a review of 
current knowledae, a dl1cu11ion of 11ethod1 of predicting curvature effect, in en1inNrin1 calculetion 
•thod1, and a pre1entation of principle• for the auidance of future worker,. 

LIST or SYMBOLS 

lnfrequently-u1ed 1ymbol1 are defined on u1e. The overbar (-) denote• 1n average, u1ually with re1pect to 
ti•. 

r 
f 

I 
h 
l 
k 

L 
~ 
.t 
M 
n 
p 
Pr 
p 
Q 
q2 
R 
Ri 
If 
r 
s ,. 
T 
u,v,w 
u,v,w 
UT 
l 

factor of order unity in Eq(Jl); speed of sound 
additive con1tant in logarithmic law, Eq(43) 
pre11ure coefficient (defined on use), 1pecific heat at constant pre11ure 
1kin fr i ction coefficient, Tw/lpU! 
diameter 
1ub1tantial derivati, e , a/ax+ a/ay ♦ o/oz 
extra rate of 1trai 
"F-factor", Eq(32,36 ) 
"f-factor", Eq(Jl); function 
aravitational acce l eration; metric tensor (App,1) 
duct height; 1cale factor 
lanun'• constant Eq(42) 
wave nwaber vector, components 

di11ipation length parameter , 
Monin-Obulu,ov length Eq(70,81) 

k1, k2, k3; 
c-rrv>3/ 2/r. 

mixing len<&th, (-uv) l/2 /(oU/oy) 
~ltach numb f r U/a 
normal co•,rdinate in (1 ,n) 1y1tem, Fig. l (b) 
total p,:e1111re 

thermal conductivity 

molecu l ar Prandtl number, ~cp/k 
1t1tic pre11ure (mean and fluctuation di1tingui1hed by p, p') 
volUIII flow rate; heat tran1fer/unit area/unit time 
u2+ v2+ w2 
1urface radiu1 
gradient Richardson number) Table 2 flux Richard1on number 
local radiu1 
curvature parameter, Eq(86) 
curvilinear coordinate in (s,n) system, Fig.l(b) 
mean temperature 
mean velocity components in (x,y,z), (1,n,z) and (x,r,8) coordinate 1y1tem1 (Fig.1) 
fluctuating velocity components 
friction velocity, l(tw/p) 
"time constant" of energy-containing eddies, Eq(37) 
rectanaular cartesian coordinate■ 
cartc1ian tensor coordinate,, x1, x2, x3 

fact or of order 10 in Eq(32) 
factor in Monin-Obukhov formula, Eq(ll.9) 
circulation 
ratio of specific heat, 
boundary layer thickne11: y • 6 when U • 0,995Ue 

dilplacement thickneu (' (1 - pU/ (Pe Ue)) dy 

wall jet thickne11: y • 6, 5 when U • o,su.n 
turbul ent energy di11ipation/unit ma11/unit time 
,naular coordinate in (x,r,8) coordinate system; temperature fluctuation 



~ the~tric conductivity, k/(pcp) 

A aicro1cal•, ✓[ ~/Ou/ Clx) 2 ) 
µ vieco■ ity 
v kineatic vi1co1ity, µ/p 
p den■ity (Man and fluctuation dhtinauhhed by p ,P ') 
t 1hear 1tre11, -piiv in fully-turb~lent part of tvo-dimen■ ional flow 
n anaular velocity of rotAtina duct 
w circular frequency 
w1y lrunt-Vai1ala frequency, Eq(S) 

Suffixea 
e 
i. ,j ,t 
·r 
V 

0 

1,2 ,3 

exLwrnal 1tream condition, 
ten■or indicea 
turbulent 
wall (1urface) 
reference or initial value 
ten1or indice1 for x, y, z 

1, INTIODUCTI0N 

The subject of thi1 AGAJU>ograph i1 the 1urpri1ing\y arge effect exerted on shear-flow turbulence ~ v 

curvature of the 1treamline1 in the plane of the mean 1hear (Fig.l). Signif i cant effect, on ■hear 1tre11 
and heat tranlfer can occur even for radii of c·.Jr. vature more than a hundred timu the 1!,ear layer thickneu. 
The mo■ t cOD111on example of a turbulent f low infl ·1enced by streaml ine curvature L ■ the boundary layer on a 
highly-cambered ■erofoil or turbomach1ne blade; its rate of gro,.th, compared with that of a boundary layer 
in the ■ame pressure gradient on a flat surfacu, il decreased on the convex upper (auction) surface an~ 
increased on the concave lover (pressure) surface. The title is chosen t o i nclude other ca,es, such as 
deflected jets, vortices and other swirling :love, and flow in various types of rotating duct (Fig. l): 
there is no connection with the "1treamlin£: curvature" method of calculating euentially invhcid flow in 
turbomachines. 

The &ubj ~ct is di~cu11ed from the point of view of engineering calculation methods. However, 
attention to the physics of the Lurious phenomena involved is even more necessary than u1ual in turbulent 
flow, and it is helpful to recognise that st . eamline curvature is not an isolated athological ca1e but 
one of a group of distort i ons ("extra rates of strain") which produce unexpectedly large effect ■ on 
turbulent shear layers. By the words "surprisingly" and "unexpectedly" we imply that the effect■ of extra 
rate ■ of strain are an order of magnitude larger than would be predicted by 1traightforvard extension, of 
calculation methods for 1implE shear layers, This suggests, and the di scussion below tends to confirm, 
that recent progre11 in calculating simple shear layers does not guarantee the development, in the near 
future, of a calculation method suitab le for all co11111on typos of turbulent f low, If this is true, or even 
if we merely acknowledge that there may be some truth in it, we need to Ja,eify the co111110n type ■ of 
turbulent flow and, wi thout losing sigh~ of possible unifying feature,, to develop calculation m thod• for 
one clau at a time. The classification is better made by phenomena than by geometry or engine1: cing 
application■. We start by distinguishing "simple" shear layers, with monotonic velocity profiles and 
nearly straight streamlines, from "complex" turbulent flows, comprising all other flows which are 
■ ignificantly affected by turbulent (Reynolds) stresses, We then find (1, 2) that nearly all complex flows 
are recognisable a1 perturbations of simple shear layers by interaction with other shear layers (3) or by 
the imposition of body forces or extra rates of strain (additional, that is, to the simple shear, au/ay 
in Fig,l(a)). Shear-layer interaction seems, at least in the two-dimensional ca■e, to be• fairly 
innocuoua phenomenon which does not result in spectacular changes in turbulence structure, but body forces 
and extra strain rates merit more respect. Fig.2 is a summary of the suggested classification. Where 
possible, we shall classify curved or rotating flows unde r the names of the shear layet~ of which they are 
perturbation ■. The classification of Fig.2 is not u·\ique, and the figure itself may be more reminiscent 
of genealogy than engineering, but I regard classifi,:ation of some sort as an e: senti l ~id to understand­
ing and a prerequisite of unification, especially in the case of flows with extra rates of strain. 

Streamline curvature in the plan, of the mean shear is possibly the most c011111on of the extra rate■ 

of strain, probably the moat important an<l certainly the best documented. This A~RDograph has been 
written specifically as a 1u111Ury of current knowledge of its effects and a di1cussi~n of de1irable future 
work. However, it can be read as a general introduction to complex turbulent flows and the effects of 
extr~ strain rates and body forces, because the strategy of research described or advocated here should be 
applicable to other cases: moreover, the simplest way of modifying ca l culation methods to account for 
curvature effects i1 al10 valid for other types of extra strain rate. 

Pig.3, due to l ~~mann (4), show■ the effect of longitudinal surface curvature on the Stanton number 
(dimen1ionle11 1urface heat tran1fer coefficient) in a 1uper1onic turbulent boundary layer. Reading from 
top to bottom, the curvea 1how result• for concave, plane and convex surfaces (see Fig.I for definition■), 
each preceded by a plane 1urface. The ratio of boundary layer thickness to radius of cur vature was 
roughly 0,02. The inset sketch which defines the symbols shows the g~neral arrangement - not to scale -
and the deflectors used to maintain a near-constant external Mach nu1111 ! r of about 2,5 over the teat 
1urface in each ca1e. The■ e, therefore, are boundary layers with ne~ligible longitudinal pressure 
gradients, and any differences in behaviour between the plane and curved flows can be attributed to the 
effects of streamline curvature, These effects are clearly very large: the difference in heat tran1fer 
increase, gradually from the start of the curved section (x/L • l) and is still increasing at the end of 
the meaeurement section, where the concave-s ,1rface heat transfer i , ~bout 20 per cent greater than the 
plane value and the convex-,urface heat trar,sfer is about 20 per cent le11, Surface shear 1tres1 was not 
measured in this experiment but other work sugge1ts that it would have changed by about the same 
percentage as heat transfer: other work also make■ it clear that the effects are not confined to 1uper-
1onic flow, but Thom~nn'• elegant set of measurements give ,, the clearest and moat incontrovertible evidence 
in one graph, 
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Mow in a lainar boundary layer th• fractional cbai·a• in 1urfaca 1haar 1tra11 or heat tran1far 
cauaad by lonaitudinal 1urfaca curvature i1 of ordar 4/R, Van Dyke (5) aiva1 a theoretical ra1ult for tlMI 
1kin-frict\on coefficient Cf in lOlf-1paad conatant-pra11ura flow whicb can be rwrittan u 

(1) 

takin1 4 aa 5,0 l(vx/Ua>• Tbounn'• ra1ult1 1bov that the affect• of curvature in turbulent flow 1ra 
rouply SIB ti91 fr•a~ar than thi1, loth in laainar and in turbulent flow, the extra tarae that appear 
in tha aquatiODI o Man •tion for a thin 1haar layer when 1traaalina curvature i1 illpo1ad are of order 
6/1 ti•• the laraa1t axi1tin1 term. lvidantly, 1tra•lina curvature chan1•• tha bynold1 1tra11a1 of 
turbulent flow by rouply tan tiM1 a1 auch a1 it chana•• vi1cou1 1tra11a1, Bovavar, if we look at the 
bynold1-1tra11 tranaport equation,, which are exact aquationa axpra11in1 the con1arvation of bynold1 
1tra11 in th• 1aa way that the MaA10tion equation• upra11 con1arvation of .,..ntua, we find that the 
explicit extra term appaarin1 in curved flov■ are aaain only of order 6/1 ti•• the lara••t axi1tin1 
tarae in a 1iapla 1haar layer and therefore cannot explain the lar1• affect, ob1arvad, There i1, of cour1a, 
no raa1on to 1uppo1a that the in1tantanaou1 Naviar-Stoka1 equation, or the Reynold• 1tra11 tran1port 
equation■ are no lonaar valid in I curved flow, 10 we conclude that 1tr1aalin1 curvature directly cauaa1 
lar11 chana•• in th• hipar-ordar par-tar, of the turbulence 1tructura. 

Effect• of thi1 1i11 and ob1curity would deund attantion fr0111nain11r1 and r111arch worker• even 
if they were confined to boundary layer,, but numrou1 other 1xp1riMnt1 1how that 1i■ilar 1ff1ct1 can 
occur in any 1h1ar layer who11 1tr1alin11 have a component of curv1tur1 in the plane of tha ••n 1h1ar, 
whether th• curvature i1 c1used by 1urfac1 curv1tur1, 1virl (helical 1tr1amlin11: Pia,l(d)] or rotation of 
the whole flow 1y1t•. Pi1ur1 4 show, the effect of 1urf•~• curvature on the 1pr1adin1 rate of a tvo­
di■an1ional wall jet, In two caa,11 (6, 7) lo111ith■it 1pir~~ aurface1 were u11d 10 that 6/1 va1 
indapendant of di1tanc1 alona the 1urfac1, 11 in the third ca11 (8) a 1urfac1 of con1tant radiu1 va1 uaed, 
and the re1ult1 have b11n plotted at a plau1ible averaae v1lu1 of 6/1, In all c11a1 lara• chana•• in 
arowth rate occur even when the curvature i1 1ull 1nou1h for the extra teru in the equation, of •tion to 
be n11liaible to the thin··1hear layer ("boundary layer") approxi■ation1, In the ■o1t extr ... ca1e, where 
the radiu1 of curvature va, ~qual to the di1tance fro■ the orifice, the 1preadin1 rate i1 four ti■a1 that 
on a plane 1urf1ca. We note that in thi1 ca11 the Reynold• 1tr11111 are decrea1ed on a conc1ve 1urface and 
increa1ed on a conv1x one. Since the mean 1h1ar au/ay i1 predominantly neaative in a wall jet, except 
for a thin r11ion na1r the 1urface, we can provi1ionally d~duce that the effect, chana• 1ip with the ■aan 
1h1ar, and that Reynold• 1tre11e1 incre••• when (av/ax)/(au/ay) - mea1ured in Carte1ien coordinate• 
coincident with the local direction of the 1hear layer,•• in Pia,l(a) - i1 po1itive. The increa1e of 
1preadin1 rate in the wall jet on a convex 1urf1ce i1 the phenomenon (1trictly 2!!! of the phenomena) called 
the "Coanda effect", 

Even more 1pect1cular ind unexpected effect, can occur, Piaure 5 i• a photoaraph of 1■oke 
entrained in the trailina vortex be~ind • C-47 aircraft (9), D11pite the fact that thi1 i• a flow at hiah 
Reynold• nllllber (r/v,.. 4 ~ 106, • nere r 11 the circulation round the vortex), the iMer core of the 
vortex i1 laain1r, beina 1tabili1ed by ~rie aline curvature; • noteworthy re1ult i1 that there i1 little 
r11htance to axial motion in the core, a d thh 1ee111 to play • larae pert lu he dynaic1 of the vortex 
•• a whole, Out1id1 the core there i• a reaion of turbulence, but the o~erall arowth rate depend• 1tronaly 
on Reynold• nllllber becau1e of the vi1cou1 effect, in and near the core. Note that in ►hi• evirlina f l ow 
the plane of the main 1hear and the plane of curvature of the 1treamlina, do not nece11arily coincide. 
Piaure 6 1how1 the de1tabili1ina •ffect1 of 1trealine curvature in a 1traiaht duct rotatina about • 
1panvhe axil (10): IH Pia, l(e), and note that the turbulence r11,>ond1 to 1treamline curvature a, H en in 
an inertial fr- of reference, On the 1ide where the anaul1r velocity of rotation i1 i ·, the oppo1ite 
1en1e to the rot1tional p1rt of the meen 1hear (corra1pondina to po1itive (av/ax)/(au/ay) in inertial 
axe1) the turbulent motion i1 1tron1ly auamented and th• larae eddie1 develop into lonaitudinal vorticee. 
In 1ome curved or rotatina turbulent flow, the•• vortice1 have preferred 1panvi11 po1ition1 and thu1 
contribute to the mean vorticity, althouah of cour1e turbulent fluctuation• ■ till occur, On the other aide 
of the rotatina duct the turbulent ootion i1 el■o1t co■pletely damped out, except for incureion1 by the 
lonaitudinal vortic11. Evidently otrealine curvature can produce not only quantitative chana•• in ■ixina 
rate but al10 qualitative chana••• leadina on the one hand to an apparent in1tability of the ■aan flow and 
on the other to virtual elimination of the turbulence, We notice the difference between thi1 behaviour and 
the effect of 1treamlin1 curvature on la■inar flow 1tability: lainar boundary layer• becoae le11 itable 
on concave 1urface1 (the c11e in which turbulent motion ir. auamented) but do Q!?1. become 1ipificantly ■ore 
■ table on convex 1urfacH, becauu the dominant mode of in1tability h different in the tvo ca1a■, In wh1c 
follow, the word• "•table" and "un■ ta'>le" will be u11d to d11cribe turbulent flow• vho11 inteneity h 
r11pectively decrea11d and increa,ed by the effectl of 1treamline curvature: "1tability" doa, !!9~ 
nece111rily imply complete ab1ence of turbulence or it• irretrievable decay, 

Fiaure 7 1how1 another 1p1ctacular effect. The turbulent int1n1ity in an iapinaina j __ (11) 
deer•••••• b1cau11 the curvature i• in the•- 11n11 a, in a wall jet on a concave 1urfaca1 tt.1 i1 to be 
expected from the foraaoina di1cu11ion, but, quite unexpectedly, the int1n1ity dovn1tr1a■ of the 
impinaement reaion ov1r1hoot1 the plane-layer value before finally relaxina tow1rd1 it, Aaain, 
modification of the lara• 1ddie1 •••• to be r11pon1ibl1, 

Fi1ure1 3 to 7 are 1uffici1nt evidence that uny flow1 of aeronautical or anain11rina int1r11t will 
be 1ianificantly aff1ct1d, or even dominated, by the direct affect of 1tre•line curvature on the 
turbulence. Por in1tance, Thounn'• r11ult1 (4) 1how that on a circular-arc turbc:aachine blade with• 
turnina anal• of the order of 60 dear••• (aivina 6/R .. 0.02 near the trailina 1d11) heat tran1f1r rate, 
will be decre11ad by rouahly 20 per cent on the top (1uction) 1urfac1 and incr1111d by rouahly 20 per cant 
on the botto■ (pr111ure) 1urf1ca, •• compared with re1ult1 for flat 1urfaca1. Thi1 i1 a 1ariou1 utter. 
Table 1 1iv11 a li1t of 1ome of the flow• in which curvature effect■ can produce a chana• in ?.1ynold1 1tra11 
of 10 per cent or ■ore. Unl111 10• explicit eapirical allowance i1 ■ade, all calculation Mthod1 for 
turbulent ■hear layer• known to me undervredict the 1ffact1 by a factor of the order of 10, ainca at beet 
they recoani11 only the explicit extra t1r■1 in the ••n-.otion equation, and Raynold1-1tra11 traneport 
equation• (Section 2), Por example, thin 1h11r layer ■ are frequently predicted by "eddy vhculity" 
foraulaa of the type 
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hear atra11 • ~ w (rate of ahear atrain) (2) 

Tbh would predict the effect of addina an extra rate of •train av/ax to an exhdna "daple ehear" 
'MJ/~ to be an increaee in •hear atre•• by a factor 

l + aV/ax 
aU/ay 

obviouely the•- factor of increue ae in a laminar flow where the molecular vi1co1ity ~ replace• ~T' 

Tboaann'• reeult• au11••t that the real factor of increaee after a prolonaed reaion of etre•line 
curvature i• aich laraer, of the order of 

1 + 10 !!!!! 
autay 

for aull value■ of the "rate-of-strain ratio" (aV/3x)/(3U/3y). However, the evidence of Fia• 3 to 7 
mak11 it clear thQt a linearized empirical fo1'111Ula of thi1 1ort will not be reliable for lara• curvature 
ef fect,, Ala,, 1ince we attribute curvature effect• to changes in the higher-order 1tructur1 par&Mter1, 
we cancot ex,,ect the full effect ■ on the local Reynold• 1tre11 to appear a, 100n a, the curvature i1 
impo1ed, W~ 1hall, however, use linearized formulae for r ;mple J i1cu11iona, and at pre1ent little can be 
1aid about hiaher-order f.ormulae. 

It i1 evident that streamline curvature has a larae effect on the proce11e1 by which Reynold• 
1tre1111 are aene rated and maintained, and that empirical modification• to calculation method• for 1impl1 
1hear layer• are unlikely to be reliable unle•• they are baaed on aome phyaical and mathematical under1tand­
ing of the•• proces1e1. Therefore Section 2 of t hi1 AGAROograph includes a brief introduction to the exact 
Reynold• atrea ■ transport equations, partial differential equation• whose terma repreaent different 
phya ical proceuee contributing to the meintenan•;e of ll.eynold1 1treu. Thia ii followed by a dilcuuion of 
the atrateay used to convert theae and other exact transport equa t ion, into empirical, soluble equation• 
f~r Reynolds 1tre1s. Nearly all existing calculation method■ can be explained in term• of thi1 1trat1gy 
or 1implification1 of it. It is not nece11arily implied that curved flows can be predicted only by 
calculation methods that use the most advanced form of thia strategy, involving the 1olution of several 
tranaport equations : however we ■hculd base our initial di1cus1io.1 of theae mysterious curvature effect• 
on the moat realistic models of turbulence proce1se1 and make simpli f ication, later if we can ju1tify them. 
C4rt.eaian coordinates are not very conveni ent for a di1cu11ion o( curved flow,, 10 Section 2 begin• with a 
description of two alternative systP.m■, suitable for two-dimensional curved flow and axi1)'11111etric awirling 
flow respectively, Extension• of the thin-shear-layer approximation to these 1y1tema are alao di1cu11ed, 
In other ca1e1 of shear layers subjected to curvature or other extra ,ates of atrain, more complicated 
coordinate systems may be needed for convenience of description or t o a,1ure stability and accuracy of 
numerical 1olutiona, and Appendix l is an attempt to treat general, non-orthogonal coordinate 1y1tema with 
more rigour than is sometimes ~mployed. 

Recently it has become clear that str~amline curvature, av/ax, is only one of a number of extra 
rates of 1train which, when applied to an initially simple shear layer, produc~ effects on Reynold• stre11 
which are large compared to the explicit effects of the extra t erma that appedr in the equations of motion 
or the effects of the changes in coordinates needed to align the axes with the 1hear layer. Other example, 
include lateral divergence and bulk compres1ion (in compr•esible flow). Pure rotation of the flow ay1tem, 
though not strictly a rate of ~train, haa much the same effect a, streamline curvature, with the angular 
velocity n taking the place of av/ ax. Section 3 is an introduction to these effect,: it 1eems to be 
almost a universal law that if a small extra ~ate of strain, e say, is added to a simple 1hear au/ ay 
the Reynolds shear otress eventually changes by a factor of order 

1 ± 10 _e_ 
au/ay 

The number here written as 10 is most unlikely to be a univer■ al constant, but while our ignorance of the 
effects of extra strain rates remains so extensive it is helpful to consider the effects together, without 
necessarily implying a direct qualitative connection between the phenomena or a quantitative connection 
between the variou1 empirical constants. It ia al10 helpful to reaard the flow, a, perturbations of 1imple 
shear layen rather than as completely new flows. We t..~refore define a "aimple shear layer" more 
precisely•• one in which the simple shear au/ay is 10 much larger than any other rate of strain that the 
direct effect of the latter on the turbulence is negligible. Now the thin-ahear-layer approximation i1, 
roughly ,peaking, that the effect of extra rates of strain on the mean-motion equation, is negligible: it 
follows by inspection of the Reynolds streaa factor aet out above that the requirement of a simple shear 
layer is about ten times stronger than the requirement of a thin ahear layer, The simple shear layer 
provides a basis for comparison: it i1 rather rare in practice. Some curved flows violate even the thin-
1hear-layer appro Aation, but it is shown in Section 2 that Reynolds str ess gradients are significant 
only in fairly thin shear layers: and even a region of strong di■ tortion in which pre11ure gradient• 
greatly exceed Reynolds stres1 gradients is li~~lr to be preceded or followed by a fairly thin 1hear layer, 
The following aunmary table may be helpful: the sign "»" can be read as a factor of inequality not much 
leu than 100, an.d e is any one of the relevant extra ,train rate■ . 

simple shear layer au/ ay » lOe e does not affect turbulence 
thin shear layer au/ay » e e does not affect mean-flow equation• 
fairly thin shear l ayer au/ay > lOe Reynolds-1tres1 gradients still significant 
strong distortion au/ay < lOe Reynolda-1tre1s gradient■ locally insignificant 

Clauical "rapid distortion" theory re ui res au/ ay « e (au/ay is a fair approximation to the 
turbulence timescale that appears in the theory) . 

At interval• over the l ast 40 years the large effects of streamline curvature on turbulent flow have 
been demon■ trated by experiments on several different type• of 1hear layer, but only in the la1t few years 
have these effects been allowed for in engineering calculation method• and even now they are frequently 
negle r. ted, The history of research on the subject and its curious lack of impact is outlined in Section 4 



a1 u introduction to the phenoaana of curvature effect,: current knovleda• of particular curved flow• i• 
reviwed in later 1ection1. In view of the lona n11lect of the 1ubj1ct by r11earch worker, it it 
int1re1tin1 to note that the late Henri Coanda not only d1-,n1trated incr1a1ed aixina in the wall jet on a 
convex 1urfac1 in the early 19301 but aade ute of it in a variety of uteful device, (for an affectionate 
obitU&ry of H. Coanda 1ee Ref.12). In contra1t, half the reference, quoted below date from 1969 or later. 

The traditional qualitative explanation of th• effect of 1treamline curvature on a fluid flow i1 
bated on the 110tion of a di1turbed ele•nt of fluid (ria.8). The ara-nt fir1t aiven by Von ICanun (13) 
in 1934 i1 a, follow,. Suppo11 that an ele•nt of fluid in an axi1:v-tric rotatina flow i, di1placed by 
10111 externally-applied fore~ in a radial direction, and then relea11d. If the fluid i1 frictionle11 we 
may a••- that the diaplace,t ele•nt conaervea ita anaular 110Mntum about the centre of curvature of the 
atreamline,, diatant r fro11t the point conaidered. Therefore if the anaular -ntum of tha ateady flow, 
Ur per unit aaaa, n.-ricall} decreaaea outwarda, the diaplaced ele•nt will have a laraer circumferential 
velocity than ita 1urroundin1a, In conaequence, the radial prea1ure gradient pU2/r that maintain• the 
•an flow in ita circular path i1 too ,mall to keep the di1placed element in equilibrium, and it will 
therefore continue to move out~arda. Converaely, if the anaular mo1111ntum of the mean flow increa,ea 
outwarda, the •an pre1aure gradient will force the diaplaced element into a path of radiua lea, t~an r, 
returnina it toward, it, original radiua, about which it will oscillate. 

Quantitatively, for the ca1e of incompre1sible flow, if the radiu1 and velocity of the fluid 
element before di1turbanc1 are r

0 
and U

0 
it, circumferential 1peed after di1placement to radiu1 

r = r 0 +dr ia 

U0 ( 1 _ dr) 
ro 

wherea1 the mean ,peed of the fluid, u, ii 

Uo + !!.!! dr dr 

so that the difference between the mean pre1aure gradient pU2/r and the pre11ure gradient required to 
keep the dhplaced element in a path of radiu1 r

0 
+ dr is 

2p ~ d (Ur)dr = ..£.
3 

i.. (U2r 2) ,dr (3) 
r2 dr r dr 

Con1equently the radial acceleration of the particle ia proportional to the di1placement dr, and the 
di1placed element execute• simple harmonic motion at circular frequency 

w • (2 
U d ) l /2 
- - (Ur) 
r2 dr 

(4a) 

if thi1 nlllllber i1 1eal, and diverges i f it i1 imaginary. Zero frequency implies neutral 1tability. 
Alternative expres1ion1 are 

w • (
,1. .!!:) l / 2 

pr ar 
(4b) 

where P i1 the total pre11ure p + Jpu2 and we use the equation of radial equilibrium, dp/dr• pU2/r, or 

w • ( 2 f (mean vorticity)) 
112 

(4c) 

Theae exp1e11ion1 empha1i1e that the irrotational external 1tream adjoining• shear layer i• neutrally 
■ table. The above analy1i1 applie1 in full only to flow• who1e velocity along the axi, of rotation ia aero. 

A clo1ely 1imilar analy1i1 can be done for a diaplaced element in a 1tationary, atratified fluid in 
a aravitational field in the naaative y direction: if the diaplaced element con1erve1 it• denaity (i.e. 
if wa naglect the adiabatic lap1e rate) the net bu~yancy force after diaplacement dy produr.ea a reatoring 
force leadina to oacillation at the Brunt-Vlialll frequency 

(
-.!. !!£) 1/2 

WBV • p dy (5) 

In the meteoroloaical literature the Brunt-Vai,ala frequency ia u1ually given aymbol N, or 1011etime1 w0 : 

~e will uae the aymbol above aa a reminder of tha name and of the fact that Eq(5) aivea the circular 
frequency in radian■ per aecond. In buoyant Um, the 1quare of the ratio of the Brunt-Viiaili frequency 
to a typical time 1cale of the flow define, the well-known meteoroloaical parameter, the Richardaon nUlllbef 
(1ee Section 5.1), 

Nov th~•• an~lyae, totally nealect perturbation• to the flow or the preaaure aradient cauaed by the 
motion of the di1turbed eleMnt, and therefore leave 1o•thin1 to be d11ir1d even in a frictionleaa flow: 
the buoyancy analy1i1 11ema rather 110r1 plauaible thi:n that for curvature, Proof, baaed on eneray 
conaiderationa [the proof for curved flow beina due to Rayleiah (14)) obacure, but do not entirely re110v1, 
the impoaaibility of the phy1ical 1ituation. If applied to turbulent flow, the ar1W11nt1 are uncOIDfortably 
reminiacent of thoae of cla,aical mixing-lenath theory, which at b11t can only reproduce re,ulta 
obtainable by diaen1ional analy1ia for the apecial caae of flova in "local 1quilibri111111 (He Section 2,4). 
However proof■ for apecial ca111 have been obtained by ri1orou1 uae of hydrodyna■ic atability theory, the 
only arbitrary feature remaining beina the choice of the diaturbance mode, Moreover, the qualitative reault 
that the ,,nae of atability depend■ on the 1enae of the gradient of anaular momentum or denaity ia well 
eatabli1h1d even for real flowa, and in buoyant fluid, if not in curved flow,, oacill1tion1 of a di1plac1d 
ele■ent at very nearly the predicted frequency have actually been ob1erved (15), 

Section 5 i• ba1ed on a diacu11ion of the analolY between buoyancy and curvature effect, includina 
further treatMnt of atability analy1ea, like that outlined above, which are applicable to both effect,. 
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It i1 1hCND that di1placecl-eluient arauaent1 lead to dia1111ionla11 1tability par ... tar1 1i■ilar to tho•• 
inferred fro■ the Raynold1-1tra11 tran1port aquation11 each ha1 10■1 advant•&•• Th• qualitative phanoaena 
of 1tronalrcurvad fl ,N1, includina lonaituJinal vortic11 (or other convective in1tlbilitia1), and 
po11ibly iat~m•l Wl'ta1, are al10 .,,t 1iaply introduced by analoay with buoy1nt flow• in which the 
pbanoaana are a•narally batter dociaantad. The quantitative analoff batvaan the effect• of buoyancy and of 
curvature on a aivan type of 1haar layer 1hould be nearly•• accurate•• Reynold•' analolJ between ■-ntu■ 
tran1far and heat tranefer, beina ba1ad on nearly the, ... ar1uaent1. Unfortunately a direct corre1pondence 
with ■ataoroloaical flow, i1 po11ible only in the inner layer of• turbulent wall layer, and a 
corre1poadence with buoyant flow1 in tha laboratory i1 not likely to be a vary u1eful way of obt1inin1 d1t1 
bacau1a it i• 11nerally 1a1iar to ■aa1ur1 curved flow, then buoyant on••• The an1lo11 b1tv11n buoyancy 
and cur .. ature can be illu1trated by c011parin1 the arevitational body force with the "c1ntrifu1al" body 
force. Rotation of a 1h1ar layer, with •an 1hear au/ay, ebout the a axi1 produce, en apparent 
C0Tioli1 body force in the y direction, very clo11ly analo1ou1 to the apparent c1ntrifu1al boJy force: 
t hil ii an anlloff parallel to that between a true anaular velocity and the p11udo-an1ular-velocity 
U/r = -'oV/ax, 

Section■ 6 to 10 are review, of the b11ic flow, in which 1tr1111line curvature (or bodily rotation of 
the flow) 1ianificantly affect, turbulence, Since a quantitative di1cu11ion i• po11ibl1 only for fairly 
1mall curvature affect,, cl111ification undar then ... , of cl111ical thin 1hear layer• be&• no que1tion1, 
Example~ include boundary layer• and wall j1t1 on curved 1urface1, curved duct flow,, curved free jet1 and 
mixing llyen, 1wirlin1 jeu, vorticea and 1wirlina flow in ducta, We dhtinauilh between "rotating" 
ducu, ro+:atina about an axil more or 1111 normal to the plane of the mean 1hear 3U/'oy, and "•pinning" 
duct,, rot~tina about the general direction of the flow: in the fir1t ca1e only tvo-dimen1ional flow,, 
and in the 11cocJ c11e only axi1yaaetric one1, will be con1idered, becau1e flow• in rectanaular 1pinnin1 
or rotatina duct ■ of ,mall 11pect ratio are likely to be dominated by 1econdary flow, driven by pre11ure 
gradient, and the direct effect• of rotation on the turbc1ence cannot yet be di1tin1ui1hed, Section• 6 to 
10 are not general di1cu11ion1 of the title flow• (backartur.d reference, ar¥ given) but concentrate on the 
chanae• in turbulence 1:ructure that re1ult from curvature: where it h11 been po11ible to di1cu11 the 
effect of the1e change, on the mean flow I have done 10, I have concentrated on experiment• which 1eemed 
to 1M likely to contribute to the under1tandin1 of curvature effect, on t11rbulence: thi1 by no mean, 
di1qualifie1 careful mean-flow me11urement1 without turbulence data, but in general I have p111ed over 
experiment• who1e re1ult1 are in■ufficiently detailed for ~nference1 to be drawn about turbulence 
behaviour. Unfortunately very few data are available on three-dimen1ional curved flow,: at pre1ent one 
can only hope that rule• derived for two-dimen1ional o= ui1ymetric flow• can be applied locally; 
axi1yaaetric 1wirlin1 f!ow1 are clo1ely related geometrically to flow• over developable 1urface1 1uch 11 
infinite 1wept wing,, In compre11ible flow, the picture i1 rather brighter: a number of e~neriment1 on 
1uper1onic boundary layer• have been done on 1urface1 curved 10 a1 to induce the required pre11ure 
di1tribution. The1e boundary layer■ ■uffer from the effect, of two extra ■ train rate■, curvature and bulk 
compre11ion, but 101111 inference■ can be drawn about the Mach-numb7r dependence of curvature effect,, 

The di1continuity between the general theoretical di1cus1ion of Section■ 2 to 5 and the 
mi1cellaneou1 experime,ttal results of Section• 6 to 10 i1 a consequence of the undeveloped nature of the 
1ubject. It i1 hoped that future work will benefit f rom the general di1cu11ion, and I have therefore 
included material that could be u■ed in future 11 well•• material that can be u1ed at pre1ent, even though 
the foundation, for a larae°-■ tructure are necessarily le11 tidy and les ■appealing than a ■mall, ca.aplete 
edifice, Section 11 is a list of conclusions u1eful to de1ian engineer, and to experimental and theoretical 
re1earch worker,. It include■ both a 1U111111ry of the exi1ting method• of allowing for curvature effects in 
calculation method•, principally for thin shear layers, and 1ome 1ugge1tion1 for desirable future work, 
The main conclu1ion, fore1hadowed above, is that there i ■ no i-diate prospect of a calculation method 
that will naturally predict all the effects of extra rate, of ■ train, even in thin shear layer,. Different 
empirical input■ are nece11ary for different ■ train field■: thi1 implies that we are forced to regard each 
a1 a perturbation of a simple ■hear layer and that the reliability of the results will decre11e with the 
1trength of the perturbation, 

Aa mentioned above, Appendix 1 i1 an introduction to general coordinate system■ and the need for 
thm. Appendix 2 give, detail• of auitable teat case■ for calculation methods, together with a di1cussion 
of the performance of allowance■ for curvature effect, in the method of Ref.16, which mu1t now be regarded 
11 a method of average complexity, intermediate between the most modern transport-equation method• and the 
older ~rocedure1 1till in u1e in industry, 

The purpose of this AGARDograph ia to en1ure the wide1t possible realization of the importance of 
curvature effect, on turbulent flow and to point out the nece11ity - and difficulty - of predicting them. 
Becau1e the subject h11 only recently become popular there i1 no con1en1u1 of opinion about it, and 
becauae I have been per1onally involved in it, redevelopment I have naturally pre1ented it from my own 
point of view, which I hope will not he found unduly contentiou1. (Tha laet 1ent1nce may ~110 be applied 
to the 1ubject of calculation Mthod1 for turbulent 1hear layer, in general, which nece11~rily recur, 
throughout the monoaraph,) I have includ~d, with 1uitable warninas, 10111 111111 piece, of unpubliehad 
original work. I have tried to pre1ent the 1ubj1ct in the way that will be found .,,t u11ful by the 
developer of calculation method• for the turbulent flow, that appear in engir.11rin1 fluid dyna11ic1, 
Fortunately, the point of view of the developer i• nowaday1 fairly clo1e to that of the experimental 
re111rch worker on the one hand and the induetriel u1erof calculat lon method, on the other, and I hope the 
review will be ueeful to th111 1110, Stre111line curvature i1 the only one of the extra r,t11 of 1train that 
i• 1ufficiently well und1r1tood for a reviav monoareph to be ti111ly but - becau1e of it1 recent ri•• to 
popularity - our knowled&e i1 increuing 10 rapidly that any att111pt at a definitive treatment would be 
futile, Thia i1 a progre11 report: I hope it will help to 1tiaulate futu~e pr01re11, 

2, THE EQUATIONS OP K>TION: cooan:NATE SYSTEMS, APPROXIMATIONS AND STRATEGY FOR SOLUTION 

2, 1 CHOICES OP COORDINATE SISTENS 

Tha Havier-Stoke• equation• and the exact Reynold1-1tre11 tran1port equation, (Section 2.4) are given in 



1eneral tenaor notation in Appendix 1 (11e the firet para1reph1 of that Appendix for an explanation of 
notation) with a •-ry of the 1tep1 needed to deduce the equation~ in any 1peci1l coordinate 1y1t•. 

1 

Thie infol"lllltion i1 not euily acc111i~l• in the literature but will be needed in the analy1i1 of three­
diaeuionsl curved flow,. Por nol"lllll purpo111 the equation, can be read a1 if they were written in 
ordinary teuor 1uffix notation, and in tha uin text ve nol"lllllly u11 (x, y, a) notation or variant, 
thereof, We be1in thi1 11ction by di1cu11i~, the t:,pe1 of flow in which Reynold• 1tr111 1radi1nt1 are 
likely to be i11pOrtant, to limit the field of ,tudy: ve then derive the equation, of 110tion in coordinate 
1y1t1• to 1uit the ao1t c«-n type• of curved flow■, and di1cu11 the validity of approxiution, to tha 
u a 11neralisatioa of the thin-1hear-layer epproximation (boundary-layer approximation) in plane flow, 
Finally ve review 1h1 1tr1te17 of calcul1tion method, for plane flow,, with a view to the incorporation of 
allowance■ for cur rature effect,. 

It can te 1hovn that the only flow• in which Reynold• 1tr111 1radient1 ■ ianificantly effect the 111an 
110tion are tho11 containina fairly thin 1hear layer,. Con1id1r a flow with a typic1l velocity Ue and 1 
typical lenath • in the 1en1ral direction of flow, In aeneral, mean pre11ure 1radient1 in any direction 
will be of the order of pU!/1, whil• accordin1 to experiment• Reynold• 1tr11111 are at mo■ t of order 
0,01 pU!/1, Therefore Reynold• 1trea1 1radi1nt1 will be of the,,... order•• pr e11ure 1radi1nt1 only if 
Reynold• 1trea1ea change appreciably over di1tanc11 of the order of 0,01 ■, Examination ~f the R1ynold1-
1tre11 tranaport equation• ■how■ that th• Reynold• 1tre11e1 ere unl ike ly to chanae 10 rapidly with di1tance 
alona a 111an 1tr1amline, and we conclude that Reynold• 1tr111 1radient1 will 1i1nificantly 1ff1ct the mean 
110tion only if they chanae 1i1nificantly in a di1tance of order 0,011 more or 1111 normal to the mean 
1treaaline , Thi• require, the e~i•tence of thin 1heet1 or 1l1nder tub11 of hi&h Reynold• 1tre11, and the 
only general i.ecf.lanilm by which 1uch layen can m intain themaelvu ii extraction of energy f rom the mean 
flow by workina of a mean rate of atrain •1ain1t ,b~ Reynold• 1tre1111, The rate of di11ipat i o11 of 
turbulent eneray per unit volume in a 1heet or tube of width 0 .01 • carryi ng Reynold• 1tre1111 of order 
o .otu! will be of order (0.01U~) 3l2/0,011, and i f a roughly equal rat e of turbu}ent energy production 
i1 to be maintained the rate of 1train acting on Reynolds 1tre11e1 of order O,OlUe mu1t be of order 
lOUe/•. Ratel of normal (ten1ile or compre11ive) 1train cannot for lona exceed Ue/• without cau1ing 
velocity chanre• of greater order than Ue, 10 that a rate of !h!!!, strain of order lOUe/• mu1t exi■ t 
in the sheet or tube, which mu1t therefore be a shear layer, with a velocity chanae of order Ue i n a 
transverse dis t ance of order 0.1 s or a smaller velocity change acro11 an even thi nner layer, ••Y of the 
order of 0.011 a, originally required. Note carefully that thia argument ha• nothina to do with the 
mathelDll t i cal thin-ahear-layer approximation: in particular, it does not prove that the layer, with high 
Reynold• 1tre11 gradients are thin enough for any version of that approx imation to apply. Nor, of cour ■e, 
d0ea it exclude the presence of some regions in wh : ch preasure gradient• greatly exceed Reynold• 1tre11 
gradienta. Clearly, the most difficult flow• t ~ pr~dict will be thoae i n which a ■hear layer haa it• 
turbulence atructure perturbed by a ahort region of strong pressure grad i ent• and extra ratea of 1train, 
and then emerge• into a longer region in which its Reynolds stre11 gradient• are 1ignificant compared to 
smaller pre11ure gradi ent•: an example of such a flow - and of the eccentric behaviour of perturbed 
turbulence - ia th~ impinging jet of Fig.6. The argument doea, however, ju1tify an unrigorous ver1ion of 
the thin•ahear-layer appr oximP.t ion, stating that the moat important Reynold• 1t re1 1 gradient, are almo1t 
alway, the 1hear stress gradients: the implication is that normal 1tre11e1 need not be calculated a1 
accurately as shear stresses, except perhaps in non-axisymmetric slender shear layers where normal-1tres1 
gradientl drive secondary flows. Note that the division of the s treu tensor into "shear stre1111" and 
"normal streue1" depends on the axes: however in regions where Reynolds str e1111 are important the above 
arg111111nt shove that the direction of the shear layer can be located, to sufficient accuracy, and u1ed a, a 
coordinata axis. As pointed out in the discussion of coordinate ayetema in Appendix 1, it may be not only 
convenient but necessary to do this, to ensure accuracy and stability of numerical calcula :ions, 

Nearly all the experimental information on cur ved flows refers to slender axi1y11111etrlc swirling 
flow• or to thin two-dimensional shear layers: ther~ is 101111 information on non-slender swirling flow, and 
on non-thin 1hear layers but no significant data on non-axi ■}'lllllltric or three-dimensional flow,. Clearly 
the latter flows may be more complicated t~an axisymmetric or two-dimensional flows , but there ia no rea■on 
to auppQee that the effects of curvature as such are much more complicated although some diff i cultie 11 of 
interpretation ariae. At all events there is no present need to consider the equation• of motion foe the1e 
ca1e1, and we therefore discuss only the equations for two-dimensional curved flowa or axiaymmetric 1wirlin1 
flow,, both in aeneral and with the approximation of thinness or 1lenderne11, Either the1e or the plane­
flow equation■ can be extended to coordinates rotating at angular velocity n by adding the appropriate 
component• of the Corioli1 acceleration or body force 2Q x U: in a conatant-density fluid, the centripetal 
acceleration can be a~sorbed into the pressure gradient (lo) : It is important to di1tingui 1h betwe~n 
rotating flowa (between coaxial rotating cylinders, aay) and the rotsting axe, in which lt may or ma1y not 
be convenI;;'t'to study them. --

Th~ mo1t appropriate coordinate systems for simple curved flows are aa follow, 

1. Two·dimen1ional (1,n) coordinates, in which s is measured along a single curved reference line 
(u1ually a solid aurface or other streamline) and n is measured along straight lines norlllll to the 
reference line [Fig,l(b)), The third coordinate, measured along straight lines normal to the (1,n) plane, 
will be called z. Note the difference between this system and the more general orthogonal curvilinear 
system of Fig,l(c) in which the conatant - n lines are all arbitrary and the con1tant - 1 line, are 
everywhere orthogonal to them, In our system the radius of curvature of the a-axis, R, may be a 
function of s, in which case the coordinate• become non-unique on the locus of the centre of curvature; 
if R i1 con1tant the locus shrinks to a point and the (1,n) system reduces to polar coordinate, (r,8) 
with r = n + R, 8 = s/R, while if n is small compared with R (as in a thin 1hear layer) it reduces 
to rectangular Cartesian coordinates x = s, y = n. We shall use the (a,n) syatem only for fairly thin 
,hear layers 10 that the centre of curvature lies outside the r egion of interest. It will sometimes be 
convenient to denote n + R by r and dn by dr. An axisymmetric (s,n) syatem can be uaed on fat 
bodie1 of re1olution, and the appropriate modifications to the two-dimensional system will be indicated 
below, Alt,,ough the po i nt is not directly relevant to the present topic it is worth noting t hat the (a,n) 
system baaed on a reference streaml ine i1 particularly suitable for matching a fre-.-shear-layer 
calculation to a calculation of the external flow because the a-axis streamline appears explicitly in both 
calculation,. 



• 
2. Aai1,-trlc (x.r) coordiut11 la which • i1 Ma1ur1d aloaa. and r aorul to. a 1traipt ui1 

[ria,l(d)). Tha third (1111Ular) coordiuta vlll be called e. The 171t• vill be uaad MialJ for flow• 
which are tunulat over 1101t or all of the dl1tanc1 fraa the ui1 to radiu, r1 if the tunulaat layer t, 
thin C011farad vith r. u in thin bo1111dary layer■ la pipa1 or annuli or on bodlu of revolutloa. the 
•J•t• reduce• to ractanaular Cart11i■n coordinate, vith J ! r. while aot-10-thia ui,,-trlc la71r1 
c■n be anal71ed in the ui1,-tric (1.a) 171t•. 

low va 1hall ••• that {n tba (1,a) 1y1taa di/di appear■ explicitly only in the 11c0Dd 
derivative, in the vi1cou1 t ra. and even there it i• nearly alvay1 n11li1ibl1 in practice. 10 that. for 
purpo111 of dariviaa the equation,. (1,a) coordinate, are locally equivalent to (r.e) coordiaat••• u 
when I i1 truly con1tant, Thu■ the equation■ of aotion in our tvo coordinate 171t■- are 1pacial c1111 
of tbo11 that appear in cylindrical (x,r,8) coordinate,, in the fir1t ca,a the • derivative, and in 
the 11cond caa1 the 8 derivative, i• naaliKibla, The •an-motion and laynold1-1tr111 traa.port 
equation• in (x 1 r 1 8) coordinate, are 1iv1n by Rodi (17), 

The reduction of (1,n) coordinate, and (x,r) coordinat11 to conventional (x,y) coordinate• for 
1■111 valu11 of (1h1ar layer thiclul111)/(radiu1) ju1tifie1 the c~n pretence that aeroplane 1urfac11 are 
flat for the purpo1e1 of derivina the boundary layer equation,. However, the 11111a11 of thia AGAIJ>oaraph 
ia that aeroplane 1urface1 are not flat for the purpo1e of 1olvina the boundary layer equation• in 
turbulent flow - in other word, the effect, of atreamline curvature on the turbulence ar e aich laraar than 
would be e~pected from the extra term■ int1oduc1d into the mean-■otion or Reynold1-1tr111-tran1port 
equation,. In highly-curved flow• (6/R of order 1) the extra terma become comparable vith the exi1tia1 
terma, while the effect■ on the turbulence are n1ce11arily limited in 1i11 by con1id1ration1 like non­
n11ativity of turbulent eneray or eneray di11ipation rate, 10 that in the11 ca111 the 1ff1ct1 on the 
R1ynold1 1tre11e1 may be of no greater order than the extra tenu: 1ee 1 for example, the re1ult1 for the 
illpinaina jet in Fig. 7, where (av/ax)/(aU/ay) - repr11eatative of tha ratio of "extra teru" to plane­
layer term■ - reached a maxilDIIDI numerical value of about 0,2. In 1uch a ca,e all or nearly all of the 
extra tanu introduced by curvature mu■ t be retained, In intermediate ca1c1 of moderate curvature lal of 
the extra term, ma:, be negligible and it i, therefore adviuble to put on record not only the exact for■1 
of the equation• of motion but al■o the hierarchy of con1i1tent approxi.lllationa to the■, When v1 u11 plane 
boundary layer equations for curved flow1 we ,r, uaing the lowe■ t member, of thia hierarchy, 

2.2 THE (s,n) SYS'lEM 

Aa a 1i111ple example of the extra tenu introduced by the (1 1n) 1y1tem, we derive the continuity 1qustioa 
for incompre11ible two-dimensional flow, which 1pecifie1 that the net rate of ■111 flow out of an 11-■ntary 
control volume, 1uch a■ that 1hown in Fig.l(b), i ■ zero, With 1ymbol1 U, V and W for the Min velocity 
component, in the 1,n and z directions respectively, the net outward rate of ma11 flow throuah the 
i aces seen in side view as AB and CD, supposed to be of unit depth in the z direction, ia 

p(u + :~ ds)dn - pU dn 

exactly aa in rectangular Carte■ ian coordinates. The net oJtward rate of ma11 flow through the face• AD 
and BC is 

(remember that s 
we get 

p(v + ~ dn)(1 + n;dn]d• - pv(1 + 1)d■ 
is measured at height n • O), Neglecting the term in (dn) 2, 

!~ + [ 1 + i) !! + i = :~ + a
0
n { V [ 1 + i]} • o 

and div;dina by p da dn 

(6) 

where the aecond element implie1 the definition of a ■ tream function, The term ari1in1 from flow i n the 
z direction ia (1 + n/R)aw/az becauae the area of the face ABCD i ■ (1 + n/R)da dn. In uia:,maatric 
flow (6) i• valid if U and V are multiplied by the radiu■ to the point (1,n), 

The Navier-Stoke1 equations can be derived by applying to the curvilinear control vol1a1 the ara-nta 
about con■ervation of momentum used to derive or explain the equation• in rectanaular Cartaaian coordinat11, 
Van Dyke (5) give, the equation, for ■ teady two-dimensional inco111pre11ible laminar flov: the •an-■otion 
equation, for turbulent flow can be deduced by in■pection once the continuity equation, Eq(6), ia uaed to 
put Van Dyke', equation■ into "divergence" form with the left hand 1ide compo1ed of pure apatial 
derivative,. Writing h for 1 + n/R in the vi1cou1 term for comp1ctne11 (notina that both 8h/a1 and 
ab/an ara non-zero in general) and adding U timu the continuity equation to the ,-component equation 
and V time, the continuity equation to the n-component equation, we get 

,-component mean momentum 

_ au2 ( nJ auv uv = r. ♦ 1 ♦ i ~ ♦ 2 it -

n-component mean mcaentum 

u 1Y + (1 + ~)v 1Y - u
2 

a. R an R 

auv 2 uv vh 1. a'n"- T"' an 

auv (i + ~) av2 v2-u2 • -(i + ~) 1 aji auv ( n) av2 (v2-u2) = r. ♦ R an ♦ -.- " p an - r. - l l ♦ i ~ - R 

[
.l. (hU) - av] an a, 

h 
(7) 

[
2-chu) - avl vh .l. an a, 

a, h 
(8) 
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where the leynolda-atr••• teraa on the right have the•-- layout aa th• diveraence fona on the left, the 
latter beina obtained by addina U ti•• the continuity equation to the oriainal left-hand aide of Eq(7), 
and abdlarly for lq(8), Note that in lq• (6) to (8) the n-derivative alway• appear• aa 
b a/an 1 (1 + n/l)a/an, In uia,-.tric (a,n) coordinate• the uin difference, appear in the vi1cou1 
tene vbich can alaoat alway, be draatically 1i.aplified1 apart from thi1, the diveraence foru of Eq• (7) 

and (8) are 1till valid if all velocity product• and the prea1ure aradienta are 1111ltiplied by the radiu1 
to the point (1,n), 

Van Dyke •~rise• previoua work and controver1y on the •pplication of the boundary-layer 
approx iution (thin ahear layer approxiution) to the ~quation1 for ludnar flow. In plane laminar flow 
(I+•• h + o) the ratio of the nealected vi1coua tena in the ,-component equation, v a2u/aa2, to the 
retained ten v a2u/an2 i1 of order (6/1) 2, vbere•• in plane turbulent flow the ratio of the neglected 
ten a'iiI/a1 to the retained term aiiv/an i1 only of order (6/1) becau1e u2 and iiv are of the 1ame 
order in aeneral, Therefore (i) the thin-1hear-layer approximation i1 le11 accurate in turbulent flow than 
in l•inar flow, quite apart from the fact that 6/1 i1 generally larger, (ii) we cannot make direct u1e 
of the order-of-■anitude argument• develope, for laminar curved flows. Furthermore the effect of 
turbulence on pitot and 1latic tube• introduce, uncertaintie1 of order u2 into mea1urement of u2 •.!L 
that the inaccuracy of meuur .. nt of au2/a, i1 of the 11me order a, the Reynold1-1tre1s gradient au2/a1 
and attempt• to u1e 1et1 of equat i on• more accurate than the boundary-layer equation• !!!!l'. not be realistic. 
Pora careful diacua1ion aee the 1951 paper by Newman (18), and for data on corrections to static-tube 
aea1ur .. nt1 in ahear layer• 1ee Brad1haw and Goodman (19), Despite these 1ource1 of difficulty or 
inaccuracy we can 1till produce con1i1tent approximation, to the exact equation• for curved turbulent flow: 
for clarity only the two-di-naional ca1e will be treated. 

We consider the case where R/1 and dR/d1 are both of order unity, say R/ 6 of the order of SO 

in a boundary layer: if the curvature is sharper or changes more rapidly few s impli f ications can be made 
with any riaour. In virtually all turbulent flov1 the viscou1 term in Eq(S) wi l l be negligible everywhere 
and the vi1cou1 term in Eq(7) will be negligible except in the viscous sublayer, n < 30vl(p/ T ) say. If 
we take the surface a, the 1-axi1 h will be very close to unity in the sublayer and if, as :saumed, 
dR/d1 i1 not of greater order than ~nity the vi1cous term in Eq(7) becomes approximately 

Le11 rigorou1, but entirely trustworthy, arguments baaed on the known properties of the viscous sublayer 
in plane flow 1ugge1t that all terms ex~ept the first will be negligible. Therefore the difficulties 
encol.Dltered i.n approximating the vilcou1 terma in laminar flow do not appear i n turbulent wall flows, nor 
of cour1e in turbulent free 1hear layers. 

The large1t of the Reynold• 1tres1 gradient• in Eq(7) is aiiv/an, the others being smaller by 
factor, of 6/1 or, equivalently, 6/R, since we have a11umed 1/R to be of order unity. Since n/R 
i1 clearly not much greater than 6/R, and 1in~e V i1 of order U6/o, the only consistent simplification 
of Eq(7), neglecting terma of order 6/s or 6/R, i1 

u au + v !!:! as an 
(9) 

identical with the familiar boundary-layer equation for a plane flow except that we have not yet proved 
that ap/31 i1 independent of n. 

If we neglect the terma in Eq(S) which are of order 6/s or 6/R compared to u2/R, and also 
neglect (n/R)V av/an which i1 of order (6/1) 2, we get 

u2 ~ -_g:_ 
- R (n + R) 

(10) 

Differentiating with respect to s and rearranging, we get 

a2 ::i l. 
(u:) lu au u2 dR 

-- (p + pv) . . as - ds a, an as R a2 
(11) 

10 that 

r½ 
a-

[2u 
u2 0 <ii ♦ p~) 

po . au 
!!!)dn as' - as' -08 R ds 

(12) 

0 

where the operator fdn is of order 6 and where p0 i1 the pressure at n • o. Nov dR/ds is of order 
unity and u2/R or U2/1 i• in general of the same order as Uo U/ 01 so that the difference between the 
longitudinal pre11ure gradient at n • o and at n • 6 is of order 6/R times the first term in Eq(9) 
and we have_!lready neglected terms of this order in deriving Eq(9). Furthermore av2/ as is of the same 
order a1 ou2/ a, which ha, also been neglected in Eq(9). Therefore, for purposes of aubs~itution in Eq(9), 
Eq ( lO) reduces to 

ap 
on 0 (13) 

a, in plane boundary layers: there is no rigorous approximation intermediate between Eq(7) and Eq(9) in 
which a hiaher approximation than Eq(13) could be used. We note that the term, neglected in pa11ing from 
Eq(7) to Eq(9) (leaving aside the viscous term) are all of order 6/R or 6/ s t i mes tho1e retained: 
there are no tel'1U of order (6/R) 2 in Eq(7). Nov 7'ing Eq( l O) t o substitute for op/ os i n Eq(7) would 
introduce more terms of order 6/R times the main terma in Eq(7); if, on the other hand, we substituted 
for a~/ a1 in Eq(7) by manipulating the full n-component equation, Eq(S), in t he same way as we 
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.. ipulated lq(lO) to a•t lq(12), ve 1hould be intYoducina t1ru of order (6/l) 2 into lq(7), Thi• 
■1111ut1 that a con1i1t1nt ••t of equation., includina teru of order 6/l but not 1ull1r teraa, i1 the 
(uact) lq(7) 1 vitb the vi1cou1 tera 1i11Plifi1d to ta1te, 1nd the (epproxiute) lq(lO), In viw of the 
expariaental difficultie1 Mntioned above, u1e of lq(8) i1 probably never ju1tifi1ble. 

It i1 popularly 1uppo1ed that in nuaerical calculation■ ve can 1ub1titut1 lq(12) into Eq(9) and 
reaard the re1ultina equation u parabolic, 10 that it cen be 1olved by a urchin& Mthod, aiven p0 (1), 
The int11ral1 in Bq(12) are evaluated by u1in1 v1lociti11 calculated at the pr1viou1 1t1p or at the 
previoua it~ratioa. Nov the fact r1uin1 that Eq(9) and Bq1 (10) or (12) are elliptic: only if Eq(12) i1 
replaced by lq(l3) vitb p known d011 the 1y1tem beco• parabolic. Obviou1ly the elliptic 1y1tn i1 
1tronaly con1train1d by the 1p1cification of p0(1), even if p0 (1) i1 it1elf calculated in an outer 
iteration, but the popular procedure may be expected to fail when the pre11ur1 difference acro11 the layer 
i1 larae, or in other difficult ca1e1, Baua (20) va1 unabl1 to allow in thi1 way for the pr~11ur1 
difference acro11 tha 1ub11, ·.ic part of a curved c011pre11ible ■hear layer althouah hil explanation of the 
r1a1one i1 utheutical rather than phy1ical: in reality, the effect of 1mall perturbation, on a flow 
near M • 1 ii to produce a "choking" phenomenon, The well-known non-uniqueneu difficulti11 of the 
Crocco-I.••• 1eri11 of 11ethod1 (21) alao item from ettempt1 to march an elliptic problem but for 1li&htly 
different r1a1on1. There 1eem1 to have been no aeneral inveatigation of the con1equenc11 of treatina a 
1liahtly elliptic problem•• parabolic for numerical purpo1e1 and 10 all one can do ia to urae people who 
try it to apply careful check, for accuracy and atability. A uaeful and entirely acceptable application 
of Eq(5) i1 in the analy1i1 of pitot-pr111ure profile• in curved shear layer,. Sub1titutin1 2(P-p)/p 
for u2 and ianorina av2/an •• beina of the 1ame order•• neglected terms in the pitot equation, ve get 

op 2p 2 p 
aii + n+R • n + R 0 4) 

1olvin1 for p in terma of P, we get 
n 

p(n+R) 2 - p
0
R2 • 2 J P(n'+R)dn' 

0 

or, a u1eful form in boundary layer& due to Wilcken (22), 
n 

p - p0 • (n: R) 2 J (P - p0 )(n' + R)dn' 
0 

(15) 

(16) 

In the cue where dR/d1 ia of greater order than unity, a11umin1 that the vi1cou1 term i1 not 
1ianificantly altered, ve 1ee that the only explicit alteration to the above an1ly1i1 ia that the la1t term 
in Eq(ll) i1 of laraer order: in an engineering calculation method it would be ea1y enough to 1ubtract a 
term n 

½ ¥. f u2 d, 
0 

from op/a, in Eq(7) or Eq(9), However if dR/d1 remain• larae 1/R become• of greater or 1111 order 
than unity and the whole analy1i1 breaks down,•• it obviously doe• if dR/da become, infinite (1udden 
chaqe of 1urface curvature), It aeema almost inevitable that "marching" 1olution1 will fail in 1uch 
ca111, Purthermore, large values of dR/d1 are likely to lead, via the intearal correction term ju1t 
derived, to laraa lonaitudinal acceleration• and to modification, of the turbulence atructure additional to 
tho1e cau11d directly by the 1treamline curvature, 

We 1u11Darize the above analysis by the following table for R/1 not much smaller than, and dR/da 
not much laraer than, unity. 

-------Exact 

Terma in 6/1 or 
6/R retained 

Terms in 6/1 or 
6/R neglected 

a-equation 

(7) 

(7) 

(9) 

n-equation 

(8) 

(10) 

(13) l 
vi1cou11 term in ,-equation 
simplified to v o2U/on2, 

vi1cou1 term in n-equation 
neglected 

Nov the•• are rigoroua order-of-magnitude approximation, valid for any flow: but there i• no reaaon why we 
1hould not u11 our knowledae of a particular flow to do better than 1n order of magnitude, by ignoring 
t1rma which the riaorous analy1i1 require• to be included but which we know are negligible in the flow 
concerned. For inatance, in a shear layer which i1 aharply-curved butJlowly-growina ve may be justified 
in u1in1 Eq(5) with the vi1cou1 term reduced to v a2U/oy2 and th~ o~/01 term neglected, and Eq(lO) 
vith the facton (1 + n/R), pre11nt in Eq (8), retained on the right hand aide: the term (-;, - u!) /R on 
the riaht hand Iida of Eq(8) ii likely to be fairly small compared with (1 + n/R)a~/an in practical ca111. 
Then u2/ll in Eq1 (10) and (11) ii replaced by u2/ (n + R), (n + R) beina the local radiu1 of curvature 
of the atrealine, and the r11ultin1 aet of equation• 1ati1fie1 the thin-ahear. -layer requirement 
o/aa << ?/an but not the requirement op/on• o. 

2,J THE (z6 r) SYSTEM 

The exact equation• for incompre11ible 1wirlin1 flow in the axi1)'11111etric (x,r) 1y1tem, with 1ymbol1 U, V 
and W for the mean velocity co111p0nent1 in the x, rand 8 direction• re1pectively and with a/08 = O, 
are 



r-cC111p011ent Man ... ntia 

u !!l + v au 
ax ir 

r-c011ponent Min 11011ent1111 

u av 
- ♦ ix 

8-coaponent Min momentum 

u aw 
- ♦ ax 

continuity 

v av 
ir 

v aw 
- ♦ ar 

vw 
r 

3UV UV rr - r 

+ vi1cou1 teraa 

+ vi1cou1 term• 

2w 
r 

♦ vi1cou1 ter1111 

11 

(17) 

---r 
(18) 

( 19) 

(20) 

The equation• can be derived by applyina the princi ple, of con1ervation of ma11 and -.ntum to the 
.i-ntary control voll .. 1ho-m in Fia, l(d). Note that here r ii an independent variable: in the (1,n) 
1y1te■ n i1 an independent veriable end R i 1 a pre1cribed function of •• The vi1cou1 ter1111 are aiven 
by lodi (17). 

The approximation• to thi• 1y1tem have aenerated le11 controver,y than approximation, to the (1,n) 
ayate■ , partly becauae the (x,r) 1y1tem i, u1ed for 10 many different flow, that no one aet of 
approxi■ation1 i1 1enerally valid, For in1tance, in a nonully-impinaina circular jet (whether 1wirling 
or not) ve p••• from a 1lender-1hear-layer •~proximation, a/ar >> a/ax, before impin1ement to a thin­
ahear-layer approximation, a/ax>> a/ar, in the radial wall jet after impinaement; and the vi1cou1 
ter■a are nealiaible except for a2v/ax2 and a2w/ax2 clo1e to the 1olid 1urface. In axi1yanetric 
avirlina flova which chan1e rapidly in the x direction, 1uch a, the impinaement region, of the jet 
Mntioned above, or a bur1tin1 vortex ~r the recirculatina region of a 1wirl burner, the full equation, 
■uat be u1ed, u:cept for 1ome allowable 1implification1 in the v' : ~ou, term,, 

The 1lender-1hear-layer approximacion applied to 1wirlin& jet,, wake■, vortice, and pipe ~low• 
allov1 u1 to i1nore all x-derivative, in the Reynold• 1tre11 and vi1cou1 1tre11 term,: gener, t ly term• 
in 1/r are ot th• , ... order a, term■ in o/ or. The main difficulty occur, in dealing with t • ~ pre11ure 
teru : moat of the remark• in Section 2.2 are relevant, Finally the apecial ca"e of cylindrical flow 
(3/ix • 0) appear, in 1ome mathematical an1ly1e1: the only curved turbulent flow 1hat qualifie1 exactly 
i• that in a lona 1pinnina pipe. 

In a 1tronaly-1wirlin1 ■ lender fl°"' (with the maximum value of W of the aame order•• the 
■axi~ia value of U) the r-component mean momentum equation i, approximately 

w2 1 aii 
--; • ii a; c21> 

aince V and /':f are both much 1111 than W: we can without prejudice group v2 with p and araue 
that (~-;,)/r will in practice be 1maller than ov2/ ar, but thi1 i, not rigorously justifiable. 
lapeatina the araumant uaed to derive Eq(12) from Eq(lO) w~ get 

r 

p ax • - - dr' a J w
2 

ax r' 
(22) 

ro 

vhare p0 i1 the pre11ure at aome reference position r • r 0 for 1ub1titution in ~q(17). If W i1 of 
the aame order•• U thia ia !!2! negli~ible compared to uau/ax and we therefore conclude that, almoat 
by definition, the x-component and a-component equ1tion1 in a 1trongly-1wirling flow interact via the 
preaaure term in the r- component equation, An exception, of cour1e, i1 the ca1e where r/r0 i1 cloae to 
unity in the region of intere1t - the ca1e of a thin aunular 1hear layer - when the effect, of the radial 
preuure gradient on the axia.l motion can be neglected and the equations reduce to 

u au V au l dp ouv a2u (23) ax ♦ ar . - p dx - ~ ♦ V 
ar2 

u aw V aw aw a2w (24;• ax ♦ 3r . - ar ♦ v-
ar2 

au 
♦ 

av . 0 (25) ax 3r 
on notina that in a thin annular ,hear layer a/ar >> 1/r. The•~ are identical with the boundary layer 
equation• for an infinite avept wing with x measured in the 1urface, normal to the generatora. The 
x-component equation depend• on the r-component equation only via the Reynold1-1tre11 tranaport equationa : 
in laainar flov the x-component equation would not depend on the r-component equation, according to the 
"independence principle" (Ref,23, p.468), 

In a veakly-avirlina alender flow (W << U) ve can neglect the effect, of op/ 3r on the 
x-coaponent equation, and therefore ianore the radial-component equation altogether. The equations 
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therefore become Eq1 (23)-(2S) again with the addition of the tel'llll in 1/r from the oriainal equ,~tion1 
Eq1 (17), (19) and (20), which are not nealigible unle11 the ahear layer i• a thin annulu1. 

In the pre1ent context we do not need to con1ider the equation, for a 1wirlin1 radi.al thin 1hear 
layer 1uch a1 that on a rotating di 1c, becau1e moderate 1treamline curvature in the plane of the layer ha1 
not yet been shown to have any significant effect on turbulence atructure. 

2,4 THE REYNOLDS-STRESS TRANSPOR'l EQUATIONS 

rhe1e are exact equations, der i ved from the Navier Stokes equation, (24, 25), They are the 1imple1t 
,iquation1 to give us information about turbulence q11antities (we define a "turbulence quantity" u the mean, 
u•ually with respect to ~ime, of a function of fluctuating quantities; the mean of any one fluctuating 
quantity i1 zero by defi~ition. There are six Reynold1-stre11 transport equations, one for each of the 
independent elements of the Reynolds-s tress tensor (Appendix l) 

The ~lement in the i - th row and j-th column is denoted by - puiuj - - pujui: it represents 10 apparent 
stress acting in the xi-direction (where x1 • x, x2 • y, x3 • z) on a plane normal to the x ,-directirn, 
as a consequence of the mean r ate of transfer of ui-component momentum in the uj direction bylthe 
turbulence. Each Reynolds-stress transport equation can be arranged to give the mean rate at which that 
Reynolds str ~as increases along a m an streai~line of the flow: the r ate operator D/Dt is defined as 

and is the rate of increase with 
fluid. Thus the Reynolds-stress 
momentum equation gives DU1/Dt. 
mean continuity equation, 

D ui uJ. 
Dt 

becomes equal to 

u a - . 
ax 

w a 
az 

respect to Lime as seen by an observer following the mean motion of the 
transport equation gives D uiuj/D t just as the xi-component mean 
If we rewrite D uiu/Dt in "divergence form" by adding u1uj times the 

d iv ( U i'i:'ii": ) 
• 1 J 

or 

which is recognizable as the net rate at which uiuj is transport~d out of a unit control volume by the 
mean veloc i ty U juat as the continuity equation div(pU) • 0 gives the net rate of transport of mass out 
of a unit control volume by ~• In the case of u\uj the net rate of transport by U is generally non­
zero. A• shown in Fig.9(a) it is the sum of contributions from several processes 

(net rate of transport of u .u . 
l J 

out of control volume by mean flow) 

(mean rate of generation of 

- (mean rate of destruction of 

u.u . 
l J 

u ,u. 
l J 

within control volume) 

within control vollllDe) 

- (mean rate of trans~ort of U:U- out of control volume by fluctuating velocity, 
pressure and viscous stressel)j 

Reynolds 1tre11 is generated by interaction of the existing Reynolds stresses with the mean rates of strain 
or with body forces (Reynolds stress and vorticity fluctuation• can appear in non-turbulent fluid only by 
the action of visco1ity or unusual kinda of body forces), It can be destroyed by fluctuating viscous 
atreaaes. Any given component can be augmented or reduced by pressure-fluctuation terma which do not, 
however, change the sum of the princip,11 stresses: therefore we sometimes call these "redistribution" 
rather than "destruction" terms. 

Hinu1 one-half of the sum of the principal stresses, }p (u2 + v2 + w2), i~ called the turbulent 
kinetic energ:i..!_ Its transport equation [Fig.9( c)), obtained as half the sum of the separate equations for 
~. v2 and w2, is strictly an energy-conservation equation, which the individual equations for uiuj 
are not, and is therefore easier to explain in physical terms, The generation term in the turbulent energy 
equation, called the "production" term, is equal to the rate at which the mean rates of strain do work 
against the Reynolds stresses, thus transferring mean-flow kinetic energy to turbulent kinetic energy; the 
destruction (viscous "dissipation") term is equal to the mean rate at which the fluctuating rates of strain 
in th~ turbulence do work agains t fluctuating viscous s tresses, thus transferring turbulent kinetic energy 
to thermal internal energy. It is very important to remember that the eddies directly affected by 
vis~osity are much smaller than those which make the main contribution to the turbulent kinetic energy and 
the i ~ynolds stresses, At all but the lowest local Reynolds numbers (based on intensity and eddy length 
scale , the energy-containing eddies are in~ependent of viscosity: since the rate at which trey transfer 
energy to smaller eddies ia equal to the dissipation rate, the viscous dissipation rate is also independent 
of viscosity, Another consequence is that the viscous terms in the shear-stress equations (i ~ j) are 
negligible except at l ow local Reynolds number. 

The net rate of spatial transport of uiuj by the fluctuations themselves ("turbulent transport" for 
short) is best thou~ht of as a further example of the propensity of turbulence to transport or diffuse 
any ~uantity it carries, such as mass, momentum or energy. Transport by fluctuating viscous 1tre11e1 i1 
negligible except very c lose to a solid surface or i n certain flows at low Reynold■ number: transport by 
pressure fluctuations seems to be generally rather smaller than transport by velocity fluctuations, but 
thi s may not be the case in stably-stratified or stably-curved flows carrying internal wave,. A simple 
example of transport by velocity fluctuations is the eruption of large eddies near the free edge of a 
turbulent flow: fluid that moves outwards near the edge is generally more intensely turbulent than th~ 
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fluid froa beyond the eda• that 110ve1 in to take i t:1 place. We can••• that the net rate at which uiuj 
ia depoaited in (or ~ .. oved from) a aiven control voluae by thi1 proce11 depend• on the rate at which t&e 
uiuj carried by the eddie• deer••••• (or increa1e1) •• they 110ve throuah the control voluae. Therefore 
the turbulent tran1port tenu in the equation,, like the mean tranaport ter,u, can alvay1 be expr••••d •• 
apatial 1radient1 of turbulence quantitie1: beina rate• of tran1port from one place to another, their 
inte1ral1 over the whole voluae of the flow are alvay1 zero. 

A apecial caH of 1ome importance ii "local equilibriU11" [Fia,9(b) and Ref.26) in which mean and 
turbulent tranaport ter,u are nealiaible 10 that the aeneration and dutruction (or "redhtribution") tenu 
are equal. The iaplication i1 that the turbulence ha1 adju1ted it1elf 10 that the rate of increa1e of 
uiuJ due to interaction with the wan flow i1 in equilibri11111 vith the rate of decrea1e due to the 
d .. truction te1111, and further that the characteri1tic velocity and lenath 1cale1 of the turbulence 111U1t 
therefore have adju1ted theuelve1 to be proportional to the characteri1tic velocity and lenath 1cale1 of 
the ••n flow. The only extended reaion in which tran1port ter,u are negli&ible i1 the inner layer of a 
turbulent wall flov, the region within roughly one-tenth of the flov width from the 1urface where eddy 
time 1cale1 are ■mall enough for adju1tment to occur quickly: tranaport term, do become 1ignificant once 
110re in the vi1cou1 aublayer, uty/v < 30 1ay, where they 1upply turbulent energy to the r egion of finite 
di11 i p~tion but nealigible production clo1e to the wall. In the outer layer of a 1lowly-changin1 boundary 
layer, the mean and turbulent tran1po. t term,, thouah not ■mall, are roughly equal and oppo1ite, 10 that 
"generation" • "dutruction" ii a fairly good empirical appr oximation: therefore local-equilibrium 
arawr~nt1 give re1ult1 acceptable for 1011e engineering purpo1e1 although this cannot properly be called a 
local-equilibri11111 flov, For 1imilar rea1on1, local-equilibrium re1ults are u1able in duct flow1, not too 
clo1e to the centre line where generation goe1 to zero and destruction i1 neces1arily balanced by 
transport, Local equilibri11111 i1 not a good approximation in free 1hear layer,: in a mixing layer, for 
in1tance, the di11ipation of turbulent energy in the region of maximum intensity i1 only about half the 
production, the re1t beina tran■ported to lower-inten1ity region• by the turbulence, A relative of local 
equilibri11111 i1 1elf-pre1ervation, [(25), Section, 3.1 and 4,1), in which the lenath and velocity 1cale1 of 
the mean flow and turbulence have gradually become propor tional over a long development length: thi1 
require, the free-atream velocity and other boundary conditions to be con1tant or to vary in certain 
re1tri~ted way, . In a ,elf- preserving ahear layer, the ratio of generation to de1truction i1 a function 
only of y/6, independent of x but !!21 cloaely equal to unity except in the inner layer of a wall flow, 
It can be 1een that a local-equilibriw.. analy1i1 leading to an empirical function of y/6 will apparently 
apply to all part• of a 1elf-pre1er.ving flow if the (variable) ratio of aeneration to deatruction i1 
hidden in the empirical function : this doe, not imply that the flow ia truly in local equilibrium. 

The local-equilibrium approximation to the turbulent energy equation in a aimple 1hear layer [which 
i1 itaelf t he approximation to Eq(Al. 28) in the limit R + m , with a/an>> a/a,) ia 
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and ia therefore equal to L in a local-equilibrium region: in non-equilibrium region, L ia etill a 
meaningful length 1cale but t i, not (it ia 1omewhere between a length 1cale of the mean 1hear and a 
length 1cale of the turbulence, and the two are not directly related), The oft-quoted ambiguity of 
definition of the rate of ■ train to be u1ed in the mixing length formula for curved flow• will be briefly 
discu11ed in Section 4: the effects of the ambiguity are ,mall compared to the direct effect• of 
curvature on the turbulence, Formulae like Eq(27) could be derived from local-equilibr i um approximation• 
like Eq(26) to the other tran1port equation,: even in the moat advanced calculation method, it i1 
a1111111ed that one length 1cale i1 enough to apecify the turbulence 10 chat the other formulae would not at 
preaent be aignificantly more u1eful than Eq(27) alone. Conver1ely, what we 1ay about the di11ipation 
lenath parameter could equally well be 1aid about other length sculea defined by other type• of de1truction 
term. 

In the preaent monograph we shall often represent the effect• of extra ■ tra in rate1, particularly 
1treamline curvature,•• factor■ on L, The factors could equally well be applied directly to the 
destruction teru:s in the tran1port equations but us ing L allow, u1 to apply the well-known l ocal­
equilibrium approximation Eq(27) for th! 1urpo1e of a11e11ing the effect, of extre 1train rate ■ , Aa lona 
•• the local-equilibrium approximation ~• fairly accurate the evaluation of the empirical factor, on L 
can be fairly accurate, We can then {nvoke the fact that L i1 alway ■ a meaninaful lenath 1cale of the 
turbulence to juatify u1ing the!!!!!!: empirical factors i n flow, where local equilibrium i1 no lonaer even 
fairly accurate: that i1, having u1ed the local equilibrium approximation to e1tabli1h the correction to 
L, we uae the corrected L in a calculation method which does not invoke local equilibri11111. Thi1, like 
im>at of the argument• uaed in treating the Reynolds-1tre11 tran1port equation,, i1 not exact but i1 the 
beat vay of extrapolating limited data and limited phy1ical underatanding. 

For the purpo1e1 vf di1cu1sing the Reynolds-stress tranaport equations in the aeneral, non­
equilibrium ca1e, the phy1ical processes suaurized in Fig.9(a) are more important than their mathematical 
repre1entation. The equation for D uiuj/Dt is obt1ined by multiplying the u1-c0111ponent Nav i er Stoke• 
equation (whoae firat term i tJ aui/ at) by uj, and adding ui times the Uj-component Nav i er-Stokes 
equation to obtain ujaui/ at + uiauj/ at = auiui•/at. Thie term vani1hes on takina the 'Dean with reapect t o 
time, but i • a aimple mnemonic for the derivat on of this or any other transport equation; manipulate the 
Navier Stoke• equation• to form the time derivative, a/ at, of the quantity wh 1e 1ub1tantial derivative , 
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D/Dt. i ■ required. The equetion for D uiuj/Dt ia given in aeneral ten■or notation aa Eq(Al.24). The 
Reynold1-1trea1 tranaport equation■ 'n (a.n) and (¥.r) coordinate ■ can be deduced aa explained in 
Appendix 1, Since the coordinate• are not i ■otropic each equation ai■ t be written out ■ eparetely: the 
turbulent eneray equation. the uv equation and - for (x.r) coordinate• only - the w equation. are 
aiven aa Eqa (~1.28) to (Al,32) of Appen1ix 1. A qualitative auide to the effect ■ of extra ratea of atrain 
in aeneral and of atreamline curvature in particular ia given by the production teru in the turbul nt 
energy equation•• vhich v equate to the diaaipation rate E in the local-equitibrium approximation. 
Theae are• roughly in order of importance in typical ■hear layers• 

au 
uv an - (- u 2- u) 

UV R - UV R av 
- UV aij 

-v 
- u2 -

R (29) 

in two-dimen■ ionlll (s,n,z) coordinates. where the two parts of the second tel'lll .:ome from the ;;°i and v2 
equetiona re ■pectively, and 
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-uv ar - 7 au 

u -ax 
aw 

- uw ai 
_ av 
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in axisyanetric (x,r,0) coordinates . Note the sign of W/r in the second term o the last expression: 
turbulent energy is not produced by pure rotation ( W/ ar • W/r), In a simple shear layer the only term 
that remains is -iiv au/ay, as in Eq .(26), 

The Reynolds-■ tress transport equations introduc further unknowns and there i·· ,re cannot be solved 
as they stand, We go on to discuss methods of replacing these unknown terms by empirical functions of 
known quantities. 

2. 5 CALCULATION METIIODS 

Many reviews of the strategy of cal culating turbulent shear layers - that i c . the process of ins rting 
empirical infonnat ion into a chosen set of exact equations to make them soluble - have been writ ten in 
recent years. Digital computers enable quit e complicated systems of par t ial differential equations to be 
solved . Even the earlier computer-oriented m thods for thin shear layers, dating from the mid-196Os. 
performed at least as well as the most highly-developed of the traditional "integral" methods, bas d on 
ordinary differential equations for integral param ters and intended for solution on desk calculators. 
Therefore most of the basic research of the last few years has been devotLd to methods based on partial 
differential equations. most ly recognizable as simulations or simplifications of the exact Reynolds-stress 
transport equations , Calculation methods developed by 1968 are nearly all described , and their performance 
analysed, in Ref.27, Hore recent reviews (25), (28-30) have tend d to concentrate on methods based on 
explicit, term-by-term approximation of the Reynold~-str~ss transport equations , This reflects the state 
of current research but also the personal enthusiasms of the reviewers, The app lication of computers to 
the older mixing length and eddy viscosity formulae is des cribed in the books by Patankar and Spalding (31) 
and Cebeci and Smith (32). The book by Nash and Patel {33) concentrates on three-dimensional thin shea 
layers . 

The strategy into which nearly all methods can be fitted is as follows , diffet ent types of method 
terminating in empirical formulae, or complete neglect of some terms. after diff rent numbers of stages. 

(~) Take the time mean of the Navier Stokes equations, obtaining the Reynolds equations for the rates of 
change. along a mean streamline, of the componen ts of mean momentum or velocity. Unknown Reynolds stress 
gradients, depending on second-order mean pro .ucts of fluctuating velocities. U.U:, appear on the right 
hand side, 1 J 

(ii) Take the time mean of uj times .he u--component Navier Stokes equation plus ui times the 
uj-component equation , obtaining the R, ynolds ~tress transport equations for D u\uj/Dt, the rate of change , 
al ong a mean streamline, of the Reynolds . tresses UjUj• Unknown mean triple pr ducts of velocity 
fluctuations , second-order mean products of fluctuat1ng velocity gradients, and mean products of pressure 
fluctuations and flu ctuating velocity gradients appear on the right hand side. 

(iti) Hanipul&te the Navier Stokes equations to obtain exact differential equations fo r the unknown 
quantities on the right hand sides of the Reynolds stress transport equations . A s imple mnemonic for the 
process is that the time derivative in the xi-component Navie r Stokes equation , aui/ at , must be fa ctored 
to give the time derivative of the required "unknown quantity" [e.g. auiu/ at = u• aui/ t + ui ujl at in 
the example in (ii) above): the time mean then gives the transport equation for t~e unknown quantity 
(e.g . D uiuj/Dt), Further unknown quantities appear on the right hand s i des of these further transport 
equations. At any stage. ordinary differential equations can be derived by integrating partial differential 
equations across the thickness of the shear layer: to obtain a practicable system, several weighted 
int grations may be required for each partial differential equation, 

An infinite number of transport equations would be needed to recover all the information lost by 
time-averaging the Navier Stokes equations . To solve a large but fini te number of transport equations 
might take longer than solving the time-dependent equations themselves, but the empirical information 
ne ded to close the system becomes too difficult to obtain or to handle long before this stage is reached. 
The "order" of closure is the highest order of equation conside r d, Mixing-length and eddy viscosity 
formulae , for insertion after stage l above, are examples of first-order closure; approximation of the 
terms on the right hand sides of the Reynolds stress transport equations constitutes second-order closure; 
and of the equations of third-ord r closure , only the transport quations for mean squares of fluctuating 
velocity grad i ents. related to the en rgy dissipation rate, have been tr ated quantitatively (34, 35). 
Equatio~s of one order higher than those to b cl osed may give useful qualitative information about the 
quantities to be approxi11111ted: for example , the mixing-length formula can be justified by taking the 
local-equilibrium approximation t o the Reyn olds-stress transport quation; Hanjalic and Launder (34) 
support their treatment of the triple products in the Reynolds-stress transport equation by reference to 
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the exact tran1port equation, for triple product■; and it i1 1carcely po11ible to treat the fluctuating 
pre11ure correctly without reference to the exact equation which de1cribe1 ·~. In 1ome calculation method, 
tran1port equation• are u1ed only for the Reynold• 1tre11e1 whole aradienr ,, actually appear in the problem: 
in more refined methods, some or all of the other Reynold• 1tre1111 may .e le f t in exact form in a given 
tran■port equation, 10 that transport equation, must be 1olved for the~1 a, veil. 

Some work ha1 been done on empirical traneport equation, for mixing length or eddy visco1ity. 
However ve have juet seen that the mixing lenath !ormula can be ju■ tified, in the een•~ of relating the 
apparent "mixing length" to a true' length ecale of the turbulence, only by making the local equilibrium 
approximation: the same is true of eddy vi1co1ity (vhoee relation to a definable turbulence property ie 
even more dietant), The use of second-order clo1ure concept• on quantitie ■ vhich are physically 
meaningful only to first order is clearly r.Jt rigorou1, even for 1imple shear layers. In complex flow■ it 
becomes neceuary to admit that the eddy • iaco■ ity ie aniaotropic, 10 that separate equations are needed 
fo r ita separate components, Aleo, the argument that the eddy vi1co1ity generally variea le■• than the 
Reynold• atresses, and is therefore easier to correlate , fails in cases vhere the mean velocity gradient 
goes to ~ero while the shear stress does not, for the eddy viacosity then bec~mes infinite. Therefore my 
own opinion, disputed by some , is that wholly-empirical transport equations for eddy viscosity or mix i ng 
length are not to be preferred above term-by-term empirical approximation of the exact Reynolds-stre■ s 
transport equations. 

At all levels of c losure, some assumptions must be made about turbulence length scales or the 
equivalent. The mixing length is obviously a length 1cale, if not a physically meaningful one. All the 
terms in the Reynolds-stress transport equations have the dimensions of (velocity) 3/(length) so that 
those which are pure turbulence quantities (i.e. not spatial gradients of mean properties or turbulence 
quantities) mus t each be represented aa the cube of a typical turbulent velocity scale, such as (-uv) 3l 2, 
divide~by a turbulence length scale. An example is the replacement of the dissipation rate t in Eq(26) 
by (-uv) 1l 2/L, It is of course possible to make empirical assumptions about the dissipation itself, 
rather than about the dissipation length parameter L, and then deduce a length scale for use in modelling 
other terms . In simple eddy-viscosity and mixing length treatments, and in some second-order closures, the 
length scale is related to the mean flow length scales an: perhaps the details of the Reynolds-stress 
distribution. This is, at best , reasonable only for thin shear layers, perhaps with small extra rat es of 
strain , where it can be argued that the largest eddies necessarily have a length scale nearly equal to the 
wi dth of the shear layer: it is clearly not true if the shear layer is perturbed by large extra rates of 
strain, In methoda intended for 1uch complex flows, differential "transport" equations a ce needed for 
length!!.£!.!!! as well as for the Reynolds stresses. We note in passing that the local-equilibrium 
approximation to a length-scale transport equation may never be acceptably accurate, even in a thin shear 
layer: the boundarie• have a large influence on the flow, and turbulent transport of length scale normal 
to the boundaries is likely to be appreciable. It may, however, be permissible to neglect the mean 
transport terms in slowly-changing flows, Once the length scale is defined, an exact transport equation 
can be deduced from the Navier-Stokes equation, For inetance, a traneport equation for t "t:: v(au . /ax , ) 2 
can be obtained by differentiating the xi-component Navier-Stokes equation with re~pect to xj, 1 

J 
mu1tiplyinf by 2(aui/axj) so that the leading term becomes a(d~i/axj) 2/at and the time mea~ gives 
D( aui/ ax;) /Dt, The traneport equation for L = (-uv) 3/ 2/c follows from the tranaport equations fort and 
for -uv! the terms on its right hand side can in principle be expressed as empirical functions of the 
Reynolds stres ee s and of L itself, The t ~nsport equation for the integral scale of the two-point space 
correlation 

J
"' u.(x)u.(x + r

0
)dr
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(where E is the separation vector, !12! a radius of curvature) is a more complicated form of the Karman­
Howarth equation for isotropic turbulence (where ~ • v2 • ii!, etc,): in isotropic turbulence all 
correlations are related by synnetry and other conditions, so one integral scale defines all, but in shear­
flow turbulence the 27 choices for the integral scale (3 choices each for i, j and 1) are .!!2!. simply 
related to each other, to the dissi•,ation length parameter L or to any other length scale, At present it 
is assumed, even in the moat advanced calculation methods, that all relevant length scales!!!. proportional, 
so that - say - L is used as a len11th scale in modelling the preuure-fluctuation "redistribution" term• 
as well as in DK>delling the dissipation term itself. Probably the errors or uncertainties introduced in 
thin or fairly thin shear layers are no worse than those already present in the modelling process, but one 
feels intuitively that more than one length scale will be needed to describe turbulence subjected to 
several roughly equal rate of strain component• (36), Also, a solid boundary forces the turbulence to 
become ani1otropic at distances from the boundary less than one or two eddy wavelength,, whatever its state 
elsewhere , Allowance for this effect in a eingle length-scale equation is necessarily somewhat arbitrary. 

Cebeci (pr i vate connunication, February 1972) and Rotta (30) have both suggested that a distinction 
should be dravn between methods whose empirical content has to be adjueted for each species of shear layer 
(jete, boundary layer,, ducts, etc.) and method ■ which are nominally capable of application to any shear 
layer without alteration, except to the boundary condit'.ona. Rotta calla theee "inc,.,mplete" and "complete" 
methods. T~e distinction is indeed a useful one, but it must be emphaaized very etrongiy , especially to 
design engineers, that a calculation method which ie nominally capable of treating a giveu case (in the 
■ ense that it will accept the required boundary condition• and complete the run without error messages from 
the computer) may not be ~ctually capable of producing acceptably accurate reaults. Naturally the results 
are likely to be most iuaccurate in complex ca■es where fev data are available to teat their acceptability! 
We shall ■ ee that in order to predict even the effect• of ,mall extra rates of ■ train on thin shear layer■ 
ve have to abandon one of the necc. uary features of a "complete" method, namely invariance vith reepect to 
rotation of the coordinate axes, For example, the effect• of etreamline curvature on a shear layer flowing 
in the x direction can be re~resented by factor• like 1 + lO(av/ax)/(aU/ay); but if the flow were in 
the y direction the factor would become l + lO(aU/ay)/(aV/ax). For such rea1on1 and for more important 
physical reaeone, it ie important to distinguish between "nominally complete" and "actually complete" 
method,, and to admit that at preeent no method• are "actually complete" (although eome are more complete 
than othen). 
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Analoaou1 to the vell-known procedure for (x,y) coordinate•, weighted intearal, - with re1pect to 
n - of the 1-coaponent 110ment1111 equation in (1,n) coordinate, can be u1ed to generate ordinary 
differential equation,, expre11ina con1ervation of IDOlll!ntum, energy, etc,, for the 1hear laye~ as a whole, 
for uae in "i'ntearal" calculation method•. Al well as the difficulties cauaed by the extra ter1111 11 1uch 
there are 1110 conceptual difficult tea, introduced by the pre1ence of a finite velocity gradient au/an 
even in the free it.re• and by ambiauitie1 in definition of ; .e diaplacement thickne11 and momentum­
deficit thickne11: for in1tance if au/an ia non-zero outeide the ■hear layer the displacement of the 
external 1treaaline1 by the 1hear layer - the di1placement thickne11 - varie1 with n and any unique 
definition a11t therefore be an arbitrary one, The problem, have been di1cu1sed by Patel (37), Hyring (38) 
and othera, However, it 1e1111 unlikely, to this author at leut, that the 1impler types of "integral" 
method, in vbich 1111>irical information is introduc,?d directly into ordinary differential equations, will 
be able to deal with turbulent ■hear layers so higJ. ly curved that quasi-rectangular coordinates are 
unacceptably inaccurate. The a11umptions made about the turbulence in these method, are necessarily crude, 
1ince they refer only to weighted integrals of turbulence properties and do not consider conditions at 
each point acro11 the 1hear layer. Therefore even the representation of the effects of small curvature 
on the turbulence may be difficult because the importance of these effects ~ariea significantly across the 
1hear layer, and larger curvature effects would probably cau1e even greater difficulties. These coll'lllents 
do not apply to the uae of the generalized Galerkin method or "method of weighted residuals" (27, p.16) to 
convert partial differential equations with empirical information already inserted - such as closed 
ver1ion1 of the mean"'111otion equation, and the turbulent transport equations - into ordinary differential 
equation,. A1 it1 use in the analysis of complex structures shows, the Galerkin method is easily 
applicable to complicated boundary condition,, and it i s n t necessary for each weighted integral equation 
to repre1ent conaervation of a physical property such as the ~~mentum or energy integrals, because the 
method ia 1imply a mathematical technique, Therefore the problem of generating physically-meaningful 
ordinary differential equatiors for curved shear layers does not seem to merit further attention, 

3, EFFECTS OP EXTRA STRAIN RATES ON TURBULENT SHEAR LAYERS 

3.1 'TMPLE CORRELATION SCHEI.£ FOR SMALL EXTRA STRAIN RATES 

We define an "extra" ■ train rate as any rate-of-strain component* other than a simple shear au/ ay: in 
general we denote it by 1ymbol e. In a thin curved shear layer the extra rate of strain is e • av/ ax 
in x,y coordinates, or e • -U/(n+ R) in (s,n) coordinates. Other examples (with the signs of e 
choaen for later convenience) are 

lateral divergence: e • aw/ az 
longitudinal extension} e • - au / ax 

or normal divergence or av/ ay 
- bulk compression: e • -div U = -( au/ ax+ av/ ay + aw/ az) 

rotation of whole flow syste; about z axis: e • n 
We do not regard aw/ay as an extra rate of strain: with respect to axes in the direction of the 
reaultant of au/ay and aw/ay the fluid experiences a simple shear equal to that resultant. Moderate 
value■ of aw/ax , or moderate spatial gradients of (aw/ ay) / ( au/ ay) in either the x or y directions, 
do not ■eem to have a significant effect on turbulence structure beyond that predicted by conventional 
calculation methods. 

If an extra s train rate is applied to a flow initially in simple shear, extra "generation" terms 
(aee Section 2,4) appear in the Reynolds stress transport equations . For example, if e • av/ ax 
(atreamline curvature) the generation terms in the iiv transport equation in (x,y) coordinates change 
from the aimple-shear contribution v2 au/ ay to ~ au/ ay + ~ av/ ax: the exact change depends on the 
coordinate axes uaed and it is simplest to keep to (x,y) axes for this discussion, Results for other 
extra ■ train rates are similar: in general the total generation terms are greater than the simple-shear 
term• by a factor 

f -
e 

(31) 

where a i1 numerically of order 1, its sign being i11111aterial at this stage. (The expression "of order 
x" mean, "between about x//fo and xM'.) Since none of the other terms in the exact transport 
equation explicitly contains the rate of strain, only the generation terms change their algebraic f orm. It 
follows that the change in Reynolds stress following the prolonged application of an extra rate of strain, 
a1 predicted by any of the empirical turbulence models discussed in Section 2.5, will again be a factor 
like f with roughly the same value of a. For instance, Eq(2) shows that a simple eddy visco:; ity formula 
applied to a curved shear layer predicts an increase in shear stress by a factor f with a• . exactly, 

In fact, as mentioned in Section 1, the Reynolds stresses are observed to change, after prolonged 
application of a ■mall extra rate of strain, by a factor much larger than f. The change is what would be 
predicted by a typical turbulence model if the generation terms had changed, not by a factor f but by a 
factor 

F • 1 + a au/ ay 
e 

( 32) 

wh~re a variea from case to case but is always of the order of~• The factor F can be regarded either 
aa an empirical extension of f or as a simple, linear, dimensionally-correct correlating factor which 
define■ an empirical coefficient ~. The rate-of-strain ratio e/( aU/ y) is a general case of the curved­
flow analogue of the Richardson number (Section 5): strictly, au / y represents the reciprocal of a 
typical time vcale of the turbulence and it is sometimes better to use the latter explicitly in regions 

*Por the quelit1,tive part of the present discussion we ignore the separate contributions of deformation and 
rotacion and ret' P.r to any departure from simple shear (even a pure rotation!) as an "extra ra te of strain" 
for compactnesa of terminology. 
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au/ay + O, a is positive for the signs 
a has the same sign as a but even this 

Now of cour■e the generation terma change only by a factor f, not F: the reason why the 
Reynold• 1tre11e1 change 10 much ia that the extra ■ train rate has a large direct effect on terms in the 
exact Reynold1-1tre11 tran■port equation, which do not explicitly contain the mean rate of strain. By a 
"direct effect" we mean that the change ■ are not simply those that result, according to conventional 
turbulence modela, from changes in Reynold• 1tres1 they are changes in the higher-order structural 
parameter■, which £1.!!!1. the Reynold ■ stress to change* . We therefore need to inaert empirical factors of 
the order of F in convention~l turbulence models before they can predict the large effects of even small 
extra rate■ of atrain. That ia , F-factora are required in calculation methods developed for thin shear 
layer■ even if e/(au/ay) ia still small enough for the thin-shear-layer approximation to be valid - see 
the table on p.4. Thi■ conclusion ■ eems to be valid for all turbulence models from the simplest local­
equilibrium formulae for eddy vi1co1ity and mixing length up to the most advanced transport-equation 
method1, In the ca■ e of transport-equation models, we muat expect changes of order F both in he 
deatruction (and redistribution) terms and in the turbulent transport terms, in addition of course to the 
change■ of order f in the generation terms. However a fair first approximation is to apply the correction 
for the effect of extra rate of strain to the destruction terms alone, This amounts to making the local­
equilibrium approximation (Section 2.4) solely for the purpose of analysing the effects of extra strain 
rate, and ■hould be acceptable if the basic flow is not too far from local equilibrium and if the effects 
of the extra strain rate are themselves not too large. It has the advantage of applicability to local­
equilibrium methods aa well as transport equations. However large extra rates of strain are likely to lead 
to gross modification of the large-eddy struclure, which is responsible for most of the turbulent transport, 
and, particularly in "unstable" flows, it may be essential to use a transport-equation method, with 
empirical modifications to the transport terms, to represe~t this effect. 

Body forces, like extra strain rates, can produce u,expectedly large changes in Reynolds stresses . 
The consequence of uniform rotation of a complete flow system at angular velocity n [Fig.l(e)] can be 
regarded either as an extra mean rate of train, equal to the component of n normal to the plane of the 
shear, the (x,y) plane say , or as a mean Coriolis body force 2 g x ~ whose relevant component is in the 
y direction and therefore again depends on the component of n normal to the plane of the shear . The 
effects of buoyancy forces on turbulence in a gravitational field are well known: we shall draw an 
approximate analogy between the effects of buoyancy forces and the ef fects of "centrifugal force" in a 
curved shear layer, where the consequence of curvature can again be regarded either as an extra mean rate 
of strain or - at least for semi-quantitative purposes - as a body force, There is no evidence at present 
about the effect of the Ix~ force in magnetohydrodynamic turbulence: the situation is obscured by the 
use of the word "turbulence" as a derogatory term for all types of plasma instabilities, For an Orr­
Sommerfeld analysis showing that in certain svecial cas es of inviscid MHD flow the stability is governed 
by the analogue of a Richardson number and that the Richardson number analogues for MHD body force and for 
curvature are additive, see Howard and Gupta (39). We shall see in Section 5 that this is a general 
property of Richardson number analogues derived from displaced-element analyses or from Reynolds-stress 
transport equations. 

There is unlikely to be a co:m1on explanation for the surprisingly large effects of extra strain rates 
and body forces, although in additio~ to the buoyancy/curvature analogy , whose application to turbulence 
is due to Prandtl, we can draw an anak~y between lateral divergence and bulk compression . If the effects 
of extra strain rate were always to decr~ase the Reynolds shear stress we could plausibly argue that a 
simple shear is bound to be the most effi,•ient means of producing shear stress, but Figs 3 and 4 show that 
extra ~train rates can produce large inc~eases in shear stress and other turbulent transfer rates. The 
qualitative effects of body forces can be "explained'' by the displaced-element arguments of Section 1, but 
if displaced-element or mixing-length arguments are taken far enough to deduce quantitative correction 
factor~ for body forces or extra strain rates these factors are invariably of the order of f and not F. 
Lateral divergence or bulk compression reduce the cross sections of fluid elements in the (x,y) plane and 
thus increase their z-component vorticity: again the factor predicted is of order f , not F, although 
z-com:,onent vorticity fluctuations play an important part in large-eddy dynamics and small changes may 
produce large effects. It seems wisest to admit that we do not yet know enough about turbulence to 
explain away an unexpected coefficient of order 10 in any of the cases mentioned , let alone produce a 
unifi~d explanation. However, the phenomena are unified on the empirical level by the unexpected 
coeff : cient of order 10 itself, leading to the need to insert extra factors like F in our turbulence 
models, and in our present state of ignorance this justifies a colTlllon discussion and a co1T111011 empirical 
treatment. In the study of non-Newtonian fluids , where analogous effects occur , it is co1T111on to correlate 
the response of the fluid in terms of the ratio of one component of the viscosity or elasticity tensor to 
another: for instance thP. ratio of the extensional viscosity to the shear viscosity ~ is called the 
Trouton ratio, which may or may not be a property of the fluid in the thermodynamic sense . Similarly, 
"eddy viscosity anisotropy factors" have sometimes been used in turbulent flow. They are cert •,inly not 
properties of the fluid and we do not use the concept here: the F-factor analysis is related, but more 
flexible. 

The discussion below will be restricted mainly to the effects of small extra rates of strain on thin 
shear layers. We will arbitrarily define a rate of strain e as being "small" if e/( au/ ay) is 
numerically less than 0,05 so that, if a • 10, F is between 0,5 and 1.5 which are likely to be the 
largest departures from unity at which a linear correction factor like F can be trusted, We will call 
the explicit changes introducer! into the equations of motion by extra strain rates the "!-factor effects" 
and tlte much larger direct effects of ext ra strain rate on turbulence structure the "F-factor effects", and 
note that in many previo·.-.s discussions only the relatively small "f-factor effects" have been considered. 
The effects of a large e.·tra rate of strain depend very much on the axes of the rate of strai n and do not 

*in some turbulence mod~ls, the mean rate of strain appears in the ~mpirical version of the pressure-strain 
"redistribution" terms (see Section 5.2 of Ref.25): however the effect of applying an extra rate of strain 
is to multiply these terms by a facto,· like f, not F. 



18 

throw much light on other caaea: we di1cu11 the effacta of large 1treemlina curvature in later Sectio a. 

We do not di1cu11 the traditional ahear-lay r problem of re1pon1e to change• in 3U/ay, nor the re1pon1e 

of ini t ially i1otropic turbulence to any rate of ■ train, becau,e the1e are de1cribed fairly well by 

exi1ting model• (40, 41): 1ince the re1pon1e i1 of the ,ame order a, the chanae in the aeneration ter1111, 

we can call theae "little-f problema" H diltinct from the "big-F problem" of reapon■e to extra etrain 

rate,, We note that the un1~trical re1pon1e of a 1imple 1hear layer to chanae• in the two element, of 

the rate of ahear atrain 3U/3y + 3V/3x impliea that experiment, (42-44) on the ~•~trical) re1pon1e of 

iaotropic turbulence to an irrotational plane 1train may not be a1 relevant to ahear layer, aa ia normally 

a11uaed: in an irrotational plane atrain the mean vorticity i, zero by definition, while in a 1impla 1hear 

layer the rate of plane ,train 3U/3y + 3V/ 3x and the vorticity 3V/3x - 3U/ 3y are numerically equal, and 

,mall departure, from equality [small value■ of (3V/3x)/(3U/3y)) have large effect ■, 

For a simplified di1cu11ion of the behaviour of the Reynold1-1ti·e11 tran1port equation■ in a ahear 

layer 1ubjected t o a small extra rate of strain we will use the local-eq ·,ilibrium approximation to the 

turbulent energy equation, a■ in Section 2.4, The local-equilibrium appr,,ximation to any other tranaport 

equation merely define■ Rnother length scale and it is at present customary to a11U1te that all 1uch length 

scale, are proportional. However it may become nece11ary to consider more than one independent length 

scale in flows subjected to large extra rates of strain, Combining Eq(27) and Eq(31) we have 

production • -iiv ~ ( l + a_ e_) - -uv 3U,f • dissipation - (-uv) 31 2 (33) 
ay au/ ay 3y L 

In a typical turbulence model for a simple shear layer t he dis s ipation length parameter L 

equation or formula which at most contains a factor f: denote this value of L by L0. 
of the effects of ext r a s train rate imply 

-uv. aU,F • (-uv) 312 

ay -r;;-

i1 given by an 
Then ob1ervation1 

(34) 

- that is,"the change is what would be predicted by a typical turbulence model i f t he generation term, had 

changed not by a factor f but by a factor P", Simultaneous validity of the exact equation, Eq(33), and 

the empirical observ4t i on Eq(34) requires 

Since t~e coefficient 
f, we can absorb f 
structure by 

a in 
i.nto F 

L 

Lo 
F 
f 

(35) 

F is empirical and an order of magnitude larger than the coefficient 
and represent the effect of extra rates of strain on the turbulence 

l + a e 
au/ ay 

(36) 

a in 

where Lo i s the value of L at t he same point in the corresponding simple shear layer. In cases of 

■mall extra rate of strain the thin-shear-layer approximation itself require ■ us to ignore the factor f. 

Formally, Eq(36) defines a di mensionless quantity a: it is a useful definition only if a varies les1, 

or is easier to correlate empirically, than L itself, 

Having chosen to apply the F-factor to the dissipation length parameter or orher eddy length scale 

rather than the mixing length l , we need no longer make the local-equilibrium appro imation: we can 
apply the F-factor to L0 or any other length 1cale appearing in a transport-equatitn calculation method, 

Nominally we correct only the destruction/redistribution terms, although in 1ome calculation method• the 
length scale also appears in the modelling of the turbulent transport terms 10 that correcting the length 

scale al10 cl,anges the transport terms (pro~ably in the right direction!), In order to find the F-factor 

in t be first place we must either measure the terms. in the transport equations in flow, subjected to extra 

rate■ of strain or, more fea1ibly, adjust the coefficient a in the F-factor by trial and error, to 

optimise agreement between ex~eriment and predictions by a calculation method whose unmodified veraion give, 
good results in simple shear layers. Examples of thi1 procedure are given in the later part ■ of thia 

Section and in Appendix 2: in later sections we shall refer to it as "numerical experiment", N9te that 

using the procedure in this way ■ imply gives the F-factor in the case considered: there is not nece11arily 

any implication that the same calculation method with the same P-factor will give good results in other 

cases. 

(i) 
(ii) 

( iii) 

We cannot expect a to be an absolute constant. 

F will in general vary linearly with e 
The re1pon1e of the sh ar layer is bound 
The re1pon1e to an extra rate of strain, 
on the history of t he rate of strain. 

only for very small rates of strain, 
to depend on the axes of the extra rate of ■ train. 

like the response to the simple shear au/ay, will depend 

In fact a linear correction factor applied to the eddy length scale is sufficient to correlate mr,1t of the 

rather small amount of accurate experimental information on extra strain rates, except that the analogy 

between buoyancy and curvature !!!!l'. be precise enough to authorize the use of non-linear factor■ developed 

by meteorologists. Furthermore, the data for prolonged extra rate■ of strain can be correlated almo1t to 

within their likely accuracy by a universal value of a of exactly 10: we review the data for each type 

of extra ,train rite - other than curvature - in Sections 3.2 to 3,4. However even the available data 

clearly show that if e changes 1uddenly from zero to a constant value the value of a required to 

optimise agreement with experiment rises rather slowly to its a■ymptotic value of order 10. Sudden changes 

in e (i.e. in surface curvature, pressure gradient or sidewall angle) are likely to be frequent in 

engineering situations and a full discussion of this lag effect is warranted, We note that there is no 

analogous effect in the response to t he primary rate of strain au/ay becauee there is no F-factor effect 

in the first place: "history" effect ■ in simple shear layers are tolerably we1l predicted by existing 

cal culation methods, 

Now of the terms in the exact Reynolds-stress transport equations only the generation terms and the 
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tera involving the pre11ure fluctuation p' can chanae iaaediately the •an rate of ■ train chan1e1 (the 
pre11ure fluctuation car, chanae becau1e the •an rate of ■ train appear, in the Poi11on equation for p'}, 
However, ve have 1een that the chanae in the aeneration tenu i1 only of orJer f , It ha, been ri1orou1ly 
proved for initially i1otropic turbulence (41} that the initial chanae io the pre11ure fluctuation 
"rediltribution" tenu ii 1maller than, and oppo1u, the chanae in the aeneration t erma, It 1ee1U hi&hly 
unlikely that the extra redi1tribution term, in a 1hear layer 1ubjected to an extra rate of ■ train will 
initially aupent, .!11!1 be much larger than, the extra generation term,, eo as ianediately to produce the 
full value of CJ, Therefore even the 1hear 1treu, whose "dutruction" term i1 in fact a preuure 
"rediltribution" term, will not ianediately experience the full value of a: the turbulent energy 
equation u■ ed in the dilcuuion above hae no preuure "redi1tr ibution" terma and the energy diuipation 
rate i1 hi&hly unlikely to change immediately the mean rate of 1train change,. Therefore, the effect of a 
1uddenly-applied extra ,train rate will be a ,mall, sudden increase(say) in the generation term■, probably 
oppo■ ed by the "rediltribution" terma and followed by an init i ally linear, but large, decreaee in the 
"dutruction" terma (including the redi1tribution terms), 11 shown in Fig, 10, In the context of a 
calculation method in which the de1truction terme are modelled as (velocity ecale} 3/<ler,gth sca l e) this 
implie1 an initially linear, but large, increa1e in length scale: this is the behaviour that result, if 
1h! l!n&m lW.! will is obtained from a transport equation with the full F-factor (with a of the order 
of 10) applied to the destruction terma of that equation, It therefore appears that in order to deal with 
rapid change, in e some form of transport equation for length scale is essential, perhaps even if the 
basic calculat i on method for simple saear layers invokes local equilibrium throughout, Figure 11 shows 
calculations for a ca1e of s udden change of P.: the three curves represent the baAic method with no 
allowance for e, the method with a full F-factor applied, and the method with a simplified length-scale 
equation, and each improvement is significant, 

I do not know of any application of an F-factor to an exis ting length-scale transport equation , 
The demon1tration calculation of Fig,11 and the further calculat i ons to be described below were done with 
an e~ i rical ordinary differential equation for the effective value of a , which could be inserted in any 
type of calculation method, Since &Olile sort of l ength-scale equation seems to be necessary to deal with 
rapidly-changing extra stra i n rates and no alternative has been suggested, a shor t description of this 
simpl e equation will be given. The equation i s 

X ...!!_ (ae) eff • a0 e - (ae ) eff 
dx 

(37) 

where the length X is a "time constant" representing the memory of the stress-containing eddies, (ae)eff 
i s the effective value of ae for insertion into the F-factor and a0 is the full value of a (of order 
10), The equation can be solved for (ae)eff for a given streamwise distribut i on of e: if e rises 
suddenly from zero to 1ome constant value, (ae)eff rises proportional to l - exp(-x/X) . Now the obvious 
objection that e i1 in general a function of y can be dealt with in t he cases of curvature, lateral 
divergence and bulk compression, where c « U, simply b writing Eq(37) in terms of e/U, A further 
objection, that X will in general be a function of y, 1 s not so serious as might be supposed: X varies 
1trongly only in the inner layer, and if e is small eno,.. r, n for the F-factor analysi s to be plau1ible in 
the outer layer e/( 3U/ ay) is very small in the inner layer, so that we need not use an accurate value of 
X in the inner layer; it is simplest to use the outer-layer value but zero i s a better estimate. A 
suitable estimate of the memory~ of the stress-containing eddi~s i s the ratio of the turbulent energy 
!qi to the rate of production of turbulent energy (if the production were suddenly shut off the turbulent 
energy would initially decay exponentially with thi s time cons tant). The lP.ngth X can be taken as U 
times this memory time, namely 

X • (38) 
-iiv au/ ay 

where we include only the mean-shear produc tion rate for simplicity, In a boundary layer ; q2 is about 
3uv and a typical average value of U/( au/ ay) rn the outer l.:lyer (y > 0,26 say) is 36 , giving 

X ~ 106 (39) 

I n a jet or free mixing layer U/( aU/ ay) is ra t her l ess than 6 so 

X ~ 26 (40) 

is a reasonable value t o take: in a wake , U/( au/ ay) can be many times 6, However the local-equilibrium 
ideas implicit in thi s derivation of x are not good in free shear layers : Castro's atte~pt (l l ) to apply 
an equation l i ke Eq (37) to hi s strongly-curved shear l ayer was not success ful, a lthough this wa s partly 
the result of the unique r ~versal of curvature eff ects i ~ thi s experiment, 

An obvious property of the linear, first-order equation Eq(37) is that i f the distance in the x 
direction over wh i ch e is non-zero i s much smaller than x, the value of (ae )e ff at the end of the 
region of extra strain rate is 

(41) 

independent of the distribut i on of e, Je dx i s c losely related to the total extra strain on a fluid 
element, fe dt, where the latter integral is evaluated following the motion of the fluid and is therefore 
near to Jue dx, If Eq(37) is at all realistic it implies that the response to a short region of ex t ra 
strain rate (a "strain impulse") depends more on the total s train than the di s tribution of strain rate, 
and gives us some confid ence in using the F-factor analys is , with Eq(37) , in short regions of large strain 
rate such as sharp bends or Prandtl-Meyer expansions, Clearly (ae) eff/ ( U/ ay) must not exceed the 
maximum value permissible af t er a long r egion of small extra s tra in rat , which we arbitrar i ly took as 0,05 
to give 0, 5 < F < 1,5. 

Figure 12 shows, qua:itative ly, the response t o extra s t r ain rate predi ct ed by the F-factor, Eq(36) 
and the "lag equat i on" , Eq(37). Eq(37) is not suggested as a permanent substitute fo r in corporation of 
extra-strain effects i n a true tra sport equat ion fo r l ength scale, but merely as a vehicle for the present 
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1par1e data. Di1cu1sion of po11ible refinements to a length-1cale transport equation, by inclusion of an 
F-factor or otherwise, merely e~pose1 our ignor&nce: are only the destruction terms affected or are the 
(rather large) turbulent traneport terms altered enough to cauee a 1ignificant change in the dietribution 
of length 1cale acros1 the shear layer as well as in its magnitude? Do the destruction tenn1 in the length­
scale equation change to the full extent of the F-factor as soon as the extra ,train rate is applied or 
(more probably) do we need a wholly-empirical lag equation to modify the F-factor? 

In the inner layer of a simple shear layer - but outside the viscous sublaye r - we have L0 • Ky 
where K ~ 0.41. Since the response time is short we do not need the "lag equation" for a and can apply 
the full F-factor directly to Eq(36): we get 

au 
ay + ae 

(-iiv) 1 / 2 . ---
Ky 

which can be integrated to give U if the variation of uv 
case of a constant-stress layer with -lv • u~, and with e 

l log ut y + C 
K v 

and e with y 
independent of 

is known. 
y, we get 

(42) 

In the simplest 

(43) 

which is the familiar logarithmi c law with one extra term: in principle, the constant of integration C, 
representing the change in velocity across the viscous sublayer, is a function of the dimensionless 
quantity aev/u~, but it seems likely that ~he F-factor analysis will break down before e is so large 
as to change C signi f icantly. In cases where e is proportional to U, taking e • -U/R without 
necessarily defining R as the radius of curvature, we get 

u (44) 

and compatibility with the logar i thmic law for small a (equivalent to large R since aU/R appears as 
Jne group) requires 

c) ♦ [ 
Ut R) f a , v (45) 

where the last terre again represents thP. effect of e on the vi scous sublayer, In simple cases it is 
probably sufficient to use a rouiih representation of U as a function of y in the term ae i.n Eq(42), 
and integrate directly: if we take e • -U/R with U proportional to y1l5, say, the extra term in 
Eq(43) changes to +5aUy/(6ut R) which can be grouped with U/ut on the left hand side. 

The demonstration calculations in the following Sections were done using the calculation method of 
Bradshaw et al. (16: see Ref,45 for the free-shear-layer version), In this method a transport equation 
for shear stress - puv is used, the destruction term being proportional to (-iiv) 3l2/L: in a simple 
shear layer, L is defined by an algebraic function, L0 (y/ 6), In flows with extra rates of strain we use 
Eqs (36) and (37) to modify L, leaving the modelling of the turbulent transport terms unaltered, The 
solution of the partial differential equations for U and -uv is matched to Eq(43), using the 
approximation to U in the e term mentioned above, This cal culation method was used solely for 
convenience: exactly the same technique could be used with any other field method involving a length scale, 
whether it is a structure parameter like L, a m1x1ng le~gth or a factor in an eddy viscosity. Green, 
Weeks and Brooman (46) have used F-factors in an integra l method, albeit not a typical one because it 
depends on the solution, at one value of y only, of the ~hear-stress transport equation of Ref.16. 
Practical details of allowances for extra rates of strain \'111 be discussed in Section 11. 

We now discuss the different cases of extra rates of strain, omitting the case of curvature which is 
treated in detai: in late r sections. In cases for which detailed calculations are not availabli the 
behaviour of F will be inferred f rom published measurements of eddy viscosity or entrainment rate, using 
sample calculations by the method of Ref(16) to relate changes in L to changes in eddy viscosity or 
entrainment rate: the assumption that entrainment rat e is proportional to maximum shear stress is built 
into the calculation method. We do not assllDe that a gi~en percentage change in eddy viscosity implies 
half that percentage change in mixingl~ngth: this is tr~e only if the velocity profile remains unchanged. 

3. 2 LATERAL CONVERGENCE OR DIVERGENCE ( e • aw/az) 

Keffer (47, 48) studied the response of & cylindrical wake to lateral divergence (extension) and convergence 
(compression): he founu that lateral divergence greatly changed the turbulence structure, accentuating the 
large eddies and suppressing the smaller-1:cale motion , He compared the mechanism to the lateral stretching 
of line vor t ices with axes in the z dir1iction, and presented photographs showing the strong circulation 
of the large-eddy motions in the x,y plane, Th e lateral veloci!I_ fluctuations were reduced and after the 
wake span had been increased by a factor or 4 it was found that w2 was less than a third of vi. The net 
rate of production of turbulent energy by the lateral rate of strain, (v2 - ;i) aW/ az, was about as large 
as the shear production -iiv au/ ay, so that thi s is a very strongly-c! iverging flow indeed by boundary layer 
standards. In the case of an equally strong laterJ l convergence the processes of normal wake growth and 
geometrical dietortion appeared to be additive, but no turbulence measurements were made: the mean 
velocity profile developed large regions of near-constant velocity near the centre line, i ·uplying near-zero 
shear production of turbulent energy, which one would expect to lead to significant changes in turbulence 
structure. 

Crabbe (49) performed an experill',ent on the boundary layer on the floor of a duct arranged to give 
Ue • consta t, awe/ az •constant~ 0,02 Ue/6. He found that the entrainment rate on the centre line was 
increased by about 0.5(6 - 6*) aw/ az, the entrainment rate in a two-dimensional flow at the same Ree 
being about 0.010 Ue. If we take 6 - 6* • 66/7, and au/ ay • 0.3 Ue/6 as a typical value in the outer 
part of the boundary layer, we see that divergence increases the entrainment by a factor of about 
1 + 13 (aW/az)/(au/ay) so that the typical shear stress within the layer incr.eases by about the same 
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factor, Thi1 i11plia1 Eq(36) with a.,, 6,5, Crabbe 1how1 that the increa1ad entrainment rate i1 quite 

wll predicted by eaa1111in1 that the turbulence 1tructure depend• on the effective total ,train in£!!! El!!!! 
2f ~ !!!!11 lhl.!I, f l l ovina Town1end'1 (SO) di1cua1ion of tvo-dimen1ional flow1: of cour1e ?Olitive 

aw/aa •an• neaati e av/ay but the 1tructur1l chan1e1 ob1erved by Keffer seem attributable to aw/az 

directly rather than to alteration, in the 1h1ar 1train rate, Crabbe 1tates that the change of entrainment 

rate in the attart-nt line bound~ry layer on a 1vept-back wing i1 between 1,0 and 1,2 time, that in the 

diveraina duct flow, Note that both type, of boundary layer have zero cro11flow but that the flow a abort 

di1tanc1 from the plane of ,,-.try ha1 a cro11flow angle that varie1 through the layer: the1e are not 

collateral flow,, 

Cha and Head (51) u1ed Head'• entrainment method to calculate the vortex diffu1er flow of Gardow 

(52)1 the entrain•nt rate required for agreemen t with experiment was about twice that in a tvo-dimen1ion1l 

flow with the,._ profile 1hape, Attributing the increa1e entirely to divergence and not to cro11flow, 

and carryina out an approximate analy1i1 like that for Crabbe' ■ flow, ve find a~ 10, Head and Patel (53) 

later allowed for lha effect of converaence or divergence on the entrainment in nominally tvo-dimenaional 

flow, and reported very much better agreement, Strictly, the allowance is for perturbation• in growth 

rate, whether cau11d by convergence/divergence or by longit~dinal accelerat i on, As a correction for 

conv1r11nc1/div1r11nce it can be 1een to imply a"" 10 for• boundary layer in zero pressure gradient and 

a• 5 for a ■ tronalrratarded 1elf-pre1erving boundary layer (u1ing plausible values for au/ ay in each 

ca11), 

Winter, lotta and Smith (54) 1tudied the collaterally-diverging t urbulent boundary layer on a 

1l1nd1r vai1ted body in 1ub1onic and 1upersonic flow: recent calculations by Green, Weeks and Brooman (46), 

ueina the lea-entrainment method but without further allowance for the lag in the F-factor, 1how that 

a1r111"1nt with experiment in 1ub1onic flow is greatly improved by an F-factor allowance for lateral 

div1r11nc1 with a• 7 (longitudi nal curvature also has some effect), It ia noteworthy that the F-factor 

produced i11proved aareement with experiment over the converging part of the body aa well 11 the diverging 

part, contradicting Keffer'• provi 1ional and dubiou1 conclusion drawn from the st rongly-converging wake, 

Patel, Nakayama and Damian (55) have recently studied the boundary layer over the rear of a body of 

revolution with a maximum diameter of one-1ixth of its length and an i ncluded angle of about 46 deg, at 

the trailina edae, In thi1 converging flow the shear stress falls very rapidly towards the trailing edge, 

and the llixina length l increa1e1 much more 1lowly than 6: because of the uncertai nt y abo1 .t the effect • 

of the convex 1treamline curvat~re and of large ratios of boundary layer thickness to crosa-snctional 

radiua of curvature a reliable value of a in the F-factor cannot be inferred but the result.a can be 

taken•• further evidence that convergence and divergence produce effects of the same order, 

Youna (57) i1 1tudyin1 a slightly simplified body of revolution consisting of a cylinder ahead of a 

cone: the fairing between the tvo ha, as~& l radiu1 of curvature and therefore provides a curvature 

"i11pul11" whereH the 1ub1equent divergence ii prolonged with an equivalent value of aw/ az of at least 

0,05 Ue/6, Makin& the b11t po11ible allowance for curvature effects a signi ficant residual effect of 

diveraence i1 found1 a value of a of about 10 is indicated, 

McMillan and John1ton (56) pre1ent mea1urement1 in a laterally-diverging duct, with a virtual origin 

55 duct h1ipt1 up1tream of the start of the divergence, Taking a typical value of au/ ay a, O.JU/( !h) 

th• maxi.am value of (aw/az)/(au/ay) i1 about 0,03: calculations by an extension (3) of the method 

of hf(l6) without any allowance for divergence showed no consistent disagreement with experiment. 

Aa 1hovn by 1ev1ral experimenter,, a radial wal l jet grows at about the same rate as a plane wall 

jet. Thia i11plie1 that it• entrainment rate - and therefore a typical value of shear stress - is double 

that of the plane flow, (aW/ az)/(au/ay) i, typically about 0,1 which leads to a nominal value of a of 

about 5, He1k11tad'1 re1ult1 (58, 59) for a free radial jet and a free plane jet agai , indicate equal 

arowth ratu which aaain lead, nominally to a • 5, However, the energy production h, the high-intensity 

r11ion1 of a jet i1 about twice the di11ipetion so that if the turbulent transport terns are altered by 

diveraence a value of a is difficult to evaluate: certainly 5 ia a minimum estimate. Hes~estad 

••■ured the 1hear 1tre11 in both flows but, eapecially for the radial jet, the values are much lower than 

tho1e calculated from the me•n-otion equations; the calculated maximum she ■r s t ress in the radial jet is 

about 1,7 ti11111 •• larae •• in the plane jet which would imply a• 3.S, but Heskestad pointed out that the 

radial jet va1 not fully developed although full development was assumed in the shear stress calculations. 

He1k11tad'1 mea1ur•ent1 of turbulenc~ inten1ity ■how comparatively little di fference between the two 

flow1 (1iailar technique, were u1ed i11 the tvo casea) but it is difficult to reconcil~ these results wi th 

the above deduction, from mean-flow me11urements: Heakestad felt that a better exper imental arrangement 

va1 needed for the radial flow but unfortunately neither he nor any other ~-orker seems , o have produced 

any further data for thia 1imple example of a diverging flow, It appears that values of a deduced 

indirectly from entrainment or growth rate• in diverging flows are at least 5; direct use of a in 

lq(36) 1ug11ta a• 7, and other experience sugge1t1 that if the lag in a were allowed for the 

u,-ptotic value would be clo1e to 10, 

3,3 LONGITUDINAL ACCELERATION (e • au/ax or - av/ay) 

The continuity equation require, finite values of au/ax to be associated with finite val1e1 of aw/ az 

or av/ay1 here ve con1ider only the latter ca1e, that of two-dimensi onal flow, Town1end (Ref,26, p.188) 

explained difference, between jet and wake flow• in terms of the negative ~~lues of av/ay found in the 

formr, which, he 1uage1ted, would tend to flatten the larae eddies and reduce their contribution to the 

hynold1 1tre11, It h implied by Town1end'1 diacu11ion that positive av/ ay . .. found in retarded flows 

and 1ipificant in boundary layer• near 1ep1ration - 1ho11ld tend to increase the Reynolds stress, but 

Gartahore (60) has 1ug1e1ted that either 1ign of av/ay di1turb1 the large eddies from their preferred 

orientation and thu1 reduce, the leynold1 1tre11, Gart1hore'1 analysia is not rigorous, and his 1ugge1tion 

i1 certainly not valid for other type• of extra strain rate, but it ia 1upported by his experiments in 

retarded 1elf-pre1erving vake1 (av/ay > O) vho1e eddy vi1c~1ity, made dimensionless by the veloc i ty 

deficit and the wake width, i1 aignificantly less than in a wake in a uniform stream, Gart ■hore cor r elated 
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the reciprocal of th• eddy vi1co1ity with - loaic1lly enough - the 1quare of (3V/3y)/(au/ay) but the 
re1ulta he preaent1 are fitted quite well by 

~ • l - B,5 1avtayl (46) 
vTo au/ay 

illl)lyina lal ~ 4, Horel'• (45, 61) correlation of the difference, in the optimum di11ipation length 
par-ter required to calculate jets and wake• implie1 lal • 3,5 (for av/ay < O). Neither author ha, 
really proved that the effect, obaervwd are directly attributable to av/ay: in Gart1hore's ca■e no 
account ia taken of change■ in advection in the "etarded flow■, and Morel'• calculation■ were intended as 
a teat of the 1uperpo1ition principle in interacting free shear laye1s. Morel's correlation of change, in 
optimum di11ipation length par.-ter in mixing layer■ of differing stream velocity ratios (a11d therefore 
differing rate■ of growth) indicates a much smaller value of a than the jet-wake correlation, although in 
thi■ caae Morel made ■ ignificant changes in the other terms in his empirical Reynolds-stress transport 
equation and a direct compari1on with our standard F-factor is dubious, Gartshore himself points out that 
boundary layer■ appear to be little affected by longitudinal acceleration, even for a rate of strain ratio 
a■ large a, 0,05, 

Reverie transition in 1trongly-accelerated boundary layers is unlikely to have any necessary 
connection with the re1ult1 discussed above: obviously the ratio of root-mean-square intensity o mean 
velocity will decrease in any strongly-accelerated flow, except near a solid surface w;1ere au / ay is 
nece11arily very large, and "reverse trans ition" is deemed to have started when the shear-stress gradient 
near the surface becomes so large that inner-layer similarity relations begin to break down. 

Strongly-retarded wall layers separate, and even retarded wakes can develop a region of reversed 
flow: the1e gross effects are likely to mask any direct effects of the r etardation on the turbulence, 
particularly since a rapid increase in av/ ay implies large av/ ax - i.e. large streamline curvature. 

We must regard the influence of au/ ax or av/ay on turbulent shear layers in general as not 
proven although physical reasoning strongly suggests that it is mainly r es ponsible for the differences 
between jets and wakes. The "direct" deductions of a for the latter case suggest a"' 4, 

3.4 COMPRESSION OR DILATATION (e • - div~) 

I mention this effect with some diffidence because it was discovered (a) very recently (b) by me, 
Nevertheless it seems very important in practice at Hach numbers above the transonic range, and grossly 
affects the behaviour of boundary layers at quite moderate values of the pressure-gradient parameter 
(6*/tw) dp/dx, For example, in three recent experiments on boundary layers decelerating from He• 4 the 
skin friction coefficient, far from decreasing sharply as expected in low-speed flow, actually rose above 
the value found in constant-pressure flow at the same Hach number and Reynolds number, Now the principle 
that juatifies the extension of low-speed calr.ulation methods to compressible flow is Morkovin's hypothesis 
that turbulence is unaffected by random fluctuations in pressure or density as l cng as they are small 
compareci to the mean pressure or density, a condition satisfied at all non-hypersonic speeds. The 
Reynolds stress transport equations for compressible flow, like those for incompressible flow, do not 
contain the mean pressure gradient: some of the equations contain components of the mean dilatation, 
expressing the interaction of Reynolds otresses with normal rates of strain, but as the boundary layer 
approximation requires div~ to be small compared to au/ ay these terms would normally be neglected. 

Until recently the only reliable experiments on strong but distributed pressure gradients (as 
oppo1ed to flow through shocks, which most people would expect to produce strong effects on turbulence) had 
been done using curved surfaces to produce the pressure gradient. Many experiments done in the 1960s were 
therefore unusable as teat cases for plane-flow calculation methods, or contained a built-in excuse for 
the manifest disagreements that existed between calculation and experiment, The good predictions of 
con1tant-pre11ure supersonic flows by extensions of low-speed methods, and the general assurance offered 
by Horkovin's hypothesis, led moat people, including the present writer, to be cautiously optimistic about 
the performance of these methods in pressure gradients uncomplicated by the effects of curvature: the one 
clear ~ase of disagreement available at the time of writing of Ref,t2 was the experiment of Zwarts (63) on 
a boundary layer decelerating from He• 4 to He• 3, in which the measured skin friction coefficient 
was markedly higher than predicted, However, Zwarts' f low suffered from fairly severe three-dimensional 
effects, possibly including Aecondary flows which could have produced anomalous results. Bushnell and 
Al1ton (64) later 1uD111arized possible reasons for disagreement between theory and experiment, tentatively 
concluding that curvature might !121 be wholly responsible, 

In 1971 Peake et al. (65) carried out experiments on a boundary l r.yer decelerating from He • 4 to 
"e • 2, with results similar to those found by Zwarts, In this case three-dimensional effects were small 
but the results appeared to have suffered considerably from probe interference so that they were again not 
above suspicion, However a set of experiments by Lewis et al. (66), on a boundary layer decelerating from 
"e • 4 to Me• 2,5 and then accelerating again to He• 3.5, appeared t~ be above reproach, and for a 
third time shoved a much larger Cf in adverse pressure gradient than would have been expected from 
experience in low-speed flow (Fig,11), 

The moat probable explanation is that dilatation or compress i nn, like other extra rates of strain, 
produce a large direct effect on the turbulence, with compression increasing, and dilatation decreasing, 
the Reynolds stress. Insertion of an F-factor with a • 10, and e • - div~ (U/yp)(dp/dx) in the method 
of Ref(62) gave improved agreement with the above-mentioned experiments : when a lag equation for a , with 
a "time constant" of 105, was used in the calculations, excellent agreement was obtained in all three 
retarded flows (67). The friction coefficient in the mildly accelerating flow of Pasiuk et al, (68) seems 
u.;~aturally low, and an empirical factor in the calculation method of Wilcox anu Alber (69) (which with 
hindsight can be seen to be an un~itting allowance for dilatation) was chosen to have the same value in 
accelerating and retarded flow, although the accelerating flow on whir.h they relied most was a highly-curved 
flow through a Prandtl-Heyer expansion, It is therefore probable that the opt imum a is of the same order 
in retarded and accelerated flow. 
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After the P factor had been 1hovn to improve agreement between calculation and experiment, 
Dr. J.E. Green of RAE Bedford reali1ed that the moat plau1ible phy1ical mechanism of the dilatation effect 
i1 clo1ely analogou1 to the effect• of lateral divergence or convergence, Both po1itive aw/az and 
negative div y reduce the cro11-1ectional area of a fluid element in the (x,y) plane (note that in an 
accelerating 1upersonic flow av/ay i1 larger than oU/ox by a factor M2) and thus increase the 
z-c011ponent vorticity: tha z-component vorticity fluctuation• in the larger eddie1 seem to play an 
iaportant part in the entrainment proce11, and 10 it is plau1ible that enhancing them should increase the 
entrainment rate and the turbulence intensity, aa in Keffer'• diverging wake, 

Green h11 incorporated the F-fsctor into hi ■ own lag-entrainment method (46) and, using a • 7 
without allowance for lag in a, found improved agreement with the above-mentioned test cases and with the 
11ai1ted-body experiment of Winter et al, (54): at H..: 2 the effects of dilatation and of lateral 
divergence on the wai1ted body are opposite, but 10 large that their resultant is quite aignificant. 
Ignoring the lag effect reduces the value of a required to optimise agreement, 

There i1 pract ical ly no direct evidence about the behaviour of turbulence in flow, with dilatation 
or compression, but there seelDI little doubt that this is yet another example of the large effect of small 
extra rates of strain. It seems probable that dilatation effects are very important in hypersonic flow and 
in at least some cases of combustion, internal or external. The best guess for a is 10, 

4, INTRODUCTORY HISTORY OF RESEARCH ON CURVED TURBULENT FLOWS 

Thi• Section is intended to introduce the phenomena of curved flows rather than to allot credit for 
advances in understanding them. It covers the period up to the revival of SErious work on the subject in 
the mid-19601: the more recent work and the present 1tate of knowledge are discussed in Sections 6-11. 

Studi~s of the effect of 1treamline curvature on stability of laminar flow up to about 1962 are 
reviewed by Stuart (23, Chapter 9); for more recent work see Ref.70, In 1916 Rayleigh (14) proved by 
energy considerations that a steady inviscid, axisyunetric curved flow is unstable to infinitesimal 
axis)'llllletric disturbances if the angular momentum decreases with increasing distance from the centre of 
curvature, and vi ce versa, Use of this or Von Karman's alternative argument (Section 1) for any purpose 
other than the determination of the stability boundary for this inviscid flow tequires careful consideration 
of the mode of disturbance and of the restoring forces set up by viscous or Reynolds stresses, As Coles 
(71) cormnents, it "throws only a very dim light" on the behaviour of real fluids, In 1923 Taylor (72) 
carried out a theoretical analysis of, and an experiment on, the stability of circumferenti al laminar flow 
between two coaxial rotating cylinders, The analysis showed that the equations governing the growth of 
small axis}'lllDetric disturbances contained a parameter since ca~led the Taylor number, For the simplest 
case, in which a cylinder of radius R rotates with angular velocity n within a fixed cylinder of 
radius R + h with h << R, the Taylor number can be written as 

Ta (nR) 2 h3 
_ h (hnR)

2 

-R- v2 = R - v- (47) 

where (nR) 2 /R is a typical "centrifugal" for ce per unit mass and hOR/ v is a typical Reynolds number. 
Now according to Rayleigh's arguments for inviscid flow, this flow would be unconditionally unstable, but 
Taylor found instability only for Ta> 1700 approximately: for given h/R, the Reynolds number hnR/v 
mu■ t exceed a certain value before disturbances can grow in the presence of viscous restoring forces. The 
mode of instability is a set of contra-rotating toroidal vortices (Fig,8: for. a photograph see Fig IX.l 
of Re f .23, following p.496). As the Taylor numb ~r is increased above 1700 the disturbances become more 
complicated - a fascinating ~ccount of their complexity and non-uniqueness is given by Coles (71, 73) - but 
turbulence doe■ not occur until a Taylor number of the order of ten times the critical is reached, Nagib 
(74) ha• shown that if an axial flow is superimposed on the fluid between rotating cylinders, two 
concentric sets of spiral vortices with equal and opposite pitch angles can appear: the sense of rotation 
is determined by the radial gradient of axial velocity, which changes sign part way ac ross the gap, 

Rayleigh's 1916 paper (14) draws a qualitative analogy between the effects of buoyancy forces and 
of streamline curvature ("centrifugal" force). Taylor and A,R, Low suggested to Jeffreys that the analogy 
should be quantitatively correct as between buoyant convection between a pair of infinite parallel 
horizontal plates at different fi i•ed temperat~res and the rotating-cylinder flow described above (with 
h << R so that the centripetal acc~leration, like the gravitational acce leration, should be constant across 
the flow), In 1928 Jeffreys (75) pr,,ved that the s tability equations for these two cases were identical, 
the analogue of the Taylor number bei '8 the Rayleigh number 

Ra (48) 

where 6p is the density difference between the plates and K is the thermometric conductivity 
k/(pc p) = v/Pr. Taking the Prandtl number Pr to oe un ity for simplicity we see that Eq(48) is Eq(47) 
with the typical centrifugal force replaced by a t·,pica l buoyancy force. Recently Lezius and Johnston (76) 
have extended the analogy to plane flows analysed .n rotating axes: an additional factor appears in Eq(47) 
because t he Coriolis body force depends on the absolute, not relative, acceleration. In this type of 
buoyant convection with no mean horizontal flow there is no preferred direction in the horizontal plane and 
the mode of instability is a pattern of polygonal convection cells (see f'ig,IX.5 of Ref. 23 , following p.512) 
rather Li,an a row of parallel vortices: the latter are theoretically possible and sometimes appear when a 
horizontal flow i s subj ected to buoyancy ef fects, 

In 1940 Gortler (77 ) i nvestigated the stability of a laminar boundary layer on a curved surface (a 
horizontal flow subjected to centrifugal effects) and predicted that the basic mode of instability on a 
concave surface wa a a row o[ parallel vortices with axes in the stream direction, . ince called Taylor­
G8rtler vor• :- -~ • Thes vort ices were not actually observed until 1950 (78) , The stability parameter ia 
the Gortler number 
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Go • (49) 

or the 1quar1 root of thia, vh1r1 e, th• aoaent~ei icit thickn•••• play, the role played by the l•P h 
in th• 11cond fora of the Taylor nuaber in Eq(47) and the 1xt1mal-1tr1a velocity U1 play, the•- role 
•• the circuaf1r1ntial velocity of the rotatina cylinder, QR, The critical value of Go in a con1tant­
pr111ur1 boundary layer ia about 0.6 (it would be rather nearer the critical velue of the Taylor nlllber if 
6, rather than e, were uaed •• the l1n1th acale). In the boundary layer, the ordinary toll■i1n­
Schlichtin1 inatability (Ref.23, Ch.IX), in which di1turbanc11 of the 1panvi11 c011pon1nt of vorticity are 
driven by vi1cou1 fore••• can 1110 occur, at Ue8/v ,_ 160: if 6/R ia aaall enouah for the boundary layer 
approxi11ation to be aood, thi1 in1tability i• unaffected by 1urface curvature of either aian; in particular 
it ia .!121 damped by convex curvature, 10 that the atability cheracteri1tic1 of laminar boundary layer• on 
plane and convex valla are identical, On a concave wall of con1tant radiua, GHrtler inatability occur, 
before Tollmien-Schlichtina in1tability if the Reynold• number UeR/v ia 1111 than 1,4 x107 • Once the 
di1turbance1 attain finite amplitude, non-linear interaction between the tvo 1110(111 could occur and once the 
Toll■ien-Schlichtina di1turbance1 have bee~ three-di111n1ional, with a 1tr1aa,i1e component of vorticity, 
they will be affected by aurface curvature. Johnaton (79} di1cu11e1 the in1tabilitie1 in the ca11 of plane 
rotatina flow, 

The hiatory of reaearch on the effect• of atreamline curvature on turbulence ia an object le11on in 
the effect• of poor cODIDunication, In 1929 Prandtl (Ref,80, p,775) extended the analoay between buoyancy 
and curvature effects to turbulent flow, 1u1g11ted that either effect could be repre1ented by multiplying 
the mixina lenath by a function of a dimen1ionle11 buoyancy or curvature parameter, and u1 ~d pure mixin1-
len1th arauaenta to e1timate the behaviour of the function in each caae, It ■u1t be empha1iaed that the 
uaeful part of Prandtl' ■ re1ult1 could be derived by dimen1ional analy1i1. Aa u1ual, pure mixina-lenath 
araumenta aot the dimenaional analysia right, but undere1timated the importance of the effect, by an order 
of mapitude: in the next few years four experiment• (1ee table) in Prandtl'• ovn laboratory in Gottingen 
ahoved that 1treamline curvature could produce large effect, on varioua kind■ of turbulent 1heer flow. 
Theae experiment• will be di1cu11ed below. 

Author Ref. Date Geometry 

Wilcken 22 1930 Concave (alao convex) boundary layer 
Wendt 81 1933 Coaxial rotating cylinder• (stable and unstable) 
Wattendori 82 1935 Curved duct (also rotating cylinder} 
Schmidbauer 83 1936 Convex boundary layer 

Wilcken and Schmidbauer aay that their experiments were 1ugge1ted by Prandtl's colleague Betz rather than 
by Prandtl himself, and neither explicitly evaluated the F-factor although Wilcken ahowed that larae 
chanae• in mixing length occurred. Wendt acknowledge• neither Prandtl nor Betz and gives hi• addre11 •• 
Clauathal (a university town in the hills about 20 miles from Gottingen} but Wattendorf says that Wendt'• 
work va■ in fact done at GHttingen: Wendt evaluated the F-factor for stably-curved dow and showed 11a1ch 
larger effect, than predicted by Pra11dtl. Wattendorf began hi ■ experiment ■ at GHttingen with an adaptation 
of Wilcken'• apparatu1 and finished them in a new te1t rig with Von Karman at Caltech: he showed that 
large chan1e1 in mix ing length occurred but did not evaluate the F-factor. Wattendorf published hi, paper 
in Proc. Roy, Soc., thus providing a link to the Gottingen work in the English literature. Also, Karman 
(13), in a congres 1 held in Cambridge (England) in 1934 discu88ed 1everal aspects of curvature and 
buoyancy effects as part of a general review of transition and turbulence and quoted Wattendorf's result1, 
In 1935 Taylor (84) used the unstable flow between rotating cylinders as an experimentum crucis to 
di1tingui1h between Prandtl's momentum-transport version of the mixing-length theory and his own "modif i ed 
vorticity transport" version. Taylor's conclusion was that neither performed well but he did not quan•.ify 
the ~rrors nor discuss the physics of curvature effects on turbulence. He referred to Wattendorf'a p~per 
and to Prandtl' s work. Schmidbauer (1936) in the last of the series of Gottingen papers, d iscu11ed t '.1e 
(larae) modifications needed to Gruschwitz's integral boundary-layer calculation method to produce 
agreement with his own experiments on convex surfaces, 

The poaition in about 1936, therefore, was that well-known English and German publications, 
including engineering journals, contained evidence of the very large effects of streamline curvature and of 
the large modifications needed if the mixing length formula or practical integral calculation methods were 
to be used to predict these effects. Even if one makes allowance for the political distractions of the 
next fev year ■ it is surprising that all this work virtually sank without trace (meteorologists were of 
cour1e aware of the importance of buoyancy effects before Prandtl's paper: moreover the earliest 
meteorological version of the F-factor, the Honin-Obukhov formula, was apparently derived, in about 1950, 
without knowledge of Prandtl's work and I have never seen Prandtl's paper quoted in the meteorological 
literature), HacPhail (194l)quoted by Townsend (26), and Pai in 1943 (85) inspired respectively by Taylor 
and by Von Karman, made some further measurements in rotating-cylinder flows, but apart from these two 
experiments practically no attention was paid to the problem of curvature effects for nearly twenty years, 
and the subject was completely ignored by developers of boundary layer calculation methods in t he 1940's 
and 1950's. An exception, of course , is the work of Coanda, whose 1932 patent (86) on improvements to 
various turbulent mixing devices relies on the increase in turb ·· lence level in a wall jet on a convex 
surface . It was partly the relevance of the flow-deflection aspect of Coanda's work to schemes for 
boundary layer control by blowi ng, which became popular in the 1950's as jet-propelled aircraft were 
developed, that led to a revival of interest in the effects of curvature on turbul ence structure . It is 
not very profitable to speculate on the reasons for the long neglect of the subject after the early 
GH t tingen work had advanced it so far: perhaps an e.xplanation, if not an excuse , for the lack of impact on 
boundary layer calculation methods is that solu t ions using the mixing length formula i n non-self-preserving 
flow• are practically impossible without a computer, while the integral methods of the 1940s and earl ier 
19501, i ntend d for solution by mechanical desk ca lculators, were so calamitously inaccurate that further 
diacrcpancir s caused by curvature effects would not have been noti ced . However, there io little excuse 
for forgetting the phenomenon , particularly since it is ment ioned, with references to the early Gottingen 
work, in Prandtl 's we ll-known student textbook "Essentials of Fluid Dynamics" (87) (p, 132 of the 1952 



25 

edition). I confe11 that, thouah I acquired thi1 book in my under&raduate days, I found the discussion only vhile vritiP~ thi1 reviev. Moreove r I redi1covered Prand tl ' s buoyancy-curvature analogy i n complete ianorance of hi• 1929 paper, 10 that I have per1onally paid a penalty for ignoring the early litera ture, 

We nov proceed to a detailed reviev of the early work, starting with Prandtl's buoyancy-curvature analoay of 1929, 

Prandtl conlidered the effect of buoyant or "centrifugal" body forcu on the lumps of fluid hypothe1i&ed by the mixina-lenath theory, vbich in the absence of body forces are supposed to conserve their 110Mntum or enaular momentum between colli1ion1, The argument is close to that of Karman quoted in Section 1, end 1hov1 that the mixing length in the buoyant ca1e vill be a function of a dimensionless parameter 

8 (50) 

vbich ii half the parameter nov called the "gradient Richardson number" Ri [Prandtl refers to Richardson' a vor~ of 1920 (88)), The factor of tvo ari~es fr'llll an apparently fallacious argument about the variation of buoyancy force on a die placed element •Jf fluid Ut i , " r ►he r.orresponding curved-flow parameter, is proportional to the equere of the frequency of oscillation of a displaced element), Another difference in notation i1 that Prandtl represent• the change in mixing length by 

(1:) 2 . f(8) ( 51) 

it i1 not clear whether he contemplated the possib i lity of f becoming negative - so that his function equal• the square of the local-equilibrium approximation to the factor F defined by Eq(36), Prandtl araued that turbulence could maintain itself only if the rate of production of turbulent energy by the mean •hear, -iiv oU/oy per unit mass, wa1 greater than the rfil of reduction of turbulent energy by buoyancy force• (i . e. minus one times the buoyant production g p 1v/p). The turbulent energy extracted by a stable den1ity aradient ( op / oy < O) eventually goes into potential energy by reducing the numerical value of op/oy and thu1 raising the centre of gravity of the fluid: however the initial exchange may be largely from turbulent ener&Y to internal gravity waves (15), Prandtl's argument, rephrased in modern tenna, impliu that the "flux 1Hchard1on number" 

-(buoyant product i on) 
(shear production) ( 52) 

mu1t be le11 than unity if the turbulence is not to decay, It can be seen that, if we replace density by temperature and change the sign accordingly, Ri/Rf is equal to the ratio of the turbulent diffusivity of heat to the turbulent diffusivity of momentum, called the turbulent Prandtl number Prt by engineers and ~/~ by meteorologi1t1, The turbulent Prandtl number i ■ near unity in neutrally-stable condition■, incree1in1 in 1table condition• (Ri > 0) and decreasing in unstable conditions (89). Classical mixing­lenath argument• lead to Prt • l and therefore to Ri • Rf, just as simple kinetic theory leads to a 1110lecul1r Prandtl number Pr of unity, Therefore Prandtl's argument should lead to a critical Ri or Rf of 1 and a critical 8 of 1/2: however the facto 2 is introduced in part of the argument only and Prandtl actually arrive, at ecrit • 1, In practice Rf crit must certai nly be less than unity in a local-equilibrium flov becau1e energy production by the mean'abear must supply viscous di ■ sipation as well a1 a neaative rate of buoyant production, and figures between 0,1 and 0,25 have been quoted in various theori11 and laboratory experiment,. As it happens the critical values of Ri are much closer to unity but Ri • 1 ba1 no particular physical significance, Karman (13) co11111ented that the attempts of Richardson and Prandtl to e1tabli1h stability limits for atratified turbulent flow from energy considerations evidently •hared the defect ■ of energy method, for laminar-flow stability problems, where they are well known to give far too low a critical Reynolds number (i.e. to overestimate the ability of disturbances to grow in the pr 1ence of r e1toring forces). We can now agree entirely with Karmen's remark that the real merit of the work va1 to have brought out the significance of the Richardson number as the main parameter controlling turbulence in 1tratified flows. Prandtl chooses the variation of bis mixing length correction factor f(8) betveen the extreme point• 8 • O, f •land 8 • 1, f • 0 to be 

f(e) • (l - e)1/ 2 (53) 

rather than a linear variation, This leads to 

(54) 

or, in the linear approximation valid for small Ri 

(55) 

Hore recent meteorological data suggest F ~ 1 - 7Rf for small positive Rf in the inner layer of the Earth'• boundary layer. Therefore the cumulative effect of the factor 2 1n e, the choice of a correction factor for 12 rather than 1 and the choice of Eq(53) r ather than a linear variation with Rf lead to an eightfold underestimate of the effects of amall stable buoyancy on top of the customary factor of the order of 10 (7 here) by which mixing length theory underpredicts the effects of extra body force ■ or rates of strain, 

Prandtl carried out an analogoua mixing-leng th analysis for two-dimenaional curved fl ow,. In thia ca1e the dimen1ionles1 parameter that e111erges ia 

U/r 
3U/ ar - U/r (56) 

vhich, aa we aball aee in Section 5, is half the curved-flow analogue of Rf rather than Ri . Prandtl aaain 1ugge1 ted 
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(57) 

10 for aall 81 ve aet 
1 U/r 

' ~ 1 - l' auhr (58) 

zoqhly a 40-fold undere1tiute of the effect, of curvature, 

Clearly, Prandtl'• e1tiute1 of curvature effect• vould imply that they could be ianored in all but 
the ac>at hiply-curved 1h~,r layer,, but, 11 •ntioned above, experi•nt1 were ■ tarted at Gc t tinaen, 
pre1uaably vith the object of checkina the theory, Wilcken'• report (22) on me11urement1 of boundary 
lay1r1 on the vall1 of a curved duct i1 1till a pl111ure to read: the experiMntal technique,, the 
dhcualioo of error■ and the analy1h of ruultl are 1urpriain1ly modern, and the ruul te eeem reliable. 
Tb boundary layer ~n the convex wall va1 10 thin that detailed me11urement1 vere difficult, but the 
1111.1tlhl1 boundary layer on the concave vall arev rapidly and the velocity profile• were accurate enough for 
the 1h11r-1tr111 profile to be e1tiuted from the mean"'1110111entum equation, Wilcken carefully di1cu11ed 
tbr1e-diaen1ional 1ff1ct1 i n the duct comer,, leading to po11ible cro11flow and imbalance of th~ tvo­
diaeuional --■ntua equation, bu~ found no evidence of the 1panvi1e periodicity that might be caused by 
1t1ady lonaitudinal vortice1, The ■ixina-length profile• deduced from the calculated 1hear 1tre11 1eem 
truetvorthy at l111t for qualitative purpo1e1, A1 Wilcken co-nt1, the effect, of curvature were large, 
ut althouah he au1t have been aware of Prandtl'• 1929 1naly1i1 (hi• paper i1 dated 24 March 1930) he did 

not deduce a 1pecific fora for the mixing length correction factor. The mixina length in the mid-par t of 
the layer v11 rouahly quadrupled: the corre1ponding value of 81 va1 about 0.4 10 that Prandtl'• f ormula 
lq(58) would have predicted only 1bout ten per cent incre11e in mixing length, 

In 1933 Wendt (81) ude 11111urement1 in ■ table and un1table rotating-cylinder flow, using water or 
a vater/alycerine aixture with a free (and therefore paraboloid1 1. 1urface. He me11ured velocity profile, 
at one axial po1ition, for a lara• number of combination, of radiu1 ratio, inner cylinder 1peed and outer 
cylinder 1pe1d, Po11ibly b1cau1e he covered a larae nllllber of ca1e1 rather than exploring one in ~epth, 
he did not notice the probe-interference difficultie1 which appeared in the later work of Taylor (84) or 
the rando■ change, in profile 1hapa cau1ed by change, in toroidal vortex pattern, that later 11ve 10 much 
trouble to Pai (85), Wendt deduced 1urface •hear 1tre11 from the torque on the cylinder, derived the 
internal 1hear-1tre11 profile from the ••n--entum equation and plotted values of the mixing length 
correction factor f(81), 111uaing that the mixina length in the absence of dynamic effects of curvature 
would vary 11 Ky(l - y/h), vhich 1liahtly overe1timate1 the mixina length near the centre of a plane 
duct. Wendt'• 11tiut11 of the stabilizing effect of curvature vary somewhat with position: the largeat 
value, of P (i,e. the 1■1ll11t curvature effect1) are fitted quite well by hi• curve 

f(81) 
1 (59) - (1 + 16.581) 3 

aivina 

r ~ 1 - 2581 1 -
U/r 

(60) ""' 25 au/ar 

for 1ull curvature effect,. Wendt'• value, of f are for stable rotation only: he c~nta that Eq(59) 
vill aive impo11ible r11ult1 for 1trongly un1table c11e1 (large negative 81), Prandtl presumably had 
Wilcken and Wendt'• re1ult1 in mind when he c~nted in later papers (e.g. Ref,80, p.1084) that 
experiMntal and other theoretical values of critical Ri for buoyant flow were much 1maller than his 
predicted value of 2, Al10 Schlichting (90: 1935) in a paper describing his work at ~ttingen on buoyant 
flov1 refer, to the work of Taylor and others on the critical Richard1on number, leading to 1111ch smaller 
value, than 1uaae1ted by Prandtl, Therefore the defects of his analysis for curved and buoyant flow• mu1t 
have been clear to Prandtl in the early 19301: however, in spite of retaining an interest in the problem 
at le11t up to 1944 (Ref,80, p.1166), he did not publish any further original work on it, 

Wattendorf (82: 1934) presents measurement s in another rotating cylinder rig (it is not clear whether 
th11e were ude in ~ttinaen or at Caltech): he found, and commented on, the phenomenon of near-constant 
anaular -ntum over a large part of the gap between the cylinders. The main part of Wattendorf'a paper 
de1cribe1 hi• mea1urement1 in a curved duct, He refer• to an early analysis of Prandtl's, implying 
P 111 1 - 81 for 111111 81, but his own results 1how 1111ch larger effects. Because the •hear stress and 
au/ay chanae 1i1n, the 1en1e of curvature effect also changes sign from one side of the duct to the other, 
in contr11t to the caae of one fixed and one rotating cylinder. Wattendorf meaeured the surface shear 
1tre11 with a aull 1urface pitot tube, calibrated in turbulent flow in a plane duct: at this time, many 
u1er1 of 1ull aurface tube• a11umed that the 1ame calibration would hold in laminar and turbulent flow, 
which i• unfortunately not true for practical sizes of tube, Wattendorf'• duct had a plane initial 
aection and hie .. a,ur-nt1 1how the gradual change from fully-developed plane flow to fully-developed 
curved flow, but he calculated the ahear stress with;, the fluid only in the fully-developed curved flow. 
l!ia ■ixina-lenath ruulta near the duct walls are shown in Fig,13, the multiplying "conetant" a in the 
r-factor beina plotted at the top of the figure. There is a significant difference in the values of a 
on the two 1ide1, in the ,ame senee as the difference found between stable and unstable buoyant flow, 
(Section 5,4), A1 in the rotating-cylinder flow, the angular momentum is almost constant over the central 
part of the duct, The position of zero shear 1tre11 did not coincide with the position of zero velocity 
aradient au/ay or the po1ition of zero rate of ,train au/ ay +av/ ax = au/ar - U/r, or of course with 
the - indefinite - position of zero angular momentum gradient a(Ur)/ar • au/ar + U/r. Wattendorf comnents 
that it i1 not clear which of these three quantities should be u1ed in the mixing lengtb formula: the 
velocity gradient i• used in plane flow but 'eddy viscosity' concepts suggest that the shear stress should 
depend on the rate of strain because it dee• so in laminar flow, while Prandtl argued that the mixing length 
concept of conaervation of momentum of a fluid element between collision• indicates that angular momentum 
ahould be conserved in curved flows so that the 1hear 1tre11 should depend on the angular-momentum gradient. 
The 1ame difficulties have 1ince been encountered by many other authors who have tried to apply the older 
phenomenoloaical theori~• to cui:ved flows, but Wattendorf'a discussion is one of the clearest. Today we 
can 1ee that the ambiguity can account only for a factor of order f = 1 + e/( au/ ay) whereas direct effects 
of curvature on turbulence structure introduce a factor of order F = 1 + lOe/( au/ ay): however the more 
bizarre con1equence1 of the ambigui ty are avoided by relating shear 1tre11 to rate of strain. Wattendorf's 
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rejection of Prandtl'• analy1i1 of curved flow• 1ee• to be baaed more on the failure of the point of zero 
1hear 1tre11 to coincide with the point of aero anythina el1e than on any compari,on between Prandtl '• 
prediction• for curvature effect• and the •••ur-~t nearer the wall• of the duct. Wattendorf di~ not 
1eek or find any evidence of lonaitudinal vortice1 i ,i hi1 duct flow: Karman (13) co1Dent1 that the 
curioua ra1ult of nealigible anaular mc:.entllll aradiert may be cau1ed by 1econdary motion, but, 1ince he 
aoe1 on to ••Y that 1econdary motion■ would not be expected to be important in a duct with an a1pect ra tio 
of 18, he evidently had in mind corner flow• rather than Taylor vortices. 

Taylor (84: 1935) in t he rotating-cylinder experiment, mentioned above, di1cu11ed the qut at ion of 
whether the fluid lllllpl hypothe1i1ed by the mixing length theory should conserve angular moment, m, 11 
Prandtl'• or i ginal analy1i1 implied, or the a-component of vorticity, as in Taylor'• modified vorticity 
tran1port theory. The pre1ence of finite 1hear 1tre11 wi th a negligible angular moment11111 grad ient wa1 held 
to di1prove the firet, but while the vorticity tran1port theory was in principle compatible with con1tant 
anaular momentum in the central ?•rt of the flow it could not explain the reeults nearer the walle . The 
temperature dietribution when one cylinder wa, heated wa, also incompatible with the predictions of mixing­
length the<'·ry, The demonetration by Wattendorf and Taylor of this qualitative imphulibility of cla11ical 
mixinrlength theory wa1 no more heeded by later worker, than the demonstration of it• quantitat i ve 
underutimate of curvature effecte, although Karman (1934) had pointed out one physical reason , 1hy the 
mixing length hypothe1i1 could be no better th•~ a first approximation (because the apparent r.ixin& l •n@ t h 
i1 not 1mall compared with the flow width). 

The experiments mentioned above all revolved about the behaviour of the mixing len~ h. 
Schmidbauer (83: 1936) mea1ured a number of boundary layers on convex surfaces (the one noat f requently 
quoted in the recent literature being the retarded-accelerated flow in Fi g,6 of hie paper ) 11nd di1cu11ed 
the behaviour of the integral parameters u1ed in Gruschwitz's boundary-layer calculation :11ethod , the 
prototype of the intearal method, of the 1940'• and 1950's based on an emp i rical ordinary J if f erential 
equat ion for 1ome 1hape parameter of the velocity profile. Schmidbauer presented a plot of skin friction 
coefficient again1t 8/R, where 8 is the momentum-deficit thicknees and R the surface radiue of 
curvature: variation with Reynold, number was ignored but was probably negligible compar~d t o the effect, 
of curvature, The ratio of akin friction at given 8/R to that on a flat surface can b i approximated by 
1 - 2508/R for 8/R < 0,002: taking a representat i ve value of au/ ay to be 0.3 Ue/ 6 "l' 0,03 Ue/8, and 
a1111111ing the fractional change in surface shear stress to be about one-third of the fr&c t i onal change in 
L in the outer layer (11 found in typical calculations by the method of Ref.16) we f i nd t hat 
Schmidbauer 1

3 results imply 
l 22 U/R 

- au/ ay (61) 

but more detai led calculations originally published by Bradshaw (91) show that the skin f riction in the 
boundary layer of Schmidbauer's Fig.6 is well predicted by taking the numerical factor t o be 14 (Pig.14). 
Schuidbauer also produced a correction factor involving 8/R for Gruachwitz' s shape-parameter equation: 
as far as I am aware this factor has never been used in boundary layer calculations or adapted to other 
shape-parameter equations although Thompson (92: 1965), who was aware of Schmidbauer'& work, produced his 
own empirical modification of Head's entrainment equation to account for curvature eff ects, again us ing 
8/R as a parameter. 

After Schmidbauer's paper little more work appeared, Glauser and Glauser (93: 19 37) investigated 
the effect, of surface curvature on trans ition to turbulence in a boundary layer, find i ng that transition 
wa1 delayed by convex curvature. Since, to the thin-shear-layer approximation, convex curvature does not 
affect two-dimensional Tollmien-Schlichting waves, the most obvious explanation is the effect of curvature 
on the three-dimensional disturbances occurring i n the later stages of transition. However the pressure 
gradients in the experiment were not accurately zero and may have been at leas~ par t ly responsible . The 
main interest in the experiment is that it was the first to include direct measurements of turbulence on 
curved surfaces by hot wire anemometers, showing that the intensity was greater on a concave surface than 
on a convex one (this does seem to be a valid conclusion despite the uncertainti es about the transition 
behaviour), No quantitative deductions can be mane. The work was done under Von Karman's guidance : 
however the only direct connection with the previous research was that the Claus ers considered using 
Wattendorf's duct for their exper iment but finally dec ided t o build a larger rig. 

HacPhail (s ee Ref.24), work i ng with Taylor, made what appear to have been rather unsatisfactory 
hot-wire measurements of turbulence in unstable r otating-cylinder flow: the experimental difficulties are 
of course considerable. Pa i (85: report dated 1939, issued 1943) working with Von Karman, used hot wires 
to mea1ure the mean velocity in unstable rotating-cylinder flow: Karman sugges ted that small hot-wire 
probes might be l ess sensitive than pito t probes to the interference effe~ts f ound in Taylor's experiment. 
Pai says "At first it was thought that the flow,... wou ld be two-dimens ional except at the ends". 
However he found tha t two different veloc ity profiles coul d appear at a given axial position, depending on 
the starting sequence, and further investigation inferred, f or the first time , the presence of patterns of 
streamwise (annular) vort i ces super imposed on the t urbulent flow. It i s st i l l not entirely clear whether 
the existence of two alternat ive patterns of vorti ces was a fluke or whether the fully-turbulent cylinder 
flow invariably exhibits the multipl e-state behaviour found in the l aminar f l ow (71). Since the numb er of 
vortices is necessarily an integer, the flow between cyl i nd er s whose l ength is nearly (n + 3) times the 
preferred width of a vortex may deve lop n vort ices on one run and n + 1 on another. Pai also measured 
the root-mean-square intens i ty of the ci rcumf erential ve l oci ty fluctuations at di fferent axial posit i ons 
and the resu l ts help to conf irm t he presence of fixed large-scale c irculat i ons wh ich transfer highly 
turbulent fluid from near the surfaces t o the central part of the annulus. Pai did not analyse his results 
in sufficient detail to extract mixing-length behaviour or other quant i t at ive in for mat i on about the effect 
of curvature on the turbul~nce, and thi s work seems to be the end of the se ries of investigations i nspired 
by Prandtl's 1929 paper. 

Darkness now descends , and the nex t expli ci t considerat ion of curvaL ure ef fec t s that I have been 
sble to find i s Kre i th' s paper (94) of 1955 (followi ng pre l imi nary work report ed a t a conference in 1953) 
in which Wattendorf's r esults are used to es timate heat trans fer i n curved ducts. Kre i th extracts the 
apparent eddy viscosity from Wattendvrf's measurement s and deduces the apparent eddy conductivity of heat 
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by ueing Raynold1 1 analo1y, a11uming that the turbulent Prandtl number is unaffected by curvature, lreith 
extend• Wattendorf'• di1cu11ion of the choi ce of con1erved quantity in the mixina length proce11 and 
proviaionally concludu that the "forced vortex parameter" U/R 1hould be cho1en. Authon 1till 
cr,nti~ued to anaage in this di1cus1ion a• late as 1969, but a, it i• now generally aaraad that mixina 
lenath ar1ument1 are not quantitatively tru1tworthy I 1hall not reference the 110re recent di1cu11iona 
unle11 the paper hu something else to offer. Kreith'• meHurement1 on a 1mall duct with a hei1ht-to­
radiu1 ratio of 1/12 show t hat the heat transfer through the concave wall wa1 1.4 time• that throuah the 
convex wall, a slightly smaller factor than one would exject on the basi1 of Wattendorf'• 1urface 1hear 
1tre11 mea1urement1, although it is unsafe to make a direct compari1on of wall flux rate• in a ca1e like 
thh, 

In the early 1950's interest in vortex flow, arose. Einstein and Li (95: 1951) di1cu11ed vortex 
flow• in general and Mabey (96: 1953) working with H.B. Squire, made mea1ureaent1 in a 1imulatad trailing 
vortex in the prototype of the ·1ortex tube used by many subeequent inve1tigator1: the awirl i1 introduced 
by vanes in a radial inlet fo:lowed by an axie}'tlllletric flare with a 1hort conical centrebody fro■ which 
the vortex trails. The early work on vortices did not f ully coneider the direct effect• of 1treamline 
curvature on turbulence and it was many years before a quantitative explanation for the ob1erved Reynolds­
number dep ndence of this fr ee turbulent flow was found, in term, of stabilization of a vortex core in 
solid-body rotation. The early work on confined vortex flow• io briefly 1urveyed by leye1 (97) who 
performed some experiments at Oak Ridge National Laboratory, evidently with application to 1a1 1eparation 
in nuclear fuel production. He produced an empirical correlation for eddy visco1ity (a111.1111ed con1tant over 
the cross section) but again there was no consideration of curvature effect,. Of cour1e in euch 1tron1ly 
rotating flow, it is very difficult quantitatively to distingui1h the 1tabilizin1 or de1tabilizin1 effect, 
of curvature because there is no experimentally realizable comparison flow with the 1ae rate of atrain 
field but zero rotation. Therefore the early work on swirling flows will not be di1cu11ed in thi1 aection. 

In 1952 Wislicenus and Yeh of Johna Hopkins Univer1ity propo1ed to the US Office of ~•val Re1earch 
a progr811111e of work on flow in ducts and turbomachinery [I have not seen the contract propoaal; it ia 
referred to in R fs (98) and (99)). The results included three of the fir1t recoanizably modern papera on 
curvature effects, based on hot-wire measurements and di1cusaion1 of the Reynold1-1tre11 tran1port 
equationa - but none of the paper• refers to Prandtl'a work (although Eakinazi and Yeh compare Wattendorf'• 
duct r e1ult1 with their own) and none yields any explicit formula for the chanae in Reynolds 1trea1 a, a 
function of a curvature parameter. In an a pen~ix to Traugott'• paper (100) Yeh diacu1ae1 the oacillation 
of a displaced element in a body of fluid in solid-body rotation and 1how1 that it• frequency i1 twice the 
rotational frequency (a result which we would now interpret aa a value of 4 for the analoaue of the 
gradient Richardson number): he refers to several previous paper, on rotating flow, but doe• not mention 
the connection with the ~.-unt-Vaisala frequency of a displaced element of fluid in a 1tratified field which 
is implicit in Prandtl's •1ork. One can only speculate on the con1equences if the John• Hopkins group had 
made full use of the earl,• work, especially the boundary-layer measurement, of Wilcken and Schmidbauer: 
at the very least it woulu have become clear to them that the separatina boundary layer mea1ured in the 
late 19401 by Schubauer and Klebanoff (101) at the nearby National Bureau of Standard• wa1 greatly 
influenced by curvature effects, and i~ view of the popularity of thi• experiment a1 a foundation for 
calculation method a it is almost cert,,; I' that the importance of curvature effecu in t ~•pical boundary 
layers would have re-emerged at least ten years earlier than was in fact the case, 

Eskinazi and Yeh's measurements (98) were made in fully-developed flow in a duct with a straight 
entry section followed by a curved durt with a height of one-tenth of the outer radius, Inten1itie1, 
spectra and microscales were measured. Aa in previous experiments on ducts and rotatina cylinder, the 
angular momentum was nearly constant over the central part of the flow, an infallible sian of vigorou1 
mixing either by large eddies or by steady streamwise vortices. Eskinszi and Yeh, like Wattendorf (82) 
and Taylor (84) found no evidence of steady vortices, but their checks for three-dimensionality con1i1ted 
simply of mean velocity travers es at three (unspecified) spanwise positions. It is of course inherently 
leas likely that steady vortices will form in duct or boundary layer flow than in the rotatina cylinder 
flow where any streamwise vorticity i s fed back round the circ11Dference, but the recent work of John1ton'1 
group (10, 76, 79) has found near-steady vortices in a straight rotating duct at about the same curvature 
parameter as in Eskinazi and Yeh's experiment. We return to the question of longitudinal vortices in 
Section S. Eskinazi and Yeh refer briefly to a possible collapse of their inner-layer velocity profile, 
on similarity axes and co111Dent that "It is therefore to be expected that U/uT is a function not only of 
uTy/ v but also of y/R or pe rhaps of some combinations of the two, Such functional relations are not 
however obvious at present." In fact, if inner layer similarity considerations are still valid in the 
preaer,ce of curvature the only possible fonn i s 
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and either Prandtl' s mixing-length analysis or an alternative derivation ,, f the curvature parameter would 
suggest that outside the viscous sublayer 

(63) 

The values of the function F (equal to 1/Ky) derived from Eskinazi and Yeh'a measurement• by the 
present writ rare plotted with Wattendorf's in Fig.I). Eskinazi and Yeh discuss the explicit extra term, 
in the Reynolds- stress tranaport equations. Unfortunately , as shown in Section 3, con1ideration only of 
the explicit extra terms leads to the same order-of-magnitude un~erestiu.ate of curvature effects aa 
classical mixing length theory. Traugott (100: 1958; unpublished report dated 1956) performed an 
interesting experiment on turbul ence generated by a series of rotating grids, The grids, preceded by an 
impe ller, also imposed solid-body rotation on the mean flow, con f ined in an annular duct whose walls al10 
rotated (there is of course still a gradient of axial velocity near the walls), The radial component of 
velocity fluctuations in the central part of the~lus was significantly reduced by rotation, while the 
c ircumferential component was incrensed. Traugott discussed the extra 'Coriolis' production terms in the 
Reynolds-stress transport equations and measured the product ion and dissipation terms. The di11ipation was 
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deduced fr011 •uur-nt1 of the •an-aquare ti• derivative• of the three velocity coaponent1 but the 
re1ultin1 value• are too low by a factor of 2, pre1Ulllbly b1cauae of the uaual deficinci•• in 1p1ti1l 
re1olution or frequency r11pona1 of the bot.Jd,re an1110Mt1r: Trau1ott blDII th• a11uaption of local 
i1otropy - the aicro1cal1 Reynold■ niaber Ju'J. ~,~ va1 about 40 - but it••-- unlikely that hi• lfaited 
uae of the Ul1111Ption could produce 1ucb lar1• error■, The di11ipation value■ vere aaltiplied by lhe 
correction factor required to balance the turbulent 11D1r17 equation in the non-rotatin1 flow, It i1 
probable that l1kinui and Yeh' ■ •••ured ■icro1cale1 var• alto in error but they did not deduce di11ipation 
fr011 th ... In tha rotatina flow, the ~oduction term act to reduce the difference between the radial and 
circiaferential int1n1iti11 ~ and u in Traugott'• notation 10 that the ob11rv1d ■aintenance of• 
difference aaat be attribut1d Io the ef 1ct1 of rotation on the pr111ur1-1train tel'lla or, 1111 probably, 
on tha ani1otropy of the di11ipatina 1ddi11, Trauaott va1 not, of cour11, able to •••ure the pr111ur1 
1train tel'lla and be liapi tbell with tha turbulent tran■port teru (al10 un111a1ur1d, but probably ■■all 
except near th• vall1) in hi■ 1n1r17 balance• for each c011p0n1nt, Traugott pointed out that the tran1port 
equation• ■how that• 1h11r 1tr111 in the plane of rotation, uru8 , i1 produced if u1 ~ uI. Thi■ i1 
unexpected• priori, but 1i111ply r11ult1 from rotation of the axe■ : if axe■ are rotate~ 45 311, urue 
becOM■ ~ - ui>l2, 

In the third of the John• Hopkin• experiment■, Yeh (99: 1958) ude mea1urement1 of the boundary 
layen on the wall■ of a ■ tationary annular duct, fed vith an ••ial "free-vortex" flow (n11ligible gradient 
of an1ular .,..ntum out ■ ide the boundary layer) fr011 a radial t nlet like that u■ ed in Mabey'• vortex tub,·, 
The helix anal• n11r the outer wall wa■ about 20 deg, Hot-wire mea■urement■ of turbulence inten1ity were 
ude, end Yeh di1cu11ed the effect of the extra terma appearing in the Reynold1-1tre11 tr1n1port equation■ 
in curvilinear coordinate■, Yeh' ■ turbulence mea■urement ■ conclu■ ively ■how an increa1e in inten■ ity on 
the concave vall - twenty year■ after the Clau■er■' ■ lightly dubiou■ re•ult■ - but change• in the Reynold■ 
1tre11 vere not evaluated in terma of any curvature parameter. Yeh did not repor t any evidence for the 
pre■ence of ■ treaa,iae vortice■, Longitudinal vortice1 were fir■ t found in boundary-layer flov by Tani 
(102) in 1962. 

Apparently the fir■ t attempt ■ ince Schmidbauer' ■ to correct a complete ■hear-layer calculation 
method for the effect ■ of curvature on the turbulence wa■ the work of Thomp■on (92: 1965) mentioned above, 
The application wa■ to aircraft wing ■ection■ 10 that only convex curvature wa■ r.onaidered, Thomp■on 
reported improved agreement vith experiment• but at that date there were fev ■uitable te1t cue■ in low­
■peed flow. 

In the ■ aae year, a Euromech colloquium on the Coanda effect (103) conaidered not only the variou■ 
Coanda phen0111na but uny other examples of laminar or turbulent curved •hear layer■, However, little 
mention va■ made of the direct effect■ of curvature on turbulence and no quantitative re1ult1 were 
pre■ented, There could be no better demon■tration of the g~neral unawarene11 of the importance of the■e 
effect ■. 

Another ■uch demonstration, which thia time cau■ed con■iderable damage, wa■ the aeries of 
experiment ■ in the 1960'• on 1uper1onic boundary layer■ with a longitudinal pre■sure gradient induced by 
■urface curvature, Neglecting the boundary layer displacement thickness we get 

dp 
dx • 

6* dp 
or 

Tw dx • 

1 
2 

- pUe 
R • (H2 _ 1)1/2 

e 

2 o* 1 
cf ' "i ' _2 ___ 1_/,...2 ~ 

(He - 1) 

50 6 
i 

(64) 

(65) 

where the la■ t approximation is based on typical values for a constant-pressure boundary layer at a free 
■ tream Hach number of 3, We can see that a pre11ure-gradient parameter of order unity implies a value of 
6/R of the order of 50, leading to changes in apparent mixing length of the order of 50 per cent in the 
outer layer. Clearly there will be large differences in the behaviour of a boundary layer with a pressure 
gradient induced by ■urface curvature and one with an equal pressure gradient induced by incoming Hach 
wave,. Becau■e it waa generslly more convenient, eapecially in small wind tunnels, to measure the boundary 
layer on a curved centrebody or on a curved ramp on the sidewall rather than insert a body in the tunnel 
to induce a pre,sure gradient on the sidewall, experiments were done in the former fashion and used, or 
intended for use, in development of calculation methods to be applied indiscriminately on curved or plane 
surfaces, It ia of course true that most external flows occurring in aeronautics have pressure gradients 
induced by curvature but this is certainly not true of internal flows in intakes and turbomachines snd in 
any ca■ e one ought to di1tingui1h the two, However the main result of the experiments of the 1960s was to 
create confuaion, which can now be seen to have been worse confounded by the direct effects of dilatation 
on the turbulence mentioned in Section 3 (which in the case of boundary layers with pressure gradients 
induced mainly by curvature tend to reinforce the direct effects of curvature), Supersonic boundary layer, 
on curved 1urface1 will be discussed in Section 6, 

The "Coanda effect" [Coanda (1932) quoted by Newman (104) and Fernholz ( l05), but see also Reynold ■ 
(1870) quoted by Newman, and othera quoted by Wille and Fernholz] is defined in different ways by different 
people (1ee Section 7), Here our interest is in the increased mixing rate in turbulent wall jets on 
convex surface,, Hoit of H. Coanda'8 devices rely on this phenomenon, but he was an engineer rather than 
a re■earch worker and therefore made use of it without expending his time on establishing its fundamental 
cau1e1, It is intere1ting to note that the first basic research work on wall jets on plane surfaces by 
Forthmann (106) did not appear until 1934: evidently neither Coanda's invention nor Prandtl's analysis 
prompted FBrthmann to extend his work to curved surfaces, Newman (104) and Bradshaw and Gee (107), 
reporting their own measurements on curved wall jets, found no earlier work to quote, Von Glahn (108) 
reporting applications to blown-flap schemes, refers only to a paper by Hetral, which I have not seen but 
which appears to be a discussion of the principle of operation of Coanda's devices. Another paper by 
Metral (109) discusses the inviscid aspects, and a general discussion of the several Coanda phenomena and 
of the early work is given by Hetral and Zerner (86). It is fair to say that practical applications and 



baaic reaearch remained 1ep•rate until aeronautical interest in blown flaps led to applicstion1 
reaearch-oriented induatry, 

Bradshaw and Gee (107) briefly di1cu11ed the po11ibili ty of centrifugal inatability of the 
turbulence leadina to (1uppo1edly unsteady) longitudinal vortex eddies in the convex wall jet, but 
aeuurement1 of 1panwi1e correlations of the r adial velocity fluctuation ahowed no trace of vortex eddies: 
it waa not 1eriou1ly 1uppo1ed that 1teady lonaitudinal vortices would exist in such a highly-turbulent flow 
and indeed they have never yet been observed iu jet flows. 

Sawyer (110) described work on curved free jets: here the practical applications are to jet-flap 
1ch-• and to variou1 jet-reattachment situations, and of course the shear-layer curvature is not directly 
,pacified by a 1olid boundary. The convex side of a curved jet is unstable and the concave aide ■ table: 

any net influence of curva .ure or growth rate is therefore the result of non-linear effects: Sawyer indeed 
ob1erved a net increaae iu arowth rate, ln his analysis, Sawyer followed Prandtl's 1929 mixing length 
ar1ument1 - to which he refers - in spirit, but used 2(U/r)/(au/ ay) as a curvature parameter: to first 
order thi1 i• twice Ptandtl's 81 and therefore the correct analogue of the Richardson nuober, Sawyer's 
final correction formula applies to the eddy viscosity rather than the mixing length but t o first order it 
is equal to an F-factor correction to the mixing length 

F • l - a (U/r)/( au/ ay) (66) 

with a an empirical constant, chosen to fit experiments rather than derived from mixing length arguments. 
Giles, Haye and Sawyer (111: 1966) extended Sawyer's work to wall jets on concave and convex l ogarithmic 
1piral 1urface1, cho1en to obtain a con■ tant value of 6/R and thus a closely self-preserving flow: most 
other inve1ti1ator1 have u1ed circular-arc surfaces from which the wall jet separates after a turning angle 
of the order of 180 dea. Very large decreases or increases in growth rate were observed, though increases 
in arowth rate for very large positive 6/R may not be attributable solely to direct effects of curvature 
becau1e the thin-shear-layer approximation is no longer valid and pressure gradients and norma l -stress 
1radient1 may have some effect (Section 2.2), Giles et al. reported limited turbulence measurements but 
did not di1cu11 the turbulence structure in detail. 

Stratford, Jawor and Golesworthy (112: 1962) also discussed curvature effects on mixing layers and 
independently derived the first-order analogue of the Richardson nud>er by classical mixing length 
ar1ument1. Insertion of plausible data for the veloci ty profile leads them to 

F 
1 1 

(67) 

where b i1 the width of the mixing layer. They co11111ent that m1x1ng length arguments cannot be truated to 
predict curvature effects quantitatively so t hat the above formula "should really contain a coefficient of 
ianorance". However they found it to be in fair agreement with a number of experiment• for b/R of the 
order of 0.25 (though the effects predicted are very much smaller than those found in wall jets by Giles 
et al. and other worker,). In a later paper, Stratford, Jawor and Smith (113: 1964) extend the analysis to 
the mixing of 1treama of different density and obtain the Richardson number analogue with the total­
pre11ure aradient in the numerator, a form which applies (Section 5,1) to compressible or incompressible 
flov1. They diacuss mechani1m1 by which curvature could affect spreading rate even if the two streams had 
the 1ame total pre11ure (but different density and v2locity) but the arguments are not conclusive and even 
today there are no data on such flows. 

It i1 convenient to terminate this hiatorical 1urvey before the r evival of widespread interes t in 
curvature effect,, so that moat of the work that contribute• to our current knowledge can be discussed 
1eparetely for each type of shear layer. I have therefore omi t t ed, or mentioned only briefly, the work 
done by the research 1roup1 that led the revival, notably at McGill and Cambridge. 

5, DESCRIPTION OF CURVATUllE EFFECTS 

5,1 PARAMETERS FOR TWO-DIIENSIONAL FLOWS 

At least in 1imple caae1, the rate-of-1train ratio, (aV /a~) / (oU/ay) in (x,y) coordinates , is an 
adequate paraMter to de1cribe curvature effects on the turbulence. However, it is restricted, in the form 
aiven here, to two-dimenaional flow; like any parameter baaed solely on the mean 1train field, it implie1 
local equilibriu■ between the mean ■ train field and the turbulence; and the choice of the denominator, 
like the choice of the rate of 1train to be used in the mixina length formula, i1 not unique. A di1cu11ion 
of alternativ1 paraMter1, followina the treatment by Prandtl mentioned in Section 4, is helpful in 
illuainatina the ph•n-na, the behaviour of the extra terme in the Reynolds-1tres1 transport equations, 
and the analoay between curvature and buoyancy effects. Huch of the discussion is baaed on the analogy , 
which allow• u1 to make ,. ,e of half a century of meteorological experience (114, 115) and even to use 
■eteoroloaical data for quantitative prediction of curvature effect,. We shall see that the variou1 
par-tar, defined by analoay with thoae u1ed in meteorolo3y become equal to twice the rate-of-strain ratio 
in the caae of 1■-ll curvature effect, and approximate local equi librium (the factor of two i1 a 
conaaquenca of arbitrary definition and not an "analoay factor"). For purpo1e1 of deriving F-factor1 
(Section 3) for flow• with 1mall curvature effects any parameter can therefore be used; the moat convenient 
choice uy differ between different flows and between different calculation methods, In case• of larae 
curvature effect• the more realiatic par1111eter1 are linked by the Reynold1-1tre11 transport equation, 10 
that if information about the term, in theae equation, i1 aenerated by the calculation method the choice of 
paraMter i1 1till arbitrary, although a comparison i1 inatructive, Certain difficulties ariae in three­
di•n•ional flow• and we poatpone conaideration of theae until Section 5.2. 

Before di1cu11in1 the p~rameter1 we muat juatify the analoay between the phyaical proce11ea, As 
mentioned in Section 4 there i• an exact correapondence between the equation• of mot i on and atability for 
certain buoyant laainar flow• and curved l1111inar flow,, but thia i1 no auarantee of• general correapondence 



for turbulent flow,. However, e 110re acceptable juatificati on ccae1 froa con1iderina the fluctuatina body 
force, in the two cue,. (i) All el-nt of fluid in a buoyant flow which ha• a den1ity hiaher by an 1110unt 
p' than the•• deuity ~ experience• a force of -r,'a/p per unit u11 in the vertical direction. 
(ii) An el■-ut of fluid in I curved flow which he1 a velocity hiaher by u than the mean velocity U 
experiacH ID apparent "centrifuaal" force (in exce11 of the Man "centrifuaal" forca balanced by the •an 
radial pre11ure aradi1nt) of ((U + u) 2 - U2)/l.., 2 Uu/1 in the outward direction, (iii) In a d1n1ity-
1tretifled 1hear layer (whath1r in a aravitational field or not) the coefficient of correlation between 
the da1ity fluctuation and the velocity fluctuation, piij"/(pil iiI) 1/ 2, i1 n-rically 11 hiah a■ 0,9 
(116, 117), Stat .. nt (iii) ju1tifle1 the llynold1 analo&Y between 110111ntU11 tran■ fer and heat tran■ fer 
(den1ity ud taperature fluctuation• beina perfectly anticorrelated in a low-■ peed flow and very hi&hly 
uticorralated even in hiah-1peed flow): the "Reynold■ analogy factor" i ■ not exactly unity, partly 
becauae the correlation coefficient in (iii ) i■ not exactly unity. Stat ... nt■ (i)-(iii) toaether ju■ tify 
the ualol)' between curvature and buoyancy effect■ replacina the fluctuatina aravitational force 
proportional to p' by a fluctuatina centrifuaal force propo. tional to u, Clearly we mu■ t aaain expect 
an "analol)' factor" ■ liahtly different fr011 unity althouah the accuracy of data for buoyant or curved 
flow■ i■ not hi&h nouah for the difference to appear at pre■ ent. Note that the "mixina length" concept ■ 
iapliclt in the above analy1i1 are u■ed ■r-trically for buoyancy and for curvature and their 1hortcoming1 
■hould not 11riou1ly affect the arauaent. 

The diML ■ ionle11 par ... ter■ u■ed to de1cribe buoyancy effect■ are of two type,. One type u1e1 the 
euy concept of •>■cillation of an element of fluid di1placed in the direction of the buoyancy force and the 
other i■ ba■ed on the extra buoyancy term■ in the Reynold1-1tre1s transport equationa, Analogies to both 
can be constructed in curved flow• and in addition we have the rate-of-1train ratio, which has no exact 
equivalent in buoyant flow•. 

The three cc,-,n buoyancy parameters, appropriate to a 1imple shear layer in the x,y plane with the 
aravitational acceleration in the negat i ve y direction, are 

the aradient Richardson nutlber 

Ri • ( 
Brunt-Vai1ala frequency )

2 

typical turbulence frequency 
(68) 

• (typical body force)/(typical inertia force) 

where the Brunt-Vii1ili frequency wBV' the circular frequency of oscillation of a displaced elerent of 
fluid, was aiven in Eq(S), 

the flux lichard1on number 

v-component energy production due to body force) 

u-component energy production 

and the ratio of L/K to the Honin-obukhov length Lino 

L/K _ ( v-component energy production due to body force 
½.a • viscou• diuipation 

(69) 

(70) 

wh1r1 L ia the di1aipation length parameter, (-uv) 3l 2 /(viscous dissipation), K is the van Karman 
constant, 0,41 approximately, and ½no i1 a length defined by Eq(70) itself. 

The definitions have been written in a form applica~le to curved flow, as well as buoyancy. They 
are to ac:ae extent arbitrary (we could have cho1en W1l product i on for the denominator of Rf, and t he 
factor of K in Eq(70) w11 introduced 10 that the parameter reduces, in the inner layer of a wall flow, 
to the familiar p■r-ter y/Lm0 u1ed in studies of the atmo■pheric surface layer). We now derive each 
par1Mter, with it, analoaue for c rved flow enclo1ed in quotation marks to prevent confusion. A suitable 
choice for a typical frequency of Lhe turbulence in Eq(Sl) ia the mean velocity fradient au/ ay, equal in 
the !ocal-equilibrium approximation for a non-buoyant thin 1hear layer to (-uv) 12/L where L is the 
dia1ipation length parameter a typical length scale of the energy-containing eddie1. (-iiv) 1l 2/L is 
certainly a typical frequency of the turbulence, and also a typical root-mean-1quare fluctuating strain 
rate: it i■ to be preferred to au/ay if the two are different. The gradient Richardson number is 

Ri • (71) 

Thi■, like all the other parameters mentioned here, is positive in Ii ttable flow, negative in an unatable 
flow. Ii • 0 i11pliea neutral condition■, 

In curved flow the analogue of the Brunt-Vaisala frequency was derived in Eq(4), and the analogue of 
the aradient Richardson nlllllber, using (a,n) coordinate, with n + R = r, is 

"Ri" • 2 ~- .! (Ur>/ [au)2 
1 2 ar arJ 

which for large radii of curvature becomes 

Ri • 2 .!!/ au 
r ar 

(72) 

(73) 

or -2(av/ax)1(au/ ay) in rectangular Cartesian coordinates, and is ther efore just twice the rate of strain 
ratio1 the difference can be ab■ orbed in any emp i rical constant. Note that, just as Wattendorf (Section 
i · wa1 uncertain whether to choose au/ ar, au/ ar + U/r or au/ ar - U/r as the velocity grad i ent in the 
J•!finition of mixing length t, there is Ii similar uncertainty in the choice of the denomi nator for the 
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1radient licbard1on nUllber, u can b• •••n if ve equate it to (-u7')/t2 a, authorised by the local­
equilibrlua approxiMtion, Since the effect, of curvature on the turbulence are larae, the local­
equillbriua approach aibodied ln the derivation of lichard1on nUllber i• likely to be valid only for fairly 
... 11 lichard1on nuaber - that l1 1 for U/r << au/ar - 10 that the difference, between the three choice, 
for tbe denoalnator la ne1ll1ible. We need to be 110re careful about the nuaer1tor 1 who11 alp indicate, the 1en1e of 1t1blllty, 

The 1r1dient Rich1rd1on number va1 hl1toric1lly the fir1t parameter u11d to de1cribe buoyant flow 
(88): • 1••• obviou1 p1r■-ter 1 but one vho11 derivation i1 110re relevant to the pre,ent approach ba1ed 
on the leynold1-1tre11 tran1port equation,, and which i, aore convenient in three-diMn1ional flow, where 
the evaluation of "'IV becoae, compli£!.!_ed 1 i1 the flux Richard1on n111ber Rf• It i• 10 called becau1e 
it b baHd on the "buoyancy flux" 1 p•v in1tead of the buoyancy aradient a a'p/ay, Frc,m Eq(69) we 
derive 

Rf • <-a ~/p)/(uv au/ay) (74) 
Ii and If become al1101t equal in local e~libri11111 and for ■mall buoyancy effect, where we can u1a 
Llao1t the 1■- aixina lenath to de1cribe p•v and iiv, The curved-flow aneloaue of Rt require, a 
little thouaht becau,e, a, mentioned in hction 2.4, ~e extra r~te of ■ train U/r contribute, to the 
production terme in the equation• for D~/Dt and ~/Dt in (1 1n) coordinate• thouah in rectanplar 
Carte1ian coordinate■ it contribute■ only to i>vI/Dt: the difference come ■ from the rotation of axe• 1een 
by an ob1erver 110vin1 with the mean flow, In (x,y) coordinate■ 

oa7;2 
Dt 

oa;i 
Dt 

while in (1 ,n) coordinate,, writing dn 

Di~ 
Dt 

ojv2 

Dt 

au . - UV ay 

- iiv 
av . ax 

-U 
• ♦ UV -r 

• dr .. well 

iN au . - ar 

. ♦ 2 uv .!l. 
r 

♦ (7S) 

♦ (76) 

.. r • n + R 

_u - uv-r (77) 

(7'3) 

Th1 ambiauity in the denominator of Eq(69), like the ambipity in the denominator of "Ri", will simply 
introduce a factor of order f into the dimen1ionles1 parameter and can be disregarded, Likewise we 
di1r11ard any hiaher-order production term■ like ;i av/ay: local parameter■ such a1 the■e will be valid 
only in fairly thin ■hear layer■, However we mu1t decide whether to clan 11 "production" the rotation­
of-axb tarm -iiv U/r which appear■, with oppo■ ite signs, in Eq(77) and Eq(78), or to define "Rt" with 
reference to rectilinear (x,y) coordinate■, We choose (1,n) coordinates, giving the form fir ■ t 
1u11e1ted by Wyngaard (118) 

2 .!l. 
2 U r 

"Rt" . --- . 
au u a 
- ♦ - at (Ur) ar r 

(79) 

which bu the advanta!I•• of reducing to "Ri" if U/r « au/ar and of referring to a system of coordinate■ 
in which a thin ■hear layer remain■ thin (thi ■ does not of cour■e coaait u■ to u1ing (1,n) coordinate■ 
in a n111111rical calculation: we are di1cu11ing 1y1tems of axes only a1 an aid to deriving a phy■ ically 
Maninaful para111ter). Note that the alternative choice, (av/ax)/(au/ay), is ju■ t the rate-of-,train 
ratio, and that if we had cho1en the denominator of "Ri" 11 (au/ar + U/r) 2 , "Ri" and "Rt" would 
always be equal, With the present definition■ Ri goes to aero and Rf goes to infinity if the angular 
110111nt1D i1 con1tant or the mean vorticity ia zero, If thi1 condition occur■ at the edge of a turbulenl 
flow it pre11111ably impli11 neutral 1tability, whereas if it occur■ within the turbulence it implie■ 
vigorou1 lar1e-1cale mixing, 10 that the different behaviour of the p■rameters i ■ at least mnemonic for 
th11e two diffe. ent lituation1: analogou■ 1ituation1 occur in meteorology: Ri • 0 in "free convection", 
Note that confu■ ion exi1t1 in the literature (119, 120) ■bout the phenomenon of "vorticity e.xpul ■ ion" -
that i1, the tendency to con1tant angular moment\D: it certainly occur■ in strongly !mli!lut flow■ ■uch 
a1 hi&hly-curved duct■ (82, 98) but publi■hed discu11ion1 appear to refer to stable flow■, to confuse the 
radial and lixial component■ of vorticity, and to drawno distinction between 1uppre11ion of turbulence and 
expul1ion of .!!!!l vorticity. Leziu■ and John1ton (76) 1ugge1t that the denominator of the ichard1on 
number■ 1hould be cho1en a1 1ome average value of velocity gradient, rather than the local value, 10 aa to 
avoid difficultie■ at velocity extrema within duct or wall jet flow■, However, if one regards internal 
velocity extrema a1 a11ociated with two int eracting - and approximately ■ uperposable - shear layers it 
become• clear that the free-edae problem and the internal-extrem11111 problem are related, and that what i ■ 
wanted ha better choice of "typical turbulence frequency" than au/ar . 

To the local-equilibrilllD approximation the turbulent energy equation for buoyant or curved flow, 
can be written a• 

production)(l - Rf) • dissipation • t (80) 

10 that 1 - Rf play, the role of an f-factor, Other types of Richardson number could be def ;ned by 
reference to, 1ay, the shear-1tres1 tran■port equation (91): like the alternative definition, of length 
acale L mentioned in Section 2, they differ only by ratios of Reynolds stresses and add little to the 
definition ba1ed on the turbulent energy equation, 
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In buoyant flow• th• Monin--Obukhov lanath, aoaati•• called the "Lattau-Monin--Obukhov" lan&th, can 
ba •••n from Eqa (69), (70) and (74) to be 

(81) 

and if the flov ia in local equilibrium ao that total production equal• diaaipati on, Eqa (70) and (80) ahov 
that 

(82) 

10 that in local equilibria and with 1ull curvature effect• the three buoyancy para.tera Ri, Rf and 
(L/l)/L,,,, become equal, The curved-flow analoau• of Liao ia 

(-uV) 1/2 
(v2-production) • ..!.. - 0--

2lt 

(which ia of the order of O,OSr in the central part of a typi cal boundary layer) 10 that 

L/l • 2 £/HN) l /2 
"X,.," r L 

(83) 

(84) 

which once more become, equal to "Ri" and "Rt" in local equilibrium and with ,mall curvature effacu 
becauae we can equate (-uv) 1/ 2/L and au/ar by the mixina lenath formula Eq(27). It i, not i ... diately 
obvioua hov (-uv) 1/ 2/L behave• at the edaa of a ,hear layer where the •~gular momentum ar•dient aoe, to 
1aro 10 that Ri + O and Rf+•· Since the flov i, interaittently turbulent the moat realiatic ••sure 
of turbulence frequency i, baaed on averaae• within the turbulent fluid only, but it turn, out that the 
interaittency factor cancel• out of (-iIV) 1/ 2/L 10 that it• conventional average i1 the,._•• the 
average within the turbulent fluid, Arauaent• can be produced in favour of con1tancy near theed&• of a 
ahear layer .2I tendency to 1ero, but not for tendency t o infinity, Therefore it•••■- that (L/l)/Lmc, 
will probably not tend to 1aro. 

Nov in a curved layer the local-equilibrium veraion of the turbulent energy equation, divided by 
-uv, ia 

(-iiv) 1/2 
L (85) 

To the local-equilibrium approxiution we can therefore write all the curved-flow parmeter, in terma of 
th• aimple paraeter 

(
av/ax) U/r s U/r 

(86) . -- . . 
(-iiv) 1/2/L oU/ay au/ar 

•• 
Ri . 2S(1 + S) (87) 

Rf 
L/IC 

2S/(1 + S) (88) . - . 
Liao 

10 to firat order ell the parameter■ are equal to 2S, I~• curved flov which i, not in local equilibrium 
the error involved in uaing local-equilibrium formulae for curvature correction, i, probably minimieed by 
uaina Eq(84), in which the extra rate of ■ train i■ divided by• typical root-mean-■quare fluctuating rate 
of atrain, Neer the free edge of a aheer layer none of theae local-equilibrium p•r-ter, i1 completely 
1eti1fectory: thi1 i ■ • reminder, if not• conaequence, of the fact that the flow in thia raaion ia 
controlled by turbulent tran■port from the interior rather than by local generation or deatruction of 
hynoidl 1tre11, 

The 1-component mean vorticity, Z -
(1,n) plane, A = (au/ar - U/r), are equal 
a priu facie plauaible curvature parameter: 
p•r-ter i ■ the ratio of the atatic pre11ure 
aredient in the redial direction: thi, is 

-(au/ar + U/r), end the total rate of ,hear •train in the 
end oppoaite in• 1imple 1heer layer, Therefore l + A/Z i1 
it i1 of cour1e equal to Rf• Again, a plau1ible curvature 
gradient in the redial direction to the total pr~,eure 

u2/r + u au/ar 
which i1 equal to Rf/2, Slightly different but equally plaueible definition, would have given par•etera 
6quel to 2S end S reepectively, The•• different derivation• of e11entially the same parameter ere 
1omething more than •n academic exerci 1e: the different phyeical concept• may be 1eparately uaeful and it 
ia helpful to e1tabli1h the mathematical relation between them. 

In flove analyeed in rectangular Carte1ien coordinate• rotating et angular velocity n, the equation• 
of motion contain an apparent body force, the Corioli1 force 2 V x g, Note that we u1e the ueual 1ign 
convention that poaitive n mean, anticlocltvi1e rotation (the poaitive x axi1 follow, the po1itive y 
axi1): t ie oppo1ite convention, adopted in the 1imple ca1e1 di1cu11ed in Ref,(91) 10 that O 1hould have 
the aame aign •• u2/r, i1 confuaing in more complicated ca1ea, In the preaent convention, poaitive 0 
de1tabili1e1 a u11ear layer with positive au/ay. Note al10 that the 1tability of the flow i1 not affected 
by the axe, u1ed to analyae it: it i1 merely a convenience to chooee axe, in wh i ch the flow i1 atatiatically 
1teady or ha• one or more velocity component• 1ero, The above analy1i1 can be repeated with the follovin& 
r11ult1, where n ia the component of g normal to the (x,y) plane, 
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lruot-v•i•lll frequency ~v • -20(:~ - 20) 

Gradient lichardeon nwlber Ii • -20(:~ - 20)/(:~)
2 

u-cOlll)onent production ten - uv(3U/3y - 20) 

v-c011p0nent production ten uv . 20 

Plux Richard ion number -2uvn / iiv ( :~ - 20) 

Manin Obukhov lenath Lmo • -(-uv) 1/ 2/2fll. 

/
(-IN)l/2 

(L/K)/Lmo • - 20 L 

(89) 

The three di11en1ionle11 par ... ter1 become equal to -20/(3U/3y) or -20/((-uv) 112/L) in the local­
equilibri\la approximation when the ■peed of rotation i1 aall. The analoaue of buoyant convection occur, 
when t t e ab1olute vorticity 3U/3y - 20 i1 zero and Rf+•• Clearly there i1 a clo1e relation between 
the par ... tere for curved flow analy1ed in fixed axe, and rotatina flow, which are plane in rotatina ue1: 
to fir1t order, 20 replace, 2U/r, and the higher-order difference, are all extra ter111 with coefficient, 
of order unity, not, for once, of order 10, 

In curved flow with radial den1ity 1radient1 the Brunt-Vli1lll frequency bec011e1 more complicated. 
The aeneral foni can be deduced from the di1placed-eluent ar11m1ent1 of Thomann (4): the motion of the 
di1place~ element i1 a111m1ed to be adiabatic which add1 a further implau1ihility to the oriainal Von Kanian analy1i1. We find 

2 u au u2 ( v-1 ) u2 1 aT 1.11.. • 2 - - + 2 - 1 + ..L-.,;;. H2 - - - - (90) DV r 3r r2 2 r T ar 

where H i1 the Mach number, U/(1peed of 1ound) = U/l((y-l)cpT), which i1 obviou1ly nealiaible in low 
speed flow. Our sign convention for r is opposite to Th01111nn's. Eq(90) can be rearranaed in tenia of 
the den1ity gradient u1ing the gas law and the radial-equilibrium equation 3p/3r • pU2/r, to aive 

2 
ei;iv • (91) 

If the Mach number is low, we get 

(92) 

T~e stability criterion for inviscid variable-density flow originally due to Synge (121) i• that thi1 for111 of 
w8v ,hall be po1itive: we note that thi1 criterion i1 valid only at low Mach number• becau1e den1ity 
chanse• due to pre11ure changes are neglected. If the total temperature of the flow, 
T + u2/(2cp) = T(l + (y-l)H2/2), i1 conatant, which is a good approximation in boundary layer, on 
adiabatic wall ■ , we get 

2 2 _!L (1 + r.:_! M2) ...!. (Ur) ~v • r2 2 ar (93) 

the for111 aiven by Bradshaw (91). An equivalent expression is 

W:v • (P! :!) (94) 

where P is the total pre11ure, p(l ·• (y-l)H2/2)y/(y-l): compare Eq(4b). The gradient Richardson n\Dber 
can again be defined as ~v/(3U/3r) 2. The flux Richard1on number can be deduced from the_.!!,ansport 
equation• for u2 and ~ for compre11ible flow given by Rotta. A new production term p 1v U2/r appear,, 
where p' is the denaity fluctuation: it can be explained aa the product of the radial turbulent maaa 
flux and the mean radial acceleration, which ia a rate of doing work. We obtain 

- (extra v2 -production) 

total u2 -production 

• 2 .!!.r (1 + l ~•v U)/1- (Ur) 2 p uv ar (95) 

and the "strong Reynolds analogy" of Morkovin (122) allowa us to vrite, approximately, for flowa with 
con1tant total temperature (adiabatic flows) 

L . ( y - 1) M2 ~ 
p u (96) 

where M is the local Mach number, ao that to a good approximation the compres1ibility factor in Eq(95) 
can be vritten as 1 + (y-l)M2/2 in agreement with Eq(93). Rott•'• factor 1 + (y-l)M2, which he did not 
apecifically apply to a curvature parameter, is derived from the total production terma in the turbulent 
energy equation rather than from the aeparate contribution to ;,, The present analysis seema preferable 
if only for reasons of consistency with the foregoing treatment in general and Eq(90) in particular, but 
one has to conclude that the effects of compressibility are not certain and DJSt be elucidated by 



uperillent, even in adiabatic flow,. In boundary layer, with beat tr&nafer the 1trona Reynold• analoay 
aiv• • 

I 
p 

p 
u ( Pr (lw) (y-l)M2 - 1 + --
U U TW 

(97) 
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where (lw ia the rate of heat trenefer fi:S!!! the aurface t2 the fluid and Pr i1 the molecular Prandtl 
nllllber,and for want of more reliable data thia could be uaed in the c0111pre11ibility factor in Eq(95), 
Hawver the Crocco temperature profile, another conaequence of Eq(96), i1 apparently not reliable for flow, 
with beat tranafer. It i• intere!tina to note that au/ar time, the numerator of Rf [uaing the laat 
element of lq(97)) h equal to wisv in Eq(90) without the term in U2/r2 • Once more, therefore, the 
aradient and flux Richard■on nUlllber1, obtained by different argument,, agree to the firat order in 
curvature effect,, being equal, to thia order, to 

2 .!!_ (i _ _!. U3T/3r) /!!!. 
r 2 T3U/3r ar • 

In c0111pre11ible flow, the parameter (L/K)/Lmc, become, 

L/K 

Lmo 
. extra -;i -production 

di11ipation 

• -1+---2 u ( 1 ii'v u)/<-uv>1/2 
R 2pm; L 

(98) 

where any of the element, of Eq(97) can be uaed toe aluate the compre11ibility factor in parenthe1e1: it 
become, (1 + (y-l)M2 /2) on an adiabatic wall, (L/K)/~ i, again probably the moat meaningful parameter 
if the local-equilibrium approximation fail,. 

It i1 intereating to note that the contribution of the denaity gradient to wiv in Eq(91) i1 equal 
to wiv in a buoyant flow with the gravitational acceleration g replaced by the centripetal acceleration 
u2/R (note change of 1ign). Beer et el, (123) ueed thi1 a, the only term in the numerator of a 
"lichardaon number" for analyaing the 1tability of 1wirling flame,, but - taking the caae of low-1peed flow 
in 1olid-body rotation (U • r) for the 1ake of exmple - we find that it1 ratio to the 111111 of the other 
contribution, to the Brunt-Viiaili frequency in Eq(91) i• 

1 r ap' 
ii ~ a; 

which will be le11 than unity unle11 p varies more rapidly than r . Fahlbusch (124), discu11ing curved 
flowa with denaity (t•perature) differencea, also uaea a "Richardson number" baaed aolely on tha density 
aradient with g replaced by u2/r. We note the useful property of the displaced-element analyaia: 
different contribution, to the fore! on the element in the direction of it• diaplacement can 1i111ply be 
aw.ad, 10 that contribution, to wiiv can al10 be 1UDDed, Correepondingly, of courae, different 
contribution, to the ;;, production in the numerator of Rf, Eq(69), can al10 be 1uaed. A comaon 
exmple of 1111ltiple contri ution, to the numerator, of Ri or Rf i1 curved flow in rotatina axe,. If 
the mean 1bear, curvature and rotation lie in the 1ame plane, a, in the c~~e of flow over the curved 
rotatina blade, of a radial-flow turbomachine, no difficultie1 ariae, and we get, for exmple, 

2 • 2 u a (Ur) _ 20 (!or _ 20) 
~v r ar a 

(99) 

and to firet order all the parameter, become 

L/K 
• Lmo • au/ar (100) 

S.2 PARAJ£TERS FOR THREE-DIMENSIONAL FLOWS 

Flowe in which the plane of the mean &hear, the plane of curvature of the 1treamline and the plane of 
rotation of the axe, (if any) do not all coincide preaent greater difficultiea, Aa a generel rule the 
diaplaced-element anely1i1 i• !!!2£! complicated in 1uch ca1e1 than the analy1i1 baaed on Reynold1-1tre11 
tranaport equation,, and ita phyaical meanina ia not alway, clear, For inatance, if the plane of the mean 
ahear doe, not coincide with the plane of curvature of the 1treamline1 (which i, al10 the nominal plane of 
oacillation of a diaplaced element) it ia not i-ediately obviou1 whether the gradient Richardaon nlllber 
ahould be baaed entirely on velocity and curvature in the plane of curvature or whether the denominator 
ahould atill contain the reaultant mean 1hear, In ca1e1 1uch aa linearly-arowing axiar-tric 1wirlin1 
ahear layer, the plane of curvature of the 1treamline ia 1till normal to the 1urface1 containina the ahear 
layer [Fig.15(a)) 10 that the motion of a diaplaced element i1 1till relevant to the tranafer of IIIOINntum 
normal to the 1hear layer, but in more general three-dimensional flow, 1uch a, thoee on ,wept wina• the 
1t.reuline curvature may have a component in the 1urface1 containing the 1heer layer and it ii not obviou1 
bow the "centrifuaal force" 1hould be reaolved, 

Therefore we will abandon the gradient Ri~hardaon number and analyae three-dimenaional flow, in 
terma of the flux Richardton nUlllber 
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( 
extra ~ production ) 

1um of , and ';t production 
(101) 

where in ell our 1y1t ... of axe, the v component i• normal to the plane of the 1hear layer and the main 
leynold1-1tre11 1radient1 are the 1radient1 of iiV and W in the direction of v, There remain• the 
probl• of pertitionina the effect• of curvature between IJV and W: virtually the only 1imple and 
plauaible hypothe1i1 (an echo of diaplaced-element idea,) i1 that the effect of curvature is to alter the 
Man product of v witn the velocity component along the streamline, 10 that the effect on W i, to the 
effect on iii a, W i, to U, Bradahaw (125) implied that the effect of curvature wa, a change in 
uanitude of the ,hear 1tre11 without chanae in direction, which i1 le11 plauaible, The pre,ent hypothe1 i 1 
!!l provide a partial explanati~~ of the mea1urement1 of Johnaton (126) in the unatably-curved flow up a 
nept etep: he found that the 1hear 1tre11 vector 1kewed in the 1ame direction a, the velocity, rather 
than in the 1ae direction a, the velocity aradient a, would normally be expected, There are virtually no 
other data 1uitable for c!\ecking this hypothuh: note that the "effect on ■hear 1tre11" 111av be an 
alteration to a term in the tranaport equation rather than a factor on the 1hear 1tre11 itself, a~~e~A!~: 
on what calculation method is being used, 

In (x,r,8) 
lodi (17) lead to 

coordinates (without the restriction of axiaymmetry) the transport equation• given by 

2 ~ vv - cr.v av 
r i ~ 

_w 
+ vw -

r 

(102) 

where the tenu in ui are 111D111ed over a~l three values of i, and where as in two dimen1ion1 we have 
counted the "rotation-of-axis" terma as production. To the axisymmetric 1lender-1hear-layer approximation, 
illplyina a/ar » a/ax and a/ae • O, this become■ 
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+w­
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In local equilibrium VV/'fl'li • 
to this approximation 

(aw/ar)/(au/ar), 

2 !! aw 

and for ,mall curvature effects W/r << aw/ar, so that 

which i1 the first approximation to 

the aradient Richardson number 

r ar 

2 .!. a (Wr) 
r2 ar 
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with wiv evaluated from the circumferential motion only and with the denominator put equal to the square 
of the reaultant (not only circlllllferential) mean shear. This can be regarded as a justification for 
deriving Ri from a di1placed-element analysis in the manner indicated, a derivation used on the basis of 
intuition by Brad1haw (125) for the oundary layer on an infinite swept wing and by Brad1haw (91) and Cham 
and Head (127) for the boundary layer on a rotating cylinder in an axial non-rotating stream. Another, 
le11 1ati1factory, justification is that uniform translation in the axial direction obviously leaves the 
two-dimensional re1ult for Wav unaltered since there is no component of curvature in the axial direction, 
and that radial variation of the axial velocity ouaht not to have 1DUch effect, Howard and Gupta (39) 
derive Ri for 1wirling flows from a rigorous consideration of the inviscid instability equations: for 
the caae of axiaymmetric di1turbance1 the denominator of their version of Ri is (aW/ar)2 only, but it 
doe, not of courae have the significance of the square of a turbulence frequency, 

The "three-dimensional" form of the mixing length formula [actually Eq(27) rewritten in oblique 
axe■ ] h 

au -iiV 

l 
ar • 

ltl 112L 

aw -vw - . 
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where 1-r 12 (uv) 2 + <w>2 

and the maanitude sign on T will be omitted henceforth, Using this we can rewrite Eq(l04) as 

-2lw r 

(106) 

(107) 

(108) 

which i1 probably the most convenient form for axi1ymmetric swirling flows, For flow over infinite swept 
vina• and other ca1e1 in which the shear layer lie• in a cylindrical surface [Fig,15(b)] we can rewrite 
Eq(108) in (1,n,z) coordinate• with z measured along the straight generat~rs and r = n + R; 
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(109) 

Note that the formula does not contain dR/d• and is there fore nominally valid even when dR/d• is non­
zero, Note alao that the denominator of Eq(l08) (the energy dissipation) is probably a more meaningful 
quantity than the denominator of Eq(l0J) (the ~ and ~ production) if the two differ greatly becau■e 
of larae departures from local equilibrium: in effect, Eq(l08) is (L/K)/Lm0 [compare Eq(84)]. The 
"exact" form of Ri for a cylindrical surface is gi ven on p,437 of Ref.125: it reduces to Eq(l09) on using 
Eq(106); the approximation to Ri given in Ref.125 results from using Eq(27) dir ectly and is accurate 
only when T i1 nearly normal to the generators. 

The ca1e of a shear layer with compound curvature such as a boundary layer on a surface of general 
curvature [Fig,lS(c)] preirents a further difficulty of principle already encountered in two dimension,: 
what axe• 1hould we choose for evaluating Rf? Note that we cannot simply choose arbitrary orthogonal 
coordinate, in the surface, s and z say, and generalize the numerator of (109) to 

2 [u uv+ ww) 
n + R8 n + R:r. 

whet ., R1 and Rz are the "radii of curvature" of the s and z axes, because the e radii are normal 
to thr surface only if the surface is developable. The normal to the surface that paa ■es through the 
1trea 1line will clearly have different direction■ at different positions along the str eamline: it will 
rotat I in the plane containing itself and the streamline because of the curvature of the streamline, juat 
a1 th ~ n-ui1 rotates in two-dimensional (s,n) coordinates, but it will also rotate normal to this 
plane. We will call thh th~ "torsion" effect: note that it is not exactly the torsion of the streamline. 
If the production term in the numerator of Rf refers to the fluctuating velocity component along the 
norlll41 to the 1urface, the torsion will give ri1e to extra rotation-of-axis contributions of the type which 
we have hitherto grouped with the true production. These are not mere geometrical difficulties but 
reflect a real aap in our knowledge of turbulence: does streamline torsion, as well as streamline 
curvature , produce effect, of order F on the turbulence? The problem can e disguised in the case of 
axi1~tric 1wirling flows and other shear layers lying in developable surfaces, because a system of axe1 
in which the tor1ion i1 zero can be set up, as was done in the analysis leading to Eqs (108) and (109), 
However the tor1ion in the streamline axes discussed above is still finite, so that although Rf can be 
1ati1factorily defined for developable flows it is not certain that F-factors derived from experiment• on 
the corresponding two-dimensional flows can be iD1Dediately applied, Host of the aeronautical flows whose 
re1pon1e to streamline curvature we can reasonably hope to predict are nearly developable, so that a simple 
rule which has the advantage of consistency with the above analysis for developable flows is to evaluate 
Rf by u1ing Eq(l09) with s in the direction that makes U/R (strictly, U/r) a maximum, where R ic 
the r adius of curvature of the intersection of the surface and a plane normal to the surface and tangent 
to the streamline . In effect, since we seek a parameter to describe the effect of an extra rate of atrain 
we choose the larger principal value of the extra rate of strain, at least in dealing with flows in which 
the amaller principal value is small, If x and z are arbitrary orthogonal coordinates in a developable 
■ urface, Rx and Rz the radii of curvature in these directions and U' and W' the mean velocity 
components , then the radius of curvature R and mean velocity U in any chosen s direction are related 
by 

u2 

R Rx 
(110) 

and if Rz >> Rx the maximum value of U/R will usually occur when s is close to x unless U' happens 
to be small. Finally we note tha t if the directions of the shear stress, velocity and velocity gradient 
coincide !!!l system of coordinates gives the oame result in the simple formulae like Eq(l04) and Eq(l09), 
by virtue of Eq(ll0), so that in mildly three-dimensional flows the uncertainties discussed above are 
unimportant. 

In compressible fl ows, we can multiply the simple three-dimensional formulae by the compressibility 
factors used in two dimensions (e.g. Eq 95) . Fresh agonies of indecision arise over the choice of axes 
but it is again unimportant i n mildly three-dimensional flows so that the axes used for the main part of 
Rf may be retained, Note that Eq(96) becomes 

(y-1) (Uu + Ww) 

T (111) 

so t hat the final result for a three-dimensional, compressible , adiabatic flow , with the axes chosen to 
maximise U/R, is 
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where a is the local speed of sound and t 2 

• (uv) 2 + (w) 2

• Clearly , if the velocity and 
vectors are in the same direction the compressibility factor becomes 1 + (y- l)H2/2, where 
resultant Hach nud: ~r, as in two dimensions : t his fonn will usually be accurate enough . 

(112) 

shear stress 
H is the 

A case of some practical importance in whi ch the velocity, velocity gradient and shear stress 
directions unexpectedly coincide is the boundary layer between a circular cylinder of radius r 0 , 
rotating about its axis at angular velocity n, and a non-rotating axial stream of speed Ue. The 
following analysis applies either to external flow (flow over the rotating hub of an axial-flow turbo­
machine) or to internal flow (in a rotating machine casing). The boundary layer seen in coordinates 
rotating with the cylinder is found to be collinear: not only do the above-mentioned directions coincide 
but they are th same at all distances from the surface (to the approximation that the ooundary layer 
thickness 6 is small compared to r ). In (x ,r, 0) coordinates rotating with the cylinder, and 
denoting nr 0 /Ue (the tangent of the

0
constant helix angle of the streamlines) by A1 the gradient 

Richardson number is 
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where the first term in the final numerator is the rotation contribution and the second the curvature 
contribution : here we have added the terms in the numerator■ and denominator• of the ver1ion1 of Rf 
lq(lOJ) (chanaina U to ~) and Eq(B9), A aradient Richard1on number can be derived [a di1placed element 
01~illate1 radially and wAv can be evaluated by con,iderina only the circumferential curvature, a1 
outlined following Eq(104)], We get 

2 ; 2 aar (Wr) - 2n (:~ - 20) 
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Ri • (114) 

aiven in 1110re compact form by Cham and Head (127) and for aw/ar l irge compared to W/r or n (requirina 
6/r

0
, but not necessarily >. , to be small) we get 
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identical with the form given by Bradshaw (91) except for the incorrect sign of Ri in the latter. 

Now the above analyoes, both for two-dimensional and for three-dimensional flow, ■ imply define 
Richardaon number analogues for the different cases: we cannot expect the quantitative effect of 1tream­
line curvature to be exactly the same function of Richardson number in all ca1e1. In particular we cannot 

expect a universal critical Richardson number above which turbulence i, auppressed, It is po11ible to 
evaluate 1ufficient (though perhapa not nece11ary) conditions for atability of complicated inviacid curved 
or buoyant flowa against infinite1imal disturbances: theae take the form Ri > n where the number n ia 

4requently 1/4 a, in the analysis of Howard and Gupta (39) who give a useful introduction to analyse, for 

cylindrical 1wirling flow,, including th 1 wr-rk of T ,dwi t. Tn view of the marginal r elevance of these 
analyaes to turbulent flow a general review will not be given here, One of the latest 1tudi e1, which will 
aerve to indicate the state of the art, i1 that of Kur~weg (128), In an extenaion of Howard and Gupta', 

analysia for arbitrary disturbance, (itself a development of Rayleiah'• energy analysi1 and related to 
Ludwieg'1 less rigorous work) Kurzweg has obtained a sufficient condition for stability of variable-denaity 
low-speed cylindrical swirling flows, although it is not entirely clear how Kurzweg haa overcome the 
limitation■ in Howard and Gupta's analysis pointed out by them, Kurzweg'• sufficient condition is, in our 
notation with U, V, W the velocity components in t he x,r,8 directions 
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d (pW2r 2) 1 
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The second clause of the condition i.s simply a r equirement that the second factor in the fir1t clau1e be 

poaitive: unfortunate~y it restricts the analysis to flows with significant atabilizing den1ity gradients 
(such a, swirling flame, or jets of light gas) and no comparison can be made with stability condition, for 
constant-density f lows except to note that the ratio of the two terms in the first factor of the firat 

clauae is four times a Richardson number based on the axial shear, corresponding to Ri > 1/4 for 
atability. Kurzweg's criterion, like Synge',, is restricted to low-Hach-number flows. Chigier (129) has 
given a graphical representation of the first clause of Kurzweg's condition but appear, to have ignored the 

second clause, In addition to noting the particular limitations of kurzweg's criterion (the most general 
of thoae proposed to date) we must remember that all criteria of this type refer to the stability of 
inviscid flows to infinitesimal wavelike disturbances and no rigorous deduction& can be made about 
turbulent flow. We have already seen, for instance, that Howard and Gupta's Richardson number, whoae 
denominator contains only the circumferential shear, disagrees with the flux Richardson number derived from 
the turbulent energy equations. At best, inviscid-flow criteria indicate dimensionless parameters of which 

the turbulent intensity is likely to be a (unique? monotonically-decreasing?) function, The value of auch 
a parameter at which the intensity fa l ls to zero may not be unique and will al1110st certainly be different 
from any critical value derived for inviscid flow, even if that critical value is necesaary a, well aa 
sufficient. In view of the uncertainties outlined in the derivation of Rf for three-dimensional flow it 
would be unrealist i c to use any very elaborate analysis for this case: we conclude that the quasi-two­
dimensional parameter Eq(ll2) is likely t o suffice until our experimental knowledge of three-dimensional 

curved flows improves. 

A guide to the parameters derived in Sections 5.1 and 5.2, with recommended approximations for u1e 
in cases of small curvature effects, is given in Table 2, 

S,3 USE OF THE PARAMETERS 

To uae the parameters such as Ri chardson number derived for turbulent flow we dafine an F-factor by 
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or 1 + a(av/ax)/(au/ ay) in rectengular Carte1ian coordinate■, a 1pecial ca1e of Eq(32). In the present 
state of development of the 1ubject it would be unwiae to be dogmatic about the validity of non-linear r­
factor1 or the full, large-curvature ver1ion1 of the parameter,. One can be certain that in mo1t caaes the 
effect, of flow hiatory will be more important than theae refinements to local formulae, which 1hould 
ther1fore be made only in calculation method, ba1ed on tran1port equation,, including a transport equation 
for lenath 1cale or at leaat a laa equation like Eq(37). One cannot expect a to be an ab■olute couatant: 
it will vary to 1ome extent from one part of a shear layer to another a1 well a1 from one type of shear 
layer to another, and, 1ince the F-factor approach involves a11umptions of local equilibrium for 
predictina the 1ize of the F-factor, the variation of a will be greate■ t in flows far from local 
equilibrium, The effect of mean tranaport on the F-factor can be allowed for empirically by a lag 
equation, but the effect of turbulent transport on the F-factor is difficult to a1s11s. Conversely the 
effect of the F-factor (i.e. the extra sttain rate) on the turbulent tranaport is likely to be large i n 
1trongly-un1table flow,. 

Both Prandtl (80, p.775) and Bradshaw (91) implied that meteorological data could be used to find 
a, A brief review of quantitative results for buoyant flows is given in the next aub-section, but we 
already know enough about curvature effects for the simpler meteorological formulae of the F-factor type 
to be of no further us e , and the more refined meteorological results for the atmospheric inner layer are 
unlikely to be reliable quantitative guides to more refined formulae for curved flows in gflneral, 
Qualitatively, there is still 111Uch to learn from buoyant flows and the next section consists mainly of a 
comparison of the phenomena of curved and buoyaut flows. 

Quantitative result ■, for a and otherwise, obtained in curved shear layers are discu11ed in later 
Sections. Practical detail• of the incorporation of fol"IIIUlae like (117) in calculation methods are treated 
in Section 11. 

5,4 QUANTITATIVE USE OF BUOYANT-FWW DATA 

There are few l•boratory data on buoyant shear layers, as opposed to free convection, and we therefore turn 
to meteorological data (89, 114, 115), These, while large in number, are limited in application because 
they nearly all refer to the traditional area of meteorological turbulence studies, the inner layer of the 
Earth'• boundary layer. Strictly an "inner layer" must have a shear stress which ia constant in 
magnitude and direction, and the Earth's inner layer, so defined, is only a few ten■ of metres thick. 
However, t o the necessarily low standards of accuracy of atmospheric turbulence measurement the flow in the 
first few hundred metre■ often has a sufficiently small shear-stress gradient and crossflow angle to be 
analyaed by uaing inner-layer variables. The actual height up to which inner-layer analysis i1 valid 
depends greatly on the stability [as defined by the Richardson number or by (L/K)/1mo = y/Lm0 ], and on the 
age of the inner layer. The age depends on the length of time for which the mean wind speed and direction 
have been constant at the point of observation and also on the upstream distance or "fetch" for which the 
surface is homogeneous. UeuLlly, measurements are made - or trusted - only if the surface is homogeneous 
for an upstream distance of the order of 100 times the maximum height of observation, and if the wind has 
been constant for the time needed to cover this distance. In these conditions, and excluding cases of 
extreme stability or instability (very light winds), the inner layer is a local equilibrium region: 
horizontal transport of turbulent energy by the mean flow and vertical transport by the turbulence are 
found to be negligible. In strJngly-stable flow transport by internal waves may be appreciable and in 
strongly unstable flow vertical transport by convection cells is observed. 

In nearly-neutral conditions the total thickness of the Earth's boundary layer (i.e. the region of 
significant Reynolds stress) is limited by the effects of the Earth's rotation (the flow is called the 
Ekman spiral). The external stream of this strongly three-dimensional boundary layer is called the 
geostrophic wi nd which - according to the equations of fricti onless flow - blows along the isobars. In 
stable conditions the Richardson n\DDber increases with height, so that the turbulence dies out: on top of 
the turbulent region is a thin region of very strong stability, called the inversion layer, In unstable 
conditions the Richardson number becomes more negative with increas i ng height, in the absence of 
condensation of water vapour, and eventually convection cells become important: in extreme conditions 
cumulus clouds can reach heights near 20 km but these and the other spec tacular atmospheric phenomena are 
greatly influenced by condensation of water vapour and are not relevant to the analogy with curvature. 
However there is already evidence that convection cells (longitudinal vorti ces ) occur in unstable curved 
flows and that the boundary of the turbulent region in a stable curved flow can be rather sharp, There do 
not seem to be any use fu l data on the interaction of buoyancy and three-dimensionality in the Ekman sp i ral, 
Thi• is particularly unfortunate because of the lack of information on three-dimensional boundary layers on 
curved surfaces. The paper by Tennekes (130) discusses free convection above the surface layer but three­
dimensional effects are barely mentioned. 

The standard method of correlating data for the atmospheric inner layer (89) is to plot quantities 
made dimensionless by the usual inner layer variables uT = (Tw/ p) 1/ 2 and y against y/Lm0 or Rf. If 
the ass\DDption of local equilibrium is valid the plot should be universal, The dimensionless velocity 
gradient (Ky/u ) aU/ ay, usually given symbol ~. is the ratio of the mixing length in neutral conditions 
(1 = Ky) to iis value in buoyant conditions, t . Fig.16 shows a consensus of recent experimental results, 
fa$ouring the measurements presented in (89), ThP. scatter of the latter measurements is very small by 
meteorological standards, but the apparent value of K was 0,36, rather than the accepted laboratory 
value of 0.41, The simplest of the correlation formulae, the Honin-Obukhov formula (114) is 
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where S is about 4.5 for negative y/Lm,;, (unstable conditions) and about 7 in stable condition,. Thi1 
piecewise-linear formula is plotted on Fig. 16: clearly it is at beet a rough approximation for ,mall 
buoyancy effects. The curved-flow version (retaining the standard definition of t, au/ ay • (-uv)l/ 2/t) 
can be rewritten to a first approximation as 

(120) 

where in the inner layer t he denominator of the right hand side is uT/Ky which is equal to au/ay in 
near-neutral conditions, Thus the analogue of the Monin-Obukhov fonnula for curved flow is an example of 
the linear F-facto~ correction f onnula for the effect of extra rate of strain, Eq(36): the use of 
different values of 26 = a according to the sign of rate of strain is a refinement which may be usable 
in other situations but cannot s tr i ctly be described as a linear correction fonnula, 

Results such as those in Fig,16 justify more refined analytical formulae in the Earth's inner layer, 
The two reasons why it is probably not worth relating them quantitatively to curved flows are that the 
buoyancy/curvature analogy is not exact and that inner-layer formulae are not enough. We are of course 
entitled to use meteorologica l data to suggest the general fonn of second-order correction forlWlae for 
curvature. 

We note that in buoyant flow and rotating flow l;mo is ind ependent of y so that the Monin-Obukhov 
correction to the mixing length formula integrates to g~ve, in the usual engi eering f onn of the logarithmic 

1 log ut y 
K V 
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law for the inner layer, 

In curved flow ½no « U and the integral is of t he fonn Eq(44), although the simplification suggested 
after Eq (44) is probably a,lequate. 

This is not the place for a general review of buoyancy effects. Refs 114 and 115 are generdl 
treatments and Ref. 1 has a comprehensive list of references on complex turbulent flows, including buoyant 
flows with special reference to the atmospheric surface layer. For evidenc~ of spectacular collapse of 
turbulence in a strongly-stable laboratory boundary layer see Ref.131 and for a general review of laboratory 
simulation of the atm~spher ic boundary layer see Ref,132, We pass on to qualitative consideration of 
curvature effects: the analogy with buoyancy will continue to be qualitatively helpful, 

5. 5 LONGITUDINAL VOR'lICES 

One of the most st=iking phenomena of unstable curved or buoyant shear layers is the appearanc~ of 
longitudinal (streamwise) vortices. They were found in unstable laminar flow between rotating cylinders by 
Taylor (72), and Tani (102) attributes their discovery in buoyant flows to Idrac, in a 1921 PhD thesis 
which I have not seen. Gortler (77) predicted their appearance in laminar boundary layers on curved 
surfaces in 1940 but they were not found until 1950 (78), The earlier workers on curved or rotating 
turbulent flows seem not to have expected to find steady vortices (i.e. spanwise periodicity of the mean 
flow) although it 1W1t have been fairly clear from Taylor's experiments t .,at streamline curvature would 
favour unsteady longitudinal-roll eddies. Karman (13) suggests that Wattendorf's duct measurements may 
have been influenced by conventional secondary flows in the corners but did not consider the possibility of 
longitudinal vortices in the central part of the span. Even Pai (85: 1943) working under Karman on 
rotating cylinders, clearly took some time to realise that the anomalies in his velocity profiles were 
caused by vortices similar to those found by Taylor in laminar flow. Tani {102: 1962) who first found 
vortices ; . a curved boundary layer, seems to have 1rgued from analogy with Gortler'a treatment of laminar 
flow that vortices would be expected in turbulent flow. Johnston and his collaborators (10) found vortices 
in fully-developed flow in a rotating duct, whereas they were not noticed in the older curved duct 
experiments. (Johnston's elegant use of flow visualization was instrumental in the discovery.) Vortices 
have still not been observed in curved free jets or wall jets, 

Confusion can arise over the defin i tion of a longitudinal vortex in turbul!nt flow: there is always 
some fluctuating longitudinal vortir.i ty, even in a plane flow, while Johnston et 11. (10) found that there 
was always some unsteadiness in the vortices visualized by dye. Their remarks be1r quoting. "In the range 
of RoQ I= n x duct height/U] where cells are first seen (0.02 < RoQ ~ 0.04) the flow is very unsteady and 
sometimes cells form, decay, wash-out and wave about in a very unsteady manner. Only at higher rates of 
rotation are 'steady' cell patterns observed. We call them 'steady' in the sense that the time period over 
which a gi ven pattern persists is long r elative to the turbulence time scales." Now even such "steady" 
vortices will contribute t~ the longitudinal mean vorticity only if their lateral positions are constrained 
within a range rather smaller than one spanwiae wavelength. To take a simple case, if the pattern shown 
i n Fig.6 alternated between the configuration shown and one shifted spanwise by half a wavelength the mean 
longitudinal vorticity would be zero. Let us call vortices that are sufficiently constrained to produce 
longitudinal mean vorticity (i.e. spanwise periodicity) steady (without quotation marks) reservir,g 
Johnston's term "steady" (with quotation marks) for vortices which are not neceBBarily weaker than steady 
ones but which happen not to be sufficiently constrained, The possib i lities of constraint are 

1, The influence of lateral boundaries. The number of vortices must be an integer, so that lateral 
displacement implies distortion of the cross-section of one or more vortices, which one would expect to be 
resisted, Th i s mechanism probably acts only if there is some strong tendency for vortices not to disappear, 
a, in the case of the flow between rotating cylinders where the same fluid recirculates. However we know 
from Coles ' experiments (71) that the number of vortices in laminar flow between rotating cylinders can 
change in quite a complicated way. Another case where disappearance is unlikely is a low-aspect-ratio flow 
where the number of vortices is so small that disappearance of one would change the wavelength by a large 
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fraction: the preferred wavelenath of near-circular roll• occupyina most of the shear layer is bound to 
be clo1e to two ,hear-layer width• (vavelenath is twice vortex diameter). 

2. The influence of up1tre• di1turbance1, Te1t-ria 1hear layer• alway• have 1mall 1panvise 
inh01101eneitiea of the mean flow cau1ed by imperfection• in the up1tream flow (notably disturbances, 
apparently lonaitudinal vortice1, introduced by the anti- t urbulence 1creen1). The1e inhomogeneities will 
probably have 10• influence on the mean 1panvi1e position• of vortice1 arising in un1 ~able curved flows: 
a1 uaual in flow• unatable to infiniteaimal di1turbance1 the in1tability pattern can be locked to the 
initial di1turbance1, However the amplitude of, 1ay, the 1panvi1e variation of mean velocity in the 
initial ,hear layer i1 likely to be quite 1mall compared to the turbulent velocity fluctuations, so that 
the initial di1turbance1 may locate only re1ion1 of higher-than-average probability of the occurrence of a 
'•teady' vortex of aiven sian . It is 1ianificant that the moat intense vortices (i.e. the largest 
1panvi1e variation, in mean velocity) are those observed by Mackrodt (133) in the boundary layera in an 
annular duct, with swirling flow introduced by a row of blades like an axial turbomachine stator. Although 
the wake• of the blades were undetectable in the free atream or the atable hub boundary layer far downstream, 
it •e-• very likely that they located the poaition of the vortices . Notice that the vortices themselves 
act a1 upstream di1turbance1 to the flow further dmmstream: as Tani shoved , the number of vortices in a 
boundary layer can remain constant while the boundary layer thickness changes by a factor of 2:1 or more. 
The number of vortices must eventually ~hange if the wavelength is not to become a small fraction of the 
boundary layer thicknesa: ve do not yet know whe t her vortices would disappear one by one or whether there 
are intervals in x in which large changes occur before the vortex pattern settles down again. Indeed 
this question has not been answered even for lami nar flow (mainly because transition occurs shortly after 
the vortices become distinguishable). 

If neither of the1e influences constrainq the vortex pos1t1on sufficiently, no spanwise periodicity 
will be found in the mean flow. However it is clear that the behaviour of flow properties averaged both 
in time and in spanwise distance will be vi rtually the same for a given strength of vortex whether the 
vortices are constrained or not: the distinc t ion is man-m..~e . We should therefore measure vortex 
'strength' in a way that will give the same answer whether the vortices are constrained or not: that is, 
we ahould meaaure fluctuations with respect to mean values averaged both in time and in spanwise distance, 
and ignore the distinction between spatia l and temporal fluctuations. Therefore we define the mean of a 

Q . 
quantity Q as 

Lt b~ JbJT Q(z, t) dz dt 
(b....., ,T__,) o o (122) 

the ortier of the limits being immateri 1 if the process is statistically stat ionary in z and t. 
Experimentally this could be done by traversing the measuring instruments slowly dpanwise whil e taking 
time average, (the lower frequency li ti t being chosen much smaller than the apparent passing frequency of 
the vorticea). Favre (134: 1960) has disc~ssed double-averaging schemes with reference to boundary layers 
with 1teady apanwiae periodicity: Gupta , Laufer and Kap l an (135) have discussed variable-time averaging 
with reference to flows with longit uti inal streaks that are "steady" only in Johnston's sense. Vortex 
'strength' could be defined in terms of the mean-square circulation around - say - a square contour o f 
side 6 in the yz plane (1ee Re f .26, §6,4 for a general discussion). It may be necessary to consider 
the atructure of the vortices in detail for some practical purposes such as estimating the behaviour of 
~eparation lines, as well as for basic research purposes. 

John1ton's description makes it clear that there is a continuous sequence of events with increasing 
curvature parameter, correspond i ng to increasing vortex 'strength ' as defined above. It seems very likely 
that there is no critical Richardson number or bulk rotation parameter at which vorti ces sudd enl y appear: 
our whole experienc ~ of turbulent flow suggests that unsteadiness of the flow ensures gradual changes , 
since if any veloc ity profile corresponds to the steady velocity profile assumed in hydrodynamic stability 
calculations it is the instan t aneous profile and not the mean. However the change from the ordinary case 
of momentum transfer by cc,nven tional Reynolds stresses to momentum transfer principally by " ~teady" vortices 
may take place over a rel6tive ly small range of rotation number. In the atmospheric i nner layer, data 
[1ee Zilitinkevich(136:19 72] suggest that the change from forced convection to free convection (correspond­
ing roughly to the change from Reynolds stress dominance to " s teady" vortex dominance) can occur within the 
range 0.02 < -Ri < 0,05, where Ri is evaluated at a representative height. If we take Ri • 20/( au/ ay) 
and aU/ay • 0,3U/Oh), h • duct height, in Johnston's experiments, this corresponds to 
0,C07 < Ro0 < 0.017, rather lower than the value of RoQ at which vortices first appeared in J ohnston' s 
flow pattetns and conside rably less than the value of about 0.07 at which a significant region of constant 
angular momentum (the analo~.ue of free convection) appeared in the duct. Let us merely regi s ter the 
possibility - not thoroughly explored in Johnston's expe riments - t ha t the change from conventional 
turbulence to vortex domination may take place fairly rapidly, but probably at a Ri chardson number or 
rotation parameter several times that at which the vortices are first seen in flow patterns, 

Tani (102) su ~gested that an estimate of the critical curvature parameter for the appearance of 
vortices (by which he meant spanwiae periodicity of the~ flow) could be obtained by substituting an 
eddy viscoaity for the molecular viscosity in the critical value of the Gortler number fo r a laminar 
boundary layer. Direct use of the value for a Blasi us profile is not realistic but detai led analyses of 
the 1tability of curved turbulen t flows to longitudinal vortex disturbances hav· ., , ~ rnr ~,~ by : a:-dmayr 
(137) and by Lezius and Johnston (76). In both cases an assumed distribution of eddy viscosLty and an 
a11umed shape of disturbance was used to convert the probl •m into a c lassica l solution for the 
eigenvalues of the Orr-Sommerfeld stability equation for the turbulent mean ve l oci t y profi le. Sandmayr 
uaed the eddy viscosity for a plane flow and deduced a prefe rred spanwise wavelength fo r the most unstabl e 
diaturbance - thr. one that, according to the 0rr-So11111erfeld equation , appear s first as the curvatu r e 
parameter increases . The results agree well with Tani's measurements although Smith (138) has pointed out 
the extreme difficulty of calculating accurate values for the wave length of Taylor-Gortler vor tices in 
laminar flow: these purely mathematical difficulties are additional to the practical dif ficu lty that the 
wavelength may be constrained by the need f or an integral number of vortices. Lezius and Johnston use an 
eddy viscoaity for rotating duct flow that vari es as an empirical F-function of the gradient Ri char~son 
number and a wall stress that varies as an empirical function of the bulk rotation number RoQ = 0h/ U. ln 
fact, the "critical" rotat i on number is little altered by this refinement, fa lling from about 0,03 to 0.022, 
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and the "critical" wevelenath h al1101t con1unt et 1,4 timu the duct heiaht. The wor d "critical" h 

enclo1ed in quotation urk• becau1e it i1 rather difficult to be 1ure exactly what the value, mean. There 

i1 obviously 10• chanae in turbulence etructure, 1pecifically in the lonaitudinal vorticity fluctuation,, 

even for very 1ull 1tremline curvature; and there i1 1till acme un1teadine11 in the ob1erved 

lonaitudinal vortice1 even for very larae curvature, De1pite che ~ood aareement between the calculated 

critical rotation nuaer and the value at which di1tinct longitudinal vortice1 were fir1t 1een in the 

flov-vi1ualiaation experiaent1 of Leaiu1 and John1ton it •e-• to the pre1ent author that the 1tability 

analy1i1 and the a11..-d eddy vi1co1ity toaether introduce a 1puriou1 "trigger level", a rather arbitrary 

value of curvature par-ter at which the tendency to 1panwi1e periodicity become, matheutically 

dhtinphhable froa the 1panwhe-invariant turbulence model. Since the "trigger leve111 i1 not too 

1en1itive to the turbulence model (i.e. the detail, of the eddy viacosity a11umption1) the analy1i1 may be 

very uaeful for comparative purpo1e1, providina a quantitative meaaure of the likelihood of occurrence of 

lonaitudinal vorticea (unateady, "1teady" or •teady) in different flows , 

The remaining queationa concern the preaence of 1panwi1e periodicity in curved duct flows - aa 
oppo1ed to rotatina onea - and in free jeta and wall jeta, It aeem1 very likely that "steady" vortex 

pattern• may not exi1t in jet• becau1e the growth rate i ■ 10 large that frequent readju~tment of the 

1panwi1e wavelenath would be needed to keep it near the preferred multiple of the ■hear-l ayer thickness, 

Hi1h-a1pect ratio, fully-developed duct flow, will not be significantly constrained by lateral boundariea, 

and the effect of di1turbance1 in the intake flow will di1appear at large distances downstream, so that 

there may be very little tendency for the vortex pattern to become "steady": however this argument applies 

almost as well to John1ton'1 rotating duct (aapect ratio 7) as to the curved ducts of Wattendorf (aspect 

ratio 18) and of E1kinazi and Yeh (aapect ratio 15.5) and is not a very convincing explanation of the 

preaence of " ■ teady" vortice1 in the fir■ t flow and their absence from the others, because the va ues of 

the curvature parameter in the curved ducts correspond to rotation numbers Roo of between O.l and 0.2. 
Hore work ia clearly needed; careful aearches for longitudinal vortices should be made in any experiment, 

on unatable curved flows, and it would be interest i ng to have theoretical "critical" values of Ro or Ri 

for flow, other than Sandmayr'a boundary layer and Lezius and Johnaton's rotating duct. 

The lateat information about longitudinal vortices or "rolls" in the atmospheric boundary i.ayer is 

given in Ref1 139 and 140. There is as yet no evidence that vortices resulting from unstable stratification 

or curvature develop stable non-turbulent cores.,,.,, 

5. 6 IN'rERNAL WAVES 

Stably-1tratified buoyant flows can support internal waves. Theae ai·e "transverse" waves with particle 

velocities sub ■ tantially normal to the phase velocity, whose direction is that in which the create and 

trough• propagate. "Longitudinal" waves, with particle velocities in the same direction as the phase 
velocity, necesaarily involve compression and expansion of the fluid which we neglect, The propagation 

of energy, described by the terms in the Reynolds-stress transport equations which we have so far called 

the "turbulent tranaport" term,, may occur in a different direction to the propagation of crests and 
trough,, 

There is still some controversy about coexistent waves and turbulence , even in s tratified flows, 

For in1tance Pao (14 1) speaking at a colloquium whose proceedings form an excellent introduction to 

meteorological turbulence, 1ays "(i) internal waves and turbulence coexist in turbulent stratified flows 

with internal wave, at the large scales (wavelengths) and turbulence at the small scales; (ii) turbulence 

decay, [in a atratified wake) much more rapidly than internal waves; and (i i i) the turbulent-nonturbulent 

interface■ are not necessarily sharp, and the trans ition region may consist of 1110stly internal waves". At 

the aame colloquium, Stewart (142) takes the more cautious view that "I think it is extremely important to 

be aware that there is probably no really clear-cut distinction between turbulence and waves ..... when 

energy ia constantly flowing between the two kinds of motion by non-linear effects, the energy cannot be 

clearly identified as belonging to either kind." After thi s cautionary remark, he advises that experiments 

in stratified flows "should incorporate pl ans to try to distinguish between the waves and the turbulence" 

in caaea where the two are r easonably distinct: clearly one would like to know whether what one is 

obaerving, or trying to predict, is waves or turbulence. 

Little evidence is available for the presence of waves in stably-curved flows but a casual 

application of the analogy between buoyancy and curvature s trongly suggests that they do ex i st. The 

phenomena that constitute vortex breakdown are perhaps too controversial to cite as evidence for uaves; 

about the only experiments on curved shear layers that could be expec ted to show up internal waves are 

Cannon and Kays' (143) measurements in a spinning pipe with fully-developed axial flow at entry, and 
Castro's experiment (11) on a highly-curved free shear layer, and both suggest wave-like effects. The 

experiments are described in Section 10 and Section 8 respectively, ln the pipe experiment, helical 

inatability waves appeared at the interface between the turbulent core and the outer, curvature-stabilized 

flow: this is a reiion of large velocity gradient, and the exper i menters' description leads one to suspect 

that the mechanism could be the curved-flow analogue of the Kelvin-Helmholtz instability of a density 

interface in a gravitational field (144), Castro found a significant increase in the intensity of the 
irrotational fluctuations near the high-velocity side of his strongly-stabilized mixing layer, and the 

energy balance sugge1ted that tran port by pressure-velocity correlations (not measured) became significant 

whereaa it was negligibly small in a plane mixing layer, 

At preaent, therefore, the presence of waves is little more than a plausible hypothesis. Moreover, 

it is likely that waves in curved shear layers are more complicated than those in buoyant shear layers 

because the body force varies in a more complicated way, However a short rev iew of what i s known about 

waves in buoyant flows should be of some help to workers seeking them in curved flows. Where possible the 

account is written in language and symbols that apply equally to buoyant flows and curved flows : this is 

not to he construed as a claim that the analogy between the two i s ~xact. 

wavea can transfer momentum (though not heat): generally hey do so l ess e ffi ciently than 

turbulence so tha t in many cases we might be able to neglect the i r contribution t o the Reynolds-s tress 
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&radienta, rather than try to 110del the wave behaviour aa well aa that of the true t urbulence, However 
even if we adopt thia view we are atill faced with a problem in interpretina exp~rimental reaulta: if we 
■ eek empirical information to be in,erted into tranaport equation, for mean pro~uct1 of the truly 
turbulent velocity fluctuation, (hereafter referred to aa the vor ticity-fluctuation mode) we have to 
diatin1ui1h between contribution to mea1ured quantitiea from the vorticity-fluc tuation mode and the 
internal-ave mode. Before diacu11in1 waya of makina thi1 di1tinction we conaider the curiou1 propertiea 
of two-dimen,ional internal wave■ in the 1imple1t caee of a 1tratified fluid: ~f wavea in rotating fluid ■, 
we merely c-.nt that their propertiea are even more curioua (145). For a ahort general review of aravity 
wave, in the •tmoaphere, aee Ref.146: they may be rotational if denaity chanae• are 1ignificant (115). 

Let the wave-number vector, whole direction ie the direction of propagation of the wave creeta and 
whoae magnitude is 2w/(wavelength), be ~. with component k1 in the x direction and k2 in the y 
(vertical) direction: k3 is zero if the disturbance i, confined to the x,y plane. Let the frequency 
1een by a stationary ob1erver be w. Suppoae to begin with that the Brunt-Viieili frequency wav ia 
effectively conetant (and poeitive) over the range of y that interest• ue, and - an equally etrong 
a11umption in practice - that the wavelength is su:all compared to thf! "1cale hei&ht" p/(a'p/ay). Then 
Hovbray and Rarity (147) , .nd other previous and eubsequent author■ have shown that the "dispersion relation" 
between frequency w anrl wave number ~ is 

(123) 

where Wi is the intrins i c circular frequency, w - ~-~ = w - U1k1 - U2k2, The difference between w and 
wi simply represents convecti.on of waves by the mean flow. Writing the scale height as 
w8~/(body force per unit mass) we obtain its analogue for a 1lightly-curved flow a, U/(2aU/ay), whose 
average value in a shear layer will be at most one or two times the shear-la)er thickness so that the 
condition for validity of Eq(123) is that the wavelength shall be rather amaller than the ehear-layer 
thickness. Waves whose wave number lies in the energy-containing range of the turbulence ■pectrum will at 
beat barely qualify. The behaviour of these short internal waves can now be sun11arized aa follow, (Fig.17) 

(i) The wavelength is determin~d by the length of the aource region (e.g. the diameter of an 
oacillating-cylinder wave-maker or the wavelength of an eddy) and i■ usually almoat equal to that length. 

(ii) The frequency seen by an observer moving at the same apeed aa the source is equal to the frequency 
of the source, 

(iii) The direction of propa,ation of the wave creats relative to the flu ' j (the direction of k or of 
the relative phaae velocity wi l~I) ia by definition at tan-1(k2/k1) to the horizontal and Eq(i23) 
shows that this angle is 

so that while the wavelength is not determined by the frequency ehe wave direct i on is. If wi > w8 waves 
do not propagate, and the disturbance is confined to the neighbourhood of the source. 

and 
(iv) The relative~ velocity, which as always has components 
y direction, has a magnitude 

2 2 
k1 + k2 

and in the x 

and a direction tan- 1(-k1/k2) to the horizontal: that ~s, the direc tion of propagation of the energy of 
the wave motion is perpendicular to ~. the direction of propagation of the wave crests. The particle 
velocities, bring necessarily transverse to k, are in the direction of the group velocity. Note that 
the motion is oscillatory and that the energy-does !12! radiate laterally away from the wave train, whose 
width remains of the order of the width of the source. 

Figure 17 shows the wave configuration found in the exper iments of Mowbray and Rarity in a 
stationary, stably-stratified fluid: the wave-maker was a horizontally-oscillating cylinder, In these 
experiments w8v was nearly independent of y end the waves propagated in straight lines, If w8v varies 
with y the theory becomes more complicated but it is qualitatively clear that if w8v decreases the 
direction of propagation of the wave crests become■ more nearly vertical, and vice versa. If w8v 
decreases below the (constant) value of w, the wave• are reflected ae 1hown in Fig.17, Wave, are 
reflected as usual from a solid surface without the formation of a cusp in the envelope of the wave vector. 
Waves are as usual refracted by a velocity gradient: if V • O, then replacing wi by w - Uk1 in 
Eq(l23) and differentiating gives 

(124) 

assuming for simplicity that w8v remain• constant and remembering that w and, in thi• case, k2, will 
remain cnnstant, Therefore k1 clecreaees if U increaees, but rather more slowly than if the waves were 
non-dispersive and k1 U were con1tant, 

The behaviour of wave, propagating from an impulaive source i, discus1ed by Mowbray and Rarity: 
two families of waves appear. Possibly a more real i stic situation, in view of our reliance on displaced­
element arguments, is that investigated experimenlally by McLaren, Pierce, Fohl and Murphy (15), in which 
a displaced elemenl of a large body of stably-stratified fluid is set free to execute decaying oscillations 
(the initial potential energy being converted i nto turbulent energy, thermal internal energy and radiated 
wave energy). About two complete 01cillationa are executed, after which the motion of the displaced 
element can no longer be diatinguiehed from that of the ,hallow layer either aide of it, which oscillates 
vertically at approximately the Brunt-Vlialll frequency. In the experiment• of McLaren et al, both high­
frequency waves (propagating almost horir.ontally, with frequency up to 4w8v> and non-periodic horizontal 
"displacement" motion■ were also obeerved. 
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In a curved turbulent ■hear layer the energy-containing eddie1, which will pre1umably be the 
atrongut 1eneraton of WfVe1, are not all small c011pared with the layer thicknHI or the "1cale height", 
or it1 analogue (U2/r)/wiv, equal to U/(23U/3y) in the limit of 1mall curvature, The effect de1cribed 
hy !q(124) al10 tend, to incree1e the langth1 of wave, propqating toward, the high-velocity edge of a 
a,hear layer, TheH Mdillll'"length wavu (k6 "' 1) are treated by B eth erton (148) by a "normal mode" 
analy1i1, u1ing the wave propagation equation due to Scorer (149, 15J) for the ca,e of negligibly ■mall 
V-c0111ponen~ •an velocity, The analy1i1 become, easy to intE.·pre t if (a2u/ay2)/(Uk~- wk 1) i1 1mall. In 
the inner layer of a turbulent boundary layer a2u/ ay2 • -\I /(Ky2) an, the intri91ic frequency w - Uk 1 
will be of order utkl sot ,at the ab~ve~ntioned paramet~r i1 of otJer -1/(Klt1y2) which is ,mall for 
wavelenath1 of order y ot greater, 10 that it1 neglect i1 permi1sible for all wavelength• likely to be 
iaportant in practice. Then the wave motion can be regarded u propagating in the po1itbe y direction 
with a y-c011p0nent wave number given by Eq(123) (with V • 0), If w8v become, 1mall (as it alway, doe, 
near the free-1tream edge of a ■ table 1hear layer whether buoyant or curved ' the waves are reflected 
dovnvard1 again, Note that prolonged distortion of a train of short wave, by a mean shear leads (Eq(124)) 
to wave, with large k1 which will then behave like normal-ode waves: however an order-of-agn'tude 
change in U i1 not likely in practice except perhap1 for propagatio, of waves across the thickness of a 
free ■hear layer. In the ca,e of a ■ table boundary laye~, the waves ir~ trapped between the surface and 
the region where w8y decrea~e• to the mo1t important range of valueB of w, Bre t herton points out that 
thi1 happens in the case of lee waves down1tream of a range of mountains: it is known that extremely strong 
wavu can occur in this cue, This "waveguide" ■ ituation is probably the one that actually occurs in 
boundary layer, on convex walls although it must be repeated that no experimental evidence exists, In 
curved d~ct or jet flows Wsv falls to zero at the boundary between the stable and ~nstable regions and 
the waveguide phenomenon should occur again: it would, ho~ever, be rather difficult to Jistinguish wave 
motion on the ,table side from the irrotational fluctuations generated by the turbulence on the unstable 
side. 

Bretherton (148) also di■ cusse■ the possibility of "critical layer absorpt i on", Si nce both k1 and 
the frequency 1een by a fixed observer, w, are constant, the intrin1ic frequency w - Uk (the frequen cy 
s een by an ob1erver moving with the fluid) can fall to zero: roughly speaking this will occur when the 
velocity becomes double that at the value of y at which the waves were generated, since w Al Uk 1 there 
if this happens the wave effectively ceases to propagate relative to the fluid and energy accumulates at 
this "critical layer". The phenomenon appears to be the converse of that occurring in hydrodynamicall~ 
un1table (neutrally buoyant) flows in which disturbances are generated near the critical layer: Phillips 
(151) 1ugge1t1 that critical layers may play an icportant part in the maintenance of turbulence in 
neutrally buoyant turbulence, Phillips' theory is not uncontroversial but it is at least possible that 
strong interactions between waves and turbulence may occur at Brctherton's critical layer, 

In curved mixing layers Wsv falls to zero at both eiges , presumably again r esulting in trapping 
of waves . However the normal mode analysis is valid only ~or wavelength s which are not too large compared 
with the stable layer thickness , Long two-dimensional waves (k16 << l) propagate as i nterfac i al waves 
along the layer, with an amplitude that decays exponentially 011 e i ther s ide , as would be the case f or two­
dimensional irrotational motion generated by the turbulence in a non-st r ati f i ed layer, The dispersion 
relation in this case depends, for buoyant flows, on the density di ffer ence acr oss the l ayer: 

w • U1k1 + {-g ;~ }112 
(125) 

-,- I 2 'where we can rewrite -g 6p p as w8V dy to apply the analogy between bucyancy and curvature , The phase 
velocity relative to the fluid, w/k1 - U, iA proportional to ki- 1/ 2 and th e r e lative group velocity is 
half the relative phaee velocity: in principle very long waves can propagate upstream, "Breaking" of 
interfacial waves [Kelvin-Helmholtz instability (144)) occurs only fo r small Richardson nwnb ers 
(necessarily less than 1/4) but the Richardson number of a mixing layer of roughly cons tant cur vature is 
roughly proportional to x so that a catastrophe could occur near the s tart of the mixing layer i f 
up1tream propagation did occur, Very l ong waves (k 16 << 1) generated by the turbulence will be rare 
since most eddies have k16 ~ l; Pao' s (152) shadowgraph pic tures of wakes i n a f luid with overall stabl e 
stratification do 1how a tendency for long waves t o predominate but his s ituat ion i s c l ose r t o that of 
McLaren et al, than to interfacia l waves near a stabl e l ayer in an otherwi se neutral f lu id , 

These analyses of internal waves all neglect the scattering or dissi pat i on of wave energy by 
turbulence. Scattering of waves by turbulence , stud ied mainly in the context of sound propagat i on, occur s 
because the random velocity fluctuations cause random re f r ac t ion of the waves by th e same mechan ism that 
cau1e1 refraction by mean veloc ity gradients. If, as fo r exampl e in Eq(l 25), 

w • U.K + • constant (126) 

then fluctuations in U cause f luctuations of K i n magni t ud e and di rec tion , and, al though th e time-mean 
of the velocity fluctuation a t a point i s ze ro by defini t ion, successive wave f r ont s moving through t he 
turbulence will emerge in s lightly different dir ec t ions so that ther e i s a f i nite root-m,•an-squar e scatter 
of the directior. of the phase velocity (and in general t he group ve loc ity) of t he emerg i ng wave s . To a 
first (linearized) ap·pr.oximat ion the total wave ener gy i s unchanged, Diss ipation of wave energy by 
turbulence i s es senti~lly a non-l i near process , in wh ich the i nte r ac tion be tween t he t urbul ence and the 
fluctuating rate of st rain i mpos ed by the wave transfe r s energy f rom the waves to th e turbul ence , af t er 
which the energy is trans f erred by the ord i nary vor tex-s tre t ching process t o small er wave-length s and 
finally to the diss i pat ing eddies, High rates of trans f er from waves to turbul enc e occur when waves 
"break" but this is likely to be a rare phenomenon in curved flows . 

In practice scatt '!ring and dissipat i on take place s imultaneous l y, Eq(12J: shows tha t t o f i r s t order 
the scatter in direction of the wave vec tor K i s independ ent of it s tMgnitud L, whil e t he r oo t-mean-square 
fluctuating rate of strain i n a wave system of gi ven energy f lux - and ther efor e th e f r ac t ion of that 
energy trans f erred to the turbulence - i s inver se ly proportional t o the wave l ength, Scatteri ng of transve r se 
waves will differ only in detail fr om scattering of l ongi tud i nal waves so tha t di scuss i ons and rev iews by 
acoustician& are relevant, The papers by W. C. Reynolds and Hu ssa in (1 53) are a recen t comprehens i ve account 
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of the behaviour of tran1ver1e (rotational) wave• in turbulence, bi11ed toward■ wavelength■ of t he order 
of the wavelength• of the energy-~ontaining eddie1, Thia ia the range of wavelength■ called the "buoyant 
1ubrange" in meteorology: energy ia extracted from the turbulence by buoyancy effect■; part of that 
energy 1011 into pel'lllanently raising the centre of gravity of the fluid and part into internal wave■; the 
latter part i1 then returned gradually to the turbulence. The buoyant 1ubrange i1 still a 1ubject of 
controversy: the paper■ by Pao (141) and Stewart (142) sunaarize current views. Pao 1ugge1t1 that most of 
the internal wave energy in ■ table atmospheric layers ia concentrated at wavelengths longer than the 
energy-containing range of the turbulence: this will certainly be the ca■ e for a given wave-packet after 
propagating through a large field of turbulence, but it i1 not obviou■ ly true of waves generated by the 
turbulence in a re■ tricted ■hear layer becau■ e a given wave is created by an eddy of the same wavelength, 
However there 1eem to be no experiment■ in laboratory buoyant flows to prove the point, 

Four possible method■ of distinguishing tran1verse internal waves from turbulence are 

flow visualization 
1pectrum shape 
phase velocity 
heat-flux or vorticity spectra 

Mone can po1itively di1tingui1h between wave■ and the irrotational (but non-propagating) fluctuation■ that 
exi ■ t even in neutrally-1tratified flow• aa a re1ult of pre■ sure fluctuations produced by the turbulence, 
In a ■hear l ayer the irrotational fluctuRtion• move not at the local ■ peed of the fluid but at the ■peed 
of the eddies which generate them: the difference ia of the order of 
(111an velocity gradient) x (large eddy size), which i• it1elf the ratio of a typical turbulence frequency 
to a typical turbulence wave number and therefore a typical phase velocity of internal waves, It may 
1carcely be logical to ■ eek a difference between irrotational fluctuations and wave• propagating parallel 
or nearly parallel to the 1hear layer. 

Flow vi1ualization reliea on an ob ■erver who thinks he knows the difference between wave■ and 
turbulence on sight, and i1 therefore not universally applicable, It has been applied in elegant dye-trace 
experiment• by Wood■ (144) and others in t he aurface layer of the ocean: the ahadowgraph technique ha1 
been used in buoyant turbulent flow■ in the laboratory by Pao (152) and radar back-scatter haa been u1ed 
by Browning, Starr and Whyman (154) and other■ to plot cro11-aection1 of cloud patterns in the atmosphere. 
In all these ca1e1 obviou1 wave patterns were ob1erved only between, or at the edge of, turbulent region■, 
10 it i1 not clear whether the technique ia uaeful in the more difficu ' t aearch for waves actually within 
the tu1bulence, 

Spectrum ahape measurements are useful if the shape of the turbulence apectrum in the abaence of 
waves i1 known, but aince it cannot be known very accurately it ia difficult to make quantitative 
deduction• with any accuracy . Caldwell and Van Atta (155) discuss the extraction of the inten■ ity of 
narrow-band viacoua instability waves frnm background turbulence by spectrum mea1urement1: this ia a 
relatively eaay caae and one anticipates that waves interacting with intense turbulence will have broader 
1pec tru."D peaks. 

Phaae velocity mea■urements involve space-time correlations or frequency-filtered apace correlation■, 
from which wave-number/frequency or wave-number/phase-velocity spectra can be deduced by two-dimen■ ional or 
one-dimensional Fourier tranaformation reapectively. Stegen and Van Atta (156) de1cribe a 1impler technique 
baaed on a frequency-filtered apace correlation with a fixed apatial aeparation ■mall compared to the 1i1a 
of the smallest eddies, but it is evidently not very accurate for wavelength■ large compared to the apatial 
1eparation, The wave number direction is that of the apatial separation between the 1en1or1 10 that in 
principle any component can be extracted, 

Waves - even 1hort one• - have negligible vorticity. To diatinguiah wave, from turbulence we need 
a criterion of comparison, auch as the ratio of the vortici ty spectrum to k2 time■ the velocity apectrua, 
Thia ratio i1 unity for the three-dimensional apectra in isotropic turbulerce but not nece11arily for tha 
one-dimensional 1pectra mea■ured in ahear layera: we need data for turbule1ce without wave• before we can 
identify wave• by divergence from the norm, If only long wave• are expecteo it i1 not nece11ary to build 
a vorticity probe (Ref,157, p.128) small enough to resolve the main, high-wave-number contribution, to the 
11ean-1quare vorticity: a larger probe would be adequate. Since wavea and other irrotational fluctuati0111 
will not tranafer heat, S~ewart (142) and Pao (141) auggest isolating the irrotational contribution by 
meaauring the "co-·apectrum" and "quadrature 1pectrum" of the temperature fluctuation• e and the vertical­
component velocity fluctuation v, The co-spectrum indicates contribution, to the mean product 8v which 
i1 the rate of tranafer of temperature in the y direction by the turbulence, In the quadrature 1pectna, 
one of the 1ignal1 ha1 ita phase changed by 90 deg. before proce11ing in the 1ame way a, for the co-1pectrua. 
Therefore if e and v are nearly uncorrelated - as in pure wave■ - the quadrature 1pectral den1ity l1 
much larger than the co-apectral density, whereas if they are well correlated - a1 in turbulence - the 
co-1pectral denaity ia the higher. The technique will not work in a curved flow unle11 it happen■ to be 
heated (note that temperature i1 used as a tracer and !!2! aa a mea1ure of buoyancy 10 that we do not ha" 
to invoke any analogy between buoyancy and curvature) but it may be worth heating the flow ■ lightly juet 
to check for the pre■ ence of wave■ . Failure to benefit from meteorological experience and recogni ■e that 
"turbulence" in a 1tably-curved flow ia very likci ly to include contribution ■ from tr1n1verae, propagetlq 
wave• would lead to great po11ibilities of confusion, 

S.7 COLLAPSE OF TURBULENCE IN HIGHLY-STABLE FLOWS 

Thi ■ ii a co~n phenomenon in buoyant flow■, well-known geophyaicll example■ being the flow of • "wall 
jet" of aalt water along the bed of a fre1h-w1ter lake or river and the ni ght-time 1t1bili11tion ~ the 
atmo1pheric inner layer (115): for a laboratory investigation aee Ref.131. 

Colee and Van Atta (73) have de1cribed the mixed l1111inar-turbulent flow found between cone ntrlc 
rotating cylinder, with a ■ table gradient of angular momentum, turbulence being confined to a rotatin1 
1piral reaion which continually exchange• fluid with the laminar region, The phenoaana are probably •re 
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clo1ely allied tot ose occurring in the thermocline region of the oceanic surface layer, where thin 

laminar and thick t urbulent layers coexist (144) , than to the phenomena occurring in more conventional 

curved shear layers . 

John1ton (158) described in detai l the re.1Ult1 obtained in a rotating duct (Fig.6) where the flow 

waa 1table on one 1ide and unstable on t he other. Flow-visualization photograph• showed that the 

characteristic "streaky" structure and "bursting" phenomena found in the viscous sublayer could be almost 

completely suppressed at rotation numbers Ro = Oh/U greater than about 0.15 , despite the presence of 

vigorous vortex motions (Section 5.5) on the unstable side of the duct. Mean velocity profiles in the 

inner layer showed gross departures from the logarithmic law for Ro> O,l, reaching the para~olic shape 

of laminar Poiseuille flow for Ko> 0,15 . It is noteworthy that when the ratio of the apparent mixing 

length 1 to the mixi ng length at the sam~ point i n a non-rotating duct 10 was plotted against local 

Richardson number (in the spirit of the F-factor analysis) a unique curve was ,!!2! obtained, The ratio 

1/10 at given Ri decreased with increas ing Ro . The plots at each rotation number could be fitted quite 

well by 

10 1 + 8 Ri 
1 (127) 

with values of B ranging from 4 to 10 for 0.027 <Ro< 0,081. This 'Monin-Obukhov' form is a 

significantly better fit for Ri up to 0.25 than the F-factor form which is ~ts first binomial 

approximation, although this might not be true if L/K/Lm0 , rather than Ri, was used as a parameter. 

Clearly the bulk rotation number is an important parameter, implying large effects of rotation on the 

turbulent transport of Reynolds Gtress and consequent failure of local-equilibrium analys .·s. The duct, 

with adjacent stable and unstable regions, is probably more susceptible to domination by l ransport effects 

than a shear layer with the same sense of stability throughout. Johnston refers to the presence, at 

moderately high Ro, of "highly damped patches, or spots, of turbulence" in the inner. layer on the 

stable side, and it seems probabl e that they were excursions from the unstable side ra t ~er than locally­

produced turbulence, Johnston app l ied a local Reynolds-number criterion for transi i on ~rom turbulent to 

laminar flow (159) and obt~ined quite successful results, but the use of a l ocal Reynolds number for 

correlating reverse transition must clearly be suspec t if a local Richardson number is not an adequate 

parameter for correlating curvature effects i n general . 

So and Mellor (160) measurEd a turbulent boundary layer wh i ch developed over a flat surface and then 

passed to a convex surface whose radius of curvature was about 12 times the boundary layer thickness, The 

turbulence in the outer layer virtually disappeared [see Fig.18(a): here "station l" was in the straight 

entry section and stations 7, 9 and 11 were respectively about 12, 15 and 22 boundary layer thicknesses 

downatream of the start of the curved r~gion]. As a result the boundary layer thickness changed very 

little over the curved region. Fig.18(b) shows velocity profiles near the start of the curvature and far 

downstream: the outer regions are almost identical while the inner region of the profile at the downstream 

station is effectively a sub-boundary-layer with its edge constrained by the stabilizing effects of 

curvature. The skin friction coefficient at station 11 wns about 0 .0024, compared with about 0,003J at 

the same Reynolds number on a flat plate, and a significant part of th i s decrease is due to the smaller 

free stream velocity seen by the sub-boundary-layer. The parameter (U/r)/( au/ ar), called S in Eq(86), 

wa, about 0. 25 or 0.4 at the edge of the turbulent region, depending on whether au/ ar is evalua t ed ju i t 

inside, or just outeide, the turbulent region. Riis rather more than, and Rt or (L/K)/Lm0 rather less 

than, twice theee values, but since the turbulence near the edge is presumably maintained at least partly 

by t urbulent transport from below local-equilibrium parameters are .again of doubtful quantitative validity 

for di1cu11ing the collapse of the turbulence. 

In So and Mellor's boundary layer the flow near the surface is still decelerating under the influence 

of the shear stress gradient , and the edge of the turbulent region is still spreading outwards towards 

the original edge y • 6, This seems paradoxical: the explanation appears to be as follows. In the 

boundary layer at the start of the curved region , au/ ay is small - and the Richardson number or any other 

curvature parameter therefore large - except near the surface, There fore the turbulence dies out, except 

near the surface. The Reynulds stress gradients near the surface continue to decelerate the flow (more 

rapidly , eince auv/ ay becomes numerically larger), au/ ay becomes more nearly constant near the surface 

[Fig.18(b)], and the region of large au/ ay gradually increases in thickness. If the surface curvature 

continued for a long enough distance downstream turbulence could spread beyond the original edge of the 

boundary layer. The velocity profile would probably still have a rapid decrease in gradient near the edge 

so that, except near the edge, generation of Reynolds s tress by the mean shear would be as important as 

transport from below: the large-eddy structure in a layer that is s t able everywhere is likely to be 

weaker than in neutral conditions, leading to a relative decrease in turbulent t ransport terms, so that 

the turbulence!!!!!!.,; be maintained largely by local generation . The eventual st ate of the boundary layer 

after 6 had increased significantly beyond its original value is a matte r for speculation: poss ibly 

turbulence could gradually die out again throughout th~ layer, leaving a purely laminar flow, but this 

would require 6 ~ R and turning angles exceeding 360° and is not l i kely t o be encountered in practice . 

In the intermediate stage of recove ry, the turbulence structure of the sub-boundary layer will be 

affected both by the curvature and by the presence of a rotational outer s tream, the remains of the initial 

boundary layer. The problem of a boundary layer in a sheared stream appears in the "superposition" 

approach to the study of interacting shear layers (3) and it appears that the effec ts on the turbulence 

structure may be s~all. The problem appears in real life in the interaction of a sheared entropy layer 

with the boundary layer on a body carrying a detached shock wave, but few s tud i es have been made in th~ 

turbulent case, 

6. BOUNDARY LAYERS AND DUCT FLOWS 

6 . 1 W W-SPEED FLOW 

The boundary layer below an irrotational stream is probably the most important shear layer in aeronauti cs ~ 

or mechanical engineering, a,1d the moat co111110n examples of flows affected by etreamline curvature are 
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aerofoil, blade or intake boundary layers with R/ 6 not much less than 100. We have already seen from 
Thomann's experiment vith R/6 ._, 50 (4: Pig.3) that fairly large effects occur even at these moderate 
curvature,, but the P-factor approach using Eq(36), with Eq(37) if the curvature changes rapidly, should 
s uffice for engineering calculations, 

Unfortunately most of the experimental data available at presertt were obtained in highly-curved 
flows. Table 3 liats the more detailed of the low-speed experiments on curved or rotating boundary layers 
and duct flows reported to date, while Table 4 lists the supersonic exper iments. The low-speed experimenters 
deliberately choae large curvatures wi t h the praiseworthy object of obtaining large and easily-measurable 
curvature effects , while the high-speed experimenters were mostly unaware of possible curvature effects on 
the turbulence and chose large curvatures to induce s trong pressure gradients. It can now be seen that 
most of the stably-curved boundary-layer flows experienced collapse or incipient collapse of the turbulence 
in the outer layer, while the unstable flows contained strong longitudinal vortices . Unfortunately these 
gross non-linear effects generally went unnoticed because of the absence of turbulence measurements on the 
one hand and the absence of careful checks for three-dimen~ionality on the other (although, as mentioned in 
Section 5, it. is still not certain whether even strong vortices are always "steady" enough to contribute t o 
the mean vorticity so as to be detectable by n~an-flow measurements) . Almost the only experiment with R/6 
of the order of 100 is the current investigation by Me roney at Imperial College, Even at these large 
values of R/ 6 difficulties in the definition of integral thicknesses and of the shape parameter H are 
apparent, whil e at the higher curvatures used by some of the other experimenters these difficulties have 
tended to overshadow the effects of curvature on turbulence structure and to fru s trate comparisons between 
calculation and experiment. In this chapter we review the experimental evidence in a semi-quantitative way: 
detailed comparisons with typical calculation methods are presented in Append ix 2 to whi ch occasional 
refe 'Cence will be made . A rough estimate of the importance of curvature effec ts can be obtained by taking 
0.3 Ue/ 6 as a typical value of au/ ay or (-uv) 112/L in the middle part of a boundary layer . Eq(36) 
with a • 10 then gives F <:=- 1 ± 306/R so that the self-imposed li~its -0.5 < F < 1.5 for plausibility 
of the F-factor concepts imply 16/RI < 0,015. We shall see that quit e good agreemen t is found between 
calculati ons using F-factors and experiments on boundary layers with lo/R I > 0.015, partly because in 
highly stabilized regions the shear stress is so small that it need not be predi c ted to good precentage 
accuracy while in a highly-unstable region the same argument applies to the ve locity gradient instead, 

The early boundary-layer measurements by Wilcken (22), Schmidbauer (83) and Yeh (99) were mentioned 
in Section 4, Wilcken ' s mixing-length di s tributions on a concave (unstable) surface are reproduced in 
Fig.19. Whil e one can never have complete confidence in shear stresses deduced from the mean-momentum 
equation, Wilcken's experimental techniques seem to have he~n good and the results are acceptable, with 
some reservations about the presence of longitudinal vortices leading to undetected spanwise variations of 
mean pr operties, We not e again that vortices which ar e sufficiently unsteady not to produce spanwise 
variatiJn of the mean flow simply contribute to the Reynolds stresses, and the flow can legitimately be 
regarded as two-dimensiona l. Values of a in th e F-factor, Eq(26), a plied to the apparent mixing lengths 
and ignoring lag effects, are shown on Fig . 19. As remarked befo re, we expect the apparent value of a in 
the linear F-factor to be smaller for large values of e/( au/ ay): if e/(aU/ ay) were very large so that 
e were the dominant s train r ate a would necessarily be of order unity. Thi s limiting effect is also 
noticeable on a convex surface, in Schmidbauer's (83) co rrela tion (Fig . 20) of skin fri c tion coefficient cf 
with 8/R where 8 i s the momentum thi ckness (apparently defined with reference to the maximum velocity, 
ignoring the decrease of free stream velocity with distance from the surface) . Schmidbauer realized that 
Cf also depended on Reynolds number and shape parameter but argued, not very convincingly, that their 
effects could be neglec t ed in hi s case, Schmidbauer's r esults can now be qualitatively explained by the 
collapse of turbulence in the outer layer at large 8/R (say 6/R > 0.03) l eaving a thin inner turbulent 
boundary layer with a smaller effective free stream velocity (Fi g.18) and of course with smaller Richardson 
number so that the local Ri ch3rdson number i s not very large except near the edge. The quantitative effects 
shown in Fig . 20 seem too large. F~r o/R ~ 0.01 (i . e . 8/R <:s 0,001) one expects a reduction in Cf of 
roughly 10 per cent while Schmidbauer's curve through his points i .. plies 25 per cent. Fig.14 shows 
comparisons be tween the boundar y l aye r in Schmidbauer's Fig . 6 [us ing the data as r e-analysed by Thompson 
(161)) and the calculation method of Ref. 16, using an F-factor with the "meteorological" value of 14 for 
a and negl ecting lag effects on t hi s constant-radius su rface : in thi s case 6/R was no more than 0.025 
(i.e. 8/R¥ 0.0025) and the reduction in Cf due t o di rect effects of curvature was not more than 15 per 
cent compared t o over 50 per cent from Schmidbauer's corre l ation . 

Yeh's measurements (99) in the bound ary layer on the wall of a circu lar tube carrying a swi rling 
flow are not detailed enough for convenient use as a quantitat ive test case but show qualitative evidence 
of curvature effects. The same remarks apply t o the mo re r ecent measurements of Mackrodt (133) in a 
simil ar flow, although the latter may be usable as a tes t case fo r theories of "steady" vortex development 
and show undeniable qualitative evidence of " steady" vorti ces . 

Tani' s pioneering study of l ongitudinal vorti ces (102) was followed independently by Patel's much more 
detailed measurement s (37, 162) . Pate l used a n ,<' tangul ar tunne l (we r eserve the word "duct" for flows 
turbulent t hroughout the cros s section) which Nas 12 in . hi gh and 48 in. wide between fa lse walls, with a 
centre-line radius of cu rvature of 30 in .: the boundary layer thicknes s at entry to the curved portion 
was about 1.8 in . In Ref .37 Pate l r ed uces his boundary laye r profiles to quasi-plane form by plott i ng 
Ur/(Ur)e• the ci rculation ratio , rather than the velocity rat i o. As noted in the derivation of Eq(4), 
Ur and the total pressure P are r e l ated by 

dP 
dr • .!!_ - (U r ) r a, , 2r (128) 

so tha t P and u2r 2 ar e equival ent ove r a sma ll ran ge of r. The ci r culation, for whi ch Patel uses the 
unfortunate symbol w, seems t o have no real advantage over the t otal press ure (referred to Pw> fo r 
plot ti ng data, and the total pressure is direct ly meas urable . In Re f.16 2 Pate l presents measurements in 
terms of velocity componen t s mad dimensionless by the max imum mean veloci ty at a given cross-section of 
the tunnel: thi s is actually the veloc ity just inside t he boundary l aye r on th e convex si de of the tunnel, 
Even after fitti ng fals e wall s to remove the end-wall boundary layers at the s tart of the curved portion, 
Patel found large seconda ry flows in the co rners of the tunne l. The slow-moving fluid in the sidewall 
boundary layers i s forced by th e pressure gradient into a cu rved path of smaller radius than the path of 
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the external flow 10 that fluid migrate• from the concave 1urface to the end wall• and from the end wall ■ 

to the convex 1urface. Conaequently low-velocity region• appear near the corners of the convex aurface, 

extendina over a diatance of about four time• the end-wall boundary-layer thickne11. The central part of 

the convex-wall boundary layer was fairly uniform in thicknes1 although the 1panwi1e variation of skin­

friction coefficient was almost as large as on the concave surface and the rate of growth of 6 1ugge1t1 

1ianificant lateral convergence, Patel'• detailed mapping of the longitudinal and cro11flow velocities on 

the concave aurface 1how the development of "steady" longitudinal vortice1 whoae 1panwi1e wavelength is 

about 10 in. or 3-4 boundary-layer thicknesses. It is noteworthy that the spanwiae wavelength ia the same 

at the two meaaurement cros1- 1ection1, after 135 deg. and 173.5 deg. turning re1pectively, the distance 

between the two 1tation1 meaaured around the concave surface being 24 in . or 8-10 boundary-layer thicknesses. 

The peak-to-peak amplitude of the spanwise cf variation was nearly 30 per cent, the regions of low cf 

being narrower than the region, of high Cf 10 that the graph of Cf against z looks rather like a 

rectified aine wave. Bearing in mind that the surface shear stress will be low beneath the outgoing parts 

of the vortex system and high beneath the ingoing parts, one can see that this is consistent with the flow 

pattern• in Fig.6. 

Patel (37) also presented measurements in the very thin and highly-accelerated bou11dary layer on a 

circular cylinder. The ratio 6/R i• 0.032 at the minimum pressure point, 80 deg. from the leading edge, 

and rises rapidly thereafter. Interpretation of the effects of convex curvatcre is complicated by the 

probable effects of low Reynold• number cu,e/v • 800 at 80 deg,): the data analysis for plane-wall 

boundary layer1byCole1 (163) suggests significant increases in entrainment rate and skin-friction 

coefficient at such low Reynolds numbers, opposing the stabilizing effects of convex curvature. In 

addition, the streaml i ne curvature in the outer part of the boundary layer near separation is likely to be 

greatly different from that of the surface, That some net curvature effec~s remained is implied by 

calculation, by the method of Ref.16, using the surface curvature and pressure distribution, an F-factor 

with a• 14 and no allowance for lag: separation was predicted at about 105 deg, compared with the 

experimental value of 110 deg., whereas a calculation with a• 0 (still using the measured pressure 

distribution) showed no separation at all (Fig.21). The experimental values of cf shown in Fig.22 were 

obtained from semi-logarithmic plots of Patel's profiles taken from che published graphs and their 

generally closer correspondence with the a• O calculations is probably not significant, The cf 

calculations would have been almoRt unaffected by allowances for changes in pressure or streamline 

curvature across the layer although there would have been some reduction in H because of curvature effects. 

So and Mellor's (160) exploration of longitudinal vortices in a concave-surface boundary layer with 

6/R:::: 0,1 was less s atisfactory than that of Patel in the senoe that the measu red changes in mean-flow 

properties were smaller, and indeed of no greater order than the spanwise variaLions commonly induced by 

non-uniformity of the entry flow due to irregularities in the screens or elsewhere. This is not necessarily 

a criticism of So and Mellor's experiment: the more uniform the entry flow, the less likely the vortices 

are to lock themselves into a "steady" position and thus produce effects on mean vorticity. A criticism 

that can be levelled is that the ir hypothesized £Q_-rotating double vortex system is kinematically 

impossible: also, So and Mellor suffered, like Patel, from pronounced secondary flow in their tunnel, and 

this may have disturbed the natural vortex system despite attempts to re-energise the sidewall boundary 

layers by air jets. One fortunate consequence of the lack of strong spanwise variations is that the mean 

flow may be taken as two-<l i mensional for calculation purposes (except for the customary allowances for 

slight lateral convergence or divergence caused by excursions of the sidewall boundary layers). Naturally 

this highly uns t able f low is expected to be beyond the range of validity of linear F-factors since 

~nsteady longitudinal vortex motions were undoubtedly present, with consequent large effects on the 

turbulent transport terms (unfortunately not measured in this or any other boundary layer experiment). 

Comparisons between calculation and experiment for the convex and concave sides are shown in Fig.22 and 

discussed in Appendix 2. The F-factor approach gives tolerably good results, even when applied to the 

method of Ref.16 using an Algebraic length scale, provided that the boundary layer thickness used as a 

scaling length for L is taken as the thickness of the shear stress profile (Fig.18) rather than the 

velocity profile: the latter hao no relevance to the eddy scale of the sub-boundary layer on a convex 

surface beneath a stabilized outer layer. 

So and Mellor's measurements in adverse pressure gradient (on a convex surface only) do not add any 

new quaiitative features to the data from the constant-pressure runs although the additional test data are 

useful: ~ssentially one does not expect the mean pressure gradient to have great effects on the 

turbulence structure, except for the ill-documented effects of au/ ax or av/ay (Section 3), and one 

does not e~pect curvature effects to be very important in the inner layer so that large changes in 

1eparation 1•henomena are unlikely. Any experiments on curved boundary layers planned in the near future 

should be done in nominally zero pressure gradient for simplicity, and So and Mellor'• efforts to reduce 

the strong pressure gradients that necessarily occur where the curvature changes sharply were not really 

necessary. The only valid reason for applying a pressure gradient would be to increase the turbulence 

intenaity in the outer laye; so that turbulent transport became larger and its 1110difications by streamline 

curvature easier to study: here a self-preserving ("equilibrium") retarded boundary layer would be most 

suitable. 

So and Mellor measured the Reynolds shear stress (both the "two-dimensional" component -iii7 and the 

lateral transport of longitudinal momentum -uw, which will be non-zero if "steady" vortices appear) and 

the components of turbulent intensity: al l components changed in the expected sense and it is their ratios, 

rather than their absolute values, that provide useful evidence about detailed changes in turbulence 

structure. The ratio uv/q2 , where q2 • u2 + v2 + w2, is a simple measure of the efficiency of the 

turbulence in producing shear stress: it is close to 0,15 over most of a plane boundary layer, falling 

near the surface and near the outer_!di! where "inactive" motion and irrotational fluctuations are_ 

significant, On the convex side, uv/q2 is smAll in the outer region of the boundary layer and v2/ql. is 

also somewhat reduced, indicating that sta~le curvature preferentially suppresses radial motion. Velocity 

fluctuations in the stable outer layer may arise f rom several causes, not necessarily distinguishable in 

practice: 

(i) turbulence generated locally by interaction with the mean shear 

(ii) mean tranaport from the neutrally-stable boundary layer upstream 



(iii) tut·bulent tran1port from the le11-1table regions nearer the surface 
(iv) irrotational fluctuations arising•• part of (ii) or (iii) 

(v) propagating waves (a1 oppo1ed to irrotational fluctuations convected with their source) also 
arising as part of (ii) or (iii), 
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In strongly-stable flow (i) is negligible and turbulent transport of rotational fluid by the large eddie1 
is probably ,mall also, The relative 1ize of (iv) and (v) in So and Hellor'a experiment cannot be deduced 
from the intenaity measurements, but the Richard1on number in the outer region was of the same order as in 
Caatro'a experiment (11), where oscilloscope traces showed very strong low-frequency fluctuations which 
were either waves or irrotational fluctuations of a strength not found in plane flows. 

Young (57) is making measurement• on the flat surfaces of a 30 in, x 5 in. tunnel downstream of a 
30 de&, bend, whose radius is 10 in, on the concave side and 5 in, on the convex aide, the boundary layer 
thickness at entry to the bend being about 1 in, in each case, The discussion of the lag equation, Eq(37), 
suggests that sharp bends can be regarded as "curvature impulses", the state of the turbuh,nce at exit 
from the bend depending primarily on the total turning angle and only secondarily on 6/R, Young's 
meas, ~ement1 do not explicitly support this suggestion because they are restricted to one turning angle and 
one lue of 6/R, but implicit support is provided by the fair agreement between experiment and 
cal l' , J.stiona using Eq()b) and the linear lag equation Eq(37) - see Fig.23 - although F-factora would not 
normally be expected to give realistic results with 6/R in the range 0,1 to 0,2, which ~seven higher 
than in So and Mellor'• experiments. Spanwise periodicity suggests the presence of longitudinal vortices 
in the boundary layer downstream of the concave aide of the bend, but perhaps the most interesting 
qualitative feature of the concave side is the variation of tur~ulent intensity with y (Fig,24), The 
explanation of the relatively greater riRe in turbulence intensity in the outer layer, resulting in the 
trough near the sur f ace, is that the Richardson number is numerically larger in the outer layer and the 
effects of curvature therefore more pronounced, Note that lag effects do not necessarily play a part, for 
one would expect the turbulence in the outer layer to respond more slowly than that near the wall. Fig.24 
is a satisfying confirmation of the rhysical ideas behind the local F-factor analysis, and reproduces a 
phenomenon often found in calculations using F-factors. 

Because the direct ef f ects of curvature on the turbulence near the wall are fairly small, the 
evidence of Young's measurements about the lag··effect "time constant" X (Eq. 37) is confined to t~.e outer 
layer: the discrepancies between experiment and predictions using a linear lag equation a re probably to 
be taken as evidence of the crudity of a linear F-factor and a linear lag equation rather than of a 
significant departure of the "time cons t ant" of the outer layer from the value of 106 quoted for many years 
as typical of constant-pressure boundary layers, 

Meroney (164) is making measurements, with the same initial conditions as Young, in a prolonged 
bend whose radius of curvature is 100 in. on the concave side and 95 in. on the convex side, giving 
6/R ~ 0,01 at entry. Even with so small a value the growth of 6 over the 48 in. long convex side is 
almost halved and the skin friction coefficient falls to about 0,9 of the value expected on a plane surface, 
while the mixing rate on the concave side is increased, Cf is about 1,1 times the plane surface value, 
and the customary evidence for longitudinal vortices appears. As seen in Fig.25 calculations, using an 
F-factor with a• 14 on the convex side and 8 on the concave side, give fairly good agreement for cf 
and 6: sample profiles are also shown in Fig.25, The experiment is still in progress and further details 
will be given in a c~ rthcoming Imperial College report: it is hoped that values of a derived from this 
experiment can be th .. en as standard for calculations in boundary layers with moderate surface curvature. 
Another piece of work in prog ress at Imperial College (Mech. Engng . Dept,) is a study by Priddin of 
boundary layers on curved t ranspired surfaces of fairly large curvature: various methods of reducing 
migration of the side wall boundary layers on to the test surfaces are being explored. 

The characteristic problems of axial-flow turbomachines are boundary layers on highly-cambered 
blades (the "centrifugal force" if any being ',panwise and therefore not responsible for any curvature 
effects) and boundary layers on the hub or casing, with a swirlin1; free stream. If the total-pressure rise 
is independent of radius (the usual nominal design condition) th ~ free stream is irrotational except for 
the blade wakes: therefore the boundary conditions on the bo~ndary layer are similar to those in the 
ideal swirling flow studied by Yeh (99). Mackrodt's experiment (133), whose demonstration of the presence 
of streamwhe (spiral) vortices was mentioned i.n Section 5, was carried out behind a swirl generator like 
a turbomachine stator. We note that in the absence of longitud i nal pressure gradients these flows should 
approximate to unskewed two-dimensional boundary layers: the change of flow angle through the boundary 
layer is of order 6/R radians, which is small. Viewed in axes along the local flow di=ection a 
longitudinal pressure gradient has 1 cross-stream component and crossflow therefore results, although the 
simplification of axisyDIDetry is retained and the flow now approximates to a boundary layer on an infinite 
yawed wing. It should therefore b~ possible to use the same curvature corrections in hub or casing 
boundary layers as in the corresponding non-swirling curved flows. No quantitative data for curvature 
effects have been extracted from the (concave, unstable) "casing" boundary layers, but Hughes (165) has 
analysed his measurements of the boundary layer on a cylindrical non-rotating hub beneath a swirling flow 
(maximum swirl angle ~ 10 deg., maximum 6/Retf::::: 0.007) and deduced an optimum a of 13 for the F-factor 
applied to the mixing lenath (the usual tendency to decrease with increasing Ri was found). This 
compares with a value of 14 from the buoyancy analogy and compensates for the value of 15 found at small 
positive Ri in the above analysis of Eskinazi and Yeh's experiment (98). It need hardly be s aid that a 
difference of ! I in u is not significant at present, and a reasonable conclusion from th e data of 
Meroney and of Hughes is that a value of 14 [corresponding to 8 • 7 in t he Monin-0bukhov law, Eq(ll9)) 
is adequate for small curvature effects (Ri < 0,1, say, giving 1 < F < 1,7). 

The thin boundary layer on a spinning cylinder ir. a purely axial stream i s also effectively two­
dimensional, as found experimentally by Parr (166) and Furuya P.t al, (167) and proved by Cham and Head (127). 
Cham and Head analysed Parr's results by the indirect but l egi~ imate method of comparing them with 
calculations by Head's entrainment method and inferred the behaviour of a in the F-factor appl ied to the 
mixing ltngth [replacing e/( au/ ay) by ~Ri from Eq(l15)). They found that a rose monotonically 
from values of order unity near the surface t o approxin~te ly 60 near the edge of the boundary layer. Whtle 
some departures from normal behaviour may be expected, because Ri itself behaves in an unu gual way (being 
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1mall near the outer edge as well as near the surface), it is di f f i cult to accept that such a large 

variation is r eal, Parr did not measure shea r s tress, and derivation of shea r stres s from the mean 

veloc i ty profiles would not be demonstrably more r eliable than Cham and Head's own analysi s i nvoking a 

well- tried empirical famil of veloc ity prof iles. 

Dean (168) has reviewed the general problems of boundary layers in cent rifugal turbomachines . 

Pessimi stic conclus ions are drawn about the utility of current boundary layer methods i n dealing wi th 

problems that, in the case of the impeller, " i nclude boundary layer separat ion and f ree shear flow under 

the influence of Coriolis for ces, separated flow in a rotating coord i nate sys tem, transonic fl ow over the 

blades, tip leakage and secondary flow" whil e the f ixed radial di ffu ser suffers f rom shock/bound ary-layer 

interaction, secondary flow in low-aspect-ratio passages, and sometimes signif icant curvature ef f ect s . 

The pessimism may well be justifi ed, but a numbe r of experiment s have recent l y been made on rota t ing ducts 

or boundary layers with particular appl ication to centr i fugal turbomachines , and our knowled ge of Coriol i s 

effects rivals, and i n some measure outstrips, our know ledge of the ef fects of streamline curvature in a 

stat i onary frame of reference. 

Johnston (79) r Pviews the earlier work on Coriolis (streamiine curvature) effects in boundar y layer s 

and in ducts of large or small aspect ratio: he gi ves a full discussion of the probl em of laminar f low 

stability as well as that of turbulent flow, and apart fr om re fe r ences to a few recent measurements , 

notably Johnston's own, little need be added • 0 his account , The work by J, Moore i n the Gas Turb i ne Lab. 

at HIT, referred to in report form by Johns • . n, has now appeared as "A wake and an eddy i n a rot ating , 

radial-flow passage", parts 1 and 2, ASHE p,\ HS 73-G'I'-57 and 73-GT-58, with the possib i lity of 

publication in J. Engg, for Power. It deal. with exper i ment s and calculations on the f l ow i n shor t 

rotating ducts of low or moderate aspect ratio. Moore emphas izes the effect s of secondary flow in the 

corners of his rectangular ducts but Johnston comments that the f low in the duct of hi ghes t aspec t ratio 

(71) was probably dominated by Cor i olis effects on the turbulence structure, whi ch Moore does n0t expli c itly 

discuss, 

Anders (169) made mean-flow measurements on th e cur ved blades of a r otating cent r ifugal impe ller: 

both circular-arc and l o~arithmic-spiral blades were tested, The experimental t echniques included a hot­

wire pressure transducer which measured the velocity in a capillary tube induced by the pressure difference. 

Velocity measurements were made with convertional hot wires, and sur fa ce shear stress was deduced from a 

surface pitot-s t atic tube, again using the hot-wire pressure transducer. The china-clay (Kaolin) method 

was used to indicate the flow direction by observing the wakes of small obstacles on the surface, Anders 

uses (6/Ue)( au/ ay)y•o as a stability parameter: since this is equal to 6/R the reason for the more 

complicated form is not apparent. Anders suggests that ne ar the surface t he mixing-length ratio t /Ky 

should be a function of this stabil i ty parameter buc does not extract the functi on fr om hi s r esult s . 

Judging from the development of the boundary layer thickness very large cross-fl ow mus t have occurred near 

the end walls ,,f the low-aspect-rat i o blade pas sage, so that the results are of doubtful quant i tative value 

and it is not pos s ible to assess the net effects of curvature and rotation in this very interest i ng fl ow. 

Litvai (170) has presented measurements and analysi s of the boundary layers in a rotat i.ng rig 

simulating a centrifugal turbomachine. Unfottunately t he result s are not presented in suffic i ent detai l 

for use as a test case, wh i le the ana l ys is is not conducted in terms of dimens ionless param<? ters end is 

therefore inapplicab le to other data. It is to be hoped that a mor e detailed presentation will appear . 

A number of experiments has been done on flow in curved (171-173) or radia l rot ating (174) circular 

pipes. The effect s of secondary flow dr iven by pressure gradients (1 71) obscure any direct effects of 

streamline curvatur e on t he turbulence: all that can be said at p~esent is that the effects of curvature 

should not be forgotten when calculation methods cap2~le of predi c ting the details of the secondary flow 

are being developed. 

Tillman (175) has :;tudied transition to turbulence in the "spin-up" boundary layer on the inside of 

a cylinder impulsively set into rotation about its own axis. The transition proces s as viewed with 

increasing time i s similar to the "trans i tion by spectral evolution" (71) in steady fl ow lie tween concentric 

cylinders as viewed with increas ing Reynolds number. The Taylor-Gortler ins tability vortices that precede 

transition are still present at a late stage and it seems probable that, in some Reynolds number or 

curvature ranges at least, they would merge into the vortices found in fully-turbulent flow. Tillman 

makes the point that the necessarily discontinuous changes i n numb er ~f vorti ces cause excursions i n the 

ratio of spanwise wavelength t o shear-layer thi~knes s . 

Lit t le work on fully-turbulent flow between rotating cylinders has been reported in r ecent years. 

The elegant experiments of Coles and Van At ta (73) on the partly-laminar, partly-turbulent fl ow that occurs 

in the stable case have been mentioned above: at present we cannot draw any quanti t ative inferences from 

this experiment about other types of partly-stabilized flow. Ustimenko and co lleagues have published 

several papers on rotating cylinders and simi lar flows, of which Re f .176 is the mos t accessible. 

The rotat i ng-duct experiments of Johnston and his collaborators (10, 76, 79, 158) have been 

discussed in Section 5 with reference to the gross effects of rotation, namely longi tudinal vortices on 

the side where the relative mean vorticity i s in the opposite sense to the bulk rotation and suppression 

of turbulence on the other side. Johnston refers to the unstable side as the "leading" side and the 

stable one as the "trailing" side, but these names apply only to his own apparatus. Bradshaw (91) found 

that departures from the logarithmic law i n these experiments were quite well corre l ated by Eq(44) 

wi th a • 8 on the stable side and a • 4 on the unstabl e side, for uTy/ v < 500, Such a correlation 

neglects the variat i on of shear stress with y: Johnston's more rigorous correlation of mixing length 

ratio t/t0 with the local gradient Richardson number from Eq(89) was less successful, confirming the 

suspicions aroused by the surprisingly low values of a in the crude correlation, Johns ton's correlation 

on the unstable side was mode r ately acceptable, most of the data indicating values of a between 8 and 12, 

with a roughly linear trend up to (-Ri) ~ 0,25 and wi th a significant decrease of a with increase in 

(-Ri): on the stable side, howev~r, t/t0 attains constant values for Ri > 0,08, while both these 

constant values and the app~rent values of a at lower Ri depend on the bulk rotation parameter Oh /U. 

A fair, though not necessarily general, correlation for large Ri (large y) on the stable side is 



51 

1 - 6,5 nh/ii (129) 

for 0.03 < llh/U < 0.09. This may be regarded as an F-factor of sorts, but, as the local Keynolds numbers 
involved are rather low, viscous effects as well as curvatur~ effects may be involved, 

The rotating duct experiments are a useful extension of the work done on curved duct• by Wattendorf 
(82) and by E1kinazi and Yeh (98). Eskinazi and Yeh's duct experiment is still the only one to include 
turbulence meaaurements, and they appear to be reliable except for the probable undetected presence of 
"steady" or unsteady longitudinal vortices, The flow at entry to the curved aection was a fully-developed 
duct flow, and the results include mean velocity and u-component intensity profile• et several 1tations 
during the re-eetablishment of self-preservation in the curved flow: unfortunately shear stres s 
mea1urements were not made in this region. In the fully-developed curved flow, aurface shear 1tre1s values 
were obtained by assuming that the logarithmic law held near the surface: i n these experiment,, a, in 
Wattendorf•~, significant deviations from the logarithmic law are found at larger distances from the 
1urface and the apparent mixing length is much larger on the concave side than the convex aide, Although 
mean transport terms are zero in fully-developed flow, turbulent transport normal to the surface is 
important (especially in the presence of destabilizing curvature effects) leadinN to displacement of the 
point of zero shear stress from the point of zero rate of shear strain and thus to eccentric behaviour of 
the apparent mixing length. Large rates of turbulent transport - or the 1uspect d longitudinal vortices -
are probably responsible for the large differences in low-frequency sp ctr\111 ahape betw en the two aides 
of the duct, although it could be argued that all turbulent l ength scales 1hould increase when the mixing 
length or dissipation length parameter increase. Eskinazi and Yeh find that the Longitudinal integral 
scale of the radial-component velocity fluctuation was about 5 times larger dt 0,1 duct heights from the 
outer wall than at the same distance from the inner wall and comment that the effect• of curvature on the 
integral scales is about the same as thdt on the microscales, Fig.13 shows the apparent mixing length, 
u1ing the definition 1 • l-nvl 1/ 2 / lau/ayl, and the effective value of o in Eq(36), writing the latter 
a1 1/Ky = t/0.41 y • 1 + o( aV/ ax)/( au/ay). The effect of using second-order definitions of t or of the 
Richardson-number analogue 2(av/ax)/( au/ ay) would be fairly small at the smallest distances from the 
wall, and at larger distances from the wall the failure of the inner-layer local-equilib ium approximations 
would be at least as important, Values of 1/Ky extrapolate plausibly to unity at the walls and the 
values of o at small y are quite close to the values of 14 and 8 or 9 deduced from the buoyancy 
analogy for stable and unstable flows respectively. As in the case of the integral length scale, the 
mixing length (roughly equal to the dissipation length parameter) at 0,1 duct heights from a wall is about 
five times larger on the unstable side than on the stable side, Values of mixing length derived by 
Wattendorf from his data, strictly, the mean of Wattendorf's two sets of values based on au/ ay + U/R and 
au/ay - U/R, are also ahown in Fig.13 and agree very well with Eskinazi and Yeh's results except at the 
larger distances from the "unstable" wall where au/ ay is difficult to measure from Eskinazi and Yeh' s 
r3ther sparse profile. The apparent limiting value of t/10 at large r on the stable side agrees as 
well as one could ask with the prediction of Eq(l29) derived from Johnston's rotating duct experiments, 
with Oh/U replaced by h/r: however the Richardson number at which the limiting value is attained (at 
(r - ri)/h • 0,15, say] is about 0,16 as opposed to 0.08 in Johnston's experiment. On the unstable side 
the trend of a is similar to that in the rotating duct but the actual values of a are up to 20 per cent 
lower. The general similarity between the results for the curved and rotating ducts is a fair demonstration 
of the similarity of the two phenomena and the empirical validity of exchanging U/r and n even when 
curvature or rotation effects are fairly large. 

The remaining boundary layer measurements in Table 2 are either fragmentary, done without considera­
tion of curvature effects or mentioned elsewhere in this review, The most important of these studies is 
Schubauer and Klebanoff's carefully-planned experiment (101) on the separating boundary layer on an 
aerofoil-shaped body whose rear upper surface had a constant radius of curvature of 31 ft. from about 
x • 18 ft. (where Ii • 2,5 in.) to the separation point at x ~26 ft, (where 6 ~ 8 in,). Near the 
separation point do/dx increases rapidly and the streamlines in the outer layer are concave, but over 
most of the flow curvature has a stabilizing effect, The authors did not anticipate or discuss curvature 
effects, and the importance of the latter in this experiment did not appear until some years later, In the 
interval, the results were used for determination of empirical constants in calculation methods intended 
for 1urfaces of small curvature: this is not an explanation of the poor performance of calculation methods 
of that vintage because Head's method is also based on the Schubauer and Klebanoff data and performs 
significantly better than the other 1950-1960 methods reviewed by Thompson (161). Schubauer and Klebauoff's 
boundary layer also suffers from strong lateral convergence and - naturally - large av/ay near the 
separation point, but the cumulative dynamic effects of these extra rates of strain do not seem to be as 
important as those of the relatively prolonged surface curvature. Allowing for aw/ az only in the 
continuity equation and neglecting secondary strain effects other than curvature, the calculation method 
of Ref.16 using Eq(36) with o • 14 (from the buoyancy analogue), gives much improved predictions of Cf 
(Fig.26). The predictions of H are less improved but this is probably because of significant pressure 
differences across the layer, which are not allowed for even in the mean-flow equations. The conclusion is 
that the first-order F-factor correction is sufficiently accurate in view of the other uncertainties in 
the experiment, a conclusion which is likely to apply to other "dirty" flows, although the inclusion of a 
lag equation like Eq( 37) may sometimes be j •.1stified, 

Host of the recent theoretical work on curved boundary layers has been on F-factor concepts or 
related empirical correlations for local properties or profile parameters. Examples include Refs 46, 50, 
79, 91, 92, 127, 160 and 177-181. The superiority of other linear analyses to the simple F-factor 
approach, and th~ justification for postulating non- linear correlations of local quantities in the present 
1tate of knowledge are not apparent to the present aut hor. For example, the analysis given by So and 
Mellor (160) is to first order equal to an F-factor analysis, and their preferred empirical constant 
11/A • 0,0417 (Ref,160, p.86) corresponds to o • 8, Similar analyses applied to other shear layers are 
referenced below, It is of course rather difficult t o compare correlations for different types of integral 
parameters without doing calculations by each of the methods for which the correlations are intended, and 
no attempt will be made to do this here. Green et al, (46) avoid the problem of converting a local F­
factor into an integral c~rrelation by applying s transport equation at one point on the profile rather 
than as a weighted integral over the profile (strictly, it is an integral weighted by a delta function). 
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The moat compreheneive curvature correction for an integral method is that developed by Papailiou et al. 
(181), addina to the mean kinetic energy dissipation coefficient a quadratic function of (U,R/v)-1 
vhoee coeffir.ient1 are functions of H and Re 8. Naturally the data available for establishing the 
function, are limited, The recent paper by Dvorak (182) includes a discussion of the extra (f-factor) 
term• in the equations of motion in (s,n) coordinates but makes virtually no mention of F-factor effects. 

Some apology i1 nece11ary for the neglect of heat transfer in this review. Quite simply, the 
uncertainty cf the behaviour of the Reynolds analogy factor and the turbulent Prandtl number is so great 
even in plane flow• that• di1cu11ion of the effect of streamline curvature on these quantities would be 
premature, Application of meteorological data for the variation of the diffusi·: ity ratio Kif/~ ( = 1/Prt) 
with 1tability parameter in buoyant flows would put rather too large a strain on the buoyancy/curvature 
analoay, At pra1ent the beat advice is to apply the same F-factor analysis to the heat transfer equation, 
as to the momentum tran1fer equations; this implies the assumption that the Reynolds analogy factor, the 
turbulent Prandtl number and the coefficient of correlation between velocity fluctuations and temperature 
fluctuation are unaltered by 1treamline curvature, 

6, 2 SUPFPSONIC BOUNDARY LAYERS 

It i1 fair to 1ay that the measurements of supersonic boundary layers in pressure gradients induced by 
1urface curvature (Table 4) have not yet given value for n~ney. According to the arguments of Section 3, 
a bouudary layer on a curved compression surface suffers from the F-factor effects of compression and of 
curvature, which have the same sign and appear to increase rapidly with Mach number. This obscures the 
Mach-number independence of turbulence structure, hypothesized by Morkovin and apparent in constant­
pre11ure flow, at all non-hypersonic Mach numbers. Even if one accepts the quantitative reliability of the 
F-factor analyaia for small extra strain rates and the accuracy of the rather mechanical arguments used to 
derive the Mach-numer dependence of Rf in Eq(95), much of the supersonic curved-aurface data is still 
indigestible because of the large ratios of 6/R involved (recall that F ~ l ± 306/R in the central 
part of the boundary layer at low speeds), Experiments like those of Kepler and O'Brien (183), 11cLafferty 
and Barber (184) and Clutter and Kaups (185) are little different from shock-boundary layer interaction or 
,harp corner expansions as far as effects on the turbulence structure are concerned, and the total 
compreBBive strain rates involved are too large for the "strain impulse" extension of the F-factor 
analysis to be trustworthy: the static pressure in Kepler and O'Brien's experiment at M ~ J, for 
instance, increased by a factor of 6 in a streamwise distance of ten initial boundary-layer thicknesses. 
The curvature effects as such (6/R ~ 0,05, turning angle .. 24 deg,) would in this case be small enough 
for the strain impulse analysis to be moderately trustworthy despite the thre~fold increase in Richardson 
number predicted by the Mach-number factor in Eq(95) but, as seen in Section 3, the effects of compression 
are greater, at supersonic Mach numbers, than the effects of curvature of the surface producing the 
compression. A further difficulty in most supersonic experiments is the lack of skin friction measurements 
and the consequent inability to check the two-dimensionality of the flow. The only exception is the 
experiment of Winter, Rotta and Smith (54) on a waisted body of revolution at 0.6 < M.., < 2.8, and here 
the presence of skin friction measurements is counterbalanced by the presence of lateral convergence and 
divergence as well as streamline curvature and compression. As mentioned in Section 3, Green et al, (46) 
have secured good agreement between the waisted body results and unlagged F-factor allowances for the 
three extra strain effects with a • 7 in each case, At the higher Mach numbers the maximum value of 6/R 
was only about 0.025 and even this was reached only over a very short region, so that, as shown by Green, 
curvature was much the least important of the three effects. At M~ • 0.6 the effects of curvature and 
lateral divergence were roughly equal ~nd opposite and it is more logical to assume the curvature effects 
to be known and to infer the behaviour of the divergence effects - which are much less well documented -
than the reverse, 

If one were concerned only with the extreme cases of a flat surface with an externally-induced 
pressure gradient and a curved surface generating the whole of the pressure gradient itself, one could 
treat them as distinct types of flow governed by distinct sets of empirical rules. However there are many 
intermediate cases in which the flow field of, say, a wing influences flow on a neighbouring curved surface 
(say an intake ramp) so that a unified treatment is desirable. 

Some demonstration calculations for supersoni c boundary layers over curved surfaces are shown in 
Fig,27. They seem to be consistent with the proposition that a is independent of Mach nun.her if the 
rate-of-strain ratio in Eq(36) is replaced by IRi defined by Eq(95), but it must be remembered that the 
two-dimensionality of the experiments is doubly under suspicion because of the lack of checks on spanwlse 
convergence and the probable presence of longitudinal vortices. Moreover, with the exception of Thomann'• 
constant-pressure flow (4), the ill-documented effects of bulk compression are considerable and could 
account for, or obscure, any error. The only data available for hypersonic flows refer to shock 
interactions in sharp corners or bends of very small radius, and no useful attempts at calculation can be 
made at present. Extrapolation of the trends at lower Mach numbers would suggest that almost any 
hypersonic boundary layer on a convex surface should be laminar, particularly if the surface generated a 
favourable pressure gradient, while boundary layers on concave surfaces should consist largely of 
longitudinal vortices. Refs 186 and 187, for instance, tend to support these suggestions. Doubtless, 
limiting effects occur: in particular, Green' s analogy be tween the effects of compressior. and of lateral 
divergence suggests that the large eddi es in a boundary layer under strong compression may degenerate into 
spanwise vortices like those observed ~y Keffer (47), with the probability of strong interaction with the 
supposed longitudinal vortices on a concave compression surface. The truth or falsity of these academic 
speculations corresponds to large changes in heat transfer to hypersonic vehicl es, and a series of 
experiments deliberately intended to ir.vestigate the undoubted effects of curvature and the postulated 
effects of compression is badly needed. Si mpl e but carefully-controlled experiments in the style of 
Thomann (4) would be as useful, at least in the short t erm, as large-scale data-collection exercises. 
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7, THE COANDA EFFECT - WALL JETS ON CURVED SURFACES 

Three entirely different phenomena comnemorate the name of Henri Coanda, who died last year at the age of 
86 (12), and this ia perhaps a suitable opportunity to classify them, 

1, The effect originally publicised by Coanda is the tendency of a fluid jet, initially tangential to 
a curved 1urface, to remain attached to the surface, This is indeed an unusual effect but requires no 
unu1ual explanation, Aa shown by Lighthill (188) for instance, the effect occurs in an inviscid 
irrotational fluid: even the well-known experiment with a teapot or with a spocn and a water tap shows 
fairly conclusively that the jet does not suck itself on by entrainment since a water jet in air 
accompli1hes no entrainment, However one still finds statements like that in a recent report "The physical 
effect i1 well known,,."; followed by an explanation involving viscous effects. Fernholz (private 
co11111unication) quote• unpublished work which shows that surfa~e tension helps to promote attachment of a 
liquid jet in air, 

2. The effect whereby a jet whose initial axis does not intersect a solid surface can nevertheless 
attach it1elf to the surface (because of the low pressure region resulting from the acceleration of the 
fluid that auppliea the entrainment) is called by Metral and Zerner (86) the "Chilowsky effect". 
Obviously this is a real-fluid phenomenon and easy to understand in principle; special effects of 
1treamline curvature on turbulent mixing need not be involved, Young (1800) as quoted by Wille and 
Fernholz (103) observed - but confused - (i ) and (ii). 

3, The effect whereby a jet attached to a convex surface grows more rapidly than the wall jet on a 
plane surface is much more obscure, and forms the main subject of this chapter. It is essential to the 
operation of some of the devices invented by Coanda, notably his mixing nozzles, and I would like to suggest 
that the term 'Coanda effect' be reserved for this phenomenon, Effect No.2 could if necessary be called 
after Chilowsky, Young or another early investigator, Lafay (86) and No.l, being a simple consequence of 
the inviscid-flow equations, deserves no more august name than the 'teapot effect', although Wille and 
Fernholz (103) mention the august names of Reynolds and Ackeret as early students of this effect, 

In the two-dimensional wall jet au/ ay is negative everywhere, except near the surface where it ia 
positive and very large. Therefore the various curvature parameters related to (aV/ox)/{aU/oy) are 
almost everywhere positive on a convex wall and negative on a concave wall: near the surface the sign is 
opposite but the parameter is small, Since the work of Newman (104) and Bradshaw and Gee (107) in about 
1960, many basic research studies of wall jets on curved surfaces have been roade, in addition to continuing 
work on blown flap schemes and other applications of the Coanda or teapot effects, Much work has also been 
done on the teapot eff ct for application to fluidic devices: little of this work is relevant to the 
present study because s t reamline curvature effects are not important in the teapot effect, and the 
complications of low Reynolds number and low aspect ratio make the interpretation of fluidic studies 
difficult, Wille and Fernholz (103), reporting on the first Euromech Colloquium on "The Coanda Effect", 
give 120 references to work up to 1965, but both the Colloquium and the report covered a wide range of 
work on curved laminar and turbulent shear layers in addition to the Coanda effect as defined above. 
Fernholz (189: 1965) reviews work on the Coanda effect proper. Newman's group at McGill University has 
made several contributions to knowledge of curved wall jets and free jets: Newman (190: 1969) rev i ews work 
up to that date, and the thesis by Guitton (7: 1970) contains an extensive review as well as original work, 
so that an exhaustive review is not necessary here. 

Much of the available information about wall jets on curved surfaces consists of mean-velocity 
profile measurements in wall jets blowing round circular cylinders, Fekete (191) reports a detailed study 
including the effects of roughness: see also Ref.7, The ratio of nozzle height to cylinder radius has a 
negligible effect on the flow many nozzle heights downstream and most basic experimenters have chosen a 
sufficiently small ratio that a good approximation to self-preserving flow was attained while 6/R was 
still small enough for streamline curvature effects to be fairly small, However, large nozzle heights may 
be ~ecessary or desirable in blown flap schemes: Fernholz (189) plots data from several sources covering 
the ,ange 4 < R/h < 500. Fernholz (192) has investigated the use of a spoiler in the outer part of the 
flow to achieve continued attachment at even smaller R/h, and Bradbury and Wood (193) have investigated 
the (unfavourable) effects of compressibility on the maximum deflection obtainable from a cylinder-flap 
combination with R/h • 4, Although h/R can be neglected as a parameter if it is small, the aspect 
ratio, (width of flow)/(distance from slot), can have an important effect on the apparent spreading rate 
because of secondary flows at the edges. The usual practice is to fit plane sidewalls at each side of the 
jet, preferably of such a height that the entrainment flow, as well as the turbulent region, is tolerably 
two-dimensional, However, strong secondary flows still occur in the streamwise corners, and, even if the 
aspect ratio is high enough for the regions of longitudinal vorticity (the true secondary flows) to occupy 
only a small fraction of the span, significant lateral convergence can be caused by growths of the 
displacement thickness of the shear layers on the side walls. This lateral convergence affects the 
apparent growth rate and also the position of separation of the wall jet from the curved surface. In the 
case of a circular cylinder, the separation point is at 226 ± 3 deg, from the jet origin if the Reynolds 
number is large and h/R and the effects of three-dimensionality are small (190), but widely differing 
separation points have been reported in the literature. 

The growing wall jet on a cylindrical surface of con1tant curvature cannot be exactly self­
preserving even if one neglects the effects of Reynolds number, h/R and three-dimensionality. The 
grossest manifestation of this lack of self-preservation is separation, which is usually explained in 
terms of the self-induced adverse pressure gradient that manifests itself as soon as the lines of constant 
U/Umax in the outer part of the flow acquire a radius of curvature significantly greater than the 
surface radiua R [previous to this, the surface pressure is less than that at infinity by the nearly 
constant quantity J; u2 dn/R, as follows approximately from Eq(lO)], The destabilizing effects of convex 
surface curvature lead to earlier aeparation because they reduce the velocity of the flow, by an increasing 
a111ount as the distance from the origin increases, and thus reduce its ability to withstand the inevitable 
pressure riee, The existing mea1urement1 near separation do not contribute to our knowledge of curvature 
ef!ects: quite apart from any difficulties of interpretation of the measurements, it appear& from flo­
viaualization studies like Fig,8 of Ref,190 that the 1treamline1 near separation are almost straight except 
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cloae to th• aurface. Even far fr011 1eparation tha wall jet on a constant-radius 1urface ia not a vary 
convenient aourca of data for the affect■ of atra•lina curvature on the turbulence, becauae of departure, 
froa ■elf-pr aervation, The hiatory of tha flow would affect the turbulence atructure even in the abaance 
of curvature effect■, and the latter will theiuelvea depend on the history of the curvature parameter via 
the proce11e1 crudely repreaented by Eq(J7). 

If the effect ■ of Reynold■ number on the aurface ■hear 1tre11 are nealigible, a 1elf-pre1ervina flow 
can be obtained if the aurface radiua of curvature i• linearly proportional to diatance from the oriain: 
thia aivea con■ tlfflt 6/R, Gile■, Haya and Sawyer (6, 111) and Guitton (7) have made mea1ure111111t1 on 
loaaritluaic apiral 1urface1 (R • •• with 1/R •• larae a, unity) and deapite difficultiea with three­
dimenaional effect■, fully di1cu11ed by Guitton, the di1crepancie1 between the two aets of experiment■ 
(Fia,4) are no araater than the aeneral acatter of previoua mea1ure1111nt1 on plane wall jet,. Both 
experiment• included turbulence 111a1urement1, tho11 of Guitton being the more detailed although confined 
to only two value■ of 1/R, 

Guitton correlated hi1 own apiral data, and by implication the convex-apiral data of Gile■ et al,, 
by 

d6,5 
de. ( 

6,5) 0.011 1 + 11 T (130) 

for 6, 5/R C 0,3 
where 6,5 ia the (larger) value of n at which U/U1111x • 0,5. Guitton's correlation for the wall jet on 
a conv x circular cylinder at turning angle■ 1111 than about 130 deg, ( 6, 5/R < 0,17) is 

d6, [ 6,5 
di""' • 0,071 l + 12,8 R [

6, 5) 2) 14.1 T (131) 

which he regard■ a, a more plauaible fit to the data than the alternative atraight-line fit 

d6, 5 ( 6. s ) 
-;i;- • 0,069 l + 8.7 R (132) 

Gile■ et al, (6) do not aive an analytic fit to their results but their curve through their convex spiral 
data ha■ a negative second derivative while Newman (190) draws a curve with a positive second derivative 
through the spiral data of Gilea et al, and 101111 provisional data of Guitton's on spirals and circular 
cylinder,. On balance there seem■ no justification for anything other than a linear fit for the spiral 
data, extendina to aianificantly higher 6,5/R than the quadratic fit to the circular cylinder data. Note 
that there ia no incon1i1tency in correlating the growth rate on a circular cylinder aa a function of 
6, 5/R only; if h/R is amall and the Reynolds number ia large, the only length scales are R and •• 
10 that 6, 5/R is a unique function of 1/R, The difference between Eq(130) and Eq(131) is a measure of 
hiatory effect, both on th, flow aa a whole and on the curvature effects, Note that Newman's deduction 
(190) from hi1 above--ntion~d data fit c~n to spirals and cylinder,, that history effects are 
negligible, is superaeded by Guitton'• later work. Sawyer (private co11111unication) in work in progress on 
two-dimensional and axiaynNtric wall jet■ over curved surfaces, including discontinuities in curvature, 
al10 finds significant history effects, 

On a concave spiral, the growth rates measured by Giles et al, are larger (smaller stabilizing 
effecta) than predicted by Eq(l30) but the difference is within the discrepancie1 between the convex­
aurface data of Guitton and Giles et al., and may therefore be insignificant. However it should be 
emphaaized that the data of Giles et al. seem to be of high quality (apart from three-dimensional effects 
in the down1tre1111 region of the most highly-curved spiral, pointed out by Guitton) so that they should be 
internally consistent to better accuracy than this. Straight-line fits to the concave-surface data of 
Giles et al. and to the data for the 1111 highly curved surfaces are respectively 

d6,5 
(1 ~) -;i;- . 0.077 + 10 R , (R < 0) (133) 

and 
d6, 5 

( 
6, 5 ) 

d1 
. 0.077 1 + 13.4 T (R > 0) (134) 

and the line 
d6,s 

0,08 (1 + 
6,5) 

da 
. 12,5 T (135) 

plotted on Fig,4 ia the beat compromise fit for mild concave or convex curvature. Guitton also found 
1maller curvature effect• for given 6,5/R on a concave surface than on a convex surface but the difference 
i1 1111 than implied by Eqa (133) and (134), Spettel, Mathieu and Brison (8) reported measurements on a 
concave cyt'inder aiving - to a linear approximation -

d6,5 

d1 [ 
6 , 5 ) 

0.016 1 + 9.5 T (136) 

in the region of 6,5/R • 0,05, This result agrees within likely experimenral error with the concAve­
cylinder data quoted ~y Guitton and is close to the spiral-surface result, Eq(l33), history effects being 
small for 1mall 6,5 /R (atrictly, for small 6,5d26,5/ds 2) . 

It aeema clear from the data of various experimenters that the shape of the wall jet velocity profile 
ia little affected by 1urface curvature , except for a alight increase in the maximum velocity gradient in 
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the out r layer mea1ured •• a multiple of Umax/ 6, 5. We can therefore use plane-vall profile data to 
dilcuu the arowth-rate formulae and, for instance, Guitton' s calculation that the flux Richar·d1on number 
Rf at y • 60,5 i1 about 1,256, 5/R should be valid over the whole range of 6, 5/R for which a local 
parameter is u1eful and ahows that values of Rf of roughly 0.4 were reached in the convex spiral 
exper iment, plotted in Fig.4. This of course is well beyond the likely range of applicability of a linear 
F-factor analysis. Rf is roughly constant over the part of the "jet" layer where the ahear streu is 
larae1t: near the poaitio~• of maximum velocity and of zero shear stress (which do not as a rule coincide) 
the behaviour of local curvature parameters is meaningless because the turbulent energy is supplied mainly 
by turbulent transport ("diffusion") rather than by local production. Even in the region of maximum shear 
1t re11 in the jet layer, turbulent tran1port (which here corresponds to a loss of turbulent energy) is a 
lignificant fraction or local production or diuipatio , and if the effects of streamline curvature are 
correlated by P-factora applied to the dissipation term the optimum values of a will contain hidden 
allowances for the failure of local-equilibrium approximation on which the F-factor analy1is is based. 
Therefore we cannot expect the optimum value, of a to be the same for a wall jet as for a boundary layer 
(where loca~ equilibrium is a fair approximation). The simple argument that entrainment or spreading rate 
is proportional to the maximum shear 1tre1s in the jet layer, coupled with the assumption that the profile 
1h1pe (in particular, au/ ay at the point of maximum shear stress) is independent of curvature, shows that 
to a linear approximation the F-factor applied to the apparent mixing length has a value of a roughly 
equal to the coefficient of 6, 5/R in one of the linear growth-rate formulae. If we base the F-factor 
on iRf as parameter a ia simply 1/1.25 times the above coefficient. Taking the coefficient as 12.5 
from Eq(l35) we get a ::: 10, clo1e to the "meteorological" value for an unstable flow, However, the 
mixing length is smaller than the dissipation length parameter L in the region of maximum shear stress 
because of the aforementioned losses by turbulent transport and the optimum value of a for use in a 
calculation method which applies the F-factor to L rather than i will be different. The trial-and·· 
error adjustment of a to force the wall-jet versions of the method of Ref.16 (45, 61) to agree with the 
results of Fig,4 for sniall convex curvature suggests a~ S (Appendix 2). However, this value depends 
significantly on the empirical modelling of the turbulent transport terms ln the ca l culation method itself, 
~~ lch is uncertain even for a plane wall jet because of the lack of measurements of the triple velocity 
f•r ~ducts that dominate the turbulent transport. Any improvement on the analysis, and of course any 
improvement on the F-factor concept, requires more turbulence measurements. Also, it must be remembered 
that the F-factor analy~i• is in spirit a small-perturbation analysis, restricted to say 0,5 < F < 1.5, 
and its validity in highly-curved flows is suspect. 

The most extensive turbulence measuremer.ts in a curved wall jet are Guitton's on convex spirals. 
He measured the shear 1tre11 intensities and intermittency, the v-component flatness fact~ and the 
triple products ~ and ~ for the cases s/R • O, 2/3 and 1. Giles et al. measured u2, v2, iiv and 
the intermittency for 1/R • 0 and 1, and in general their results agree well with Guitton's. Guitton 
allowed for the effect, of high turbulence intensity on hot-vire response and his results seem internally 
consistent so that they can be taken as the best available. The trends of intensity and shear stress with 
curvature are in the expected sense. The trends of the intensity ratios and other structural parameters 
are interesting: v'l.!u'l increases with increasing instability (increasing augmentation of radial motion) 
as is found in unstable buoyant flows, the value at y • 60, 5 being 0,37 in a plKne wall jet and 0.7 for 
the curved flows with very little further increase between s/R • 2/3 and s/R • 1. The ratios uvl.!J.2 
and iiV//(~.~) are virtually independent of curvature, and the variation of flatness factor v4/(~)2 
simply reflects the behaviour of the intermittency, to be discussed below. The triple product ~. 
plotted in the dimensionless form ~//(~.vii), is significantly affected by curvature (Fig.27). In the 
plane wall jet it is negative for y < O,76, 5 while at s/R • 1 the negative region has almost 
disappeared, implying much smaller turbulent transport of positive uv into the wall layer (or tmJch 
smaller transport of negative uv out of it, either statement implying a smaller effect of the wall 
boundary condition on the jet layer). The positive values of dimensionless ~ in the jet layer also 
increase with incrwing curvature, and the increase would be larger still if the denominator contained 
v2 rather than /,1., The triple product ~ shows similar but less pronounced behaviour, so that 
Guitton's explanation of the behaviour of ~ in terms of centrifugal "mixing length" arg11Dent1 is 
evidently not the whole story. The main conclusion to be drawn from the measurements is that turbulent 
transport of uv is significantly but not grossly altered by curvature, except for the large effects 
near the surface. A correlation of the changes in terms of a bulk Richardson number (e.g. 6,5/R) should 
suffice for calculation methods: we return to this subject in Section 8, 

Guitton'• measurements (7) are the most significant evidence for the absence of "steady" longitudinal 
vortices from un1tably-curved jets: he meaaured the spanwise variation of surface shear stress, using a 
Preston tube, and achieved a fairly uniform distribution after attention to the initial conditions of the 
jet. The great aenaitivity of the f low to imperfections of the nozzle lip reported by Guitton and by 
Fekete (191) - -..nich caused large spanwise variations - might pouibly imply a predispolition to "ateady" 
vortices, but Bradshaw and Gee (107) and other experimenters have noticed a aimilar sen1itivity in ~all 
jeta on plane surfaces. Unfortunately there are no velocity correlation mea1urement1, other than the early 
attempts of Bradshaw and Gee, to establish wh,~ther the large eddie, develop un1teady longitudinal 
circulations a, found in John1ton'1 rotating duct experiment, (10), Guitton'• intermittency measurement• 
show that the value of y/6, 5 at which the intermittency is 0,5 moves towards the 1urface as the flow 
becomes 1110re unatable. A plausible but not unique explanation is that (unateady) large-eddy vortice1 exist 
and cau,e concentrated eruptions of turbulent fluid with a more wide1pr.,ad backflow [Pig,6 and the 
di1cus1ion1 of Patel's boundary layer mea1urement1 (Section 6) 1upport thi1 picture]. Caille (194) 
di1cu1sing bends in ventilation ducts, 1ay1 that centrifugal instability in wall jets produces "high 
velocity gradient~ and longitudinal vortices", but offers no proof, 

Limited turbulence measurements in wall jets on concave 1urface1 have been made by Guitton and by 
Spettel et al, A moderate decrease in turbulent intensity is observed, and aaain the v-component 1eem1 
to be affected more than the u-component, The large1t value of Rf near y • 6,5 found in the concave 
spiral measurements of Gile, et al. was only about 0,04, so that collap1e of the turbulence would not be 
expected in any part of the layer: larger negative values of 1/R or 6,5/R would be difficult to 
arrange in the laboratory and unlikely to occur in practice, 

A final que1tion concerns the applicability of the logarithmic inner law to wall jets. Some doubts 
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have been expr••••d in the literature, even in tte c••• of plane jete: certainly the reaion in which the 
velocity profile follow• the loaaritlaic lw found in conetant-preeeure boundary layer• i• eull, 
particularly at low Reynold• nlllllbere, but the reaeon vhy the profile ie convex upwerda on loa-linear axe• 
1• that tha ehear etr••• deer••••• rapidly vith dietance from the eurfece eo that, accordina to the mixin, 
lenath formula lq(28) vith 1 • ly, au/ay aleo deer•••••• Accordina to Huffman and Bradehav (195), l 
raainl near 0,41 even in etrona •hear etr••• aradient1, but if the diMn1ionle11 par ... ter 
-(v/pu1)(3T/3y)v i1 laraer than about 0,001 the velocity j1ap acro11 the vi1cou1 1ublayer (which provide, 
the con•tant of intearation in the velocity profile obtained from the mixina lenath fona1la) i1 affected, 
In curved vall jete, u in boundary layer,, If i1 very rouahly 0,05 y/l near the 1urface and i1 
therefore l!llll throupout the iMer part of l ~e wall layer for all practicable value, of 6, 5/K with the 
poeeible exception of flow• clo1e to 1eparation, Therefore the inner layer profile 1hould be deducible 
fr011 the aixina l•nath formula in both plane and curved wall jet,, and curvature effect, are probably 
nealiaible. Of cour••• to deduce the 1urface ahear 1tre11 from a mea1ured velocity profile we need an 
e1tillate of oT/3y becauae the lav of the wall now becomea (26) 

oT) ay (137) 

but• rouah e1tiute ahould 1uffice except in extreme ca1e1, Therefore the doubt• expr••••d by Guitton 
about the validity of the lav of the wall in curved vall jets are not well founded and it can be u1ed -
with caution - in calculation •thoda and in data analyai1, 

Little ba1ic information i1 available on three-dimen1ional curved vall jet• (196) althouah more may 
becoae available•• a re1ult of work on the externally blown flap, in which the exhau1t from an underving 
enaine i1 deflected by a trailina edae flap: heat tranafer is of particular intere1t in thi1 confiauration, 

Calculation Mthod1 for curved wall jet1 10 far propo1ed in the literature (e ,1, 6, 7, 111, 197, 
198) involve either P-factor corrections to local mixin& length or ed~y vi1coaity (6, 111), or correlation, 
of apreadin& rate with 6,5/l, Kind (197) u■ed Guitton'• fit (7) to Fekete'• cylinder data (192) to 
produce a c011plicated analytical fora.ala for entrainment rate•• a function of 6/K: the linear 
approxiution to thia can be converted, u1ing the principle• and approximation■ of Section 3, to an 
P-factor with ca 1111 3, rather ■maller than that deduced above from more recent data, A1 in the cHe of 
boundary layera, none of the alternative 1chemea offer• any obviou1 fundamental advantage over the 
P-factor analyaia and non-linear fol'IIIUlae ba1ed on local parameter, 1hould be viewed with 1u1picion. A1 
far u I aa ~•re, the calculation,, by Morel'• exten1ion of the method of lef.16, pre■ented in Appendix 2 
are the firat application of a tranaport-equation method to curved wall jet,, althou~h the recent work of 
Sawyer involve• an allowance for hiatory effecta. Hanjalic and Launder (34) have app'ied their tranaport­
equation method• to wall jeta on plane 1urface1 only. 

8, CUIV!D PltEE JETS AND MIXING LAYERS 

In fully-developed curved jet• one 1ide i1 stable and the other un1table, 10 that any net effect■ on the 
arovth rate are, more or lea• by definition, 1trictly beyond the ■cope of a linear correction foraila like 
Eq(36) for 1mall extra 1train rate,. However• linear variation i1 po■ sible if one accept• different value• 
of ca in Eq(36) for atabl~ and un1table ca1e1, Studie■ of curved circular jet■ in a cro11vind have not 
been aufficiently detailed to di1tin1uiah curvature effect■ from turbulence change• cau■ ed by groa ■ 
diatortion of the croa1-1ection and the pre■ ence of a pair of contra-rotating vortice■ within the jet, 
There••-- to be no information about turbulence behaviour in tvo-dimen■ ional curved jet, with a atream of 
equal total preaaure on either 1ide, de1pit~ the large a.>unt of work done on jet flapa, but 1everal 
experiaenta and analy••• (e,1, lef,110) have been performed on tvo-dimen■ ional turbulent jet• emergina 
froa, and reattachina to, • 101id 1urface. The turbulent inten1ity me&1urement1 of Matthew, and Whitelaw 
(198) unfortunately be&in dovn1tream of reattachment. Another recent experiment - confined to mean flow 
Muur ... nt1 - ia lef,199. Wypan1ki and Newman (200) have 1tudied the emerging tvo-dimenaional jet in an 
external 1treu but reported no turbulence mea1urement1. Many experiment• have been reported on the 
reattachr. ,nt of• ■ixina layer boundina a 1eparation bubble or cavity flow (1ee lef,201 for• ,elective 
review) and 1everal of th••• include turbulence mea1urement1, Only recently have any 1eriou1 turbulence 
MHur ... nt1 been ude in• normallrimpinaing (circular) jet: lus1ell and Hatton'• re1ult1 (202, are 
reported•• contour plot• of turbulent eneray j(~ + ~ + w!), and ahow that the turbulent eneray on a 
atrealine ori1inatin1 fro■ the maximum-eneray of the free jet decrea1e1 by 20-30 per cent through the 
illpin&eMnt reaion. In view of the fact that the flow turn, throuah 90 dea. in a di1tance of the order of 
the jet width, thia ia a aurpri1inaly 1mall difference: unfortunately the meaaure■ent1 extend only to 
about three jet half-,,idth1 fro■ the centre and the maximum turbulent eneray ia still fallina at the end 
of the 1urvey reaion, ao that any lea effect cannot be a11e11ed. The maxilllWD 1hear 1tre1s (referred to the 
jet uia) deer••••• in uanitude by about 50 per cent throu&h the impingement region, but•• it change• 
1ian •• the flow deflect• throuah 90 de&, it i1 not a very 1uitable mea1ure of turbulent activity, The 
circular i.Jlpin1in1 jet experience, 1trong lateral (i.e. circumferential) divergence effect• (1ee Section 3) 
which oppo1e the atabili1in1 effect• of curvature and may account for the 1mallne11 of the decrea1e in 
turbulent eneray throuah the impinaement reaion. 

Th• fir1t exten1ive turbulence mea1urement1 in~ curved mixing layer between two invi1cid ■ treame of 
unequal total pre11ure were made by Lumley and collaborator■ (see lef.203 for a final report which refer, 
to and correct, earlier publication,), The flow developed in a tunnel of con1t.ant radiu1 of curvature, 
the uxiaa ratio of ■hear-layer thickne11 to radiu, of curvature being about 0,2, about the same•• in 
the 1piral wall jet with 1/l • +2/3 (Section 7), Both 1en1es of curvature were inve1tl1ated, Since 6/l 
variea with a thia i1 not a 1elf-pre1ervina flow (the net advection of turbulent eneray va1 po1itive in 
the un1table caae b~t neaative in the ,table ca1e) but detailed mea1urement1 were made at only one atati~n 
in each c•••• The experiment, were concentrated on the effect, of curvature on the ,mall-scale motion, 
aeekin& behaviour analoaou:s to that of the "buoyant 1ubran1e" (the region of the wave-number 1pectrum of• 
buoyant flow in which 1hear production and di11ipation of turbulent eneray are nealigible 10 that the 



57 

1pectral den1ity i1 determined by the energy tran1fer from lower wave number, and the local tran1fer to or 
from potential ener1Y), In fact, once difficultie1 in di1aipation mea1urement1 had been overcome it waa 
found that the apectrum followed the usual inertial aubrange ("minus five-third,") law in the relevant 
reaion: it i1 probably a general rule that the effect• of 1treamline curvature are confined to the larger 
1ddie1, who•• typical fluctuating rates of ,train are of order oU/oy and therefore not very la r ge 
compared to the extra rate of atrain U/R, The typical fluctuating rates of ,train of smaller eddiea 
increue ateadily with increaaing wave number, the root-mean-aquare rate-of-atrain fluctnation of the 
turbulence•• a whole being laraer than oU/ oy by a factor roughly equal to the ratio of Reynold• ahear 
1tre11 to vi1cou1 ahear 1tre11, which ia very large in all relevant ca1e1. Lumley et al. (203) 1110 
aea1ur1d overall en1r1Y balance,: they differed significantly, but not spectacularly, between the atable 
and unatable c1111. Turbulent transport ("diffuaion") by triple velocity producte waa meaaured (204) and 
1how1 the expected tran1fer of energy from the hi&h-intenaity region toward, the edge• of the •hear layer. 
The overall turbulent tran1port, obtained in Ref.203 aa the di fference of the meaaured advection, production 
and di11ipation, purport, to ahow a tran1fer of eneray from the high-velocity edge of the ■hear layer to 
the low velocity edae in both the 1table and unatable ca1e1, Now this impliea that the behaviour of the 
r ... inina contribution to the diffuaion, namely that of the pre11ure-velocity correlation, l ■ quite unlike 
that obtained by difference in e plane mixing layer (e.g . Ref,11), Curvature effect, would be unlikely to 
produce change• in the aeme 1en1e for stable and unatable curvature, and one is led to believe that even 
the reviaed di11ipation 11111urement1 quoted in Ref.203 atill contained some errors, specifically an 
undereatimate of di11ipation near the high-velocity edge. 

Ca1tro'1 experiment (11) on a flow [Fig.7(a)] which 11110unt1 to a two-dimen1ional normally-impinging 
jet with a potential core - otherwi1e a mixing layer deflected through 90 deg. - wa, aet up eapecially to 
examine the effect• of atrong at!eamline curvature, The configuration, similar in principle to Lumley'• 
guided mixing layer, appear, to be unique in allowing a large rapid defJ : ~tion without immediate chanae of 
1pecie1 (the full-developed impinging jet change,, nominally, to a wall j et, but Ca1tro'1 flow continue, 
•• a mixina layer until it finally grow, to meet the solid 1urface), Thu, the ahear layer relaxea back to 
ita original 1elf-pre1erving form. The moet ,triking feature of the results i, that the relaxation ia not 
aonotonic. A, 11en in Fig,7(b) the turbulent energy decrea1e1 in the region of strong curvature,•• 
expected, but then c.verahoota the plane-layer values (the plane layer values ahown in Fig,7 were obtained 
in the 1ame teet rig in the abeence of the impingement surface, so that relative values may be relied on 
whatever the ab1olute error• of mea,urement). Caetro made extensive mea1urement1 of the terma in the 
turbulent energy equation, and 1110 the term, in the tranaport equation for ■hear 1tre11 referred to the 
local direction of the 1hear layer, neglecting spatial traneport by pre11ure fluctuation• and obtaining the 
pre11ure-strain redi1tribution term in the shear stres1 tran1port equation by difference, The result• 
(Fig,28) ahowed that the deatruction terma (viscous dis ■ ipation or pressure-1train rediatribution) actually 
decreaae in the region of atrong curvature, rather than increasing•• happen, in the case of mild 
curvature. The reaaon ia that the secondary strain rate is so large that the generation terma them1elve1 
deer•••• by a large fraction - Rf (Fig.28) reaches 0,4 - and 10 the turbulent energy deer••••• at once. 
The di11ipation length parameter, Lt = (turbulent energy) 3/ 2/(diesipation), does decreaae in the reaion 
of 1trong curvature•• in the caae of ,mall extra strain, but no simple combination of an F-factor and 
laa equation can fully explain the trajectory in the (Rf, L) plane, The reaaon for the overahoot 
phenomenon - found in all three normal 1tre11es and the locally-o~iented 1hear 1tre11 - ia that the 
turbulent tran1port terma are great l y reduced in the region, of strong curvature, evident ly becauae the 
larae eddy 1tructure collap1e1. A simple meaeure of the relative 1trength of the large eddie1 ia ahown in 
Fia,29 . After the region, of 1trona curvature the turbulent transport terma increaae rather slowly, 
evident ly becauae the larae eddy atructure take• some time to renew itself; in some re1pect1 the 
turbulence downatream of the curved region resembles that in the later 1tage1 of traneition, where 
inten1itie1 exceed tho■e in the fully-developed flow, 

A full preeentation of Castro'• results would be out of place in a general review. Further analy1i1 
ia in progre11, with the particular object of deriving rules for the behaviour of the turbulent tranaport 
terma. Fia,28 1how1 the eddy diffusivity of turbulent energy (defined on the figure). Quite apart from 
the uaual 1ingularitie1 near the separate points where the intensity gradient and the triple product, change 
aign, it i1 clear that eddy diffusivity eq4al to the plane-layer value multiplied by an empirical function of the bulk Richard1on number or 6/R can !!21 reproduce the measurements. Evidently the turbulent tranaport 
depend• on a mixture of local and bulk parameters, with the probability of 1ignificant hiatory effect,, and 
it 1e1ma very likely that tranaport equation• for triple products will be needed to predict 1uch flow,. 

Two interesting qualitative features of Castro's reeulta are (i) the intenee irrolational motion near 
the high-velocity edge of the curved 1hear layer, for which the most obviou1 explanation i• the preaence of 
internal wave,, and (ii) the finding that even in the region of maximum curvature the variou1 poaaible 
definition• of the direction of the 1hear layer coincided within one or two degrees, the rate of change of 
total pre11ure along a atreamline being determined mainly by the shear stress gradient normal to the 
ahear-layer direction. 

9, CLASSICAL VORTICES 

We define a cla11ical vortex aa one formed by the complete or nearly-complete rolling up of a 1ingle vortex 
aheet or, exceptionally, two vortex sheet,, in an otherwiee uniform flow. The prototype ia the trailing 
vortex behind one tip of a wing of high aspect ratio. We exclude vortices imbedded in flow• with 
diatributed axial vorticity (see Section 10) and, deapite a good deal of experimental work, we have to 
exclude the early ■ tagee of rolling up of a vortex for lack of information about the turbulence. "Bathtub" 
vorticea, formed by ■ trona radial convergence of a weakly-swirling flow ( 95 ), nece11arily have 1trong 
axial motion which may have large effect ■ on the turbulence, 

It baa recently become clear that cla11ical turbulent vortices have 1ome very curioua feature• 
(i) A 1ub1tantial fraction of the nominally-turbulent region is effectively laminar (Fi&• 5, 30), We 

ahall refer to the quui-lami ar region II the "inner core" of the vortex, since the word "core" ia u1ed 
by 10111 authoru to deacribe the whole of the rolled-up region to di1tingui1h it from the vortex aheet, 
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Many ot~er type, of swirlina flow exhibit qua1i-lminer inner core,. 
(ii) The rate of arowth of the vortex depend• on Reynold• nUlllber even at 1cale1 typical of full-1iza 

aircraft. 
(iii) Acc~rding to an anal)1i1 by Govindaraju and Saffun (205) a turbulent vortex 11U1t develop a 

reaion in which the circulation i, laraer than at infinity, in order to con11rve anaular 110111entua d11pite 
the effect• of vi1cou1 1trea1e1 in the irrotational (but not un1trained) flow outaide the turbulent region, 
in whir.h w • 1/r (Fia,31). 

The fir1t feature i1 undoubtedly a reault of the atabilizing effect, of 1treamline curvature; the 
aecond i1 probably connected with the first and po11ibly with the third; and the third implie1 the 
exiatence of a reaion in which angular momentum decreua, outward,, 10 that the effect, of atreamline 
curvature are expected to be de1tabilizina. We proceed to di1cu11 theae three feature,. 

The 1101t notable feature of a cla11ical turbulent vortex, a, of many swirling flow,, i• an iMar 
core 1tabilized by rotation. To a good approximation the flow is "•train free" or "in aolid-body rotation" 
(circumferential velocity proportional to radiua, the behaviour of the axial velocity beina pa11ed over) 
the aradient Richardaon nu.Jlber ia 4 if aw/ar i1 uaad in the denominator or • if (aw/ar - W/r) i• 
u1ed, and the flux Richard1on number i1 l; we cannot calculate (L/K)/Lmo a priori, but to the 11tent 
that we can tru1t the local-equilibrium parameter• in a atronaly-curved flow it may be a11umed that the 
turbulence i, hi&hly atabilized, Thie i1 confirmed by fl-iaualization picture• auch a, Fia• 5 and 30 
which 1how an inner core for which "•olid body" ii almo1t a literal de1cription, with a very 1harp 
boundary between the outer turbulent flow and an apparently laminar reaion whoae diameter i• of the order 
of a tenth that of the vortex a1 a whole. Many other atill photoarapha and movie• (206-212) have bean 
taken, notably during the current period of concern over the effect of trailing vortices on following 
aircraft, but it 1hould be pointed out that the vortice, in the fliaht experiment, are often only a few 
1econd1 old and 10111etimu demon1trably not completely rolled up, 

A noticeab l e feature of the inner core, •• that 1moke often collect• near concentric cylindrical 
1urface1, molecular diffu1ion being 1mall: th ,1e cylindrical 1triation1 probably ari1e from inh011101anaitie1 
in the vortex aheet feeding the vortex. It b,,1 occaeionally been 1u11ested that centrifugal effectl on 
heavy 1110ke or dye particle• di1tort the picture, but thi1 i, disproved by the experiment• of White (213) 
and unpubli1hed work by Dr. J,K. Harvey of Iuperial College: they u~ea dyes of variou1 den1iti11 in water 
without apparent centrifugal effect,. 

A• 1een in Fig,30, large longitudinal velocitie1 can occur in the core, in condition• where the 
lonaitudinal ve1~city in the fully-turbulent flow is negligibly 1mall, Thie atrona axial motion i• 
probably a fee•. ure only of young vortices, especially thlle produced by the "bathtub" ( 95 ) mechanhm in 
the popular M~~ey-Squire vortex tube with radial entry (Jig,31, Ref,96), Brown (214) ha, recently pointed 
out that the axial velocity in the vortex close behind an aircraft is directed dO\instrem relative to the 
aircraft, a, a con1equence of the low 1tatic pre11ure generated by the circumferential motion, while at 
laraer di1tance1, when the wing wake baa rolled up more completely, the axial velocity i• up1traam relative 
to the aircraft, a, a con1equence of the momentum defect in the wake, The behaviour of the axial velocity 
therefore depend, on the ratio of induced drag to profile drag, Further complication• enaua when the 
enaine exhauat1 interact with the vortice,, and Brown'• analy1i1 is probably not very realiatic for an 
aircraft vith four engine• mounted on the wing,: when descending to land the net momentum defect in t~e 
wake is much amallar than the "drag" aa uaually defined, becauee the lift/drag ratio of an aircraft in 
landing confiauration i• much amaller than the reciprocal of the glide path elope (20 for a 3 deg, approach), 
while when climbing after takeoff there is a significant net thrust. Batchelor (215) ha• 1hovn that atrong 
interaction• can occur between the circumferential and axial motion• via the low 1tatic pre11ure near the 
axia, which is produced by the former a11d drives the latter. Muirhead emphaeizu the role of axial flow in 
"bathtub" vorticea (212), Harvey (216) found that acceleration of the wing producina the vortex (or, 
preawubly, other type• of pre11ure diaturbance) could affect the vortex for many win& chord• downatream. 
Although pre11ure gradient• are undoubtedly largeat near the axi1, the concentration of axial motion in the 
laminarized core i• aignifica t: the purely viscous force• re1i1tina axial motion in the core are likely 
to be auller than the Reynold• 1treuea eat up in the turbulent flow, leading to a "waveauide" phenomenon. 
Vortex breakdown appear, to involve interaction between axial and circumferential motion, althouah much of 
the di1cu11ion in the literature baa centred on the broad conaervation propertie1 rather than the 
detailed mechanism, Ref,217 i• a careful review of the conten~ing theoriea: see alao Ref.218, in which 
it i, pointed out that breakdown at a aiven 1wirl angle is more likely at low Reynold• number,, implyina 
that proces1e1 in the hi&hly-stabilized inner core play a aianificant part in breakdown. Some of the 
current attempt• to reduce the core vorticity of trailing vortice• involve the 1timulation of vortex 
breakdown. 

A le•• 1pectacular feature of trailing vortice,, which i1 almo1t certainly r~lated to the b~haviour 
of the inner core, and thu1 to the effect, of 1treamline curvature, is the dependence of growth rate on 
Reynold• number even at Reynold• nUlllber1 typical of full-1ize aircraft (note that the Reynold• number r/v 
baaed on total circulation r i• constant for a given vortex, although the circulation at th~ edge of a 
young vortex may be much le11 than the circulation round the wing), A1 will be aeen below there i1 •• yet 
no fully 1ati1factory theory to de1cribe thi• effect, but a cautiou1 qualitative hypothe1i1 i• that the 
local Reynold• number of the turbulence, ba1ed on turbulence intenaity and lenath 1cale, i1 low over a 
larae part of the vortex and not merely in the inner core, Crow (209, p,578) aoe1 10 far•• to ••Y that 
"the queation remain• open whether a limp le vortex can 1u1tain turbulence at all", i.e. that it may be 
maintained elmoat wholly by advection from up1tream, Ri and Rf are not very ••ninaful in hiahly-curved 
flow• but it i1 intereating to note that they do !121 nece11arily reach maxi- value, on the axia. If we 
a11ume that the circumferential velocity di1tribution i• the ,ame a, in a laminar line vortex, 

w • 

where I• r/11.iit, we find that Rf, baaed aolely on the circumferential motion, ri1e1 from unity on the 
axi, to 1,7 at the point of maximum W and continue, to ri1e to the cu1tomary value of infinity at the 
outer edae where the angular 11101118ntum become, con1tant, ii of courae become, equal to infinity at the 
point of 1111xi- W but remain• po1itive thereafter. The lasainar di1tribution ie certainly not applicable 



59 

in detail and there i1 evidence that the circulation 2wWr doe1 not riaa 110notonically with radiua but 
ovar1hoot1 the final velue and deer•••••• leadina to naaative Richardaon nlmlber1 in the outer part of the 
vortex, However it i1 certain that the turbulence i1 1tebilized by 1tremline curvature at leaat •• far 
out•• the point of maximum circumferential velocity: althouah only the innermoat part of the vortex i1 
non-turbulent, the turbulence Reynold• nUlllber i1 probably low in ■oat of the at ebilizad r eaion, In 
Poppl,ton'• exp•riment1 (219) at r/v 1111 50,000, a typical laboratory value, the Reynold• nWlber b11ed on 
(W) 1 2 and the radiu1 of ■axUIUII W va1 only about 350. The result would be I aianificant interaction 
betvffl Reynold• 1tre11e1 and vi1cou1 fore~,, 1imilar in principle to the 1urpri1inaly lara• effect of 
vi1co1ity on the outer part of a turbulent boundary layer at low Reynold• number: takina (-iiv)~ 6/v •• 
equivalent to the vortex Reynold• number juat defined ve infer Ue8/v~ 600, where aianificant vi1cou1 
effect, are found, 

The di1cu~1ion above certainly demon1trate1 the dominant influence of atreamlina curv.~ure on th~ 
behaviour of a turbulent vortex. It al10 nearly exhau1t1 the con1er.1u1 on the 1ubj ,,ct, becauae the 
phenomena me.nt -:oned have bHn elucidated only in the laat few yeara (1ee Section 4). 

The firat theory of trailing vortex behaviour to agree with the main featurea of laboratory a11.d 
fli&ht experiment • v11 that of Oven (220), who 1uaurize1 the experimental data available in 1970 , Th. 
theory i1 baaed on a hi&hly 1implified model, with an annulu1 of fluid with 1ianificant Reynold■ 1tre11 
aradient1 1eparating the 1train-free inner core from the irrotational induced velocity field, The inner 
core i1 not a11umed to be truly laminar - thi1 i1 a recent diacovery - but the alaebraic re1ult1 are the 
1a■e •• if it were. Owen'• detailed a11umption1 are heuristic and have been criticized by Saffman (221), 
but lead - with the in1ertio11 of two di1po1able con1tant1 - to good agreement with experiment, over a wide 
ranae of Reynold• number. A detailed criticiam of Saffman'•• that Eq (4) of Owen'• paper doe1 not follow 
from Eq(l), i1 incorrect: the intearation in queation muat be taken over• reaion that juat include• the 
diacontinuity in aw/ar in Oven'• 1implified velocity profile. The moat 1ianificant feature, mi11ina 
from the earlier theory of Squire (222) and from 1ome of the more elaborate models propoaed recently, i1 
that the vortex propertie1 devend significantly on Reynolds number: Oven recoanized that, becauae of the 
1tabilizing effect, of 1treamline curvature, the turbulence in the annular reaion is likely to be weak 
enouah for vi1cou1 effect, to be important. The final result of Owen'• theory ia a foraula for the ratio 
of the "eddy viacoaity" vT to the molecular vi■ coaity v 

v: A2 ( -5- r /
2 

(138) 

where r is the circulation at large radius and A is a conatant of order unity which can abaorb the 
effect, of crudely 111uming an eddy vi1co1ity independent of radius, vT/v varies from 10-100 in 
laboratory experiment• to 1everal thousand in fliaht teats: Owen'• simplified theory does not explain why 
vi1cou1 effects are still important if vtlv is very large and it seems unlikely that Eq(138) can hold 
for indefinitely large ReY!lold1 numbers, The theory predict• that the ratio of annulus thickne11 to core 
diameter vari•• •• (r/v) 1/~ but one cannot be certain of the identity or proportionality of Oven'• core 
to the laminarized inner core of the flow-visualization phot ographs. Hore generally, the "corea" defined 
by different authors may not be simply related, and workers concerned mainly with the irrotational external 
flow or the vortex 1heet behaviour tend to refer to the whole of the rolled-up reaion, laminarized and 
turbulent, aa the "core". Definitions uaed include, in o~der of increasing radiua, 

the laminarized r egion as seen in smoke photographs 
the region •Jf substantially solid-body rotation 
the region between the surface and the point of maximum W 
the whole rolled-up region 

Owen's 1naly1i1 reveals another feature of vortices that is highly relevant to laboratory 
experiments and their interpretation, It ia obvious - once pointed out - that the turbulence structure will 
not reach its final self-preaerving 1tate until the outer part of the turbulent region has made 1everal 
revolution, at least, Oven shoved that the age of the vortex in the flight experiments of Ref.223 wa1 only 
about twenty time ■ the current rotational period of the vortex core (the latter doe■ of cour■ e incre11e 
with aae, rouahly a■ tl/2) and the age of moat of the laboratory vortices reviewed by Owen waa le11 than 
one current period. The reault iM that the eddy-vi1co1ity constant A in Oven'• theory depends quite 
1trongly on age and has barely reached it ■ asymptotic value of 1,2 even in the flight experiment,. Thia 
implie1 that a transport-equation calculation method i ■ needed for complete vortex calculations: Oven's 
correlation for A i ■ probably restricted to vortices from high-aspect-ratio wing■. 

Saffman (221) baa recently produced an analyai ■ which is totally different from Owen'• but which 
1110 lead■ to a 1trong dependence on vi1co1ity. He uses an adaptation of cl111ical inner-and-outer 
1imilarity a11umption1 to derive a logarithmic law for the circulation at radii ■mall compared to the 
overall radiu■ of the vortex but large enough to include the region of maximum circumferential velocity. 
Rather different "mixing length" arguments, due to Hoffman a. d Joubert (224), can also be u1ed to derive 
thi1 logarithmic l aw, When the self-preserving forma for circulation and shear 1tre11 are 1ub1tituted 
into the circumferential equation of motion with the viscous terms neglected, integration give ■ the 
circulation on the axis as a weighted integral of the shear stress distribution. Now the circulation on 
the axi■ i1 of cour ■e zero, and Saffman explains the obs~rved dependence of vortex growth on vi1co1ity by 
aaying "••• the fluid can alway■ use viscous effects to reduce the circulation to zero, and the 
experimental re1ult1 indicate that this in fact happens . It appears that the fluid prefer, to uae vi1cou1 
force■ rather than conatrain the invi■cid dynamic■ to \make the above-mentioned weighted integral zero] 
exactly". The argument, if not the mathematics, is cl osely parallel to the invocation of vi1cou1 forceM 
to prevent the energy ■pectrum of turbulence extending to infinite wave number (the equivalent of the 
weighted integr~l being the energy transfer). Nov although viscous forces undoubtedly damp out the 
1pectr11111 at high wave number, the spectral denaity at lower wave numbers doe■ not depend on the actual 
value of the vi1co1ity: it is at least po11ible that the circulation at the centre of a vortex could 
analoaoualy be reduced to zero by vi■cous forces without o~pendence of the outer part of the circulation 
diatribution on the actual value of the vi■ cosity, Therefore although Saffman' ■ araument i1 attractive 
and although a core dominated by vi1cou1 force■ undoubtedly exist,, the mechani■m by which vi1co1ity 
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affacta the vortex development•• a whole i• atill not clear, 

Donaldaon (225, 226) ha, extended hia tranaport-equation calculation method to the caae of trailing 
vorticea, The empirical information uaed ia very 1imple: varl~u• length 1cales are taken proportional to 
the vortex radiua, The effects of atreamline curvature are not explicitly allowed for except by the extra 
aeneration terma in the Reynold1-1tre11 tranaport equations, 10 that the effect appear■ only aa an 
£-factor and not an F-factor. However the general features of vortex behaviour are well predicted. The 
phenoaenon of aaall arovth rate in young vorticea ia if anythina over-predicted, The growth rate ia 
neali&ible for ti.me, le11 than 50 rmax/Wmax where Wmax ia the maximum circumferential velocity in the 
initial vortex and r the radius at which it occurs: this correaponda to I value of 100 for Owen'• age 
par1Mter tit, a value reached only in flight experiment ■. It seems probable that Donaldson'• choaen 
initial condition, were even further removed from self-preservation than those of real-l i fe trailing 
vorticea. Donaldson pre1ent1 calculations at only one Reynolds number, r/v ~ 6 x 10~ where r is the 
circulation, 10 that the 1ize of vi1cou1 effects ia not clear. An interesting feature of the calculation, 
ia the prediction of an overahoot in circulation, which increa1e1 with the age ~f the vortex to a final 
value about 7 per cent of the nominal circulation; the radius of maximum circLlation ia about 3 rmax. 

The overahoot in circulation - the third feature mentioned at the start of thia Section - is 
important in determining curvature effect ■, The experimental evidence is scanty - it ia very difficult to 
meaaure the circulation in the out er regions of the vortex because the circumferential velocity becomes 
very ■mall - but the theoretical evidence provided by Donald1on's numerical calculations and Govindaraju 
and Saffman'a analy1i1 (205) ia strong. 

Govindaraju and Saffman'• proof of the existence of an over1hoot i1 1imple mathematically but not 
very clear phy1ically, and a co-ntary may be helpful. The proof rests on the fact that the viscous 
ahear 1tre1s in the cro11-1ectional plane, 

v(~ - li) or r 

1oe1 to zero at large distances only•• 
Reynold• ■hear atreas w is as1umed to 
reault is that w.1ile the Reynold• 1tre11 
integral 

1/r2 (aince the circulation r = 211W1 is con1tan t ) whil e. the 
go to zero much faster than this, as ir. non-1wirling flO\ls, The 
term disappear■ from the equation for t11e circulation defect 

fo'
0

cr0 - r)r dr 

derived from the exact equation of motion, the viscous term does not, It follows that the dimen1ionle11 
ver1ion of thi1 integral, 

J 
... r - r o r ar 

J(x) = 7-:- - -o o r1 r1 
(139) 

where r1 i1 a typical radius of the vortex core at dietance x from the origin, varies•• 

J(x) 
2V X 

+ --
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where A i 1 a con1tant of integration and x/Ue ia the age of the vortex, In laminar flow, rj ia of 
order vx/Ue and J remains of order unity; but in turbuler c flow r 1 ia larger (though still 
pro~ortional to xi), the 1econd term ia ■mall, and therefor~ J tends to a small con1tant value•• 
A/r 1 decrea1e1 to zero with increasing x. Thua even if the initial di1tribution of circulation ia 
monotonic like that in a laminar vortex, an overahoot IIIUlt develop in the 1elf-pre1erving profile far 
dovnatream 10 that the circulation-defect intearal ahall become ■mall. (The paradox that a turbulent 
vortex with conatant t dy vi1c01ity would be effectively 1-inar for the purpo1e1 of the above analy1i1, 
and therefore would .!!2! develop an overahoot, ia reaolved by notin& that in this caae the Reynold■ 
1tre11e1 woul~ a .o 10 to zero•• 1/r for large r, contrary to hypothe1i1.) Ph~•ically, the vi1cou1 
1tre11e1 ~~ucinue to reduce the circulation in the region outaide the turbulen~e, which haa a rate of 
ahear ■ tl·.::n equal to 2W/r = r/(wr2). Although the preaence of a finite rate of ahear 1t1:ain doubtle11 
encouraae• the growth of the turbulent reaiona and may lead to, le11 rapid decreaae of Reynold• 1tre11 
with increaaing r than found in a non-ewirlina flow, the turbulent region doea aeem to be aharply bounded 
•• uaual (Pia,5) and the baaic qualitative a11umption of the analy1i1 i ■ plauaible, The only re1ervation1 
are that in real life the inhomoaeneity of the outer boundary condition• (behind a wing of finite ■pan or 
in a vortex tube of finite radiua) may make the analy1i1 le11 relevant. 

Accordina to Govindaraju and Saffman'• theory and Donald1on'1 calculation, the overahoot ia 
noticeable only in fairly old vorticea (even if the whole of the wing circulation haa already rolled up 
into the vortax), Note that Owen'• co-nt about the finite time needed to ,train the turbulence into a 
1elf-pre1erving atate ia atill applicable and may further delay the arrival at the aaymptotic atate, The 
youth and uncertain circulation of laboratory vorticea add to the difficulty of detectina an overahoot 
experimautally; in the detailed experiment, of Poppleton (219) there WAI certainly no overahoot at any 
radiua le11 than 5 r , A very clear piece of evidence, which, however, rai1e1 more quefttiona than it 
1ettle1, ia the over,Ct in total pre11ure found by Earn■haw (227) in the incvmpletely rolled up vortex 
above a •lender wina, An overahoot in circu ation i1 implied, unle11 the overahoot ia cauaed mainly by 
axial 1tre11e1, but the varioua explanation, tor the Earn■haw effect offered at the time were moatly 
applicable only to a vortex in proce11 of rolling up (e11entially a highly-curved mixing layer). One 
univeraally valid explanation waa experimental error, but the only 1ource of error that could not be 
checked waa the effect of turbulence on the pitot tube and if thia were the explanation it would imply very 
unuaual behaviour of the turbulence. An overahoot in circulation aenerated in the rolling-up proce11 
would per1i1t for aome diatance down■tr•- and miaht be taken•• evidence of overahoot in a fully rolled-
up vortex, If the theoretical concluaion, that over1hoot develop• in rolled-up vorticea only at rather 
larae ti••• ia :orrect, laboratory evidence for overahoot ahould be regarded with 1u1picion. To quote 
one exaaple, perhapa unfairly, the meuurementa of Maaon and Marchman (228), made at di1tance1 up to 30 
chord• behind a wina in a tunnel at Uec/v ,_ 5 x 105, ahnw an overahoot in circulation even thouah the 
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vortex i1 10 youna that it, core ha1 1carcely grown at all. Flight mea1urements merit caution for the rather different reuon that th.e circulation distribution on an aircraft in approach configuration i1 far froa ,_,oth: the con1equence1 for the initial rollina up of the vortex 1heet are illustrated by Fig.8 of Ref.229, vhich 1hov1 hideou1 diatort i.on1 with at lea1t three incipient vortices on each aide of the aircraft. Vortice1 from slender vina• probably interact stron,ly becauae the ratio of core diameter to vortex 1pacina i1 not larae, even cloae to the trailing edae, Therefore although the preaence of an overshoot in circulation ha1 been fairly convincingly demonatrated theore t i cally, it may be some time before we have experimental data reliable enough to 1erve a1 a ba1ia for di1cu11ion of the quantitative effects of streamline curvature in the region of "unstable" angular momentum gradient. 

The re1ults of the earlier experiment■ on vortices in the laboratory and in flight are summar ized by Owen (220), Recent experiments, moatly on vortice, behind aircraft models in wind tunnels, include Refs 230-235. Apart from the fairly re1tricted me11urements made by Chigier and Corsiglia (232) the main 1ource of turbulence data is the work of Poppleton (219). He describes the work as "preliminary", saying that "the accuracy of 1ome of the reaults wu not as high as might be desired", but the general standards appear to compare very favourably with other recent work undertaken as part of the aircraft vortex wake proar111111e. The moat ■ triking feature of the resul ts is that all three components of turbulence intensity reach maxi.aim value,~ the axie, and that the shear streRsP s appear to vary linearly across the axis wi th no trace of a ■ trees-free laminarized core. A peak in u-component intensity on the axis was found in the 1957 experiment of Titchener and Tay l or-Russell (236), and in the 1972 experiment of Chigier and Corsiglia (232), The only vay of reconciling this result with the evidence of the smoke pictures is to suppos e that the vortex core vandere about randomly, as haa indeed been found in several experiments, Even a non­turbulent vortex would then show a maxim\1111 ,elocity fluctuation on or near L!1e axis where the radial aradiente of the velocity components are largest, The amplitude of distrubance of the core axis would have to be of the order of rmax to get a linear distribution of apparent shear stress if, as expected, the true shear atresa i1 very small i n a significant region of the core. In Poppleton's experiments r was about 0.01 x, 10 that long-wavelength v-component fluctuations of at l eas t 0,01 Ue, or stronger fluctuations at shorter wavelength, would be needed to produce an amplitude roughly equal to rmax• Similar amplitude• would be needed to produce a displacement of the vortex by altering the lift of the aerofoil, It i1 probably unfair to blame wind tunnel turbulence entirely although it is reported (235) to have been re1pon1ible for some 1hortcomings of the results of Ref,232 and perhaps of other experiments: Poppleton (219) measured a v component r,m,a, level of about 0,01 Ue with the wing set at zero incidence, but the typical wavelength• were presumably small compared with the wing chord rather than of order x. However the maximum r,m.s. turbulence intensity i n the vortex itself was as high as 0,025 Ue and it is plausible that the larger eddies in the truly-t~rbulent part of the "IIOI"t ex could cause large enough displacements cf the core to produce t ~e observed effects: the irrotational fluctuations generated by the annular r egions of turbulence are likely to be a maximum on the axis. In add it ion, long-wavelength fluctuations in the axial velocity in the laminarized core , caused by disturbances at other positions on t he axis, would be registered as "turbulence" by a hot wire: axial fluctuations of moderate wave leng th might interact significantly with the mean circumferential motion in the manner described by Batchelor (215). Finally, mild precession of the vortex core may occasionally be induced, Judging by visual observations of delta-wing vortices in a smoke tunnel at Imper i al College , quite strong precessional di s turbances of the laminarized core can travel down the vortex, at roughly the fr ee stream speed, maintaining the ir intensity for many core diameters, We can conclude that there are enough possible sources of disturbance to reconcile Poppleton'& measurements with the flow-visualization pi ctures, 

Unfortunately the key part of Poppleton'& data, · he measurement of vw, exhibits considerable scatter, Pratte and Keffer (237) also found large s catter in w measurements in a swirling jet: the extraction of w from hot-wire readings i s essentially ill-conditioned, Therefore, in the vorteY as in the swirling jet, we have no shear-stress measurements relieble enough to indicate the effects of ;treamline curvatu~e. Several authors (228, 230, 231, 238) have calculated the apparent eddy viscosity vr e , in the cro1s-1ection,1 plane, from mean-flow measurements but the confusion over validity Qf t he mean-flow results makes it difficult to draw any general conclusion: Owen's theor·· is still the best correlation of results but t t,e apparent eddy viscosity of the theory is not directly comparable with vr e • and a more satisfactory thPury, based on a detailed turbulence model such as Donaldson's mus t await better understanding of s reamline curvature effects and of the behaviour of turb~lence at l ow local Reynolds number, 

This is not the place for a general discussion of trailing vortices. Ref.239 (186 pages, 124 r eferences) is described by the author as "an initial step towards a more criti cal review", An entry to c rrent research work, with emphasis on prediction, detection or reduction of aircraft trailing vortices, i given by Ref.209, Ref.240 is a collection of papers on all aspects of vorti ces but with very l i ttle attention to turbulence, and Ref.241 is a report on a specialist symposium, 

10. SWIRLING SHEAR LAYERS 

10 , 1 IN'l'R0DUCTION 

Thi• i1 a large category, including all flows whose mean streamlines are roughly helical [Fig.l(d)]: some have been di1cussed in previous sections, We start by establishing clear sub-categories ( a precaution not always obaerved in previous dis cussions of swirling flows), In all cases we as sume that W [the mean velocity component in the circumferentia l (8) direction] is of the same order as U: if it is ll'&J ch smaller, the flow i1 only weakly swirling and any results for strongly-swirling flows will be applicable, while if W i1 DJch 1maller than U the flow is better r egarded as a s lightly three-dimens ional version of a curved flow in the r, 8 plane. For a discuss ion of val;d approximations, see Ref,242. We &lso assume tha t the re1ultant mean ■hear, (( au/ ar) 2 + ( aw/ ar) 2) 1/ 2, i s of the same order as au/ ar so that we can refer to the latter II the "mean ■hear" in qualitative discuss ion , In effect we regard swirling flows as s imple 
■hear layers, with a 1imple shear of order au/ ay, perturb ed by an extra rate of strain e = W/r analogous to the extra rate of s train e • av/ ax• -U/r that appear s in two- dimensional curved flows, Finally we call the thicknes s of the shear l ayer 6 as usual, and distingui sh the main types of sw i rling flow u 
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(i) thin 31\nular 1wirling 1hear layer• (6 << r). As in two-dimensional curved thin shear layers 
with 6 << r, the direct effect■ of 1wirl on the turbulence will be small enough to represent by 
F-factor■ although three-dimen1ionality may introduce explicit extra terms in the equations of motion and 
thua complicate th~ calculations, The thin-ahear-layer condition a/ ar >> a/ax is obeyed but the radial 
pre11ure gradient may be 1ignificant ( ■ ee Section• 2.2 and 2.3) for values of 6/r near the likely upper 
limit• of validity of the F-factor approach. For purposes of analysing curvature effect, these flows can 
be grouped with threa-dimensional boundary layer, (Section 5,3: note that axisynroetric flows of this 
type are analogous to flows over infinite swept wings), Experiments (133, 165-167) were discussed in 
Section 6 and will not be discu11ed further in thi1 section, 

(ii) ,lender swirling shear layer, (6 ~ r), This section includes annular shear layers too thick to 
qualify for cla11 (i), and al~o the large number of axisynnetric or near-axisymmetric flows which are 
nominally turbulent on the ax11, We call the simplification of the equations of motion that results from 
auuming a;ar » a/ax (or more generally a/ay, a/ az » a/ ax) the "slender-shear-layer" approximation. 
Iaolated trailing vorticea have already been discussed in Section 9, with particular reference to 
atabilization of the flow near the axia, The phenomenon of virtually complete suppression of turbul~"ce 
near the axia nece11arily appear, in moet of the s lender flows to be discussed in the present section, 
becauae W « r nenr ~he axis, leading to Ri • 4 (Section 9): in general the direct effects of streamline 
curvature will be too large to represent by simple F-factore, Moreover, in unstable swirling flows the 
large-eddy structure 1'\ay be 1ignificantly modified by etreamline curvature, leading to changes in 
turbulent tranaport that cannot ea1ily be repreaented by local parameters. Therefore the Reynolds stress 
distribution will depend i.n a rather complicated way on the swirl velocity distribution and, in default of 
a unified treatment, different empirical information may be needed to describe different kinds of swirl 
distribution, 

(iii) non-1lender 1wirling ■hear lay 1rs (a/ ar ~ a/ax), In swirling flows that are changing rapidly 
in the axial direction no simplification of the equations of motion is permissible, except, where 
appropriate, the simplification of axi1}'11111etry, a/ as • 0 (precession of the central core has been 
obeerved in some nominally axis}'11111etric flows), In such flows, as in previous examples of strongly-curved 
flows, no qu,.ntitative analyai, of direct curvature effects is possible at present because large changes 
in turbulen,.e structure ar; implied, even by explicit terms introduced into the equations of motion by the 
various extra strain rate ■ :hat occur, However it is qualitatively clear that curvature effects on the 
turbulence 1tructure may pl ay an important part in the flow development, especially by permitting easy 
axial motion of the fluid w. thin a curvature-stabilized core, Fig,32 is a summary of the types of 
swirling flow to be discuue·.'. It is customary to measure the strength of the swirl by the "swirl nuni>er", 
the ratio of the angular mom,ntum integrated over the cross section to R times the axial momentum 
integrated over the cross sr ~tion, where R is a typical radius of the flow. In jets the momentum 
integrals are conserved whi .e R increases with x, whereas in pipes the angular momentum decreases while 
R remain, constant: therefor~ ··,e swirl number decreases with increasing x unless external forces are 
applied to maintain it. The swirl ~umber gives no information about the distribution of W and i~ a far 
from adequate description of the sw. ·l for present purposes, 

The most popular type of 1wirl generator, whose most advanced version seems to be the "movable block" 
generator of Beir and Leuchel (243), is a fixed pipe with tangential injection of part or all of the mass 
flow, The swirl intensity and distribution depends on the ratio of the tangentially-injected flow to the 
total flow, the ratio of injection slot area to pipe diameter, the proximity of the end wall and the 
length-to-diameter ratio of the pipe: if the pipe is very long the swirl decays completely, and if it is 
short minor changes in geometry may have a large effect on the mean flow and turbulence at the exit. 
Preces1ion of the core may occur at high swirl angles. Another type of swirl generator, capable of 
producing a fair approximation to solid-body rotation with uniform axial flow, is a rotating honeycomb or 
thick perforated disc, ~hich may be regarded as a crude axial-flow turbomachine rotor. Traugott (100) 
obtained a low-turbulence flow close to solid-body rotation by using a well-designed rotor followed by 
several rotating tcreens: in Traugott's configuration the pressure drop through the screens was 
in■ ufficient to remove the wakes of the rotor blades (coarse grids were inserted to do this at the cost 
of raising the turbulence level) but this is not a criticism of the basic idea. Solid-body rotation 
(W « r) can also be obtained at the exit of a long spinning pipe but the axial flow approximates to fully­
developed pipe flow. A swirling flow with a nearly irrotational region (W « 1/r) surrounding a slen1er 
core can be produced by vanes in a radial contraction (Fig.31) but is less representative of real-life 
swirling flows. "Bathtub" vortices can be produced by radial inflow through a cylindrical rotating screen, 
which also gives W « 1/r except near the axis where the core forms. 

Current discussions of swirling flows and methods of calculating them (244-246) usually treat the 
effects of swirl in terms of th'.? "anisotropy of eddy viscosity" or, in our present notation, differences 
between the quantities vrx and vr e defined by 

-iiv 
au/ ar 

and 
r a(W/r)/ ar (141) 

We note once more the uncertainty of definition of the denominator of vr o - velocity gradient, vort1c1ty 
gradient (as 1hown) or angular-momentum gradient? - and the certainty that the dire~t effects of curvature 
at the F-factor level will overwhelm the ambiguities of definition at £-factor level, The definition of 
vre gi-len here is the 'IIOst co111Don one in discussions of swirling duct flows. It offers the poHibility 
that vr8 is well-behaved in regions of solid body rotation where the numerator and denominator both go 
to zero, and the denominator is unlikely to go to zero elsewhere in simple swirling flows with W ➔ 0 a, 
r ➔ m, These are of course operational advantages rather than a proof of physical relevance: W/r is not 
constant i n an irrotational swirling flow (W « 1/r) although vw is expected to be zero. Now 
unfortunately even plane three-dimensional flows will usually exhibit different eddy viscosities for the 
"streamwise" and "cross-stream" components of shea!'. stress, because, although the transport equations for 
the two components Are identical except for cyclic interchange of syri>ols, the mean pressure gradient and 
the boundary conditions will in general affect the streamwise and cross-stream motions in different ways . 
Even in thin attached boundary layers the angle between the resultant shear stress and t he re su ltant 
velocity gradient (which would be zero if the eddy viscosity were isotropic) behaves in a very complicated 
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fa1hion (Section 5,3): the ability of calculation method,, even exten1iona of fairly 1ophi1ticated two­
dimenaional tran1port-equation Mthoda, to predict the behaviour of thia anal• ia by no •an• proved. 
Therefore correlationa of the propertiea of pl ane three-dimen1ional flow, by edd:,-vi1co1ity ani1otropy 
factor, are unlikely to be applicable to a wide ran1e of flow, . A puri1t objection to ani1otropy factor• 
i• that eddy vi1co1ity, like aixin1 len1th, i1 a local-equilibriua concept! local equilibriia implie1 that 
the turbulence i1 determined by the local rate-of-1train field, acd in particular that the direction of 
the •hear 1tre11 h the 1ame •• the direction of the velocity 1radi'.ent, 10 I.hat Vrx au1t equal Vre• 
Thi• by it1elf need not atop u1 u1in1 ani1otropy factor, for correlatin1 di.ta, any IDOte than it 1top1 u1 
u1in1 eddy vi1co1ity for correlatin& data in two-dimen1ional flow,, but it lend• weiaht to the pr actical 
objection, outlined above. 

It appear,, therefore, that the ani1otropy of eddy vi1co1ity of three-dimen1ional flow, i1 likely 
to be 1i1nificant and ill-behaved even in plane thin 1hear layer, (125, 247). Streamline curvature effect, 
will further complicat e the picture even if the 1hear layer r_.in1 thin or 1lender while attampt1 to 
de1cribe non-thin 1wirlin1 flow, in tenu of eddy-vi1co1ity ani1otropy factor• are unlikely to lead t o 
anythin& better than a broad-bru1h treatment and are IDOlt unlikely to tell u1 anythin1 of perunent value 
about the direct effect, of curvature on the turbulence. Swirlina flow1 ere en example of the frequent 
impo11ibility of deducina curvature effect• by compari1on with experi111nt1 on a non-curved but othervi1e 
identical flow: their curvature and their thr~e-dimen1ionality are in1eparable. We IIUlt therefor fall 
back on "n-rical experiment", examinina predictions of 1wirlina flow, by calculation method• that give 
aood reaulu in the corrupondina axiayanetric non-1wirlin1 flow !!!!!_ in three-dimen1i.onal plane flow,: the 
di1crepancy between prediction and experia:ent can be provi~ionally attributed to curvature effect,, and 
minimi1ed by application of P-factor1 or othervi1e, Thia approach ha, not yet been tried with 1DOdern 
tran1port-equation method, except for the u,e of ani1otropy facto r, for vre in an eddy-vi1co1ity tran1port 
equation for Vrx in Ref.245: the1e method• are at pre1ent ma inly confined to two-dimen1ional (or non-
1wirling axi1}'11111etriL) flow, and more work i1 needed to develop a r epertoire of method, for three­
dimen1ional flow,. Some attempt• to IDOdify 1impler calculation method• for application to 1wirling flow 
will be referenced below, Tvo objection• to u1ina 1impler local-equilibrium method• for the "numerical 
experiment•" propo1ed above are that 1wirling flow■, eapecia l ly jet,, are often highly turbulent with 
1i1nificant turbulent tran1port term,, and that equally often they have larae mean tr•n1port tenu be~auae 
the flow chanaea rapidly in the axial direction. At pre1ent, therefore, all the theoretical attack, on 
1wirling flow, leave 1omethin1 to be delired: the paper by Kooainlin and Lockwood (246) aivea a aood id~• 
of the current po1ition. 

We proceed to review the experimental work on 1wirling flow,, excepting i1olat ed vortices and thin 
annular 1hear layer,. The IDOlt coaaon type• of 1wirlina 1hear layer left in the category are avirling jet, 
or pl-• in nearly 1till air, and 1wirlin1 pipe flow•. In al1D01t all caaes the flow uear the uh of 
rotation i, ,table and in a 1tate clo1e to 1olid-body rotation•• far as the circumferential 110tion is 
concerned. Production of turbulent energy by the axial component of the mean •hear, au/ar, i, ,mall in 
thi1 region becau1e au/ar • O on the ui1. It therefore 1eema very probable that any 1wirlin1 flow 
which chanae• fairly ,lowly in the x direction will have a laminar core as in a cla11ical vortex. The 
1tability further fcom the axi1 depend, on the source of 1wirl, (i.e. the 1ource of anaular -.intua) which 
determine, the anaular •ilOmentum aradient appearing in the relevant Richardson number, Eq(l05). We 
empha1ize yet again th, unreliability of local-equilibrium curva t ure parameter,, especially in hi&hly­
turbulent free 1hear l ,1yer1. If 1wirl is introduced only at the 1ource o~' the 1hear layer (i.e. at a jet 
nozzle or a pipe entry) the flow near the outer edge i1 un1table becau1e the velocity fall• rapidly to zero 
there, either in the undi1turbed fluid or at a 1olid aurface, 10 that there i1 a region in which the 
angular IIY'mentum decreaae, outward. Therefore the net effect of "pre-1wirl" ii u1ually to increase overall 
mixing race,, and by a larger fraction than would be expected merely on the basis of increa,ed re1ultant 
velocity. Accordingly, 1wirling 1hear layer, are c0111110nly found in devices for augmentina or controll i ng 
mixing. Some idea of the magnitude of changes in mixing rate can be gained from Swithenbank and Chigier'• 
(248) 1ugge1tion that pre-swirl could be u1ed a, the main method of control of combu1tion rate in a 
1uper1onic ramjet, Pre-,wirl can al10 be u1ed to 1horten the noi1e-producin1 reaion of an exhau,t jet 
(249) or to promote b~tter mixina of the multiple exhaust 1treams of a by-pa11 turbojet. In view of the 
other data, the conclu1ion of Povinelli and Ehlers (250) that 1wirl (inten1ity not 1tated) haJ neali&ible 
effect on mixing dovn1tream of a blunt-ba1e fuel injector i1 difficult to under1tand. If 1virl i1 
introduced or maintained by rotation of the outer boundary or by entrainment of fluid with axial vorticity 
the turbulence ii ■ table al1D01t everywhere ("al1D01t" beina an acknowledaement of the pouibility of an 
over1hoot in circulation like that believed to exi1t in a turbulent line vortex). 

The picture i1 complicated by the ba1ically invi1cid phenomenon of recirculation zone• (Pig.32) near 
the axi1 of 101111 1tron1ly-1wirlin1 flow,, where the 1tatic pres1ure i• reduced 10 much by the swirl that 
fluid from further down1tream i1 forced back along the ui1. Thia i1 a deliberately vaaue de1cription, 
de1i1ned to fit 1everal ver1ion1 of the phenomenon (245, 251-253). There i1 no rea1on to 1uppo1e that 
1t reamline curvature effect, play an e11ential part, althouah the pre1ence of a laginar core -y be 
imprrtant in 10111 ca1e1, •• will be 1een below. Clearly the extra turbulence aenerated by recirculation 
may IDOte than cancel any 1tabilizin1 effect• of 1virl, and we can neither extract u1eful information on 
curvature effect, nor apply the foreaoina rudi1111ntary analy1i1 to 1uch complex flow,. A aood introduction 
i• the 1964 paper by Gore and Ranz (251): for a review of current work, e1pecially by the Sheffield aroup 
under Beer, 1ee Chiaier (129). 

Any 1virlin1 flow with 1olid boundarie1 in the r,8 plane i1 likely to be 1ianificantly affected 
by fluid from the "Ekman" boundary layeu that 1piral inward on thue boundaries under the influence of 
radial pre11ure gradient, Charvat and Schle1inger (254) have de1cribed the complicated flow pattern that 
occur, in the recirculating part of the wake of an axial cylinder in a 1virling external flow, The ratio 
of the circumferential velocity to axial velocity at the cylinder radiu1 va1 nearly 2.0. The recirculating 
flow 1upplie1 the Ekman boundary layer a, we'l a, the entrainment to the annular mixina layer, and the 
fluid leavina the Ekman boundary layer near the ui1 1DOve1 uniformly dovn1tream, recirculation beina 
confined to an annular zone, The effect of the extraction of fluid vio the Ekman layer and the 
hypothetically laminar core i1 1imilar to that of auction through the ba1e: the recirculation reaion i1 
much aborter than in a non-1virlina flow, A no~eworthy feature of 1virlin1 ba1e flow1 i1 that the 
anaular velocity of the fluid in the f r ee 1hear layer will tend to increa1e •• it approache1 the aai, 
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(anaular 11101Nntum baina approximately conserved) and both the fluid which recirculates and that 1-mich 

ucapu dovnatrau uy be a,•irlina very 1tron1ly, Charvat and Schluinaer pre ■ ent 10111a evidence that the 

flow dovn1trau of the primary recirculating zone experienced what they call "vortex breakdown" but which 

appear, to be th~ recirculation phenomenon found in 1tron1ly-ewirling jet,. Note that their flow 

i1 effectively the inner part of an annular 1wirlin1 jet, a configuration popular in fuel injector,, It 

,, ... unlikely that detailed prediction, of such a complicated flow will be po11ibla in the near future, 

and althouah tht photoarapha of Ref,254 ,how ~lear qualitative evidence of the 1tabilizin1 effects of 

rotation, par ticularly on the Ekman effluent, a consideration of the quantitative effects of 1treamline 

curvature would be premature. The same conclu1ion1 about the Ekman layer effects and the aeneral 

complication of the flow apply to other confine4 vortice,, typified by the Ranque-Hil1ch vortex tube (a 

device for underminina faith in the second law of thermodynamic, by ueparating an i1othenul 1tream into 

one hot and one cold 1traam): an exten1ive r eview of thi s popular 1ubject is given by Lewellen (255) and 

1ome intere1tin1 flow picture• by Johnston (256), Traver, (257) and Yu (258) but no fre1h information about 

curvature effect, can be extracted, Dadri Narayanan and Kangovi (259) have investigated the near-wake of 

a rotatina axial cylinder in a purely axial external flow, in which case the Ekman flow ia radially 

outward, and therefore 1111 1pectacular in its effects, The ratio of circumferential veloci ty to axial 

velocity wa1 only 0,33 and although the (destabiliz i ng) effects of rotation were noticeable as an increase 

in the 1preading rate of the free 1hear layer and a reduction of about JO per cent in the l ength of the 

recirculating region, no spectacular changes in the flow were observed. 

l O. 2 SWIRLING WAKES AND JETS 

The only experimental work on the swirling wake far downstream of a rotating body seem, to be that of Liu 

(260). The velocity defect on the centre line decreased by about 20 ~er cent in the range 10 < x/R < SO 

11 a reault of rotation of a ·01unt-baaed body at a velocity ratio of 0 ,. 58, but the drag of the body vu 

not mea1ured and the re1ult1 of Ref.(259) suggest that it may have increased considerably as a re1ult of 

rotation, 10 that the change in velocity def ect at conetant drag would hav~ been larger than 20 per cent, 

Thia implie1 1ignificant effects of swirl on mixing rate in the earlier regions of the far wake, 

Swirling jet, and wakes have been classified by A,J, Reynolds (261) according to whether the ratio 

of a typical circumfer ential velocity W to a typical axial velocity U or velocity defect 6U 

increase,, decreases or remain■ constan t as x increases, The only case in which the ratio increa1es i1 

the axi1,-tric swirling wake of a self- propel l ed body (zero drag t ut fin i te torque - not a practical 

situation al t hough of course it ap?lies to t he usual idealizatior. of a wingtip vortex of an aircr aft of 

high aipect ratio), In the case of sma l l swirl , implying negligibl e effec t of the swirl on the axial motion, 

self-preaerva t ion and conservation of momentuc and angul,tr momentum reGu ires 6U « x-1 / 2 , W a: x- 3/'+, 

o « xl/'+. Note that t he winatip vortex nom~nally has large svir l (negligible axial motion). In the case 

of the rotating body with fini te drag, tht! small-11wiri solution i s 6U « x-2/ 3, W « x-1, 6 « x1 / 3, and 

the relations for 6U and 6 have been verified b~ Liu for x/R > 15 (where the swi rl was pr obably quite 

small and the turbulent mot i on maintai ned chie f l y by the mean shea r U/ ar as i n a non-swirling wake ) , 

In the caee of the jet in still air, U • x- 1, W • x- 2, • x. Now even i f t he small-swirl solutio~ i s 

not exactly valid i t is certai n that the rat i o of typical veloci ~ies, W/U or W/ 6U, will decrease 

stead i ly with di stanc ~ f rom the or igin of a swirling j et or wake, There:ore, par t i ~ularly in the case of 

the swir ling j et which is much n:or e impor tan t th an the swi rling wake in practice, the major effects of 

1wirl on mixing occur fairly close to the origin, Even in t he c~se of small enough swirl for the axial 

flow t o become approximate l y self-preserving, the swirl will have largely decayed before self-preservation 

is attained. It follows that the ef fects of swirl will interact with the e ffects of the initial 

conditions (262), specifically the profiles of axi al and circumferential velocity just downstream of the 

j et nozzle or wake-produc ing body, which makes it most v.nfortuuate tl': at t he majority of investigators of 

swirling jet s have used rather arbitrary initial condi t ions not easily reproducible by others and sometimes 

not fully documen ted by the experimenters t hemselves . 

From the point of view of reprod ucib i lity, the best swirling jct generator ia a long rotating pipe 

givinr a fully-developed pipe flow i n sol i d-body rota t i on. Thi s wa s used by Rose (263) in the first of 

the well-knovn experiments on the sub ject, published in 1962, Chi gier and Chervinsky (264) quote work 

on annular 1wirling jet& by Ullr ich (1960), Ros e shows that, for a pipe circumferential velocity of about 

0.4 times the centre-line velocity of the pipe flow, the swir ling jet at x/d • 15, wher e d is the pipe 

diameter, baa almost twice the diameter of the non-swirling j e t, However the turbulence intensity at 

x/d • 15 is about the same fracti on of cen tre-line velocity in each case, indicating that the effects of 

swirl on the turbulence and on the mixing r~te have already largely di sappeared (the maximum swirl angle 

wa1 about 9 deg, at x/d • 15), This is conf irmed by meas urements of mean-velocity decay at larger 

di1tance1 from t he exit, Shortly af t er Rose' s work, Lee (265) carried out a si~ :1Pr experiment and 

confirmed Rose's results, 

In the years since Rose's paper a great deal of work has been done on sw i rling jets and associated 

flows. Nearly all theoretical work has been based either on assumpt i ons of sel f -preservation or at least 

of negligible effect of swirl on the axial component of ~hear stress : the latter assumption is an 

extension, which can be seen in the present context t o be unreliabl e , of the well-known "small-crouflow" 

assumption used i n three-dimens i onal boundary l ayers . Since most enginee r s are i nterested in using 1wirl 

to promote mixing (i nevitsb l / i n the non-self-preserving region) and s ince we ar e interes ted in the effect 

of swirl on turbulence structure this work i s of little r el evance : re fer ences are given, for instance, by 

Pratte and Keffer (237). Rubel (266) has correl ated the eddy vi scosity needed t o predict the swirling jet 

measurements of Chervinsky (267) as a funct ion of a s imple RosPby number, equal to (axial veloc ity)/(swirl 

velocity), Rubcl's correlation i s non-linear but can be f i tted quite clos ely by an eddy-viscosity factor 

[ 1 + 7 ij) 
which can be related to an F-factor if one replaces W/ U by a mul t ipl e of ( aw/ ar)/( au/ ar), a reasonable 

approximation in the outer region of a swirl i ng jet. The onl y other piece of theor etica l work on swirling 

j ets that implic:tly includes an allowance for curvature ef fec t s on the turbul ence i s tha t of Schetz (268), 

who takes the val~e of his (suppoaedly i sotropic) eddy viscos ity f rom exper iments 0 \ 1 class ical vortices. 
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Host other theoreticians have carried over empirical constants from the analogous non-swirling flow: for 
example Lee (269) use, an entrainment coefficient taken from experiments on non-swirling buoyant plume• 
and find• aood agreement with his own experiments on plumes with swirl introduced at the source. In such 
a case it follow• that the effect of swirl on mixing rate must have been negligible. 

Experiments on swirling jets have been reported by several authora (237, 263-265, 270-272). Craya 
and Darrigol (271) report turbulence mea1urements, including 1ome in a recirculating jet, b•Jt do not 
document their mean flc~. The only detailed investigation of the turbulence, other than Rose's work, is 
that reported by Pratte and Keffer (237) al10 in the jet from a spinning pipe. The Reynolds number wa1 
only 1lightly hi&her th.n the minimum required for turbulent pipe flow, and the flow was apparently not 
fully developed at exit. The axial velocity profile measured one diameter downstream of the exit happened 
to be very clo1e to a fully-developed jet profile, and a, a re1ult the mean flow appeared to be 1elf­
pre1erving at all the mea1urement stations although the turbulent quantities do not attain self-preservation 
ur.til roughly x/d • 12. Measurement• of all six independent Reynolds stresses were made, although the 
measurement, of the shear stresses W, W and uV are un fortunately rather scattered. The 
c ircumferential component of shear stress, vw, appears to i ncrease monotonically with distance down1tream 
but since impo11ible non-zero values occur on the axis the measurement may not be trustworthy. A unique 
experiment on a pair of contra-rotating jets ha1 also been reported by Keffer (273): the effects of 
streamline curvature on the turbulence had probably subsided be fore the jets interacted seriously. 

Beer and his colleagues (notably Chervinsky and Chigier) at Ijmuiden and latterly at Sheffield, 
have concentrated on swirling flows for application to conbustion systems. As well as the work on pre-
1wirling jet• already referred to, they have studied jets and buoyant plumes which have no pre-swirl but 
which entrain swirling fluid from out1ide. A high l evel of swirl is maintained far downstream, in contra1t 
to the pre-1wirling jet. As pointed out by EIIIDons in the discussion following Ref.(272), the angular 
momentum in the1e flows increase• with distance from the axis and, in the moat co111DOn configuration, 
become, nominally con1tant in the external swirling flow. There is at present no evidence of an overshoot 
in circulation like that believed to exist in trailing vortices. Therefore, again in contrast to the 
pre-swirling jet,there is probably no region of a constant-density externally-swirling flow in which the 
turbulence i1 inten1ified by the direct effects of swirl: of cour1e the increa■ e in resultant velocity 
tends to increase the turbulence level. Naturally, variable density is a feature of combustion 1y1tema and 
- see Eq(91) - the moat c0111110n ca1e of low density near the axis of a flame and high density in the 
external flow reinforces the stabilizing effect of a po1itive angular momentum gradient. Beer et al. (123) 
show photographs of a swirl-stabilized flame which is not only laminarized but laminated, with an annular 
structure like that seen in isolated vortex cores. In a cold helium/air flow, simulating a flame, the two 
component• of Reynold• shear stress fell to zero in the core region, confirming that the flame it1elf wa1 
laminar. The Reynolds numbers of these laboratory flows - originally s tudied by E111DOns and Ying (274) -
are fairly 1mall but much higher than the critical Reynolds number of a non-swirling flow. l large-scale 
veraion of the phenomenon is the "fire whirl", the effect on a large fire of entraining natunlly-1wirlin1 
air from the atmosphere. Swirling flames are an example of the class of flows in which a qualitative 
consideration of curvature effects is helpful in understanding the phenomena but which are rather too 
complicated to yield quantitative data for general use: turbulence measurements are difficult and 
nwnerical experiments may show up discrepancies other than those directly attributable to curvature effect,. 

10.3 SWIRLING PIPE FLOWS 

Duct flows, like jets, can be classified according to whether the swirl is introduced at the start of the 
flow, to decay downstream, or maintained by helical vanes or by rotating the boundary. Note that rotating 
cylinder flows with no net axial motion were reviewed in Section 4 and thin annular boundary layer, in 
Section 6. 

Swirling flow in a stationary pipe, maintained by a "twisted tape" was investigated by Back1hall 
and Landis (275). The so-called twi sted tape was a helical partition of 27 deg. helix tip angle, extending 
across the full diameter and down the full length of the pipe, so that in effect the flow wa1 that in a 
twisted duct of semi-circular cross section. Secondary flows analogous to the Ekman effect occur [see the 
earlier papers by Smithber g and Landis (276) and Seymour (277)] with convergence of fluid in the tape 
boundary layer towards the centre line of the pipe and a corresponding concentrated radial outflow into 
the main body of th.e fluid, in addition to quasi-inviscid secondary flow caused by skewing of the mean 
vorticity vector. Date (278) makes the useful point that these sources of secondary flow probably 
overwhelm the ■ tress-driven secondary flows that would exist even in a straight semicircular pipe. 
Thorsen and Landis (279) discussed the further complication of large density gradient•, and proposed 
correlation, for heat transfer and friction factor involving a Grashof number baaed not on gravitational 
acceleration but on centrifugal acceleration. As connented in Section 5, "centrifugal buoya11cy" effecu 
are likely to be rather smaller than the curvature effects that appear even in constant-density flow. 
Backahall and Landis (275) concentrated on the flow near the circular wall of a pipe with a twi1ted tape, 
finding that the logarithmic law adequately correlated the resultant mean velocity profiles out to a 
di1tance from the wall of about 0.2 times the pipe radius a or 0.05 times the radius of curvature of the 
1treamline. The value of Rf near the wall given by Eq(l04) is about -3y/a, so that some curvature 
effect, might be expected. Nearer the axis, where curvature effects are stabilizing but probably larger, 
departures from axi1ynnetry themselves affect the turbulence. Many other inves tigators have reported 
pre11ure drop and heat transfer in pipes with twisted tapes. The practical interest is in the increase in 
heat transfer to or from a given pipe with given mass flow: the status of empirical correlation formulae 
for pre11ure drop and heat transfer appears satisfactory (280) but our knowledge of the flow proce11es 
certainly is not. Date (278) reviews correlation formulae and presents interim calculation method1, which 
do not explicitly consider streamline curvature effects. For introductory reviews of the subject•• a 
whole 1ee the early paper by Kreith and Margolis (281) or the more recent ~•per by Lopina snd Bergles (282). 
Ref.(280) i1 a general survey of heat-transfer aupentation by turbulence promoters. A very recent paper 
by Seban and Hunsbedt (283) treats the heat transfer in an annulus with a twisted "tape". Note that 1ome 
invutigatora refer to the axial distance for 180 deg. (not 360 deg.) twist as the "pitch", and that the 
u1ual ambiguity between radius and diameter as a non-dimensionalizing factor also occurs: "helix tip 
angle" is unambiguous and meaningful. 
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There 1eeu to be little detailed information on the decay of pre-1wirl in a simple pipe flow: any 
device for generating 1trong awirl will cau1e large change, in the axial velocity profile, whose return to 
"full developaent" will be in1eparable from the decay of the 1wirl, and the configuration i1 more 
attractive to the theoretician than the experimenter. The 1ubject gradually merges into the study of 
cla11ical i1olated vortices in the Mabey-Squire type of vortex tube: it is frequently unclear whether 
experiment, on "vortex flows" in tubes are supposed to relate to classical vortices surrounded by an 
irrotational flow (W s 1/r), to fully-turbulent pipe flow i nitially near a state of 1olid-body rotation 
(W • r), or to 1ome unhappy compromi1e between the two. A fairly early paper of this type is Ref.97, 
which give, a 1hort review of previous work. Unfortunately it is not possible to classify experiments by 
the 1virl generator used: the use of a twisted tape or rotating grid implies a rough approximation to 
1olid-body rotation, but a vortex tube with radial entry, of the type originally intenced to generate a 
cla11ical vortex with W s 1/r outside the core, can be used by design or accident to produce almost any 
1virl di1tribution. Kreith and Sonju (285) made measurement s of the decay of swirl in a pipe downstream 
of long twisted-tape swirl inducers with tip helix angles up to about 30 deg. The measurements are not 
sufficiently detailed to show how soon the flow becomes substantially axisynnetric. The main results for 
1wirl decay were obtained using a "swirl meter", a flat plate at zero incidence, nearly spanning the pipe 
and free to rotate about a shaft on the axis. The rotational s peed of the plate is an average, weighted 
in aome unknown way, of W/r, The swirl so measured decreased to half its initial value by about 40 pip . 
diameter, down1tream of the end of the twisted tape, the decay rate decreasing as Reynolds number 
increased. Very good agreement was found with a theory which assumed a cons tant value of vr e • indep~ndent · 
of x and r and equal to about one-third of a representative average value of vrx• Whil e one can 
count this as further evidence for the anisotropy of eddy viscosity, the ostensible deduction from the 
con1tancy of vre with x is that streamline curvature (which decrease s with x) has no effect on the 
turbulence, even for an initial swirl angle as large as that in Backshall and Landis' experiment. Wolf, 
Lavan and Fejer (286) measured the swirl in a stationary pipe with a radial inlet, with vanes giving an 
approximation to free-vortex flow (W s 1/r). The swirl distribution soon took up the familiar form shown 
in Fig,32, but although the exponential decay of swirl substantiates Kreith and Sonju's assumption the 
value of Vrx deduced from the results is about half that found by Kreith and Sonju. This is as good a 
demonstration as one could wish of the sensitivity of swirling flow to the details of the swirl 
di1tribution, a sensitivity which may not be entirely attributable to the effects of streamline curvature 
but which is doubtless aggravated by those effects. It seems very improbable that the satisfactory 
logarithmic profiles of Ref.275, and the satisfactory decay predictions of Refs (285) and (286) with vr e 
independent of the decay of swirl, should really be taken as an indicHtion of negligible curvature effects 
i n pipe flow. Various other theoretical investigations (e.g. Refs 287, 288; see also Refs 245, 278) have 
u1ed concepts generally simi lar to those of Kreith and Sonju, i nvariably with good agreement with 
experiment after choice of an empirical constant in the formula for vr e or its equivalent, and usuall y 
implying vre much less than Vrx• There is a clear need for more experiments and for comparisons with 
more refined calculation methods to elucidate the effects of streamline cu rvature in swirling pipe flow. 
A recent paper is Ref.289, This paper seems to have suffered severely from typographical and linguistic 
difficulties but once more indicates vr e < vrx' 

Rask and Scott (290) recently measured the decay of strong pre-swirl in an annular duct, which, l i ke 
a pipe flow, is stable everywhere except near the outer boundary where W decreases rapidly, The mean 
flow exhibited inhomogeneities which they describe as having a spi ra l iorm like a spring of va riable pitch: 
it seems very likely that these were helica l vortices but it is not clear whether they were directly 
attributable to curvature effects on the turbul ence or caused by an instability of the mean flow resulting 
from the rapid decreas e in radial pressure gradient caused by the decay of the swirl. This latter effect 
ia known to cause recirculation in strongly-swirling pipe flow: Gore and Ranz (251) c lassify it as a 
vis cous effect because the swirl decays by vi scous (or turbulent) action, i n contrast to the recirculation 
that can occur close to a swirl generator, or at the exit of a pipe (i.e. the start of a jet) wh en the 
con1traint of the wall on radial motion is removed, An intermediate explanation could be a form of 
precession of the swirling flow near the centre body analogous to that described by Syred and Beer (262) 
in a jet. Whatever the reason for Rask and Scott's results it is surprising that these departures from 
axi1ynnetry have been observed in an annular duct but not in a pipe where the flow nea r the axis is 
unconstrained: possibly separation or incipient separation from the centrebody is involved. Scott and 
Ra1k (291) have further analysed their swirling annular f low data to extract eddy viscosities. The results 
suffer from the difficulty first noticed by Wattendorf (82), that au/ ar and uv go to zero at different 
radii 10 that vrx shows misleadingly large scatter even if negative values are rejected. Scott and Rask 
conclude that in general vr e < vrx• and they point out that quit e low values of Vr e appear near the 
inner wall: indeed vre barely exceeds v in some conditions suggesting that the highly-stable flow 
near the inner wall has almost reverted to the laminar state. 

White (213) investigated flow in a spinning pipe , fed from a swirl-vane vortex generator so that the 
entry flow was rotating at roughly the same speed as the pipe but did not have a fully-developed axial 
velocity profile, Cannon and Kays (143) investiga t ed heat transfer in a spinning pipe with fully­
developed (non-rotating) flow at entry, In these cases the e f fect of streamline curvature is everywhere 
1tabilizing since W increases monotonically to the wall. In Cannon and Kays' experiment, a region of 
swirling relaminarized flow spread out from the wall into the non-rotating turbulent core. When the flow 
rate was increased, the speed of rotation of the pipe remaining constant, helical instability waves 
appeared at the laminar-turbulent interface. These may have been essentially simi lar to the streamwise 
vortices that appear in transit i on of a three-dimensional boundary layer even on a plane surface, but, as 
remarked in Section 5,6, the mechanism as described by the investigators cou ld be a curved-fl ow analogue 
of the Kelvin-Helmholtz instability or overturning of a density interface in a gravitational field (144) 
with a region of large velocity gradient being overturned in a centrifugal field. White's f low-visualization 
pictures, taken near the pipe entry, show a stable but wandering core with some evidence of turbulent 
mixing at larger radii, At the highest rotational speed t ested , the axial pressure gradient i n fully­
developed flow was only 0,6 of that in the stationary pipe at the same mass flow rate, indicating that 
turbulence was suppressed over mos t of the cross- section. 

Severn! experimenters have reported on flow with an axia l component between concentric rotating 
cylinders ("spinning", according to our chosen convention) . Kaye and Elgar (292) plott ed boundaries, in 
the Reynolds number-Taylor numb er plane, between laminar flow with and without vortices and turbulent flow 
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with and without vortice1, for the (unstable) ca1e of a rotating inner cylinder. The work was extended to 
huat transfer (with ,mall temperature differences so that the velocity field was little affected) ty 
Becker and KAye (293): the meaaurement• were not detailed enough to deduce the effects of curvature on 
the Reynolds analogy factor, A1till (294) further extended the work to the entry region, where the 
boundary layers on the rotating cylinder, have a uniform non-swirling free stream as in the experiment• of 
Parr (166), and Furuya (167), He c0111111ent1 that the change from turbulent flow without vortices to 
turbulent flov ii "eaaily detected" by the appearance of sharp peaks in the hot wire trace. This suggests 
that even in the presence of axial flow the vortices between rotating cylinders are particularly 
1trong, although in this cue there i1 no direct circumferential "feedback" (Section 5.5) to maintain them, 
Perhaps the fir1t of the po1sible constraining influence, mentioned in Section 5.5 (that the number of 
vortice1 at any cro11 section must be an integer) is still powerful enough to sustain a simple, well­
organized vortex structure. Gelhar and Honkmeyer (295) who give a useful review of previous work, 
extended Kaye and Elgar's results to higher Reynolds numbers and found that helical vortices occurred if 
the Taylor number exceeded about 0,25 times the Reynolds number for a gap-to-mean radius ratio of 0,134, 
corresponding t , a cylinder rotational speed of about 0,65 times the axial bulk velocity of the fluid, 
for Reynolds numbers based on bulk velocity and gap of about l to 3 x 10~. Both groups of experimenters 
found that, in the turbulent vortex regime, increasing the axial velocity decreased the mixing rate (Kaye 
and Elgar measured heat transfer, Gelhar and Honkmeyer measured torque and in the latter experiment at 
least the Reynolds number was high enough for conventional transition effects to be absent). A plausible 
explanation is that increasing the axial velocity reduces the intensity of the vortices, which are likely 
to be more efficient in transporting heat or momentum than ordinary turbulent eddies. Nagib's discovery 
(74) of concentric sets of helical vortices of opposite pitch in the corresponding laminar flow is 
unlikely to be repeated in the more diffusive environment of turbulent flow (the multiple vortex sy,tem 
deduced by So and He · lor (160) fr om measurements in a curved turbulent boundary layer is kinematically 
impossible) but is a reminder that quite complicated transient motions might occur as modifications of the 
large eddy structure, Nagib's thesis is a helpful introduction to the problems of transition in swirling 
flows. 

Humphreys, Morris and Barrow (296) measured heat transfer in the entry region of a pipe spinning 
about an axis parallel to itself (the application being to cooling passages in rotating machinery). Their 
results are correlated in terms of the acceleration ratio hn2/g where h is the distance between the 
pipe axis and the axis of rotation, Although this parameter is frequently used in discussions of 
"centrifugal buoyan£_y 11 effects it is not a valid one because g does not enter the problem: the proper 
parameters are Od/U and h/d, representing swirl effects and the relative importance of radial pressure 
gradient respectively (the ratio of_the cent!ifugal pressure difference across a diameter to a typical 
dynamic pressure is of order hd02/u2 = (Od/U) 2,(h/d)]. In the P.ntry region o/d is an additional 
parameter. An additional parameter that appears when, as in the present case, significant density 
gradients occur is the 'centrifugal buoyancy' part of the Richardson number, e.g. Eq(91). However, 
Humphreys et al, found the effects of centrifugal buoyancy to be small, at least in the entry region, and 
attributed the increases in heat transfer (up to 50 percent at h02/g..:: 40) to the fact that the entry 
flow was swirling with respect to the pipe as in Cannon and Kays' experiment. Unfortunately - though not 
surprisingly - no profile measurements were made in this rather complicated rig. 

10.4 MISCELLANEOUS SWIRLING FWWS 

There are a few experiments on swirling flows that are not easy to classify. Koosinlin and Lockwood (297) 
made measurements in the boundary layer on a rotating cone in still air. In contrast to the rotating disc, 
in which the only extra rate of strain is lateral (av/ ar in x, r, 8 coordinates), the rotating con_e_ 
suffers curvature/rotation effects as well as lateral divergence: the combination of the two extra strain 
rates presents a difficult problem, Also, the cone angle in Koosinlin and Lockwood's experiment (80 deg. 
included angle) was large enough to invalidate the Richardson number analysis for slowly-growing flows on 
rotating bodies leading t c the first element of Eq(l13) and to force reliance on the dubious arguments 
about the proper choice of axes in general three-dimensional flows following Eq(l09). In view of the 
sparseness of the results (one profile each for U and W) no analysis can be attempted. Koosinlin and 
Lockwood also present results for an annular wall jet, blowing over the rotating cone from a nozzle at the 
apex: the net effect of rotation is to decrease the growth rate although Koosinlin and Lockwood (246) 
ob tain quite good agreement between experiment and calculations by a method that does not explicitly allow 
for direct effects of curvature or rotation (or lateral divergence) on the turbulence, 

Literature on swirling flows inside conical annular diffusers is reviewed by Hoadley and Hugheo 
(298) and by Hughes (165), When the boundary layers become thick enough for the thin-ahear-layEr 
approximation to break down (implying curvature effects beyond the range of applicability of F·factors) 
significant interaction between boundary layers and potential flow may occur, and the main effec.t of swirl 
in suppressing separation, or transferring it from one wall to the other, may be exerted via changes in 
the inviscid flow rather than direct influence on the turbulence , The above-mentioned investigators also 
studied the effect of rotating the centrebody of an annular di ff user (a likely occurrence in a turbo­
machine); separation from the hub was delayed over a certain r ange of rotational speeds, 

Nakamura et al, (299) extended their own work (167) and that of Parr (166), on boundary layers on 
rotating cylinders in constant-pressl>re axial streams, to the cas e of thick "boundary layers" (o/r as 
large as 0,45) and flow over axis}'llllletric steps (h/ 6 ~ 0,5). Their mean velocity measurements are 
pre1ented in some detail and should be useful for test cases, Without detailed comparisons with a 
calculiltion method known to give good results in thick "boundary layers" on non-rotating cylinders, the 
interaction between the effects of rotation and of large o/r is diffi cult to distinguish; the rate of 
growth of the thickest r <J tating boundary layer appears to be nearly linear while the thinner boundary 
layers, rotating or non-rotating, grow more slowly than this, indicating t hat rotation effects increase 
strongly with 6/r at least up to o/r ~ 0,45, The step results show no unexpected features: the 
measurements were not detailed enough to detect the Ekman pumping effect mentioned earlier in the present 
Section. 

Traugott's experiments (100) on turbulence generated by a rotating grid were described in Section 4, 
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and incidental results on curved boundary layers were obtained as a spin-off from the main measurement ■• 

A configuration intermediate between the Ranque-Hilsch type of short vortex tube and the long pipe 
with decaying swirl is a long pi pe fed from tangential nozzle ■ near one closed end. Near the swirl 
generator a complicated flow can occur . The " swirl number" varies rapidly with 1trea11111iae distance 
because the axial momentum flux varies rapidly,so that even if a simple correlation on swirl number were 
admiasible we could expect the flow to depend critically on geometry, while in pract ice the behaviour is 
likely to be more complicated than predic ted by swirl-number correlationa. For instan~e , King, Rothfus 
and Kermode (300) found a revers ed-flow region near the axis, starting at the injector nozzle position and 
extending for a few tube diameters downstream, It is not clear how the reversed-flow region joined on to 
the presumed Ekman effluent jet travelling downstream along the axis, but precession and breakup of the 
jet near the plane of the injector nozzles would be expected, A more important question, in the context 
of studies of the decaying swirl far downs tream , is whether the influence of the separated flow region 
propagates along a non-turbulent core. It is known that the cores of isolated vortices can transmit axial 
disturbances over long distances (216) and if the same is true of swirling pipe flows results for swirl 
decay inferred from experiments with a particular type of swirl generator may not be generally applicable, 

This r eview of swirling flows makes i t c lear that although useful practical results and data 
correlations have been obtained, the subjec t is a confusing one and that our basic knowledge i s 
accordingly confused , Much confusion could be avoided, however, by clearer classification of the 
different types of swirling flow and in particular by restricti ng the use of the words "vortex" and 
"vortex tube" to mean respectively the fully-rolled-up vortex, surrounded by irrotational fluid (Section 9) 
and the Ranque-Hilsch type of short vortex tube, relying on Ekman-layer pumping of fluid near an end wall. 
Fig.32 is a sWll!lary of the types of flow discussed above: at present each type must be considered 
separately and there is little prospect of a co11111on treatment, because curvature effects on the 
turbulence structure are usually large. Fortunately, detailed predic tions are not always required - in 
the case of pipes with twisted-tape swirl promoters, for instance, one requires only a correlation for 
heat transfer and pressure drop plus some qualitative understanding to aid optimum design. Qualitative 
understanding of curvature effects suggests that the development of any swirling flow may be quite 
sensitive to the initial swirl profile, specifically the extent of regions with a given sign of angular 
momentum gradient. Care should be taken to choose meaningful initial swirl distributions and to measure 
them accurately, On the theoretical side, formulation of transport-equation methods and comparison with 
mean-flow experiments is probably the only way of inferring curvature effects with adquate accuracy. The 
use of eddy-viscosity anisotropy factors is a much inferior approach and data correlations on this basis 
are unlikely to be widely applicable, although they have been useful in the past. For this reason the 
co rrelations of anisotropy factors quoted in the Literature will not be reproduced here, 

Two useful reviews are Ref.255, principally on the flow in Ranque-Hilsch vortex tubes and similar 
situations, and Ref.301, principally on the theoretical aspects of swirling flows in ducts: they contain 
about 350 and 220 references respectively, covering most aspects of swirling flows. 

ll. DISCUSSION AND CONCLUSIONS 

11.1 PHENOMENA AND CALCULATION METHODS 

An important c l ass of "complex" turbul ent flows [i.e. flows other than simple shear layer s (p.4, Refs 1, 2)) 
consi s ts of shear layers subjected to extra rates of strain, additional to the simple shear au/ ay. Hoit 
of the extra strain rates or body forces so far investigated (Fig.2 and Section 3) produce changes in 
Reynolds s tress of the order of ten times the changes predicted by plausible extensions of calculation 
methods (Section 2. 5) for simple shear layers. The reason is that the extra rate ■ of strain have large 
effects on the higher-order structural parameters of the turbulence which are not reproduced by the 
empirical approximations to these pcrameters used in calculation methods. An obvious first step in 
allowing for these effects is to make the empirical approximations depend additionally on a dimensionless 
quantity represent ing the extra rate of s train, The simplest dimensionless quantity (p.16) is e/(au /ay), 
the locai ra tio of the extra strain rate to the simple shear, but this implies the assumption that au/ay 
is a suitable measure of the eddy frequency or fluctuating rate of strain and the turbulence quantity 
(Reynolds stress) 1/ 2/(eddy length scale) is more realistic: the special case (-uv) 1/ 2/L is equal to 
au/ ay in the local-equilibrium approximation for a simple shear layer (p.13). Extra strain rates can be 
applied rather suddenly and their full effects on the turbulence structure are not felt for a time of the 
order of the lifetime of the eddies that carry the Reynolds stresses (pp 18-20), corresponding to a 
streamwise distance of roughly 106 in the outer part of a boundary layer or 26 in a mixing layer or 
jet. In many cases it is therefore necessary to allow for "history" effects in the correction factor■ for 
extra rates of strain, additional to, and more important than, any allowance for "history" effects in the 
basic calculation methods. This has not yet been done formally, but a simpl~ lag equation for the 
effective value of e, Eq(37), produces significant improvements and is easy to ap, ly to any type of 
calculation method, 

In view of the dependence of the Reynolds stresses on the history of the extra strain rate, 
correction factors whi ch are ~laborate non-linear functions of the local parameters e/( aU / oy) or 
e/((-uv) 1/ 2/L) are probably not realistic, even if an "e ffective" value of e is used. Non-linear 
functions deduced from experiments on self-preserving or l oca l-equilibrium flows are not l i kely to be 
valid in non-self-preserving flows. A further diffi culty is that extra strain rates are likely to change 
the turbulent transport terms in the Reynolds-s tress transport equations (Section 2,4) as well as the 
destruction/redistribution terms, and we have at present very few data on this effect, Without more data 
on extra strain rates in general it is probably unreal ~stic to use a correction factor more complicated 
than 

where 
layer 

F • e 
+ -­au/ ay (36) 

e is the effective value obtained from Eq ( 37) and a is a constant for a given type of shear 
and a given type of extra s train rate : at most, we can j ustify making a an empirical function of 
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y/6, or chanaina the maanitude of a with the 1i1n of e a• in the Honin-Obukhov meteorological 
fonaila, Eq(ll9), Note that non-linear meteoroloaical formulae are intended for the special case of the 
Earth'• local-equilibrium inner layer, and note also that a more complicated parameter than e/(au/ay) 
may be needed in three-dimensional or compreaaible flows even though it ia to be used in a linear formula, 
Follovina the usual apirit of linear formulae we reatrict the application of Eq( 36) to emall extra strain 
ratea (p.17), aay le/(au/ay)I < 0.05 giving 0,5 < F < 1.5 with a• 10, Naturally thie excludes a 
large number of caaea one would like to be able to predict, in which larse extra atrain rates are applied 
to a shear layer, However Eq(37) haa the property that the effective value of e at t he end of a short 
region of extra rate of strain depends only on the total extra strain and not on the distribution of the 
extra rate of atrain, which can therefore take large value• for short periods withouc ,nvalidating the 
linear analyaie, Eq(37) is of course a simplification but it 1eeme likely that a more refined lag equation 
would exhibit a 1imilar responae to "strain impulses". The linear analyeis can therefore be applied to 
1hort region• of large extra atrain rate and fails only for prolonged large extra strain rates or 
extremely strong 1train impulses, 

The 1implest application of the correction factor F is to the length scale that necessarily 
appear, in any calculation method, whether it be the apparent mixing length, a length factor in the 
apparent eddy viscosity, or a true eddy length scale like the dissipation length parameter L as in Eq(36), 
p,18. Since F is supposed to be limited to values c lose to unity we can write 

£ 
<-uv)3/ 2 

L 1 + ae/(au/ay) 
(142) 

This has the advantage that in a flow subjected to several small ex tra strain rates (such as an axisymmetric 
compressible flow like that of Ref,54, which suf fered from curvature , lateral dilatation and bulk 
compression) the different values of ae can simply be suD111ed, This still applies if each ae is 
determined from a separate application of a lag equation like Eq(37) , even if [as discussed after Eq(37) , 
p,19) the lag is applied to e/U instead of e, A more dubious advantage is that computer calculations 
do not break down if l + ae/(au/ay) becomes zero: this avoids failures in unimport ant r eg ions near the 
edge of a shear layer where au/ ay becomes amall, but tempts one to use F-factors without considering 
their limits of validity. Eqa (37) and (142) have been implemented in the ca lculation method of Ref,16 as 
used for the numerical experiments in Appendix 2: further details are available from the author. In loca l 
equilibrium conditions L becomes equal to the apparent mix ing length i and F-factor modifications CA O 

therefore be made to the inner-layer logarithmic formula [Eq(43)) if it i s used as a boundary condition for 
the calcu lation. 

Examples of flows subjected to extra rates of strain wer e discussed in Sections 3. 2 to 3. 4: Ref .l 
is a comprehensive bibliography of complex turbulent fl ws in general . 

An important class of flows with extra strain r a tes sre curved or rotating shear layers . Rotat ing 
flow systems are usually most conveniently analysed in rota ting r ectangu lar Cartesian coordina t es but 
coordinate systems fo, curved shear layers and other dist orted flows need more care . ln two dimensions or 
on infinite swept wings (s,n) coordinates (Section 2.2) are appropriate: axi symmetric swirling (lows can 
be analysed in (x,r) coordinates (Section 2,3), There are some physica l unce rt ai nties in the analysis of 
fully three-dimensional curved flows but here and in other cases of flows with complicated s tr amlines 
or complicated boundaries it may be necessary to use complicated coordinate systems t o obta in nume rica l 
stability. The general tensor analysi s of Appendix l is intended for use in such cases : it has not been 
necessary to use it in the present discussion f the phys ics of ~u rvature effects , In the other limit of 
weak curvature effects the equations in the (s,n) system can be s impli fi ed , eventually r du ing to those 
of the rectangular (x,y) system: it is hoped that Sec tion 2, 2. is an adequate list o( the pitfalls 
awaiting practitioners of higher-order turbulent boundary layer theory , 

The analogy between streamline curvature and buoyancy effects on turbu l n c , originally due to 
Prandtl (BO, p.775), is no longer of great quantitative help in evaluating F-factors or other orr ec tion 
formulae, since meteorological formulae for the Earth ' s inner layer are at b t only a rough approximation 
in other regions of laboratory shear layers and we now have at least some explicit do ta for the latt r 
cases. However the algebraic analogy between the parameter s fo r buoyancy and fo r C'Urva 11r (Eqs (I, , 5) and 
(50) to (60): Sections 5,1 and 5,2: Table 2) is he lpful in illuminating ph ys i a l pro esses and resolving 
ambiguities in the case of curvature . Quantitative analyses for the s t abi 1 ity of invis c iJ fl ows , analogous 
to classical treatments of buoyant fluids, are pr obably not very rel evant t o turbulen cc> (p. 38) a lthough 
Orr-Sommerfeld solutions for curved or rotating turbulent flows, using an asRtm1ed •ddy viscos i ty (pp , 41-42) 
may be useful in comparative studies of the apperrance of longitudinal vo rt ices or oth r convection ce ll s 
in uns table cases . The buoyancy/curvature analogy is qualitative ly us fu l in dis cuss iong of instability 
vortices or the internal waves which probably appear i n stably- cu rved turbulent fl ows (S ctions 5, 5 and 5. 6). 
We note (pp.40-41) the difficulties in definition of vortices whi ch aris f r om their gradua l em rgence Cr om 
the large-eddy structure of the turbulence. Only disturbances from upstream or th ff •c l of lat e r n l 
boundaries can constrain the vortex pattern sufficiently for it t o produc spanwis inhomogene ity of the 
mean flow. The behaviour of the turbulence will be littl e affected by the steadiness or otherwis e of the 
vortex pattern: the distinction is man-made and can be e liminated by suitable averaging t chniques, 
Probably the only case in which the distinction is material is that of a separat ing bound ary layer: the 
reaction time of the external flow being presumably much long r than th e t ypica l time seal of unsteady 
vortices, the separation line (at which d6/dx becomes of order unity) probably r ema ins fa irly s traight 
if the vortices are unsteady, whereas strong spanwise variations of separati on position may bui lJ up 
if the vortices are steady enough t o produce spanwise peri odici t y o( the mean f low. 

The main dimensionless paramete rs for curved or rotating flows (Sec ti on 5.1) can be de rived, 
following meteorological practice, either as t he square of the ratio of the osc illation frequen cy of a 
displaced fluid element t o a typica l frequency of th tu rbul ence or as the rati o of the ext ra production 
of radial-component turbulent intensity to the total produ cti on (Ri and Re re s pec tive l y) . The 
extended Monin-Ohukhov parameter, (L/K)/Lmo• i s equ al to ( xtra produ cti on)/(di s sipation) and may be 
more useful in regions dominated by turbulent transport rather than producti on (if ~ l ocal parame t er is 
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u1eful in 1uch circuaatanca1), Althouah th••• parameter, all reduce to -2 e/( au/ ay) - with 
e =av/ax: -U/r - in the 1iapla1t ca,a of con1tant-den1ity two-dimen1ional local-equilibrium flow, they 
can be 1i111ificantly different from thi1 1bple parameter in 1wirling, three-dimen1ional (Section 5,2) or 
coaprauible flow, and all the evidence ii that in theae cue■ the "meteorological" parameters 1hould be 
u1ed in the P-factor in1taad of the rata-of-1train ratio, Since the difference in the case of adiabatic 
compre,sible flow i• a factor 1 + (y-l)H2/2 the point i, of 4ome importance in aeronautics. The 
meteorological parameter, can be evaluated for more general case• of variable-density flow: the 
Richard1on nuaber with the centrifugal acceleration u2/r replacing g i1 !l!!,! a complete parampter for 
the■e C&lel, 

Many of the experiments reported on curved or 1wirling ,hear layer• were carried out in ignorance 
of the large 1ize of curvature effect, and are therefore outside the range of linear P-factor corrections, 
Unfortunately the turbulence data obtained in the1e experiment, are not sufficient t o help us extend th 
F-factor analysi, in any rigorou1 fashion: for instance the only measurements of turbulent transport t r L~ 
are the limited data of Cuitton (7) in a wall jat, the mea1urements of Lumley and collaborators (204) in a 
mixin1 layer which seem to be inconsi1tent in 1ome re1pect1, and the recent work of Castro (11), also in 
a mixing layer. Therefore mea1urements of strongly-curved flows are not directly useful at pre1ent in 
formulating generally-applicable curvature corrections. Data for flows with mild curvature are not 
extanaive enough to warrant correlation• of a a, functions of y/ 6: the analysis of Parr's data by Cham 
and Head (127) suggesting a very large variation of a with y is not supported by any other analysi s . 
The present position seema to be that fairly reliable values for a can be deduced for boundary layers 
and wall jets, the values appropriate to the dissipation length parJmeter used in the calculations of 
Appendix 2 by the method of Ref,16 being 

Stable (convex) boundary layer: 
Unstable (concave) boundary layer: 
Stable (concave) wall jet: 
Unstable (convex) wall jet: 

a• 14 
a• -9 
a • 8 
a • 6 

The mixing-length data of Johnston and collaborators (158) in rotating ducts, and ~urther analysis of the 
mea1urements of Wattendorf (82) and of Eskinazi and Yeh (98),agree at sma ll distances from the wall with 
the above values of a for the boundary layer. Nearer the centre of the duct the mixing-length ratio 
t/t0 on the stable aide becomes a function [Eq(129) of the "bulk Richardson number" or "rotation number", 
h/R or Oh/U, rather than of a local parameter, at least when the bulk parameter is numerically large: 
here t 0 is the mixing length at the same point in the plane flow (effectively a multiple of h), The 
behaviour of t in the highly-unstable part of the duct flow where Ur ~ constant, so that Ri + 0, 
Rf+•, is less certain. Certainly for the rotating duct (Fig,6) and probably for the curved duc t , this 
corre■ ponds to dominance of the large eddy structure by longitudinal vortices ("steady" or otherwise) 
extending over a large fraction of the duct width: "steady" longitudinal vortices have also been observed 
in boundary layere. Therefore, limiting value a of l/ l 0 as functions of the "bulk Richardson nuni>er" 6/R 
can be expected in unatable cases also. Note that the length 6 does not correspond exactly to the length 
~h: a preci1e trade-off could be obtained by considering the duct as two interacting boundary layers but 
this is not a universally accepted approach and it is better to await explicit data for the boundary layer, 
Note al10 thMt the relation between the behaviour of l , just discussed, and the behaviour of L depends 
on the (unknown) behaviour of the turbulent tran1port terms, Eq(129) should not be applied directly to L 
or any other eddy length scale, although similar equations relating turbulence structural parameters to 
bulk curvature parameter, should be valid as long a, the equivalent of t 0 in Eq(l29) is simply related to 
bulk scale• like h, 6 or Tw (the detailed distribution of l 0 or its equivalent is obvious ly not 
relevant when the turbulence structure has been greatly altered by curvature effects), 

The case of strongly-stable flows may not be as critical as the unstable case. Crudely speaking, 
if the turbulence ia strongly suppressed the Reynolds stresses are negligible and any curvature-correction 
factor that predict ■ them to an order of magnitude i1 acceptable for calculation methods . The deductions 
from the calculations for So and Mellor'• stable boundary layer in Appendix 2 suggest that the regular 
F-factor [applied in the form L0 /L • 1 - ae/( aU/ ay) to avoid the s ingularity when ae/( au/ ay) • -1] will 
predict the ,uppre1sion of turbulence in a boundary layer fairly well as long as the value of L0 is 
related to the 1ub-boundary-layer thickne1s rather than the width of the boundary layer before application 
of curvature . Johnston'• correlation for the limiting value of l/ 10 or its equivalent should become 
useful in the future, 

Therefore the bait advice (based on the above discussion and on Appendix 2) that can be given to 
people wishing to calculate curved boundary layers or two-dimensional duct flows by the method of Ref.16 or 
similar method, is 

* Use the F-factor in reciprocal form, Eq(l42), with Eq(37) as a lag equation, and replace 
e/(au/ay) by half one of the "meteorological" parameters (Table 2) in three-dimensional or compressible 
flow• or other difficult ca1e1. 

* Use the value, of a given above, with X • 106 in Eq(37). 

* For the limiting value of L in the outer regions of unstable boundary layer take L/ 6 • f( 6/R), 
L

0 
being directly related to 6 in the method of Ref.16. A highly provisional suggestion for the function 

f i1 0,095 (1 + 306/IRI), but since this is fairly close to the original (not reciprocal) local F-factor 
with the outer-layer approximation au/ay ~ 0,3 U/ 6 the local F-factor could be used instead. 

In the ca1e of wall jets (Section 7) and possibly free jets (Section 8) without an external stream 

* Use the F-factor, Eq(142); according to unpublished work by Sawyer, a lag equation is necessary 
in 1ome ca1es, but X in Eq(37) is probably only about twice the shear-layer thickness or 36, 5, 

* For strongly-unstable flows use the growth-rate data of Ref.7 (Fig,4): no reliable coll'lllents can 
be made on limiting value• of L because jet flows are dominateu by turbulent transport processes and 
becau1e the thin-shear-layer approximation used in the calculations of Appendix 2 is not valid in highly­
un1table jet1, the value of 6/R corresponding to a given Richardson number being higher than in boundary 
layer■ . 
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In the cue of ■ixina lay1r1 or jet1 with an external 1tream little can be 1aid, A wall jet 
beneath an 1xt1rT.al 1trea■ eventually rev1rt1 to a boundary layer 10 that the appropriate value of a for 

1ull r.urvature chan1e1 in 1oae unknown manner from the wall-jet value to the boundary layer value, A 

free jet in an external atrea eventu~lly revert• to a 1mall-deficit wake, for which we have no curvature 
data. 

It i1 evident from the above that improvement• in the propo11d calculation rule, could be made after 

a little ■ore experiMntal work or even a little ■ore numerical experiment or analy1i1 of exi ■ ting data. 

I have decided not to include advance detail ■ of the work beina done by my colleagues and my■ elf in what 

i■ 1uppo1ed to be a aeneral review, but we hope that its outcome will be a ■ore ■olid data ba■ e and a 

clearer under■tandina of the effect■ of larae curvature on turbulent tran■port. 

At pre■ent it would be very ri1ky to ■ugge■ t general rules for calculating classical trailing 

vortice1 (Section 9) or other ■ lender 1wirling flows (Section 10) which are nominally turbulent throuahout 

their cro11 1ection. Aaain, the ba■ ic rea■on i ■ our lack of information about turbulent transport term■. 

The core of a ■wirling flow ie nece11arily in solid-body rotation so that the Richardson number (Ri or 

Rf) i1 very larae and turbulence i1 effectively suppressed unless the swirl is small: further from the 

axi1 turbulence is probably maintained in the face of strong stabilizing effects by turbulent tran,port 

from even larger radii, The apparent Reynolds number dependence of trailing vortices, even at full scale, 

1ugge1t1 that a large fraction of the total vol1.111e of turbulent fluid is at low local Reynolds number, 

introducing further complications (note that there ie no evidence that highly-stable boundary layers have 

extended reaion1 of low local Reynolds number: the Reynolds shear ■ tress at the edge of the sub-boundary­

layer in So and Mellor'• experiment (160) fell to zero as rapidly as in a conventional boundary layer), 

Laboratory data for swirling flow• are plentiful, but no existing experiment is sufficiently systematic to 

1how up Reynold■ number effects attributable to stabilizing curvature rather than the usual influence of 

■ olid boundarie1. A general criticism of past work on swirling jets and pipe flows is the failure to 

appreciate the delicate effect of ■wirl di■ tribution on flow stability. In view of the difficulties 

encountered (219, 237, 302) in measurement■ of w (the rate of radial transfer of circumferential 

momentum) it eeeu unlikely tn.!L_reliable measurements of turbulent transport terms in the Reynolds stress 

tran1port equation• (notably v2w) will be made in the near future but numerical experiments by transport­

equ•tion calculation method■ may be fruitful. 

Flow■ in curved or rotating pipe, or lov-a■ pect-ratio rectangular ducts , together with flows in 

pipe, containing twi■ ted tape■ or other types of swirl generator, are dominated by secondary flows, and 

the effect■ of 1treamline curvature on the turbulence cannot be distinguished at present. 

11,2 FUTURE RESEARCH WRK 

The overt purpo■ e of research work being to contribute to calculation methods, the previous sub-section can 

be re-interpreted a1 a ■ugae■ ted research progr111111e to supply the information needed to improve 
calculation■ of curved flow1. Ae always, the need is for experiments, and for experiments with a clearly­

defined purpo1e preferably identifiable with the needs of calculation methods. The main needs seem to be 

* Data for boundary layer■, and other shear layers, with curvature effects typical of aeronautical 

practice rather than the exaggerated effects 1tudied in many previous experiments designed to investigate 

curvature effect■• Thi ■ i roughly a requirement that 0.5 < F < 1,5 over most of the shear layer, and 
the re1ult1 of the work ■hould contribute to improvement of simple F-factor fonuulae. Three-dimensional 

ot compr111ible flow, particularly need attention, and our knowledge of heat transfer is mainly indirect 

or inferential (303). Turbulence data would of course be welcome but mean-flow data (including skin­
friction mea1ureaent1 both for their intrinsic value and for checks on momentum conservation) can still be 

u1ed a1 teat ca111 for calculation methods. Tabulation, of the mean-flow data u1ed in the calculations of 

Appendix 2 are aiven in that Appendix. 

* Experiment ■ on vortices and 1wirlina flows that acknowledge the importance of curvature effects 

on turbulenca, It ■ eema likely that either great care or conditional-sampling techniques or both will be 

needed to inve1tiaate the ■ tabilized inner core ■ of these flows, which appear to wander under the influence 

of lonaitudinally-propaaatina di1turbance1 or the turbulent flow farther from the axis. Accurate 

mea1urement1 of all the Reynold■ stre11 components in these three-dimensional flows will be difficult to 

obtain. 

* Hea1urements of the triple velocity product ■ that dominate turbulent transport of R~ynolds 
1tre11e1 in the radial direction. Reliable mea1urement1 in almost any situation would be welcome: data 

for uv'2', in addition to Reynolds etres ■ mea■ uremente, would enable the pressure-strain "redi stribution" 

term in the iiV tran■port equation■ to be deduced if pressure transport were ignored, Pressure­

fluctuation mea1urement1 within the turbulence would of course be desirable but although some apparently 

reliable data are available the technique is 10 difficult, particularly in laboratory flows, that 
■ ignificant contribution• to curved flows are unlikely in the near future. Pressure transport seems to bP 

1111111 in ■o■ t plane flow• but may be large in stable curved flows bearing internal waves (11), 

* Ba ■ ic investigation, of the changes in large-eddy structure caused by streamline curvature, 
specifically the development of unsteady long i tudinal vor t ices and their tendency, with increasing 

curvature effect,, to bec0111e steady enough to contribute t o mean longitudinal vorticity. The development 

of internal waves in ■ tably-curved flows, still largely hypothetical, also merits study and can also be 

regarded a■ a consequence of curvature effects on the large eddies. 

The demand■ made on calculation method ■ by the effects of curvature and other extra rates of strain 

are ■ore severe ver ■ions of the demands made by plane flows. Empirical 1110dels of the turbulent transport 

of Reynold■ 1tre11 must be extended, with the aid of experimental data, to curved flows: once more the 

large-eddy behaviour is the key, and correlations in terms of local parameters are not likely to be widely 

applicable, Transport equations for eddy length scales have only recently been developed for plane flows: 

■ ince 11101t of the terms in these equations are effectively unmeasurable and must be evaluated by numerical 

experimentation their extension to curved flows will not be easy. However a length-scale transport 

equation capable of reproducing.!!!!..!!!. transport (history effects) has been found to be necessary when extra 
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,train rat•• chanae rapidly, and turbulent transport of lenath 1cale (in the radial direction) pre1uubly 

become, important in the 1ame circum1tance1 aa turbulent tran1port of Reynold■ stre11. Therafore, while 

local-equilibrium method, of mixing-length or eddy-vi1co1ity type may be a, adequate in mildly-curved 

flov1 (0,5 < F < 1,5) a, in plane flow• if a11i1ted by an ordinary differential equation like Eq(37) for 

a, more hi&hly curved flow, may require partial differential transport equation• for Reynolds 1tre11e1 and 

at least one length scale, In the case of 1wirling flows , for instance, curvature effect, are nearly 

alvay1 large near the axis, and calculation methods baaed on, aay, eddy-vi1co1ity anisotropy ratio, are 

unlikely to attain aeronautical standards of accuracy except in a very narrow range of flows, 

Huch evidence of the importance of curvature effects has been reviewed in this AGARDograph, and the 

case for further research work seemH plain, As well as being intrinsically important, streamline curvature 

merits study for the li&ht it throws on the effects of extra strain rates in general, If existing 

calculation method• for simple shear layers are to be extended reliably to flows subjected to extra strain 

rate, or even if the rules for calculating curved flows set out in Section 11.l are to be significantly 

improved, careful experiments and careful dnalysis of transport equations will be needed, 
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APPENDIX 1 

SPECIAL COORDINATE SYSTEMS 

Thia Appendix begin• with a di1cu11ion of coordinate systems, followed by an introduction to general 
tenaor analysis, needed in traneforming the equations of motion to arbitrary coordinate systems , Readers 
not concerned with coordinate transformations may start reading at Section A 1,3, and apply the following 
rulea 

(i) interpret symbols u and x with superior or inferior indices (e.g. ui , xi) as standing for 
any one of the velocity components or coordinates (e .g . . ui means u £! v £! w consistently 
tl,roughout an equation), This ii ordinary tensor notat1on, 

(ii) take gij ui to mean uj , 

(iii) take u! t to mean aui/ ax1 , 

(iv) after applying (ii) and (iii) , sum over all three va lues of an index that is repeated in a 
aingle term ( aui/ axi = au/ ax+ av/ ay + aw/ az) , 

(v) in Eqs (Al.In to (Al,21) take Ui as the instantaneous velocity, later denoted by Ui + ui, 

Al,1 CHOICE OF COORDINATE SYSTEM 

Curved or awirling flows are best analysed in coordinate systems other than the familiar Cartesian system 
with three straight, mutually perpendicular axes: two examples us ed in the main text are (s,n,z) 
coordinates, where a is a simply-cun·ed reference line and n and z its normals, and (x, r ,8) 
cylindrical polar coordinates. By using c slight modification of the usual "Cartesian" tensor notation 
we can write the exact equations of motion so that their form in any given coordinate system can be 
deduced fairly easily. Several standard textbooks (e.g. Refs 23, 33) give the Navier-Stokea or boundary­
layer equation, in conventional notation but incorporating scale factors to allow their evaluation in any 
orthoaonal coordinate 1y1tem, An orthogonal system is one in which the length of an infiniteeimal line 
element depend, only on the squares of increments in the coordinat~s and not on the products of different 
increment,: for inetance the equare of the length of an infinitesimal line element i n two-dimensional 
rectilinear coordinates (x,y) inclined at angle ~ is 

ds 2 • dx2 + dy 2 + 2 dx dy COB~ (Al. 1) 

10 that the coordinates are orthogonal if ~ • n/2 and non-orthogonal otherwise. 

There is only one coordinate system that is everywhere orthogonal and has as one of its coordinate 
surfaces the surface of a given simply-connected body, The coordinate surfaces belonging to the other two 
1et1 muat inter■ ect the body surface in the lines of principal curvature . If the body is not simply­
connected (if for instance it is doughnut-shaped or if there are two separate bodies) there is in general 
no 1uch coordinate 1y1tem at all. As pointed out by Howar th (Ref.304) an infinite number of coordinate 
1y1tem1 can be found which are orthogonal !l the surface of a simply-connected body: for the purposes of 
calculating the boundary layer on the body using the thin-fhear-layer approximation the non-orthogonality 
at pointa Jistant from the surface can be neglect ed , The most popular coordinate system for three­
dimensio,.,1.l boundary layer calculations uses the ' ~e..:::l~nes of the potential flow just outside the 
boundary la) CY • one set of coordinate lines, t h~ other sets being the curved lines in the surface that 
are everywhere n1rmal to the streamlines and the s traight lines normal to the surface, This system has 
the general advantage that the direction of flow in the boundary layer is usually not too different from 
the external streamline direction so that integration of the parabolic boundary layer equations in the 
streamline direction i1 usually numerically stable (it has a particular advantag~ in methods which treat 
the velocity component in the external streamline direction as having some of the properties of the 
atreamwise velocity in a two-dimensional boundary layer), Its di sadvantages, however, are being gradually 
realized. Because of convergence and divP.rgence of the streamlines, the size and shape of a unit 
rectangle in the surface may vary greatly from place to place: in this respect, the streamline coordinate 
1y1tem is likely to be generally worse than the everywhere-orthogonal system . Also, it is better if 
po11ible to avoid a coord inate system that alters whenever the incidence of the body alters or whenever the 
diaplacement effect of the boundary layer alters signif ' cantly , Two interesting compromises for bodies 
like hull• or fuselages are the approach of Cham and Head (305) who formulate their equations in a system 
ba1ed on body geometry and then transform to streamline coordinates , and the body-oriented coordinate 
1y1tem of Miloh and Patel (306) consisting of the intersections with the body of cross-sectional planes 
normal to the axis together with the curved lines in the surface orthogonal to the lines of intersection. 

Some work has been done on coordinate systems for three-dimensional boundary layer ca l culation 
which are non-orthogonal even in the body surface , Both Myring (107) and Krause (308) point out that a 
convenient rectilinear system for swept wings consists of the ge: erators and the intersections of the 
wing surface with plane• parallel to the direction of flight. In this and other systems for boundary 
layer calculation the moat convenient choice for the third set of coordinate lines is the set of stra i ght 
lines normal to th 1urface, 

The concept implicit in the above dis cuss ion is that of the streamlined hody, with little , ·fee t 
of the thin turbulent regi on on the external inviscid flow , In this case the latter can be calc , ated 
aeparately , perhaps in a different coordinate system or even by means of a transformation that pt d: cts 
the velocity distribution only at t he surface and not in the interior of the fluid . In complex L1.rbulent 
flow• auch H those ducribed e laewhere in th i s monograph the thin-shear-layer approximation may be 
violated in aome part• of the fluid and the thin portions of fre e shear layers are unlikely to lie in the 
coordinate 1urfacea of any coordinate system baaed on the body shape, Now the essential difficulty in 
numeric ,) 1olutiona of the steady Navier Stokes equations at high Reynolds numbers is that the viscous or 
turbulen t; atreu gradient ■, although comparable in general with the total acceleration, may be small 

I 
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compared to the individual terms in the acceleration u2au i/ ax1. Therefore the truncation errors in th! 
finite-difference representation of the individual acceleration terms may be comparable with the actual 
aize of the viscous terms, leading to inaccuracy if the errors have a stabilizing effect (like the 
"p■ eudovisco ■ ity" of upwind differences and similar schemes) and to instability if they do not, The three 
ways of avoiding this difficulty are 

(i) to use so small a mesh size that the Reynolds number based on mesh width and local velocity is 
of order unity (in turbulent flow the relevant viscosity is, roughly speaking, the eddy viscosity); 

(ii) to use a highly accurate difference scheme [to all appearances this is likely to take almost as 
much computer time as (i)]; 

(iii) to choose coordinate axes aligned with the direction of the velocity - i.e. the direction of any 
thin shear layer - so that, f0r each value of i, u1au i/ ax1 has one predominant term: t hen, provided 
that the truncation errors in the acceleration and the pressure gradient nearly cancel , which can be 
arranged by using the same fin1te-difference approximation for the two, adequate accuracy can be obtained, 
This is close to the procedure used naturally by choosing conventional thin-shear-layer axes ur by making 
the stream function one of t he coordinates, and is the only one of the three likely to be acceptable at 
practical Reynolds numbers. 

Now at high Reynold s numbers viscous or turbulent stresses will be significant on ly in f airly thin 
shear layers, so we need not use streamline coordinates ~here, However, to calculate the interaction1 
between the shear layers and t he external stream that occur in many complex turbulent flows we are likely 
to need a coordinate sys tem that is adjusted - possibly by iteration during the calculation - to minimise 
truncation errors. In general the most convenient system is likely to be non-orthogonal, at least in some 
parts of the field. The equations of motion and their fi nite-difference analogues will contain extra 
factors (functions of the metric tensor) depending on the coordinate system, but the manipulation of theae 
by the numerical analyst and by the computer itself need not be an order of magnitude raore complicated than 
in the case of ort:1ogonal systems. Indeed, orthogonal systems with complicated boundary surfaces may be 
more difficult to process numerica lly than a geometrically-simple non-orthogonal system: the calculation 
of an orthogonal system surrounding H two-dimensional body is exactly equivalent to calculating the 
streamlines and equipotentials of inviscid flow about that body, and Markatos (309) found that the computer 
time required to set up a coordinate system orthogonal to an analytically-specified wavy surface 
exceeded the time taken to ca l cu late the vi scous flow on one side of the surface. Both Miloh and Patel 
(306) and Smith and Gaffney (310) have discussed the numerical approximation of the extra factors in surface 
coordinate systems for three-dimensional boundary layer calculation: Smith and Gaffney's results are 
directly applicable to two-dimensional Navier-Stokes problems. The fully three-dimensional case has not 
ye t been tackled but, at least in the case of turbulent flow , our lack of physical knowledge prevents us 
treating a fully three-dimensional flow with any confidence , 

Al. 2 GENERAL TE/✓SOR ANALYSI S 

An essential too i in the discussion of coordinate sys tems which are not specified beforehand is general 
tensor anal ysis. The subjec t is usually regarded with some horror by non-mathematicians, but it is merely 
a convenient system of notat ion and a set of rules for transforming familiar equations into unfamilia•; 
coordinates. Those unimpressed with th e elegance of the derivations can simply take the rules on t rust. 

There seems to be no textbook in which the mathematics of general tensors is explai ned i ·, the most 
appropriate way f J r ana lysis of the equations of fluid motion [the nearest approach being the book by Ari s 
(311) in which fluid motion i s used t o illuminate general tensor analysis rather than the otJ.er way 
around]: the following self- contained account has therefore been prepared, It is intended t~ be more 
rigorous than the use of general tensors by recent authors who are really concerned only with orthogonal 
coordinates. As Flilgge po ints out in the preface t o Ref . 312 , general tensor analys i s, "like other sharp 
tools, can be very benefici a l and very dangerous, depending on how it is used'', 

Th e equation numb ers of the main r esu lt s (e . g. Al.6} ar e under lined, 

Consider a coo rdinate sys t em xi (i • 1,2 or 3) where we write the ind ex above the symbol for 

future convenience . The transformation to another coordinate sy!item xj (j • 1,2,3) can be written with 
complete generality as 

where the derivative is evaluated at the 
three values of i, More genera lly, if 
to 

dxj 

l ocal 
ai is 

a:j 

axj dx i 

axi 

value of i and X 
' anv vec t or other 

axj i a 
axi 

Quantities that transform in thi s way are ca lled "contravariant", 
the rule 

a . 
J 

-i 
X 

. a. 
o XJ l 

(Al. 2) 

the 
than 

whole expression is summed over the 
a position ve ctor xi, it transforms 

(Al, 3) 

Quantities that transform according to 

(Al. . ) 

wi t h both i-indices in the numerator, are ca lled "covariant", and written with the index bel ow the symbol. 
C•1ordinates necessarily transform according t o the first rule, Eq(Al:3) , and are th erefore always 
contravariant . Higher-order tenqor3 can have mixed ind ices , e . g. b~ : this example count s as covariant, 

Jk 
by a majority of the indices, Th~ tensor summation convention applies only if th , repeated index ,ppears 
once in the covariant and once in the contravariant position. A tensor witt • e~'.;01 numbers of covariant 
and contravariant indices is a scalar . In non-orthogonal systems the order t · the indices ma , ters: 
bjk and bkj are in general different. The derivative operator / axi has its index in th, denominator 



A 1•3 

and count, a, covariant . Velocities , axi/at, and accelaration1, a2xi/at2, are ti• derivative, of 
po1ition vector, and are therefore contravariant, Since acceleration■ in fluid floit"depend on 1tre11 
gradient,, the latter 11a11t al10 be contravariant; therefore the 1tre1a ten1or 11U1t be a 1econd-order 
ten1or with two contravariant indice1, 10 that iu gradient■, with tvo contravariant indicH and one 
covariant, are contravariant by majority. A mild paradox i1 that aince work i1 a 1calar equal to force 
time, di1tance, force (and th11refore acceleration) ought apparently to be covariant: however 1calar "dot" 
products contain 1pecial factor, to ensure that the final re1ult i1 a 1calar irre1pective of the variance 
of t he ten1ors concerned (see the last element of Eq(Al,6) for example] and force and acceleration can 
therefore be taken t o be contravariant. 

Con1ider •• the fundamental coordinate 1y1tem the rectangul3r Carte1ia9 coordinate■ x•. !y 
Pythagora1' theorem the di1tance dS between two point, with coordinate• X1 and xi+ dxi i• aiven by 

(Al.S) 

We enclose numerical contravariant indice1 in parenthe1e1 to avoid confusion with exponent,, Uaing 
Eq(Al,3), the length of the line element in any tran1formed coordinate• xi (ob··iou1ly the!.!!!! lenath) 
is given by 

3 (axk i axk ·1 dS 2 • I - dx • - . dxJ 
k•l axi axl 

where the right hand side is swnmed over i and j (s11(dx< 1)) 2 + &12 dx< 1>dx~
2
) ••. ) and where the 

identity define• a tensor 
tensor". It is clear from 
syatem: in Eq(Al,l), &12 
consi1tently defined by 

g . . (choaen covariant so that dS2 is a pure 1calar) called the "metric 
lJthe definition that it is convenient to take &ij • g .. in !!!I. coordinate 

• g2 1 •co• ♦, not 2 cos ♦, A contravariant metricJ 1ten1or can be 

' k 
g gJ • 
ij (Al. 7) 

where 
unlua 
one by 

6~ • l if i • k 
1, • ( 

and is zero otherwise. 
Eqs (Al.l) and (Al.6)]. 

In orthogonal coordinate• &ij i• by definition zero 
A covariant index can be converted into a contravariant 1 • J compare 

the relation 
(Al.8) 

and vice versa: the ■ame operation can be performed successively on the indices of a higher•orderiten1or 
but if non-orthogonal coordinate 1y1tems are to be used we must distinguish between ten1or1 like p j' 

l i i li . ~ equal to g p
1

. , and p. , equal to g p.
1

, because in general p
1

. r p . • in non-orthogonal 1y1tem1, 
J J J J )'-

Therefore although some authors preach or practice the arbitrary raising and lovering of indice1, i t i1 
safer to keep to the natural vAriances that follow from the essential contravariance of coordinate, in the 
way expounded at the end of the previous paragraph. 

Especially when dealing with complicated or non-ort~ · 6onal coordinate sy1tem1, it i1 convenient to 
generalize the usual rules of differentiation so tha · derivatives of gij are automatically included: 
the new operation is called "covariant differentiatil ,". Covariaot differentiation oi a contravariant 
vector (or majority-contravarian t tensor) ai with r~spect to xl ia given by 

i a . 
,J 

FlUgge (312) and others use the notation ai/j. 
given by 

aai 
a. 1,j 

. 
axj 

wht,re the "Christoffel symbol of the second kind" 

(Al.9) 

Covariant differentiation of a covariant vector 

{ i k j } ak 

is given by 

{ j i k } . hip ____ll 
[ 

ilg . 
+ 

agpk ilgjk ) 
(Al, 11) 

axk axj axP 

ii 

It is covariant with respect to j and k and contravariant with respect to i, and therefore covariant 
by majority. The result of these rules is that we need not explicitly conaider the effect of coordinate 

transformations on derivatives: in particular, giJ',l and gij ,l are !!!2· The 1ymbol becomes much 
ii simpler if the coordinates are orthogonal when Eq(Al,7) shows that giig • l (no su11111ation), Defining 

2 
the "scale factors" hi by gii • hi we get, for orthogonal coordinates, 

{ J. i k } • 0 1' f i,j,k are all different 

ilh1 
axm if • j • k • l • m 

h1 or i • j • l , k • m 
or i • k • l , j • m 

hl i! hl 
if j • k • l ' i (Al. 12) ·-- • m 

h2m axm 
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SOM 1i11plification i• po11ible whenever one or more of the gij i1 aero or con1tant, aa i1 likely to be 

the caae in moat practical coordinate 1y1tema. 

Some coordinate 1y1tem1 do not all have dimenaion1 of lenath. For example, in the (x,r,8) 1y1tem 8 

i• an angle, and a1 a re1ult 08/ ot i• ~ the velocity component in the 8 direction. We therefore 

have to di1tingui1h between the quantitie1 that appear in the equation• of motion written in aener al 

tenaor notation, and their "physical component•" in a given coordinate 1y1teu1 , It ii alway• moat 

convenient to write the general equation, 10 that they repre1ent the physical component• in a Carte1ian 

1y1tem: the only apparent differences from the ordinary Carte1ian equation, are the appearance of co- and 

contra-variant ten1or1 and of the metric ten1or1 gij or gij, In order to recover phys ical component• 

in any other 1y1tem we need to apply further 

appears correctly as r oe/ at. The rule• are 
factor, 10 that, for in1tance, the a-component velocity 

that the physical j-component of a contravariant vector 

written a(j), i s 
a(j) (no summation) 

which allo defines h . , one of the three "scale factors". To obtain the physical j-component of a 

covariant vector we Jfirst raise the index and then apply Eq(Al,9), getting 

i ij • • 
a(j) • (gjj) g ai • hj g

1Jai (no summation) (Al.14) 

In the special case of orthogonal coordinates, gij is ZP.ro unless j • i, so that 

since gjj • 1/g •j• 
each index in tuln. 
quantity in a given 

a(j) • (g.) gjja. • a./h . 
JJ J J J 

(Al. 15) 

Physical components of tensors are extracted by application of the vector rules to 

We do not need to apply these rules to the metric tensor, which is not a physica l 

coordinate system but a relation between~ coordinate systems. The physical 

i 
a ' 

component of the derivative of a quantity ai
1 

written with a necesaary change of the covariant index a1 

' t tm i i 
a(i,m) and including the physical component of ax , is hi hm g a 1 1

. Converting •,t back to a 

conventional derivative by Eq(Al.9) and expressing it in terms of the physical components of its elements, 

we get 

a(i ,m) 

where the derivative of h . must be evaluated explicitly. We see that the insertion of the Christoffel 

symbol and the conversion 1 to physical components both introduce derivatives of metric quantities: when 

dealing ~nly with orthogonal coordinates where the Christoffel symbols reduce to functions of the scale 

factor, h , both processes can be considered together (in fact, in the example above the derivative of h, 

cancel• with part of the Christoffel symbol) but in non-orthogonal systems they are distinct. 
1 

The complete procedure for deriving the differential equations which represent the conservation 

principles of physics in any chosen coordinate system is therefore 

(i) write the equations for Cartesian coordinates in general tensor n~tation with the correct 

variance, replacing partial derivatives by the ", / ' operator and ignoring deriva.tivea of metric tenaon; 

(ii) work out the metric tensor g
1
. J. (Al.6) and the scale factors h. = lg.'-:- for the chosen 

1 11 

coordina te system, and evaluate the Christoffel symbols (Al. 11); 

(iii) convert the ", t " operators back to a/ ax1 
by using (Al.9) and (Al.10); 

(iv) recover the physical component s of vectors and tensors by us ing Eqs (Al.13), (Al.14) and (Al.16); 

(v) subs titute for the metrics, s cale factors and Christoffel symbols from step (ii); 

Step (i) is performed below, once for all, Steps (iii) and (iv) could be performed once for all but 

specialization from the general form to any of the particular coordinate systems likely to be used in 

practice would be rather more compli cated than applying the rules given above and taking advantage of the 

zero elements of g . .. Steps (ii) and (v) would be done by hand if the coordinate sys t em were specified 
lJ 

algebraically and by computer if it were specified numerically. 

Al. J Tl:'S EQUATIONS LiF FLUID FW W 

We now apply these rules and def i nitions to the pr i nciples of conservation of mass and momentum for an 

incompres,ible fluid with viscous stress proportional to rate of strain [see (311), Ch,8), To begin with, 

we use U1 for the instantaneous (mean plus fluctuating) veloc ity. 

by 

The mass-conservation (continuity) equation is 

u1 
• o 

' t 

The contravariant rate of strain i s related to the covariant ra ce of stra in 

e qr 

it 
e 

} (U + 
q,r 

and i1 therefore 

(Al. 17) 

(Al . 18) 

(Al.19) 
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,r 

The vi1cou1 1tre11 gradients in the xi-component Navier 
aee that the contribution of the second term in Eq(Al.20) 
which can be ahown to be a 1elf-con1i1tent definition o! 

The i x -component Navier-Stokes equation becomes 

il p t 
- - g _,_ 

p 

qi Ul ) 
g ,q 

Stoke• equation can be written a, 
to this vanishes by continuity, 
v v2 ui in general ten1ors, 

+ V 
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(Al.20) 

il 2 ve 
1 

and we 
. ' r t i leaving v g U 

1 ,r 

(Al.21) 

where Fi is any body force per unit ma11, All the quantities in Eqs (Al.17), (Al.20) and (A , 21) have the proper variance aa outlined at the beginning of this aection, and the difficulty over the order of indices in mixed tenaors does not appear. 

Adding the zero quantity Ui u:t to the left of Eq(Al,21) allows us to write it• 
(UtUi) so that the extra Reynolds s tress gradients that appear i n turbulent flow are , t 

secood term as 
obviously -(u1ui) 

1 
, 

' where we now return to the conventiun that large and small letters denote mean and fluctuation respective ly, 

In rotating axes the Coriolia "body force" 2 O x y must be added to t he right hand side of Eq(Al.Zl). Since the body force or acceleration must be contravariant we take it as 

(Al. 22) 

where citm ia +l if i,t,m are in cyclic order 123123, -1 if they are in anticyclic order 321321, and zero if i, t and m are not all different, n1 represents a vector normal to the plane of rotation and ia therefore (311, p.176) covariant. Um is a velocity component nomal to the angular velocity vector (i.e. a time derivative of a normal vector, a"m/at) and must therefore be taken covariant aa well. The index can be raised for compatibility with the other velocities but this should be done at the end of any furthu tensor manip1Jlation, 

The mean-D10mentum equation for incompressible turbulent flow in the presence of a Coriolis "body force" cau1ed by rotating the axe ■ at angular velocity ~ is then 

oui 
Dt 

il p l 
g ....c 

~ 
ti rt i + 2ci tm " tum (u u) t + vg U u , , rt 

where citm is defined after Eq(Al.22). In Cartesian coordinates gi t ~. t can be read as rt i i - • i vg U ,rt a.a vU ,U In compressible flow, using mass-averaged quantities such that p U 

(Al.23) 

p . and 
,1_ i --. 

• p U + p 1 u 1 

where p and p' 
·i fluctuation u by 

are the mean and fluctuating parts of the density p , and defining the mass-weighted 
Ui + ui • Ui + ui so that ui has a non-zero mean value, we have 

it - -:rr l ' d ' g P, t - pu u + comp 1cate viscous t erms (Al. 23a) 

.....,....,. 
The Reynolds-st re ■ s transport equation for u1ul is obtained, SH explained in Section 2, by 

multiplying the in9tantaneous ui-component momentum equation by uj and adding the uj-component equation 
i multiplied by u , With some use of Eq(Al. 17) we get 

~ 

D(u 1 ul) 
Dt 

+ p'(glt uJ 
,t 

+ 
rt --,-,­

v g (u 1 uJ ,r t 

j tm -i-) 
C U U m (Al.24) 

The six lines represent respectively mean tran1port,generation, redistribut. i on by pressure fluctuations, turbulent tran1port, vi1cou1 transport and destruction, and redistribution due to rotation of the axes with respect to the 1tre11 tenaor. Fig,9 summarizes the term,. 

The vi1cou1 terms can be decomposed into 

var1c;;ruJ\ 
,rt 

ui uj 
,r ,t 
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The fir1t tena, which can be written as v 92(uiuj) , clearly contain■ ■ patial gradients of turbulence 
quantitie1, 10 that it, integral over the flow volume ia zero: therefore it is a vi1cou1 tran■port term, 

The 1econd term, which we have 1implified by using .tr r t g • g , may be called the viscous diatruction term. 

The turbulent energy equation for }~ ia Jg . . times Eq(Al,19), where the metr ' c ten1or lover• 
1 -~ J l 

the j index to make each term a ■calar, like Juiu1 itself. Note that the individual normal 1tre11e1 
are ■ till contravariant. The Coriolis terms in the turbulent energy equation are zero: mathematically, 

this i1 becauae of the 1y,ametry of the 1tre11 tensor and the anti-ayometry of citm; phv1ically, rotation 
of the , .XH doe■ not affect 1calar quantitie1, The vi■ cou1 destruction or "dissipation" term, c , is tne 

-r;:-rate at which the rates of strain do work against viscous stresses and therefore is Jve1 ei.t• where e 
is a1 defined in Eq■ (Al.13) and (Al,15) but include• only the fluctuating velocity componentH, Aa shown 
by Corr■ in (313) thia differs from the so-called destruction term as decomposed above by a further spatial­
gradient term: 

rt-.--.-
• V gJ. 

1
, g U l uJ ,r , t (Al. 25) 

However both contributions to the viscous transport are small except at very low local Reynolds numbers, 
--r-r 

and the complete vi1cou1 term in any of the u1 uJ equations is usually approximated by the so-called 
de■ truction term 

A "de■ truction transport equation" for this term can be obtained by differentiating the 
Navier Stoke• equation wit~ respect to xr and multiplying by gr .tuj

1
, adding gr.tui 

• • • r 
derivative of the uJ-component Navier Stokes equation and taking the mean to get 

i u -component 

times the x1 

Thia automatically includes Corrain'a viscous transport term in the turbulent energy rt • Da u1 uJ
1
/Dt, 

,r • 
equation: our knowledge of the behaviour of the destruction transport equations is so fragmentary that 
thi1 inclu1ion doe■ not affect our decisions about closure schemes. The other part of the viscou1 

tran1port, v 92 uiuj , can be represented exactly if the uiuj 
reali1tic to bother with it, The destruction transport equation 
Carte1ian coordinates by Harlow and Nakayama (314) and discussed 
form of any given equation should be clear from Eq(Al.21). 

Al.4 TWO SPECIAL COORDINATE SYSTEMS 

are known, although it may not be 
for the case i • j is given in 
in Refs (25, 34, 35): the general tensor 

We now consider the 1pecial (s,n) and (x,r,8) coordinate systems for which the mean-momentum and continuity 
equations are given in Section 2, There is of course no need to use general tensor analysis to derive 
equations in these well-known systems, but as an example we derive the continuity equation in x,r, 8 
coordinates, with velocity components U,V,W. 

Since we have 111 • 12 2 • 1, g33 • r 2 , and h1 • h2 • l, h3 • r 
i .t a1 the square roots of the g ele~ents. Consider Eq(Al,16) with a
01 

equal to U 
1

, so that the met ric 
tm ' factor outside the brackets becomes ~.thmg : in any orthogonal system this is zero unless t • m wh n 

2 U 1.t it become, h
1
g • g

11
g • 1, using Eq(Al.7) and the rlefinition of hj 

0 • ut 
, t 

au 
• - + ax 

Eq(Al,12) 1ive1 the Christoffel sytllbol as 

Thul the continuity equation becomes 

au 
ax + 

av 
ar + 

U(n) 

~ 

which is zero unless 

1 aw 
r ae + 

V 
r 

• 0 

implied i n Eq(Al.13). T erefore 

(Al.26) 

t • 3, n • 2 when it is 1/r, 

(Al.27) 

The turbulent energy equation, for ;~ = j(~ + ~ + °w!) in (s,n) coordinates, given by Cas tro 
( 11) is 

- £ (AI.28) 

where the four linu repreaent respectively advection, product ion, diffusion and disaipation: we neglect 
viacou■ diffusion of turbulent energy, which is negligible except in the viscous sublayer where x,y 
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coordln•tee cen be ueed. The individual equation• for ~. ';1 and ;I are aiven (in aliahtly different notation) by So and Mellor (160) and can be deduced fro■ the equation• aiven by lodi (17). 

The ahear atre1a equation, alao given by Caatro (11) and (apparently with minor inconaiatenciea) by So and Mellor (160) ia 

D(-il\l) 

Dt 

♦ (Al.29) 

where the four line• represent 111ean transport, aeneration, redi■ tribution (uaually deatruction) by prea1ure fluctuation,, and turbulent tranaport by pre■ aure and velocity fluctuations: ve have nealected the viacou■ term entirely becau■ e it i1 negligible except in and fairly near the vi1coua aublayer and po1aibly in aome other flows at low local leynold1 number. The laat group in the generation term repre1ent1 the effect of rotation of axea. If the axe■ are rotated by a ■mall angle 8 the shear atre11 in the new axe, ia, to firat order, -uv + 8(~ - v!): in the pre ■ ent caae the axe■ rotate at an angular velocity d8/dt • (-U/R) 10 an extra contribution to D(iiv)/Dt ariae1. The last group in the transport term ari1e1 from the irreaular ahape of the control volu■e, a1 doe■ part of the la■ t group in the diffuaion term of the turbulent energy equation, 

The turbulent energy equation in (x,r,8) coordinates with velocity component■ U, V and W re■pectively, i■ aiven by Rodi (17) a, 

ru l. L ax 
a 

+ V - + ar 

- £ 

where the terma are in the same order a1 in Eq (Al.21) 
obtained by taking ui or u, aa u, v or w: the 
terma in 8 are zero in axi,~etric flow: term, in 

and 'ii7ii': au.Jax . 
l J l J 

component■ of Xj 
W are zero only 

The shear 1tre1a equations, for -uV and -W re■pectively, are 

and 

- av u2 
ax 

p' 
p 

a 
♦ 

ax 

av 
• UV ax 

♦ iiv 

[
av 
ax 

♦ au) 
ar 

L:! 
+ uv2) + p 

av 
♦ w­ar 

a (7) ar 

uv av 
r ae ♦ 

1 a 
♦ - -a (r ~) ♦ r r 

aw 
+ iiv ax 

aw .~ 
ar 

l 
r 

♦ 

1 a 
r ae 

(Al.30) 

i1 the sum of the nine terms 
are taken a■ x, r and re. All 

in axi ■yuaetric non-■virling flow, 

a -;;;I 
ae (iiw) - r 

w aw 
r ae 

V 
♦ -'w 

r 

(Al.31) 
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- r [7r ♦ !~V 
p r ae 

~(uw) a 
[p;u +v2w) 

1 a 
[p;v ·~)♦ 2v2w wl 

♦ ♦ - ♦ -- (Al,32) 
ax ar r ae r r 

Eq1 (Al,28) and (Al,29) are 1pecial ca1e1 of Eq1 (Al,30) and (Al,32) with re+•• r + n + R and x 
derivative, neglected in the latter equations. Rodi (17) gives the equation• for the other Reynold• 
1tre11e1 in (x,r,8) coordinate■, Note that the division of the terms into mean transport, aeniration, etc. 
i1 not 1illple, Strictly, the qua1,titie1 on the left of the transport equation• should be reducible, by 
addina ailtiple1 of the continuity equation, t~ quantitie1 who1e volume intearals ere all zero, Here we 
have arouped the tel"lll1 accordina to their mathematical form rather than their physical meaning: Rodi 
1roup1 the rotation-of-axil terms, discussed above, with the mean transport terms, and make• 1everal other 
non-obviou1 1roupin11 without explanation, 
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APPENDIX 2 

NUMERICAL EXPERU£NTS 

Thi• Appendix contain, detail• of the calculation, by the method of Ref.16 r eferred to elaewhere in the 
text: 1ee Table• 3 and 4 for• 1umaary of the teat ca1e1. In all ca1e1 the thin-1hear-layer approximation 
wa1 u1ed, the normal pre11ure gradient being neglected, and the value, quoted for the integral thicknes1e1 
6* and 8 were obtained from the plane-flow definitio111 rather than the curved-flow definition, of 
Ref, 37, 38 or 183, The error, introduced by the1e two 1implification1 tend to cancel, 1ince the 
calculations of U/Ue approximate to Ur/Uere. Of course, the1e are f-factor effect• (pp.17-18) and are 
small compared to r-factor effects, except in the ca1e of 1evere curvature where change, due to f-factor 
effect, become of order unity. The input data uaed fo1 most of the calculation, are tabulated at the end 
of the Appendix and may be u1eful fox calculation, by other methods: no great preciaion i, claimed and 
1ome di1cr1pancie1 in the riginal da t a may have gone unnoticed. Data for Schubauer and Klebanoff'• 
aerofoil (101: Fig.26) are tabulated bJ Cole, and Hir1t (315). 

It 1hould be pointed out that many of the teat ca1e1 have very 1trong curvature, beyond the reach 
of r-factor1. Calculation, are included partly to demonatrate the limit• of the F-factor analy1i1 and 
partly to demonatrate the l arge difference, between the experimental data and calculations with no 
curvature correction. In the compre11ible flow■ with curvature-induced pressure gradient, bulk -
compre11ion/dilatation effects are larger than curvature effects, but again the calculation, with no 
allowance for extra rate of 1train di1agree 1trongly with experiment. The experiment of Stratford (316: 
1ee 1110 315) on a 1eparating boundary layer probably exhibited strong curvature effects but the aapect 
ratio of the tunnel was 10 ■mall that secondary flow• in the corners probably had a large effect: the flow 
waa f ar from two-dimensional. The axisymme t ric diffuaer experiments of Fraser tabulated in Ref.315 appear 
not to suffer 1ignificantly from the extra strain effects of lateral divergence or of convex longitudinal 
curvature, but since theae effect, are of opposite sign they may merely have t~nded to cancel. For 
different reasons, therefore, the experiments of Stratford and of Fraser are not useful•• te1t ca1e1. 

Meroney's meaaurements (164) on surfaces with 6/R ~ 0,01-0.02 are the first since Schmidbauer'• to 
provide a test of the F-factor correction for curvatures typical of aerofoils and turbomachines without 
the complication, of compreasibility. The results shown in Fig.25(a) are from a first series of run■: the 
concave-1urface data are those taken on the centre-line of the tunnel which happens to be near the line of 
maximum surface shear stress and minimum boundary-layer thickness (i.e. the line of maximum inflow in the 
longitudinal vortex syatem). The amplitude of cf variation at x • 39 in, about 40 initial boundary­
layer thickne1se1 from the start of curvature, is about ±10 per cent with a spanwise wavelength of about 
1.26. At thi1 position, the flux Richardson number at y/ 6 • 0.5 is numerically about 0,07 on both the 
concave and the convex surface, 10 that the F factors are just wi t hin the range 0.5 < F < 1,5 set•• 
an arbitrary limit: at larger y larger values of Rf are found [Fig,25(b)) but the dissipation term to 
which the F-factor is applied becomes fairly small compared to the turbulent transport terms, and in any 
caae the velocity gradient is small 10 that errors in calculating it have little effect on the overall 
profile. Agreement between experimental values of the integral parameters [Fig.25(a)] and calculations, 
uaing Eq(37) with X • 106 and Eq(119) with e • 7 (convex) and e • 4.5 (concave), seems satiafactory. 
It i1 hoped that the final results of the experiment, which is still in progress, may sugge1t improved 
value, of e (or a) or even improved forms of F-factor. 

In the exper iments of So and Mellor (160) the ratios of boundary-layer thickness to radius of 
curvature were aR high as 0,08 on a convex surface and 0,13 on a concave surface (higher values were 
attained in a boundary layer separating from a convex wall but we have not done calculations for this case). 
These high value ■ are beyond the reach of linear F-factors . The non-linear F-factor-like correction 
applied to the eddy viscos i ty by So and Mellor contains an empirical constant adjusted to suit their 
convex-surface data. They take 

- UV • 
au [ (l+s) ) 3/ 2 

VT - (1 - 5) 2 1 - 4.05 - --
,P ay (1- 5) 2 

(Al , l) 

where 5 = (U/R)/( au/ ay) as in Eq.(86) and vT P is the empirical eddy viscosity value used in plane flow. 
The linearized version of this correc ion factot corresponds to an F-factor w~th a equal to 8 when 
applied to eddy viscosity or about 16 when applied to mixing length or dissipation length parameter, 
compared with the value of 14 sug~ested dbove for an F-factor applierl to L on a convex (stable) surface. 
Therefore So and Mellor'• factor would give results fairly close t o Eq(36), with a • 14, for cases of 
mild curvature. It does not contain any lag allowance and, being based on local p ~rameters, is automatically 
1u1pect in highly-curved flows where turbclent transport terms are important: however, the fit to So and 
Mellor's own results is very good. 

Cal< ·ations by the method of Ref.16 of the i ntegral parameterd are shown in Fig,22 (a) and (b), 
An initial set of calculations on the convex surface was done with the conventional boundary-layer 
thickness (the distance from the surface at which U • 0. 995 Ue) as a scaling length for L, but it wa1 
then realised that the ''correct" thickness to use is that of the turbulent sub-boundary-layer, the total 
thickness of the mean velocity profile being immate1 ial because its outer part is not t•1rbulent. (Sn and 
Mellor'• use of 6* for scaling id also unrealist i c in this cas e ,) Fig.22(c) shows a comparison between 
measured and calculated shear stress at the last station shown on Fig,18(a), for the two choices of scaling 
length. Agreement is quite good for the general profile shape and the thickness of the sub-boundary layer, 
underlining the statement on p,70 that any cor rection factor that predicts s t rong suppress i on of 
turbulence in highly-stable case• will give good agreement with experiment , Note , however, that the 
wagnitude of cf is not well predicted. 

On the concave surface, longitudinal vortices form. So and Mellor rega~d the law of the wall•• 
untruatworthy on a concave surface apparently becauAe the veloci ty at the edge of the inner layer fall• 
below the logarithmic line inatead of rising above it as is more uaual: however their quoted value, of 
Cf, obtained from "Clau■ er plots" using the law of the wall, seem plauaible and in reuonable agreement 
with calculation, (though not with the hot wire mea■ urements), So and Mellor meaaured velocity profile• at 
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only tvo 1tre..,i1e po1it i on1: inte1r1l thickne11e1 at the cre&t and trough of the periodic 1panwi1e 
variation are 1hown in Pig.22(b) for compari1on with calcul1tion1. 

Althouab extenaive data tabulation, are aiven in So and Mellor'• report 1ome difficultie1 were 
experienced in extracting initial and boundary condition, for a calculation becau1e of gap, or 
incon1i1tencie1: therefore the tabulated data aiven here 1hould not be taken 11 definitive. 

Young'• experiment on a "curvature impuhe" in a 30 dea bend with 6/R ~ +O. 2 or -0.1 h a till in 
progre11. The calculation, 1hown in Pig.~3 for flow on and downstream of the concave 1urface agree 
11ti1factorily with experiment a ough, a, in Meroney'• experiment, mapping of the lonaitudinal vortex 
pattern i1 not yet complete. Th need for a lag equation to modify the F-factor ia evident. 

A1 mentioned in the Introduction, Thomann'• experiment at M • 2.5 (4) i1 the only one at any 1peed 
to inve1tigate plane, concave and convex 1urfcce1 with nominally identical ,tarting condition, and 
nealigible pre11ure gradient. Unfortunately only aurface heat tran1fer waa me11ured and the 1tartin1 
condition, are uncertain. In the calculation, we have a11umed that the momentum thickne11 at x/L • 1 w11 
•• calculated by Thomann u1ing Walz' method, and that the Stanton number (baaed on the difference between 
wall temperature and recovery temperature) was everywhere equal to 1.16 cf/2, an accepted ratio for flat 
1urface1. A further difficulty is that the methnd of Ref.16 i1 fully operational only for adiabatic wall1: 
in the calculation• we have taken the temperature profile to be given by the adiabatic Crocco law 

(A2. 2) 

with tha recovery factor r taken as 0.52 to get the right wall temperature (Tw/T
0

:::: 0.7), which 
undere1timate1 the temperature within the boundary layer. Thia combination of uncertainties and 
approximation reau!1,_s in the agreement with experiment being rather poor even for the plane surface 
[Fia,27(1) 1 curve(.!)). St (or Cf ) is overestimated: Thomann'& measurement• on the plane aurface [the 
circle• in Fia,27(1)) 1eem •lightly erratic, and decr ease with x more rapidly thsn expected, but 
allowance for the amall adverse pressure gradient reported by Thomann scarcely changed the calculation,. 

The curved-surface calculations were all done with the lag equation, Eq(37), with a "time constant" 
of 106, Although thil "time constant" is certainly an over-estimate near the surface, the calculation, 
1eea to undere1timate the lag in the response of heat tran1fer to a change in curvature. Now the main 
1ourc11 of data uaed to confirm the applicability of the traditional "time constant" of 106 to Eq(37) 
were the retarded-accelerated boundary layer of Lewis et al. (66) at Me:::. 4 (Pig.11) and the low-apeed 
curvatur e-impulae data of Young (57: Pig.23), Although it is clear from these compari1on1 that the simple 
111 equation, Eq(37), does not give per fect agreement with experi.ment, it can be concluded that the "time 
con1tant" does not change very greatly with Hach number, and this agrees with the empirical finding that 
velocity prof ile shapes do no t change great ly with Hach number so that the typical value of au /ay used 
in making the "time constant" jq2/(-iiv au/ ay) should not change greatly with Hach number, However, wall 
cooling lead, to fuller velocity profiles, smaller typical values of au / ay and thus larger "time constants": 
Horkovin'• hypotheais of the insensitivity of turbulence structure to small density fluctwations should 
auarantee the in,ensitivity of iiv/q2 to Hach number and heat transfer in the ranges in question, We have 
not explored the effects of vary i ng the "time constant", in view of the other uncertainties in the 
calculation but it appear s that a value of not more than 15~ would optimise agreement with experiment, 
The difference between this and the traditional value of 106 can be plausibly attributed to heat transfer: 
therefore the value of 106 should be used in adiabatic flows where the velocity profile shape is closely 
the· aame aa at low speeds. 

Once it is granted tha t the "time constant" used in the cal culations ia rather too small it follows 
that the calculations with the low-speed values of a in Eq(36) - curves G) and a) in Fig,27(a) -
undereatimate the effects of curvature icompare the experimental and theoretical values at the last 
me11urement station). However curves @ and G), including the compressibility correction 1 + (y-l)H?. /2 
for an adiabatic wall from Eq(93), seem to be significant overestimates, This discrepancy too can be 
explained away, in principle, by the effects of heat transfer: it can be seen from the first-order form 
of Richard1on number, quoted following Eq(97), that cooling the wall, which reduces the numerical value of 
the (negative) temperature gradient aT/ ar, reduces the compressibility corre -.tion. In Thomann's 
experiment Tw!Te was about 1. 5, compared to 2.2 on an adiabatic wall at the same Hach number, so that the 
compreuibi li ty correctio,1 would be significantly reduced. 

In 1W1111ary, Thomann', experiment is at l eas t not in demonstrable conflict with t he values of a and 
of the "t : me constunt" suggested above, It would be v~ry desirable to have :f measurements for an 
adiabatic wall with about the same 6/R; boundary layer prof i les are of course desirable but an adequate 
value of ini~ial momentum thickness cou ld be obtained by integrating the cf distribution from the leadin~ 
edge or transition point. 

Sturek and Danberg's measurements [Fig,27(b)) were made on a concave surface with 16 /R I ~ 0,03, 
Surface shear stress was measured with a Preston tube, but the resulting Van-Dr i est-trans f ormed logarithmic 
profiles in the curved region have a rather higher intercept than the accepted value of 5 [ad equat ely fitted, 
for instance, by the He• 4 data of Lewis et al. (66)). The tops of the bars on the experimental points 
for Cf in Fig.27(b) represent values derived Cr om the accepted (transformed) logarithmi c l~w. Values of 
6* and 8 are those evaluated by the expe rimenter s from "ideal" conditions , tht! compressible analogue of 
the "potential wall velocity" as defined by So and Mellor and others: these values agree quite well with 
those calculated by the method of Rcf,1 6 neglec ting normal pressure gradients, and the l at t er ngree with 
the eddy-viscosity calculations of Cebec i (private colll!lunication), The run of boundary layer is only about 
15 times the initial 6 and the initial conditions signif i can tly affect the results. The total pressure 
on a given streamline changes appreciably only near the wall so t hat 8 and H are scarcely affected by 
allowances for the effects of cur·,ature and bulk compres sion/dilatation on the shear stress. The calculated 
maximum 1he,1r stress at the last measurement station increases by about 35 per :ent when both allowances 
are made: t he flow experiences a "11train impulse" (p, 19) which has not produced very large changes in 
turbulence 1tructure by x • 21 in, so that in principle a linear ~-factor with a lag equation should be 
capable of Jescribing the flow up to this point. However the present lag equation, Eq(37), is certainly not 
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adequate becauae the variation of re1pon11 time with diatance from the aurface ia not repreaented, Thia 
fact, and the uncertainty of the atarting condition• and cf mea1urement1, makes it impo11ible to deduce 
110re from the calculation• than the evident need for allowances for extra rate, of ■ train. Kepler and 
O'Brien'• experi11ent [Pig.27(c)] on a concave aurface with 24 deg, turning angle had 16/RI ~ 0,06 at the 
atart of curvature, with a very strong adverse preaaure gradient. A persuasive argument for the 
importance of extra ,train effect, i, that• calculation with no allowance for them predict, aeparation 
of the boundary layer, which did not occur in the experiment: with an allowance for bulk compre11ion, cf 
fall, no lower than half its original value while a further allowance for curvature raiaea Cf ,lightly 
further, Surface shear 1tr111 waa not measured and the values of 6* and 8 depend on the definitions 
choaen: the disagreement between calculation, uaing the plane-layer definitions and the experimental 
values using a "free stream" velocity varying with y according to the inviscid flow equation ii large, 
Pig,27(c) 1how1 the very large diaagreement between calculated and experimental velocity profiles after 
only 12 deg, of turning, i,e. a distance of about 3,56 from the start of curvature (Ue ia the nominal 
velocity at the boundary layer edge in the case of the experiment,, and the velocity corresponding to the 
wall atatic pressure in the caae of the calculations). Now the total pressure profiles plotted against 
atream function would (in the absence of experimental and numerical errors) coincide almoat exactly 
except near the wall becauae the pre11ure gradient• greatly exceed the Reynolds stress gradients, Very 
little can be learned about turbulence from an experiment such as this, in which not even the surface 
ahear 1tre11 waa measured. 

Pull calculations have not been done for two more supersonic flows, McLafferty and Barber'• two­
dimenaional concave-surface boundary layer (184) and Clutter and Kaupa' axisymmetric bodies (185), Both 
1et1 of data are nominally useful although McLafferty and Barber's flow cannot be checked for two­
dimenaionality becauae of the l~ck of cf mea1urement1, A calculation of McLafferty and Barber'• flow 
without allowance for curvature and bulk compreaaion went to separation; again the implication ia that 
extra atrain rates have a large effect on the turbulence. McLafferty and Barber noted a lag in the 
re1pon1e of the flow to the wall curvature: it is not possible to distinguish curvature lag effects from 
ordinary hiatory. Clutter and Kaupa' mea1urement1 are ideal for a test case except for the small ratio of 
cro11-1ectional radiua of curvature to boundary layer thickneas, the rapid lateral divergence and of 
course the effect, of bulk compreaeion; the flow i1 not unlike that over the rear of Winter's waicted body 
(54) for which calculation• by a method with nearly the same physical input as the present one have been 
reported by Green et al, (46), 

Clearly, better confidence in the corrections for bulk compression and lateral divergence ia needed 
before curvature effect, in aupersonic flows can be fully elucidate1, Thomann'• mea1urement1 give mode■ t 
■upport to the pre■ent ■uggeated values for "time constant" X, empirical "constant" a or S, and Mach 
number dependence of the Richardson number, 

The wall jet calculations do not correspond exactly to any experiment and are not reproduced here, 
For convenience the runs were done with a finite free stream velocity, one-tenth of the maximum velocity 
on the initial profile which wa1 that of a fully-developed wall jet, The thickness 6,5, defined a1 the 
value of y at which the velocity i1 half the maximum Umax, is surprisingly insensitive to Ve/Umax a■ 
long a, the latter does not exceed about one-third, With R • ±lOx to simulate the logarithmic spiral 
flow, but without any allowance for normal pressure gradients or extra terms in the (a,n) equation, the 
values of d6, 5/dx were 0,085 on a convex surface and 0,065 on a concave surface using Eq(119) with S • 7 
in 1tabilizr.d regions and S • 4 in destabilized regions, On a flat surface the calculated d6,5/dx wa1 
0,075, agreeing adequately well with experiment. Comparison of the calculated spreading rates for the■e 
values of S with the data of Fig,4 1ugge1ts that the optimum values of S are~ in stabilized region■ 
and 3 in de1tabilized regions (a• 8 and 6 respective ly). Strictly the original values of S should be 
u■ ed in the wall region on the argument that it is nearer a boundary layer than a jet, but curvature 
effect ■ on the turbulence in the wall region are negligible, Eq(37) was not used in these calculations: 
u written, Eq(37) would have an effect even in self-preserving flows butthe "time constant" X of jet 
flows is probably very small and its effects would be noticeable only in cases of sudden change of 
curvature, 

A significant feature of the wall jet calculations was the relative size of the percentage change ■ 
n L, mixing length 1 and eddy viscosity vT• The chanv~ in L/6,5 between convex and concave ca1e1 

wa■ 15 per cen, the change in 1/6 was 8,5 per cent and th~ change in vT/(Umax 6,5) wa1 26 per cent. 
The departure from the usual rule that vT changes twice as much as 1 and L, valid in boundary layers, 
i ■ evidently due to variations in profile shape between the different cases, These v~riationa may be 
exaggerated by deficiencies in the calculation method but are probably real in part (As mentioned on p.54, 
the dimen1ionle11 velocity gradient increa9es with inrreaaing convex curvature and this is the sense 
required to explain the compari■on between vT and t), The implication is that values of a obtained 
by optimi ■ ing the behaviou~ of Eq(36) applied to L would oe double those obtained from the application 
of Eq(36) to 1. Another boundary-layer rule, that entrainment velocity i ■ proportional to maximum ehear 
1tre11, i■ not. very well obeyed: Tmax varies more than r&:"s which is proportional to entrainment 
velocity if ~•11 1tre11 i ■ neglected. Thia supports the inference in Section 3 that the ■ ize of a in 
jet flow■ i ■ undere■ timated by a11u■ing entrainment proportional to shear stress, 

Further analy1i1 of the data and calculations presented in this Appendix will be reported separately. 

SOffle of the 1et1 of input data for the calculations are tabulated below. For full detail• of input 
for tha method of Ref,16 aee NPL Aeio Rept, 1269 (1968) and IC Aero Rept. 71-24 (1971). Where no profile■ 
of initial U/Ue ("U") and T /peUe ("TAU") art given, these were generated from the input values of 
momentum thickneu e, Reynold ■ number Ue8/v and cf/2, u■ ing the "synthetic starting profile" option: 
thi ■ employ■ the Cole■ velocity profile family, with an assumed mixing-length distribution to generate the 
■ hear 1tr111 profile, The aequence of data input, ignoring the first card indicating the number of ca1e1 
which is alway, one a, ahown here, is 

(i) I array (control paraetera and count ■ of points), Only 1(5), the number of free-1tre1m 
velocity and curvature ordinate■, and 1(6), the number of point• on the initial profile, are relevant 
in general, 
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(ii) A array (input con1tant), A(l) • initial y 1tep, A(2) • 1pacin1 of fre~·•treu velocity and 
curvature ordinate,, A(J) • initial x (x • 0 i1 po1ition of fir1t ordinate), A(4) • Reynold, number 
per unit velocity per unit lenath (velocity and lenath unit, beina arbitrary), A(S) • initial Cf/2. 
When 1ynthetic 1tarting profile• are u1ed [indicated by I(2) • 1) A(l) • initial e, A(4) • initial 
Ue8/v. 

(iii) Pree-stream velocity ordinate• } 
I(S) values, spaced at A(2) 

(iv) Ordin1te1 of (radius of curvature)-l 

(v) Velocity and shear stress profile,, U/Ue and r/peu! , if any - I(6) value,, starting at y • A(l) 
and at interval• of A(l) thereafter, 

In the compre11ible program the "free 1tream velocity" can be entered H Pel (reaervoir pre11ure), 
He or H! according as I(lO) • O, 1 or 2, and the Reynold• number i1 baaed on reservoir conditions 
with the reservoir speed of 1ound as the velocity scale, Recovery factor (usually 0,889), vi1co1ity­
temperature exponent (usually 0,76) and y (usually 1.4) appear in the A array. Synthetic ■ tarting 
profiles are called by setting I(ll) • 1, 
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TAIi.i 1 COIDfflOII It I 10 PU CIIIT QWICI II IIIIAI ITIISI 

• boululal'J l•J•r• or duct flow, with• 1treaaliae radiu, of cunature 1••• than 
lkut 200-300 tiae1 the 1haar-la,er thiclme11 

• wall jet• or fr•• jet, vi•.h a 1trealin• radiue of cunature la11 than about 
100 tiaea the 1hear-la1ar thickN11 

• flow, in hip•upact - ratio duct, rotatiq about the aajor axi1 at an an1ular 
valocitJ 1reater than about o.oos U/h 

• boundarJ laJan on axia,-tdc bodiaa, or flov in drcular duct■, llhich rotate 
about th• uia at an anaular velocitJ 1reater than about 0.003 U/6 

* very lar11 chana•• occur in anJ flow vith 1olid·bodJ ~otation 1upariapo1ed on 
an ulal flow. 

TAIL! 2 unUMC! TAIL! or IUOYANCY/CUIVATUU PAIAISTIU 
Por u11 in !q(117) or it• fir1t•ordar var1ion, !q(36) with a• 28 

Plow 

2-diaeneional curved lay1r 

lota':ion about I uit 

C011pra11ibl1 flow or heat tran1fer 

Coplanar rotation and curvature 

Svirlin1 flow t 

AxitJl"'1tric 1virlin1 flovt 

Infinite 1vept vinat 

ti Coapouncl curvature 

Spianin1 c1lincler in axial flow 

2 li or wlV 

!q(72) 

89 

90 

99 

114 

!q(79) 

89 

95 

102 

103 

103 

113 

• IU.1 112 /L aanerallJ preferable to 3U/3r if different. 

i 

lec~nclad• 
approxiution 

!q(73) or (84) 

89 (la1t foni) 

98 

100 

108 

109 

109 

us 

t A11uae effect of r-factor i1 on 1he1r 1tre11 c0111pooent in direction of 1traalina. 
I Take ax•• to aaxiai•• U/r. 
Check taxt for notation u1ed and rans• of applicabilitJ. 



Till.I 3 UPllDIIIITS 01 LOW-1111D IIOUIIDMY LAYIU AID DU\.~ PWWS 

Data Author laf. Mui- fi/1 Pra11ura 
t(:,) Turbulence Gradient cf 

- bv mdar:, la:,an on tvo-di•n■ ional curved 1urfacu -
1930 Wilckan 22 - 0.2 ~ a frOII T froa U -
1936 Scbaidbauar 83 + 0,04 f +a fr011 U ' - -
11t37 Clauaa. 93 :t .ou J. - - (u1 only) 
1950 Schubauu a llabanoff 101 ♦ o. 1 • 101 law Hot wire ra1ult1 1u1· act 
1962 Tani 102 " a - -
1968 Patel l,L, 37, t 0,06 .... a - - -162 

Patel c:,l. 37 + 0,03 f fn (Re ,H) - -
1972 So I Mellor 160 :t .13 •• a from t Hot wire 1Ma1ur ... nt1 
1973 Marona:, 164 :t .01 - z aurface tube ti ti ti 

1973 Youns 57 +o.,i.-0 .1 .... z It II II II ti 

- curved or rotating duct, -
1935 Wattandorf 82 :t 0,05 - 1urface tuba from p,g, -
1956 l1kinaai I Yah 98 :!: 0,05 - from P•I• from P•I• 
1967 John1ton I co-workers 10 :!: o. 1 - log law from p.g. flow viz. 
-1972 

- boundary layers in 1virlin1 flow, or in axial flow over rotating cylinder, -
1963 Parr 166 + 0,1* z - - -
1967 Ma.all. ,ct 133 - - z - - -
1971 Huahe■ 165 ran1e z,a - from U -
1972 Nalr.aaira 167, + 0,2* ., •• f - - -

299 

- curved rotating duct -
1968 Andan 169 :!: 7 a eurface tube -
1972 Litvai 170 :!: 7 a - - -

Ka:,: n • advarae, f • favourable, z • nominally zero. For rotating duct, 6/R become, }hO/U, For rotatina bodia1 in axial flow and for the curved rotating duct, both curvature and rotation are 
important. *Figure given i1 6/(cro11-1ection radiu1), 

TABLE 4 EXPERIMENTS ON HIGH-SPEED BOUNDARY LAYERS 

Date Author Ref, Maxill1WII Prauure Hach no. Reurlr.1 6/R Gradient 

1962 laplar a 183 -0.06 a 3 + 2 
O'Brian 

1962 McLaffr.-i:y I 184 -0.04 a 3 + 2 Low Re8,11! 2SOO for moat detailed 
Barbar ca1e 

1964 Clutter I 185 -,-0 .02 • 1.6. 2.6, Bodia1 of revolution with flare, 
laupl 3.3. 4.5 - atronal:, diveraent axi1:,aetric 

1968 Thoaann 4 ±0,02 z 2.5 Heat tran1far 1Ma1ur•anta only 
1968 Win tar• llotta - a,f 0.6. 1.4, 2.0 Waiatad body of revolution: cf from 

I S■ith aurfaca tuba may be unreliable 
1971 Sturalt I * -0,03 

Danbar1 • 3,5 + 3 cf from Preaton tube 

Por lay••• Tabla 3, 
Several other ax~ariment1 have bean reported, but in inaufficient detail to be uaaful aa teat c••••• Of the 11 tvo-dimanaional 11 caaH ab~ve, only Sturalr. and Danbara meaaured cf; Thomann maaaurad St but not 
t-■paratura profile,. Therefore there ia no proper chaclr. on two-dimanaionalit:, except in Sturalt and Danbar1'1 flow which appeared to be 1li1htly convar1in1; other flowm uy be threa-dimenaional in either 
••n••• 
* Sturalr., W,B, and Danbar1, J.E., AIM paper 71-162 and Univ, of Delaware DHAE llapt. 141, 1971. 



y 

(a) ( x, y) coordinates with 
fixed, :£rbitrary origin. 

(c) doubly• curvilinear 
orthogonal coordinates. 

y X 

z 
(e) "rotating'" duct with 

rotating (x,y) coordinates. 

V 
0,--..,__A 

dn 

(b) (s, n) coordinates with radius 
of curvature R a function 
of s, positive for corwex s-axis. 

~lical 
streamline 

(d) (x,r,8) coordinates ,or 
"swirling.. f tows. 

r 

(f) "spinning" pipe with fixed 
or rotating (x,r,8) coordinates. 

FIG. 1 COORDINATE SYSTEMS ANO DEFINITION SKETCHES FOR 
CURVED OR SWIRLING FLOWS. 
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FIG. 4 GROWTH RATE OF SELF-PRESERVING WALL JETS ON
SPIRAL SURFACES ACCORDING TO GILES ET AL{6-o) 
AND GUITTON{7=°) AND ON CIRCULAR SURFACES 
according to SPETTEL ET ALIS--^; MEAN VALUES).

FIG. 5 LAMINAR" CORE OF AIRCRAFT TRAILING VORTEX (9).
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Tr1

0 22 0 32 0 49

(a) Hydrogen bubble pictures^ values of Q h/0 shown Dotted line indicates 
position of bubble wire. Larger bubbles have erupted from sublayer.

sense of rotation

table side 
(leading)

ield of view in 
photographs

Bubble wire

(b) Duct configuration showing field of view

FIG. 6 LONGITUDINAL VORTICES IN ROTATING DUCT FLOW 
(JOHNSTON ET AL (10)).
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(b) Maximum turbulent inttnsity, ql /U 2 
max. ref. 

Back 
wall 

80 S,cJO 

FIG. 7 REDUCTION AND OVERSHOOT OF TURBULENT INTENSITY IN 
STABLY-CURVED MIXING LAYER (11 ). 
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./ UNSTABLE 

(a) Motion of displactd eltment in a curved flow. 

I 
/ 

_...-;., _ _,, __ --- - --- - __________ ,,,, 

( bl Cross-sectional ·stream lints" and streamlines nar surface 

I 

I 
I 
I 

in contra-rotating toroidal vortices betwHn circular cylinders. 

FIG. 8 IDEALIZED ANO REAL EXAMPLES OF UNSTABLE 
CURVED FLOWS. 



Transport in 

Viscous 

Sources and 
sinks 

Transport out 

I 

* ~l/ Destruction 

Generation /t\' 

~ 
I ,~ 
Pressure 

) redistrib1.1tion 
Pressure destruct ion 

(a) Processes represented by transport equations for 
turbulence quantities. 

* 
~,, * ,~,... ,.,,,~ Destruction, --~ 

GMeration including Production 
...-,,, 

~I redistribut' Dissipation 

I~ 
Redistribution = 0 

Transport ~ 0 
Diffusion 

( b) Local equilibrium. (c) Nomenclature for turbulent 
energy equation. 

FIG. 9 TRANSPORT EQUATIONS. 
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FIG. 10 RESPONSE OF TERMS IN REYNOLDS-STRESS TRANSPORT 
EQUATION (FIG. 9) TO STEP CHANGE IN RATE OF STRAIN. 
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10 15 20 x (inchfs) 25 
FIG. 11 RETARDED-ACCELERATED SUPERSONIC BOUNDARY LAYER (66) 
-e-, MEAN LINE THROUGH MEASUREMENTS.- -- , CALCULATION (16) 

WITHOUT DILATATION CORRECTION.-•-, CALCULATION USING EQ ( 36) WITH 
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FIG. 1& COLLAPSE OF TURBULENCE IN OUTER REGION OF 
HIGHLY- STABLE BOUNDARY LAYER (160). 
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FIG. 20 DEPENDENCE OF SKIN FRICTION COEFFICIENT ON 
CURVATURE ACCORDING TO SCHMIDBAUER {83 : Flu 4) 
THE GENERAL TREND IS CORRECT BUT THE 
VARIATION APPEARS TO BE OVERESTiMATEO. 
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(b) Concave-surface measlXements of Sturek and Danberg. e, experiment . - - -
calculation without extra strain allowances.-·-, calculation with bulk carp•9Sion 
allowance, a :10. --, calcutatia, with compression and cl.l"vature alloNance. 
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(c) Concave-surface measurements of Kepler and O'Brien. Profiles at 1-2 in. from 

start ~ cl.l"vature. Calculated profiles corr-Kted for bulk compression -1nd 
curvature, and tor bulk compression only, are identical. 

FIG. 27 (CONCLUDED). 
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FIG. 29 STABLY- CURVED MIXING LAYER (11). FOR CONFIGURATION 
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