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NOMENCLATURE 

Symbol 

ã 

AiJ 

î,(ç1,ç2»^3) 

t 

g 

G 

h 

Kn 

l 

ü 

n 

P 
-*• 

q 
s 

t 

Û 

x3 ,x2,x3 

çl'*ç2»ç3 

Description 

« characteristic dimension of the body 

= added mass coefficient 

= depth of submergence 

= source strength function 

* force vector 

= acceleration of gravity 

= Green's Function 

= depth of water 

= modified Bessel function of the second kind 
of order n 

= distance of line of action above bottom 

= moment vector 

= unit normal vector 

= dynamic pressure, dimensionless 

* dynamic pressure 

= fluid velocity vector 

= surface of body 

= time 

= velocity vector of object 

= coordinates, dimensionless 

2_ 
=o a/g 

= coordinates of a point on the surface of 
the object, dimensionless 

= fluid density 
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Symbol Description 

o ® frequency 

♦ “ velocity potential, dimensionless 

* * velocity potential 

ft * angular vector velocity of body 
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I. INTRODUCTION 

When an object is accelerated through a fluid there 

are, in general, two types of forces that are recognized, 

one being a drag component and a second, the Inertial 

component. The nature of the flow produced by the time 

dependent motion of an immersed rigid object and the relative 

contribution of these two components of force is generally 

considered to be strongly dependent on the amplitude of the 

relative fluid motion in comparison to the characteristic 

lineal dimension of the object. For example, Keulegan and 

Carpenter [Ref. 1] found that, for harmonic motion of the 

fluid past a fixed circular cylinder, major flow separation 

did not occur and the forces were well representei by 

potential flow values provided the amplitude of the motion 

was less than about a half diameter. If the amplitude 

is small enough the fluid does not move in one direction 

far enough for separation and wake development to occur 

and, accordingly, an inviscid flow analysis is a valid 

mathematical model. 

Accelerated motion of a solid body in a fluid occurs 

for example when a bottom mounted structure is excited by 

an earthquake. Other applications include the accelera¬ 

tion of ships and accelerated motions of objects being 

lifted in the ocean environment. Southerland [Ref. 2] has 

described the effect of added mass on the mechanics of 

lifting such loads as a submarine rescue chamber. 
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John [Ref. 3] has shown that the velocity potential 

associated with the harmonic motion of a rigid object 

immersed in a fluid with a free surface may be represented 

by a surface distribution of point wave sources for arbi¬ 

trary values of frequency. The source distribution (or 

weighting) function is obtained in this formulation from 

the solution of an integral equation resulting from the 

kinematic boundary condition applied on the immersed surface. 

Using this technique, numerical results have been obtained, 

for example, for a semiellipsoid oscillating in a free sur¬ 

face in water of infinite depth by Kim [Ref. 4], the 

intended application being to surface ships. Numerical 

results for a bottom mounted hemisphere have been presented 

by Garrison and Seetharama Rao [Ref. 5] and results for 

several axisymmetric configurations by Milgram and Halkyard 

[Ref. 6]. Garrison and Chow [Ref. 73 have recently presented 

both theoretical and experimental results for wave forces 

acting on a fixed submerged oil storage tank. 

In the work cited, the hydrodynamic force coefficients 

are represented as a function of a dimensionless frequercy 

parameter (or equivalently, a dimensionless wave length 
p_ 

parameter) of the form v » o a where o denotes the 
_ g 

frequency of the motion, a denotes the characteristic lineal 

dimension of the submerged object and g denotes the gravi¬ 

tational constant. This dimensionless parameter is essentially 

a form of the Proude number. In all cases, however, the 



I 

theory has a fundamental limitation. The source potential , 

oscillates with a wave length inversely proportional to 

the dimensionless frequency of the motion v, and consequently, 

a reasonable partition size of the immersed surface limits 

the validity of the numerical scheme to small to moderate 

values of frequency. Specifically, it has been found 

using the Hasklnd's relations [Ref.-8] and an energy balance 

for purposes of checking accuracy, that results can be i 

obtained with reasonable accuracy up to about v - 2.0. 

Beyond this, the accuracy of the numerical results becomes 

; I 

questionable. 

Although the range v - 0 to about 2.0 Includes most 

applications in ship hydrodynamics and wave forces acting 

on large structures, the frequencies encountered, for 

example, in earthquake excitation corresponds to rather 

large values of v in the case of large structures. Accord¬ 

ingly, the development of an alternate method which includes 

both the effect of the free surface and bottom on the 

hydrodynamic forces and is valid for large values of the 

dimensionless frequency v is the primary objective 

present thesis. .Therefore an attempt has been made herein 

to obtain numerical results for several different objects 

for the asymptotic case of very large values of v, i.e., 

for the infinite Froude number case. 

High frequency added mass coefficients for two-dimensional 

shapes oscillating on a free surface have been presented , 

in a series of papers by Landweber et al. [Ref. 9, 10, 1, 

I I 12 
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and 12]. The motivation for this work was to provide 

hydrodynamic coefficients for two-dimensional ship forms. 

For three-dimensional objects the only results known 

are those of Waugh and Ellis [Ref. 13] for the case of a 

sphere in infinite depth water and Jacobsen [Ref. 14] 

for the case of the cylindrical pier in various water 

depths. In the former case, the theoretical method consisted 

of using successive image doublets to account for the effect 

of the free surface. However, the case of vertical motion 

only was studied and their method was limited to a sphere. 

In the latter case, the solution was represented by a series 

of Bessel functions and is applicable to a vertical circular 

cylinder, extending between the bottom and free surface. 

However, the numerical computations were made using tables 

of Bessel functions with complex arguments which have 

proven misleading. In fact, Jacobsen's numerical results 

are in error in several instances and. therefore, his 

analysis as well as the corrected formulae are presented 

herein. 

In this thesis the theoretical formulation of the 

impulsive hydrodynamic forces acting on a rigid object of 

arbitrary shape is presented. The effect of the bottom 

and free surface is taken into consideration and the force 

coefficient is shown to depend on a frequency of oscillation 

parameter. The problem is first formulated for arbitrary 

values of the frequency and the asymptotic form of the 

solution for both large and small values of the frequr- y 

is discussed. A computer method for numerical evaluation 

13 
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of the force coefficient for submerged objects of arbitrary 

shape is discussed and numerical results are presented 

for a number of specific geometric shapes including a 

circular cylinder, cone, and sphere. High frequency 

experimental results are presented for a vertical circular 

cylinder, sphere, and cone. These experimental results 

are compared with the theoretical results. 

14 



II. THEORETICAL CONSIDERATIONS 

A. BOUNDARY VALUE PROBLEM 

The geometry involved in the problem under consideration 

is shown in Figure 1. A rigid object of arbitrary shape 

having characteristic lineal dimension a Is submerged to a 

depth d in water of depth h and caused to move in a small 

amplitude harmonic motion. The instantaneous motion of the 

rigid object is specified by the lineal velocity Ü and 

angular velocity fi. The object may intersect the bottom 

or free surface. 

Assuming an unseparated, incompressible and irrotational 

flow, a velocity potential *(x,t) defined by 

-► 

q = V* (!) 
. + 

where q denotes the fluid velocity vector, may be introduced 

and must satisfy the continuity equation, 

2 
V * = 0 (2) 

within the fluid region. The bars over the spatial variables 

denote dimensional quantities and x = + Jx2 + icx^. 

On the rigid bottom surface described by x2 = -h the 

fluid velocity in the vertical direction must vanish and, 

accordingly, the corresponding kinematic boundary condition 

on the velocity potential is 

,t) = 0 (3) 



The velocity of a point on the immersed surface is given 

by 
-+■ 

$ = ÍJ + Õ X r (4) 

where r denotes the position vector as shown in Fig. ] The 

appropriate kinematic and dynamic boundary condition i the 

immersed surface, therefore, takes the form 

3 ♦ ( X , t ) £ -*■ 
— = v*n 
3n 

(5) 

where n = în^ + Jng + kn^ denotes the unit normal vector on 

the surface of the object and is directed outward into the 

fluid region. 

Assuming the amplitude of the motion of the object to 

be small, the kinematic and dynamic boundary condition applied 

at the free surface may be linearized to give the well-known 

free surface boundary condition: 

^,0,Î3>t) + I ^,0,73,t) . 0 
3X2 B 3t¿ 

(6) 

Furthermore, if the object oscillates with frequency a, the 

time dependence of the velocity potential may be separated 

and written as ReC^Cx^jXgjX^îe where Re denotes the real 

part. In which case Eq. (6) becomes 

a2— 

jf" 4^1,0,Xg) = 0 (7) 

where the unbarred quantities represent the coordinates ide 

dimensionless with ã. 

16 
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Fig. 1- Definition of Geometry 



In general it is apparent from F4. (7) that the solution 

to the boundary value problem established must depend on the 

p_ 
dimensionless frequency parameter a a/g. However, there are 

two extreme cases where the results become independent of the 

frequency. These correspond to the case where 0 a/g ® in 

which case Eq. (7) becomes 

♦(x1,0,x3) = 0 • (8) 

2_ 
For the other extreme where 0 a/g 0 the free surface appears 

as a rigid boundary as Eq. (7) becomes 

ü_(x1,0,x3) = 0 (9) 
3X2 

If consideration is restrictèd to either of the boundary 

conditions Eq. (8) or Eq. (9) the velocity potential may be 

written as the sum 

4>(x,t) = Wj^Ct) i = 1,2,...6 (10) 

where each term in the sum represents the potential associated 

with the ith component of body motion. (i = 1,2,3 refere to 

linear motion components in the x1,x2,x3 directions, 

respectively, and i = *1,5,6 refers to the angular motion 

components about the x-^Xg,^ axes, respectively.) The time 

dependent function W is defined as 

w1(t) = U^t) 

Wi+3(t) = 

i = 1,2,3 (ID 



in which the symbols and denote the components of the 

lineal and angular velocity vectors of the body, Û and ft, 

respectively. The potentials ^ are dimensionless quantities. 

It is important to note that the application of either of 

the two boundary conditions, Eqs. (8) and (9), makes the 

problem homogeneous in time. Consequently, the assumption 

of harmonic motion may be relaxed and the functions W^t) may 

be allowed to be arbitrary functions. 

Substituting Eq. (10) into Eqs. (2), (3), (5) and (8) or 

(9) and introducing the dimensionless variables defined as 

xA = x.j./a, h = h/a, d = d/ã (12) 

the boundary value problem for ^ (i = 1,2,...6) may be 

specified as follows: 

iv 1**2* 3 

0, (0+0) 

3 41 (x^ » ~h, x^ ) 

(13 a-d) 

3$,(x,,x5,x-) 
j[ '*2 * 2 **3 

(on the immersed surface) 

where = , i * 1,2,3 

mij = (Xg+djn^ - x^n2 

m5 s x3nl “ xln3 

m6 = xin2 - (x2 + 

(1^ a-d) 

19 



i 
Thp boundary conditions (13b) represent two different 
•} 

possibilities on the free surface, the first being the high 

frequency condition and the second the rigid boundary (or zero 

frequency) condition. In as much as the method of solution 

involving either boundary condition is similar, both solutions 

are developed simultaneously in the following. 

B. GJ^EN'S FUNCTION SOLUTION 
.i» *>' 

solution to the boundary value problem (13) may be 

carriefi out by use of a Green's function. The Green's 

functijon represents the potential for a point source and 
I 

these.^sources are distributed over the immersed surface * 

according to the distribution function f(t). According to 

this concept the potential <J> may be written as 

« 

i ♦!<*)•= inr JJ ^(t) G(x;| )dS (15) 

where ;(ç) denotes a point on the immersed surface, G denotes 

the Gçeen's function and dS = dü>/a^ denotes the surface area 
Î 

element made dimensionless with the characteristic body 

dimension ã. 

In order that Eq. (15) represent a solution to Eqs. (13) 

it is necessary that G satisfy the equation 

v2G(x;t) = 6(x-t) (16) 

where 6(x) denotes the Dirac delta function, as well as 

boundary conditions (13c) and (13b), 



The Green's function satisfying Eq. (16) as well as 

Eq. (13b) and (13°) is obtained by use of successive images 

of sources as depicted in Pig. 2 and is given by 

(17) 

The corresponding form of G satisfying the rigid boundary 

condition Eq. (13c) (a = 0 on x2 = 0) is also obtained by 

successive images and is similar to Eq. (I?) except that all 

of the sources have positive strengths. For this case, the 

Green's function takes the form 

where in both Eq. (17) and (18) 

u 

R --y»2 + (x2. t2)2 

R 1 

(19) 

R3 c~n/i»)2 + (x2 + 2nh + ç2)2 



Fig. 2 source layout. 

2? 



n 

Rçj “ V“2 + (x2 - 2nh + ¢^)2 
n 

Since G satisfies Eq. (IBa-d) the potential as given by 

Eq. (15) must also satisfy these conditions. Thus, it remains 

to select the function f such that Eq. (13d) is satisfied. 

Application of this boundary condition yields the following 

Fredholm integral equation of the second kind 

dS = 2m1(x) , i = 1,2,...6 (20) 

which is to be solved for f(0. This integral equation is to 

be satisfied at all points x on the immersed surface. 

Because of the form of G, Eq. (20) is rather complex and 

it is therefore necessary to carry out the solution to the 

integral equation numerically.- Proceeding in this direction 

the immersed surface may be partitioned into N area elements 

of size and the integral in Eq. (20) written as the sum 

n = 1,2,...6 (21) 

where i,J = 1,2,...N and n refers to the six possible modes 

of motion of the object. The transformation from the integral 

equation to a summation is possible since f is a well-behaved 

function. It follows from Eq. (20) that the coefficient matrix 

is defined by 

23 



a (22) 

The function 3G/an in Eq. (22) is obtained in a straight¬ 

forward manner by differentiation of Eq. (17) or (18). 

Once the coefficient matrix is obtained from Eq. (22) 

a standard digital computer subroutine may be used to invert 

the matrix equation, Eq. (21), to obtain the source strength 

f at points on the immersed surface. Por purposes of evalua¬ 

tion of G and 3G/3n by use of (17) and (18) it was found that 

about 15 terms were adequate. The data presented herein, 

however, were obtained using 30 terms. 

C. HYDRODYNAMIC FORCES AND MOMENTS 

The dynamic fluid pressure is obtained from the linearized 

form of Bernoulli’s equation as 

(23) 

where the velocity squared term has been neglected. 

f* Vi 

Corresponding to the 1 component of body motion, the pressure 

is obtained by use of Eq. (10) and (23) as 

(no sum) i = 1,2,...6 (24) 

The pressure may further be written in dimensionless coeffi¬ 

cient form as 

s i * 1,2,...6 (25) 



The hydrodynamic force acting on the object ia obtained 

by carrying out the Integration of the pressure over the 

immersed surface. Usine Ea (Pit) *>- 
»-Lng iq. the f^rce vector associated 

with the j component of body motion is 

Jjg PJndS» J * 1,2,...6 (26) 

The corresponding result for the moment vector is 

■ -?3//s PJ ? * S dS, J . 1,2,...6 (27) 

Ublng Eq. (24) as well as the definition of as given in 

Eth <11')’ the lth <!0mp0nent of force associated with the 

J component of acceleration is given in dimensionless 

coefficient form as 

ii 
ij -T.. X dS, i - 1,2,3 

J ■ 1,2,...6 
(28) 

and the corresponding expression for moment is 

- ■ ÂJÍX dS, 1 - ^,5,6 

J ■ 1,2,...6 
(29) 

where w is defined by Eq. (11). 

Equations (28) and (29) define the inertia (or added mass 

tensor having, in general, 36 elements. The dimensionless 

coefficients Ajj defined by Eq. (28) represent the dimension¬ 

less force coefficient and Eq. (29) represents the dimension¬ 

less moment coefficient. These coefficients are generally 

referred to as added mass (or moment of inertia) coeff! ents 

25 
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Although these coefficients are made dimensionless by use of 

a in the definitions (28) anl (29), there are cases,, depending 

on the body geometry, where other length scales are more 

appropriate. It is also standard practice in many cases to 

use the displaced fluid volume. However, in all numerical 

results presented herein the definition of A1J is specified 

on the figure so that although the definitions vary, no 

confusion should result. 
i 

For purposes of numerical evaluation of the coefficients 

given in Eqs. (28) and (29) the integrals may be written as 

the summation, where the integral sign has been replaced by 

the sum on the k index. 1 , 

A,* = U.m. ). AS,. , 1»J " 1,2,...6 U J i k aok » (30,) 
k = 1,2,...N 

However, in order to apply Eq. (30) it is necessary to first 

evaluate »j at all of the nodal points on the immersed 

surface. Por this purpose the surface integration in Eq. (15) 

Is also converted to the summation 

I I 

(Vk ' 0ki(V* » J “ 1»2»--*6 
k,a = 1,2,...N 

(31) 

where the coefficient matrix is defined as 

¿JI kt ' 57 ) liS °<V£> ds 
* 

(32) 

Once the coefficient matrix is, evaluated by Eq. (32), 

the summation indicated in Eq. (31) may be carried out - 

26 



determine 4>j at all nodal points on the immersed surface. 

The coefficients A±j are then obtained by use of Eq. (30). 

Although there are 36 possible added mass coefficients 

defined by Eqs. (28) and (29), many ire zero on account of 

symmetry and most off-diagonal elements are small. Also, 

even for a body of arbitrary shape A^ is symmetrical so that 

at most only 21 of the coefficients need be evaluated. That 

is, Eq. (13e) along with Eq. (28) and (29) gives 

(33) 

By use of the Green’s theorem applied to the fluid region 

external to the body, it can be shown that 

since on the free surface either $ = 0 or 3<f>/3n = 0 (depending 

on the boundary condition being enforced) and 3<{>/3n = 0 on 

the bottom. Therefore, in view of Eq. (3IJ) and (33) it is 

apparent that the added mass tensor is symmetrical. 

A 85 A 
Aij Aji (35) 

D. JACOBSEN'S SOLUTION 

At this Juncture it is appropriate to comment on the 

analytical solution presented by Jacobsen [Ref. 2] for the 

special case of a vertical circular cylinder extending between 



a rigid bottom and a free surface. This solution represents 

the only known analytical result for the problem under 

consideration and, therefore, is of considerable value as a 

point of comparison for the numerical results presented 

herein. However, it was found that a number of errors were 

present in Jacobsen's work and it was necessary to re-develop 

and re-evaluate the equations. The expression for the added 

mass coefficient associated with horizontal acceleration in 

terms of the notation of the present paper and in terms of 

Bessel functions having real as opposed to imaginary argu¬ 

ments appears as 

l6h 
3 Z—, 

n=l,3,5 

i B 
n n ki<5K> 

(36) 

where denotes the added mass coefficient made dimension 

less with the displaced volume, the factor Bn is defined as 

l/n‘ 
~2h 

Vl' + Ki 
(37) 

and K and K, denote modified Bessel functions of the second 
o l 

kind of order zero and one, respectively. This expression 

agrees with Jacobsen's corresponding expression with the 

exception of a factor of 2.0 and the type of Bessel functions 

Involved. It was found that more serious sign errors occurred 

in Jacobsen's expression for the line of action of the hori¬ 

zontal hydrodynamic force and, accordingly, his numérica] 



results are also In error. The correct expression for the 

elevation of the line of action (or center of added mass) in 

terms of the notation of the present paper is 

(38) F n Win0 

where l = ¿/h, I being the elevation of the line of action 

above the bottom and h the water depth. 

For completeness the expression for the dimensionless 

pressure on the surface of the cylinder is given in terms of 

the notation of the present paper as 

n+1 

(-1) 2 cos[21 (h+y)] 6^(21) (39) P = - cos 0 _i 
" n=l,3,5 

where 0 denotes the angle measured with respect to the x-axis 

in the x-z plane. 

Equations (36) and (37) were programmed for numerical 

evaluation on a digital computer so that an adequate number 

of terms could be evaluated without concern over numerical 

error. These results are plotted in Figs. 8 and 9 for 

comparison with the source distribution results developed 

29 



herein. It was noted that numerical results obtained from 

figures presented by Jacobsen [Ref. 2] are in error when 

compared to numerical results obtained from Eqs. (36) and 

(38). 



III. EXPERIMENTAL APPROACH 

Experiments were conducted to determine the added mass 

coefficient of a circular cylinder, a cone and a sphere in 

proximity of a free surface and rigid bottom. The basic 

experimental approach consisted of mounting the test 

object on flexible beams and measuring its natural frequency 

of vibration in air and water. The reduction in natural 

frequency when placed in water was then related to the 

added mass of the water. 

The test rig was used to determine the added mass 

coefficient corresponding to the horizontal motion is shown 

in Pig. 3 and 4. The sphere was mounted in this test rig 

on a thin 6 inch long by 2 inch chord vertical strut. Two 

large- steel channels were placed perpendicular to each 

other and welded to a 1/2-inch steel plate to form a rigid 

support for the spring-mass system. These channels were 

supported at four points on the top edge of a shallow, water¬ 

tight box (24” X 70” X 48"). The cylinder, cone, and sphere, 

mounted on a pair of flexible beams, were bolted to this 

supporting structure as shown in Fig. 3« (The cylinder 

is shown.) 

Four strain gages were mounted on the upper end of 

one of the flexible beams and connected into a Wheatstone 

bridge. The bridge was then connected to a carrier pre¬ 

amplifier and the frequency of the bridge output was measured 
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3 - Experimental equipment. 
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by use of a Monsanto programmable counter-timer and in some 

cases by the use of a Vxsicorder. A ten second duration 

was set on the counter-timer and, depending on the depth of 

water and test object, the readings ranged from about 110 

to 180 cycles. The time duration programmed on the counter 

was highly accurate so that the major error in the process 

was considered to result from reading the number of cycles 

occurring in the 10 second interval to integer values. 

However, since the starting of the interval was random, 

this error was minimized by repeating each test run six 

times and recording the average reading. It was noted that 

the spread in readings from the counter was never greater 

than one cycle in the ten second interval for a given 

configuration. 

A calibration curve for the system was developed by 

plucking the mass (test object) in the air with the 

addition of pre-measured weights attached to the test 

object. As a result it was unnecessary to rely on the 

theoretical natural frequency equation for the spring- 

mass system. In general, the test procedure was considered 

to be highly accurate and good repeatability was obtained 

in all cases. The calibration curves are shown in Appendix 

c. 

The same procedure was used for the determination of the 

added mass coefficients for the sphere in vertical motion 

but a different apparatus and tank was employed. The 

parallel beam mount which carried the rod with attached ! 

3** 



inch diameter plexiglass sphere is shown in Fig. 

6. The tank used in this experiment was 4.0 ft. 

represented, for practical purposes, an infinite 

case. The sphere was oscillated in the vertical 

5 and 

deep and 

depth 

direction. 



Fig. 5 - Experimental apparatus used in heave tests. 
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IV. DISCUSSION OF RESULTS 

A. CIRCULAR CYLINDER 

Theoretical and experimental values of added mass 

coefficients have been generated for a number of configurations 

and are plotted in Pigs. 7-20 and tabulated in Tables 1- 

13. These include results for a vertical circular cylinder, 

a sphere, a hemispherical bottom-mounted vessel, and a 

conically-shaped object. 

The theoretical and experimental results for the added 

mass coefficient for a vertical circular cylinder are shown 

in Pigs. 7-12 and Tables 1-7. The calibration curves are 

presented in. Fig. 7. Two different cylinders of the same 

overall dimensions and materials were used. They produced 

calibration curves which were slightly different-results 

since their natural frequencies of vibration were different 

and their positions in the test rig could not be duplicated 

exactly. 

The added mass coefficient corresponding to the case 

of the horizontal acceleration as based on the cylinder 

radius cubed is presented in Fig. 8, both with a free sur¬ 

face and with a rigid upper boundary. Results for two 

different grid sizes are shown, 120 and 192 effective nodal 

points, and little difference was found to exist. It can 

be seen that the computer results for the "rigid boundary" 

case closely follow the straight line relationship (irh) 

representing the classical two-dimensional result. Tb-, 



results corresponding to the "free surface" case show that 

the effect of the free surface is to reduce the added mass 

coefficient and for larger values of h the results appear 

to be closely approximated by the straight line relation¬ 

ship Ai;l » Uh - 3.0). 

The same type of result In a slightly different form is 

presented in Pig. 9. in this figure the added mass coeffi¬ 

cient made dimensionless in the more common manner, by use 

of the displace volume ira2h , is plotted for two different 

grid sizes along with Jacobsen's results, Eq. (36). Also, 

the experimental results obtained from vibration testing 

are presented for comparison. 

The results show that the effect of the free surface 

is to reduce the added mass coefficients and agreement 

between the experimental and theoretical results is shown 

to be excellent. On the same figure the computer results 

for the rigid boundary case are presented. The classical 

result for two-dimensional flow gives - 1.0 and, 

therefore, the deviation from this value gives the percentage 

numerical error in the computer results directly. The 

figure indicates a maximum of about 3.0 per cent error at 

the extreme low values of h. 

There is no doubt that accuracy of the computer results 

could be improved by means other than the most obvious: 

increasing the number of area elements. However, any gain 

in precision is generally offset by increased computer 

storage requirements, complexity and computer run time. The 
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Rigid Boundary 

4.0 6.0 

DEPTH, h 

10.0 

Fig. 9 - Added mass coefficient for a vertical 
circular cylinder. 



present method is considered to be quite simple and versa¬ 

tile with respect to configuration and yet possesses adequate 

accuracy for most purposes. 

For the case of horizontal motion, the line of action 

of the horizontal force is also a parameter of interest. 

When the upper boundary acts as a "wall", the force acts 

at the center, i.e., at i - .5. However, for the free 

surface case the pressures are reduced near the free surface 

and the line of action is somewhat below center. This result 

is presented in Fig. 10 as obtained using 252 nodal points 

and is compared with Jacobsen's corrected result, Eq. (38). 

The figure shows the agreement to be excellent. 

A second degree of freedom is also possible for the 

vertical cylinder. The cylinder may be allowed to rotate 

about some convenient axis with angular acceleration. In 

which case an added moment of inertia may be defined. 

Numerical results have been generated, using 192 nodal points, 

for this coefficient for rotation about an axis passing 

through the center of the cylinder at its base. These 

theoretical results are presented in Fig. 11. The results 

show that the free surface has the effect of reducing the 

hydrodynamic reaction when compared to the rigid boundary 

case. This is the expected result since the free surface 

tends to reduce the pressure differential near the top of 

the cylinder. 

Finally, in order to show how the maximum pressure on 

the surface of the cylinder varies with depth, Fig. 12 as 
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vertical cylinder. 



been prepared. In this figure the dimensionless pressure 

coefficient as defined by Eq. (25) is plotted for the case 

of horizontal acceleration. It may be noted that the 

classical solution corresponding to the rigid boundary case 

yields the maximum pressure of = 1.0 over the complete 

length. Pig. 11 shows that the pressure corresponding to 

the free surface case begins at zero and appears to approach 

unity as the distance from the free surface and depth increase. 

This is the expected trend since the effect of the free 

surface diminishes at large distances. Eq. (39) is plotted 

on the same figure for comparison and the agreement appears 

to be quite good. 

B. SPHERE 

Results for a sphere accelerating both horizontally and 

vertically are shown in Pigs. 13-17 and tables 8-lH. The 

calibration data is presented in Fig. 13 (vertical) and 

Pig. 14 (horizontal). For the case of vertical acceleration 

in deep water, Pig. 15 shows experimental results obtained 

by vibration testing for comparison with theory and the 

agreement appears to be quite good. It may be noted that 

the effect of the free surface is always to decrease the 

added mass coefficients while the proximity of a rigid 

boundary has the opposite effect. All of the computer results 

for the sphere have been generated using 264 nodal points. 

The well-known classical solution for a sphere gives an 

added mass coefficient of .5 for the case of a fluid of 



Infinite extent. Accordingly, as d becomes large, the 

coefficient plotted In Fig. 12 is expected to approach 

this closed form result but approximately a A.0 per cent 

deviation Is noted. This error Is due to numerical Inaccur¬ 

acies and approximations used In the computer program. 

The same kind of results are plotted In Fig. 16 as 

generated by the computer, the only difference being the 

finite depth, h - 4.0. The same general trends as In Fig. 

12 are observed „hen the sphere Is near the free surface; 

the rigid boundary results are greater than .5 while the’ 

free surface results are less than .5. However, as the depth 

is increased and the sphere approaches the bottom, the 

added mass coefficient Increases In either case. 

Theoretical and experimental results for the added 

mass coefficient In horizontal acceleration corresponding 

to a bottom mounted sphere Is shown In Fig. 17. The 

experimental results were obtained by use of the test rig 

shown in Figs. 3 and 4. The sphere was mounted on the lower 

plate by use of a 6.0 Inch strut and the sphere was adjusted 

to within .02 inches of the tank floor. It may be noted 

that the results show good agreement with theoretical 

results and have the same general trends as previous results 

except for the break off In An for the rigid boundary case 

as h becomes small. This reversal In trend Is caused by 

the unwettlng of the sphere occurring at values of h less 

than 2.0. 
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C. HEMISPHERE 

Figure 18 and Table 15 present the added mass coeffi¬ 

cient associated with a bottom mounted hemispherical object 

as a function of water depth for both the rigid boundary and 

free surface case. The results appear somewhat similar 

to previous ones with the rigid boundary having the effect 

of increasing the added mass coefficient and the free surface 

having the opposite effect. 

D. CONE 

Conically shaped bottom mounted, surface piercing 

structures have been proposed for use in the Arctic on 

account of the ice-breaking capability of the shape. This 

structure shown in Fig. 19 is a conically shaped tower 

similar to those which have been proposed as drilling rig 

configurations for deployment in the Arctic. The computer 

results were generated using 192 effective nodal points 

distributed over the immersed surface. The tabular data 

is listed is Tables I6-I8. The calibration curve is pre¬ 

sented as Fig. 20. 

The theoretical and experimental added mass coefficient 

(based on actual displaced volume) for the conically shaped 

tower is presented in Fig. 19 as a function of water depth 

and these results are in good agreement. The results for 

the rigid boundary case shows coefficients which are much 

greater than those corresponding to the free surface case. 

Moreover, for the free surface case the line of action f 
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Fig. 19 - Added mass coefficient and line of action 
of horizontal force for a cone. 
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the hydrodynamic force was found to actually lie¡below the 

bottom. This rather unexpected result is caused by the 

fact that the pressures on the lower portion contribute to a 
V 

moment opposite that induced by pressures on the upper part. 

In general, as the object is accelerated horizontally, 

positive pressures* are produced on the front side while 

negative pressures occur on the back side. Therefore, since 
i * > 

the pressure as well as area which contributes to a negative 
I : 

moment is much greater than those tending to produce a 

positive moment, the result is a moment tending to tip 

the top of the cone in thp direction of the acceleration. 1 

This moment is equivalent to applying the horizontal force 

at a distance i. below the bottom. , 

I 

! 



V. flOMCLUSIOMS 

A practical numerical analysis has been developed using 

three dimensional sources and Image sources to represent 

the flow produced during Impulsive motion of rigid struc¬ 

tures of arbitrary shape Immersed In water In proximity to 

a free surface. The bottom and free surface have been taken 

into account and It Is shown that the proximity of the free 

surface has a sizable effect and always tends to reduce the 

added mass coefficients In comparison to the rigid boundary 

case. The experimental results obtained by vibration 

testing for a sphere, cylinder, and a cone were found to 

agree well with the theoretical results and the results for 

the cylinder are In agreement with analytical results. 

The results are directly applicable to such practical 

problems as the determination of earthquake loading of rigid 

submerged and semi-submerged bottom mounted structures as 

well as the calculation of required forces to lift objects 

of arbitrary shape. 
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APPENDIX A 

TABLES OF COMPUTER GENERATED DATA 

h 

TABLE 1 

CYLINDER: COMPUTER GENERATED DATA (Horizontal Motion) 
192 Effective Points 

• —2— 

All=Fll/pUl1ia h 

Free Surface 
Boundary Cond. 

A11=F11/pU1’ia2h 

Solid 
Boundary Cond. 

l 
h An 

Free Surface 
Boundary Cond. 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.5 

1.0 

0.5 

0.910 

0.896 

0.879 

0.861 

0.837 

0.807 

0.764 

0.699 

0.593 

0.512 

0.402 

0.254 

1.000 

0.999 

0.999 

1.001 

1.004 

1.001 

1.014 

1.020 

1.027 

I.03I 

1.027 

1.062 

0.472 

0.469 

0.465 

0.461 

0.455 

0.449 

0.422 

0.434 

0.425 

0.419 

0.414 

0.412 
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TABLE 2 

CYLINDER: COMPUTER GENERATED DATA (Horizontal Motion) 
120 Effective Points ' 

AirFii/pVã2E A11=P11/púlirã2E a » -h1 

Free Surface Solid FreehsSrkce 
Boundary Cond. Boundary Cond. Boundary Cond. 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.5 

1.0 

0.5 

0.935 

0.908 

0.889 

0.869 

0.844 

0.813 

0.769 ' 

0.704 

0.597 

0.515 

0.404 

0.255 

1.006 

1.002 

1.000 

1.000 

1.003 

1.007 

1.014 

1.022 

1.031 

1.036 

1.045 

1.069 

0.476 

0.473 

0.469 

0.465 

0.459 

0.453 

0.446 

0.437 

0.427 

0.421 

0.416 

0.410 
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TABLE 3 

CYLINDER: COMPUTER GENERATED DATA (Horizontal Motion) 
252 Effective Points 

h A11=P11/pÛ1Tra2h 

Free Surface 
Boundary Cond. 

A^Fj^/pÚ^a2!! 

Solid 
Boundary Cond. 

» ^ Al1 Free Surface 
Boundary Cond 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.5 

1.0 

0.5 

O.907 

O.893 

0.877 

0.858 

0.835 

0.804 

0.761 

0.697 

0.590 

0.510 

0.400 

0.250 

0.999 

0.998 

0.998 

0.999 

1.002 

1.006 

1.011 

1.017 

1.022 

1.026 

I.O32 

1.051 

0.471 

0.468 

0.464 

0.460 

0.455 

0.449 

0.442 

0.433 

0.424 

0.419 

0.414 

0.410 



TABLE 6 

CYLINDER: COMPUTER GENERATED DATA (Rotational Motion 
about vertical axis) 192 Effective Points 

h 

10.0 

9.0 

8.0 

7.0 

6.0 

5.0 

4.0 

3.0 

2.0 

1.5 

1.0 

A66=M66/(piVa2h3) 
Free Surface 
Boundary Cond. 

0.266 

0.258 

0.248 

0.237 

0.225 

0.209 

0.190 

0.166 

0.132 

0.110 

0.083 

A66'M66/(o"3*a2h3) 
Solid 
Boundary Cond. 

0.322 

0.320 

0.319 

0.317 

0.314 

0.312 

0.308 

0.302 

0.294 

0.288 

0.28.2 
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TABLE 7 

CYLINDER: 

0.929 

0.925 

0.916 

Ó.900 

0.875 

0.835 

0.769 

O.6H9 

0.39¾ 

2.833 

2.500 

2.167 

1.833 

1.500 

1.167 

0.833 

0.500 

O.I67 

COMPUTER GENERATED DATA (Pressure 
Coefficients, Free Surface Boundary 
Condition) 

d = d/a h = h/ã 

H. 722 

4.167 

3.611 

3.056 

2.500 

I. 944 

1.389 

0.833 

0.278 

5.0 

5.0 

5.0 

5.0 

5.0 

5.0 

5.0 

5.0 

5.0 

0.847 3.0 

0.841 3.0 

0.827 3.0 

0.804 3.0 

O.769 3.0 

0.716 3.0 

0.637 3.0 

O.51O 3.0 

0.279 3.0 



TABLE 7 cont 

PlUla 
d = d/a h* h/a 

0.743 
0.735 
0.719 
0.693 
0.655 
0.601 

O.522 

0.405 
0.208 

1.889 
1.667 
1.444 
1.222 

1.000 

0.778 
O.556 

0.333 
0.111 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

2.0 

O.522 

O.515 

O.5OO 

0.477 
0.445 
0.401 
0.340 

0.255 
0.120 

0.944 

0.833 
0.722 

0.611 

0.500 

0.389 
0.278 
0.167 
0.056 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 
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TABLE 11 

SPHERE: COMPUTER GENERATED DATA (h = 4) 

d A11=P11/pÛ1^iTa3 A22=F22/pÙ2^ra3 A22= 

Free Surface Solid Free Surface Solid 
Boundary Cond.Boundary Cond.Boundary Cond. Boundary Cond. 

F22/pÛ2^Ta3 

3.0 0.663 

2.9. 0.595 

2.7 0.556 

2.5 0.538 

2.3 0.526 

2.0 0.514 

1.8 0.507 

1.6 0.498 

1.4 0.485 

1.2 0.465 

1.1 0.451 

1.0 0.433 

0.5 0.190 

0.682 

0.613 

0.576 

0.559 

0.551 

0.547 

0.549 

0.555 

0.566 

0.590 

0.613 

0.682 

0.225 

0.898 

0.717 

0.620 

0.578 

0.554 

0.529 

0.513 

0.495 

0.470 

0.433 

0.407 

0.375 

0.300 

0.904 

0.725 

0.632 

0.595 

0.578 

0.570 

0.573 

0.585 

0.610 

0.665 

0.725 

0.904 

0.880 
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TABLE 12 

SPHERE: COMPUTER GENERATED DATA (Horizontal Motion, 
Bottom Mounted) 

h 

6.0 

5.0 

4.0 

3.0 

2.5 

2.0 

1.90 

1.62 

1.43 

1.22 

1.00 

All-Fu/(pÛi41ia3/3) A11«F11/(pÙ141ia3/3) 

Free Surface Solid 
Boundary Cond. Boundary Cond. 

0.669 

0.667 

0.663 

0.648 

0.625 

0.555 

0.529 

0.440 

0.371 

0.292 

0.211 

0.674 

0.676 

0.682 

0.701 

0.732 

0.901 

0.960 

0.860 

0.752 

0.609 

0.451 



TABLE 15 

HEMISPHERE: COMPUTER GENERATED DATA (Horizontal Motion) 

Free Surface 
Boundary Cond. 

A11»F11/(pÙ12ira^/3) 

Solid 
Boundary Cond. 

6.0 

5.0 

4.0 

3.0 

2.5 

1.7 

1.4 

1.2 

1.0 

0.516 

0.515 

0.514 

0.510 

0.505 

0.481 

0.455 

0.421 

0.366 

0.518 

0.519 

0.520 

0.526 

0.533 

0.567 

0.610 

0.674 

0.901 
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TABLE 16 

CONE: 

h 

COMPUTER GENERATED DATA 

/pÙ-jV 

Free Surface 
Boundary Cond. 

(Horizontal Motion) 

An-Fii/pói* 
Solid 

Boundary Cond. 

6.0 

i».0 

3.0 

2.0 

1.5 

1.25 

0.885 

0.869 

0.8l»5 

0.766 

0.66Ü 

0.578 

0.901 

0.922 

0.960 

1.109 

1.1105 

1.857 

h 

6.0 

4.0 

3.0 

2.0 

1.5 

1.25 

l £ 

Free Surface Solid 
Boundary Cond. Boundary Cond. 

0.336 

0.338 

0.339 

0.348 

0.370 

0.394 

0.336 

0.335 

0.333 

0.324 

0.305 

0.281 

* 

66 



APPENDIX B 

EXPERIMENTAL DATA 

TABLE IJ 

CYLINDER: CALIBRATION DATA (Horizontal Motion) 

Frequency (HZ) 

18.00 

16.15 
15.70 
15.30 
14.115 
14.15 
13.85 
13.80 

13.25 
.12.70 

11.80 

11.10 

18.95 
16.63 
15.27 
14.86 
14.10 
13.80 
13.48 
12.47 
12.04 

11.67 

Cylinder (A) 

Added Weight (lbs) 

0.00 

0.793 
1.022 

1.275 
1.814 
2.043 
2.296 
2.308 
2.790 
3.329 
4.360 
5.388 

Cylinder (B) 

0.00 

0.864 
1.561 
1.866 

2.351 
2.591 
2.880 
3.888 

4.373 
4.890 
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CYLINDER: 

h 

5.30 
4.80 
4.20 
3.70 

3.15 
2.75 
2.25 
2.00 

1.65 
1.25 
0.90 

0.40 
0.00 

5.30 
4.80 
4.20 
3.70 
3.15 
2.75 

! » 

TABLE 5 
, 1 

EXPERIMENTAL DATA (Horizontal Motion) 
i 

Cylinder (A) 

Frequency (HZ) 

12.10 

12.50 
13.00 

13.48 
14.10 

14.55 
15.30 

> 1^.66, 

16.10 

16.75 
17.20 i 
17.78 
18.00 

i Cylinder (B) 

12.43 
12.80 

13.40 
13.92 
14.60 

15.07 

a Added Wt. 
^l“ Displaced Wt 

■ I 

0.835 
> 0.821 

0.804 

0.775 
0.722 , 
0.682 
0.618 

0.585 
0.548 

' 0.441 
0.380 

0.221 

0.000 

0.818 

O.816 
0.788 

O.745 

0.694 
0.678 

I 

1 

68 



TABLE 9 

SPHERE: CALIBRATION DATA (Vertical Motion) 

Frequency (HZ) Added Weight (Ibe.) 

19.8 

19.0 

18.6 

18.3 

17.5 

16.7 

16.lí 

16.0 

15.ll 

15..1 

15.0 

111. 6 

IH.H 

0.0 

0.3 

0.5 

0.7 

1.0 

1.3 

1.5 

1.7 

2.0 

2.3 

2.5 

2.7 
« 

3.0 



TABLE 10 

SPHERE: EXPERIMENTAL RESULTS 

h 

6.0 

5.0 

4.0 

3.0 

2.0 

1.75 

1.5 

1.25 

1.0 

(Vertical Motion, Infinite fluid 
Depth) 

a _ Added Weight_ 
22 Displaced Weight 

0.514 

0.480 

0.514 

0.504 

0.500 

0.475 

0.463 

0.416 

0.367 
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TABLE 13 

SPHERE: CALIBRATION DATA (Horizontal Motion, Bottom Mounted) 

Frequency (HZ) Added Weight (lbs.) 

m.65 

14.35 

14.00 

13.95 

13.65 

13.40 

13.00 

12.75 

12.25 

11.85 

11.45 

0.379 

0.592 

0.828 

0.864 

1.077 

1.313 

1.625 

1.873 

2.390 

2.875 

3.397 

4.405 10.75 



TABLE 111 

SPHERE: EXPERIMENTAL DATA (Horizontal Motion, 

h Frequency 
HZ 

Bottom Mounted) 

added wt. 
displaced wt. 

3.72 

3.40 

3.13 

2.90 

2.67 

2.50 

2.33 

2.17 

2.00 

1.83 

1.67 

1.50 

1.33 

1.17 

1.00 

0.00 

12.05 

12.00 

12.05 

12.10 

12.15 

12.20 

12.25 

12.35 

12.45 

12.70 

12.90 

13.20 

13.55 

13.85 

14.15 

15.32 

0.644 

0.661 

0.644 

0.624 

0.612 

0.605 

0.585 

0.563 

0.536 

0.465 

0.421 

0.355 

0.287 

0.230 

0.179 

0.00 

72 



TABLE 17 

CONE: CALIBRATION DATA 

Frequency (Hz) 

17.61 

16.89 

16.50 

15.53 

15.11 

14.62 

(Horizontal Motion) 

Added Weight (lbs.) 

0.418 

0.631 

0.867 

1.352 

1.664 

1.912 
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TABLE 18 

CONE: EXPERIMENTAL DATA (Horizontal Motion) 

Frequency (Hz) [ _ Added Wt■ 
11 Displaced 

Wt. 

0.79 

0.611 

0.H8 

0.33 

15.32 

16.03 

16.89 

17.79 

0.281 

0.214 

0.142 

0.095 
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