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Abstract 

For purposes of electronic countermeasures, it is desirable to maximize the 

amount of power that can be transmitted from a reentry vehicle by suppressing 

the onset of antenna voltage breakdown. This can be accomplished by injecting 

chemicals into the reentry plasma sheath. This report describes a numerical 

procedure for calculating the amount of power that can be transmitted through a 

chemically seeded plasma. The power levels of a plane electromagnetic wave 

incident on a reentry plasma slab are sufficient to induce electron temperature 

changes. As a result, the ele< Iron density and effective collision frequency vary 

wi h time. The plasma properties are determined as a function of time by 

numerically solving three continuity equations and three momentum equations for 

the electrons, positive ions, and negative ions. The Poisson equation must also 

be solved simultaneously with the above set of coupled, nonlinear, differential 

equations, since charge separation can occur in the plasma. The chemical 

processes of electron attachment, detachment, and recombination are included. 

Runge-Kutta numerical integration of Maxwell's equations together with the above 

set of plasma transport equations give the time-dependent plane wave transmission 

and reflection coefficients as a function of incident power level for a very wide 

range of reentry plasma conditions. The numerical results from such an analysis 

will permit the optimization of systems performance of high power antennas 

radiating through chemically seeded reentry flow fields. 
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Chemical Injection Into a Reentry Plasma to 

Improve High Power EM Wave Transmission 

1. INTHODl'CTION 

A high power electromagnetic wave radiating from a reentry vehicle will inter¬ 

act with the ionized flow field and create additional ionization. The additional 

ionization will result in severe signal attenuation and a drop in the transmitted 

power level. This phenomenon of antenna voltage breakdown constitutes a serious 

limitation on the capabilities of electronic countermeasures (ECM) systems. The 

ECM systems performance on hypersonic vehicles can be greatly improved by 

injecting electron-attaching chemicals into the reentry flow field. This report 

describes numerical procedures for solving the nonlinear plasma-transport equa¬ 

tions coupled to Maxwell's equations, so that plane wave transmission and reflec¬ 

tion coefficients can be calculated as a function of incident field strength. 

When a radio frequency wave of sufficiently high intensity is applied to a 

partially ionized plasma, the electron density tends to increase in any region 

where the effective electron temperature is high enough to cause the ionization 

mechanisms to exceed the electron loss rates. Antenna voltage breakdown is said 

to occur when the electron density builds up to a critical value and the plasma layer 

covering the radiating system becomes thick enough so that the power is almost 

entirely absorbed or reflected, with relatively little transmission. 

(Received for publication 18 September 1972) 
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In addition to the problem of determining the power level at which breakdown 

occurs, from an ECM systems point of view it is also important to calculate the 

amount of power that can be transmitted through a reentry plasma sheath before, 

during, and after breakdown. Several papers have dealt with the probem of non¬ 

linear propagation of high power EM waves through the ionized flow field of a 

reentry vehicle: Papa and Case, 1965; Mayhan and DeVore, 1968; Epstein, 1969; 

Mayhan, 1969; Fante, 1971; and Fante and Mayhan, 1971. Except for the work of 

Fante (1971), who made certain assumptions about the smallness of the tempera¬ 

ture and pressure gradients in the gas, all of these papers rely on computer solu¬ 

tions of the electron continuity equation coupled with Maxwell's equations to deter¬ 

mine the nonuniform field distribution and power transmitted throuph a one¬ 

dimensional plasma slab. Flow-field data are used to furnish the initial electron 

temperature, gas temperature, and electron density distributions in the plasma 

slab. 

This report is an extension of previous work to the case where negative ions 

are present in the reentry plasma sheath. The processes of electron attachment, 

electron detachment, and positive-ion negative-ion recombination must be con¬ 

sidered. The diffusion process, which is free electron diffusion at low electron 

densities and ambipolar diffusion at high electron densities, is altered by the 

presence of the negative ions. Thus, because of charge separation in the time- 

varying plasma, Poisson's equation for the internal plasma field must be solved 

simultaneously with three continuity equations and three momentum equations for 

the electrons, positive ions, and negative ions. These seven plasma-transport 

equations contain coefficients (transport coefficients) that, are functions of the 

electron velocity distribution function, f. Another computer program solves the 

Boltzmann equation for the electron distribution function for a given set of neutral 

gas conditions, such as gas temperature, pressure, and composition. In addition 

to being a function of the gas composition, f is also a function of the a-c field 

intensity E and the signal frequency u . 

The geometry of the EM wave-plasma interaction is indicated in Figure 1. The 

gas composition and neutral gas temperature T vary only in the x direction. Thus, 

for a fixed signal frequency, the electron distribution function f depends on x (the 

local gas temperature and composition) and E (the local a-c field intensity); 

consequently, the transport coefficients are functions of x and E. 

The solution of the nonlinear propagation problem is started by first integrating 

Maxwell's equations step-by-step backward through the slab, using a fourth-order 

Runge-Kutta technique. Since the ratio of the a-c electric field to the a-c magnetic 

field can be assumed on the transmitted face of the slab (x = L), the initial field 

distribution in the slab can be determined. This fixes the transport coefficients 

at one instant in time (t = 0). Then, the continuity equations for each charged 

—.. w 
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INCIDENT 
OF SLAB 

Figure 1. Plane Wave Incident on Inhomogeneous Reentry Plasma Sheath 

species may be integrated a small increment forward in time, again using a fourth- 

order Rungc-Kuita method. 

The new electron temperature and density profiles fix a new set of values for 

the complex dielectric constant of the plasma, K = K(x), at time t - At. Then, 

Maxwell's equations are integrated backward through the slab, holding K(x) and the 

electron temperature Te(x) fixed (independent of E). 

Since the incident field amplitude EINC must remain fixed, a value for the 

total electric field and total magnetic field can be calculated on the incident face of 

the slab. Then, Maxwell's equations are integrated forward through the slab, 

where the real and imaginary parts of K(x) are allowed to vary as a function of E at 

each forward step of the integration procedure. The backward integration procedure 

is resumed, using the latest variation of K with x determined from the previous 

forward integration procedure. 

The backward and forward integrations of Maxwell's equations through the slab 

are iterated until the successive variations in the field distribution fall below a pre¬ 

assigned tolerance. This permits the electron temperature profile Te(x) to be cal¬ 

culated for a particular instant of time. A new determination of the transport co¬ 

efficients as a function of x then allows the continuity equations to be calculated at 

another forward increment in time. 

The entire procedure is then reiterated until the electromagnetic transmission 

coefficient becomes much smaller than one, indicating that the plasma sheath has 



..J*.pi 
-rrn,. ... 

w^rww 

5 

become very overdense. If the incident power level is not so high that it can 

cause almost total loss of transmission, the transmission coefficient will at first 

decrease somewhat and then incline to a new steady value. It is conceivable to 

find plasma conditions where the transmission coefficient can actually increase 

as the incident power is increased, but in any situation, for a sufficiently long 

time, the transmission coefficient will become independent of time (for a CW 

signal). 

2. THE PLASM \ TRANSPORT EQUATIONS COUPLED ftlTII MA XU ELL'S EQUATIONS 

In order to render the problem of high power EM waves interacting with a 

chemically seeded plasma tractable, it is necessary to make a number of simplify¬ 

ing assumptic is. The most important of these assumptions are the following: 

1. Ther' is no variation of the plasma parameters in the y or z direction 

(see Figure 1), 9/9y = 9/dz = 0, there is variation only in the x-direction. 

2. The positive and negative ion temperatures are equal to the neutral gas 

temperature T, which remains constant. 

3. There is no heat flux in the electron gas. 

4. There are no plasma radiation effects on the excitation of atomic states or 

on the ionization mechanisms. 

5. The incident wave is a plane wave at normal incidence on the plasma slab. 

7. There is no d-c magnetic field present. 

8. There is no effect on the plasma processes due to metastable states, nor 

are there any inelastic collisions of the second kind. 

9. The neutral gas has no net mean velocity. 

10. The plasma is nonrelativistic, so that the effect of the a-c magnetic field 

is negligible compared to the a-c electric field. 

11. The isotropic part of the electron distribution function is nearly Maxwellian, 

so that an effective electron temperature Te can be defined. 

12. The time scale for electron temperature changes is shorter than the 

time scale for electron density changes rN, so that the electron temperature has 

time to reach a quasi-steady state before the electron density starts to change. 

In the present analysis, the plasma is described by three continuity equations 

and three momentum equations, pius Poisson's equation for the self-consistent 

electric field in the plasma. These transport equations, when coupled with 
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Maxwell's equations, are used to describe the nonlinear EM transmission of waves 

through the plasma. However, this set of equations is not complete, because there 

is no equation governing the electron temperature. Instead of including a separate 

equation for determining the electron temperature, it is more accurate, and con¬ 

venient, to employ another separate computer program for determining the electron 

velocity distribution function f. This separate computer program was written origi¬ 

nally by Carleton and Megill (1962). An updated version of the program was made by 

Lenander (1968b) for studying the effects of ablation products on RF breakdown in 

the boundary layer of a hypersonic flow field. The computer program is being 

further generalized at AVCO by Mayan and Yos (1969). The listing and source 

decks for this program are now available for use on the AFCRL CDC 6600. 

The Boltzmann equation program solves the electron Boltzmann equation 

numerically to obtain the steady state electron distribution function f in a slightly 

ionized gas under the influence of a strong a-c electric field. Both elastic and 

inelastic collision processes are included in the program, using realistic collision 

cross section data from a binai y data tape containing provisions for storing up to 

100 species, with up to 20 different collision processes per species. Since the 

neutral gas temperature and composition are known as a function of x (see 

Figure 1) fron, flow field calculations, it is possible to break the reentry plasma 

slab into a number of layers (about 12) and to solve for f at a fixed frequency, as 

a function of electric field E, for a number of x values. 

The computer program then averages the appropriate cross section over the 

distribution function to obtain the following transport coefficients: ionization fre¬ 

quency due to electron impact on neutrals i^j, real and imaginary parts of the plasma 

dielectric constant K * Kp + iKj, and the average electron energy u^v- For a 

given signal frequency w, the values of i/., Kp, Kj, and u^v are calculated for 

about 10 values of E in each layer of the plasma slab (12 layers, corresponding to 

12 values of x from x = 0 to x = L). The calculated values of i/j, Kp, Kj, and 

u^y as a function of E and x are stored in the nonlinear transmission program as 

two-dimensional arrays. When these quantities are required at intermediate 

values of E or x, very accurate spline interpolation routines are used. 

Under the 12 assumptions previously stated, the plasma transport equations 

coupled with Maxwell's equations may be written: 

(1) 

(2) 
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(5) 

(6) 
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at 3x mNI ax NI (nlNI^ 

E = 

«N, <-VxNI’ 
(8) 

!fx 
9x (t)[N,-e-NN,] 

The symbols appearing in the nine equations are defined as follows: 

E * a-c electric field amplitude 
y 

¡¿O * permeability of free space 

H * a-c magnetic field intensity 
z 

(9) 

I 
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* permittivity of free space 

= y-component of electron velocity 

= y-component of positive ion velocity 

* y-component of negative ion velocity 

* electron density 

= positive ion density 

= negative ion density 

* x-component of electron velocity 

* electron charge 

■ Boltzmann's constant 

* neutral gas temperature 

■ electron temperature 

* self-consistent quasi-static electric field due to charge separation 

= electron mass 

- neutral particle mass 

= ion mass 

* negative ion mass 

* electron-ueutral collision frequency 

= electron-ion collision frequency 

= electron-negative ion collision frequency 

* ion-negative ion collision frequency 

= ionization frequency due to electron impact on neutrals 

= electron attachment frequency 

= dissociative recombination rate constant 

1 ionization rate due to associative ionization 

« electron detachment rate constant 

= electron flux in x-direction 

* N V 
e X 

B ion flux in x-direction 

i 
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NIVx 

negative ion flux in x-direction 

N NI 

a - recombination rate constant for ion-ion recombination, 
r 

In the plasma transport equations, the following chemical reactions are 

included in the analysis: 

Ionization Mechanisms: Associative Ionization 

N + O -* NO+ + e 

c 3 
(0. 518)exp (-0. 319 V 10 /T) meters _ 

"AI* particle-sec 
6.025(101‘) H 

Electron-Neutral Impact Ionization 

e + X -* X+ + 2e . 

(10) 

(ID 

The i/j is calculated from Boltzmann equation program as a function of E and x. 

Recombination Mechanisms: D ^sociative Recombination 

e + NO+-*’ N + O 

0. 144(Te'3/2) 

‘'DR = 6.025(107) 

(12) 

meters1' 
particle-sec 

Ion-Ion Recombination 

X‘ + M+ + Y- X + M + Y 

R 3 
0.015(10 )(N*T) meters . 

"r = t5/2 particle-sec 

(13) 

N = total neutral density 

T * gas temperature. 
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Attachment Mechanisms 

Q + e-* F + products 04) 

y.\T = (Nni)0.3(10'7) Te'2 (1/sec) 

Q = Freon E-3 

N = negative ion density in particles/m . 
NI 

Detachment Mechanisms 

f’ + M-» F + e + M (15) 
particle-sec 

These values for the reaction rate coefficients were taken from Lew (1970) 

and Pergament et al (1972). It can be shown from kinetic theory that when the 

reactants in a chemical reaction do not involve the electrons, the reaction rate 

constant is a function of the gas temperature; if one of the reactants is an electron, 

the rate coefficient is a function of the electron temperature. The electron-neutral 

collision frequency for electrons colliding with each of the constituents of high 

temperature air was evaluated by integrating the data presented in the paper by 

Shkarofsky et al (1961) over a Maxwellian distribution function. The collision 

frequency for positive ions colliding with each neutral constituent was obtained 

from the formula 

where 

T = gas temperature 

p = gas pressure 

= reduced mass 

and D = diffusion coefficient for positive ions (NO ) diffusing into a neutral gas 
I, N 

auu IV. 

(N). ’ 

. 



The following values for (Dj^p) are taken from Lev. (1972): 

^ .-11.442 lT(0.003993 in T 1. 5689), cm2-atm 
(DI.NOp)-e (T J "see •' 

^D!, Np) 
•12.978394 ^T(0. 0003467 in T + 1. 8941)j 

9 
cm -atm 

sec 
(18) 

The reaction rates listed in Eqs. (10) through (15) are selected so as to 

include only the dominant chemical reactions. Thus, the charged species 

O . N o!, and have been neglected in comparison to the charged species 

NO'. This is a reasonable assumption, since NO has a lower ionization potential 

than any other neutral constituent. Therefore, to the original 12 assumptions the 

following assumptions must be added: 

13. NO is the only positive ion present in the plasma. 

14. The electron attaching substance is assumed not to decompose or to 

react with the other neutral constituents. (This assumption is added to reduce :he 

great complexity of the reaction rate chemistry. ) 

It is important to note that in the second Maxwell Eq. (2), the total current 

density J is composed of three terms: a current density due to electron motion 

-e N V , a current density due to positive ion motton eN.V , and a current 
e y ni 1 y 

density due to negative ion motion . The electron current density is 

obtained from the relation 

J = -eN V = -e f fv d3v = (iwen)(l-K)E (19) 
e e y y y o y 

where K = complex dielectric constant and it is assumed that Ey~exp(-iut). 

The Boltzmann equation computer program gives values for K at a fixed w as 

a function of E and x. If, for the moment, the electron-neutral collision 

frequency Ih® electron-ion collision frequency i^j, and the electron-negative 

ion collision frequency are all assumed to be constant, the equation for the 

y-component of the electron velocity would be: 
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From the equavions for V* and VNI corresponding to Eq. (20), it can be shown 

that V1 and can be neglected compared to v if the following two assumptions 

are made. 

iS. rnjlt^) » m ^eN 

!6. ™NI<‘W»ml'eN 

Thus, under assumptions 15 and 16, the total current density J is given by 

the electron current density as expressed in Eq. (19). 

Another important fact is that Eq. (19) is strictly valid only when the terms 
9N_ 3(N v v ) M V v / 

and -are small compared to Ne v^ in Eq. (20). This is 

true under the following assumptions: 

17. The time scale for electron density changes is large compared to a 

wave period (2ir/u) : 

tn » (2t/w) . 

18. The electron-neutral collision frequency i^eN is large compared to 

vD/Ln , where vD is the drift velocity of the electrons in the x direction and 
e 

Ln is the space scale for electron density changes: 

'eN " D/LN 
v », » 

19. The signal frequency is large compared to VD/L^ : 
e 

w » D/ Ln . 
e 

Under assumptions 15 through 19, the two Maxwell’s Eqs. (1) and (2) now 

become 

9E 

9^ - iuM0Hz = 0 
(21) 

^-i-0KEy = 0 (22) 

where E^ and Hz~ exp (-iut) . 
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The three continuity Eqs. (3), (4), and (5) will not be further simplified. 

Further simplifications of the three momentum Eqs. (6), (7), and (8) are 

necessary for purposes of numerical tractability and feasibility of solution. It is 

desirable to elimiiiate the three time-derivative terms 

ä(Nevx) äOfjVj) 8(NnivN' 

at * at * and- 

from Eqs. (6), (7), and (8). This may be accomplished by making the following 
three assumptions: 

20. The electron density time scale rN is large compared to (1/^): 

N » l/v 
en 

21. The ion density time scale tni is large compared 0/^): 

tni >:> ‘/"in • 

22. The negative ion density time scale rN is large compared to 0/^): 

» l/l/ 
N. 

NI NIN ' 

Another crucial simplification of the three momentum equations occurs if they 

can be uncoupled from each other. This uncoupling can be achieved if six addi¬ 

tional assumptions are made concerning the order of magnitude of the collision 
frequencies: 

23. The electron-neutral collision frequency i^eN is large compared to the 

electron-ion collision frequency 

24. The electron-neutral collision frequency is large compared to the 

electron-negative ion collision frequency 

"eN >;> "eNI ‘ 

25. The ion-neutral collision frequency is large compared to (m/nij) v ■ 

"m ^ ^/"V "el • 
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26. Fhe 

mNI 
ion-neutral collision frequency , ls large 

rn. + m 
NI INI • 

compared to the quantity 

i/ mNI \ 

IN "ini- 

27 The negative ion-neutral collision frequency u is larCT 
(m/mNI) ^Nie . 4 y NIN s largc compared to 

"nin " 

i0n'nMnl CO,“8i0" •'N.N - 
'mI mNI / NI1 ■ 

compared to 

'"nin >> 
(™i + rnNî ) "nii 

The no2nlinear convective derivative terms — evX2) 

9(NNIVv ) 

afNjV1 ) 

9x 

9x ' » and 

¡n «h. .hr« equatlonB a|so Bhould be eUmliiated for further 

simplification. Thtse terms on b r Ior ,ur„ 
.ion»: * Can 68 8i,m,na,'‘i ^ following three n»»ump 

29. The electron-neutral collision frequency ifi lar„ 

vo/LNe' Where VD is ‘he electron drift velocity 1 the h C°rnpared t0 
scale length for electron density changes. and LNe t« ‘he 

where^V ^ TeTTl ^ ÍS large COmPa-<t to V W 
nereVD is the ion drift velocity in the x-direction and L ,D' 

for ion density changes. lS sca^e length 

v N,31l "" oolHhion frequency rNIN ,» ,arge compared t<> 

» VD «.e negntive ion drift veiocity «„e x-direc,lon and 

LNn[ is the sosie length for negntive ion density changes 

The effective collision frequency i/ anH off *• 

were first defined by Whitmer and Herrmann (igee") laVnedTtSma freqUenCy Wpeff 

Bahshi e, a, (lg68). ^ ^Z ll o ,11 ^ 

Of .he rea, par, 0, the e.ectrica, co„d«,„i,yT ,he 1“ ^ *"m8 

electrical conductivity oI as follows: K the ,maS»»fy par. of the 
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(23) 

(24) 

The complex dielectric constant of the plasma K is related to the conductivity a in 

the following manner: 

K + 
ia 

(25) 

A parameter p may be conveniently defined as the ratio of effective plasma fre- 
2 2 

quency squared u to the actual plasma frequency squared Up'. 

where 

UP = Nee2/(me0) • 

Using Eqs. (23) through (26) and restricting the nonlinear EM wave-plasma 

interaction to conditions where the 31 assumptions are valid, the plasma transport 

equations coupled to the Maxwell's equations take the form: 

3x -WU0HI (27) 

9E. 

a^T =Wii0HR 

dH 
_R - U, E 'VVeffP .'VV 
9x " 0 I / \ / 2, 2 > 

m(tJ ef^ m(ul ef^ 

I _ F Ne'2EB“' Ne'2t:i%ffO 
ax " " 

an 

m(u2+veff) m(u)2+l/eff) 

(28) 

(29) 

(30) 
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ar 
detinni ax 

e (31) 

(32) 

DET^NI ‘ 3x 
(33) 

(34) 

(35) 

(36) 

(37) 

Here. ER = REAL (Ey). Ej = IMAG (Ey). etc. 

The 11 Eqs. (27) through (37) are to be solved numerically together with the 

Boltzmann equation computer program data giving Te = Te(E,x), = (E.x), 

The equations are to be solved subject to the initial and boundary conditions: 

Ne(x, t = 0) given for 0 < x < L, 

Nj(x, t = 0) given for 0 < x < L, 

Npjj, (x* t = 0) given for 0 < x < L, 

ER, Ej, Hr, Hj given at x = L, 

Te (x, t = 0) given for 0 < x < L, 

and Ex(x = 0) given for ail time. 

The wall at x = 0 is assumed to be catalytic, so that Ne (x = 0) = Nj(x = 0) = 

NnjÍx = 0) = 0 and Te(x = 0) = T for all time t. Thus, to the 31 previous 

assumptions, one additional assumption must be added: 

mm —. 
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32 At the wall (x = 0) corresponding to a reentry vehicle surface, all the 

charged species recombine (Ne = Nj - % = 0) and there is no Langmuir-ChU 

plasma sheath formation. 

3. NUMERICAL METHODS OF SOLUTION 

The numerical aolu.iun of the coupled set of nonlinear E,s. <271 through (37, 

involves three stages, «hich are repeated a specified number of times The firs 

sage is the numerical integration of Max.ell's equations step-by-step backward 

through the slab from x ■ L to x . 0 (see Figure 1). This allows the complex 

impedance of the slab Z. the complex reflection coefficient ft. and the comp ex 

transmission coefficient TR to be evaluated. The incident electric field F:, 

remain, constant, so that the total electric field at the incident face of the slab 

E (x ■ 0) can be determined from the relation (x - 0) * (!• 0 + inc 

Jal magnetic field on the incident face of the slab Hz (x ■ 01 can be calculated 

from the relation H (x ■ 0) - E (x ■ 0,/Z. 
The second stage is the forward integration of Maxwell’s equations step-by- 

step through the slab from x = 0 to x = L. At each step of the integration procedure 

the effective collision frequency reff (E.x) and normalized effective plasma fre¬ 

quency squared p <E. x) are evaluated at each point, where the total electric fie 

is assumed to remain constant across each little layer of plasma. This is a good 

approximation, since the step size in the integration procedure is taken to be less 

than 0. 01 times the free space wavelength. The backward integration of Maxwell s 

equations is then resumed, using the most recent values for reff (E.x) and p(E x). 

which were evaluated from the previous forward integration of Maxwell's equations 

The result of a second backward integration of Maxwell’s equations through the 

slab permits new values to be calculated for R. TR. and Z. Then, since E 

remains constant, new values for Ey(x = 0) and Hz (x = 0) can be evaluated. The 

backward and forward integrations of Maxwell’s equations through the slab mus 

be reiterated until the electric field distribution on two successive forward in¬ 

tegrations differs by less than a preassigned tolerance. 
The third stage in the numerical solution involves the evaluation of all the 

quantities on the right-hand-side of the three continuity Eqs. (31). (32) and (33). 

This can be accomplished for each layer in the slab, since Ne(x>. Njix). NNI<x,. 

and T (x) are known initially (t - 0). All the reaction rate coefficients are known 

as functions of either T or T^ The fluxes and Te can be determined 

from Eqs. (34) through (37). The spatial derivatives appearing in Eqs. 

through (36) are calculated numerically by fitting cubic splines ^ endroff. 1966) 

to the original data giving Ne, Tf 
Nj. and NNI at t = 0. Then, the splines may 
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be differentiated explicitly to obtain very accurate formulas for the derivatives. 

Once all the quantities on the right-hand-side of Eqs. (31) through (33) have been 

evaluated numerically for t * 0. these three continuity equations can be integrated 

one small step forward in time. This completes the third stage. The whole 

process is repeated starting at the first stage. 

The computer program for calculating the nonlinear transmission and 

reflection coefficients of a reentry plasma consists of a main program that calls 

into play about 25 subroutines. The three stages in the numerical solution pro¬ 

cedure are accomplished in three computer subroutines. Except for the ioniza¬ 

tion frequency the effective collision frequency and the normalized 

effective plasma frequency p, all the plasma transport coefficients are evaluated 

at each step of the numerical solution by calling separate computer subroutines. 

The data that is read into the main program consists of the initial conditions 

Ne(x,t * 0), Nj(x,t * 0), NNj(x,t * 0), Te(x,t = 0), the transmitted field intensities 

Ey (x = L, t * 0), Hz(x = L, t * 0), the neutral gas temperature and composition 

T(x), N2(x), 02(x), N(x), O(x), NO(x), and NATA (x), where NATA (x) is the 

electronegative additive density profile in the x-direction. In addition, data from 

the separate Boltzmann equation program is first processed and then read into 

the main part of the nonlinear transmission program. The p ocessing is done in 

order to improve the efficiency and running time of the nonlinear transmission 

program. 

This data processing consists of the following procedures. The data output 

from the Boltzmann equation program is made up of two-dimensional arrays: 

Te(x.. Ek), i/^x-.E^, reff(Xj,Ek), and piXj.E^ where i * 1,-M and k = 1. 

N. Now, during the course of a calculation, a value of Tg may be required 

at some intermediary position between x. and xi+1 and at some intermediary field 

intensity between Ek and The intermediate values of Tp are obtained by 

spline interpolation. Since the original data output Te (x^ E) is such that the 

points x j, x2, and .. . xm and the points E E^,.. . E^ are not equally spaced, 

the data is initialized by spline interpolation in x and in E so that the E values 

become equally spaced. The spline interpolation of the data Te> i/j, and p 

in terms of the E- and x-values serves two purposes: (1) the E-values become 

equally spaced, so that hE = E.+ j-E. is a constant, therefore, further inter¬ 

polation in E becomes very efficient; (2) the step size h = x.+ ^-x. can be made 

initially very small, which greatly increases the accuracy of the Runge-Kutta 

integration of Maxwell's equations. 

Once the data has been initialized so that the E-values are equally 

spaced, and h is small, then further interpolation of Te, i/j, , or 

p is never required in terms of the x-values and interpolation in terms of 

E-values is efficient. However, during the course of tne calculations, the 

.— . 
^....-. 

^. 
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values of Te, and p will be required at arbitrary values of E. Hence, 

interpolation of the data will always be required in terms of the E values. Never¬ 

theless, it still pays to initialize the data by spline interpolation so that the E values 

also become equally spaced, that is, h^, 3 - E^ is a constant. This is due to 

the fact that further spline interpolation of the data in terms of the E values is 

much more rapid and efficient when the data points are equally spaced. This fact 

may be demonstrated by considering the properties of a spline. 

Consider a set of data (y^ y2. ... ym) given at the points (Xj. x2,. . . xm). A 

cubic spline can be fit to these points by connecting each pa>r of adjacent points 

with a section of a third-degree polynomial and then matching up the sections so 

that the first and second derivatives are continuous at each point. If Z. is the value 

of the second derivative at the point i * 1, 2,. .. M, then between the points (xk, yk) 

and (xk+1. yk+1) the second derivative has the value: 

S" * Z. 
/ xk+ rx 
V \ ) 

(38) 

where d. - x, , , - x. , and S(x) is the spline curve. Integrating this formula twice 

and requiring that the spline pass through the points (x^, y^) and 1' y^e^s 

the formula for a cubic spline: 

S(x) * ZR 
(xk+rx)^ 

6-d, 
+ Z 

<»-v3 
k+1 6-d. 

+ (x*xk) ilMl 
\ dk 

+ (xk+rx)(^ 

. Zk-t-ldk j (39) 

In Eq. (39), all the quantities are known except the spline coefficients 

Z ana Z, , , . One condition that must be satisfied is that the derivative of the 
k k+1 

spline S’ at the point (xk< yk). according to Eq. (39). must be the same as that 

determined by the corresponding formula for the interval to ^xk* yk'‘ 

This condition yields the basic continuity equation for the spline coefficients at the 

interior points k 1 2, 3,. .. M-1, 

frk-yk-i» 

Vi 
(40) 

The two additional conditions at the end points Xj and xm may be taken as 

Z = Z = 0 . 
1 m 

(41) 

iMÉMl 
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r::;rrr,4'’ de<‘n' ■ ^ ^ -- .p..- 
“ - r**;:; rrnr*1 -“ 

~:zzz denned by e- ho) “■> 

The solution to the trldlagonal system of equations of the form 

*kzk.i - Vk+-Wi ■ ^ 

may be readily obtained assuming 

Zk-1 =PkZk + \ • 

Substituting Eq. (43) into Eq. (42) yields 

Pk+1 = -Ck/(akPk + V 

and 

qk+l " (dk ’ akqk)/(akPk + bk) • 

(42) 

(4 3) 

(44) 

(4 5) 

For the system given in Eq. (40), this yields 

pk+i = ^V6) / [(%1) Pk + ( 

qk+i = - p^k-u - ykVdk - iyk-yk.1)/dk_1 

(Pk+i) (^-) • 

with the end conditions given by Eq. 

For equally spaced data points, 
simple form: 

<41). ?! = P2 = qi = q = o and Z ,=q . 
1 ¿ m-1 4m 

the spline curve given by Eq. (39) takes the 

S(X> Zk 1 ' V +Zk+1 ‘ ^-\)3 + (5Tk+1-x)(yk-Zk) 

*k)(yk+1 -zk+1) 

k' ■ ,Äk+i 

(48) 
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where 

dk = h * xk+l ' Xk 

h * const 

xk = xk/h 

y * x/h 

¿k-zkh2/6- 

I I ; ' 

For such equally spaced data points, the pk+1 and qk+1 coefficients become: 
I 

Pk+1 = ‘ 1/(4 + Pk* ! (49> 

= - Pk+i(yk+r2yk + yk-rqk) (5?] 

1 .: 
Not only are the expressions for pk and qk much simpler in the case of equally 

spaced data points, the pk coefficients given by Eq. (49) are universal constants, 

independent of the data! Thus, the spline coefficients and the formula for the 

spline can be calculated very efficiently for equally spaced points. 

The formula for the derivative of the spline is given by 

S*(x) - 1/h [-3Zk(xU-x)2 + 35k+1(x-xk)2 - <yk-Zk) + <yk+1-Zk+1>] • 

This derivative formula is used to numerically differentiate the quantities NeTe, 

NjT,. and N^T that appear on the RHS of Eqs. (34) through (36) for Fj, and 

rNj. However, formulas (49) and (50) for pR and qk are not suitable for use in 

formula (51) for differentiating the fluxes Fe. Fj, and FN1 tha^ appear on the RHS 

of Eqs. (31) through (33). This is due to the boundary conditions at the catalytic 

wall X = 0. where N * N. * N... * 0 for all time. This implies that 
e i ini 

ar ar. arNI 
-g-? = t * 0 at X = 0. Since the natural sipline S and its derivative S’ 

are defined in terms of the spline coefficient^ given by Formulas (43), (49), and 

(50), where the spline coefficients are defined so that S" = 0 at x = 0 and x = L, . 

then it Is necessary to redefine the spline coefficients and, the formulas for pk and 

q, so that S' = 0 at x = 0 and x = L, instead of S" = 0. 
^k i 

i 
i 



Thus, for a spline S which is defined so that S' * 0 at x 

formulas (40), (48), and (51) remain unchanged. However, 

Eq. (41) become 

-z2 -2Zi -yi -y2 

and 

2Z + Z , = -y + y . m m -1 Jm ■7m-l 

so that now pj * 0, but 

p2 - -0.5 

and 

pr+i * 

for m > k ^2, and Pk = 0 for k>m. Also qj = 0, but 

q2 * 0.5(y2 - Yj) 

and 

^k+i1 + * qk) 

for m > k > 2 . For 

k = m + 1' qm+l * ("^m + ^m -1 " qm)^Pm + 2) 

and q^30 for k > ni+1 . Then, 

Z * q j., m m+1 

and 

Zk-1 =PkZk + qk 

for m k > 2. 

= 0 and X = x , m 
the end conditions of 

(52) 

(53) 

(54) 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

HAMMN .Ü—.¡ 
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As in the case of the natural spline, the pk coefficients are independent of the 

data. 

The first stage of the numerical procedure is the integration of Maxwell's 

Eqs. (27) through (30). using a fourth-order Runge-Kutta procedure. Values of 

the electric and magnetic field are assumed on the transmitted face of the slab 

(x * L), such that 

Z„ « 377. ohms ■ E (x»L)/H (x = L) . o y L 
(61) 

Each step in the Runge-Kutta integration corresponds to a thin plasma layer of 

thickness h, over which the values of E^. Hz, Te> p, ‘'at* Ne’ 

N,, and NKTl do not vary. The step size h is about 0. 001. so that the error is 
I NI 4 

about 10-12 (error»h ). 

The first stage of the numerical procedure at time t = 0 requires only a 

single backward integration through the slab, where the values of Tg and all the 

transport coefficients are calculated and stored at each step. Subsequent first 

stage and second stage nrocedures, after the continuity equations have been in¬ 

tegrated one or moie steps forward in time, require iterated backward then 

forward integrations of Maxwell’s equations. As explained previously, the back¬ 

ward integrations are required to calculate the reflection coefficient R, the trails 

mission coefficient TR, and the complex impedance Z. The forward integrations 

calculate the field distribution and the variation of the dielectric constant K with 

distance x. The iterations on the spatial integrations are continued until the 

successive forward integrations differ by less than a preassigned tolerance. 

The Runge-Kutta formula used for a system of coupled nonlinear first-order 

equations is of the form 

(62) 

is given by (Hildebrand, 1956): 

yV, * Yl +-^ (kj. + 2k\ + 2kî. + klJ 
n+ln 60 1 23 

(63) 

where 
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*hF(x +^-h, + —k1, Y2+ — k2 YN + i. wN » 
¿ n2 n 2 1* h 2l'' n 2 l' 

k3 “hF<xn + lh'Y¡ + k2' Yn + k2'-*-Yn + ^). 

Here, i = 1, 2... N 

h = step size = 

Y* = ith dependent variable at n^1 step 

and 

xR = independent variable at nth step. 

After each backward integration of Maxwell's equations, the reflection and 

transmission coefficients, R and TF. and the complex impedance of the plasma Z 
can be calculated according to the formulas: 

Z-Z 
_ç 
z+z 

(1+R) E (x=L) 

TR Ë (x=0) 

and 

E (x-O) 

Z ’ inx^ÏÏT 

(64) 

(65) 

(66) 

After the very first backward integration at time t = 0. the incident electric field 

EINC may be calculated according to the formula: 

Eix-O) 
Er.._ = y 

INC (l+R) (67) 

At subsequent time increments, after t ■ 0. the total eltctric field at the 

incident face of the slab Ey(a.o> is calculated after each backward integration and 
before each forward integration: 

Eylx.Ol • (l + R) einc 
(68) 

The tota, magnetic field a, the incident face of the slab may be calculated according 
to the formula 

Hz(x»0) - E (x-0)/Z . 
(69) 
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Then, these values of E and H may be used to start the forward integration of 
y z 

Maxwell's equations through the slab. At each step in the forward integration 

process, the total electric field amplitude is calculated and used to determine the 

value of the complex dielectric constant K(x) in each thin layer. The value of K 

as a function of x is then used in the subsequent backward integration procedure. 

The third stage in the numerical procedure involves the integration of 

continuity Eqs. (31) through (33) one small step forward in time, ht. This 

integration is achieved by using the Runge-Kutta fourth-order formula given in 

Eq. (63). 

4. CONCLUSIONS 

The maximum ei ror on the spline interpolation and the spline differentiation 
2 

formulas is proportional to h , where h = step size in spline interpolation 

(Wendroff, 1966): 

maxi f(x)-S(x)| < -=L|b-a!2h2 (70) 
V12Õ ' ' 

maxi f'(x)-S'(x) I < ^^.Ib-al h2 , (71) 
' V120 ' ' 

Here, 

f(x) = original function 

S(x) * spline fit of f(x) 

a = lower end of interval 

b * upper end of interval 

M = max |f^ (x) | 

h = step size. 

In the numerical differentiations performed in Eqs. (31) through (36), the maxi¬ 

mum interpolation error can be made less than 0. 1 percent if the reentry plasma 

slab is divided into 100 layers or more. 

The error in the Runge-Kutta fourth-order integration is proportional to h . 

If the reentry plasma slab is divided into 100 layers, then the error in the Runge- 
• 8 

Kutta formula is about 10 or less. Thus, the error bounds on the numerical 

interpolation, differentiation, and integration can all be made quite small, much 

less than the error in the values of the reaction-rate coefficients. 
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The techniques for numerically calculating the nonlinear reflection and trans¬ 

mission coefficients presented in this report are restricted to the case of a plane 

wave at normal incidence to the plasma slab. The results can be readily extended 

to the case of oblique incidence, provided the electric vector of the incident wave is 

normal to the plane of incidence. However, if there is a component of the electric 

vector in the plane of incidence, then longitudinal waves can be launched into the 

plasma. At high power levels, the longitudinal waves can excite a host of para¬ 

metric instabilities and give rise to an anomalous resistivity of the plasma 

(Goldman and Dubois, 1972). 

The curves of transmitted power vs time will most likely be similar in shape 

to the curves presented in the report by Fante and Mayhan, (1971), even when 

electronegative compounds are injected into the reentry plasma, with the important 

difference that the transmitted power level will increase as the percentage of 

chemical additive increases. 

The computer program that has been developed will permit a lar^e number of 

various electronegative gases to be tested for their capability to increase the 

transmission coefficient of reentry plasmas at high electromagnetic wave power 

levels. 
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