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ABSTRACT 

A method is presented that utilizes the theory of 

Markov chains in predicting learning for manual activi¬ 

ties . 

The model is applied to a realistic example and the 
m 

results compared with learning curve theory. The results 

illustrate that a Markov chain approach to learning can 

give a good approximation to a real life situation. 

Recommendations are made for further applications 

of this model to actual situations, such as production 

Areas of additional research are also discussed. lines. 
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CHAPTER 1 
1 

INTRODUCTION 

Learning curve models have been used as a means of 

forecasting productivity, or production time per item, 

for many years. The learning curve concept was original¬ 

ly applied by the aircraft industry during the second 

world war for a variety of purposes ranging from contract 

negotiation to production scheduling. (1), (2) Since 

then it has been used to estimate the production of many 

diversified products. (3), (4) 

The concept of learning by repetition, and the 

corresponding decrease in task time, can be explained by 

the careful examination of a work task. When a task has 

been repeated a number of tiroes, a worker becomes familiar 

with the tools and procedures used in performing the task. 

Usually a coordinated pattern is learned which reduces the 

total task time, resulting in greater efficiency. 

One characteristic noticeable in almost all learn¬ 

ing processes is the fact that initially there is a rapid 

decrease in the task time. After a number of repetitions 

the task time gradually levels to a steady state value. 

Many attempts have been made to mathematically model 
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a learning process. Almost all of these models assume 

some form of an exponentially decreasing function, which 

after a period of time is assumed to level to a constant 

value. This is illustrated in Figure 1. 

Task 
Time 

In most exponentially decreasing models, empirical 

data has shown that learning proceeds at a constant rate 

each time the number of repetitive tasks is doubled. 

To illustrate this point, let T(l) be the task time 

for the first repetition, T(2) the time for the second, 

etc.. Then the experience factor, b, is represented by the 

ratio 

T(2) T(4) T(6) T(2X) 
bs -■ .* —.. s ■ • • • m. . (1) 

T(l) T(2) T(3) T(X) 
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It will be shown that the experience factor is 

directly related to the slope of the learning curve. 

The general form of the learning curve can be expres¬ 

sed as 

(2) t(x) . t(l)x‘.N 

where t(x) la the time required for the xtl1 repetition, 

X is the number of repetitions, and N is the slope of the 

curve. Sometimes it is more convenient to write equation 

(2) in logarithmic form: 

(3) log t(x) = log t(l) - N log X 

Equation (3) plots as a straight line on log-log 

paper as illustrated in Figure 2. 

The relationship between the experience factor, b, 

and the slope, N, will now be determined. From Figure 2, 

the slppe of the learning curve can be calculated. 

log t(2x) - log t(x) 
-N * —- (4) 

log 2x - log X 
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Rearranging equation (4); 

(5) -N 

log 
t(2x) 

t(x) 
log 

t(2x) 

t(x) 

log 2 

Substitute: 

t(x) 
» 
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(6) N * 
log 2 

Substituting equation (6) into equation (2) gives 
m 

the learning curve equation using the experience factor. 

log b 

(7) t(x) = t(l) X l0g 2 

Equation (7) will be used throughout this paper. 

This paper attempts to mathematically model the 

learning curve process with the use of a Markov chain. 

The basic assumptions of an exponentially decreasing task 

time and the use of an experience factor are still 

retained. It will be possible with the model to evaluate 

the probability of having a specific task time, given 

the repetition number. This probability can be calculated 

knowing only the first few repetition times. The proba¬ 

bility of learning will be determined and a transition 

matrix constructed. The purpose, then, of this paper is 

to provide an alternate method of modeling the learning 

curve process. 
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In Chapter 2 the thoery of Markov chains is presented, 

and a proceciure is introduced for estimating the probabil¬ 

ity of learning in each state. 

In Chapter 3 a specific example is presented and the 

results evaluated in Chaper 4. 

Chapter 3 contains the concluding remarks and 

recommendations for further study. The two appendices 

contain the computer programs and results used in this 

model. 
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CHAPTER 2 

THEORY 

This section will develop the concept of a Markov 

process as used in this model. (5) 

Consider a task which consists of a series of states 

which completely inscribe the task. The outcome at the 

nc^ state is allowed to depend on the outcomes of the 

previous states. This type of relationship is usually 

represented by a probability tree. The path through the 

tree can be described by a serias of states which 

ultimately gives an outcome. Let fj be a function with 

a domain the set of all paths through the probability 

ch 
tree. The value of fj will be the outcome at the j 

state. The functions f^, £2, £3» can then be 

called outcome functions. The set of functions f^, £2» 

fo.f is called a stochastic process. A finite 

Markov process is a finite stochastic process such that 

the probability that the outcome of the n*"^ state given 

f~h 
the output of the (n - 1) state is independent of any 

state before the (n - l)th. In other words, for a 

Markov process, knowing the outcome of the last experiment 
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one can neglect any other information about the past in 

predicting the future. 

All the probabilities defining the movement from one 

state to another are contained in a transition matrix. 

A finite Markov chain is a finite Markov process in 

which the transition probabilities are independent of n, 

n being the number of states in the process. The model 

developed here will be finite Markov chain. 

The Markov properties can be represented as follows: 

(8) Mjl = Mq P 

where Mq is a row matrix defining the Initial state 

probabilities, P is the transition matrix, and a row 

matrix defining the probabilities of being in any state 

after the first 'link* of the Markov chain. 

It follows then that 

(9) M2 = p » (Mq P) P = Mq P2 

In general 

Mn*M0pn 
(10) 
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To illustrate this property, consider the following 

powers of a transition matrix P. 

P * 

S1 
si 0.? 
32 0.0 
33 0.0 
84 0.0 
35 0.0 

82 83 
0.8 0.0 
0.2 0.8 
0.0 0.2 
0.9 0.0 
0.0 0.0 

84 85 
0.0 0.0 
0.0 0.0 
0.8 0.0 
0.2 0.8 
0.0 1.0 

p2 s 

8! 82 
si 0.04 0.32 
32 0.00 0.04 
S3 0.00 0.00 
«4 0.00 0.00 
«5 0.00 0.00 

s3 s4 s5 

0.64 0.00 0.00 
0.32 0.64 0.00 
0.04 0.32 0.64 
C.00 0.04 0.96 
0.00 0.00 1.00 

81 
s2 
s3 
a4 
*5 

•1 
0.008 
0.000 
0.000 
0.000 
0.000 

82 
0.096 
0.008 
0.000 
0.000 
0.000 

83 
0.384 
0.096 
0.008 
0.000 
0.000 

84 
0.312 
0.384 
0.096 
0.008 
0.000 

*5 
0.000 
0.512 
0.896 
0.992 
1.000 

Assume the process started in state S2* Then Mq is 

the matrix (01000). It is desired to find the 

probability of being in state s^ after three iterations, 

(links), of the Markov chain. 

(11) Mj . Mq P3 

(12) M) > (0.000 0.008 0.096 0.384 0.312) 
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From equation (12), the probability of being in state 

s^ is 0.512. Notice that is Identical to the second 

row of P"*. thus the i»c' power of the transition matrix 

gives, the probabilities of being in any state, given the 

starting state. 

Markov chains can be'classified as either ergodic or 

absorbing. In an ergodic Markov chain it is possible to 

go from any state to some other state in the chain. An 

absorbing Markov chain has the property that it has at 

least one state which, upon entering, can never be left. 

The chain will terminate in this absorbing state. 

The model presented here will be an absorbing Markov 

chain because the steady state portion of the learning 

curve will be considered as .in absorbing state. 

The remaining portion of this chapter will be 

devoted to defining a relationship for the probability 

of learning. 

Consider a task which is repeated many times on a 

certain piece of equipment. The decrease in the task 

time due to learning is to be studied. The time for the 

entire task, Tj, can he divided as follows: 

(13) TT « ♦ Tr 
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where Is the learning time, and Tr Is the unlearnable 

portion of the total task time. When the task is done for 

the first time is large, but it decreases every time 

that learning takes place. Some portion of the task time 

will not decrease even after many repetitions. An example 

of this unlearnable portion might be the actual drilling 

of a hole in a metal plate. There are mechanical limita* 

tions on the speed of the drill boring through the metal, 

l.e., bit speed, available torque, etc.. Thus the 

drilling time would remain approximately constant for any 

number of repetitions. The actual identification of 

Tl and Tr is not necessary. This discussion is presented 

simply to identify the portion of the task time wh<ch 

changes as learning takes place. 

A state, s^, in this model will be defined as the 

interval of time for the 1th repetition. An example 

is shown in Figure 3. In this example, the process is in 

state si during the first repetition, and is in state s9 

during the second repetition, etc.. The steady state 

region has been defined as the absorbing state. In this 

example it is state S2¿. 

The probability of learning will be defined as 
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the probability chat the time to perform a task for the 

nth time is less than the time to perform the same task 

for the (n - l)th time. This definition is good for all 

states in the Markov chain except the absorbing or steady 

state portion, where no learning is defined to exist. 

The maximum probability of learning will occur during 

the first few repetitions of a task, because of the rapid 

decrease in task times in this portion of the curve. After 

more repetitions are made, the decrease in task time per 

repetition becomes smaller, and the probability of learning 

will also decrease. 

Consider for a moment the employees performing the 

task. Each of them has different capabilities for learning 

because of differences in experience, coorlndatlon, and 

motivation. Each will have different maximum probabili¬ 

ties of learning for this reason. For the average worker 

this maximum probability will be considered to range from 

0.80 to 0.98. For assembly lines the maximum probability 

of learning will be the average of the employees working 

on the line. 

The transition matrix in this model will have one 

state for each repetition until the steady state portion 
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of tne learning curve, and one absorbing state for all 

units produced during the steady state section. In the 

example in Figure J, the first twenty states correspond to 

the first twenty repetitions, and the twenty-first state 

is assumed to be tne absorbing state. Each row of the 

transition matrix will have two probabilities, the sura 

of both probauilitles being one. 

The first of these probabilities will be the probabil¬ 

ity of performing the task and not learning from the 

repetition, (no decrease in task time), in the transition 

matrix this will be the probability of remaining in the 

same state during the next link of the Markov chain. 

The second probability in each row of the transition 

matrix will be the probability of learning while perform¬ 

ing a task, (a decrease in task time). This will be 

represented in the matrix by the probability of advancing 

a state in the Markov chain. 

In this model the probability of nor learning will 

be calculated, and the probability of learning will be 

determined knowing the sum of both is equal to one. 

in general, it would seem reasonable that the 

probability of not learning would have characteristics 
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just opposite that of the learning curve. In other words, 

the probability of not learning would start at a small 

value during the first few repetitions, and increase to 

a maximum value Just before the steady state portionl 

For this model, the probability of not learning will be 

assumed to have the same general form as the learning curve 

equation, with an identical but positive slope. See 

Figure 4 and Figure 5. 

Percent 

Probability of Not Learning 

FIGURE 5 

Number of_ 
Repetitions 
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The probability of not learning for the xth state, P^x), 

will have the form 

US) V*) = P^d) xN 

where 

log b 
N = - 

log 2 

c^e Pr°bdbiHty of not learning for the 

initial ».epetition, will be one minus the maximum 

probability of learning of the Individual or group. Know- 

in& and N» the probability of not learning for any 

state X can be calculated using equation (15). 

The probability of learning for any state x, PL(x), 

is then equal to 

(16) PL(x) = 1 - PjjlÍx) 
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CHAPTER 3 

APPLICATION TO A SPECIFIC EXAMPLE 

An example of this Markov chain model will now be 

presented. 

Consider the following hypothetical situation. An 

industrial engineer is working for a large manufacturer 

who has contracted to perform modifications on a tank 

radio for the Army. He has set up a trial production line 

on which the modifications are to be done. A trial run 

of four radios is scheduled and run. Having only the 

modification times for the first four radios, the engineer 

now wants to estimate the probability that after twenty 

radios have been modified the process will stabilize. The 

final modification time per radio is also required. 

A summary of the steps required are listed below: 

1. Calculate as many experience factors as the data 

allows from equation (1), and find the average. 

2. Calculate the slope of the learning curve from 

equation (6). 

3. Calculate points on the learning curve using 

equation (2). 

4. Plot the learning curve and determine where to 
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apprcxinate che curve with the steady state 

portion. 

5. Assign the states one per repetition and an 

absorbing state for the steady state portion. 

6. Consider the person or persons performing the 

task and assume a value for the maximum probabil¬ 

ity of learning. 

7. Calculate the probability of not learning for 

each st^te from equation (15). 

8. Construct a transition matrix, and find the 

powers of this matrix to evaluate the probabilités 

desired. 

For this example, the first four modification times 

are as follows; Tj^ = 83.0 minutes, T2 = 70.5 minutes, 

T3= 64.1 minutes, and T4 = 59.0 minutes. Knowing these 

initial task times the experience factor can be calculated. 

let x = 1 70.5 

let X = 2 59.0 
b= - = 0.837 

70.5 

h - Q»850 + 0.837 
2 = 0.844 
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The learning curve for this experience factor is represen¬ 

ted by: 

t(x) = t(l) X 
log b 

where -N = - 
log 2 

Now log 0.844 
-N = -= -0.2448 

log 2.000 
9 

and t(x) = t(l) x-°-2448 

In this case t(l) = 83.0, 

so t(x) = (83.0) 
-0.2448 

X 

Using the computer program shown in Appendix I, and 

letting xs 1, 2, 3, .... 25, points on the curve were 

calculated and plotted in Figure 6. Note that state s^ 

is assumed to be the absorbing state, and all units after 

the twentieth will be contained in this state. 

For this example the maximum probability of learning 

for the modification assembly line will be assumed bo 

be 0.95. 

So PnlC1) = i-00 " °-95 = °-05 

PNl(x> = PNL.^) xN N = 0.2448 
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P^x) = (0.C5) Xo-2440 

Values of the probability of not learning, letting 

X* 1, 2, 3, .... 25, were obtained by the computer program 

in Appendix I. The values of Pm(x) are plotted in 
Ni* 

Figure 7. 

The probability of learning, PL(x), for any state x 

can be calculated from 

PL(x) = 1.00 - P^Cx) 

The probability of learning in each state can now be 

determined except for the first state, and the final 

absorbing state. In state one, the probability of moving 

to state two is assumed to be one. State s^ is the 

absorbing state, so the probability of staying in this 

state is one. 

All of the above information is sumnarized in Table I. 

The transition matrix, resulting from the probabilities 

in Table is contained in Table II. 
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TABLE I 

State Task Tune 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

83.00 
70.05 
63.43 
59.11 
55.97 
53.53 
51.55 
49.89 
48.47 
47.24 
46.15 
45.17 
44.30 
43.50 
42.77 
42.10 
41.48 
40.90 
40.36 
40.04 
40.00 

0.0000 
0.0500 
0.0592 
0.0654 
0.0702 
0.0741 
0.0775 
0.0805 
0.0831 
0.0856 
0.0878 
0.0899 
0.0918 
0.0936 
0.0953 
0.0970 
0.0935 
0.1000 
0.1014 
0.1028 
0.0000 

1.0000 
0.9500 
0.9408 
0.9346 
0.9298 
0.9259 
0.9225 
0.9195 
0.9169 
0.9144 
0.9122 
0.9101 
0.9082 
0.9064 
0.9047 
0.9030 
0.9015 
0.9000 
0.8986 
0.8976 
1.0000 
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U»in¿ the transition matrix in Tabl« II, the 

probubillties associatCil with the Markov chain can be 

evaluated by taking powers of the transition matrix, K. 

The probabilities associated with the second link of the 

Markov chain are contained in M*, and in general the 

probabilities associated with the nth link of the harkov 

chain are contained in M11. 

A computer program to evaluate the powers of the 

transition matrix Is shown in Appendix 11. The second 

through the twenty-fifth power of the transition matrix 

have been calculated, and are shown In Appendix II. 

The results are analyzed in the next chapter. 
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CHAPTER 4 
ANALYSIS OF RESULTS 

There are two basic probabilities which can be cai» 

culaced fron this Harkov learning model . 

A. Given any starting state st, find the probability 

of being in the steady state region, or absorbing 

state, after n repetitions. 

B. Given any starting state s^ find the probability 

of being in any other state after n repetitions. 

Using the example problem developed in Chapter 3 and 

the results in Appendix II, these two probabilities will 

be Illustrated. 

The following Harkov property, which was derived 

previously, will be used to evaluate all the probabilities 

in this model; the ith row of the nth power of the 

transition matrix gives the probability of being in each 

of the various states after n repetitions, assuming the 

process started in s^. 

To Illustrate the first type of probability, the 

probability of being in the steady state after the 21st 

unit is modified will be calculated. The desired informa¬ 

tion is on page 57, Appendix II, which contains the 21,t 
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power of Che transition matrix. Th« desired probability 

will b* located in the first row, (the process started in 

s^)t and in che 21*1 column, (the absorbing state is 

In Appendix II, the probabilities are listed seven to a 

row, so it actually takes three rows to make one row of the 

transition matrix. Each row of the transition matrix is 

in brackets. Thus the probability of being in the absorbed 

state by the 21st repetition Is 0.4866. 

By comparison, see Figure 6, Chapter 3, the graph of 

the learning curve for this example. This graph predicts 

that the 2x.h: unit and all which follow will be in the 

steady state region. 

Table III shows the corresponding probablllties of 

being in the steady state, »21» the listed number 

of repetitions. These probabilities are from Appendix II 

under row one, column 21 of the corresponding power of the 

transition matrix. 

From the table it can be seen that the Mirkov model 

is sllghty mure conservative in predicting the steady 

state region. Table II! shows that it takes at least 24 

repetitions for the probability of this event to become 

very large. 
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TABLE III 

Number of 
Re pec Irion« 

21 
22 
23 
24 
25 

Probability of Being in 
Che Steady State Region 

0.4866 
0.7398 
0.8897 
0.9396 
0.9869 

An example of Che second type of probability that 

can be evaluated using this model will be the following; 

estimate the probability that by the 10th repetition the 

task time will have decreased at least 30 minutes. 

From Figure 6, Chapter 3, the initial task time is 83.0 

minutes. A decrease of 30 minutes will be 53.0 minutes. 

From Figure 6, a task time of 53.0 minutes occurs in state 

s;. We now wish to calculate the probability of being in 

state s-j or greater after ten repetitions, given the 

starting state was s^. The probabilities required arc on 

page 46, Appendix II. Since the procedure was assumed to 

start in state s^, the first row of the 10th power of the 

transition matrix will contain the desired information. 

The probability of having at least a 30 minute decrease 

will be the probability of being in state s7, plus the 

probability of being in any state higher than state s^. 

The total probability, Pt. will be the following: 
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Ht = r(*;) ♦ P(sa) ♦ r(59) ...♦p(s21) 

Pt & 0.001755 0.017762 + 0.107073 + 0.360521 

♦ 0.511987 ♦ 0.000000 ... 40.000000 

Pr * 0.69ö9b 

Thua the Markov motiol prod lets that there ia a 

probability of alna.at one of reducing the modification 

taak tiiae by at least 30 minutes by the tenth repetition. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

The Markov chain representation of the learning 

curve has been shown to display the same characteristics 

as the standard learning curve. This model has the 

advantage of developing probabilities of events, which 

can be used to make decisions. The basic assumption of 

the model, that the probability of not learning increases 

at the same rate the learning curve decreases, seems to 

be a fairly accurate assumption. 

When attempting to model any real life situation, 

especially in the human factors area, it is impossible to 

mathematically describe actual outcomes. Human responses 

to the same stimuli vary over such a wide range that 

predicting the correct response a majority of the times 

can be considered an achievement. 

The author believes that this Markov chain model 

will give a reasonably accurate probability of learning 

in a majority of cases to which it is applied. Thus it 

can be useful as a tool in predicting the effects of 

learning on new production lines. 



To gain more confiue ce in the model, an actual task 

should be performed a number of tiroes, and the results 

compared to the probabilities predicted with the model.

Another interestIn^, aspect of this model would be to 

consider the exist uice of a protabllity of forgetting in 

each state. Each row in the transition matrix would then 

contain three probabilities. The first would be the 

probability of moving back a state, or the probability of 

forgetting. The second would be the probability of remain” 

ing In the same state, which would imply no learning.

The third would be the probability of advancing a state

which would Imply learning.

Some relationship between the time elapsed since the 

last repetition, and the number of states the process 

should regress will have to be assumed or discovered.

The general procedure, however, will be the same as the 

model presented.

wm
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