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ABSTRACT 

The trajectories of light rays and the intensity pattern of a laser 

beam as a function of time and of distance down the beam are de¬ 

termined. It is assumed in this calculation that (a) the medium is a 

homogeneous, isotropic, and initially quiescent gas, (b) convection, 
viscosity, and thermal conduction may be ignored at early times, (c) 

changes in total beam power as a function of distance downbeam may 

be ignored, (d) a specific model of energy deposition is valid, (e) the 
medium may be described in equations of hydrodynamics and 

thermodynamics and obeys the Lorentz-Lorenz Law, and (f) geomet¬ 

rical optics applies to the problem. It is shown that this model can be 
solved exactly; long- and short-time behavior of the solutions is dis¬ 

cussed, and the times for the onset of convection are estimated. 

The phenomenon of laser defocusing is shown to change rapidly 

with time; a definition of thermal blooming is given, and it is shown 

that the region of blooming moves up the beam toward the face of 

the laser. The intensity pattern at a fixed point in space is shown to 

change its profile, going over to a bright narrow annular ring whose 

radius increases with the passage of time. 

Parameter combinations required for studies of various aspects of 

the blooming phenomenon are pointed out as the mathematical de¬ 

velopment progresses. 

PROBLEM STATUS 

This is a final report on one aspect of laser propogation studies; 

work on other aspects of the problem continues. 

AUTHORIZATION 
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Manuscript submitted October 12,1970. 

ii 



THERMAL BLOOMING OF LASER BEAMS 

IN GASES 

I. INTRODUCTION; STATEMENT AND FORMULATION OF 
THE PROBLEM 

The problem of the extent to which an intense laser beam passing through a gaseous medium is de- 
focused” by its heating effect upon the gas is discussed in this report, which covers only the classical aspects 

of this propagation problem. 

As is well known, an initially parallel laser beam will propagate in vacuum and will retain its parallel 
character except for diffraction effects imposed upon it by the finite aperture of the source and the non¬ 
zero wavelength of the radiation. In a medium, however, such a beam is partially absorbed, causing that 
part of the medium through which it traverses to be heated; the index of refraction along the beam path is 
thereby reduced and the light rays of the beam are deflected into regions of higher index of refraction. The 
beam diameter thus increases as a function of distance from the source along the beam path. The beam is 
said to be “thermally defocused;” this phenomenon is also succinctly referred to as “thermal blooming. ’ 

We assume that the aperture from which the beam emanates is circular and that the power density (per 
unit area) is circularly symmetric. We let the axis of symmetry be the z axis. Then a quantitative measure 
of the thermal blooming of the beam will be the distance a light ray is from the z axis, at a distance z from 
the aperture, as compared to its initial distance ro from the axis. Furthermore, since the thermal blooming 
phenomenon is a dynamic one, we seek to calculate the trajectory of a given light ray as a function of time, 
hence our objective is the determination of the equations for all the light rays in the form r = r(r0 ; z, t) or 
the form z = z(ro ; r, t) where r is the radial distance from the z axis and t is the time. Also, we seek to 
determine the power density distribution on a plane perpendicular to the axis of symmetry at any point 
down the beam as a function of time. 

Because the problem is intrinsically very difficult, we are forced to introduce some simplifying assump¬ 
tions, which are discussed below, together with our expectations of what the real situation would be if 
these restrictions were relaxed. 

1. We assume that the gas is initially homogeneous, isotropic, and quiescent. 

In real gases there are currents, density fluctuations, and temperature gradients, of course. In typical 
laboratory experiments these can be minimized by enclosing the beam path. Under ordinary conditions in 
the laboratory, however, these phenomena are quite pronounced. Their combined effect will be to lessen 
the blooming phenomenon. In the open atmosphere, winds and turbulence are uncontrollable phenomena 
which will indeed play an important role in determining whether or not blooming, among other thing:, 
occurs. Time scales for blooming will be determined under the idealized assumptions in this paper, ana we 
shall estimate the times at which other gaseous effects become important. 

2. We disregard convection, viscosity, and thermal conduction in the gas. 

For gaseous media, neglecting viscosity for slow motions is not at all objectionable. Convection is quite 
another matter; by ignoring it we are in effect “turning off” the earth s gravitational field, which has im¬ 
portant consequences. Therefore our solution of the problem here can only be approximate and must be 
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limited to those times below which convection effects are very small When convection docs set in, a 
“steady state” for the “laser beam/medium” system is established. Our theory will not describe the system 
in the steady state but the transient effects only. We shall determine an estimate for the time required for 

convective effects to become pronounced. 

Whether or not thermal conductivity may be ignored will depend upon the kind of gaseous medium 
used, the temperature gradients induced, and the time scales involved. The effect of a large thermal con¬ 
ductivity is to hasten the onset of a steady-state condition if it acts alone; in concert with convective ef¬ 
fects, it could tend to prolong the time until the onset of the steady state. In any event, our expectation is 
that thermal conductivity in the gaseous case may be ignored for a wide variety of interesting physical 

systems. 

3. We ignore the variation of the intensity of the initial laser beam down the beam axis due to absorption. 

This assumption is equivalent to saying that, prior to any serious blooming, the beam is heating the gas 
uniformly in z. The purpose, and the effect, of this idealization becomes clear in the detailed calculation; 
it renders the problem tractable by causing the thermodynamic and hydrodynamic properties of the gas to 
be independent of z. The assumption is representative of the real situation provided one does not consider 
regions that are too far from the laser face; indeed this assumption sets the limit, in terms of the absorption 
length, of applicability of the theory to the regions downbeam. In our calculations we shall ignore this 
limitation on distance, with the consequence that the heating effects at large distance, and subsequently the 
thermal blooming effect, will be overemphasized when compared to the real situation This in no way in¬ 
validates the results for the regions where the approximation is good. (In applying the results of the theory 
to any given expei.mental situation, one must be aware, however, that this assumption is related to assump¬ 
tion 7 of geometrical optics, given below. We will devote a paragraph to this point at the end of this section.) 

4. Model for the deposition of energy into the gas. 

Wc replace the heating effect of the laser beam on the medium by a heat source which heats the gas 
locally in the same way the laser beam does at the time when the beam is turned on (t = 0). The effect 
of this assumption is to convert the problem to that of calculating the light ray trajectories in an atmos¬ 
phere that is being heated up by an external fixed heat source. When the light rays begin to deviate sig¬ 
nificantly from their original (t = 0) trajectories, i.e., when blooming begins to set in seriously, it would 
seem as though our model of energy deposition is no longer realistic. However, we shall see later that this 
is not as serious an objection as might be thought, and our model will allow us to determine the times and 
locations where blooming becomes important to a good degree of accuracy. 

5. Model for the medium. 

We assume that the gas motions are described by the equations of hydrodynamics and thermodynamics, 
that conservation of energy holds, and that the index of refraction of air for the wavelengths at which the 
laser operates is related to the density by the Clausius-Mosotti (Lorentz-Lorenz) Law. Finally, the atmos¬ 
pheric motions will be studied for “short” times only, where “short” times will have to be determined by 
the characteristics of the medium and the rates of energy deposition. 

6. Model for the distribution of energy in the initial laser beam. 

We assume that the source of the laser radiation lies in the x-y plane and possesses rotational symmetry 
about the z axis. If r0 be the distance of a point from the origin of coordinates, the intensity of the radia¬ 
tion is 1(r0). It will be seen that no further specification of the power distribution in the source is necessary 
to solve the problem: in different words, the equations for the light rays and intensity profiles downbeam 
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will be determined in terms of I(r0). For specific quantitative numerical results, we shall have to select a 

suitable form for the function l(ro), of course. 

7. We work within the framework of geometrical optics. 

By this assumption, we assume that any portion of the beam may be described locally by a light ray or 

set of ligiit rays traversing the medium. Within this framework, we are thus ignoring the coherence aspect 

of the laser. If the fields become too strong (i.e., at too high a power density) nonlinear effects may become 

important and our analysis will be inappropriate. For low powers, this will not be a serious limitation. We 

also will lose fine interference details in the intensity profiles. For beams of moderate size this will not e 

serious either. 

With the above assumptions, the problem of blooming will be seen to be capable of solution for a limited 

time span. We repeat that there are two considerations that limit the times for which the solutions we get 

are applicable-assumptions 4 and 5 must be met simultaneously. There are also two considerations that 

limit the distances and laser sizes-namely, assumptions 3 and 7 must both hold simultaneously. In those 

regions of space where diffraction effects due to finite aperture size and finite wavelengths manifest them¬ 

selves, the assumptions may be inappropriate because the diffraction spreading may be comparable to or 

larger than the spreading of the beam due to blooming. The effect of assumption 3 is to limit the applica¬ 

bility of the theory to be developed to a downbeam distance zQ < a-1, where a is the absorption coef¬ 

ficient of the medium. Ignoring thermal blooming, the downbeam distance to the point zd where the dif¬ 

fraction effects have caused the beam radius to increase by, say, a factor of two, is of the order of 
z, = 2a2/X where a is the initial beam radius and X is the wavelength. Therefore, our assumptions are 

applicable only to the cases for which z < zd, or for which a > X/2a2. Now in the laboratory almost any 

gas may be doped to increase its absorptivity a and render this inequality valid. Indeed this has been done 

to demonstrate the effect. Therefore there are experimental situations of interest in which all our assump¬ 

tions are compatible and applicable. 

Finally, we remark that any theoretical effort to quantitatively analyze the thermal blooming phenome¬ 

non cannot ignore the fact that much of the studies made thus far have been made with liquids which are 

both viscous and thermally conducting. Our assumptions have eliminated these important cases but we 

prefer to defer the treatment of liquids to a later paper. The physics essential to a quantitative study of 

the phenomenon is contained here, and the other factors, while important, add complications that do not 

serve to further illuminate the problem. 

In Sect. II the results of the calculations will be summarized and discussed, together with numerical 

examples. 

In Sect. Ill the basic equations for the ligiit rays will be determined for any medium in which the above 

pertinent restrictions are imposed, i.e., any medium tor which the density, velocity, pressure, and tempera¬ 

ture are axially symmetric, independent of z, and for which the Lorentz-Lorenz law holds. The intensity 

of the defocused beam will also be determined, ln Sec. IV, the response of the medium to the heating is 

determined. In Sec. V, a rough estimate is made of the times required for convection to set in and for wind 

effects to be severe. In Sec. VI, the results of Secs. Ill and IV are combined to determine the equations for 

the light rays, and numerical computations are performed for particular models of a laser. 
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II. SUMMARY AND DISCUSSION 

Background Survey 

Observations of the thermal defocusing phenomenon have occurred for several lasers and media com¬ 
binations. Gordon et al.( 1 ) studied the blooming using a helium-neon laser and several liquids. The phenom¬ 
enon was put to use to measure the absorption coefficient of several materials by Leite and collaborators (2). 
Rieckhoff (3) has reported observations of blooming and studied its relation to beam power. Studies of the 
temperai evolution of the phenomenon in liquids have been published as well (4,5). Since these early ob¬ 
servations the phenomenon has come under increasing scrutiny from both the experimental and theoretical 
aspects. Brueckner and Jorna (6,7) have studied the problem by assuming the beam to be coupled to the 
Huid by the mechanisms of électrostriction, the high-frequency Kerr effect, and thermal energy deposition. 
Their principal results are to show that the laser/medium system is unstable in the sense that the coupling 
mechanisms will tend to amplify small-scale inhomogeneities in the beam and in the density of the fluid. 
Akhmanov et al (8) presented both a theoretical and experimental study of thermal defocusing in solids, 
liquids, and gases. Their study included the effects of thermal conductivity, fluid flow, and the steady state 
at which the system arrives in the case of liquids when convection is present. Blooming in gases has been 
detected only more recently (9,10). Consequently, there is little, so far, in the literature with which our 
study here may be compared. From the discussion of Sect. I, it is clear that we are presuming at the outset 
that the power density is too weak for the coupling mechanisms of Brueckner and Jorna to play a significant 
role, and the effects of convection and fluid motion as discussed by Akhmanov have not yet appeared. 

Summary of Results 

Qualitatively, the principle results of the present calculation may be summarized as follows. Both thermal 
defocusing and thermal focusing may occur in a gaseous medium, depending upon the shape of the power 
distribution across the face of the laser. For a power distribution that is monotonically decreasing, such as 
a Gaussian or parabolic density, and for times large compared to the time required for sound to cross the 
laser diameter, the beam defocuses, the amount of defocusing at a given distance down the beam increases 
with time. If zs is the distance from the laser down the beam to the point where the beam, by some 
measure, has doubled in size, then zs depends upon time and becomes shorter as time increases. The 
blooming may be said to be traveling up the oeam toward the laser; the velocity dzs/dt is negative and in¬ 
creasing, i.e., although the point zs is moving toward the laser, it is decelerating and will never, in principle, 
reach the laser. In practice, of course, convection will set in to vitiate our hypotheses and the deductions 
made therefrom, so our description fails to be accurate after a time tconv that is characteristic of the system 
for convection. While the defocusing is occurring, the intensity distribution down the beam must clearly 
be changing with time. The results are illustrated in Figs. 4,6, and 7 for a parabolic distribution; in Fig. 4, 
the light rays are plotted in terms of a reduced radial coordinate x = r/a and a reduced coordinate f that 
measures the distance down the beam; f is related to the actual beam distance by the relation J = 
v/2(no - 1) (z/a) Vt/t¡ where t is time that has elapsed since the laser has been switched on, tc is a time 
constant composed of constants of the medium and the laser, and n0 is the ambient index of refraction. 
With these scaled or reduced coordinates, only one set of trajectories need be drawn; from these all trajec¬ 
tories at all times may be derived. Also, besides a scaling in time, there is complete scaling in beam sizes 
and lengths, and certain results hold for all lasers and media (provided our model remains valid). For ex¬ 
ample, we note from Fig. 4 that the size of the beam doubles at a value off * 2.3. Similarly, the reduced 
intensity l(r)/(W/iraJ ) may be expressed in terms of x = r/a, with f as a parameter. Figures 4,5, and 6 
show that as f grows (or, if z is held fixed, we may say as time increases) the beam spreads out, hollowing 
in the center, and a bright thin annulus of light develops. Also, if t is held fixed, then z increases as f in¬ 
creases, so we may simultaneously assert that at a given time the beam spreads out into an intense annulus 
with increasing distance downbeam. 
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.,. , . t makes it dear that to observe the blooming phenomenon in 
This behavior of the blooming with z an until the beam diameter grows, or go 

gases one must, for a given value of z, wait for ‘he Pa g , limes The latter method 

down the beam a considerabie distance to ^set in after a time t- 
will probably be more reliable than the former ^ ^ Sect v that tconv is completely independent 
which will alter the beam pattern comple y. oractiCe to detect the blooming at a time t < tconv 

zones.) 

Equivalent plots ofW. rays and intensity 

Clearly,.he qualitative fea.utesate that if the lase, intensity 

~in6e,et. 

The response of the gas to the passage motion gives^Ue^o pletnure'changes! vdòeUy 
beam causes the air to heat up, at ear y ime , reauired for sound to traverse the beam, the gas tends 

nows, and density changes. d™ y =Ä ^ ““ W°UM 

MCh in ,hi med,um' 

IH. DETERMINATION OF EQUATIONS FOR THE UCHT RAYS AND 
THE INTENSITY DISTRIBUTION ALONG THE BEAM 

The Light Rays 

Le, R he the position vector fton, the origin of 7"1“«; "" 

(see Fig. 1 ). Hence 

The equation for the light ray (11) is 

R(s,t) = r(s,t) + z(s,t)k . 

E("f) =Vn 

(1) 

(2) 

where n = n(R,t> is the index of refraction. Because of the syntn,.,^ of the problem i, is clear .ha, if Í be 

the unit vector parallel to r, then 
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and 
(3) 

n(R,t) = n(r,z,t) 

A 
J 

Fig. 1 • Cylindrical coordinate sys¬ 
tem centered at the aperture of 
the laser beam, with the z axis perpen¬ 
dicular to the aperture 

Using Eqs. (1 ) and (3), the vector Eq. (2) may be rewritten as the pair of equations 

_d_ / dr \ 9n 
ds \n ds / 3r ’ (4a) 

d_ 
ds ("£) = 

and 

9n_ 
dz 

(4b) 
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These equations may be integrated once by multiplying both sides of Eq. (4a) by 2ndr/ds, and both 
sides of Eq. (4b) by 2ndz/ds, noting that the result may be expressed more succinctly as 

and 

d_ / dr\2 _ 9n^ ch 
ds 1 n ds ) 9r ds ’ 

d_ / dz\2 _ 9n^ dz 
ds y1 dsJ òz ds ' 

Each of these equations possess an integral, namely, 

(5a) 

(5b) 

dr 
ds 

(6a) 

and 

where we have incorporated the initial conditions on the trajectories that 

dr 
ds 

= 0 , 

and 

dz 
ds 

1 . 

(6b) 

(7a) 

(7b) 

Geometrically, the conditions given by Eqs. (7a) and (7b) state that the beam is leaving the laser perpen¬ 
dicularly to the aperture. 

The integrals in Eq. (6a) and (6b) cannot be evaluated unless we know the dependence of r and z on s, 
i.e., unless we know the trajectory. But this, of course, is what we are attempting here to determine. In 
Eq. (6), the light rays are parametrized by s; it will prove more convenient to eliminate the parameter s 
entirely. We assume the relations z = z(r0 ;s,t) and r = r(r0 ;s,t) to be solved for s as a function of z; then 
the light ray may be written as r = r(r0 z,t) (with only a slight abuse of the functional notation) with the 
boundary condition that r(ro',0,t) = r0. Then with ds (dz/ds) = dz, the two equations may be combined 
to give 

(8) 
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liquation (H) is oui version of liq. (2) for the trajectories, where the cylindrical symmetry has been ex¬ 

plicitly included. Clearly it is a complicated integro differential equation and is exact. When the assump¬ 

tions of our model are included, liq. (8) will simplify considerably. 

The next problem is to relate the index of refraction to the density of the medium; the Lorentz-Lorenz 

Law does this 

n1 - I ^ Ap 

n* + ~2 ' 3 

Where A is a constant for all practical purposes. Because n2 - I ~ 0, Ap will be a small quantity and the 

Lorentz-Lorenz Law may be taken as 

n3 = I + Ap . (9) 

Inserting liq. (1)) into liq. (8), we get 

d£ 

dz 
t 

A f dz’ J a dr IT 
_•'o_ 

1 + ApUo.O.O + A f ‘ d;' 
to 

1/2 

(10) 

In any experiment where the change in density is due to absorption of energy from the beam, it is more 

frequently the case that the beam is studied over those distances for which the beam intensity is diminished 

hv absorption by only very small amounts. Hence the quantity dp/dz will be small and, in the denomina¬ 

tor. Ap 4- A/o d/'(dp/dz') will be small compared to unity and may therefore be neglected. Next we note 

that 

r d/ djf,i = r dz. 
-/0 t J m/0 L j 

= p(r.z.t) - p(r0,0,t) - T dz' 

Therefore, the differential equation for the light rays becomes 

(II) 

In the problem considered in this paper, we regard the heat source (the laser) as turned off prior to time 

t = 0. The nk’dium is, by assumption I, homogeneous;hence, we may writep(r^,t)as 

p(r,z,t) = po + P:(r,z,t) , (12) 

where pi ~ 0 for ( < 0. This equation is exact here and need not be regarded as one restricted to small 

deviations from the initial ambient density. Then 

3r*i/* p(rj!.t) - p(r0 .0,0- r 
d 
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ch 
dz 

t A 1/2 V p,(r,z,t) - Pi(fo.O.t) -r dz 
3p (r.z',t) 

1? 
(13) 

Equation (13) is the one to use when assumption 3 of Sect. I does not apply. When that assumption does 
apply, Eq. ( 13) simplifies to 

^ = ± Al/2 yPi(r.t) - Pi(r0,t) , (14) 

whose solution is obtained by simple quadratures: 

_ + 1 f dr' (1 

1 \/Ã I \/pi(r >0 ” Pi (rod) 
ro 

Thus, in our model, if we know the density variation in both space and time, Eq. (15) will give us the 
trajectories. For most practical cases the solution will have to be given numerically, of course. We make 
one final observation before concluding this section. In later sections we shall restrict our considerations 
to values of p, very small compared to p0 ; under these limitations the constant A can be related to the 
index of refraction very closely, through Eq. (9), by 

A = 2(n„ - I) 
Po 

where n0 is the index appropriate to the density p0. Then, 

The ambiguity in the signature of the right-hand side is removed by considering that z is always a posi¬ 
tive number, and the integrand has meaning only for those values of r' such that p(r',t) - p(r0 ,t) > 0. 
For a given value of r0, if the r' values are greater than r0, we choose the positive sign; if the values of r' 
turn out to be less than r0, we choose the negative sign. 

Intemity Profiles Downbeam 

Assuming we know the density distribution p as a function of both r and t, we may use Eq. ( 16) to de¬ 
termine the light rays whose trajectories we write in one of two forms: 

r = r(roíd). withrOofld) = r0 , (I7») 

or 

z = z(r0;r,t), with z(ro;r0d) = 0 . (17b) 

The solutions may also be regarded, as they were initially in this section, as parameterized by the arc length s 
from the laser aperture: 
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r = r(r0;s,t), (18a) 

and 

z = z(r0 ;s,t) . (18b) 

The next problem is to determine the intensity distribution across a plane surface perpendicular to the 
beam axis at any distance z down the beam (i.e., in the positive z direction).* 

X 

1 

Fig. 2 • Sketch of some geometric quantities which enter into 
calculations of the total laser beam power 

Referring to Fig. 2, we see that the total power which leaves the source located on the x-y plane and 
passes through the geometric figure with vertices labeled 1,2,3, and 4 is I(ro)rodrod0. The light rays that 
leave each vertex of the plane geometric figure are illustrated. At some distance along the ray from 
vertex 1 there is a surface of constant phase which intercepts rays from vertices 2,3, and 4. The radiation 
passes through this surface at right angles to it. Let R be the vector from the origin to the center of this 
surface. The power passing through this surface then is !(R)dA, where dA is the area of the surface element. 
Assuming no absorption by the medium (assumption 3 of Sect. I), then 

In this section we will suppress the time variable t to simplify our notation. 
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l(R)=l(r.)^ <'9) 

If R, is the vector from the origin to the point where the ray from vertex 1 intercepts the surface, R2 is the 

vector from the origin to the point where the ray from vertex 2 intercepts the surface, etc., then 

dA = dK, • dü2 

where 

dß| = IR4 “ Ril (2°) 

and 

dß2 s |Rî - R.l . 

Let s4 be the path length from point 4, measured along the light ray from point 4, to the point whose 

position vector is R4, that is, 

R4 = R(ro+dr0 34.0+1/2(10) . 

Clearly, from the cylindrical symmetry of the problem, s3 = s4;thus 

R3 = R(ro+dro^i-l/2d0). 

In a similar fashion 

Ri = R^ro Si .0+^0) . 

R2 = R (roSi^cw) . 

To the first order in dfl 

_ _ r)R(r,r.Si,ö) j 

-R* = —dö- 

Now R(r0 ;s) = Kr0 *)? + z(r0 *)((, where r(r0 ;s) and z(r0 ;s) are independent of 0. This fact is of course 

the analytical formulation of the cylindrical symmetry requirement. Then 

3R , 3 a* 
85- ^39- 

The quantity 3Î/30 is a unit vector orthogonal to r; hence we get the geometrically obvious result 

dß2 = IR! - R,l = r(r0;s)d0 . (21) 

Next, if dr0 is chosen small enough, then s4-s, s ds is a quantity of the same order as dr0. To first 

order in these quantities, 
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R, - R, = ROo+droSi+ds) - R(ro;s,) = ds . 

Now R4 and Ri arc two vectors which end on a surface of constant phase, that is to say, the optical 
length r = /nds from vertex 1 to R, is the same as the optical length from vertex 4 to R4. Hence the dif¬ 
ference above may be written as 

R4 R| dr0 

where the notation ds/dr0)T means the derivative is to be taken at constant phase. To make the meaning 
of this clearer, we note that Eqs. 18 may be inverted to read 

and 

s = s(r,z), 

r0 = r0(r,z). 

(22) 

Thus given a point r,z we can compute the origin of the ray in the laser aperture from Eq. (22) and its path 
length as well. Now fix a value of r,z and choose another value at r+dr, z+dz such that this new point lies 
in the surface dA drawn in Fig. 2 (with the same values of 6 of course). This leads to a new origin r0+Ar0 
and a new length s+As; their ratio As/Ar0, taken to the limit, is our quantity ds/dr0)r. 

It is important to note that the inversion of Eq. (18) may not be unique, but that instead of leading to 
solutions such as Eq. (22), it may lead to sets of solutions 

s¡ = s.(r,z) 

r0i = r0i(r-z) 

, i = 1,2,....N (23) 

In this event, several light rays (N of them) will be crossing through the point When we are speaking 
of only one light ray, however, we shall ignore the subscript i. 

From Ra-R. , and a little algebra, we get 

1/2 

Therefore, the intensity in the direction of dR/ds at R is 

liB, _ l(fo)ro I i \ , 3r\ 3s\lJ , [SzX 3z\ 3s \ 
'<R) --)1¾ H, R),+ H. 

-1/2 

(24) 

(25) 

Since we assume that the equations for the trajectory are known, the quantities 3r/3r0),, 3r/3s)r , 
3z/3r0 ),, and 3z/3s)r( can be calculated. It remains to express ds/dro^ in terms of known quantities. Let 
6r and 6z be increments in r and z due to changes in r0 and s that take us from one point on a surface of 
constant phase to another point on the same surface. Then 
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The ratio of these last two equations gives 

Solving for the desired derivative, 

(26) 

Now the differential vector ôR = ôrr + ôzíc, where ôr and 5z are the increments above, lies on the sur¬ 
face of constant phase and is therefore orthogonal to the vector dR/ds where R = R(r0 ;s) is the vector from 
the origin to the trajectory. Thus, 

or 

Therefore, 

(27) 

Putting Eq. 27 into Eq. 26, we get 
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Inserting Fq. 28 into 25, one obtains, after much algebra, 

I(R) = (29) 

This is the intensity per unit area at R in the direction of dR/ds due to a ray which emanated from 

R(r0) = r0f. However, the above result is formulated in terms of the parameter s. As in the first part of 

this section, we prefer to eliminate s in favor of z. If the equation for the light ray is written as r = r(r0 Æ.t), 

we note that the quantity we have designated as dr/dz is in fact 

and Eq. 29 immediately becomes 

Regarding r as a function of r0 and, alternately, s or z, in the spirit of thermodynamics, we note that 

3r_\ 3r\ rjA toA 

aro/, ' aroA az/ro 3ro/s ’ 
M 

and therefore 

As has been noted before, I(R) given above represents the power crossing a unit area that is orthogonal to 

the light ray through the point whose position vector is R. What can be observed experimentally is the 

power per unit area on a surface perpendicular to the beam axis (the z axis). Label this intensity by I(R) 

and note it is the above intensity multiplied by the cosine of the angle of incidence 0, which is related to 

the slope by 

Therefore 

î(r/) (32) 
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What remains to be determined is the quantity 9r/dr0)r In fact, Eq. (32) is a final answer, provided that 
r = r(r0,z) is in a known functional form. Our solution, Eq. (16), gives it in the opposite manner, namely 
z = F(r0,r). Under “normal” circumstances, this would cause no problem, for by the method of implicit 
functions we would simply write 

9F \ _ 9F\ 
dr0Jz - dr)t 

= 0 

which can be solved for the desired derivative dr/0ro)z. However a complication arises because of the form 
of the function F(r,r0); a formal application of the rules of calculus to obtain the partial derivative of F 
with respect to r0 leads immediately to an infinity, so that dr/9r0 )z cannot.be obtained in this way. How¬ 
ever, on geometric grounds, it is easy to conclude that 9r/9r0)z must generally exist, for a slight change 
Ar in r0 at the face of the laser must lead to a slight change Ar in the distance r of the light ray from the 
beam axis at a distance z down beam. Thus, lim Ar'Aro must exist generally. Therefore to circumvent the 
above difficulty, which stems from the fact that the integrand possesses a singularity (integrable of course) 
at the lower limit, we resort to a very natural artifice. We define 

Fa(r0,r) = \ -==== 
VPi(r') - Pi(r0) 

for a > 0 . 

Computing 9r/9r0 )z with this function will not cause any problems with singularities. We will then take 
the limit as a -» 0. In this manner one gets, after an additional integration by parts, in the limit as a goes 
to zero, 

= + 
PÍ(fo) 

p’.(r) 
+ Pi(fo) VPi(r) - Pi(r0) 

Jrr "/ '\ 

*0 

1 

VPi(r’) - Pi(r0) 
(33) 

Now we have already noted that for a given point r,z there may be several values of r0 and s, i.e., several 
rays may cross through a given point r,z. Denoting the individual values of r0 by r0¡ (i = 1,2,...^1), the 
intensity at r,z will not be given by Eq. (32), but by 

where 

(34) 

Pi (foi) VPiO) - Pi(roi) 

—===== 
VPi(r')-Pi(r0i) 

(35) 

where we have reintroduced the signature ambiguity explicitly, the positive sign being taken for 
r > r0, the negative sign for r < r0. 
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In practice these equations will prove to be more difficult to use than their derivations indicate. 
Essentially the source of the difficulties arises from the fact that our trajectory (Eq. (16)] has the form 
/ = z(r0,r;t) rather than r = r(r0,z;t). 

IV. DETERMINATION OF DENSITY CHANGES 

In this section we will study the impact of the heating effect on the medium due to the turning on of 
the laser. In the first subsection, we will write down the relevant hydrodynamic equations, their linearized 
form, and the initial conditions pertinent to our problem. In the second subsection the linearized equations 
will be solved exactly m terms of quadratures by using Laplace and Fourier transform method. The long- 
and short-time behavior of the solution for the density, pressure, and velocity are neatly delineated in this 
form of the solution. 

The Linearized Hydrodynamic Equations and Initial Conditions 

The hydrodynamic equations, together with the conservation of energy, are 

and 

-r + at 
■ Vv = (36a) 

dp 
1Î + V • pv = 0 , (36b) 

V • pv = pQ , (36c) 

where d/dt is the customary substantial derivative of hydrodynamics, and 3p/2p is the internal energy per 
gram of the gas, taken here to be an ideal gas. Here we have turned off the earth’s gravitational field, i.e., 
we are ignoring convection, and we are also ignoring thermal conduction. For the small changes in tempera¬ 
ture anticipated and for a gaseous medium, thermal conductivity will be small. Convection is another 
matter for the realistic problem. We shall have to estimate the times at which it becomes important to set 
limits on the times for which our solution here will be valid. This will be done in Sect. V. The quantity Q 
is the energy deposited per second per gram of medium by the laser. It will be related to the laser proper¬ 
ties more explicitly later; for the present, we need not define it any further than to say that Q is a heat 
source that turns on at time t = 0. 

Wc assume that the initial state (for time t < 0) is a steady state from which the desired solution de¬ 
viates only slightly. Thus 

v(R,t) = Vo(R,t) + V|(R,t) , (37a) 

p(R,t) = p0(R,t) + p,(R,t) , (37b) 

p(R,t) = Po(R,t) + Pi(R,t) . (37c) 

The functions v0 ,p0, and p0 are thereby required to satisfy Eqs. (36) with Q set equal to zero, p, and p, 
aie taken to be small quantities compared to p0 and p0. Furthermore, for the problem wc are considering, 
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v0 = 0, and pu and p0 are constant in both space and time, while the quantities Vi, pi, and p, of the first 

order vanish for times t < 0. Incorporating these conditions into the hydrodynamic equation and lineari¬ 

zing them in the usual way, we find that the first-order quantities must satisfy 

Po = - Vp, , (38a) 

= - Po V- V, , (38b) 

and 

dpi ,2 dp) 
aT c ãT 

where 

CJ = 1 £o 
3 Po 

and c, here, is the velocity of sound in the gaseous medium. 

(38c) 

(39) 

Solution by Transforms 

Let V| (R;s), pt (R;s), p, (R;s) be the Laplace transforms of V| (R,t), p, (R,t), and pi (R,t), respectively, 

with respect to the time variables. Let Q(R^) be the Laplace transform of Q(R.t), again with respect to 

the time variable. Bearing in mind the initial conditions, the Laplace transforms of Eqs. (38) become 

sp0V| (R;s) + Vp|(R;s) = 0 , (40a) 

sp,(Rs) + p0V-v(R;s) = 0 , (40b) 

sp!(R;s) - c2sp,(R») = -jpoOiR;«) • (40c) 

Let Vi(k;s), pt(k;s), pi(k^), Q(k;s) be the Fourier transforms with respect to the space variables of the 

quantities v, (R;s), p, (R$), p, (R?), and Q(R;s), respectively. We choose the asymmetric form of the 

Fourier transform: 

PliRs) = dkp,(k.s)e ik 
R (41) 

similar equations holding for the other three variables. Inserting Eq. (41 ) into Eqs. (40), the Fourier 

transform quantities are required to satisfy 

p0sV|(k;s) - ikp,(k;s) = 0 , (42a) 

- ip0k • $i(k;s) = 0 , (42b) 

s|p,(ks) - c2p,(k.s)] =-jpoQ(ki) . (42c) 
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To proceed further, we need an expression for Ô(R,t). Let l(r0) be the intensity distribution across the 
face of the laser. Let a be a characteristic length describing the distribution, and let W be the total power 
emitted by the laser. Then Hr0 ) may be expressed in terms of a dimensionless distribution function f by 

Kro) = 4 (*) ira V a/ (43) 

where f is normalized so as to make 

f r0iiro f 
J n J f\ 

r0dro I d0 l(r0) = W , 
0 

(44) 

I.C., 

/' 
dx xf(x) = y (45) 

Then in keeping with assumptions 3 and 4 of Sect. I, 

Q(R,t) = 
aW 

na2p0 
(46) 

where 0(t) is the Heaviside step function. Observe that the combination of constants aWpo-1 a-2c-2 has 
the dimension of reciprocal time; we thus define the first of a number of characteristic time parameters for 
this problem: 

2 „2 _ _3 np0a2c 

From these equations, 

aW 

Q(R;s) = -2¾ f(~) - 
Pour \a/ s 

(47) 

(48) 

Solving Eqs. (42) for ¢1 (k;s) and using Eq. (48), one readily obtains, with k = |k|, 

kV 
= SI(S! (49) 

where l(k) is the Fourier transform of f(r/a). From the tables of Laplace transforms, Eq. (49) is easily 
inverted to give 

From Eqs. (48) and (41 ), we get the density function 

(50) 

p,,r,„ = -P.r(i)--¡d? I dkilk) iiiMl «-*•»' (51) 
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Because f(r/a) is known, the Fourier transform f(k) is known, and therefore the solution for the density 

has been reduced to quadratures. Solution (51) is exact for the linearized problem and the model we have 

proposed. The second term on the right-hand side of Eq. (51 ) includes the transient effects associated with 

the propagation of sound in the medium. We shall indicate here that it tends toward zero rapidly when t 

grows larger thana/c. For, if f(r/a) is a confined distribution in the plane, a two-dimensional wave packet 

if you like, then f(k) is likewise a two-dimensional wave packet in k-space with a typical width of, say, k0 ; 

the wave packets satisfy the uncertainty principle, i.c., ka > 1. In different words, ?(k) -» 0 rapidly for 

k>a_l ; thus for values of ct » a, sin ket is oscillating rapidly in the regions where f(k) differs significantly 

from zero. The Riemann-Lebesgue lemma tells us that this term goes to zero as t tends towards infinity; 

the above arguments show us that the long times involved here are those times for which t > a/c. This re¬ 

sult also justifies our statement above that this term is associated with the transient effects involving the 

propagation of density changes or sound. Thus the density in the long-time limit is 

Pi(R,t) * - Po ~ , for t » a/c . (52) 

However, the small terms that have been dropped are important from a theoretical point of view in that 

Eq. (52) alone will not solve the equation of continuity and the initial condition simultaneously, which is 

simply another way of saying that Eq. (52) is not an exact solution. 

The short-timejimit, under certain circumstances, can become important. Because of the "wave packet” 

characteristics of f(k), for t « a/c, an expansion of the sine function in the integrand of Eq. (51 ) will 

afford a good approximation to the value of the integrand, provided enough terms are taken. We take only 

the first two terms for purposes of illustration. We get for the short-time approximation 

2 9 

Pi(r.t) * + Po - for 1 « a/c • (53) 

This exhibits a considerably different functional dependence upon t. If more accuracy is desired, higher 

powers of the expansion must be included. If tc is so short that p¡ ~ p0 for small times using Eq. (53), 

then the long-time regime is not reached before the whole linearization scheme becomes invalid. 

Another form for Pi may be obtained by using 

?(k) = (2ff)J 6(z) 

Putting this into Eq. (51 ), the density may be written as 

Pi(R.t) 
!c 

The k integration can be done exactly, but the result is so complicated it will serve no purpose to write it 

down here. Suffice it to say that the k integration reduces the problem to a quadrature over f. which clearly 

exhibits the fact that the second term in Eq. (54) is associated with those facets of the changes in the 

medium that involve a finite time of propagation of the local effects. These integrals in general will be very 

difficult to perform even for reasonable l(r/a) and, unless one has a combination of laser and medium 

characteristics that will guarantee us that the long-time limit cannot be reached before the linearization ap¬ 

proximation breaks down, there is no point in trying to evaluate the second term. 

tf(Í) ‘ c / drVf(7) f dk Jo<kr’> Jo(kr> sin kct (54) 
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The pressure .is a funelion ot position and time becomes 

Pi(R.t> 
CPu 

dk Ju(kr') J0(kr) sinket . (55) 

Since we have already shown that this mteiual is tending toward zero when t begins to exceed a/c, we may 

state that the ex/kinsimi oj the air becomes an isoharic process after times of the order of a/c. For very 

shot! times, on the otlrei hand, 

.: C * * /-00 
Pi(k.t) * "‘PU-. I dr’r’lf-l-) I dkk Jo(kr') J0(kr) 

, ÙsL r UrVtf) . 

trom which 

Pl(R.t) = f(I) . for t « a/c . 

The velocity can be reduced to 

As t » a/c. this quantity does not vanish. For small times 

But 

v<R.t> * - f drïf(i.) T dk k Jo(kr’) 
‘C Jn Jn ’ 

J dk k Jo(kr') J dkkJ0(kr) J0(kr') = ^ y , 

(56) 

vtR.,) -¿if" dn'f(—) T" dk ^ . (57) 
e Jn Va/ Jn dr 

v,(R.t) » - ^ r(y)f. for t « a/c (58) 

The results obtained above for p{ .pt .v, for short times arc also those obtained by a powers series expan¬ 

sion ot these quantities in time. 
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The above results are consistent, in a rather negative fashion, with laboratory experience. For most 
laboratory experiments, laser beams are of the order of 1 mm in diameter, so that a/c ~ KT-' sec. With a 
total power of I watt and a ~ 10-6, then tc ~ 4X103 sec. Now assuming that p¡ /p0 ^ 0.05 is the 
maximum density change for which the linearized hydrodynamic equations are valid, the long-time limit is 
in the range of 10-5 sec > t > 200 sec. Since normal air circulation in the laboratory will certainly sweep 
the heated air from the path of the beam in times much shorter than 200 sec, no appreciable density changes 
occur due to heating under customary laboratory conditions, and hence no blooming will be seen. Thus, to 
see blooming and density changes, special precautions and special combinations of parameters must be 
taken, or high-power lasers must be used. 

V. TIME SCALES 

In the previous section we have solved the problem of an exact determination of the density of the gas 
as a function of time within the framework of our model. Wo have seen that two relevant time scales have 
emerged from the discussion, a time scale tc characteristic of both the medium and the laser, and an essen¬ 
tially geometric time scale tg = a/c. Although we have not yet given a quantitative description of the 
blooming phenomenon, the theory of Sect. Ill shows the connection between the blooming phenomenon 
and the density changes. But the model on which these calculations are based is not wholly realistic be¬ 
cause the effects of wind, convection, and random fluctuations are ignored, and the presence of these 
phenomena can affect the blooming quite extensively. Hence it is important to get an estimate of the times 
that are required for these manifestations to render our model inaccurate. 

Convection 

As the laser heats the gas, causing the gas to expand, these regions of lesser density will experience a 
bouyancy force that will cause them to rise. The effect of this is to bring into the laser beam unheated 
gas, which being more like the surroundings will cause the laser beam to bloom less. Clearly, after convec¬ 
tion sets in, a steady state for the “beam/medium" system will have set in, wiili a small amount of thermal 
defocusing occurring in a noncylindrically symmetric fashion. Because the medium possesses inertia, a 
certain characteristic time, will be required to pass before the effects of convection become dominant. 
Clearly, if the thermal blooming characteristic times tc (or tg) are much longer than t^^, then convection 
will set in, requiring that special precautions be taken to be able to detect the blooming. If ‘c « W 
on the other hand, the blooming will take place in a readily observable fashion. (Here we have assumed 
what will prove to be the usual case, i.e., that tc, not tg, governs the blooming.) Now we must estimate 

*conv 

Consider the volume of air in the immediate vicinity of a point a distance r from the beam axis. Its den¬ 
sity is po + Pi(r,t) where pt, of course, is a negative quantity, if ¿¡V be the volume of this element of the 
medium, it experiences a buoyant force upward whose magnituc according to Archimedes’ Principle, is 
given by 5F = - Pi 6Vg where g is the acceleration due to gravity. Ignoring volume changes which are 
second-order effects, we calculate the motion of this element by Newton’s second law. If s(t) be its dis¬ 
placement from its initial point at time t, then 

s 

We take the element initially at r = 0; for this position, the effect of convection is maximized. Then 
fi(0) » I. We shall define t^^ as that time by which the heated element will have moved upward by one- 
tenth the beam diametn . i.e., s = a/5. Then 
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_ /iiic\113 _ / 9 7ra3cJpo\1/2 

conv V 5g/ \I0 aWg / 
(59) 

lu u certain sense tt as a characteristic time for the laser/niedium combination is a misnomer, for the 

density change will he equal to p0 at time t = tc. Since this will certainly violate the linearization approxi¬ 

mation. we should not compare tconv with te, but rather with a suitable fraction thereof, say Tc = (1/20) tc 

this means we are limiting density changes to no more than 5% of the ambient density. Then 

*eonv 20 / 4a2W2 \^3 

IT = » llS^cVoV (“ 

For a laset lor which a ~ 10 6 cm. W = 1 watt, and a = 1mm in air (p0 ~ I0-3), we obtain 

*oinv % *(. ■ Iwr ai1 ordinary laser operating in the laboratory under ordinary conditions, con¬ 
vection sets in prior to any large density changes (ôp/p„ < 10~3) so that the blooming will be difficult to 

see and a steady-state condition is rapidly established by the convecting air. Furthermore, the density 

changes are so slight before and after convection has set in, and usual laboratory distances are so small, that 

the beam passes through the air relatively undisturbed. Since tc «= 4X103 sec, then tconv « 10-2 

(5X10 -)X4XI03 % 2 sec. Air motions in the laboratory will probably mask any convective effects, as 
these time scales show. 

The phrase “blooming will be difficult to see” in the above paragraph needs clarification. It will be seen 

in the following sections that even turns out not to be too good a parameter to characterize the blooming 

phenomenon. The reason for this is simple-blooming is both a spatial and temporal phenomenon and no 

single time parameter can fully characterize it. Thus blooming, as we shall see, occurs at any time after the 

laser has been turned on. For very short times afterward, one has to go downbeam quite a distance before 

it becomes manifest, assuming it is not masked by diffraction. Under usual laboratory operations, this may 

not be feasible; special conditions such as long beam paths may have to be set up, or the gas may have to be 

doped to make it more absorptive to reduce these lengths. The latter case tends to accelerate the convective 

process, so one must therefore be prepared to observe the beam at correspondingly shorter intervals. It is 

with these precautions in mind that we have used the above-quoted phrase. 

Wind 

As with convection, mass motion of the air induced by any means will remove the heated air from the 

beam, causing the blooming phenomenon to be diminished. In the laboratory, ordinary air circulation can 

be a source of such motion, unless the beam is enclosed. For beams in the open atmosphere, winds and 

vertical convective currents associated with local meteorological conditions may sustain such mass motions. 

We term all these motions “wind.” Let vw be the local wind speed perpendicular to the beam axis. We de¬ 

fine tw as that time required for the wind to move a given element of air one-tenth the beam diameter 

(beam radius = a), a criterion we used for convective times. Then 

‘w = sf- • (61) 

One effect of winds, apart from reducing the amount of blooming, is generally to cause a deflection of 

the beam into the wind. The amount of deflection will depend upon the wind speed; hence, fluctuations 

of wind speed along the beam axis will thus cause fluctuations in the amount of deflection, complicating a 

description of the beam. Hence the description of the blooming phenomenon given in this paper cannot 

possess validity for times significantly greater than tw. 
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A second effect of wind, provided that conditions are right, is to cause turbulence, i.e., fluctuations in 
the parameters of the medium that are pertinent to the refraction of the beam. When turbulence occurs, it 
may profoundly affect the beam intensity profile, which in turn will alter the heating of the medium. When 
such conditions prevail independently of the time at which the laser is turned on, we cannot define any 
characteristic time before which the theory here can be valid. The density fluctuations arc always present 
and occur at all points on the beam axis. The extent to which they affect the beam will depend upon the 
power absorbed, the size of the beam, the size of the density fluctuations, and their distribution along the 
beam axis, among other things. We do not here estimate any of these effects on the blooming of the beam. 
Therefore, the present theory only can be applied to beams in the open atmosphere when the atmosphere 
is quiet. But the theory can be used to place upper limits on the blooming phenomenon even when the 
atmosphere is not quiet. 

VI. TRACING THE LIGHT RAYS 

Qualitative Considerations 

In Sect. Ill we derived the equation for the light rays, in terms of quadratures, as a function of density, 
using the approximations appropriate to our model for the system. Adjoining the linearization approxi¬ 
mation, in Sect. IV we succeeded in obtaining the density changes in time and space in terms of the proper¬ 
ties of the medium and the laser. Using the long-time form, which will describe most systems, the com¬ 
bined results may be written as 

where 

r = ± 
w/a 

*0/a 

dx 

iW f(x) 

r * vTc^T) f. 

(62) 

(63) 

The virtue of putting the equations in this form lies in the fact that from a plot of J vs r/a and r0/a one 
can read the coordinates of points of any light ray at any time from one fixed set of trajectories. Further, 
the f vs r/a plot will be valid for any laser of any size in any medium provided only that its intensity dis¬ 
tribution be given by f(r/a) and that considerations be restricted to the regions where diffraction effects are 
negligible. Hence a great deal of data can be compressed into one plot. (We are assuming, of course, that a 
numerical integration will be required here.) 

A function f(x) characteristic of many lasers is the Gaussian function exp(-x2 ). However, before going 
to specific numerical results, a great deal may be said about the blooming process using only Eqs. (62) and 
(63) and the fact that the distribution is monotonically decreasing toward zero. First, the denominator will 
be positive only for x > r0/a; hence we choose the positive sign and values of /a > r0/a. The slope of the 
curve given by Eq. (62) will always be positive (i.e., d(r/a)/df > 0); hence r will be an increasing function 
of f, as is to be expected on qualitative physical grounds. Further, for a ray which originates at a large 
distance r0 from the z axis, f(r0/a) will be small; f(x) will also be small, so that the integrand of necessity 
is very large for any given value of r. For the same r, but a smaller r0, the integrand will not in general be 
so large. Thus, the rays closer to the beam axis diverge more than those further away, a result that has been 
obtained before. Thus, qualitatively, the J vs r/a plot will look like that of Fig. 3. 
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I ip. 3 • Typical light ray trajectories plotted in terms of 
the reduced coordinates f and x 

Next,consider a light ray that emanates from a given point r0/a and on the f\s r/a plot. There exists a 
value fj, off where the ray will have deviated away from the f axis to a distance of, say,0ro/a, where 
0 > I. This value f^, will correspond at a given time t to zß(t) where 

V"=W^rr-ïr (64) 

Equation (64) shows that the point /^, at which the radial coordinate r of this light ray is0ro, moves 
progressively closer toward the laser as time passes, and it moves with a velocity 

ik 
2 ,3/2 (65) 

A second fact that can be discerned immediately is that the light ray ultimately becomes a straight line 
as / «.with a slope given by 

,in# = 37),,. = V2,n° - 11 r(T)VI ■ (66) 

Typical angles are drawn in Fig. .3. Since the maximum value of f is unity this slope has a maximum value, 
at a given time, of 

Clearly, these slopes increase with time, as Eq. (66) indicates. The term "blooming’’ is apt. indeed. 



NRL Rl-.PORT 7213 25 

Further, the inside rays “bloom” at earlier times and shorter distances than do the outer rays. This leads 

to a “hollowing out” of the beam. Thus, the intensity distribution of light on a surface perpendicular to the 

beam will begin to show a diminution of intensity in the center, and a peaking in an annular ring (convec¬ 

tion being neglected still), and then a further and rapid diminution. 

In the region where the blooming has become serious, that is. where the light rays are deviating seriously 

from their original path, and also further down the beam, the model of energy deposition that we have used 

breaks down. The light rays, being more dispersed, have ceased to heat these regions. But the blooming is 

due to the accumulation of small deflections upbeam where the model still holds good. Hence we may con¬ 

clude that, to a first order, the breakdown of our model for energy deposition is not serious. 

Excepting the last paragraph, our comments above have to be modified somewhat it t is not a monotonic- 

ally decreasing function. Even if fis monotonically decreasing, if we look at the very-short-time behavior, 

there are differences in details because f gets replaced by V2f, which is not monotonie any longer. However, 

the broad picture is still unchanged. 

Next we look at î(r^,t). Substituting Eq. (52) into Eq. (35) gives 

This equation shows that the right-hand side of Eq. (34) may be computed once and for all without regard 

to time, just as the right-hand side of Eq. (62) may be computed. To translate these results into an inten¬ 

sity as a function of r and of t for a fixed value of z, however, becomes a rather more complicated problem. 

To see where the problem lies, we ask how, when Eqs. (68) and (34) are combined, docs time enter the 

problem of coupling Î, for fixed z, for r and t? If we look at a fixed value of r. we then note that a light 

ray passing through r,z at time t will not pass through it at a later time, but instead a different light ray 

emanating from a different ro must be found. Thus, for r,z held fixed, roí will be functions of time. It is 

clear that the numerical problems grow as N, the number of rays crossing at r,z at time t, increases. For 

some choices of f(x). N may change with space and time, that is, in some regions of space only two rays 

will cross through each point for one time interval, and then later become three rays or more. 

Numerical Results for a Parabolic Power Distribution 

The most desirable choice for fix) is the Gaussian function, but it does not yield results that are tractable 

analytically, and numerically the situation becomes complicated so quickly that the details quickly over¬ 

shadow the general broad results. Thus, for didactic purposes, we select a simpler distribution for which 

many of the results may be obtained without extensive numerical computation. We take 

fix) = 

2(1 - X1) , X < 1 

0 , X > I 

(6‘>) 
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where 

dx xf(x) = j 

The relation between f and r is readily determined by simple integration to be 

x0 cosh (\/2 f) , X < 1 

X 

1 + \/l - Xo^ , X > 1 

(70a) 

(70b) 

where x and x0 are the quantities r/a and r0/a, respectively. These curves, for different choices of x0, are 
plotted in Fig. 4. It can be seen that for x < 1 no light rays cross one another. This is clear from above, 
since Eq. (70a) shows that the curve that begins at aru is always a multiple of that which begins at r0, pro¬ 
vided that r < a. For x > 1, only two light rays cross at a given f,x as can be seen by plotting x0 versus x 
This is done in Fig. 5. Figure 4 shows that the beam about doubles its size for those combinations of z,t 
such that v/2 ( assumes the value 2.3. We shall say that the blooming has become serious for these com¬ 
binations of: and t. That is, we regard this as a definition of the description “the blooming has become 

serious.” 

Eig. 4 - Light rays, in reduced coordinates, for the parabolic 
intensity distribution 
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Fig. 5 - Plot of x0 as a function of the reduced 
coordinates x and f 

From Eqs. (70) we can readily compute the derivative. ¡>rlHr„): - ¡>\IHxu)í and thus obtain the 

intensity. One gets, after a bit of calculus. 

2(cosh2 y/2 Ç - x2) ¿ 

cosh4 s/2? ’ 

2(1 - Xoi)2Xoi r > a 

x|xoi (l-x)+l-Xoil 

(71) 

where, for a fixed value of ?, that is, for a fixed distance z down the beam and ?.i a given time t, x0, and 

Xoj are the two values of x0 which, when inserted into Eq. (70) give the same value for x. 

From Eq. (7 l)we see that, at t = 0,? = 0 and the intensity is l(r.z,0) = W/rra^ f(r/a) for all values 
of z-i.e„ the beam is unaffected at the instant the laser is turned on. Also, for z - 0,1 - l(r,0,t) - 

W/rra* f(’r/a), i.e„ the power distribution across the face of the laser is unchanged in time. This must be so 

of course as it is essentially our boundary condition (see Sect. III.). The reduced intensity l/W/rra is 
plotted against r/a in Figs. 6 and 7 for various choices of the parameter ?. i.e., for various choices of com¬ 

binations of z t. If z is held fixed, then as ? increases, the different curves of intensity distribution show 
the change of intensity on a fixed plane as time passes The beam clearly is hollowing out into a ring of in 

tense radiation whose diameter is growing with time as I1/2. 

The region of serious blooming occurs at those combinations of z,t such that ? = 2.3; i.e., 

z = 
2.3a JH 

2>/ño^T ’ 1 

Therefore 

dz = 2.3a _ z. 

dt 4xÆT:'î ^ ‘ 2t ’ 

The speed with which the region of serious blooming approaches the laser is -dz/dt. 

(72) 
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(a) 

10 

.1_ 
8 9 

l;ig. 6 - Reduced intensity as a function of reduced radial distance x for a 
parabolic intensity distribution. The parameter f has the range of values (a) 
0.0 < v/2f < 1.0 and (b) 0.0 < f < 10 
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Fig. 7 - Light rays, in reduced coordinates, tor the 
Guassian intensity distribution 

Very Smooth Monotonically Decreasing Power Distributions; 

the Gaussian Distribution 

The case of the parabolic distribution discussed above was singular in several senses of the word. First, 
the integrals could be calculated exactly so that the general development was not needed in full. Second, 
the first and second derivatives possess a discontinuity at x = 1, and indeed vanished for x > 1 ; hence 
the full apparatus of the general theory could not be applied. 

In this section we treat a more general case, the case in which f(x) is not only monotonically decreasing 
but possesses at least three continuous derivatives. A case in point is the Gaussian distribution which ap¬ 
pears to be very realistic in many instances; numerical results will be given. Equations (62) and (68) thus 
apply, but since we have in mind the need for numerical computations, we cast these equations into a more 
readily computed form. 'I he need for such a recasting is evident, since both Eqs. (62) and (68) contain in¬ 
tegrals whose integrands possess singularities. Integrating by parts, Eqs. (62) and (68) become 

Vf(x0) - f(x) 

f = fM 

and 

X v , , f"(x') VftXo) - fix') 
dx-TÂTï- [f(x')| 

(73) 

Hxo) 

f'(x) 

2f,(x0)f,,(x) 

[f'(x)]3 
[f(x„) - f(x)| 
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*0 

respectively, while the reduced intensity distribution becomes 

ryKyMifV))* 
(74) 

1( xo )x0 
(75) 

where the sum is over all x0 which yield the same f for the same value of x when inserted into Eq. (73). 

For the Gaussian case, 

2 
f(x) = e x (76) 

The variable x is related to r by x = r/a, where a, here, is now a point at which the power decreases by a 

factor of e of its central value. 

The trajectories and intensities for the Gaussian case were computed on a digital computer; several of 

the light rays are shown in Fig. 8. The expected phenomenon of blooming appears as in the parabolic case, 

but the ray crossing now can become more complicated. 

..i_i_ 

35 4.0 0 0.5 10 15 2.0 25 3.0 

l ig. 8 - Plot of x,, vs. x for the Gaussian intensity distribution 

with f as a parameter 
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Fig. 9 • Reduced intensity as a function of reduced radial distance x for the Gaussian 
intensity distribution with f as a parameter 

To discern how many light rays cross through a given point x,f (in reduced coordinates), refer to Fig. 9. 
The curves plotted there are the values of x that a given light ray starting at xu will assume when having 
gone downbeam a distance f. Thus, to find out how many light rays go through point x.f, we draw a 
straight line parallel to the ordinate axis going through the value x on the abscissa. The number of points 
of intercept equals the number of rays that go through x,f, and their ordinates x0 will tell where, on the 
face of the laser, the rays originated. For values of f less than 3, approximately, only one ray goes through 
each point xj¡. For values of £ larger than 3 (we stress again that this number is only approximate since we 
had no analytical means of determining the exact number), there will be two points x, ,f and x} ¿ through 
which two rays pass. For all points x,f such that Xj < x < xa, three rays cross at each point. The effect 
of these ray crossings on the intensity distribution curve is quite pronounced as an examination of Fig. 9 
will show. The abscissa and ordinate of this graph are the same as those for the parabolic case graphed in 
Fig. 6. For J < 3.0, we see that blooming proceeds in a rather smooth fashion. However, for f = 3.0. 
4.0, and 5.0 there is an abrupt infínite discontinuity at two points in each case, between which the intensity 
is quite high, and outside of the interval defined by these points the intensity is relatively quite low. The 
phenomenon becomes more pronounced as f grows, and the length between the points where th? intensity 
becomes infinite increases as £ increases. The infinite discontinue ies owe their origin to the fact that two 
light rays from neighboring points on the laser face cross. In the full three dimensions, these rays form a 
caustic surface and the geometrical optics limit is no longer appropriate. Diffraction will play an important 
role here, causing the intensity to remain finite everywhere. Hence, the infinite peaks must be regarded as 
only indicative of a very high intensity. 
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The intensity profiles for the parabolic and Gaussian cases demonstrate quite dramatically how sensitive 

the details ol the blooming phenomenon are to the original profile across the face of the laser. Since our 

model of energy deposition is only a first approximation to the correct expressions, our results here reflect 

this choice of model to some degree. In particular we expect the results to be applicable in those regions 

near the lace of the laser or at early times. While it is true that the annular structure of the defocused beam 

has been seen experimentally, we cannot expect that our results will compare in all details with experimental 

results when the defocusing is severe. In contrast, we mention the case of the laser for which the intensity 

profile is rectangular, as will be shown in the section on “A Variational Problem" below, this laser beam 

will not bloom and. furthermore, our model of energy deposition is exact and the calculation is completely 

\cli-consistcnt. 

Nonmonotonic Power Distributions 

If f(x) is not monotonie, the light rays evolve in a more complicated fashion. Easy qualitative descrip¬ 

tions of the light rays can be obtained by noting that Eq. (62) for the trajectories is identical in form to the 

energy integral for a particle in a one-dimensional conservative potential, with J being the analogue of time. 

It Xu ) the analogue of the total energy, and f(x) the potential energy. It can be shown qualitatively in this 

way that nonmonotonic distributions can lead to focusing, as well as defocusing. 

A Variational Problem; Minimizing the Blooming 

From the examples of the preceding paragraphs it becomes clear that the choice of the initial power dis¬ 

tribution (or “beam shape" as it is sometimes called) will have rather profound effects on the spatio-temporal 

development of the laser beam in the medium. It becomes a reasonable question to ask if there exists any 

distribution f which will minimi/e the effects of blooming? (One could ask if there is an f which will 

maximize the effect of blooming. Since, in most uses of lasers, it is desirable ‘o preserve the initial degree of 

collimation of the beam, this function f would be of interest for the purpose of avoiding this case.) Of 

course, we must find a mathematical characterization of the phrase “minimize the blooming effect.” To 

this end. we assume we may use the long-time form for the light rays given by Eq. (62). The blooming will 

be minimized if. for a fixed deviation x - x0 of a light ray from its initial distance from the beam axis, the 

“distance" f down the beam axis is maximized. Thus we want to choose an f such that for every x and x0, 

f is maximized 

A solution to this problem is very simple: if f(x) = constant, f is always infinite, i.e. there is no blooming 

at all. Physically this is clear , if all the air is being heated by the same amount and the density changes are 

the same everywhere, light will propagate through without deflection. The trouble here is that such a beam 

possesses an infinite total energy and is therefore unacceptable as a physical situation. Another way of 

putting this is that Eq (4*>) is violated. Thus, our problem is to vary f so as to maximize f and still have 

Eq. (4l>) satisfied. Again the solution is at hand: 

flx! 

I. 0 < x < I 

0. I < x < •» . 

(77) 

It i> clear that this choice of f causes no blooming at all and oui model of energy deposition now becomes 

exact, although the whole problem becomes trivial after the fact. The interest in this result lies in its vivid 

illustiation of the tact that a beam w hose “shape" is as tiat as possible will have the least amount of bloom¬ 

ing. I he blooming will be most pronounced for those lays in the outer parts of the beam. (We note that 

these comments are applicable only to the region where diffraction effects are small.) 
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The blooming effect is maximized if f takes on its smallest value for every pair x0 ,x. Such a problem as 
this has no solution. 
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