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ABSTRACT 

Many recant economic and inventory studies 

have included various types of fixed or lump-sum 

costs as important determinants of optimal behavior. 

In this paper, the classical inventory model is 

augmented to include fixed shortage costs. In 

general, the presence of fixed shortage costs can 

lead to complex optimal solutions. The purpose of 

this paper is to establish a set of sufficient con¬ 

ditions which guarantee the existence of an optimal 

ordering policy which is unique. The resulting optimal 

policy is described by a unique set of critical numbers 

which are bounded and decrease monotonically over the 

horizon for which the inventory system is to be operated. 



FIXED SHORTAGE COSTS AND THE CLASSICAL INVENTORY MODEL 

by George F. Brown» Jr. and Richmond M. Lloyd 

1. INTRODUCTION 

A central problem in inventory theory has been the deter¬ 

mination of the form of optimal policies for various forms of 

the cost functions. General surveys of such results may be 

found in Scarf [6] and Veinott [8]. In particular, cost func¬ 

tions involving fixed, or lump-sum, terms have received wide 

attention. Fixed costs enter the inventory problem principally 

with respect to ordering and to stockout or shortage. Recent 

papers by Mellon and Orr [5], Barro [1], and Brown and Lloyd [4] 

have employed this concept. Scarf [7] has shown under very 

general conditions the optimality of (s,S) policies when fixed 

ordering costs are included. Fixed ordering and shortage costs 

also represent a particular case of the models developed by 

Boylan [2], [3]. For a broad class of problems, it was shown 

that a multiple (s,S) policy would minimize costs over an 

n-period horizon. In the present paper, the classical inventory 

model with proportional ordering, holding, and shortage costs 

and backlogging of unsatisfied demand is augmented to include 

fixed shortage costs. In general, multiple solutions can occur in 

this case. The purpose of this paper is to establish sufficient con¬ 

ditions for the existence of an optimal ordering policy which is unique. 

Furthermore, the resulting optical policy is-described by a unique set 

of crifTial numbers which are shown to be bounded and to decrease 



monotonically over the horlson for which the inventory system 

is to be operated. 

2. THE PROBLEM 

The functional equation employed in the analysis is: 

%(x) ■ 0 

where 

X = beginning inventory level, 

y = inventory level after ordering, 

c = per unit ordering cost, 

h = per unit holding charge per period, 

p = per unit shortage charge per period, 

m = fixed shortage charge. 

We assume demands in every period to be independent and identi¬ 

cally distributed random variables with probability density 

function <p(») • We make the further restriction that the 

density function of demand be pseudo-concave. That is, 

dffl( Çi) 
—3ç—s 0 «K?].) * ¢( * Unij,vodal density 

functions such as the normal, gamma, and exponential are among 

those that are pseudo-concave. 
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Define the functions 

g(x,y) = c(y-x) + f h(y-{)<j(0<J{ + J* pit-y)»«»'!« + ■ [»(Odt , 

Gn(x,y) « g(x,y) + a J f^Cy-Ç)^ ?)d? for n * 1»2.N 

For the last period in the planning horizon* n = 1, the 

functional equation is 

f.(x) = min 
A y» 

= min 
y» 

where 

(2) M(xiy) = c + h # (y) - p [l-l(y)] - m «P (y) • 

We assume 

= c - p + [h+p] * (0) - m <p (0) <0 

y=o 

to eliminate a boundary solution. This restriction is weaker than 

the traditional assumption made for the classical model due to the 

inclusion of the negative term, -m<p(0) . 

Setting the first derivative (2) equal to zero, we have 

(3) ay 

Ky) 
p-c 4 mrixl 
h + p * 
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which can be solved for those values of y> y*» which satisfy 
* 

the first order minimization condition. The classical model 

assumes that m = 0 , so that y* is unique. The right and 

left hand sides of (4) are plotted in Figure 1 for a unlmodal 

density function. For m > 0 , there can be from one to at most 

three solutions to (4). Second order conditions depend in 

general upon . We wish to determine sufficient condi- 
»7 

tions such that for each period a unique value of y minimizes 

the functional equation. 

We first present two lemmas. 

Lemma 1: Define ÿ to be the mode of cp(0 » a pseudo-concave 

density function. Then there exists at mosv. one y» y 2 ÿ , 

such that equation (4) is satisfied. 

Proof: Since t(y) is a non-decreasing function and ^ 

is a non-increasing function for y *y , the lemma follows. 

A sufficient condition for the existence of a unique y 

satisfying (4) is contained in the following lemma. 

Lemma 2: A sufficient condition for (4) to have a unique solution 

is 

(5) h # (ÿ)- p [l-l(y)] + c < 0 , or, equivalently, 

(6) «ÿ) <£f . 
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FIGURE I 

CASE II: Two Solutions 
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Proof: If (5) holds for y , then it holds for all y « y and 

< o for all y s ÿ . Then the first solution to (4) 
ay 

must occur at a value y*, y* > ÿ » which by Lemma 1 is unique. 

This is Case 1 of Figure 1. 

We now prove the following theorem. 

Theorem I: The form of the optimal policy for the inventory 

system specified by (1) is the same as for the classical model, 

as long as ¢(0 is pseudo-concave and condition (5) holds. 

The optimal policy is characterized by a unique set of numbers 

y£ , such that 

for *„ < > order up to yjj 

for X« a yî , do not order, n 'n 

Furthermore, 

o < yL s y£ * y*+1 < yu < • for n - 1,2,...,n . 

where the upper and lower bounds, yU and yL , respectively, 

are defined by 

(7) (l~of)c + h I (yU) - p[l-*(yU) j - m <p(yU) = 0 

(8) c + h ♦ (yL) - p[l-t(yL) J - m <p(yL) = 0 . 

Finally, the derivative of the functional equation for n = 1,2,. 



-c for X < y* n 

'ää|di + ^ for X > yj . 

Proof: The proof is b>' the method of mathematical induction. 

nal: The first order condition for a minimum in the last period 

is given by 

(9) 
agfx^) 

—*r 
a c ♦ h Hyx) - pCi-Ky^l - «KpCyp = o 

and it has a unique solution y^ by pseudo-concavity, condition 

(5), and Lemma 2. Since (9) is identical to (8), y^ = yL and 

y"J < yU. By assumption (3), yL >0 . From equation (7), it follows 

that 
|( U. = p - (l-a)e - m^yU) 
vy h ♦ p 

Since 

*(yu) < r j; < 1 . 

it follows directly that y11 < • . Since y£ is unique, the optimal 

policy is of the classical form as given in the theorem, so that the 

functional equation is 
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x) 

for X < 

for X s y4| . 

Its derivative is 

c for X < y^[ 

+ “ J0 —” tp(Ç)d5 íor X s y* . 

Thus the theorem holds for n = 1 . 

Arbitrary period: Assume the theorem holds for periods 1,...,n-1. 

The functional equation for period n is 

fn(x) = minfc (x,y)] 
yax 

= min[g(x,y) + a Jo 5) ¢( 5)d5] 

The derivative of G (x»y) with respect to y is 

= asCx.y) i ar" ¿.[fn.^y-O Vpd? . 
iy iy J0 

which upon substitution of the derivative of the functional equa 

tion for period n-1 is equivalent to 

3Gn(x,y) 

ôÿ 

ag(x,y) 

™ly sy 
^pdÇ-ac^-Ky-yJ.p]. (10) 



When y < y*n_x » (10) reduces to 

(ID 
3Gn<*»>0 _ agCx.y) 

âÿ “ 
OC , 

which is identical to equation (7). Equations (7) and (8) are 

graphed in Figure 2. 

Since by hypothesis y*^ < yU » equation (11) must be 

negative for y < . Therefore, yj must be greater than 

or equal to y*^ . If V * y£-i > then the limits of inte5ra' 

tion in equation (10) imply that 

y;_i y-ç ^ y » 

so that from the definition of the derivative of » 

equation (10) is 

yy*n-i 

aGn(x,y) ag(x,y) Ir^n-l^“^^ - c]cp(Ç)dÇ - ocfl-Ky-yJ.!) 

"17 = ay + at)L ay 

ag(x,y) 

”17 oc + Of 
(y-ç»y-Ç) 

ay «(<?)d5 • 

The first two terms above are equation (11) in Figure 2. The 

third term above is always positive since yj^ was assumed unique 

and 

ay 

9 - 

(12) for o * ç * y-y*n-i • 



FIGURE II 

*g<x»y> 
*y *Gn_i(x»y) 

A. 

- 10 - 



àCJx.y) , ,, 
In the appendix, it is shown that ——- is monotonically 

increasing for y a y*_^ . Thus y* a y*_^ and is unique. 

Finally, for y = yU 

^Gn(x,yU) ^(x,yU) 

W = ~ 

yU-V" , / n-1 

OC 
/ ^n-1(yu-?>yu-s 

c*b ^y 
cp(Ç)dÇ >o 

The first two terms above are zero by the definition of yU 

from equation (7) and the third term is positive by (12) and the 

hypothesis yU > y*_r Therefore, y* < yU • 

The optimal policy is of the classical form as stated in 

the theorem, and is unique. By substitution of the form of the 

optimal policy into the functional equation, it can be easily shown 

that its derivative is of the form given in the theorem. There¬ 

fore, the theorem holds for any general period n . 
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APPENDIX 

àG_(x>y) 
In this appendix, - is shown to be a monotonicaily 

increasing function for y * y* ^ . The proof is again by indue 

tion. 

n = 1: G1(x,y) = g(x,y) 

w w 

= c + h*(y) - p[l-*(y)] - mcp(y) 

a Gi(;-y) - A(x,y) 
5 2 ây òy 

= h^(y) + pçp(y) - . 

Clearly h<p(y) + pcp(y) > 0 for all y . Furthermore, for 

Wv) - }2G-,(x,y) 
y * y > á 0. Since Ÿ{ > y y we have -=---> 0 for y 

^y 

Arbitrary period n: 

y-y’n-i 

= . qc + 

òy òy òy <p(S)dÇ 



y'yñ-l 

a Vx»y) 
òy 

â g(Xiy) 
öy 

íaViCy-s» y-ç) 
+ «•{—JLjl- ^<Ç)dç 

+ «(D 
ôy 

For y i y* , » á >0 as was seen from the first period 
sy 

equation. Since by hypothesis the theorem holds for 

n = 1>2,...,n-l, à Gn-l(y'Ç,y"Ç) 
ay 

> 0 for y - Ç * y* , . This 

restriction is met, since Ç is restricted to lie between zero 

and y-y* , . Finally, the third term is zero by the hypothesis 
<£ (x,y) 

that y* . is optimal for period n-1 . Thus - > 0 'n-l r r ^y 

for y 2 y*^ . 

Q.E.D 
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