

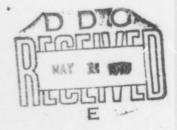
0704686

AD

REPORT NO. 362

FIRING STRAIN MEASUREMENTS ON 76MM GUN M1E2

by


Vance H. McNeilly

This document has been approved for public release and sale $\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ its distribution is unlimited.

Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

U.S. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER BALLISTIC RESEARCH LABORATORIES ABERDEEN PROVING GROUND, MARYLAND

NOTICE TO USERS

Portions of this document have been judged by the Clearinghouse to be of poor reproduction quality and not fully legible. However, in an effort to make as much information as possible available to the public, the Clearinghouse sells this document with the understanding that if the user is not satisfied, the document may be returned for refund.

If you return this document, please include this notice together with the IBM order card (label) to:

Clearinghouse Attn: 152.12 Springfield, Va. 22151

Ballistic Research Laboratory Report No. 362

VHM/jpr Aberdeen Proving Ground, Md. June 1, 1943

C.

FIRING STRAIN MEASUREMENTS ON 76121 GUN MIE2

Abstract

Measurements of tangential and axial strain were taken at various points on a 76mm Tube MIE2 while firing the M79 projectile at various pressures from 75 to 115% of normal. Rather high peak strains in both directions were observed at the time the projectile passed, especially near the muzzle. Peak tangential strains or the outer surface due to the rotating band were observed to be around one and one-half times higher than the strain due to the gas pressure, at the thick-walled section; and more than two and a half times higher, near the muzzle.

Introduction

λ.

1. According to conventional design practice the factor of safety in gun tubes, based on gas pressure alone, is considerably higher in the chase and at the muzzle than at the breech. Justification for this is found in the fact that expansions and bursts at the muzzle are not uncommon, even with this higher safety factor. In seeking an explanation for such expansions and bursts one hypothesis was presented* to the effect that pressure waves in the gases might induce transverse waves in the steel which under certain conditions would reinforce the usual stresses caused by the gas pressure to produce the observed bursts.

2. Not until comparatively recently however, was the importance of the pressures caused by the rotating band of the shell, realized. In this country, Watertown Arsenal has been studying this matter for sometime##. In connection with recent investigations of the 76mm Gun, the Proving Ground was directed to take the strain measurements reported herein in order to furnish a basis for further studies by Watertown Arsenal.

- * R. H. Kent, "A Possible Explanation of Muzzle Bursts and Expansions of Howitzers", Ballistic Research Laboratory Report No. 29, December 16, 1935.
- ** Also reference is made to the work of the British Gun Design Committee, British Ordnance Board Proceedings, No. 21,628, February 10, 1943, (Cont.)

General

3. In accordance with the program outlined by Watertown Arsenal and approved by the Chief of Ordnance (WA 472.94/11, 00 472.13/1160, APG 472/553-40), strain measurements were taken on the 76mm Tube, MLE2, No. 1111 during firing. Rounds were fired at charges giving 75%, 100%, 105%, 110% and 115% of the normal pressure and records of axial and tangential strain were taken at the gage positions shown on Figure 4.

4. Due to the limitations of the recording equipment available (See Appendix I) only three records could be taken simultaneously. In order to have a continuous reference for coordinating the gage readings at different points, which of necessity were taken on different rounds, one of the recording channels was always connected to the "breech reference gage" (Gage No. 8). This gage recorded the tangential strain on the outer surface of the tube over the chamber, 9-1/2 inches forward of the front edge of the breech ring. Table I is a list of the gages that were used on each round.

Materiel

5. The 76mm Tube MIE2 No. 1111 (Gun, 76mm, M1, No. 1009) was mounted in a special mount consisting of a steel sleigh sliding on a pair of timbers. The sleigh was restrained by a steel cable attached to a recoil mechanism which was anchored to the ground well out in front of the gun. The tube was supported on the sleigh by means of two sets of wooden clauping blocks. The breech end of the gun was butted up against the steel plate which formed the rear end of the sleigh. A hole was cut through this plate to facilitate loading. This mount was located in Stockade 2 at the Main Front.

- 6. The ammunition used on all rounds was as follows:
 - a. Projectile, A.P. M79, various lots, Dwg. 78-18-45 (except rounds 30 and 31). On rounds 30 and 31, Shell, HE (inert-loaded) M42B2 was used.
 - b. Powder, FNH Lot 8007-12 for 3" A.A. Gun Model 1918M. The powder was kept in the constant temperature magazine at 70°F. until time to be fired.
 - c. Case, 76mm 1126, various lots, Dwg. 71-2-123.
 - d. Primer, 300 grain, 123 A2 KOP Lot 14-6 Dwg. 74-2-63.

7. Other pertinent measurements taken besides the strain gage records included the diameters of the rotating band of each shell, copper pressures using two medium caliber M3 copper pressure gages, solenoid velocities, and the weights of each projectile and propelling charge (Firing Record No. M22215). Mr. Founds was the proof director in charge of the firing. 8. The weight of charge used for each range of pressures was as follows:

50.75 ounces 75% . 59.00 100% • • 11 61.13 105% . . . • • . . . 11 62.30 110% . . . 11 63.40 115% .

These charges were established to approximate the above percentages of the average pressure required to give the rated muzzle velocity with this particular powder. Where er reference is made to a certain "per cent charge" in this report, the above charges are indicated.

Test Procedure

9. The strain gages were mounted and connected to a common terminal board mounted as shown in Figure 2. There were two gage elements for each gage number, connected in series so as to give the total strain in the two elements. The tangential gages were placed 90° apart to eliminate the possible effect of ovality and the axial gages were placed 180° apart to eliminate the effect of bending of the tube. The shielded wires leading to the recording equipment were plugged into the receptacles for the desired gages and the wires laid back with sufficient slack to allow for the recoil movement of the gun.

10. On April 18, ten rounds were fired, five at 75% pressure and five at 100% pressure. Gage No. 8, the breech reference gage, was connected to one of the recording channels during all the firing. In the first days firing it was connected to the lower (No. 3) recording channel and the other two gages were connected to the top and middle channels. The timing signal from a 540 cycle frequency standard was arranged to give a momentary interruption in the record once each 1/540th of a second. This was connected into channel No. 3 so that timing breaks 1.85 milli-seconds apart appeared in the record of the breech reference gage. The muzzle contact circuit was also connected into the same line.

11. Records were taken of simultaneous axial and tangential strain at the same section along the tube on gages 1 and 8, 2 and 9, 4 and 11, and 5 and 12, and of simultaneous axial strain at two different sections along the tube on gages 1 and 3, and 4 and 5. (See Figure 4 for location of gages and plot of representative records.)

12. A brief study of the records obtained in this day's firing indicated a need to repeat some of the rounds. In some cases important peaks were lost because of being deflected off the film or being obscured by other lines on the oscillogram. The records on the muzzle gages 5 and 12 were particularly bad, firstly, because the strains occurring at the muzzle are practically impact strains of such short duration that they are difficult to photograph at best; and secondly, because of difficulties with the gages such as an apparent shorting out of part of the gage momentarily, or a momentary break in the gage circuit, causing the amplifier to be highly overloaded and the record to go off scale. The muzzle blast may possibly have had an effect on these gages.

-3-

13. Before firing was resumed, the timing signal and the reference gage were changed over to the center channel to reduce the possibility of interference between the peaks of the other two records (which for most gage combinations used, occurred at approximately the same time), by connecting them to the two outside channels. Also, in an attempt to improve the photographic recording some Verichrome film was obtained to use in place of the Eastman oscillograph paper.

14. On April 20 after the above changes were made four rounds were fired at the reduced pressure and records were taken on gages 4 and 11, 2 and 9, and 1 and 3. No records were taken on this day on gages 5 and 12 at the muzzle because one of the gages which had broken, was replaced and the cement had not had sufficient time to harden. The four records which were obtained appeared quite satisfactory.

15. A spare set of gages at the muzzle position were cemented in place so that they could be connected up in a short time in case the muzzle gages that were being used, broke or went bad during the next day's firing. At the same time it was felt that valuable information could be obtained by placing some additional gages over the origin of rifling. Consequently a pair of axial and tangential gages were installed in this position, and numbered 15 and 16 respectively.

16. In the next day's firing, April 21, Direx B oscillographic paper was used: and records were taken on gages 4 and 11, 5 and 12, 15 and 16, 4 and 5, and 11 and 12. Instructions had been received at this time that the 115% pressure rounds requested in the directive should be approached gradually because of the danger of blowing up the tube. Consequently, six rounds were fired at 105% and six rounds at 110% pressure before going to the 115% pressure rounds.

17. During this day's firing several gages went bad. Trouble was still experienced in getting records of the mazzle gages because of the difficulties previously mentioned. Therefore, after this day's firing, when replacing the bad gages it was decided to replace all gages in the muzzle group. It was thought that there might be a possibility that the severity of the shock and magnitude of the strains at the muzzle were damaging these gages on the first round fired; hence, it was decided to start the next day's firing on the new gages by using an HE projectile instead of the solid shot, on the presumption that the hollow shell would give lower band pressures and a good record might be obtained.

18. Unfortunately, the first round was missed by an error in triggering the camera and on the second HE round the line to gage 5 was not connected and the record of gage 12 showed the same apparent shorting of the gage: A as pre-viously observed.

- * This paper was found to be slightly faster than the Eastman paper but not as fast as the Verichrome film. It was felt desirable to use paper if possible, because of the saving of time in developing and general ease of handling.
- 3** The record showed essentially two very sharp vertical deflections: first a minus change of 1h ohms then a plus change of 60 ohms. The latter would correspond to over 500,000 pounds per square inch of stress if it were a true recording of strain. Hence, something undoubtedly went wrong with the gage.

19. On the remainder of the firings on the 22nd records were taken on all the gages, as the pressure was increased to 115%. Additional attempts were made to obtain records on the muzzle gages but all the records were questionable. The records at the other gage positions were, on the whole, quite satisfactory.

Discussion of Results

20. The peak strains observed on all records are grouped according to gage numbers and shown in Tables II to VII. These are the strains at the outer surface of the tube and must not be considered as the highest strains to which the steel of the tube was subjected because the highest strains will occur at the inner wall where they cannot be measured. In addition, there are undoubtedly high concentrations of stress caused by the rifling grooves and boresighting grooves* which are difficult to evaluate. The observed strains were multiplied by an assumed modulus of elasticity of 30,000,000 lbs. per square inch and the results tabulated in the more familiar units of stress, only for the purpose of ease of handling. These would be the correct actual stresses only in the case of simple direct stress parallel to the direction of the gage. The strains as measured are functions of combined axial, tangential, and shear stresses.

21. The shape of the curves obtained from the records of gages along the tube as the projectile passes, (See sketches on Tables II, III, etc.) are extremely interesting and important when studying the effects of the rotating band on the tube. The records of tangential gages are characterized by a sharp high peak of tension as the rotating band passes under the gage, (point A on tangential curves) which immediately drops to the value of strain due to the gas pressure alone as the projectile passes on (point B on tangential curves). The peaks at points A were found to be from 1.2 to 1.9 times the values of B at gage 9 (thick walled section), from 1.5 to 3.8 times the values of B at gage 11 (thin walled section) and possibly four or five times the value of B at the muzzle (gage 12).

22. The records of axial gages over the bore are characterized by three sharp peaks: first a compression peak (point A on axial curves), then a tension peak of about the same order of magnitude (point B on axial curves), then another compression peak somewhat smaller than the previous one (point C on the axial curves). A plausible explanation of these peaks** is as follows: As the projectile is forced through the tube, the walls are unexpanded in front of the rotating band, considerably expanded directly over the rotating band and expanded somewhat less in back of the rotating band, due to the gas pressure. Thus the outer contour of the tube walls, going from front to back and considering the shell as stationary, would appear as (1) a straight section undisturbed, (2) a curve concave outward as the band is approached, (3) a curve convex outward, directly over the band, (4) another concave section as the band is passed, and (5) a straight section of larger diameter than the undisturbed section. As the projectile moves past a fixed gage point, the gage would experience these same changes in contour, in the same order. Since the gage is measuring the axial

* The boresighting grooves on this gun were filed smooth to lessen the possibility of failure of the tube.

** As given by Dr. R. Beeuwkes, Jr. of Watertown Arsenal.

strain in the outer fibres, such a curvature would produce compression when concave and tension when convex outward (considering each thin longitudinal section as a beam bending about its neutral axis). Thus the three peaks as observed on the records appear very reasonable. The second compression peak is less than the first because the curvature is less due to the gas pressure in back of the projectile.

23. In Table VIII are tabulated all of the firing data together with the observed stresses of the reference gage, No. 8. These data are grouped according to increasing charge, and within each group of one charge, the rounds are arranged in order of increasing velocity. The last column in this table is the ratio of the observed tangential stress to the copper pressure as determined by the average of two medium caliber copper gages. This ratio was plotted against round number (Figure 3) in order to get a better picture of the dispersion. Theoretically the ratio should be a constant and equal to 0.73 (assuming that the true pressure equals 1.2 times the copper pressure) providing that at the time of the maximum pressure, the gun tube could be considered as a simple open cylinder. Apparently the tangential stress is reduced by the fact that open cylinder conditions do not exist at this time, as evidenced by the stresses exhibited by the axial gages. The observed dispersion of points on Figure 3 may be partly due to the dispersion of the copper gages, partly to the effects of variation of the axial force, and partly to the accidental error of the observations. The overall accuracy of the measurements is estimated as 5%.

24. In connection with the axial forces existing, the records taken on the gages over the forcing cone (15 and 16) are especially interesting. It may be seen from Figure 4 and Tables V and VI, that this section is under tension both axially and tangentially at the time of engraving. Likewise the axial gage No. 1 over the chamber is under tension and these peaks correspond to the dip observed in the early part of the record of the tangential gage No. 8 over the chamber. The tension in gages 15 and 16 appears reasonable due to the bulging of the section of the tube in the vicinity of the forcing cone during engraving, and the tension in the gage 1 is probably due to such effects as acceleration of the tube rearward by the pressure on the breech or possibly a momentary decrease in the acceleration of the projectile during engraving. Such an axial force would naturally result in a decrease in the tangential strain according to Poisson's ratio to produce the dip in the tangential strain record mentioned above.

25. However, it will be observed that, at the time of maximum pressure (as shown by gage 8), whereas axial gage 1 has changed to compression as would be expected under open cylinder conditions, point B on axial gage 15 is still under considerable tension. This may be an indication that the shell is still close enough to the origin of rifling at the time of maximum pressure so that the bulging due to the rotating band still affects gages 15 and 16.

26. While no calculations of band pressures are included herein, the indications are that they are of the order of sixty or seventy thousand pounds per square inch at the thick walled section and twenty to thirty thousand pounds per square inch near the muzzle. Therefore, it becomes important in gun design that due cognizance betaken of the pressures of the rotating band as well as the gas pressures.

27. Other important information is now being obtained from a more complete study of the film records. When this becomes available it will be submitted as an addendum to this report.

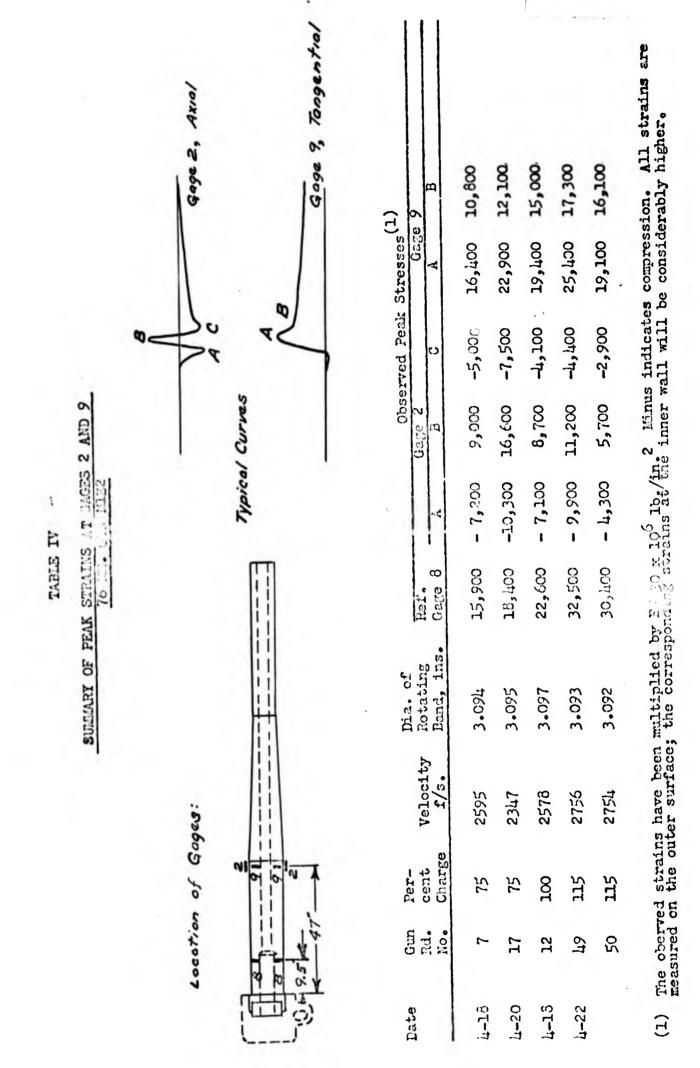
Vance N. Me Theilly

Vance H. McMeilly

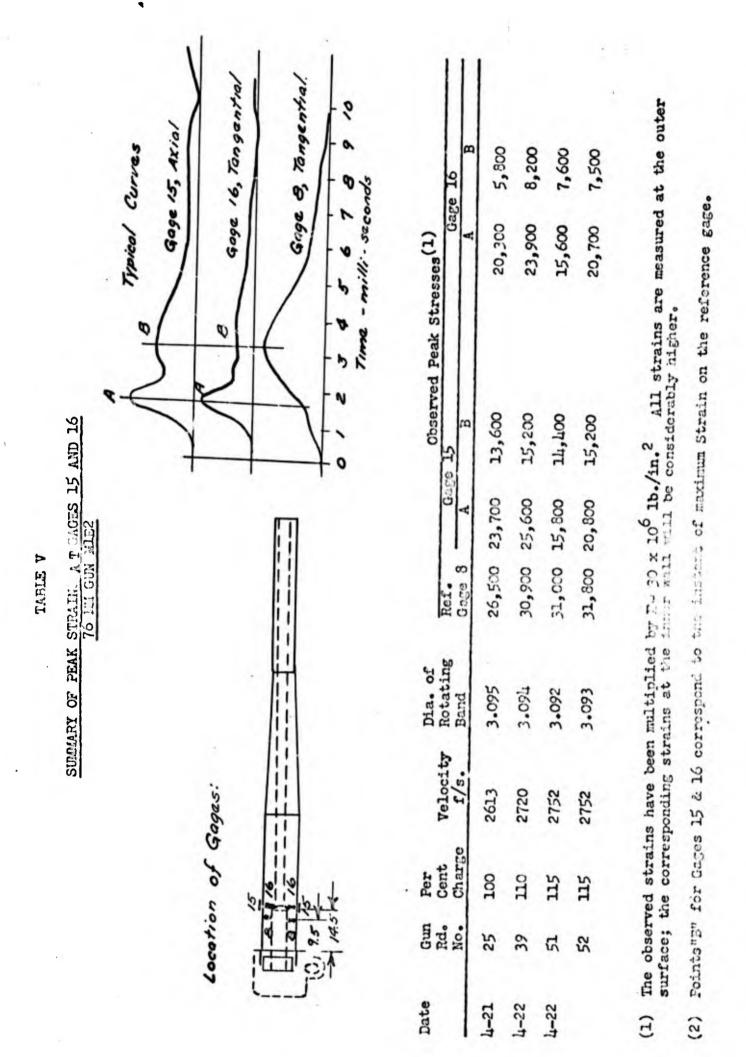
TABLE I

LIST OF GAGES USED ON EACH ROUND. 76LM MLE2 STRAIN MEASURELENTS

DATE	RD. NO.	GAGES	DATE	RD. NO.	GAGES
4/18/43	5 .6 7 8 9 10 11 12 13 14	11 8 11 8 2 9 8 5 12 8 5 12 8 5 12 8 5 12 8 5 12 8 5 12 8 5 12 8 5 12 8 4 11 8 2 9 8 4 5 8	4/22/43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
4/20/43	15 16 17 18	4 8 11 4 8 11 2 8 9 1 8 3		41 3 42 3 43 4 44 4	8 7 8 7 8 11 8 11 8 11
4/21/43	19 20 21 22 23 24 25 26 27 28 29	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		45 46 47 48 49 50 15 52 16	8 11 8 12 8 3 8 3 8 9 8 9 8 9 8 16 8 16 8 3


		Typicol Cu	cures	100 Cogo	Goge 4, Axial
		→ ZS → ZS		Coge	Goge 11, Tongentra
Velocity f/s.	Dia. of Diay Rotating s. Band, ins.	Rol. Gare 8 A	Observed Feak St Gage 4	Faak Stresses(1) 1 Cage	se 11 B
2293	050°E	18,000 -20,300 -	-17,900	00 31,200	12,800
2283	3.092	16,500 -15,900 1	11,500 -13,900	007"17 00	11,100
*	3.094	20,200 -23,100(2)°filt	film -23,100	000 '66' 00	14,300
2335	3•090	19,300 -23,600 3	32,100 -23,400	00 33,200	15,100
2555	3.097		16,800 -12,300	00 31,100	12,600
2615	3.095	26,400 -15,406 ²⁾ 2	27,700 -21,600	00 42,200	214,300
2577	3.091	23, 600		15,150(2)	15,150(2) 12,150(2)
2614	-	29,500 -10,300 1	16,600 -10,300	004,0C 0C	11,500
2679	3.093	30,400			
2733	3.093	32, 200 - 8,550	3,300 - 8,050	50 23,200	15,300
2753	3•093	34,100 -15,300 ⁽³⁾	8,300 ⁽³⁾ - 7,5	7,560 ⁽³⁾ 26,600	14,500

			Goge 5, Axial	Gaga 12, Tangantial	Remarks	Peaks on 5 very ouestionable		ź	#	roor iritgger Timing	Hirh Peaks	orerloaded Arolifiers	Gafe 5 Record				ression. All strains considerably higher. Gare mas found to be
		Curves			() (e 12 B			9,800					9,100				ression. A considerabl Game mas f
		Typical Curves			Peak Stresses(1) Gage C A	(2)		53,400					38,400				5.14
	NI	9-			wed Peak S	-16,700	-18,800	- 9,500	-48,900		q		-23,600	-63,600	009,11		10 ⁵ 15./in. ² Linus indicates cor strains at the inner wall will to an apparent shorting of the gage.
	0.005 5 AND 12				Observed Gage 5 B	12,900	30,300	10,700	71,100		c Connected		1(°700	45,400	009 ° 1†		/in.? lin. at the int rent short
TIL TIL.	E E		0 0 1 1 1 1 1 1 1 0		A	- <u>1</u> 3, 800	- 3,700				Not		-10,000	0	0		
	STEA 76.04				Ref. Gage 8	CO7,02	16,300	19,700	13,600		13,300	24,500	2i1,600	23,500	28,900	32,800	10 0 11 101 2017 0 101 2017 0 101
	SUPLARY OF FEAK	:0:			Dia. of Rotating Band, inz.	3.091	3.094	3.093	3.096			3.090	3.092	3.095	3.095	3.093	observed strains have been multiplied by Id measured on the outer surface: the cornery t of the records for days 12 were lost for the of stor total.
		Location of Gages:			Velocity f/s.	2293	2277	2348	2346		21,99	2590	2583	2533	2684	2751	ns have been a outer sur a for Gaye
		L ocatro			Per- cent Charge	75	z	E	ż	SFIE	Ľ	COL	E	5	105	115	observed strains measured on the s of the records
					Gun Rd. No.	ω	6	19	32	30	31	10	20	33	37	17Q	The observed are measured mout of the Jeach after
		ā.	"qay an an ani		Date	11-18		4-21	4-22	1,-22		Li-18	12-71	1-22			(1) (2) (2) (2)
				-	9-	т (с		1			٣						


TAPLE ITT

1

•

-10-

-].]-

ret si	10007	Location of Gages:	Gages:			+	A L	600 8 600 8	85 0 v / - v /	ge I. Axial Gage 3, Axial Gage 8 Tangential 7 8 9 10	i entro
Date 1943	Gun Rd. No e	Per- cent Charge	Velocity f/s.	Dia. of Rotating Band	Gago d	ų.	0bserved	ved Peak St	Peak Stresses ⁽¹⁾ A Gage 3	O	
1 –20	81 1	75	2331	3-094	17,500		(-3, 200) -2, 500	-13, 600	11,500	- 9,900	
4-18	ដ	JOOL	2589	3.034	23,400	1,500	-5,400	-12,900	13,200	- 9,800	
4-22	36	105	2677	3.095	30,600		-3,200				
E	37	OTT	2722	3.094	29,1:00		-8,700	-13,000	12,100	-12,100	-94
E	33	OTT	5740	3.095	32,200	2,400	-8,500	-13,500	11,600	- 9,400	
=	- 74	115	2755	3.095	31,500	2,200	-7,300	-14,100	7,700	-10,600	
E	1,6	115	2740	3.092	29,800	2,000	-7,200	- 8,900	3,200	- 6,100	•••••
(1) Th su co	The observed surface; the compression.	rred strain the corred lon.	ns hare beer sponding sti	The observed strains have been multiplied surface; the corresponding strains at the compression.	by E= 30 x inner wall	<pre>< 10⁶ lb./in.² </pre>	/in. ² All considerab	'in. ² All strains are considerably higher.	measured at Winus sign j	at the outer 1 indicates	

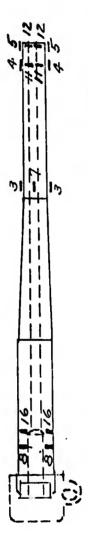

-12-

TABLE VI

TIV EIGAT

SUPEARY OF PEAK STRAINS WHEN CACE COMPLIATIONS 4 & 5, 11 & 12, 3 & 7, and 3 & 16 WENE USED

Location of Gages:

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\vec{1}_{11}$ $\vec{1}_{12}$ $\vec{1}_{12$	-8,20 fila fila	
\vec{u}_{11} \vec{u}_{12} \vec{u}_{13} \vec{u}_{13	B 69,000 69,000 600d Good Good Li1,600 Li7,000	7,200
$\vec{1}_{10}$ $\vec{1}_{10$	A -4,200 53,400 ²) 53,400 ²) 19,300 .10,800 .10,800 off the film	17,200
$\vec{d} \cdot \vec{b}$ \vec{d}	Г АНАНА С	16
\vec{d}_{11} \vec{d}_{11	c -10,306 ² -16,200 -16,200 -16,300 -11,200	
Ili Ioo 2592 3.095 Retreents No. 22 100 2596 3.095 22,400 1 23 100 2598 3.095 22,400 1 23 100 2598 3.093 25,400 1 23 100 2588 3.093 25,400 1 23 105 2581 3.093 25,400 1 23 105 2583 3.091 23,990 1 24 105 2683 3.095 29,500 1 29 105 2683 3.095 29,500 1 29 105 2684 3.095 29,500 1 29 105 2684 3.095 29,500 1 29 105 2719 3.095 29,500 1 29 110 2719 3.095 29,500 1 21 110 2719 3.095 29,500<	B 20,300 12,100 14,600 16,700 21,100 21,100 21,100 21,000 16,800	6,200
Gun lid. Lu Ioo 2592 3.095 23.400 22 100 2593 3.093 25,400 1 23 100 2593 3.093 25,400 1 24 100 2593 3.093 25,400 1 23 100 2568 3.091 23,400 1 21 105 2634 3.091 23,5400 1 23 105 2634 3.091 23,590 1 24 100 2568 3.091 23,5500 1 28 105 2688 3.091 23,5500 1 29 105 2688 3.095 29,500 1 29 105 2688 3.095 29,600 1 21 110 2719 3.095 29,600 1 21 110 2719 3.095 29,600 1 21 110 2719 3.095 29,600 29,500 21 110 2726 3.095 29,500	A(3) -7,100(2) -17,200 34,700 37,200 55,700 55,700 55,700 103,000 103,000 -21,500(2 -21,500	-11,300
Gun Id. Wellocit 11 1 100 2593 3.095 3.095 22 100 2593 3.093 3.093 3.093 23 100 2587 3.093 3.093 3.093 23 100 2587 3.093 3.093 23 105 2684 3.091 3.093 23 105 2683 3.091 3.095 29 105 2683 3.095 3.095 41 110 2719 3.095 3.095 141 110 2719 3.095 3.095 142 110 2719 3.095 3.095 142 110 2726 3.095 3.095 15 2726 3.095 3.095 3.095 53 115 2726 3.095 3.095		ო
Gun Ide. Junibor 11 11 100 2592 3.09 99 100 22 100 2592 3.09 3.09 99 101 100 23 100 2593 3.09 3.09 3.09 105 105 268 3.09 105 105 268 3.09 105 105 268 3.09 105 268 3.09 105 268 3.09 105 268 3.09 105 268 3.09 105 2688 3.09 105 2699 3.09 105 2699 3.09 105 2699 3.09 105 2699 3.09 105 2699 3.09 105 2699 3.09 105 <td>22,400 23,500 29,500 29,500 29,500 29,500 29,500 29,500</td> <td>28,100</td>	22,400 23,500 29,500 29,500 29,500 29,500 29,500 29,500	28,100
53 E E 23 23 E E 1000 Cunn Itd. 53 E E 13 10 0 10 10 Cunn Itd. 53 E E 13 10 0 10 Cunn Itd. 53 E E 10 10 10 Cunn Itd. 54 E 10 10 10 Cunn Itd. 54 E 10 10 Cunn Itd. 54 E 10 10 Cunn Itd. 55 E 10 10 Cunn Itd. 54 E 10 10 Cunn Itd. 55 E 10 Cunn Itd. Cunn Itd.	or 20 00 00 00 00 00 00 00 00 00 00 00 00	3.052
Con Ed C C C C C C C C C C C C C C C C C C	2592 2593 2593 2683 2683 2699 2719 2683 2719 2683 2719 2683 2719 2683 2719 2726	2737
•bi m0	treerte Brando O O O O O O O O O O O O O O O O O O O	11 V
	E E E G S S S 5 5 S E Impor	ŝ
		4-22

(3) Letters A, B. and C refer to points on Tables II, III, IV, V, and VI.

(2) Record not clear.

TABLE VIII

TABULATION OF FIRING DATA AND PEAK STRAINS ON REFERENCE GAGE B

A

Date 1943	Rd. No.	Powder	Powder Charge	Muzzle Velocity f/s	Weight of Projectile lbs.	Dia. of Rotating Band in.	Powder Pressure (Coppers) 1000 p.s.i. Pcu	Tangential Stress Gage.8 1000 p.s.i. S	Ratio S [/] Pcu
11/18	6	75	50.75	2277	15.06	3.094	27.2	16.3	9
	7	75	E	2282	15.09	3.094	26.7	15.9	-60
=	6	75	t	2283	15.07	3.092	26.3	16.5	.63
	8	75	£	2293	15.05	3.091	27.5	16.7	-61
E	м	75	2	2298	15.06	3.090	28.1	18.0	. 64
4/20	18	75	*	2331	15.09	3.094	28.9	17.9	-62
2	16	75	E	2335	15.06	3.090	30-0	19.3	-64
4/22	32	75	E	2346	15.05	3.096	29.7	18.6	•63
11/20	17	75	ż	2347	15.02	3.095	29.8	18.4	.62
12/1	19	75	r	2348	16.41	3.093	31.1	19.7	.63
11/20	15	75	2		15.13	3.094	31.5	20.2	.64
4/22	30	85	50.0	8	12.72	ł	25.0		ł
2	31	85	54.0	2499	12.72		1	18.3	1
12/11	26	100	53.0	2577	16.41	3.091	34.8	- 23.6	.68
81/1	C L			9676	. C . C	500		7 66	K

-1/;-

														I												
57	10.	.64	- 62	.64	• • •	6	.62	.63	.64	١	1	.68	3.	103		•6'1	•61	-61	.63	-58	•64	99.	99.	.65	°70	
	16.7	18.0	17.9	19.3		13.6	18.4	19.7	20.2	Ì	18.3	-23.6	22.6	24150		23.9	23.5	23 . 4	24:2	22.4	25.0	24.9	25.4	26.5	29.5	
C.03	27.5	28.1	28.9		0.00	29.7	29.8	31.1	31.5	25.0	١	34.8	. 37.0		0.00	37.2	38.3	38.5	38.6	38.8	39.1	37.9	38.5	0.14	1.04	
3.092	3.091	3.090	760-6		0.00.5	3.096	3.095	3.093	3.094	1	1	3.091	160-5		3.054	3.091	3.095	3.094	060*0	3.095	3.097	3.092	3.093	3.095		•••
15.07	15.05	15.06	00 25		15.06	15.05	15.02	46.:11	15.13	12.72	12.72	14.91	15.05		60.01	15.03	15.04	15.01	15.21	30.21	1	15.02	15.08	15.07		15.00
2283	2293	2208		2331	2335	2346	Lifec	A.icc		I	21,99	1150	2678	010	5262	2507	2588	2589	2590	2592	2595	2598	2598	6170	(10)	2614
E	F		•	8	E	=	i							R	-	E	=	=	*			*				
75	75	2 }	Ū,	75	75	77	2 }	<u>د</u> ۲	£ }	Ū Å	C L	60 C	8	100	B	001	100	001							8	100
6		0	Ś	18	16		2	17	19	15	e i	E I	26	12	527	•	1 66	2 2	A 8		1 7	4 8	5	52	25	[13
=	1			4/20	E	100	14/22	11/20	17/11	14/20	h/22		17/51	11/18			<i>ccl</i> .1	1. 4.8	ст /ħ	. 1	. 1		17/11	*	.	11/32
	-	-1)1-						1												B					•	: م مر م

,

(cont
IIIV
TABLE

A

 $\widehat{}$

7

÷ . ;

Date 1943	Gun Rd. No.	Powder	Charge oz•	Powder Charge Munzle Velocity \$ oz. f/s	Weight of Projectile lbs.	Dia. of Rotating Band in.	Powder Pressure (Coppers) 1000 p.s.i. Pcu	Tangential Stress Gage 8 1000 p.s.i. S	Ratio S. ^c p _{cu}
4/21	21	100	0.92	2615	15.08	3.095	39.1	26.4	.68
4/22	36	105	61.13	2677	15.10	3.095	14.3	30.6	-69
E	35	105	F	2679	15.07	3.093	43.9	10°4	•69
4/21	27	105	E	2684	15.05	3.095	0.111	29.5	•67
4/22	34	105	E	2684	15.08	3•095	14.2	28.9	•65
4/21	29	SOL.	E	2636	15.02	3.095	43.9	23.6	•68
E	28	105	=	2688	14.95	3.094	43.9	27.7	•63
4/22	ניז	OTT	62.30	2699	15.15	3.093	45.2	29.7	•66
E	140	OLL		2719	15.03	3.095	46.2	30.5	•66
E	39	011	F	2720	15.09	3.094	46.3	30.9	-67
	37	οττ	E	2722	15.0ù	3-094	46.5	29.4	•63
	142	011	2	2726	15.07	3.095	45.3	29.5	.65
E	38	οτι	E	2740	15.05	3.095	48.4	32.2	-67
4/22	1th	115	63.40	2733	15.07	3.093	45.2	32•0	12.
F	ری د	115	T	2737	15.03	3 .0 92	46.5	28.4	.61

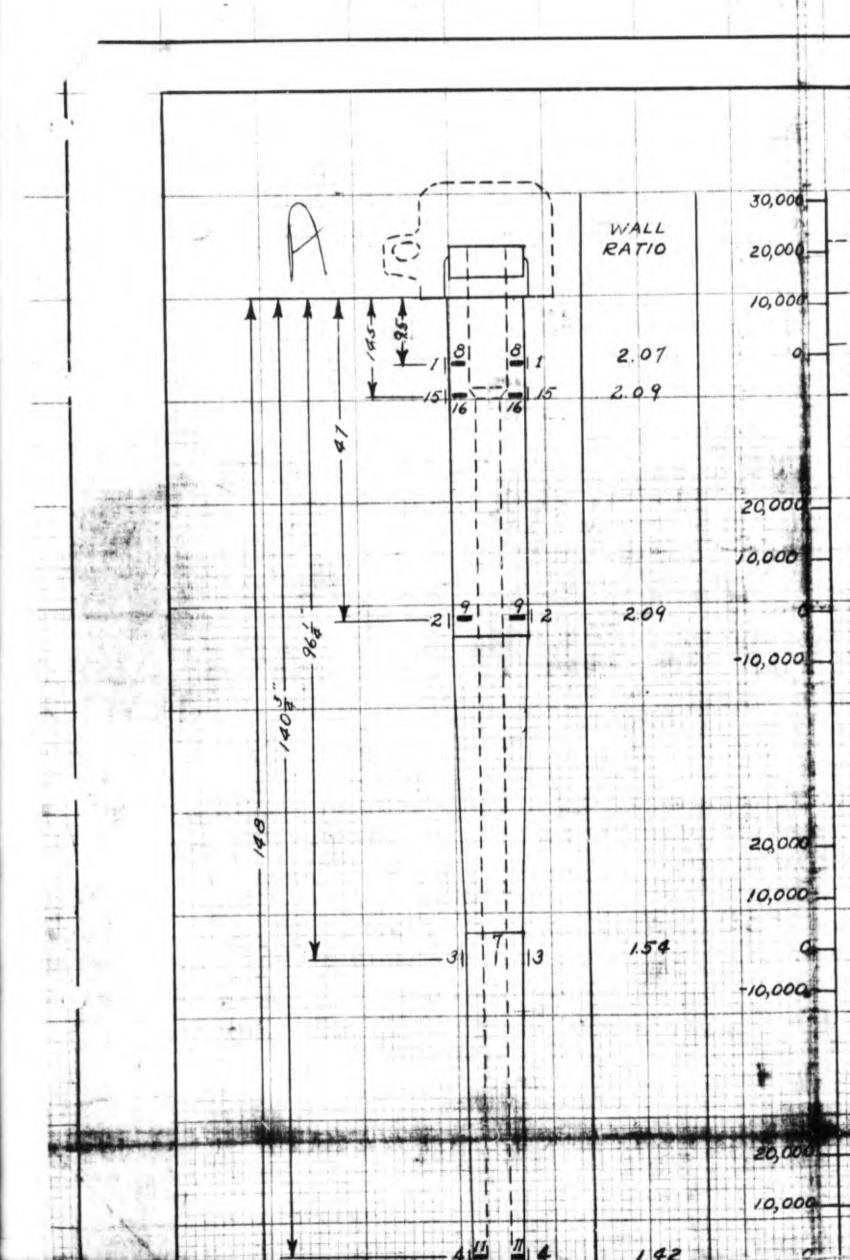

-15-

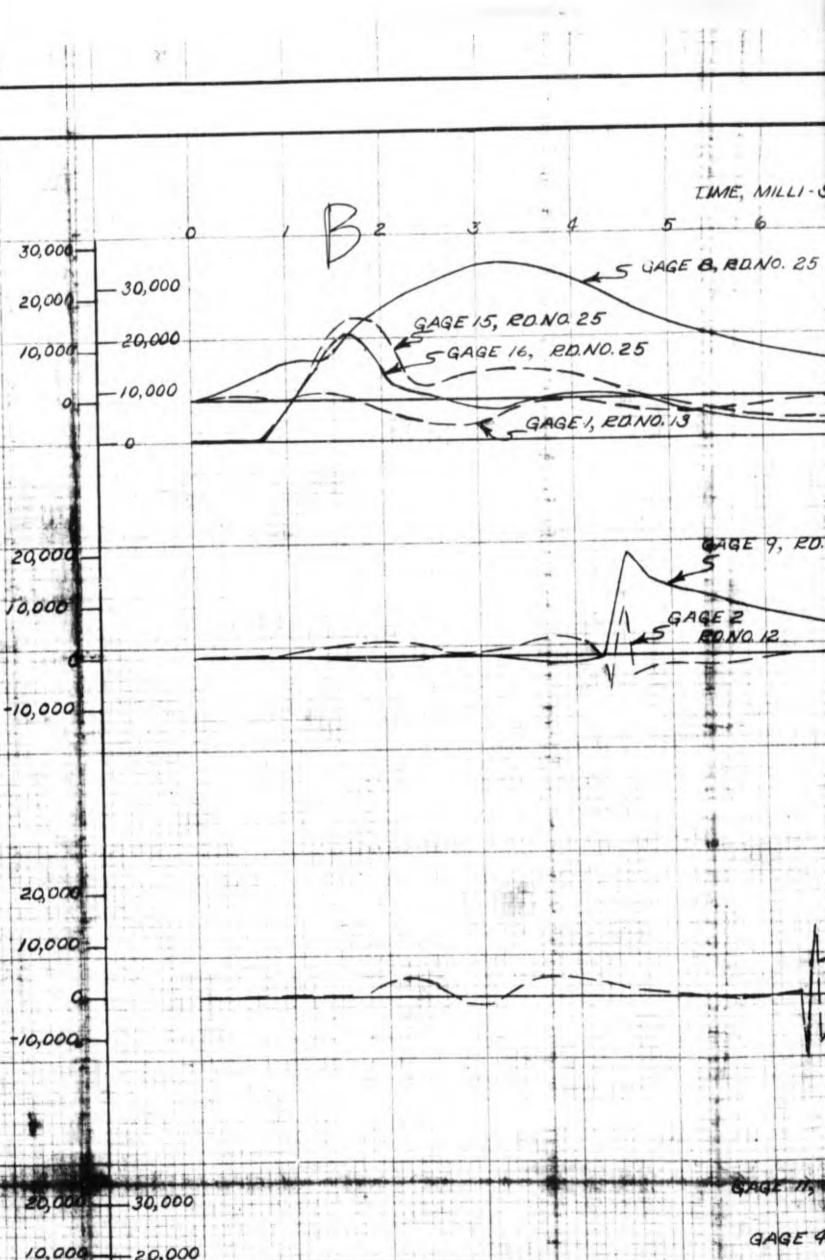
.69	•67	•65	•68	.63	•66	•66	-67	•63	.65	•67	.71	•61	67.	•69	69	-65	.72	-67	99.	•70
10-4	29.5	28.9	23.6	27.7	29.7	30.5	30.9	29.4	29.5	32.2	32.0	28.4	23.08	32.3	31.8	31.0	34.1	30-4	31.5	32 • 5
1,3.9	0.111	144.2	43.9	43.9	45.2	46.2	46.3	46.5	45.3	48.4	45.2	46.5	6 <u>⊾شن</u> .	4.74	1.6.7	47.7	47.6	45.2	47.6	146.7
2 003	3.095	3.095	3.095	3.094	3.093	3.095	3.094	3-094	3-095	3.095	3.093	3.092	3,092	3.093	3.093	3.092	3.093	3.092	3.095	3.093
20.21	10.01	15.08	15.02	24.95	15.15	15.03	15.09	15.04	15.07	15.05	15.07	15.03	15.07.	יינ.כנ	15.08	15.08	15.02	15.07	15.03	15.02
OFAC	26.81.	2684	2636	2688	2699	2719	2720	2722	2726	2740	2733	2737	2740.	2751	2752	2752	2753	2754	2755	2756
		•		r	62.30		•			•	63.40	•		•	•	•	•			
	SOT DOL	SOL	SOL.	105	OTI	DII	OLL	OLL	OLL	OTT	115	115	. SLL	CTT	211	2115	211	115	115	115
k 1	55	21. al.	59	28	Ţ	pt0	39	37	142	38	4	53	187	3	52	ß	Lt5	ŝ	147	64
		12/1	12/1		4/22						14/22									

٩

Powder, FNH Lot 8007-42

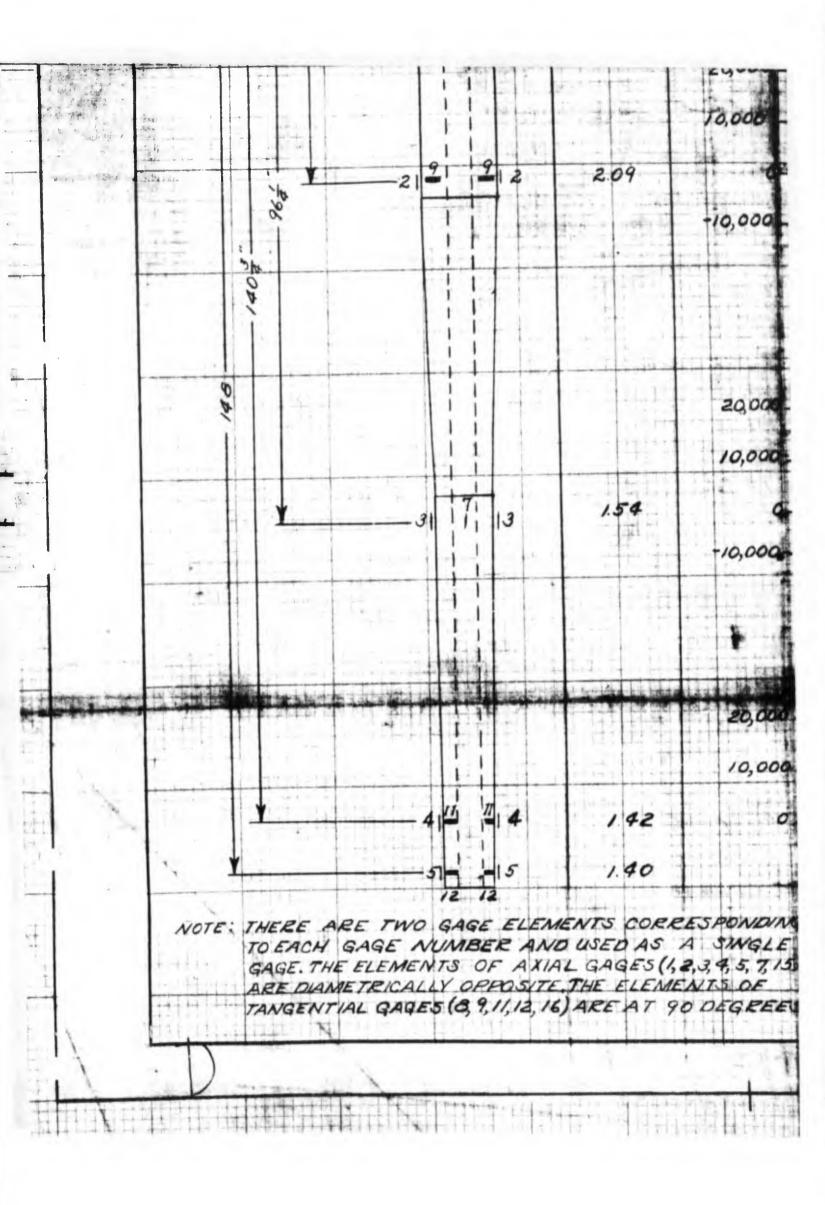
NOT REPRODUCIBLE

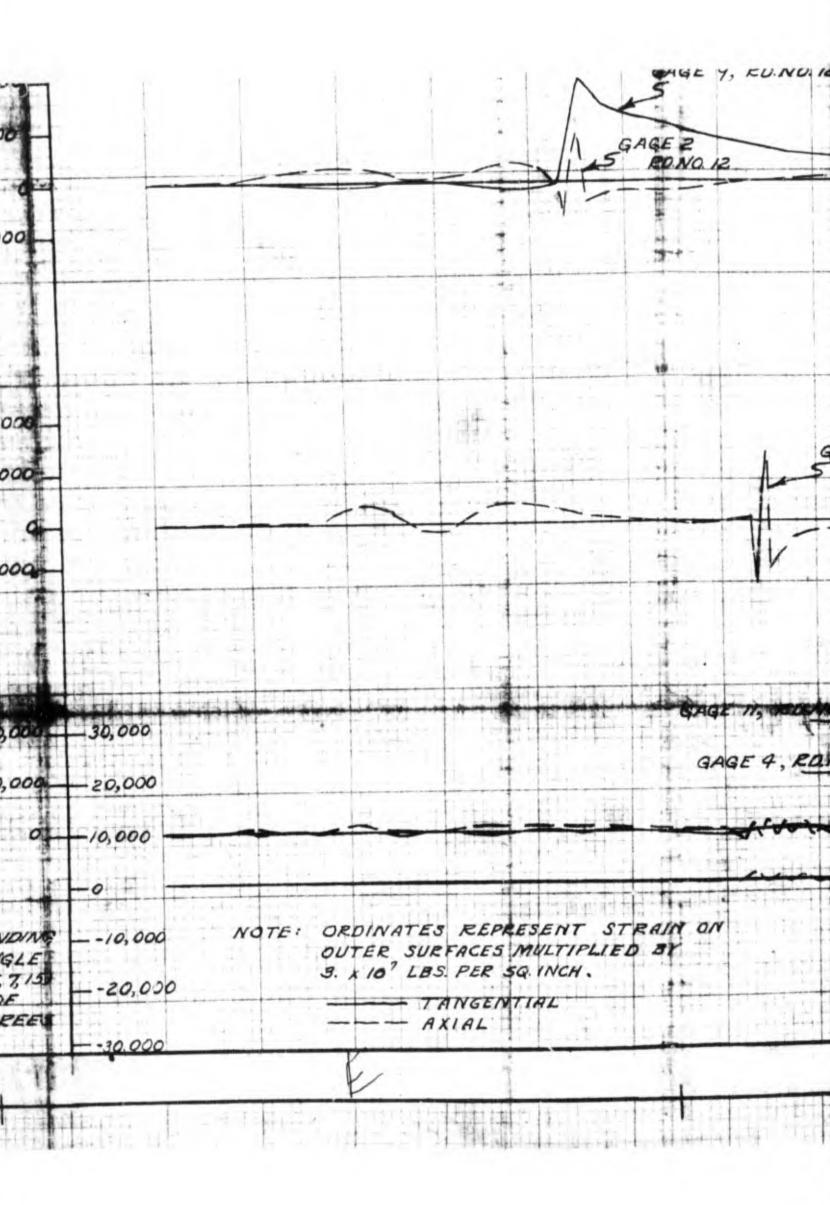


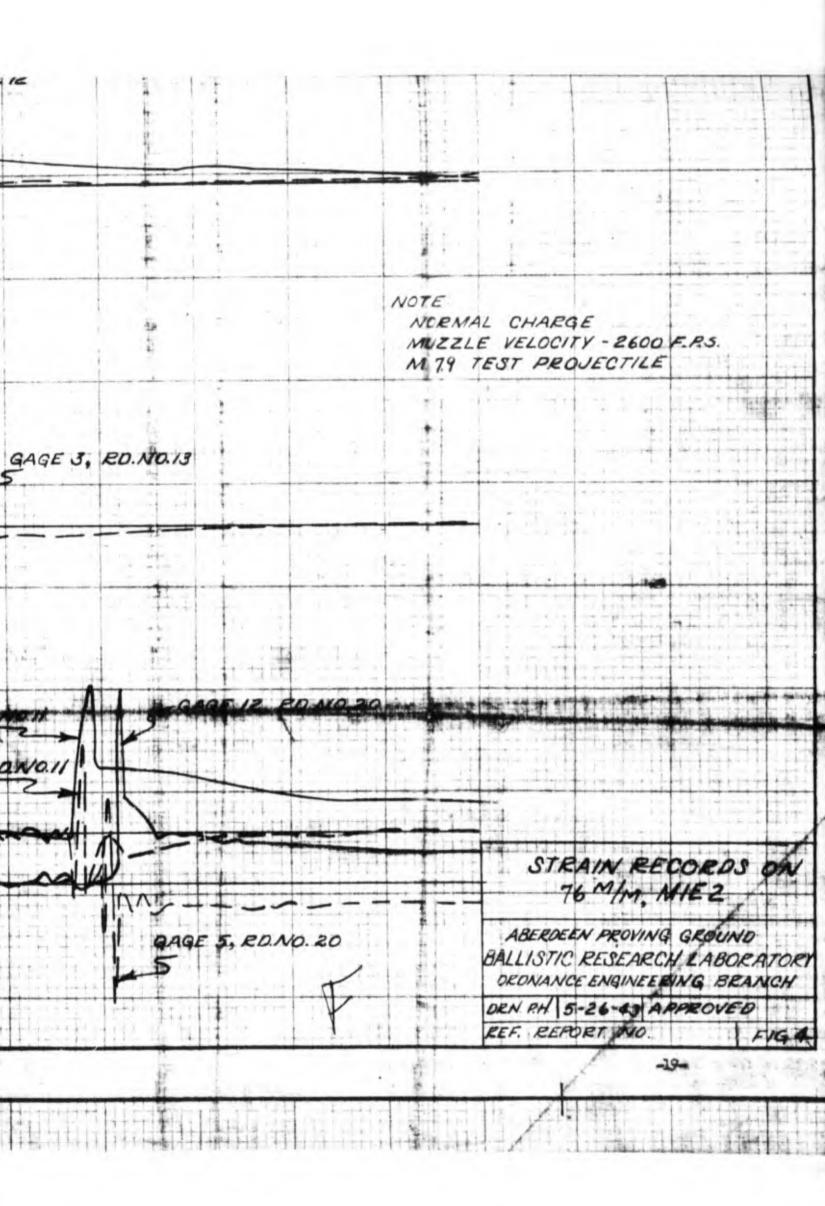


F1G. 3 RATIO OF TANGENTIAL STRESS Ý TO COPPER PRESSURES - AVERAGE 0.649 76 M/M GUN MIEZ þ ϵ REF. REPORT NO. Q ABERDEEN PROVING GROUND BALLISTIC RESEARCH LABORATORY LEAST . SOUREES: 4 = 0.609(1+.0023 X.) GUN ROUND NUMBER ORDNANDE ENGINEERING BRANCH 4-12.4.3 APPEOVED. OLCI D.CAWN-PH. b þ Q N -18-

HE DOLO TOT LODE TO DOLOGIC TH




1			2 2-				[
LI - SECC			10		+	$\hat{\mathcal{O}}$		
25		9						
ED.NO.	12					•		-
							-	
-		19 12			MUZZLE	E CHARG	Y - 2600	F.R.S.
1.	GAGE 3,	ED.NO.13			•			
1-				+			1 1	
			0512 80	1.10.20		10 10 AT 11		
-	AND I	1	144 N		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	A STATE OF THE OWNER		


E 4, ROMON

And the second se

Appendix I

DESCRIPTION OF STRAIN RECORDING EQUIPMENT

Gages

1. The strain gages used for recording transient strains on gun carriages, tubes, etc. are resistance type gages* consisting of a grid of very fine wire (approximately .001 " diameter) bonded to a piece of very thin paper which in turn is cemented to the surface upon which the strain is to be measured. The wire is a special alloy selected for its strain sensitivity and low temperature coefficient of resistance. Each gage element has a resistance of approximately 500 ohms (the l inch gage) and a strain sensitivity of about 3.4. The strain sensitivity is the unit resistance change per unit of strain. Hence, these gages will exhibit a change of about 1.7 ohms for a strain of .001 inch per inch or an equivalent stress of 30,000 Los. per square inch in steel. The gages are sufficiently flexible so that they may be used on curved or warped surfaces. The strain sensitivity factor is given by the nanufacturer of these gages with an accuracy of about 15.

2. Since the gages are rather fragile, the lead wires must be held quite firmly in place to prevent them from exerting any pull on the gage due to their movement during firing or due to the gun's blast. The method of making connections that is usually used is as follows:

3. The heavy rubber covered shielded leads which go to the recording equipment are terminated at a panel board (usually consisting of Jones plugs or any good quality connectors), which is clamped or bolted rigidly to the gun as near to the gages as practicable. Soldered connections are then made from the plugs to the gages by means of small insulated wires which are held firstly in place by means of tape and/or cement.

Strain Gage Circuit

4. The circuit that is used for transient strain recording consists simply of a steady supply of DC voltage (usually three or four "B" batteries), connected through a ballast resistance (to control the sensitivity and limit the current) and the strain gage, in series. If one side of the gage is at ground potential then the voltage across the gage is

e = ir

where i is the current and r is the gage resistance. But the current is determined by the battery voltage, E, the gage resistance and the ballast resistance, R_{2} by the relation,

$$i = \frac{E}{R+r}$$

* Baldwin Southwark SR-4 Strain Gauges.

- L*

Hence the voltage across the gage is

$$e = \frac{Er}{R+r}$$

Now as the gage is strained and changes resistance, the change in e per unit change of r is

$$e^{i} = \frac{de}{dr} = \frac{ER}{(R+r)^2} = \frac{iR}{R+r}$$

This then is the signal voltage that can be obtained by a unit change in gage resistance. The DC voltage, e, is blocked by a condenser and the change in voltage \triangle e is amplified and recorded. In practice, the maximum sensitivity that can be obtained is only slightly less than one millivolt per milliampere of current per ohm change of the gage. Thus if the gage can stand a current of 50 ma, a signal of roughly 0.050 volts can be obtained from a one ohm change. When a sin le gage is used with the sensitivity as given in paragraph 1, a signal voltage of about 0.080 volts can be obtained by an equivalent stress of 30,000 lbs. per square inch in steel.

5. The sensitivity is most easily adjusted by varying the ballast resistance R and consequently the current. If two gage elements are used in series as a single gage, then the sensitivity could be doubled provided the ratio of R/r and the current could be kept the same.

6. Calibration of the circuit to determine the sensitivity is done by shorting out a known resistance which is connected in series with the gage.

Amplifiers

7. For the measurement of most transient strains a DC amplifier with a long time constant is the most satisfactory. Three such amplifiers are available in the portable laboratory trailer for use with the cathode ray oscillograph. A 5 megohm input resistor is usually used together with a blocking condenser of about 2 micro-farads. This gives a time constant of 10 seconds which is quite satisfactory for records of less than one second duration. These amplifiers will give full scale deflection to the cathode ray beam with an input voltage of about 0.1 volt.

Oscillograph Camera

8. The oscillograph camera consists of a 19" rotating drum with a spiralling mechanism which translates the drum axially 1/2" per revolution. It is arranged to photograph the screen of three-beam cathode ray tube, through a suitable lens system. The film width is four inches. Film speeds from about 60 to 500 inches per second can be obtained. Triggering of the beam deflecting circuits and spiralling clutch is accomplished by means of a solenoid, operated from the firing position. When the drum has gainaled the width of the drum it operates a switch which releases the spiraling clutch and again deflects the beams off the screen.