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PRINCIPLES OF SOLID-FUEL ROCKET DESIGN 

352 pages, 5,500 copies 
1 ruble 25 kopecks 

Ya. M. Shapiro, G. Yu. Mazing, 
and N. Ye. Prudnikov 

On the basis of materials published in the ^ticjnd^ore^gn 

press this book offers a survey of tl|e f The design 
rockets for various purposes and solid^ue^engin^ 

elements of individual as®e"* e® he reguiation of thrust as regards 
rockets, and questions relative Eneineering methods for calculating 
quantity and direction are exai"inßd- /^“^Ld rockets are given, as 
the elements of traJe£!j0rie®f0b ili8tic designing. The factors affecting 
they apply to the p^b . t _e examined. Optimum parameters for 
the scatter of unguided rockets ovnthesis and analysis of 
rockets and design units are eva external ballistic relations 
weight equations for ^ f ^cuiations of solid-fuel rocket 

sturdiness ere set iorrh. 

The book can be used as a i-tUuLrofhigher 
field of rocket technology, and also for students at ins 

education. 



FOREWORD 

Recent decades have been characterized by a a“rfin8/®^0P™®nMf 
rocket technology. At present rockets are being worked out both for mili- 
rocket technology, wp investigation of outer apace. After the sending 

first^artificial earth satellite which opened the era of 
rpaef and technology b- -fate red significant 

successes in the investigation and conquest of outer space. 

In the practice of designing rockets of 
eines using solid fuel (RDTE) find widespread application. For this r 
® y® i ,.j _ (.ue theory, design, and use of these engines 
son questions relating to the rocket technology and to design¬ 
are of great interest to specialists in rocket tecnnoiogy 

ers. 

This book sets forth the basic data and relationships necessary for 
designing^solid-fuel9rockets. It sets forth the basic design ayate., and 

characteristics of modem solid-fuel rockets. 

It examines questions related to the external ballistics and the 

ballistic designing of solid-foci rockets as these 
engineering calculations, and it also examines calculations for the 
strength pf the rocket chamber and for the charge o s 

It offers a generalization of 
vestigations regarding current questions of RDTE 
t-hp reliability regulation, and strength calculation for solid fuel 
SlLgel taking into account elastic-plastic deformations, theological 

properties, and temperature stresses. 

The book is based upon the basic assumptions of 
constitutes a logical continuation of the book The Thepry of the goH— 

Fuel Rocket Engine by the same authors. 

Since it is not possible to cover in a single book of no great 
scope all of the questions associated with the designing o J;®® ® 8 °. 
various classes, the authors have found it necessary, in setting 

FTD HT-23-268-69 
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their material, to limit themselves to the field of guided, single-stage 

rockets and of unguided rocket projectiles of the "surface-to-surface" 

class. Many of the methods and relationships examined are nevertheless 

of universal application and may be used in designing rockets of other 

classes. Among these are included a number of external ballistics rela¬ 

tionships, strength calculations for the basic design units, gravimetric 

equations, formulas linking dimensions of charge with loading parameters, 

limit solutions for ballistic design problems, etc. 

The exposition of basic methods of calculation is illustrated by 

numerical solutions. Where the characteristics of engines, fuels, and 

materials taken from foreign literature are used in the examples, refer¬ 

ences are made to the literature sources. In other examples having a 
purely methodical purpose arbitrarily selected quantities not associated 

with actual objects are used. 

Chapters II, VII, VIII, and IX have been written by Professor 

Ya. M. Shapiro (Meritorious Scientific and Technical Worker of the RSFSR, 

Doctor of Technical Sciences); chapters III and X by G. Yu. Mazing (Candi¬ 

date in Technical Sciences, Lecturer); and chapters I, IV, V, and VI by 

N. Ye. Prudnikov (Candidate in Technical Sciences, Lecturer). 

M. N. Stepanov (Candidate in Technical Sciences) took part in the 

writing of heading 10.7. 
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CHAPTER I. BASIC TYPES OF SOLID-FUEL ROCKET DESIGNS 

l.I. Basic Solid-Fuel Rocket Concepts and ClassÃfíçaUffl 

A rocket consists of a carrier rocket and the object transported 
(a warhead, instruments for scientific investigation, radio transmitting 
apparatus, and other loads). If the carrier rocket and the object trans¬ 
ported are inseparable, the term "rocket" relates to the fiyinS apparatus 
as a whole, for example, short-range military rockets or guided zenith 
rockets. If the carrier rocket and the object transported separate dur¬ 
ing the trajectory of the flight, the term "rocket" relates to the car¬ 

rier. 

The creation of the theory of reactive movement by the distin¬ 
guished Russian scholar K. E. Tsiolkovskiy played an enormous in the 
working out of rocket flight apparatus for various purposes. In 1924 So¬ 
viet engineers created military rockets using smokeless powder (1)- At 
the beginning of the Great Fatherland War only solid fuel rockets were 
among our armaments. Gunpowder of ballistic type was used as solid fuel 

in these rockets. 

After the Second World War, in the light of the imperfection of 
solid fuel the field of its application was exclusively that of small- 
caliber unguided missiles. It was in this period that a sharp distinc¬ 
tion among rockets, depending on the range of their action, became de¬ 
fined. In long-range rockets liquid fuels were used, and solid-fuel 
rockets became a basic combat instrumentality for land-based short-range 

rocket artillery. 

The genesis of mixed solid fuel and the bringing to perfection of 
the technology of its production considerably expanded the fieJd 
plication of the solid-fuel rocket. At present solid-fuel rocket engines 
(RDTT) are used in all forms of weapons (see Table 1.1). 

The considerable part played by the solid-fuel rocket in present- 
day rocket technology is occasioned by advantages which solid-fuel 
rockets have as compared with liquid fuel ones! 

T-2'3-^6H-69 
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-- high reliability of functioning and constant readiness for re¬ 

lease; 

-- simplicity and compactness of apparatus; 

-- simplicity of use, and the simplicity of ground equipment and 

servicing associated with this; 

-- possibility of prolonged storage in final missile form; 

-- uncomplicated nature of production technology and lower cost of 

manufacture as compared with other rocket engines, 

-- possibility of ensuring high thrust-weight ratio (use as start 

engine). 

Anong the deficiencies of the solid-fuel rocket engine are the 

following: existence of considerable dependence of characteristics of 
engine upon initial temperature of charge of solid fuel, more complicated 

solution of problems associated with ensuring guidance and multistage 

start-up of engine. 

Guided rockets are the most widespread form of flight apparatus. 

Guided rockets are divided into two groups according to their aerodynamic 

shape and arrangement : 

winged rockets; 

-- ballistic, or wingless, rockets. 

In winged rockets aerodynamic lift coefficient in the system of 

forces determining flight on the trajectory plays a substantial part. 

As an example of such a design one may take the winged "Lacrosse 

solid-fuel rocket (Figure 1.1). 

In the system of forces determining the flight of a ballistic 

rocket upon a trajectory lift coefficient does not play a substantial 
part. The trajectory of a ballistic rocket, with the exception of t e 

initial portion, constitutes the trajectory of flight of a body fired at 

an angle to the horizon. As an example of such a design we may cite the 

two-stage "Pershing" solid-fuel ballistic rocket (Figure 1. ). 

In their design layouts and tactical and technical characteristics 

existing solid-fuel rockets are decidedly variegated. Depending on the 

place of start and the final target rockets are divided into classes: 

"surface to surface," "surface to air," etc. (Figure 1.3). 

Ballistic rockets of the "surface-to-surface" class are shown in 

Figures 1.4 and 1.5. 

’ 2 - FTD-HT-23-263-69 



Table 1.1. Basic Tactical and Technical Characteristics 

of Solid-Fuel Rockets (1) 

No in 

Order 

1 

Number of Stages 

Designation or Index and Weight at 

of Rocket Start, Tons ,,- 

"Surface-to-Surface" Class Rockets 

"Lacrosse" (USA) 1/1.0 

Maximum Range, 

Kilometers 

32 

2 ’Mace" (USA) 

3 'Minuteman A" (USA) 

4 "Minuteman B" (USA) 

5 "Minuteman C" (USA) 

6 "Athena" (USA) 

2/8.2 (7.0)* 
start. RDTT + (2,220)* 

TRDj -- 33 

3/30.9 9,200 

3/31.5 10,200 

3/33.0 12,000 
(13,366)* 

4/7.2 

7 "Pershing A" (USA) 

8 "Pershing B" (USA) 

9 "Sergeant" (USA) 

10 "Honest John" (USA) 

2/4.54 750 (185-740)* 

2/5.0 1.500 

1/4.54 46-140 (320,)* 

1/2.0 Up to 32 (19)* 

11 "Little John" (USA) 1/0.360 16 

12 "Slim John" (USA) 
1/2.2 32 

13 "SS-10" (France) 1/0.015 1,500 



Table 1.1 (continued from page 7) 

Length of Diameter of 

No in Rocket, First Stage, 
Order Meters Meters Take-Off Apparatus 

1 5.86 0.52 Automotive release 

apparatus. 

2 13.4 1.37 

3 16.2 

4 17.03 

5 18.00 

1.65 From stationary 
start positions. 

Release from shaft. 

1.65 

1.68 

6 16.2 Take-off from rail 

chute 9 meters in 

length. 

7 10.6 (10.7)* 1.0 

8 10.0 1.0 

9 10.0 (10.5)* 0.8 

10 7.6 0.76 
«§ 

11 4.4 0.3 

12 7.3 (7.6)* 0.76 

13 0.86 0.152 

Mobile, on ground. 

Idem. 

Idem. 

Release from automo 

bile trailer. 

Release from automo 

biles. 

Mobile -- release 

from automobile. 

Antitank arm. 

Remarks 

Winged rocket. 

Idem. 

Intercontinental 

ballistic rocket. 

Head of rocket 
reached altitude of 

180 kilometers for 

investigation of 

re-entry of ballis¬ 

tic rockets into 

atmosphere. 

Ballistic rocket. 

Idem. 

Idem. 

Unguided rocket mis¬ 

sile. 

Wire-guided missile. 



Table 1.1 (continued from page 7) 

No in Designation or Index 
Order of Rocket 

14 "SS-11" (France) 

15 TOW 

Number of Stages 
and Weight at 
Start. Tons_ 

Maximum Range, 
Kilometers 

1/0.029 

2/0.073 (0.018)* 

3.5 

0.075-3.500 

16 

17 

18 

"Vigilant" (Great 1/0.0147 1.65 
Britain) 

"Surface-to-Air" Class Rockets 

"Diamant" (France) 3/--; II and III Height of peri- 
stages -- RDTT gee 530 kilo¬ 

meters ; 
height of apo¬ 
gee 2,680 kilo¬ 
meters 

Antisatellite device on 2/58.0 ZhRD + 
basis of carrier rocket three RDTT 
'lAT-Edjen" and "TAT- 
Delta" (USA) 

19 "Nike-Zeus" (USA) 3/10.3 (13.6)* 240-370 

20 "Sprint" (USA) 2/4.54 Height of in¬ 
terception of 
target 30-50 
kilometers 

21 "Hibex" (USA) 2/-- Interception of 
rockets at low 
altitudes 

â UaUaHdHHlÉiAUiÉiÉÉjttMHttÉIÍÉiÉÉiiÉÉÉiiiâÉÉMÉiÉÉ 



lab le 1.1 (continued frontpages 9 and 8) 

Length of Diameter of 
No in Rocket, First Stage, 
Order Meters Meters_ Take-Off Apparatus 

14 1.17 0.152 

15 1.35 0.14 Release tube. 

16 0.91 0.13 

17 -- 1.4 Release apparatus 
* for releasing 

artificial earth 
satellite /ÏSZ/. 

18 18.2 2.4 Stationary release 
apparatus. 

19 14.7 

20 8.2 

1.17 Stationary release 
apparatus. 

1.4 Fired from under¬ 
ground release ap 
paratus. 

21 -- -- Starting engine ig¬ 
nited in shaft. 

Remarks 

Charge of first 
stage consumed in 
release tube and 
thrusts missile 
out. Charge of 
second stage ig¬ 
nited after exit of 
missile from re¬ 
lease tube. 

Rocket carries "A-l" 
apparatus into 
space in orbit of 
artificial earth 
satellite. 

Missile intended to 
intercept satel¬ 
lites in orbits of 
about 640 kilo¬ 
meters altitude. 

Antirocket device. 

Antirocket device. 

6 



Table 1.1 (continued from page 9) 

No in 
Order 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

Number of Stages 
Designation or Index and Weight at 
of Rocket Start. Ions 

"Bomark" (USA) 2/7.3 RDTT + 
2PVRD 

"Nike-Hercules" (USA) 2/4.5 

"Bloodhound" (Great 2/-- 4RDTT + 
Britain) 2PVRD 

'Thunderbird" (Great 2/1.8 
Britain) 

"Roland" (France and 
German Federal Repub¬ 
lic) 

1/0.06; RETT 
with two thrust 
stages 

"Ready" (USA) 

'foawk" (USA) 

"Mauler" (USA) 

1/0.009; RDTT 
with two thrust 
stages 

1/0.58; RDTT 
with two thrust 
stages 

1/0.055; RDTT 
with two thrust 
stages 

"Short Matra and Disso 
Aramis" (Great Britain 
and Fra ice) 

"Air-to-Surface" Class Rockets 

"Skybolt" (USA) 2/4.0-5.0 

"Nord Aviation" (France) 2/0.5 -- 2RDTT in 
single hull 

"SMB-305" (Sweden) RDTT 

- 7 - 

Maximum Range, 
Kilometers 

800 (700)* 

> 130 

50-60 

0.5-7.0 

3-5 

35-40 

0.450-15.0 

1,850 

11.0 



Table 1.1 (continued from pages 11 and 10) 

Length of Diameter of 

No in Rocket, First Stage, 
Order Meters _ Meters- Take-Off Apparatus 

22 14.3 0.89 

23 12.1 0.8 

24 2.03 0.55 

25 6.4 

26 2.5 

27 1.2 

0.53 Transporters, trail¬ 
ers; transportable 

by air 

0.5 Release apparatus 
designed for eight 

missiles and dis¬ 

charges them in 

pairs. 

0.076 Fired from shoulder 
from release tube. 

28 5 0.36 Release apparatus on 
transporters and 

trailers. 

29 1.8 
0.14 Caterpillar amphibi¬ 

ous transporter. 

30 2.5 S^an of wing Transporter. 

0.3 

31 11.7 
1.0 Release from air¬ 

craft. 

32 3.8 0.35 Aircraft release ap¬ 

paratus . 

33 3.53 0.305 Idem. 

Remarks 

Ballistic rocket re 

leased from air- 

plane. 

For armament of tac 

tical aviation. 

8 



Table 1.1 (continued from page 11) 

No in Designation or Index 
Order of Rocket_ 

Number of Stages 
and Height at 
Start, Tons_ 

34 "Shrike" (USA RKCT 0.227 

"Air-to-Air" Class Rockets 

35 "Falcon" (USA) 1/0.068 

36 "Falcon (GAR-9)" (USA) R13TT/0.36 

37 

38 

39 

"Phoenix" (USA) 

"Sparrow-3" (USA) 

"Red Top" (Great Britain) 

1/0.227; RDTT 
with two thrust 
stages 

1/0.17 RDTT 

1/0.132 

40 "Sidewinder" (USA) 1/0.07 

41 ’fcatra" (France) 1/0.195; RDTT 
with two thrust 
stages 

"Ship-to-Air" Class Rockets 

42 "Terrier" (USA) 2/1.6 

43 "Tartar" (USA) 1/0.68; RDTT 
with two thrust 
stages 

44 "Sislag" (Great Britain) 2/1.8 

Maximum Range, 
Kilometers 

20.0 

8.0 

160 (> 40)* 
Altitude about 
21 kilometers 

65-75 

8-15 

13 (17)* 

7-16 

14 (18.5)* 

« 37 

17-20 

32 

9 



Table 1.1 (continued from pages 13 and 12) 

Length of Diameter of 
No in Rocket, First Stage, 
Order Meters Meters 

34 '»3.0 0.2 

Take-Off Apparatus. Remarks 

Rocket intended to 
strike radio¬ 
locator set-ups of 
antiaircraft de¬ 
fenses (PVO) . 

35 

36 

37 

2.17 

3.8 

0.164 

0.34 

0.15 

Aircraft release ap¬ 
paratus . 

Idem. 

Idem. 

For armament of 
fighter aircraft. 

For armament of 
fighter-interceptor 
planes. 

For armament of 
naval fighters. 

38 

39 

40 

41 

3.6-3.66 

3.5 

2.87 

3.3 

0.21 

0.22 

0.127 

0.26 

Idem. 

Idem. 

Idem. 

Idem. 

Idem. 

For aircraft arma¬ 
ment . 

For armament of 
fighter planes. 

For armament of all- 
weather fighters. 

42 

43 

44 

9.0 

» 4.5 

6.0 

0.33 

0.33 

0.41 

Shipboard release 
apparatus. 

Idem. 

Idem. 

For antiaircraft de¬ 
fense of surface 
vessels. 

For de fense__of 
/esmintsev/ against 
aircraft. 

For antiaircraft de¬ 
fense of surface 
vessels. 

10 - 



Table 1.1 (continued from page 13) 

No in Designation or Index 

Order of Rocket 

45 "Siket" (Great Britain) 

46 "Mazurka" (France) 

47 "Regulus" (USA) 

Number of Stages 
and Weight at Maximum Range, 

Start. Tons Kilometers 

1/-- RDTT with 8 

two thrust 

stages 

2/1.450-1.850 30-40 

2/6.7 -- 2RDTT + 800-900 

route TRD 

"Submarine-to-Surface" Class Rockets 

48 "Polaris A-1" (USA) 2/12.8 2,200 

49 "Polaris A-2 ' (USA) 2/14.5 2,800 

50 "Polaris A-3" (USA) 2/15.9 4,600 

51 "Poseidon C-2" (USA) 2/-- 4,600 

"Ship-to-Submarine" Class Rockets 

52 'Terne III" (Norway) 1/0.12 5.6 

53 "Asroc" (USA) 1.6-15 

- 11 - 

1/0.450 — RDTT 
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Table 1.1 (continued from pages 15 and 14) 

Length of Diameter of 

No in Rocket, First Stage, 

Order Meters Meters- Take-Off Apparatus, 

45 6.0 0.41 Shipboard release 

apparatus. 

46 8.5-8.6 0.4 Idem. 

47 10-10.4 1-37 Idem. 

48 8.7 1.37 Release apparatus of 
submarine. 

49 9.6 

50 9.8 

1.37 Release apparatus of 
water-surface sta¬ 

tionary base and 
release apparatus 

of submarine. 

1.37 Release apparatus of 
water-surface sta¬ 

tionary base and 
release apparatus 

of submarine. 

51 - 1.47 

52 1.98 
0.3 Shipboard release 

apparatus 

53 4.6 -» (over¬ 
all length 
of device) 
2.54 
fleneth of 

0.3 

Remarks 

For defense of sur¬ 

face vessels and 

strikes against 

surface and shore 

targets. 

For antiaircraft de¬ 

fense of vessels. 

Missile aircraft re¬ 

leased from ship¬ 
board release ap¬ 

paratus . 

Release of rocket 

takes place from 

beneath water 

against terrestial 

armaments. 

For combat against 
atomic submarines 

/nuclear subma¬ 

rines,/ . 



Table 1.1 (continued from page 15) 

No in Designation or Index 

Order of Rocket_ 

54 "Malafon-2" (France) 

Number of Stages 

and Weight at 

Start. Tons 

Maximum Range, 

Kilometers _ 

1/1.4 -- 2 start 
ROTI + torpedo 

motor 

55 
»», Sabroc" (USA) 

RDTT/1.80 40-50 

(65-80)* 

* The characteristics appearing in parentheses have been taken from other 

data. 

The acronyms have the following meanings: 

PU -- release apparatus 

TRD -- turbojet engine 
PVRD -- ram-jet engine 

PVO -- antiaircraft defense 
ISZ -- artificial earth satellite 

- 13 - 
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Table 1.1 (continued from pages 17 and 16) 

Length of Diameter 
No in Rocket, First Stage, 
Order Meters Meters Take-Off Apparatus 

54 6.0 0.53-0.63 Shipboard release 
apparatus. 

55 6.4 0.553 Torpedo apparatus. 

- 14 - 

Remarks 

For armament of es¬ 
cort vessels. 

Ballistic rocket 
with release from 
submarine. 
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Figure l.l. Winged "Lacrosse" solid-fuel rocket.

Figure 1.2. Two-stage "Pershing" ballistic rocket with solid-fuel en

gines.

Bolld-fuel engine is as a rule used as a starting stage. Intercepto

fuel rocket engines set up on the start and the route stages.

Antimissile rockets, intended to intercept the warheads of inter

continental ballistic rockets and medium-range
tively low altitudes, occupy a special place among rockets of the su 
face-to-air" class. The "Sprint" antimissile rocket (Figure 1.7), of cone

- 15-
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Figure 1.3. Solid-fuel rockets of various classes, and trajectorxes of 

,.. ^ ^-r^ar-r:!ir:tfx,a.¿;gr- e 

rocket ("surface-to-surface .^j0r0cket ("surface-to-axr 
("ship to submarine" clas^’ r.air^0-air" class); 6 -- Ballistic rocke 
class); 5 - Aviation ro^e . ( air ("air-to-surface 

iockU ("submarine-CO-surface class), 9 «ang 

r0Cket'With Ca bal, of :r-ca¡tral«etis o.c^s^ ^^«oc- 

riÓto^al^P«!^: S ^ogcapS tba scafaca of tba aaatb. ^ 

r "air-to-air," "air-to-ship, 
The release devices of apparatus ier aircraft. In these 

and "air-to-surface" classes are set up ^ ^ ^ ^ velocity of 

cases the velocity of the aircrart 

the rocket. 

An example of a rocket of "3Uí,p^i¡"0solid-fuel ballistic 
ing an underwater position is h h Points ^ ^ _t o£ an 

missile (Figure 1.8). There are 10 

atomic submarine. 
H u4 #-n air" class are used for the antiaircra Rockets of the "ship-to-air class are 

defense of surface vessels (Table 1. )• , 

The Classification set £”“honheof ^^/‘„/rtfvarious^lasses! 
a certain order into the ^scripti £ lflcd and are distinguished 
At the same time, rockets are pretty oi 
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from one another by their design layouts, their working characteristics, 
and other features. On this account, in studying the technological, de

sign, and use peculiarities of rockets and establishing logical fields 
for their use it is possible to classify them also according to other fea

tures (purpose, sort of solid fuel used, etc.).

Figure 1.4. "Sergeant" guided 
rocket using solid 
fuel.

figure 1.5. '^inuteman" interconti
nental ballistic rocket 
using solid fuel.

1.2. Peculiarities of Design and Arrangement Layouts of Solid-Fuel 
Rocket Engines and Elements of Designs

RDTT Design Layouts

The solid-fuel rocket engine is the basic structure of a rocket. 
Joined to it are the instrument block, the executive organs of guidance, 
and also the stabilizers, rudders, wings, and other eleiMnts. In Figure 
1.9 we present a present-day design layout for a RDTT with a mixed charge 
attached to the walls of the chamber. The basic properties of this fuel 
are ability to burn steadily at a working pressure of 30-40 kilograms per 
square centimeter and possibility of charging the engine by pouring into 
a combustion chamber of any dimensions. Combustion of the fuel takes

- 17 -
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place from the inner surface of the central channel. In this process the 
walls of the combustion chamber are protected from the thermic action of 
gases by the whole thickness of the charge. In order to make the rocket 
chamber structural materials having high unit strength , such as alloy 

T 
steel, titanium, aluminum alloys, beryllium alloys, glass plastics, and 
the like, are used. As a result of this it has been possible to reduce 
the weight of the casing of the engine, and to increase the working time 
of the engine to some tenths of a second (3). The value of the structural 
quality factor a , representing the ratio of the structure to the weight 
of the fuel, comes to about 0.08-0.1 for a RDTT of the layout under con¬ 
sideration. 

Figure 1.9. Diagram of Solid Fuel Rocket Engine with Charge Attached 
to Chamber Walls 

1 -- Rocket chamber; 2 -- Nozzle unit; 3 -- Solid fuel charge; 
4 -- Charge jacket; 5 -- Charge igniter; 6 -- Ignition unit. 

According to communications in the foreign press some American 
firms (4) are working out RDTT's of 3-, 4-, and 6.6-meter calibers, in¬ 
tended for intercontinental ballistic missiles and the carrier rockets of 
space ships. The basic characteristics of the engines are set forth in 
Table 1.2 (5). 

Table 1.2 

Engine 

Characteristics 

Weight Weight of Working 
Length L, Qengine» Fuel “'fuel. Thrust Time -t, 
meters tons tons_ P, tons seconds 

Pressure in 
Chamber p, 
kilograms 
per square 
centimeter 

RDTT of 
3- meter 
caliber 11.3 -- 90 273 

RDTT of 
4- meter 
caliber 23.75 352 316 635 130 50 

- .19- 



Table 1.2 (continued) 

Eneine 

The same, 

with 

fixed 

cone 
/nozzle_ 

for jet./ 

RDTT of 

6.6- 
meter 
caliber 

Weight Weight of 

Length L, Qengine» ^fuel» 
meters tons _ tons_-- 

Thrust 

P, tons 

Working 

Time 't, 
seconds 

Pressure in 

Chamber p, 
kilograms 

per square 
centimeter 

30 

42.7 

24.4 680 

362.8 

3,175 

1,475 

1,360 

1,588 

¢6 800 
120 

<120 
53 

^ RHTT ot ^eter = ^ 

with the upper end wall, a cent£® . j ade 0f mixed fuel on a basis 
end wall and a rotatory cone. The ^ ^ additives. Combustion of 
of polybutadiene with acrylic ^id and aluminum ^itives^ a cylindrical 

the section of the fuel charge ta 8 P d faces. In stand tests 

channel 1.65 meters in diameter ^ a ^ngle-impulse value 
of a ROTT with fuel of the composition indicated a single p 

of 245 kilogram • second per kilogram was secured. 

New design layouts for RBET's having high th-sts* cannot be ana¬ 

lyzed separately from the form and weight or the fuel charg 

As may be seen from Table 1.2 the weight of 

of large diameters fuel rocket engines new 
working out charges for the mos p -„sociated not only with dimen- 

problems arise, the solution 0 . «-ransoort to the start platforms (4) 
sions and weight, but also wit e ouring fuel into the casing of a At present technological processes^for^pouring^fuel^i^ ^ ^ (6 

RIOT actuaJ1yUp°n^t th^setting up of the mandrel into the casing of 

fiSTbefore the pouring of solid ^3 ' anftfincîea^e111 

order to “Hd-^ellhargfaectlonal engines ere being worked 

â: Sf eta e o£ S 1 o» consle? of a number of 
out. The charge , 12). xhe sections are assembled at the 
by inert partitions (Figure i.i¿;. *■* 

place of the start. 

* In the foreign press hlgh-power engines are called boosters 
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vt n
Figure 1.10. Solid-iucl rocket engine 

of high power: a -- gen
eral view of engine of 4- 
meter caliber; b -- par; 
of engine bearing rotatory 
cone. Figure 1.11. Rocket chamber 

and spine-core 
section before 
pouring of 
solid fuel at 
start platform.

For the most powerful engines modular burners are used (Figure 
1.13), made up of a number of cast and individually polymerized fuel ele
ment modules (6). The individual modules are more transportable, are ac
cessible to quality checking, and are easily replaced in case of need.
In Figure 1.14 we show the assembling of a modular burner at the manent 
when the forward part of the engine is being let down to unite with the 
fifth section of the fuel charge.

- ^1 -



Figure 1.12. Shapes of sectional burners: a -- burner divided by five 
vertical partitions; b -- burner divided by 10 vertical 
partitions; c -- burner having horizontal support shelves, 
d -- divergent coupling: 1 -- wall of casing; 2 -- fuel, 
3 -- heat-insulating covering; 4 -- vertical supporting 
plate of reinforced plastic. 

modules; c -- 30 modules. 

Composition Layouts for Engines 

In their composition layouts existing RKTE's are exceedingly 
variegated. This is to be explained by the fact that solid-fuel rocket 
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engines, by reason of simplicity of design and convenience in use, have 

become widespread in rockets of most diversified types. 

On the basis of the general composition and in harmony with tacti¬ 

cal and technological requirements types of carrier designs and fastening 

points for engines, and also methods of transmitting basic loads and of 

joining the warhead and the cone block to the rocket chamber, are selected. 

Depending o" range of flight, character of combat effect at target, 

and other factors, rockets may be single-stage or multiple-stage. 

In Figure 1.9 we show one of the widespread RETT layouts for a 

single-stage guided missile. The casing of the engine is made in the form 

of an axially symmetrical structure. The cone block is attached directly 

to it, and the casing is connected to the instrument compartment and the 

warhead via the traversible end wall. 

One of the type composition layouts for a multiple-stage rocket 

RDTT is shown in Figure 1.15. 

In this rocket the first and second stages are grouped in a package 

layout, while the third (last) stage consists of a single rocket engine. 

During the flight of the multiple-stage rocket the engines which have 

burned out and are not necessary for further flight are dropped off, and 

the engine which is functioning is able to communicate supplementary ve¬ 

locity to the lightened rocket. 

The composition layout of a RDTT depends essentially on the purpose 

of the rocket, and also on the character and working regime of the engine. 

For zenith, antitank, and some other designs of rockets ordinarily the 

first-stage engine plays the part of an accelerator and is intended for 

rapid build-up of the velocity necessary to ensure steady flight. Such 

engines are called start engines. The engine ensuring the further flight 

of the rocket upon its trajectory is called a route engine. The working 

regimes of start and route engines (thrust and time) are substantially 
differentiated from each other. The charge of a start engine is made of 

fuel having a high burning speed; it has a low thickness of burning arc 

and a large burning surface. For the charge of a route engine it is wise 

to use fuel having a lower combustion speed. 

In setting start engines around the route engine the cones can be 

adjusted parallel to the rocket axis, or at an angle. If the cones are 

set at a certain angle to the axis of the rocket, the line of action of 

the thrust vector of each of the rocket chambers ordinarily runs through 

the over-all center of gravity of the rocket. When this is the case, the 

possibility of the stream of gases that issue from the cones striking the 

casing of the rocket is eliminated. 

In order to reduce as much as possible differences in the thrusts 

of individual engines, and also in order to achieve simultaneous cut-off 



("shut-down") of the working engines, identical combustion regimes must 
be maintained in each engine- In designing all these problems are re¬ 
solved by making use of gasodynamic links between engines- In Figure 1.16 
we show RDTT layouts in which the chambers are connected to each other by 
a pipe or a single cone; this brings about evening-off of pressures within 
the separate rocket chambers and ensures simultaneous release and cut-off 
of all engines in the set (16). 

4- I 
II 

Vmmm7T>w//A 
. 

Figure 1.16. Composition layout of RDTT: a -- layout of engines joined 
via pipe conduit in order to ensure fire linkage; b -- lay¬ 
out of engines connected to single common cone. 

In some composition layouts (Figure 1.17) for single-stage rockets 
engines are used which operate on two regimes (start and route). In Fig¬ 
ure 1.17, a and b, engine layouts are shown in the rocket chambers of 
which there are in each case two solid fuel charges having different com¬ 
bustion times. In Figure 1.17, c and d, we show engine layouts having a 
number of chambers positioned in a single casing. 

The Rocket Qiamber 

The rocket chamber, which operates under circumstances of high 
pressure and temperature, is a basic oart of the engine. For this reason 
structural and heat-resistant steels, and also alloys of light metals, 
titanium alloys (6 percent Al, 4 percent Va), and plastics, are used as 
materials for the manufacture of RDTT rocket chambers. 

Thus, for example, the steel casing of the engine of the first 
stage of the ’Minuteman" rocket (Figure 1.18) consists of a cylindrical 
shell, and two caps (upper, 2, and lower, 3). The spherical or ellipsoidal 
caps (end walls) are made of isotropic materials (steel, titanium, etc.). 
The upper cap is welded to the cylindrical portion, and the lower is 
threaded on. The inward surface of the upper cap is covered with a shaped 
rubber insulation 10 millimeters thick. The insulation of the lower cap 
consists of fiberglass 50 millimeters thick and a two-layer rubber coating 
which ensures compensation of the expansion of the fuel upon change in 
temperature. The interior surface of the casing of the engine is covered 
with a double layer of rubber insulation 4, 5 millimeters in thickness. 
A protective coating 5 is applied to the exterior surface of the casing; 
it protects the engine against the action of gases upon release from the 
shaft, and also against aerodynamic heating-up during flight through the 
atmosphere (7). 



2 I 

Figure 1.17. Layouts for theoretically possible designs of RDTT's having 
two thrust stages: a, b -- single-chamber; c, d -- two- 
chamber: 1 -- charge of start regime; 2 -- charge of route 

regime. 

Heat-treated steel in the manufacture of rocket chambers is gradu¬ 

ally being supplanted by plastic materials reinforced with glass fiber 

distinguished by very marked anisotropic properties. Standard brands of 

glass plastics are manufactured on the basis of epoxy resins (optimum 

resin content about 15-20 percent). Wien ordinary epoxy resin is used 

the strength of glass plastics declines to 25 percent at a temperature as 

low as 149° C. Work is continuing on the creation of resins which retain 

great strength up to a temperature of 260® C (3). Fibers can be made not 

only of glass and nylon, but also of steel and other materials (8). 
Fibers made of oxides of beryllium and boron show promise. In Table 1.3 

we set forth comparative data on the mechanical properties of compound 

beryllium-steel systems (9). 

In manufacture of the cylindrical casings for combustion chambers 

by the coil method a combined coil of thread (at various angles), making 

it possible to take up not only gas pressure but also the deflecting 

forces arisen from the operation of inertial forces, is used. 

Hie casings of the RDTT's of both stages of the "Polaris A-3" 

rocket, and also the engine of the third stage of the ’fcinuteman" rocket, 

are manufactured by a similar method. 

- 26 - 
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Table 1.3 

Resistance (Ver Time _ 

Mean (kilo¬ 

gram per 
square Specific 

Material centimeter) (centimeter) 

Module of Elasticity _ 

Mean (kilo¬ 

gram per 
square Specific 
centimeter) (centimeter) 

Boron 

Short- 
fiber 

Continuous 

fiber 

E glass 
fiber 

Bery11ium 

Steel 

35,000 

28,100 

35,000 

6,300 
1,970-42,100 

1.35 • 107 

1.02 • 107 

1.37 • 107 

0.33 • 107 

(0.025-0.53) • 107 

4.2 • 106 

4.2 • LO6 

0.73 • 106 

3.1 * 107 
2.1 • 106 

1.62 • 109 

1.52 • 109 

0.28 • 109 

1.68 • 109 

0.28 • 109 

Comparative weight data for steel and plastic 

casings of the engines of three modifications of the 

set forth in Table 1.4 (9). 

(glass plastic) 

"Polaris" rocket are 

Table 1.4 

Modification Casing 

of Rocket Material 

Weight of 

Strength Thickness Casing With- 

(grams per of Wall Length of out Heat 
square (milli- Cylindrical Protection 

centimeter) meters) Part (meters) (kilograms).,. 

First stage 
A-l Steel 7.8 

A-2 Stee 1 7.8 

A-3 Glass 
plastic 

(S-994 

glass 
fibers) 2.0 

Second stage 
A-l Steel 7.8 

A-2 Glass 
plastic 

(E glass 
fiber) 2.1 

A-3 Glass 
plastic 

(S-994 

glase 
fiber) 2.0 

5.6 2.6 862 

4.8 3.4 773 

8.1 3.5 433 

2.3 0.9 238 

4.6 0.9 173 

3.7 1-1 95 

-28 - 
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In Table 1.5 the characteristics of a number of structural materi¬ 
als are set forth, making it possible to perform a comparative analysis 
of the desirability of using them (8). 

Table 1.5 

Name of 
Material 

Time Re¬ 
sistance 
to Rupture 
(kilograms 
per square 
centimeter) 

Specific 
Weight Specific 
(grams per Strength 
square (centime- 
centimeter^ ters • IQ**) 

Specific 
Resistance 
to Annular 
Stress 
(centime 

Heat Con¬ 
ductivity 
Coefficient 
(kilocalories 
per meter 

ters • IQ**) hours • °C) 

RS 140 
steel 15,700 

L71 alumi¬ 
num alloy 4,400 

Titanium 9,400 
Phenol- 
asbestos 
plastic 
Type A 2,040 
Type B 3,640 
Type C 420 

Glass 
plastic 
(S-994 
glass 
fiber; 8,400* 
longi¬ 
tudinal 
coiling) 8,400* 

Glass 
plastic 
(E brand 
glass 
fiber; 
spiral 
coiling) 7,000* 

Glass 
plastic 
(S-994 
glass 
fiber; 
spiral 
coiling) 10,500* 

7.8 

2.8 
4.5 

1.75 
1.8 
1.8 

2.0 

2.0 

2.1 

2.0 

2.010 

1.580 
2.090 

1.160 
2.030 
0.236 

4.2 

4.2 

3.3 

5.3 

12-19 

100-170 
12-16 

* Values for strength limits for glass plastics are given for annular 
stress. 
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The Rocket Cone Block 

The design of the supersonic cone of the RDTT and the reciprocal 
positioning of the cone and the rocket chamber affect the amount of thrust 

^d the reliability of the engine’s functioning 
entry (precritical) and exit (postcritical) parts of the cone are seiectea 

to meet conditions of assuring minimal losses of UP^ th® imum 
of gases from the cone. Depending on the purpose of the 
deeree of widening of the cone is selected. The exit portion of the cone 
can have the shape of a cone of 16-40° aperture, or in the form ^ ^ c^e 
of a profile determined so as to assure a straight and even flow upon the 

section of the cone (profiled cone). 

The critical part of the cone is made of graphite or heat-resistant 

metal, and the expansion part of thermoreactive resinmA 6 
form of metal powders or graphite, asbestos, or ceramic fibers ^ 
clastic cone may have self-regulating sublimation cooling (11). Expert . 
ments with cones having sublimation cooling have shown satisfying results, 
after 56 seconds of engine operation the thickness of the covering was re¬ 

duced only by 0.1-0.2 millimeter (12). 

To make cone inserts pyrographite, secured by pyrolysis ot hydro¬ 
carbons in a vacuum furnace at high temperature, is used. 
is a strong, impenetrable material, resistant to erosion. It stands up 
^,1 to Nation up to a temperature of 1.000° C, has ^«oprc proper- 
ties, and starts to disintegrate at a temperature of 3,500 o. 

For engines in which the charge is firmly fastened to the walls of 
the rocket chamber, a plastic cone block can be fastened to the fuel 
charge as well (Figure 1.19). Such fastening considerably reduces the 
weight of the cone block and the thermic load on the structural elements 

adjacent to the cone. 

In Figure 1.20 we show the design of a rotatory cone for a RDTT of 
4-meter caliber. Ah articulated ring, 3. of 2-meter ^ fastened 
on two pivots, 2, to the stationary precritical part of the cone, 1^ T 
movable part of the cone, 4, which can be inclined to an angle 5 
two planes, is fastened to the articulated ring at an angle of 90 to the 
first two pivots (13). In the gap between th i stationary and the movab e 
parts a filler ring made of a special kind of rubber . ” 
order to prevent burning the ring is covered with a silicon 1°brJ- ^ ’ 
The steel casings of the units of the movable cone are covered with 
graphite and carbon fabrics, and also with glass plastic saturated wit 

phenolic resin. 

/Translator's note: The cone "rotates" to a limited extent rela¬ 
tive to^ts longitudinal axis; "swinging" would perhaps be a better term 

than "rotatory.^./ 
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Figure 1.19. Layout of R0TT with 
cone attached di

rectly to solid 
fuel charge; 1 -- 
critical part of 
cone; 2 -- expand

ing part of cone.

Figure 1.20. Swinging cone for 
rDTT of 4-meter 
caliber: 1 -- sta

tionary part of cone; 
2 -- pivot; 3 -- 
power ring of rocker 
assembly; 4 -- mova

ble part of cone.

Figure
1.21. Design of cone having 

special form of heat 
insulation: 1 --
porous insert; 2 
plates of metallic 
hydride; 3 -- steel 
plates; 4 -- channel 
for passage of gases.

1 ..n cone reach their maximum value in
the crificarsection o" the cone (about 10? kilocalories per square meter
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times hours), great importance is laid upon its heat insulation. Thus 

for example, in the critical section of the cone of the first stage o 

the "Minuteman" rocket a tungsten insert having six graphite ^ ^ 
serted (7). In the design of the cone illustrated in Figure 1.21 cooling 

of the critical section of the cone takes place by virtue of the decompo¬ 

sition of the metallic hydrides LiH; LÍBH4; NaBH4; and KBH4. Above the 

porous insert, 1, there is a set of plates of metallic hydrides, ^ter 

nating with steel plates, 3. As hot gases flow through the cone the meta 
lie hydride plates heat up. (For intensification of heating the hot gas s 

may be supplied to the plates through a piercing, 4.) Under the action 

o/the high temperature, the metallic hydride decomposes with release of 

hydrogen which, passing through the porous insert, forms a gas fi m 
the surface of the cone, which reduces the heat flow from the hot gases 

to the cone (11). 

Curvilinear cones have found application in designs of RDTT's for 

guided rockets. Various forms of curvilinear cones with forced declina¬ 

tion of flow are shown in Figure 1.22. Three possible types apply to 

these: annular cones, cones with a central body, and saucer-like cones 

(or the cone with a "skirt"). AH the types set forth are characterized 

by high thrust characteristics, have a relatively small length (weight;, 

and create an even and straight-line flow upon issuance from the cone. 

Figure 1.22. 
Various forms of curvilinear cones with forced declination 

of stream: a -- cone of conical form; b -- cone with opti 

mum contour; c -- annular cone; d -- cone with centra 

body; e -- saucer-like cone. 
1 -- ideal; 2 - optimum; 3 — radius at exit. 

At present cones having a central body are being widely used (Fig¬ 

ure 1.23). The inner boundary of the stream along such a cone is a 

surface. While the altitude of flight is changing the free surrace of 

the eas stream bathing the central body is constantly undergoing adapta 
Son to surrounding conditions, and the magnitude of the area of section 

ofShe stream at the end of the central body is automatically set in 
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haraony with the degree of expansion. Inasmuch as a cone having a central 
body operates as a cone having a ratio of sections which can be regulated, 
the characteristics of the cone at regimes lower than the calculated one 
are higher than the characteristics of usual Lavalle cones (Figure 1.24). 
The physical significance of the advantage referred to lies in the nature 
of the self-regulation of the flow. The work of a cone having a central 
body is identical with the process of bathing a convex obtuse angle with 
a supersonic flow (Prandtl-Meier stream). 

Figure 1.23. 
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9 * ' nomm 

(1) 

Bo/mu pacmpem 
[oofiHu áiaxaj 

(2) 

f, V Jh/Huu maxa c pacvemmui 
W ctnenenuo pamupewifi 

On the question of the physical picture of the process oc¬ 
curring in cone having central body. 
1 -- direction of flow; 2 -- expansion waves (Mach waves); 
3 __ plane M = 1 (critical section); 4 -- lines of flow 
with calculated degree of expansion. 
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Figure 1.24. Thrust characteristics of cones of various types. 
1 -- coefficient of thrust Kp = P/PkFkp» 2 -- cone having 
central body; 3 -- usual cone, with break; 4 -- without 
break; 5 -- calculated ratio; 6 -- cone having central 
body; 7 -- experimental points K = 1.4; 8 -- ratio of 
pressure in chamber to surrounding pressure. 
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Increase of pressure on the parts of the central body increases 

thrust of the cone from the central body as compared with thrust of a 
Lavalle cone. At degrees of expansion which exceed the calculated degree, 

the thrust characteristics of the cones compared coincide (Figure 
This is to be explained by the fact that any expansion of a stream of 

gases in the atmosphere when there is a ratio of pressures greater than 

the calculated one does not affect the flow moving along the wall of a 

cone of any type (15). 

The use of a central body opens up new possibilities in controlling 

the vector of thrust according to direction. 

1.3. Characteristic Peculiarities of Design Layouts of Uhguided Reactive 

Missiles 

It is indicated in the foreign press that although guided rockets 

are at present fundamental in military rocket technology, unguided reac¬ 

tive missiles (NRS) still occupy an important position in the system of 

army armaments (17). 

NRS's are simple in layout, and their release apparatus are de¬ 

pendable, light, and small in dimensions. 

In Figures 1.25-1.27 we show various patterns of Soviet NRS's 

dating from the period of the Second World War (2, 18). 

Figure 1.25. M-8 rocket missile (USSR), 82-millimeter caliber, start 
weight 8 kilograms, maximum velocity 315 meters per second: 

1 -- warhead; 2 -- rocket chamber (with solid front wall); 

3 -- cone; 4 -- deflector; 5 -- stabilizer. 

Figure 1.26. M-13 rocket missile (USSR), caliber 132 millimeters, start 
weight 42.5 kilograms, maximum velocity 355 meters per sec¬ 

ond: 1-- warhead; 2-- intermediate unit; 3-- rocket 

chamber; 4 -- cone; 5 -- deflector; 6 -- stabilizer. 
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Unguided rocket missiles are distinguished by the variety of their 
composition and design layouts. In selecting an optimum composition lay¬ 
out the purpose of the missile, the weight and composition of the useful 
load, the character and effectiveness of operation of the missile at the 
target, and the type of explosive device are taken into account. 

There are a number of layouts for mutual positioning of the warhead 
and the rocket parts in the over-all composition of a rocket missile having 
a solid fuel engine (Figure 1.28). One should regard as the basic design 
the so-called normal RS design -- warhead in front, rocket part behind 
(Figure 1.29). Some RS's for field artillery having shrapnel effect are 
made on the reverse system -- rocket part forward, warhead behind (Figure 
1.30), which heightens the effectiveness of operation at the target on the 

part of the missile in question (18). 

Figure 1.28. Possible layouts for structural composition of rocket mis¬ 
siles having solid-fuel engines: a -- warhead forward, 
rocket chamber behind; b -- rocket chamber forward, warhead 
behind; c -- warhead inside rocket chamber; d -- rocket part 
within warhead; e -- warhead between two rocket chambers; 
f -- rocket chamber between two warheads. 

The design layout of the RDTT for an unguided rocket depends on the 
purpose and intended range of flight of the missile. NRS's of land rocket 
artillery are calculated for a relatively short range of fire and for this 
reason single-chamber RDTT's are most frequently used in them. 

In Figure 1.31 we show the arrangement of antitank missiles (,2). 
In the rocket chamber there is a thin-walled charge of solid fuel. The 
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time of combustion of the rocket is fractions of a second, and for this 

reason the charge bums primarily during the period of movement of the 

NRS in the tube of the guiding release apparatus. The diameter of the 

casing of the engine is less than the diameter of the warhead of the NRS. 

Figure 1.29. Sample design of present-day rocket missile for field artil¬ 
lery: a -- warhead; b -- rocket part: 1-- detonator; 
2 -- supplementary detonator; 3 -- casing of warhead; 4 -- 

explosive charge; 5 -- partition; 6 -- igniter with elec¬ 

trical ignition system; 7 -- forward frame for fastening 

together igniter and charge; 8 -- casing of rocket chamber; 

9 -- solid fuel charge; 10 -- diaphragm; 11 -- cone block. 

Aviation NRS's have an arrangement analogous to that of the mis- 

si les of surface rocket artillery (Figure 1.32) and are stabilized during 

flight by tail groups. In Figure 1.32 we show the structural assembly of 

a tail stabilizator in the form of a group which opens out. 

In order to improve the clustering of fall, an apparatus is pro¬ 

vided in the structural layout of RDTl's for unguided RS's which ensures ^ 

rotation of the rocket around its longitudinal axis. In the 'Honest John 

unguided single-stage ballistic rocket (Figure 1.33) small RDTT s are 

placed behind the warhead at a certain angle to the axis, intended to 

rotate the rocket slowly around the axis of symmetry. 

Beside usual NRS's stabilized in flight by means of tail groups, 

there are turbojet missiles (TRS's), in which stabilization in flight is 

effected by virtue of rotation oi the missile around its longitudinal 

axis (Figure 1.29). Rotation of the TRS is created as a result of the 

issuance of gases through diagonally positioned cones set in the base of 

the rocket chamber (19). 

Type layouts of solid-fuel rocket engines for unguided missiles 

are illustrated in Figures 1.34 and 1.35 (10). 

A number of RDTT layouts are used at present for unguided RS's. 

The simplest in arrangement is the layout of an engine having a free- 

inserted charge (Figure 1.34). 
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Figure 1.33. "Honest John" unguided rocket missile of "surface-to-surface 
class.

Figure 1.34. Layout of installation of RDTT with free-inserted charge of 
solid fuel: 1 -- casing of rocket chamber; 2 -- cone; 3 --
forward cap; 4 — charge of solid fuel; 5 -- diaphragm;
6 -- igniter: 7 -- cartridge igniter.

iSie main elements of the engine are -.he combustion chamber, 1, in 
which the solid-fuel charge 4 is located; the cone block 2; the forward 
cap 3; the ignition apparatus 6: and the diaphragm 5, preventing the 
ejection of the burners of the solid fuel charge through the cone.

Along with the main elements of the design layout which have been 
referred to, there may also be preventer valves for emergency release of 
pressure, cassettes for burners, charge holders, catches on the exterior 
surface of the charge where the charge lies against the walls of the com
bustion chamber, cone stoppers to seal the engine and other parts. In 
these engines ballistite solid fuels are used -- nitroglycerine powders. 
Charges of this t”pe of fuel in the form of cylindrical single-channel 
and multiple-channel burners are inserted freely in the combustion cham- 
her With this sort of loading of the chamber the products of combustion 
of the fuel touch the casing along its whole inner surface, which leads 
to intense heating up of the casing and reduction of the strength charac
teristics of the material. In connection with this supplementary difti- 
culties associated with protecting the chamber against heating arise.
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Solid-fuel rocket engines made in this way had relatively high weight, 
and the design quality coefficient, a , came to a considerable amount, 
0.8-1.5 (20). An engine having a free-inserted charge is simple in load¬ 
ing and checking, convenient in use. 

In Figure 1.35 we show diagramatically a variant of the engine, in 
which the charge, jacketed on the outside, is free-inserted into the com¬ 
bustion chamber. The absence of intensive convective heat exchange be¬ 
tween gases and the combustion chamber protect the walls of the casing of 
the engine from substantial heating up during the process of combustion 
of the charge. The combustion chamber consists of a cylindrical tube, a 
rearward cap, and the entrance part of the cone. The structural units are 
put together so as to overlap (telescopic assembly) and are connected with 
bolts and anchor nuts, and also by welding and threading. The charge 4, 
jacketed on its faces and surface, is centered in the chamber by means of 
small supports, 5, of noninflammable material. The annular gap, 6, be¬ 
tween the charge and the inner surface of the heat insulation of the com¬ 
bustion chamber amounts to a few millimeters (16). The forward face of 
the charge is held in place by the holder, 7, with a packing, 8, of lay¬ 
ered plastic. During combustion of the charge gases pass through open¬ 
ings, 9, in the packing, 8; they create a counterpressure which protects 
the charge against breaking up. The rear face of the charge rests in a 
cone of glass plastic, 10, which simultaneously serves as a heat insulator. 
The rubber obturator, 11, in an annular groove in the support cone wards 
off transverse flow of gas in the annular gap, creating an annular dead 
zone around the çharge. The stationary gas zone protects the wall of the 
chamber against intensive convective heating up (16). The basic design 
deficiency of this layout is the substantial increase in weight of the 
design on account of increased internal diameter of the combustion cham¬ 
ber, brought about by the presence o: the gap between the charge and the 
casing. The size of the gap depends upon the thickness of the jacketing 
of the charge and of the heat-insulating covering of the chamber; produc¬ 
tion tolerances in the manufacture of the charge and chamber, and thermic 
expansion of the charge and chamber. 

In RDTT designs carried out according to the free-inserted charge 
system there is a diaphragm which keeps the charge in the rocket chamber 
until it is completely burned up. 

Diaphragms are made of steel with a carbon content of about 0.3 
percent, of heat-resistant steel having a small chromium content, and 
also of various brands of plastic. 

Depending on geometrical shape, diaphragms are multi-annular (Fig¬ 
ure 1.36), mono-annular with ribs, grating, disc, lobed, sectoral, and 
pierced (18). The form and dimensions of diaphragms of present-day MS's 
are determined by the design of the solid fuel charge and the cone block, 
and also by the time of functioning and the purpose of the RDTT. The 
flow of gas through the diaphragm assembly is characterized by maximum 
turbulization of flow and is accompanied by throttling of gas, formation 
of eddies, and exaggerated drop in pressure. 
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Figure 1.36. Diaphragm Designs for Solid Fuel Rocket Engines 
a) Multi annular diaphragm for multiburner charges; b)--Monoannular 
diaphragm without peripheral ring for single burner charges. 
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CHAPTER II. BASIC RELATIONS OF THE INTERNAL BALLISTICS 
OF GUIDED ROCKETS 

2.1. The Rocket as a Variable Mass Body, 

In classical mechanics based on the laws of Newton the mass of a 
moving body is regarded as a constant quantity. But in practice one mus 
examine problems regarding the movement ot a body the maas of ^‘c ^ 
constantly changing with the passage of time as ^e result ^ 
tion from it or association with it of material particles. Such a body 
is called a body of variable mass. l£t us examine questions in the me- 
chanics of a vaiiable-mass body as they relate to the dynamics of a 

rocket. 

Let us encompass a rocket with a control surface 2 , °v^ 
the external surface of the rocket casing and over the outlet section o 

the cone, AA' (Figure 2.1). 

Figure 2.1. The rocket as a variab le-mass body. 

tfe shall consider all material points which are within the control 
surface referred to at a moment in time t as pertaining to a Variable- 
Tas bod/’ the rocket, in order to be able to c-sider the rocke as 
Tconstant-mass body at a time dt and apply to it the usual relations of 
Ponían mechanics we further take under consideration a deformed con¬ 
trol surface I, . The latter is distinguished from the surface 2 in 

that part of it running through the outlet section AA' 
dt along the flow by an amount vradt, where vra is e 
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gas relative to the casing of the rocket and the index jg. corresponds to 
the outlet section of the cone. Thus mass remains constant within the 
control surface 2i over time d¿. 

From here on we shall examine three fields: 

Field I comprises the solid bodies within the control surface , 
to the exclusion of the gases which are in the rocket chamber. Thus we 
shall assign to field 1 the casing of the rocket, and solid or 
fuel. Wd shall assign to the casing of the rocket and designate by 

the mass of the bodies which at an instant of time t_ are in field I. 

Field II comprises the gases which are in the rocket chamber ahead 
of the outlet section AA'. We designate the mass of these gases by m. 

Field III back of the outlet section of the cone contains a mass 
of gases which flow out of the chamber over time dt. The mass of these 
gases is equal to --dm , where p is the discharge of the mass of 
the gases flowing out over one second. 

Let us write an equation for the amount of movement of the rocket. 
At a moment of time t within the control surface in fields I and II we 
have the mass of the”rocket Mk + m. This same mass, at a moment of time 

t + dt, lies within the control surface £i , in fields I, II, and III. 

The amount of movement of the system in a moment of time t rs equal to 

Q « Ai«t'«c + ¢. 

where vkc is the velocity of the center of mass of the body, 

q is the amount of movement of the gases. 

For a moment of time t + dt we get 

Q + = [Af,— (p + dv)dt\{vKC + dvM) +q+dq + ïdt u, (2. i) 

where ü is the absolute velocity of the outward flow of gases in the 
outlet section of the cone. 

By means of the quantity dp we take into account the circumstance 
that the feed of fuel into the chamber per second may differ from the 
discharge of the gases flowing out. 

From equation (2.1), eliminating the quantities (p + dp), 

dp-dt • in view of their smallness, we get 

4Q a» MgdV" + dq + pi“" ^ 
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Mb divide by d|. and, taking into account the fact that C - - vra where 

vra is the velocity of outward flow of the gases relative to the system 

of coordinates associated with the casing of the rocket, we get* 

(2-2) 

where $ is the principal vector of the external forces operating upon 
the rocket. The quantity dj characterizes the change in the amount of 

IT 
movement of the gases in the chamber. 

Let us examine the elementary mass of the gases in the chamber be¬ 
tween sections x and x + dx (Figure 2.2). The elementary amount of move¬ 
ment is 

«Sm-ê* ¢2.3) 

where is the velocity of the gases relative to the stationary meter¬ 

ing system. 

Differentiating expression (2.3) in time and shifting to the mo¬ 
bile system of coordinates associated with the casing, we have 

= dm (is, + to, + ttvop). (2.4) 

Integrating expression (2.4) along the chamber to the outlet sec¬ 
tion, we get 

jfo-fw, + w„P) dm. 
n 

Since acceleration we = does not change along the cone, 

the first term assumes the form 

( » wM/n » m-p-. 

* One ought to take into account the fact that the velocity of flow 
relative to the casing differs from the velocity of flow relative to the 
center of mass of the rocket by the amount of the velocity of movement 
of the center of mass of the rocket relative to its casing. For a V-2 
rocket this last velocity comes to 0.001 percent of the quantity vra. 
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The second Lcrm - 

where qr is the quantity of movement of gases in the chamber relative to 

the casing oí the rocket. 

Figure 2.2. Quantity of movement of gases in chamber. 

The third term -- 

J w«op dm = - Ftop, 

where Fçor is the Coriolis inertial force which appears upon oscillation 

of the rocket. 

Thus 

ife _ F 
dt 

Inserting the expression thus secured in expression (2.2), we have 

or, designating M as equal to Mfc + m, 

Af 
dt 

(2.5) 

The main vector of the external forces is determined from the 
expression 

$ == Afg + + (2.6) 



whore Mg is the weight of the rocket; 
Ffric is the maln vector of tangential forces of friction resistance; 

Ppress i* the maln vector of external pressure forces. 

¡1 {p - Pm) (2.7) 

where p is the pressure upon the surface of the rocket; 
PH is the atmospheric pressure at the height of flight; 

ñ is the unit vector of the normal to the elementary surface dj^, 
s is the entire external surface. 

The pressure of gases in the outlet cross-section of the cone of 
the working engine does not depend upon the character of the flowing around 
the rocket on the part of the external stream and is determined entirely 
by the parameters of the rocket engine. For this reason it is well, in 
expression (2.7), to isolate from the field of integration ¿ the outlet 
cross-section of the cone Sg 

{p-pH)nds+^(p- pH)nds. 

Thus 
Ft|>+(/>«-/>„) v*. (2.8) 

where pa is the pressure of gases in the outlet cross-section; 

na is the unit vector of the normal of this section; 

R is the main vector of aerodynamic forces. 

Expression (2.6) assumes the form 

$ ** -f R “h (Ãi—PH)sana- (2.9) 

The equation for movement of the rocket is written as follows ; 

Af igp. « Mg— pi*, + (p.-Ph) 

The expression 

iPa-Pn) W* (2.10) 

is called the reactive force. The term may be regarded as a cor¬ 

rection to the reactive force depending upon alteration in the parameters 
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of the flow of gases in die diamber with the passage of time. With a 
stabilized process in the chamber of the engine qr is a constant, and ¿Ir 

él 
equals zero. Let us evaluate jífe in the general case. 

Let us examine the elementary volume of gases in the chamber sdx. 
where ¿ is the area ot the cross-section of the chamber. The quantity of 
movement of gases in this elementary volume is 

™ sdx • pvr ■“ |wi jc, 

where p is the mass density of the gas. 

Integrating along the chamber to the outlet cross-section of the cone we 
get 

whence 

The discharge of gases per second is proportional to the pressure 
of gases in the chamber. Let us examine sucli a process which has not 
stabilized itself, when the pressure in the chamber and consequently the 
discharge per second double in one second. When this happens, taking dt_ 
as equal to 1, we get 

Let us compare these quantities witli the basic term in the expression for 
reactive force, ¡ivra . We secure 

j¡L = JL 
PVfa vrm ' 

For a V-2 rocket 

-.,25.10-=0.1^ 

Let us evaluate the magnitude of the Coriolis inertial force. Let 
the rocket oscillate around an axis perpendicular to the axis of its sym¬ 
metry, with an angular velocity ç . For an elementary mass of gas 
dm *= Spdx the Coriolis force is equal to 

dFnt = 2dm • vfj = 2spdx • = tyydx. 



Integrating along the chamber we get 

F», - 2|»f/. 

Let the oscill-icion of the rocket take place according to the formula 

Bien 

í — — Am lin 
m I « 4«. 
▼mi I 

For a V-2 rocket the amplitude of oscillation A is about 2°, and the fre¬ 
quency • ** 1 Hz. Under these circumstances  »0,035• The length of 

the chamber, .1, is about 2 meters. The discharge of mass per second, H , 
is about 15 kTlogram-seconds per meter. Under these circumstances we have 

• / - 2 • 15 • 0,035 • 2 » 2 w 

with a rocket weight of approximately 13,000 kilograms and a reactive 
force of about 25,000 kilograms. 

From the evaluations set forth it is apparent that in studying 
the movement of a rocket one may discard the terms covering the Coriolis 
inertial force and the alteration in the amount of movement of gases in 
the chamber. 

When this is done the equation of movement of the center of mass 
of the rocket assumes the following form: 

where 

PmafV't + (j>a — P») Sa*a 

Projecting the last expression in a direction opposite to the 
escape of gases we get 

(2.11) 

■“ Sm 
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2.2. The Gravitational Field of the Earth 

Hie resultant of the force of the earth's attraction and the force 
of inertia of transfer movement from the rotation of the earth are called 
the force of gravity. 

Let us examine a material point P with a mass m a 1, located out¬ 
side the space occupied by the earth. The force of attraction of this 
point by any particle of the earth is determined by the law of universal 
gravitation 

/w-5- 

where M is the mass of the particle of the earth, 
r is its distance from the point attracted 
f is the constant of universal gravitation. 

The power function of this force is determined from the expression 

r 

Let us recall a property of the power function: projections of 
the force upon the axis of the coordinates are equal to partial deriva¬ 
tives from the power function along the corresponding coordinates. 
Examining axis r directed toward the point attracted as being one of the 
axes of the coordinates, we secure 

_ an fM 

The Newton potential of the earr.h is secured by totaling the power 
functions of all particles of the earth 

This potential depends upon the shape, dimensions, and distribu¬ 
tion of the masses of the earth. 

In first approximation one may regard the earth as being of telo- 
spherical shape, in which density at all points depends only upon their 
distance to the center of the sphere. In this case one can show that a 
body attracts an exterior point as though its entire mass were concentrated 
in the center of the sphere (2). 

In Figure 2.3 Rq is the radius of the earth, P is the point at¬ 

tracted, and rg is its distance to the center of the earth (0). Let us 

- 



construct two cones with half-angles f and f + , having a conunon apex 
at the center of the sphere, and let us produce two concentric surfaces 
by means of radii R and R + dR. The mass of the elementary volume of a 
body delimited by the surfaces referred to is equal to 

dM-*p2*R* sin 

where p ■» Pi*) , the density in the component under examination. 

Under these circumstances the value of the Newton potential of the earth 
is determined by means of the expression 

n -/f - 2./J p <*) f (2.12) 

where r is the distance of point P to the isolated volume of the body. 

Taking as our point of departure 

r* **/?* + *2 — 2ßr, cos r. 
rdr *** Rri tiny df, 

we introduce a variable of integration of r in place of f 

ff. r,±K R, 

Thereupon 

% '•t* A ttt 
n»££jp(/?)/W/? ij dr = 1½ j pR*dR. 

Taking into account the fact that with the assumptions indicated 
the mass of the earth is 

M~4*jpR»dR, 
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we get 

Just such un «pression fur tho potential is 
ue predicate that the entire of the mass of the earth is Concentrate 

its center. 

Quitting the index 0 alongside r_ and designating ^ by k * s® 
cure in first approximation an expression for the force of attraction y 

the earth of a particle having mass m 

/=•- 

The acceleration £ communicated by this force to the particle attracted 

is equal to 

The last expression can be used for determination of the constant 
k2 for acceleration of the force of attraction of the eartn g0 upon its 

surface 

The numerical value of the constant k2 may be taken as 

*» = 3^986 -10'« ¿jr (* = 1,9965 • 10'). 

In determining the potential of the se^nd^pPÍ°^f 
taking into account the oblate shape of the earth the figure thereof s 
replaced by the spheroid of F. N. Krasovski*. When this is done with a 
precision to small quantities of the first order relative to ^ the ex 

pression for the potential of the earth assumes the form 

/M I ^_(C—/1)(1-3sin* X), (2.13) 

Tjhprp 1 is the breadth of the point attracted; 
C ià tie moment of inertik relative to the earth's «is of rotation; 
A = B is the moment of inertia relative to the equatorial axis. 

The second term in expression (2.13) is a quantity of the first order of 

smallness as compared with the first term. 



Inasmuch as the distribution of the masses of the earth is unknown, 
in order to determine the coefficients in expression (2.13) it is neces¬ 
sary to take advantage of the results of measurement of the acceleration 
of the force of gravity on the surface of the earth, and also the results 
of observations of the flights of satellites. In the study (1), on the 
basis of generalisation of the investigations referred to, the following 
relation is proposed for the potential of the earth: 

-f-j-(1 — 3sin* + ■y’(3 sin X5 sin1 X) + 

K / a \4 y (2.14) 
+ ^ ( (3 - 30 sin* X + 35 sin«X), 

where X is the geocentric breadth; 
a is the length of the equatorial radius. 

The values of the geocentric constants are: 

¢-.6,378145 -10« ± 11 *; 

A-1,9965015 10' ± 111^; 

/-(1623,41 ±4)10-«; 

7/-(6,04 ± 0,73) • IO-«; 
7(-(6,37 ±0,23) . 10-«. 

The third term in expression (2.14) contains sin X in odd mul¬ 
tiples and characterizes a certain breakdown of symmetry in the north- 
south direction (pear-like form of the earth). 

Let us evaluate the magnitude of the second term in the expression 
for the potential of the earth, taking r as 7,000 kilometers * 7 • 106 
meters. We get *" 

J 
T 

a V 1623-10-* 
T)-— 

0,45-10-*. 

At the equator sin X equals zero, and the correction to the first term 
turns out to be about 0.045 percent. At the pole 1—3sin*X~_2> and the 
correction proves to be about 0.9 percent. 

In. study of the movement of a body relative to the earth it is 
also necessary to take into account the inertial force of transfer move¬ 
ment and the Coriolis inertial force (Figure 2.4). 

The centrifugal inertial transfer force operating on point P is 
equal to 



fw, —mm* cos A. 

The potential of this force is equal to 

nMp=aT-r*“,C0S,x- 

The projection of force Ftrans in the direction of the radius of the vec¬ 

tor of point P is equal to 

(* n«p)f ■» m -gp- = mm* cos* A 

The projection of this force upon the tangent to the coordinate line of 
the spherical coordinate A is equal to 

= (215) 

Figure 2.4. Centrifugal inertial force of the earth. 

The force of gravity is the resultant of the force of terrestial 
attraction and the force of inertia of transfer movement from the rota¬ 
tion of the earth. Bie potential of the force of gravity is 

Dgravity = H + Ht rans fer- 

Let us evaluate the greatest magnitude of force Ftrans relative 

to the basic force of gravity of the earth. 

The angular velocity of rotation of the earth is 

2k 
: 86164 

7,292-10-* ceit 

Then 
/ 



F"> s_,. m» _ -V* _ 7^92*. 10— lo, 1/v.tl ^ 
-y- *» mrm*. -y «■ -p- «■ ‘Tffoi/.'ioi« "• ” g; i a,/ • iu *• n. 

Taking for a satellite r = 7 • 10^ meters, we get 

■Zap- -* 13,7.10-*« • 343-10'*«0,0047. 

The acceleration of the force of gravity upon the surface of the 
earth, g0, changes with latitude both as a result of the conçression of 

the spheroid and as a result of change in centrifugal acceleration from 
the rotation of the earth as latitude changes. 

The Coriolis inertial force Fcor is determined from the expression 

«= 2/ntV*¿. (2.16) 

where vr is the velocity of a body relative to the system of coordinates 

associated with the earth. 

The maximum amount of acceleration of this force is 

(»■*)«, 

Let us evaluate the relation 

»iiü. = 1,48- 10-»tv 
f* <« ’M* 

At a velocity of body 1,000 meters per second we get »«op ^ . 

or 1.5 percent. With initial space speed of rocket this ratio reaches 
12 percent. 

2.3. The Terrestial Atmosphere 

The pe ameters of the terrestial atmosphere (density p , tempera¬ 
ture T, and pressure 2) enter into expressions for aerodynamic and reac¬ 
tive forces and moments and directly affect the flight of rockets. From 
the expression for reactive force 

p« Fa (Pa ~ Ph) 

it is apparent that as atmospheric pressure falls off the thrust of the 
engine increases, i.e., thrust increases with increase of altitude. 

In the expression for any resistance (2.20) 



at-ŸMt) 

the mass density of the air, p , enters directly, and temperature T does 
so in the expression for the speed of sound 

a=V KgRT (2.17) 

The character of alteration in meteorological parameters with alti¬ 
tude depends on the general state of the weather and varies for various 
parts of the earth and different seasons. For this reason in order to 
simplify ballistic calculations some mean experimental or standard rela¬ 
tions of meteorological factors to altitude are set up. ttiese standard 
data are used for calculations associated with the ballistic designing of 
rockets. They are furthermore used for compiling firing tables. The in¬ 
fluence of change in meteorological parameters upon deviation of the ele¬ 
ments of trajectories is taken into account through special methods (the 
theory of corrections). 

The three basic meteorological parameters P , £, and T, are linked 
by an equation of the form 

p = g?^T (2.18) 

It is further possible to establish a relationship between pressure 
and temperature by considering the vertical equilibrium of the atmosphere, 
in which connection the weight of a given column of air is equilibrated by 
the difference of pressures in its upper and lower sections. 

Let us isolate (Fi^ure 2.5) at an altitude £ a layer of air having 
a base area s_ and a height d£. The weight of a given volume of air is 
equal to gpsdtj , and the forces of pressure upon the lower and the upper 
sections are equal to £s and (p + dp)s respectively. Setting up an equa¬ 
tion of vertical equilibrium we get 

dp^—gpdy. 

and on the basis of the equation of state we have 

whence 

-ij-f (2.19) 

If we take into account alteration in the acceleration of the force of 
gravity with altitude, the weight of the elementary volume of air at alti¬ 
tude £ is determined from the expression 



r i jwimnwi:. 

(r0 + y)* 

where r0 and g0 correspond to sea level. 

Figure 2.5. Vertical equilibrium of the atmosphere. 

When this is done, expression (2.19) assumes the following form: 

In order to calculate the integral in expression (2.19) one must 
know,the relation T(y). If this relation and the pressure p0 at the sur¬ 

face of the earth are known, it is possible to calculate the pressure £ 
at any altitude. Knowing £ and T, one can calculate the density from ex¬ 
pression (2.18). Thus we can regard temperature T as a basic meteoro¬ 
logical parameter, the law for the alteration of which with alteration 
of altitude determines the character of change in other meteorological 
parameters . 

In artillery practice the following standard values are adopted 
for meteorological parameters at sea level: 

T0 = 288° K; p0 = 750 mm of mercury column. 

In addition one takes into account 50 percent humidity of air as an intro 
duction of virtual temperature * , determined from the expression 

T 

where e is the pressure of water vapors. 

Here t* ■» 288,9°K, po ■* 0,123 kilogram • sec2/nA. 

As a standard function *(y) one adopts the relation proposed by 
Professor D. A. Ventsel. 

" 6() " 



For 9300 m one adopts a falling off of temperature with alti¬ 
tude having a constant gradient G: 

t = 288,9 — Gy, 

where 
G — 6,328 = 0,006328 -2-. 

For altitudes from 9,300 to 12,000 meters the gradient falls off 
linearly from 0.006328 to zero. Under these circumstances we get 

t = 230,0 - 0,006328 (y - 9300) - 1,172 • 10-8 (,y - 9300)*. 

For altitudes greater than 12,000 meters the temperature is taken 
as being constant and equal to * = 221.5. 

The value for the pressure is determined according to formula (2.19). 

At present international standard atmosphere (MSA) is widely used, 
its characteristics are as follows: 

o f 

T0 = 288° K; p0 = 760 mm of mercury column; Po = 0.125 kg • sec /m4. 

For altitudes up to 11,000 meters: 

T = T0 — 0,0065y 

Under these circumstances one can secure from expressions (2.18), 
(2.19) the following: 

'=*('-*ferr- 
For altitudes from 11,000 to 20,000 meters one assumes a constant 

temperature T = 216.5° K (- 56.5° C). 

The character of alterations in meteorological parameters at alti¬ 
tudes exceeding 30 kilometers is very complicated. Reliable experimental 
data on this subject have been received only in recent times as a result 
of sounding the atmosphere with meteorological rockets and artificial 
satellites of the earth. According to these data, starting at an alti¬ 
tude of 30 kilometers the temperature rises, reaching a maximum value of 
+ 50° C at an altitude of about 50 kilometers. Further outward the tem¬ 
perature again declines, reaching a minimum at an altitude of about 80 
kilometers. From there on an uninterrupted rise in temperature takes 
place. 



In the table of Annex 1, borrowed from study (4), we set forth 

values for temperature, pressure, and density for altitudes up to 100 

i ometers. For altitudes up to 20 kilometers these values correspond to 
the international standard atmosphere. 

- • 4 • Aerodynamic Forces and Moments 

During motion in air there appears on the surface of a rocket an 
uneven distribution of forces of normal pressure and of forces of tan¬ 

gential stresses determined by the viscosity of the medium. The direc¬ 

tion of the tangential stresses coincides with the direction of the 

velocity of the flow at the part of the surface of the rocket which is 

under examination. The forces referred to, in their totality, create an 

aggregate aerodynamic force f (the main vector) and an aggregate moment 
M (the mam moment) . 

In order to describe aerodynamic forces and moments we select a 

velocity system of coordinates having its origin at the center of mass of 

the rocket, C. Wfe shall suppose that the axis of the rocket is inclined 

at an angle a, called the angle of attack, from the vector of the velocity 

V of its center of mass. In the plane of the angle of attack we direct 

axis Çx in the direction of the vector of velocity v and the axis Çy along 

a perpendicular from axis Çx in the direction of the inclination of the 

axis of the rocket. The axis Cz is directed so that the system Cxyz is a 
rectangular system of coordinates. ~ ~ 

For the components of the aerodynamic force E and 

moment M along the axes of the coordinates the following 
are adopted : 

of the aerodynamic 

symbols and names 

X = - Rx -- frontal resistance 

Y = Ry -- lift force 

Z = Rz -- flank force 

Mx -- moment of banking 

My -- moment of yaw 

Mz -- moment of pitch 

From here on we shall examine primarily the case where the plane 

of the angle of attack coincides with the plane of symmetry of the rocket 

and where the system of forces is symmetrical relative to this plane 
(Figure 2.6). 

In this case Z = 0, Mx = 0, and My = 0. The expression for aero¬ 

dynamic forces and moments takes on the following form: 

(2.20) 
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(2.21) 

Mt *= SLmv (2.22) 

where p is the mass density of the air; 
V is the velocity of the center of mass of the rocket; 
S is the area of cross-section of the rocket ("middle" area); 
L is the representative length of the rocket (ordinarily taken to 

be its length). 

Sr 

Figure 2.6. Aerodynamic forces. 

Taking as point of departure the similarity theory in aerodynamics 
it proves to be the case that the aerodynamic coefficients cx, Cy, and mz 

depend not only on the shape of the rocket and its orientation relative 
to the flow, but also on two basic parameters: 

the Reynolds figure 

Re = 
I* (2.23) 

and the Mach figure 

(2.24) 

where is the coefficient of viscosity of the air; 
a is the velocity of sound in the air flow bathing the rocket. 

Inasmuch as with the assumptions under examination the system of 
aerodynamic sources is a plane system, it can be reduced to a single 
force lying in the plane of the angle of attack. The point P of inter¬ 
section of the line of operation of this force with the axis of the rocket 
is called the center of pressure. In rockets equipped with stabilizing 
tail groups ordinarily the center of pressure is located behind the cen¬ 
ter of mass; in this case the moment M is the stabilizing moment. In 
rockets without tail groups as a rule the center of pressure is ahead of 



i 

the center of weight. In this case the rocket is statically unstable and 
it is stabilized by the steering organs (gas rudderss turning jets, etc.) 
or by communicating to the rocket greater angular velocity of rotation 

around its axis of symmetry. 

It is not difficult to find the relation between the moment Mz, the 

components of the aerodynamic force X, Y, and the distance AL = CP be¬ 
tween the center of pressure and the center of mass of the rocket (Figure 

2.7): 

Af, == KA£ cos * 4 XbL sin «. (2.25) 

The relation between the aerodynamic coefficients cx, cy, and mz 

assumes the lollowing form on the basis of expressions (2.20)-(2.25): 

ma ■» - j1 (c, cos « + Cj, sin *)• 
(2.26) 

Frontal Resistance 

Frontal resistance depends on the form of the body, the Mach num¬ 
ber (M) , the Reynolds number (Re), and the angle of attack (a). With 
low angles of attack and great velocities of flight, characteristic of 
ballistic rockets of the "surface-to-surface' class, the first two factors 
are determining. In Figure 2.8 we show curves for relationship of cx to 

M and a for the V-2 rocket. 

For values of M ^0,7-5-0,8 one may practically regard cx as not de¬ 

pendent on velocity. In the range of velocities around the speed of sound 
a sharp rise in cx(M) takes place, with ensuing smooth decline of this 

function. At high speeds above that of light (M more than 5) the func¬ 

tion cx(M) becomes practically constant. 



Figure 2.8. Dependence of frontal resistance on angle of attack • and 
Mach number M. 

In Figure 2.9 we present typical curves for the function cx(M) 

with zero angle of attack for artillery shells and rockets. 

Curve 1 corresponds to the Siacci law, secured by processing re¬ 
sults of tests with shells having an over-all length up to 4 calibers and 
a nose of ogival form with a length of 1-1.3 calibers. 

Curve 2 corresponds to shells of improved shape, having a more 
acute nose part of length about 2.5 calibers and a tall part in the form 
of a truncated cone, with an over-all length of shell about 5 calibers. 
For comparison the cx curve of the V-2 rocket is also presented (Curve 3). 

In view of the fact that there are not many shapes of artillery 
shells, and that determining the relation cx(M) and figuring out ballistic 

tables is hard work, standard functions for air resistance (cx)stand have 

been established, among which are these: the Siacci law (Italy), the 
Havre law (France), the Mayevski-Zabudski law, the 1930 law, and the 1943 
law (USSR). 

When standard (cx)stand functions are used it is assumed that the 

function of air resistance of a concrete shell cx can be determined ap¬ 

proximately from the expression 

C* = I (O.T, 

where i is a constant -- the coefficient of the form of the shell. 

The assumption of the constancy of the coefficient of form is not 
a strict one, and accordingly for precise calculations and particularly 
for guided rockets individual cx functions are used which are determined 

for each rocket according to the data of aerodynamic calculations and 
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experiments. Standard cx functions with constancy of the coefficient of 

form assumed are used basically with application to artillery shells. 

Such an assumption can also be regarded as acceptable for engineer¬ 
ing ballistic calculations associated with the evaluation of the ballistic 
parameters of rockets being designed (ballistic designing). 

For approximate calculations presented in this book the standard 
cx function presented in Table 2.1 and illustrated in Figure 2.9 (Curve 4) 

has been adopted. 

Table 2.1 

M M 
'■ 1 M 

0,00 
0,10 
0,20 
0,30 
0,40 
0,50 
0,60 
0,62 
0,64 
0,66 
0,68 
0,70 
0,72 
0,74 
0,76 
0,78 
0,80 
0,82 
0,84 
0,86 
0,88 
0,90 
0,92 
0,94 
0,96 
0,98 

0,1020 
0,1010 
0,1000 
0,0990 
0,0980 
0,0970 
0,0960 
0,0958 
0,0956 
0,0954 
0,0952 
0,0950 
0,0940 
0,0946 
0,0944 
0,0948 
0,0954 
0,0960 
0,0968 
0,0976 
0,0986 
0,1000 
0,1018 
0,1038 
0,1060 
0,1130 

1,00 
1,02 
1,04 
1,06 
1,08 
1,10 
1.12 
1.14 
1,16 
1,18 
1,20 
1,22 
1.24 
1,26 
1,28 
1.30 
1,40 
1,50 
1,60 
1,70 
1,80 
1,90 
2,00 
2,10 
2,20 
2.30 

0,1450 
0,1780 
0,2000 
0,2320 
0,2660 
0,2730 
0,2760 
0,2770 
0,2764 
0,2760 
0,2744 
0,2720 
0,2660 
0,2620 
0,2570 
0,2530 
0,2370 
0,2250 
0,2150 
0,2070 
0,2010 
0,1950 
0,1900 
0,1845 
0,1800 
0,1750 

2.40 
2.50 
2,60 
2.70 
2,80 
2.90 
3,00 
3.10 
3.20 
3.30 
3.40 
3.50 
3.60 
3.70 
3.80 
3.90 
4,00 
4.10 
4.20 
4.30 
4.40 
4.50 
4.60 
4.70 
4.80 
4.90 
5,00 

0,1710 
0,1665 
0,1620 
0,1585 
0,1545 
0,1510 
0,1495 
0,1465 
0,1435 
0,1420 
0,1400 
0,1385 
0,1360 
0,1340 
0,1324 
0,1310 
0,1294 
0,1278 
0,1262 
0,1250 
0,1240 
0,1230 
0,1220 
0,1210 
0,1200 
0,1190 
0,1180 

In order to calculate the coefficient of form of a given rocket it 
is sufficient to determine experimentally or through computation the 
values of cx for a number of values of the M number and average the 

quantity 

i — 
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Approximate Method of Calculating Frontal Resistance (5) 

The frontal resistance of a rocket has a substantial effect upon 

the trajectory and range of its flight. 

Precise determination of the coefficient of frontal resistance cx 

calls for laborious computations and experiments, the methods for carrying 

out which are considered in courses of aerodynamics. Below we set forth 

formulae which make it possible to evaluate approximately the amount of 

frontal resistance of a rocket without tail group which is being designed, 

at velocities of flight about the speed of sound, and also the magnitude 

of the coefficient of form of the rocket, relative to the standard se¬ 

lected. 

Frontal resistance of a rocket without tail group may be broken 

down into the following components: 

-- wave resistance of the nose part (cx)r; 

-- wave resistance of the tail cone (cx)j.c; 

-- friction resistance (cx)fr; 

-- bottom resistance (cx)b. 

The aggregate coefficient of frontal resistance for the passive 

part of the trajectory is determined from tie expression 

cx = (cx)r + (cx)tc + (cx)fr + (cx)b’ 

For the active part of the trajectory the last component is elimi¬ 

nated, since pressure in the outlet section of the cone of the engine is 

considered in the expression for reactive force. 

Wave Resistance of the Nose Part (cx)r 

Wave resistance under supersonic bathing of the nose part is 

brought about by the appearance of a nose shock wave, back of which a 

zone of heightened pressure springs up on the surface of the body. Wave 

resistance of the nose part reaches 50 percent, or more, of the aggregate 

resistance of the rocket. The proportionate part of this resistance r,ses 

with increase of the M number. 

For a conical nose part the value of (cx)r may be calculated ac¬ 

cording to the formula 
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(2.27) 
(fr)r. loa “ (0,0016 + 0.002M-*) (ß*)«.» 

wlicre p* is the half-angle of the cone in degrees. 

For an ogival nose part the generatrix for which is the arc of a 
cLrclc : 

, s 0,08(15,5 + M) - 
tcx)n og “ J-+M-P* 

(2.28) 

where pK = (cx)nose Cone is calculated for angle ß of taper of the tip 

of the nose part. 

For a nose part having a parabolic generatrix 

(c \ --°»3, 1 + 2M (2.29) 
icX'n par • 

where Xc is the length of the nose part in calibers. 

Wave Resistance of the Tail Cone 

(cx) tc is determined from the expression 

(Ok.-0.002(0,8 + M->>(P.,)'-’ Vl-i., 

where c _ Sbase 

b '^7' 

(2.30) 

Bottom Resistance 

(cx)tj is determined from the expression 

(¢,), = 1,14 Kx (2 - Kx) M-tf* (2.31) 

S. 
where /((, = 

X is the length of the rocket in calibers. 

At very great rocket speeds one may consider that a vacuum forms 
in the bottom part. Then 

(*,v “RSF S* (2.32) 



Friction Resistance 

Approximate determination of friction resistance is carried out ac¬ 
cording to formulas for resistance of a streamlined blade cf. The coef¬ 
ficient of friction resistance of the blade may be determined from the 
iormula 

(2.33) 

with Reynolds numbers within limits 2 • IO6-IO10 and according to the 
formula 

c,-.^(l+0,03M>fT (2.34) 

for Reynolds numbers less than 10^. 

The coefficient of friction resistance of the casing of the rocket 
is determined from the formula 

(cx)fr “ cf 
“mid 

(2.35) 

where Sfr is the flanking surface of the casing (without the area of the 
bottom). 

The coefficient of viscosity forming part of the expression for the 
Reynolds number, is determined according to the Sutherland formula 

(2.36) 

Calculating the aggregate coefficient of frontal resistance cx for 
a number of values of the Mach number, one can determine the coefficient 
of form relative to the selected pattern of function cx- 

Example : 

To determine the aerodynamic coefficient cx for the following con¬ 

ditions : 

Caliber D = 1.65 m. Length in calibers: nose part Xr-3,16 , cylin¬ 
drical part Acyi = 3.0, tail cone Atc = 2.0, entire casing X-8.16. 
Relative diameter of bottom Db = Db:D = 0.675. Nose part is of parabolic 
form. Altitude of flight y is 6,000 meters, velocity of rocket v is 845 
meters per second . 

Solution : 

According to the table of Annex 1 for altitude equals 6,000 m, 

we find 



J- s H{y) * 0,523; p = 0,123 0,523 = 0,0643; 
fe 

/^..,066. = 

The speed of sound is 

w=320 jl/Cftt 

The Mach number if M = 845/1,066 = 320 meters per second. 

The coefficient of viscosity p determined by formula (2.36) is 

/ 257 y/* 388 _ , g), in-* 
^-1,82-10-^-531-) 110 + 257 ’ 

We determine the coefficient of wave resistance of the nose part 

(cx)n according to the formula 

1+2M _ 0^ 1 + 2-2,64 _ 
If _ yiw-i " ^0711 

W6 determine the coefficient of wave resistance of the tail cone 

(cx)tc according to formula (2.30). 

tfe determine in advance the angle of the tail cone (cx)tc 

tg *= "¿T - = W(l _0,675) = 0,081: 

8° = 4,63°; S, = Dj =0.455 

According to formula (2.30) we have 

(c,)„ = 0.002 (0.8 + 2,64-*). 1.63, ?J/l —0.455 ^ 0,019. 

Me determine the coefficient of bottom resistance according to 

formula (2.31). We have 

K, = M A = 2,64 = 0,147. 

(Cjlj, = 1,14 /(,(2-i, = 1,14 0,147.1.853.2,64-^-0.455 -0,020. 

In order to determine friction resistance, we first calculate the 

Reynolds number (2.23) 

avL 0,0643• 845■ 8,16• 1,63 _ 4 55. jo» 
Rg- —¡T= 1,62.10-« " ’ 



According to formula (2.33) we have 

,. _ 0,032 ,. _± 
f (4,55 lOM0,145 +0>,2,2'W*) 2 =0.00182 

In order to determine approximately the flank surface of the rocket, 
we substitute for it the surface of a cylinder of length L, whereupon: 

^- = ^- = 41 = 32,6: 

= c, >TP - = 0,00182 -32,6 = 0,059. 
SHMI 

We determine the aggregate coefficient of frontal resistance 

= (c,)r + ict\K + (ctt) + (c,)Tp = 0.078 + 0,019 + 0,020 + 0,059 = 0,176. 

Frontal resistance is determined from the expression 

0,0643-845» 
i 1,65^0,176 = 8600 «. 

Lifting Force 

Lifting force is determined from expression (2.21) 

With alpha less than 5° the relation of the aerodynamic coefficient 
cy to the angle of attack is linear and is characterized by the graph 
Figure 2.10. 

The expression for lifting force may be written in the form 

<2-37> 

where the coefficient Cy may be regarded as depending only on the M num¬ 

ber. 

Experiments and calculations show that the coefficient c^ for 
rockets with tail groups is considerably higher than c^ in rockets with¬ 
out them. A graph for the relation of Cy to the M number and to the 
angle of attack for the V-2 rocket is shown in Figure 2.11. 
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Figure 2.10. Relation of coefficient 
to angle of attack. 

of lifting force /Tift coefficient/ 

Figure 2.11. Relation of cy coefficient to alpha and to M- 

The Aerodynamic Moment Mz 

Aerodynamic moment is determined according to formula (2.22) 

(2 • 38) 
M' = -Ç-SLm. 

where the aerodynamic coefficient depends upon the M number ^ the 
i! of -jt-t-ark aloha. A Rraph for the relation of mz to the angle of 

attack for a statically stable (tail grouped) and unstable (without tail 

group) rocket is shown in Figure 2.12. For the " 
the sign of mz coincides with the sign of the angle of attack 
aerodynamic moment seeks to overturn the rocket. In this m°^ 
m! is called a tilting moment. Curve 2 corresponds to a statically stable 
rocket. In this case the moment is called a stabilizing one. 

With small angles of attack one may presume a Linear relation of 
Mz to the anSle of attack. From here on we shall write the expression 
for the aerodynamic moment in the following form. 



where the plus sign corresponds to the statically unstable, and the minus 
sign to the stable, rocket. 

Figure 2.12. The aerodynamic coefficient mz for a rocket without tail 
group (1) and with (2). 

In this connection we shall assume mz is positive. With small 
angles of attack, from expression (2.26) we secure the following relation¬ 
ship between the aerodynamic coefficients mf, c^ and cx : 

(2.39) 

Damping Moment 

Under real conditions of flight the axis of a rocket oscillates 

relative to the vector of velocity of the center of mass of the rocket, 
and the angle of attack alpha hovers around zero. The presence of an 

angular velocity Q = <p of rotation of the axis of the rocket in the plane 

of the angle of attack gives rise to a supplementary aerodynamic moment, 

called the damping moment. Theory and experience show that the damping 
moment is determined by means of the expression: 

Aid— — pvSL'Qm^ (2 .40 ) 

where mj is the coefficient of damping moment. The minus sign shows that 

the moment seeks to reduce the angular velocity of rotation of the axis 
of the rocket. 

2.5. The Trajectory of Movement of a Guided Ballistic Rocket. The Parts 
of the Trajectory ——™ — 

The start of "ground-to-ground" class rockets intended for great 

ranges of flight is undertaken with the rocket in vertical position. 

Turning of the axis of the rocket for flight along a given trajectory 

is brought about by a program mechanism which constitutes one of the 

units of the rocket system. The power elements turning the rocket are 



gas rudders, turning engines, and other apparatus which incline the main 
vector of reactive forces away from the axis of the rocket and create a 
reactive moment relative to the axis, and perpendicular to it. It is 
customary to call the movement of a rocket under the operation of the 
forces contemplated a program or undisturbed movement. In calculating 
the undisturbed movement of a rocket one takes into account its weight, 
and also the reactive and aerodynamic forces and moments, the nominal 
values of which are determined in advance on the basis of computations 
and of laboratory and flight experiments. 

Under real conditions of flight the rocket will be subject to the 
operation of chance, or disturbing, forces and moments, the nominal values 
of which are determined in advance on the basis of computations and of 
laboratory and flight experiments. 

Under real conditions of flight the rocket will be subject to the 
operation of chance, or disturbing, forces and moments, not taken into 
account during calculation of the undisturbed movement. Among these are, 
for example, chance forces evoked by fluctuation of the parameters of the 
rocket engine and of the meteorological parameters of the atmosphere (tem¬ 
perature, density, wind). 

Under the operation of chance forces the rocket carries out so- 
called disturbed movement. In order that disturbed movement of the rocket 
may not differ greatly from its calculated disturbed movement, among the 
instrumental equipment there is an automatic device for stabilizing the 
rocket, constituting one of the basic units of the system for directing 
its flight. The movement of a stabilized rocket takes place in such 
fashion that the parameters of disturbed movement fluctuate around the 
parameters of undisturbed movement, deviating from them only slightly. 

The requirements imposed upon precision and completeness of the 
taking into account of forces operating upon a rocket in its flight, and 
upon the precision of the actual ballistic calculations, depend upon the 
purpose of the rockets. Calculations intended for prior working out of 
the parameters of the real flight to a target or to orbit must be carried 
out with the greatest possible accuracy. 

Substantially less severe requirements are imposed upon the accuracy 
of engineering calculations intended for determination of the ballistic 
parameters of rockets being designed and for evaluation of their dependence 
on design characteristics of rockets (thrust of engine, all units of struc¬ 
ture and fuel, etc.). 

We shall in fact examine such calculations below. 

In studying undisturbed movement of a rocket without taking into 
account the influence of the rotation of the earth and the influence of 



wind the trajectory of movement of the center of mass of a rocket is re¬ 
garded as being a plane curve.* 

In the plane of flight of the rocket we draw the axis Obc horizontal 
to the point of start in the direction of the flight, the axis Oy verti¬ 
cally upward (Figure 2.13). At any given moment of time t_ the center of 
mass of the rocket is at some point M of the trajectory; the vector of 
velocity V is inclined to the horizon at an angle 0. lhe axis of the 
rocket forms with the vector of velocity v the angle of attack alpha, and 
with the plane of the horizon the angle of pitch f ■» « + 0 . 

Figure 2.13. Diagram of forces operating upon rocket in active part of 
trajectory. 

According to the character of the forces operating on the rocket 
the trajectory of the movement of its center of mass is divided into two 
fundamental sections: the active part of flight of the rocket with the 
rocket engine working, and the passive part of the flight after the en¬ 
gine cuts out. In connection with the methods of calculation which are 
examined below, we shall divide the trajectory into smaller sections 
(Figure 2.14), namely: 

-- an initial section OA, the vertical, active section; 

-- a curvilinear section AB, of turning of the rocket with respect 
to angle of pitch; 

-- a final, inclined active section BK, with approximately con¬ 
stant angle of pitch; 

* The effect of the rotation of the earth upon the flight of a rocket is 
examined in 2.15. 
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-- an initial passive section of flight of rocket KKi, over which 

air resistance is not insignificant; 

-- an airless passive section K^Ci (on account of the great rarifi' 

cation of the atmosphere in this section one may disregard air resistance 

and calculate the elements of the trajectory according to the formulas of 

elliptical theory); 

-- a final passive section C^C, of return of the rocket into the 

dense strata of the atmosphere and of sharp braking of velocity. 

2.6. The Equation for Motion of the Rocket in the Acti\ Part of the 

Trajectory 

In studying the undisturbed movement of a rocket in the active sec 

tion of the trajectory we shall take into account: 

-- the weight of the rocket Q(t) = m(t)g; 

G 
-- the reactive force (thrust) P *=—vro + (/'a — Pw) 5 

-- the frontal resistance A'=-rp «Sc,; 

-- the lifting force K = i'*» =«&$• * ; 

fit/? 

-- the static aerodynamic moment — + AÇ-a + > 

-- the damping moment 

-- the lifting, directing force of the steering organs Yst = K*t -8 , 

where 8 is the angle of inclination of the rudders (turning engines) from 

neutral position; 

-- the moment of steering force relative to the center of mass of 

the rocket is determined from the expression Mst = —AKft (the minus 
sign shows that upon turning of the rudders counterclockwise, the moment 

Mst produces a turn of the rocket clockwise). 

Let us set up equations for the movement of a rocket, taking into 

account the forces and moments listed above. We shall project the ac¬ 

celeration of the center of mass of the rocket on a tangent and normal 

to its trajectory. 

The equation for movement relative to the tangent assumes the fol¬ 

lowing form: 
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(2.41) 

-TU* -.. . . , 

m{t)v=*PcosoL-X-m(t)g$int-KynpSin«. 

w* rf® _vh We get the 
Considering that normal acceleration Wn- f dS 

equation for movement relative to the normal: 

m (/) v8 = P sin * + K*«-m(0^cos«+ V^cos*. (2* 

The equation for rotatory movement of the 
rocket around its center of mass 

assumes the form: 
¿ip = + AC* - Af;<p — Kinp8A. (2.43) 

„here A U the equatorial moment of inertia of the rocket. 

Figure 2.14. Division of trajectory of rocket into sections. 

TO these equations we must add kinematic equations determining the 

center of mass of the rocket : 

jcs-vcosB; 

and the equation 

f (0 =?pro^0. 

determining the program value of the °f power organs of 
mechanism of the steering system and carnea 

the steering system. 

For rockets of 
attack alpha do not exceed a SUnder these circumstances sin alpha 
alpha do not exceed a few degree^ «nder^hese^ ^ ^ ^ ^ 

is about equal to alpha and cos ^ p .j.a may be eliminated as a 
pression (2.41) the component gt n st Muen this is done we secure 

bllllr^flll-Sninri — of the rocket! 
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Pirai 

ilf » ¿iWj-«—‘®* 

»(O-V^ 
x«»vcosl; 

^ » V sin % 
?**«+•• 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
(2.48) 

(2.49) 
(2.50) 

In all, we get seven equations for determination of seven functions 
which are sought, t>, a, ?. x, y,l . 

The initial conditions are: 

with —O, tf0 = 0; 80 *=s90 = -y ; x# = 0; Jf0 —O, «o = 0. 

Integration of equations (2.44) to (2.50) is carried out by one of 
the methods for numerical integration of differential equations, using 
electronic computers. 

Let us examine the system of the simplest method of numerical in¬ 
tegration -- the Eiler method. Equations (2.44)-(2.50) may be given the 
following general form: 

© =/i e); 

i-M«’.*): 
>=/.(*,fl); 

«*=9—0. 

At the initial moment with vertical start we have: 

*o“=0; X0 = 0; y0 = 0, t>0 = 0; 0o = y, 

«o*0; î0 = 0; 9o = 0o = y 

Taking as point of departure the initial conditions, we fi^d the 
values ¿o. 0o. *o. ÿo ■ ** the section of vertical start 90 and ^ are 
equal to zero. 
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We select an interval (spacing) small enough so that the derivatives 
V, #. i/ over this interval may be regarded as being constant and equal 
to their initial values. When this is done we get for the end of the in¬ 
terval 

o.-VqAí; 

* n •, — -5-; 

yx 
n 

*1 “-T 

The quantities ■*. a and t retain zero values over the entire verti¬ 
cal part of the trajectory. 

Substituting the values V|, 81, j/i, Vi in equations (2.44)-(2.50), we 
get the values of the derivatives ul( 0,, y, , and analogously to the fore¬ 
going, we get the values of the functions we are seeking when /-/2»/, +A/. 

On the curvilinear part of the trajectory ? and 9 are found by 
numerical differentiation as functions of 9(/), a is determined from equa¬ 
tion (2.50), 8 is determined from equation (2.46). Integration of the 
derivatives via sequential addition of increments of the functions sought 
is carried ouc up to the end of the active section. 

The system of numerical integration according to the Euler method 
which has just been examined boils down essentially to breaking down the 
functions sought into Taylor series and retaining the terms of first order 
relative to the interval A/. Such a method of calculation is exact only 
with a very small interval of integration A/ • In practice methods of 
calculation are used in which terms of an expansion (or final remainders) 
of a higher order are used. Among these are the Adams-Krylov method, the 
Runge-Kitt method, and others, which are set forth in special manuals. 

In Figure 2.15 we show the elements of the active section of the 
trajectory of . V-2 rocket. One must devote attention to the course of 
the alteration in frontal resistance X along the trajectory. As a con¬ 
sequence of increase in velocity, the frontal resistance rises sharply to 
begin with. From there on reduction in the density of the air with alti¬ 
tude becomes a determining factor, and fater a maximum is achieved, about 
5,000 kg, frontal resistance steadily declines. 

Let us examine the character of change in the angle of attack in 
the active part of the trajectory, taking equation (2.45) as point of de¬ 
parture. For approximate calculations one may eliminate from it the last 
term on the right-hand side. When this is done, taking into account that 
along the trajectory angle 6 is such that 0 = - | 0 | , we get 
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’'ri 

—-—- (g cos ë - v|e|). 
P + Ya 

(2.51) 

Figure 2.15. Elements of active trajectory of V-2 rocket 

On the first vertical section of the trajectory 

e = 10 

Under these circumstances a■= 0- 

vector of velocity coincide. 

= 0 

The axis of the rocket and the 

At the beginning of the curvilinear section the angle 9 is close 

in magnitude to ÏÏ/2 and one may adopt cos 0 * 0. 

Under these circumstances 

mv I 9 
a 

P + Y a 
0. 

The nose part of the rocket inclines away from the vector of 

velocity of the rocket downward (in the direction of movement of the 

rocket). 

In the inclined rectilinear section |0| = 0; here we get 

mg cos 9 

The nose part of the rocket inclines upward from the direction of 

the vector of velocity. 

A graph of change in the angle of attack along the active section 

of the trajectory for the V-2 rocket is shown in Figure ¿.Lb. 



Figure 2.16. Change in angle of attack along active gection of trajectory. 

2.7. Anproximate Calculation of Elements of Active Section of Trajectory 
bv the Method of Successive Integration 

For approximate calculations of the active section of tra^tor^s> 

considering the small size of the angle of attack a , we ^® 8 * 9 „ ^en 
this is done we can consider as given the program of change in the angle 
6 of incline of the vector of velocity to the horizon 

8 (<) *= 8gp (f ) S <Pnp (0 

and the equations which determine movement of the center of mass of the 
rocket can be integrated independently of equation (2.46). 

The equations for movement of the center of mass of the rocket as¬ 
sume the following form; 

« p-x <> 
v"^T(ír-^s,n0; 

> «= V sin 8; 

¿«veos*, 

(2.52) 

(2.53) 
(2.54) 

where uttKvta 
+ Fa (P*-Pm) 

+ Fa (Pa - Pm) + Fa (pH0 - Ph) =Pa + Fa (pHo - p„). 

We introduce the notation 

«00 lîL. 

vihere the function «(i/) determines the law of change of atmospheric pres 
sure with altitude which has been adopted as the velocity 
count the expression for the Mach figure M = v/a, and that for the ve o y 

of sound 
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a* = —■ = kgRT 

and designating 

we can write: 

O«# 11 — *001; 

X=l Scs = iKS-K {y) Wcx (M). 

(2.55) 

(2.56) 

The weight of the rocket at any moment of time is determined from 
the expression 

where I* = 

Equation (2.52) may be transcribed in the form 

¿ = P0+ FJ*»,- ll-«(y)\-iKS«(y) Wcx- 

—0#(1-I»)sine 

or 

go j.- » i »-«(y) <KS*(y) Oo3:ne (2.57) 
*/>/- 1-,0+ P. I-H /»«(I —v~y c* f>*‘ 

Let us proceed from the independent variable t_ to the variable p . 
Here 

• dx> ■ dv O«* 

"“-sir^-sr-gr 
and the left-hand part of equation (2.57) assumes the form 

_g* n _ Gf“ • dV 
gP, gPo d? 

From here on we shall designate by an apostrophe (') the derivative from 

Starting with the expression 

"33 ' 



(where ue is the effective velocity of escape) and introducing into the 
consideration the dimensionless velocity of the rocket w, determined from 
the expression w = v/ue, we get equation (2.57) in the following form: 

"'“TTi—~~sinA_ oK(y)mv, (2.58) 
’ i-p i-H . 

where 

(2.59) 

(2.60) 

(2.61) 

Equations (2.53) and (2.54) assume the form: 

y * Dw sin 8; 
^«»Z)wcos8, 

where 

Let us examine the right-hand part of equation (2.58). The first 
term characterizes the thrust of the rocket at the ground, the second the 
force of gravity. Basically these terms determine the maximum velocity 
of the rocket, and will be taken into account in first approximation from 
here on. The third and fourth terms, characterizing change in thrust with 
altitude, and air resistance, will be regarded as correction terms and 
will be taken into account in second approximation. 

Solution of the First Approximation 

Integrating equation (2.58) in first approximation and taking 
p = 0; ■= 0 for the moment of start we secure 

(2.62) 
(2.63) 

w 
(2.65) 

Inasmuch as the reL' ive consumption p is a known function of 
time, the program value 0 = dap(0 may be regarded as a known function of 
M ■ 

Indicating 



Ulte) “ J sin Orffc (2.67) 

(2.66) 

we get a solution for velocity in first approximation in the form 

» ™ 

(2.68) 

We shall designate the solution in first approximation by means of 
the symbol (^). 

In the table of Annex 2 values are given for the function which 8(p) 
correspond to the program of the V-2 rocket. We shall adopt this function 
as typical from here on. 

Values of Ui(ji) and U,j(p) are set forth in the same table. 

Maximum velocity of the rocket is determined according to formula 
(2.68), starting from the value 

For determination of the x, y coordinates of the center of mass of 
the rocket it is necessary to integrate equations (2.62) and (2.63) taking 
expression (2.68) into account. In doing this we secure: 

(2.69) 

(2.70) 

where 

LUifO^JlVsinGdp; 
(2.71) 

(2.72) 

(2.73) 

d 
(2.74) 
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The values Ua—U« are given in the tables in Annex 2. We may remark that 

the functions Ua-LU may be regarded as depending upon one argument of 

ft if one starts from the type program Oap(p)< is not difficult to see 

that 

Solution of the Second Approximation 

Integration of equation (2.58) in section approximation is carried 

out taking into account the terms characterizing change of thrust with 

altitude, and frontal resistance. In this process we secure: 

-u, j 
or 

' Ui GO — U| (p) + (p. ï)) - (h «„ ï|), 

where 

u„. n) = ; Î-- ïï(y) 
0 i - n 

y ir(y) M c, 
$ (y, u , n) = /-' 
¿ e 0 1 - y 

dy ; 

dy 

(2.75) 

(2.76) 

In the expression under the integral for , 11 (y) enters, charac¬ 

terizing the change of atmospheric pressure with altitude. In addition, 

in the expression for <I>j there enters 

M h MM). 

depending on the velocity of the rocket v and upon the speed of sound a, 

which changes with altitude. Inasmuch as the terms containing $i and 
¢2 assume the role of corrections to the basic terms, in figuring them 

out one can take into account the values v and £ from the solution for 

the first approximation. From expressions (2.68) and (2.69) it is ap¬ 

parent that 

y / (i*. »k 0) “ ft to ^ 

?*to % “.) 
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Thus the functions ®, and ¢, depend ™. 
, and ue. in figuring out the Eonetrons I,!!» the concret, 

forth in Table 2.1 has been adoPte^ 
function cx 

ons i|>2 tne uypc ^ v-r - 
>le 2.1 has been aaopceu. The distinction be^e®^kg 

function c* of a given obiect and of ex- 
count through the magnitude of a coefficient of form i forming p 
pression (2.60) for parameter B, 

integrating equations (2.62) and (2.63) in second approximation. 

we secure 

where 

¢, 

K 

d[*, 

oj^si 

of*, 

Df«, 

sin* dpi 

sin 0 is 

cos 6 tf|S 

cos Otf|k. 

(2.77) 

(2.78) 

(2.79) 

(2.80) 

in'view of the fact that upon calculating the coordinates ^ 
of the active section of the trajectory the required accuracy is relative y 
îess than the accuracy for calculating velocity, from here on „e shall 
start from the approximate relations: 

w ~ w ■y — \ x = x — 

The type program 8nP adopted in setting up the tables for the 

function of the 

atlê e f-nrv - 42o50') Under real conditions the angle is selected by 

considerable limits. 

Change in velocity vk parí íí til 
termined approximately if one assumes tha h P In this 

trajectory turns in its plane as V^¿“^“„“Lameter 8 and 

íS;gd)^orea“^n8thr^rÍrat(2f;6r8>anrroínt ía thi trajectory ^ 

we secure 

•k » 
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8®  -8U,, (¡O   ^11 J cos 0 dl1 

or finally 

»-i- Uj (ji) 86,,, 

where 

» 
UT(|i)= f cos8í/n. 

ñ 

Finally the system of approximate calculation of the elements of 
the active section of the trajectory assumes the following form. 

First approximation: 

y = D [u, —If U«] * 

;-d[u.--Lu.]. 

(2.81) 

(2.82) 

where 

D“ñ; ’“‘«K" 

The functions 11,-U. are determined from the table of Annex 2. 

Second approximation: 

W = W /M>, (|*„ U„ Y|) - ß<I», (|i, W„ ï]); 

w 

x = x—, 

where 

A = '-^. S = ^-71404. 

Analysis of graphs of function ¢, shows that it depends only 
slightlfün ue and , and may be expressed by the interpolational formula 



(2.83) 
a _ P* U --0,7(1) 

1 ~ 1.05 — |i 

Graphs for function GMp, ue, rjj are given in Annex 3. 

Let us examine an example of the calculation of the elements of the 
active section of the trajectory for the following characteristics of 
rocket : 

Caliber D = 1.65 m (S = 2.14 m^) 
Initial weight of rocket Q0 = 13,300 kg 
Thrust of rocket at ground P0 = 26,600 kg 
Weight of burning fuel u>Ton=8650 kg 
Area of outlet cross-section of cone Fa = 0.43 
Effective velocity of escape ue = 1,920 m/sec 
Coefficient of form of rocket, adjusted to function cx set forth 

in Table 2.2, i = 1.4 p 
Coefficient of power armament rj = —2L = 2 

WO 

Normal atmospheric pressure at ground pn0rm = kg/cm^ 

Calculation of constant parameters: 

. F*Pho . 0,43-1,02-104 
A - ~PT --266ÕÕ-~~ 

1) = »(^-=7,40-1^-.0.802. 

D= — 
1920» 

9,81 -2 
1,88-10». 

We determine the maximum velocity of the rocket and the coordinates 
of the end of the active section of the trajectory upon consumption of the 
fuel uiron = 8700 kg. 

In this connection 

»» = t»« 
Qo 

8650 
1330 = 0,65. 

Me determine the values of functions Hi—U« according to the tables 
o f Annex 2 : 

Hi = 1.0499; U, - 0.SÍI2; = 0,2127; 

U« - 0,1464; U, = 0,1793; 1¾ = o.l 162. 



Calculation of the first approximation: 

¿ = U, _ — U, = 1,0499 - 0,5 0,5412 = 0.7793; 

v = w u, =■ 0,7793 1920 = 1493 m/cík; 

y =■ D U,-Jj- U« J = 1.88-10» (0,2127-0,5 0,l4(i4| = 26230 m; 

X = Df 11*-—U«1 = 1,88.10»(0,1793 - 0,5 0,1162( -- 227UÜ m. 

Calculation of the second approximation: 

According to tomuln (2.57) we find that 

0,65» (1 — 0,7 0,65) ^ 0 575 
=-1,05-0,65 

From the graph for functions we find ¢,-0.137 

We calculate the second approximation: 

, ;+A», - «*,=o-7793 +^165 °.575 - 
= 0,7643 1920 = 1468 m/w. 

,, = 76230«»a; 

X = 22790 
0,7643 
õjm 

= 22360 M. 

2.8. 
ires 

r .Vn TniHal r, irrr-r^^nft-hftTraiectoQL 
ral r.nlation of the Initial rassiv--- 

JLL 

If the end of the -- --.-ifref^edt^Sr^Ls1;^ fec^f" 
altitude, where air resl:st:^ , according to formulas for elliptical tra 
of the trajectory is cal^ he end 0f the active section lies at a 
jeetories in a vacuum. But 1 portion of the passive section is 

rÆ'-o acè^ alt tetlatance. 

c i-hr, fnrre of frontal resistance in 
We write the acceleration of the force ot 

thef0rm ' (2.84) 
» -JLUtsc,. Jr— q, 2 

% ' 

Substituting the caliber for the area of the middle 
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Sf iiuN« lu un ..«iim’iuüu, wuHMBsmiiump Hi 

«D* 

and replacing the density of the air p by the function H(y) 

p = Po^OO, 

we get 

where 

7,, = 4.74 10-^//(^) v'ct 

¢ = -^1000 
V* 

the magnitude of the ballistic coefficient adopted in ballistics. 

From here on we shall introduce the quantity c^ = 4.74 • 10*^ c. 

The equations for movement of the rocket assume the form: 

v = — ¢,//CV) v'Ct — g sin fr, 

¿_f CO«». 
V ’ 

> = V sin 0; 
X = V cos Ö. 

From here on it will be convenient to change over to the indepen¬ 
dent variable £. When we do this the equations for movement take on the 
following form: 

. etH(y)vcx_ 
»tal « ’ 

at M . 
V **lg» ’ 

* _L 
* tg# 

(2.85) 

(2.86) 

(2.87) 

Let us expand v, 6 , and x in series by stages Ay and let us pre¬ 
serve the first stages of these quantities: 

*> = cr 

,=,>-(-üiït)c,a* 

(2.88) 

(2.89) 



(2.90) 

where by=y—y*. 

Calculation according to formulas (2.88)-(2.90) is carried out 
through two approximations. In the first approximation the mean values 
y, V, and 0 are taken as being equal to the values of these quantities 
at the start of the portion being examined. 

In the second approximation we take it that: 

Comparison of calculations by the method indicated with calculations 
by the numerical integration method shows that for A</> 5 km more accurate 
results are found in this case, if ymean is determined as a mean integral 
from the expression 

t 

(2.91) 

where 

* 

t 

h is a value of £ sufficiently great for one to take H(h) = 0. 

The values Hi(y) are given in Table 2 2, for which h = 50 km has 
been adopted. 

Let us examine the case where the end of the active section of the 
trajectory is at altitude yk = 10 km. 

Under these circumstances vk = 2,000 meters per second, fl»-40*, Qk = 
4,000 kg, D = 1.65 meters, i = 1.07, whereupon 

¢, = 4,74 • 10-« c = 0,474-1,07 = 0.345- IQ-'. 

The Mach number if determined from the expression 
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Table 2.2 

The index "HO" corresponds to normal conditions at the ground. 
Like H(y), Vthü' t is determined according to the table of Annex 1. For 
altitude y[c = 10 km we have 

2000 
340 1,118 =6,56. 

The value of cx is deter:.,ined according to Table 2.1. For values 
of M>5we take cx as a constant equal to 0.115. 

In Table 2.3 there arc set forth the results of calculation of the 
passive section of the trajectory for altitudes in the 10-30 km interval 
by the method of numerical integration. The x coordinate is figured from 
the end of the active section. 

For comparison we calculate by the approximate method set forth 
above the values for v, j , x for y = 20 km, taking as starting point the 
values of these quantities for y - H km. 



Table 2.3 

Vu. V 8° X y** V 8° X 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

2000 
1958 
1921 
1889 
1862 
1837 
1815 
1796 
1779 
1764 
1750 

40,00 
39,83 
39,65 
39,46 
39,27 
39,07 
38,86 
38,64 
38,42 
38,19 
37,96 

0 
1194 
2397 
3606 
4821 
6046 
7282 
8528 
9783 

11048 
12323 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

1750 
1737 
1725 
1714 
1704 
1694 
1685 
1676 
1668 
1660 
1652 

37,96 
37.72 
37,48 
37,23 
36,98 
36.72 
36,46 
36,19 
35,92 
35,64 
35,36 

12323 
13609 
14906 
16216 
17538 
18872 
20218 
21579 
22953 
24341 
25745 

Calculation of first approximation: 

We determine H(ymcan) from expression (2.91), having determined 
Hi (y) from Table 2.2: 

W ÍJ'íp) * lw« (1°) - (20)) 
2112 — 439 

10000 = 0,167. 

We calculate Ao according to formula (2.88): 

A~ / «ûftçptyf, g \ / 0,345 I0-» Q,167 2000 0,115 

\ sin 8, ' + ) y = ( 0,643 

+ ^1-) 10000 . -2¾ 

V = 2000 — 256 = 1744 M/ceic, 

Vcp =» V — 1872 Mlcex. 

According to formula (2.89) we have: 

48° - Ay. 

A#0 
562Ay 

«îp*88cp 

562 10000 _iqi®. 

1872* -0,83¾ 

s 40,00° - t.9l° 

«CP- 

* 38,09° - 38°5'; 

39°2 

or 



Me designate the value of the first approximation by means of the 
symbol C~) . 

Calculation of the 

&V a 
X 

second app 

/ CiHtf,vCpCf 

\ si" 8ep 

roximation : 

/0,345-10--0,167.1872-0,115 I0000__ 
' ^ 0,630 1872 J 

A«°- 

Me determine 

V - 1750 M/ceic, Vjp » 1875 M/cetc, 

562-Ay 562-10000 i rwo. 
-isTSTW ’ ’ 

0, . 38,02° » 38°r. 

from the expression: 

Ajr 
‘88ep 

10000 
Ts^nr * *• 

Analogous calculations by the approximate method are carried out 
for the section of the trajectory from y = 15 km to y = 25 km and from 
y = 15 km to y = 30 km. Comparative results of calculations by the method 
of numerical integration and the approximate method are set forth in Table 

2.4. 

Table 2.4 

HHTCpBMbl 
•-Tf - fo «0 xo Meroj paciera 

/21 

V 0 X 

10-20 ‘2000 40°0' 0 

f3ïlepBoe npiiô/iiuKeiine 
r4mopoe iipiiC.iiDKeune 
[S^iiicJieHHoe HHTerpiipo- 
Baiine 

1744 
1750 
1750 

38 °5 
38°r 
37°58' 

12350 
12323 

15—25 1837 39°4' 6046 

j3)lepBoe npHfiatuKeiuie 
4Bropoe npiiô.iiuKemie 
¡5/4HcaeHiioe iiHrerpiipo- 
B3HHe 

1694 
1693 
1694 

36°51' 
36°46' 
36°43 

18860 
18872 

15—30 1837 39°4' 60-16 

!3)nepBoe npiiöaiuKemie 
4lBTopoe iipnÓmr/i<emie 
¡5>4Hcaeniioe miTerpiipo- 
BaHHe 

1653 
1651 
1652 

35°4r 
35c26' 
35°20' 

25764 
25745 

Key: 1 -- Intervals of altitude 
2 -- Method of calculation 
3 -- First approximation 

4 -- Second approximation 
5-- Numerical integration 



2.9. Movement of the Rocket on the Passive Airless Section of the Tra 
jectory in the Central Field of the Earth's Attraction 

Assuming that for altitudes y greater than h air resistance may be 
disregarded, we shall examine the movement of the rocket in the central 
field of attraction outside a sphere of radius r0 = R + h, where R is the 
radius of the earth (Figure 2.17). In doing so we shall take into account 
change in the magnitude of acceleration of the gravitational attraction of 
the earth for the central field of attraction 

(2.92) 

Figure 2.17. Diagram of elliptical trajectory. 

In the present section we shall examine the movement of the rocket 
relative to a nonrotating earth. In this case it is not necessary to con¬ 
sider the centrifugal force of inertia from the translational movement of 
the earth. We examine inclusion of the rotation of the earth in 2.15. 

The position of a moving material point relative to the center of 
the earth will be determined in polar coordinates. In Figure 2.18 0,0=rT, 
the radius-vector of the initial point, and 0|Af= r > the radius-vector 
of any point on the trajectory, ri is the polar angle measured relative 
to an axis the position of which we shall define below, 0 is the angle 
of inclination of the vector of velocity to the local horizon of the 
moving point (a plane perpendicular to the radius-vector F). 

For derivation of the equation of the trajectory we shall make use 
of the theorem of kinetic moment and the theorem of the kinetic energy of 
a point. 

The theorem of kinetic moment: 

According to this theorem, a derivative according to time from the 
moment of the quantity of movement of a point relative to some center is 
equal to the moment of the force operating on the point relative to the 
same center. In the present case, applying this theorem relative to the 
center of the earth Oi, we get 
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WIPP! i 

or 

(r X mv) =rx F. 

Figure 2.18. Polar coordinates of the points of an elliptical trajectory. 

For the central force of attraction of the earth we have r x F - 0, 

whence: 

rxmv = const; 
/V cos 8 = const 

(2.93) 

The constituent of the velocity which is perpendicular to the 

radius-vector is equal to 

= nil = V cos 8. (2.94) 

From expressions (2.93) and (2.94) we have 

^ = ^ = const (2.95) 

The constant £ is found from the initial conditions. At the initial 

point 0 we have 

c = *o*lo = rovo cos 8» (2.96) 

For a geometrical interpretation of expression (2.96) let us examine 
an elementary triangle MMiOi (Figure 2.19). The area of this triangle is 

equal to 

)1 - 



' CT!« toe f msmmmmm r mmmm m mmrsm*. i1 

da — ~hdS = -Yr cosQ-vdt = -ÿ r*r\,dt. 

Taking into account expression (2.95) we get 

do I „ 
dt ~ 2 C ■■ const, 

áv *= -j- cA/ 

movemenfundeftíe^pèrâtiÔrorrcentràrforcrtheTã"0" ^ 
moving point deocribeo equal arena in equal inteííala of ti'Ie! “ 

The theorem of kinetic energy: 

From the equation for movement relative to a tangent 

mv — —mg sin 8 

and expression (2.92), considering that 

-j„ «_«V r dr 
sin9-lf- = —=d3’ 

we get: 

v = -s,n*L*L. 
®° /0 dS' 

vdS^vdv^-gfllL. 

Integrating within limits from the -inít-ini u 
the trajectory we get itial to any chosen point of 

(2.97) 

In the event of vertical flight th 
the condition v = 0. e maximum altitude is found from 

Under these circumstances we have 

*o Zgfl(~- -jL-'j = 2g0r0 ( 1 - -A_J. (2.98) 

the 
From here on it is convenient to introduce 

parameter of velocity v, determined from the into the consideration 
expression 
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.. * 

(2.99) 

When we do this expression (2.98) assumes the form 

In order that a material point may infinitely recede from the earth, 
overcoming the "gravitational armor," it is necessary to start from a 
condition rmax - infinity, whence v = 2- Here vi\ = 2g0r„- 

For values go = 9.81 meters per second per second, r0 = 6,371 • 106 m, we 
secure 

v0 = y 2-9,81 -6,371 • 10« = 11200 M/cea 

This is the so-called second cosmic velocity necessary so that a 
body, overcoming the attraction of the earth, may be converted into an 
artificial planet of the solar system. 

The first cosmic velocity corresponds to v= 1; here 

v% = K&Ã = V 9,816,371 -W = 7900 M/cex 

When this velocity is reached the body becomes an artificial satel¬ 

lite of the earth. 

The equation of trajectory: 

In equations for the constituents of velocity Vr-=r and —ry), 
we shall transfer to the independent variable rj , designating by an 
apostrophe the derivative according to ij . 

We furthermore take into account expression (2.95). In doing so we get: 

r, = no= -f ; 

V* — vi = / jr ï £- 

Designating 



V* - p'* + P* 

When this is Hone expression (2.97) assumes the form 

p'* + pi = - 2^/0 + i-. (2 • 100) 

Designating : 

P=q + d\ 

(2.101) 

(2.102) 

(2.103) 

we get : 

whence 

p'* = *»-(?- 
d? __ 

ari = yp-(t-d)' ’ 

» — d , 
ij = — arccos e-t—1 

Substituting the value p = — we get 

= cos(tj — a) -i 4 =tL' + 4cos(^-a0- 
j_ (2 .104) 

d 
-*-■ 
I + -J- cos (i) — o) 

From analytical geometry we know the equation of a conic section 
in polar coordinates (ellipse, parabola, hyperbola): 

r_ P (2.105) 
I + e cos (n — a) ’ 

where p is the parameter, e the eccentricity. 

Comparing expressions (2.104) and (2.105) we see that formula 
(2.105) is the equation for the movement of a material point in the field 
of gravitation of the earth. Here: 
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Taking into account expressions (2.96), (2.101)-(2.103), and (2.99) 
we have : 

= vz-oCOS16ft 

- V (2 - v)cos*0o 
(2.106) 

(2.107) 

Now we shall determine the arbitrary constant a and at the same 
time define the position of the axis from which the polar angle ij is 
measured . 

We write an equation for tg8 : 

tg® 

Taking the logarithm and differentiating expression (2.105) we have 

r1 e sin (t¡ - a) —. ft (2.108) 

Let us select the axis for measurement of angle rj so that it will 
pass from the center of the earth to an apex (point A in Figure 2.18) 
which is one of the apexes of an ellipse. Since at the apex of the tra¬ 
jectory Q 4 = 0 , then from expression (2.108), considering that rj.4 = 0 , 
we learn that siria = 0 * which corresponds to a value a = 0 or a = it. In 
order to refine a we apply expression (2.105) to the point of take-off, 
assuming that o < 0 <1 when this is done tgO>0’ anc* follows from 

expression (2.108) that with a positive value of eccentricity one must 
assume that a = it . 

Finally we secure an equation for trajectory in the form 

r_ P (2.109) 
I — * COS 1¡ 

Investigation of the character of the trajectory: 

From the expression for eccentricity (2.107) it is apparent that: 

with y < 2; £<l; the trajectory is an ellipse; 
with V — 2; ¢= 1; the trajectory is a parabola; 
with y > 2; £> 1; the trajectory is a hyperbola; 
with V = 1- h 6o = 0; e = 0 ; the trajectory is a circle. 



The last case corresponds to the movement of a satellite in a 
circular orbit. Under these circumstances is it assumed that the satel 
lite is released in horizontal direction with initial velocity t>0 = 

y&Ã, (v = I)' 

Figure 2.19. Law on the preservation of space. 

With v< I the trajectory is also an ellipse. But with this, the 
trajectory will not be a closed curve, since on its course the material 
point will collide with the surface of the earth. Thus the case v<I cor¬ 
responds to the flight of a rocket of "ground-to-ground" class. 

2.10. Range of Flight of a Rocket. The Angle of Greatest Range. Height 
of Trajectory 

At a selected direction of axis of reading angle t) the initial 
point of a trajectory is characterized by polar coordinates (r0; —ß), and 
the point of fall by coordinates (r0; ß) , where 2ß is the angular range 
of flight (Figure 2.20). The range of flight read off on the curvilinear 
surface of a sphere of radius r0 is determined from the expression 

(2.110) 

The value of ß is found from expression (2.109) with the substitution 
rj =• ß and r r® . With this we secure 

COS ß = _ I — » cos* ft, (2.111) 

With relatively short ranges (around 200 km) the angle ß < Io . In 
this case an error in magnitude of cosß by one unit in the fifth place 
brings about an error in quantity ß , and consequently also in the range, 
of about 3 percent. For this reason it is convenient to transform ex¬ 
pression (2.111) in such fashion that angle ß enters beneath the tg or 
sin sign. We have 
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tat 3 = _J_I = > - > (2 - >) cos* 80 , 
K K cos® [s (I-*cos*80)‘ *• 

After elementary transformations we get 
„ r, » sin 80 cos 80 (2.112) 

Figure 2.20. Range of flight of rocket ¿-2r,ß . 

Dividing the numerator and the denominator by COS26o we secure 

(2.113) »tg»« 
tg*9o 

Example 

So 

With v0 = 2,000 meters per second- e0 = 45°; r0 - 6.371 
9.81 m/sec2, we secure: 

10& m; 

»? 
s = — = 0,0640-, gy. 

= 0,03306; 

8 = 1°53,6 - 0,03304 pad, 

L = 2r0? = 2-6,371-101 0,03301 =42110* m =421 km. 

Angle of greatest range: 

Let us examine the family of trajectories corresponding to fixed 
initial velocity v0 with variable parameter 0o . Determining from ex¬ 
pression (2.113) the value of angle 8^ of the corresponding maximum of 

function P=/(8o) we secure 



tg#;=yT=T. 
(2.114) 

We shall recall that upon movement of a material point in a constant 
gravitational field the trajectory is a parabola and the range, determined 
from the expression 

V _ v9 sln 

reaches its maximum at flo= 45° for any values of v0. Expression (2.114) 
shows that upon movement in a variable central gravitational field the 
value 8*. corresponding to greatest range depends on velocity or on v . 
At sufficiently low velocities (v -*0) 8*-» 45° . With v=l we get 8"=0, 
i.e., the greatest range is secured when the vector of initial velocity 
is horizontal. In this connection it is apparent from expression (2.111) 
that p*« 

L = 2pV0 = irr*. 

The greatest range of flight with v = 1 is found to be equal to half 
the circumference of the earth. Taking into account the possibility of 
releasing the rocket in opposite directions, we reach the conclusion that 
with v = I; vn = Vgfi, . i-6- upon attainment of first cosmic velocity and 
with a value 0O = 0 , which corresponds to horizontal direction of the vec¬ 
tor v0, the rocket can reach any point of the earth. Let us note, however, 
that angle 6* = 0 > ensuring with v= I the maximum range of flight, is 
associated with great spread of fall points, since a small deviation of 
angle 8o from the optimum 0J = 0 brings about great alteration of range. 

In conclusion let us recall that the value r0 forming part of ex¬ 
pressions (2.110) and (2.113) for range of flight corresponds to a radius 
of a sphere outside of which air resistance may be disregarded 

r, = /? + A. 

When this is true 

fl»“9,81 (R + A)* 

Height of trajectory: 

The greatest height of trajectory can be found from the condition 
In this case we get from expression (2.109): 

'«•t i — e' 



^pppp 

Substituting the values £ and e from expressions (2.106) and (2.107), we 

secure 

K=^,,= 
trt coi* 8S 

i—» (ä—*) cot^èf 

After some transformations we secure 

V- tin» B, _ 

K I — ■* u - ») CM* #„ + (!-»)■ 

For the example examined above 

* = |/1 _ , (2 _ V) cô"s'*ï0 = V 1 - 0.064 « .936 
v 6,371 • I O'-0,064'0,.1)  1,17 ms u 
K-0,%H5 + 0,9;ir~ ^ IU7 IU^ ^ 

(2.115) 

0,9685; 

Limit expressions for range L and altitude Y with small v . 

From the examples examined we see that small values of v and 
ß (v » 0,06, ß » 0,03) correspond to ranges of approximately 400 km.^ Under 
these circumstances one can disregard in formulas (2.112) and (2.113) 
the squares of these quantities and substitute 

Here we secure: 

n a 2/yi CO» »» du I« 
= 2r$ *= _ j , ÇOJ» • 

Taking into account the expression 

» j1 

we get 
, I 
L= ft (1 -»COS* 9,) ‘ (2.116) 

Disregarding v in comparison with unity, we secure a familiar ex 
pression for range in a constant gravitational field 

sin 2\ 

ft 

(2.117) 

The quantity (1 — vCOSI6o)-, may be regarded as a correction multi¬ 
plier for nonhomogeneity of the gravitational field. For the example under 

examination 



The range in the central field of attraction of the earth for the 
example being examined exceeds by 3.2 percent the range corresponding to 
a homogeneous gravitational field calculated according to formula (2.117) 
of the parabolic theory. 

For height of trajectory, assuming smallness of v, one can analogously 
secure from expression (2.115) 

vo sln2 0O 1 <2-118> y 3g_— .-., .. . 

2g0 1 - I (1 + cos2 e0) 

in place of the expression 

ejiln'i, 
y— 

from the parabolic theory. 

Formulas (2.116)-(2.118) make it possible to evaluate the error of 
the parabolic theory. 

With Qo •« 45° cos16o "" and the relative error in the amount of range is 

Taking as the magnitude of relative error about 1 percent we secure 
**0,02 • Having written expression (2.117) for 00- 458 in the form 
X * fgv > we secure 

X-6,371 • 10*<0,02»0,127-IO« *».127 km. 

For range X < 127 km the error of the parabolic theory does not ex 
ceed 1 percent. 

2-11- Time of Flight 

For calculation of time of flight we shall start from the law of 
preservation of area (2.96) 

cos 0» 

whence 

* 106 " 

MCI 



(2.119) 

Expressing r by means of tj from expression (2.109) we get 

With the reading of angles H from the axis running through the 
apex of the trajectory that we have already selected, for determination 
of the total time of flight one must integrate expression (2.119) at the 
left from zero to T and at the right from ij-*—ß to tj<-+ß. Taking into 
account the symmetry of the trajectory relative to the axis corresponding 
to ij *• 0 , we can write 

(2.120) 

For integration of expression (2.120) we introduce the substitution 

Doing so, we secure 

The last expression, through substitution 

after some transformations is converted into the form 
s 
J(1 + ecos E)dE fwmít.-+ e cos E)dE 

e (1-<»)•'• J (2.121) 

or 

7,"slï-^(g-fg8in£)- 

Substituting the values c and £ from expressions (2.96) and (2.106) 
we secure 

„ 2*4 coi»«, 
ir (f+e sin £). 
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(2.122) 

On the basis of expression (2.107) wo secure finally 

where 

For the example examined in 2.10» v0 * 2,000 meters per second; 
fc « 45°; V « 0*064; « - 0,9685; ß - 0,03304; E - 14*52' - 0,2596 rad. 

Here we get 

r__|_pyl2gp;(0>S96 + 0,9685.ftaiMT)-a04 ««. 

2.12. q^lculation of the Final Section Of the 

Let the point Ci be the end of the airless passive section of the 
trajectory and the beginning of the final section of re-entry of the rocket 
or of its last stage into the dense layers of the atmosphere. We shall 
designate the point of fall by the letter C. 

For calculation of the final section of the trajectory one can make 
use of the method of calculating trajectory by arcs, set forth in 2.8. 
When this is done one must bear in mind the fact that in this section 
«<0 and Ay<0 and take into account the signs of these quantities in 
formulas (2.88)-(2.90). But one can refrain from dividing the final sec¬ 
tion into parts and secure relations for direct calculation of the elements 
of the point of fall, taking into account the character of change in the 
elements of the trajectory in its final section. 

In Table 2.5 there are set forth the results of computations of 
the final section of a trajectory by arcs with the initial values: 
yi ■ 30,000 meters; vj. - 1,652 meters; f0, |■» 35,34°; ■* 0 . 

The range x is measured from the start of the final section. 

In the last line we have set forth the values of the elements of 
a trajectory as calculated according to formulas of the perabolie theory 
of the movement of a material point outside the atmosphere in a constant 
gravitational field. 

From analysis of the results set forth in the table it is apparent 
that although air resistance reduces the velocity of fall by 710 meters 

- io8 



per second, or by 39 percent, the horizontal range of the final section 
declines only by 1.2 percent. The angle of fall also changes very little. 

Table 2.5 

y km V |8°| X Remarks 

30 
23 
20 
15 
10 
5 
0 

' 

1652 
1670 
1674 
1649 
1568 
1404 
1110 

35,34 
36,74 
38,05 
39,33 
40,63 
42,08 
43,98 

0 
6873 

13413 
19659 
25624 
31303 
36665 

0 J 1822 42,28 37120 In vacuum 

Me shall make use of the last circumstance and we shall secure an 
approximate method of calculating the elements of the point of fall with¬ 
out having recourse to calculating by arcs. In doing this we shall seek 
values of the elements of the point of fall 0 and x in the form of cor¬ 
rections to the values corresponding to the elements computed according 
to the formulas of the parabolic theory. 

Me introduce the designations: 

b=vcos6; /» —tg|0|. 

The elements of the trajectory in vacuum (parabolic theory) will 
be indicated by the sign (^/). 

Taking altitude y as an independent variable, we can write dif¬ 
ferential equations of movement in the following form: 

du cxttH(y)U' (2.123) 

Ÿy=-pifi; (2.124) 

dx 1 
Î7-T (2.125) 

It is necessary to consider that in the final section dy<Q. 

Mith movement in vacuum we secure : 

from equation (2.123) 

II aa It, os COnSt, (2.126) 



With great velocities of re-entry of the rocket into the dense 
layers of the atmosphere cx may be secured as a constant or as a quantity 
undergoing little change. The greater the velocity of flight, the less 
is the change in angle g . Bringing cx and sin|0| at mean value from be¬ 
neath the integral sign and designating 

e elc* cp 

•ta I* I*’ 

(2.133) 

we secure 

- llo - 
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Me introiluce. the desißnation 

Ht (y) = §H(y)dy, 
t 

(2.134) 

(2.135) 

a.cre h la .1 suf flc lent ly hlgl. value of y so that one can secure H(y) 

H(h) = 0. 

When this is done we secure 

In = -c [//, U) - //, CV,)1 = - ^//,, 

whence 

a = tt.e 
-eXH, (2.136) 

The values of the functions Hi(y) are given ^ /.^for 
h = 50 km. For the point of vail we have Hi(yc) l( ) » 

With things thus we secure 

.. (2-U7) 

For calculation of f>-tg|»| we rewrite equation (2.124) in the 

form 

d* __ }g_ 
.>1 » 

(2.138) 

where * — p* ■ 

We introduce the designations: 

* = * + ï«; 

where the sign (—) indicates quantities 
corresponding to the trajectory 

in vacuum. 

In this connection we get 

<(; + .«) =_ _Jf__^.+ idi + 0(5,,.), 

* ( a 4- >u) u- «* 

- Lil - 
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where Oftii9) ¿g a quantity of the second, or greater, order of smallness 
relative to 8« . 

Retaining the quantities of first order of smallness and taking 

into account equation (2.138), we get 

(2.139) 

rrom express 

ut 
ti 

u + -f4H. 

or 

Eliminating the quantities greater than the first order of small 

ness, we secure 

« 

Substituting the last expression in equation (2.139), integrating 

within corresponding limits, and considering that with y = y^, 8u~0, 

we get 

8* : ' ~ J AW| ^ j Iw. M - O'. ) I ¿.v. 
»i ». 

(2.140) 

We introduce the function H2(y) determined by the expression 

* 

9 

Expression (2.140) assumes the form 

*« = -^r (//. OO - //, O',) - O', - y) //, O',)). 

Calculations show that one may retain within the brackets only the 

first term. If this i s done we have 

- m - 



or for the point of fall 

í«c=4ch,(ox 

¿=p:+^, + ^w.(°>. 

From Table 2.2 wu find 112(0) to be = 597 • 10^ . 

Wc compute the correction in range. 

From equation (2.125) through substitution 

* = X + 8*; 

p = /> -f 8/> 

(2.142) 

(2.143) 

and linearization of equation (2.123) we secure 

d(lx) _ Ip_ tit 

Substituting the value Sir from expression (2.141) we secure 

^ * 

, , (2.144) 
Je r =J£_ f Hi(y)iy. 

“î J f «Î4 } 

We introduce the function H3(y), determined from the expression 

By doing this we secure 

*x = — 

"K 

From Table 2.2 it is apparent that the second term within the 
brackets may be eliminated. When this is done we secure for the point of 
fall 

—r?^ «.(<))• 
■W, 

(2.145) 
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From Table 2.2 we find that HjíO) is = 391 • 109 cubic meters. 

Examp le 

At an altitude of 30 km the parameters of the final section of the 
trajectory are vi = 1,652 meters per second; 0, = 35°20'; CiCT = 0,397• 10-« . 

One is to determine the elements of the point of fall fc. *«. ft. 
First we determine according to the formulas of the parabolic theory (2.131) 
and (2.132): 

ue = al = i», cos 0| = 1348 M/eetr, 

~Ú**p\ + -^ryt = tg* 35°20' + 30000 » 0,8264; 

~pt = 0,9090; I £ I = 42° 16'; 

2y. 2-30000 
ge *-»u— * 0(7089 + o/JOOO 

Pi + Pe 

37120 M\ 

I«, 
42° 16’ + 35°20' 

'«pi T « 38°48'. 

—1 ^ 
We turn to calculation of the corrections 0Xc, *Pc. to the elements xt, pe of 
the parabolic trajectory. We have 

C T_ CiPr _ 0.397-10-« 
"sin I fiep i páe 0,645 ' 

From Table 2.2 we find that Hi(0) is * 8,220; H2(0) = 597 • lO^; 
H3(0) = 0.645 • 10-4. 

According to formula (2.145) we find: 

Igc s- 
2^-0,645 - 1Q-*-391 ■ Iff = _525 

(0) *-1348*.tg*38°^ 
A At 

xt = ~xt + lxe = 37120 - 525 « 36595 M 

According to formula (2.142) we find: 

*, = . » -!Ç- H, 10) = 0.«5.IO-.597.10. .0/«». 

* 0,8264 + 0,0830 * 0,9094; 

* pe = 0,95-1, 10f I = 43°40'. 

We compute the velocity of fall vc. 

- 114 



rnmrnrn m 

According to formula (2.136) we find 

ue _ 

~^-e 

c 18220 — Hi (>-,)! ^ 0.6J5-10-* (8220 - 89) 0,518; 

uc = Ui-e-0’51* = 1318 0,596 = 803 .w/cw; 

», =-=4r— = -= 7r-5-rr = 1110 M/ceK. 
COS I cos ■43°40' 

803 

In Table 2.6 a comparison of the results secured vith the results 
of computations according to the method of arcs and according to the 
formulas of the parabolic theory is given. 

Table 2.6 

Method of Computation 2£ - 

36,595 43041' 1,110 
36,655 43059' 1,110 
37,120 42017' 1,822 

2.13. Over-All Computation of the Elements of the Traiectory. The Methojj 
of Fictitious Initial Conditions 

Method of corrections to the parabolic 
theory 

Method of arcs (6 segments) 
Parabolic theory 

In 2.7-2.12 we examined methods for the calculation of separate 
sections of the trajectory of rockets. 

"Butting together" these sections is made more complicated through 
the fact that the elliptical passive section is calculated in polar co¬ 
ordinates, and the remaining sections in Descartes coordinates. But one 
can simplify over-all computation of tie elements of a trajectory, in par¬ 
ticular the elements of the point of fall, if one applies the method of 
fictitious initial conditions, the essence of which boils down to what 

follows : 

Let us say that as a result of calculation of the first passive 
section we have determined the values of the elements of point Mi (vi, 
81 «1, *1) > en<^ this section. If taking point Mi as the initial 
point we integrate the equation for movement backward without taking air 
resistance into account, for an altitude y * 0 we shall secure a fictitious 
point of fly-out F and its initial parameters vf, 0f, xf, which we shall 
call the fictitious initial conditions (Figure 2.21). By making use of 
these initial conditions one can calculate, according to the formulas of 
the elliptical theory, the elements of the point of fall, and one can in¬ 
troduce the necessary corrections by means of the methods examined below. 

In order to determine the values Vf, 8f, and Xf one can use the 
formulas of the parabolic theory. From the conditions of the preserva¬ 
tion of kinetic energy we have directly 



v\ = -- v\ -f 2gy. 

Figure 2.21. Method of fictitious initial conditions. 4» = f(ictitious) . 

from the conditions of constancy of the horizontal component of 

velocity 

U¡ = COS 6, = K* = Vç COS 0^ 

wc get 

cosOA=üî£i?L 

From the familiar expression 

£** 
tg = tg 0* - -¿ï- 

we secure 

•Î 

From here on it is convenient to deal with the quantity 

characterizing the deflection of the fictitious origin of the coordinates 
from the point of flv-out of the rocket. 



By taking advantage of the values secured for Vf 
determine the range L = Xei according to the f°rmu^a 
theory, and as measured off along the spherical s“r^C®h°fr^®c®®^ of 

(2.10}. It is rôctet enter, the den.e strata 
ífSe^ere"3 mrrrreitirrhe calcelated aecording to lornela 

(2.145) 

**< 

where 

c “■arfcr; 
=-f (•,+ *,), 

H3(0) ® 381 • 10^ is determined according to Table 2.2. 

An example for calculation of 5xe is set forth in 2.12. 

The full range of flight of the rocket is determined from the ex 

pression 

If it is necessary to refine further the values of je and vc 
takine “to accost "he air resistance in the final section of ^ ^ » 
entiy into the dense strata of the atrosphere, one can use the method 

examined in 2.12 . 

2.14 Trajectory of Flight of an Earth Satellifeg. 

T.pr 11= take as the initial point of the trajectory of the center 
of massif the satellite some point A at an altitude il «bjve the surface 
nf the earth, let the velocity vA he directed horizontally 
initial value of the radius-vector of the point ^a u ’ nf 

is äe radius oc the earth. Let us draw a polar axis from center of 
the earth to point A, considered as the initial point. When this done 
the initial conditions have the form: 

, (V r = r. .v¿ 8 = 8» = 0. 

From equation (2.105), 
secure sln«*®0 • From express 
sinfc«0, we secure 

in which a is an arbitrary constant, we 
ions (2.106) and (2.107), considering that 

p®r0v, (2.146) 
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.-Kr=^7)~±(.-4 v.m 

The plus or minus sign Is selecto.1 so that e>0. Ut ,>|i tl.on 

0 , V - 1 and equation (2.105) assumes the form 

^ i+(,-i ) coi w - «1 ' 

Substituting the Initial conditions >lo-0. <« »BCure C0!a"'' 

Considering the fact that slna-0. secure —0, and expression 

(2.105) assumes the form 

, v° - (2.148) 
ram i + ^-i)coin‘ 

With e-l-v and «-ic equation (2.105) assumes the form 

(2.149) 
r == i_-(i — '»(coii ' 

Let us examine some cases of the movement of an earth satellite. 

1. v<l 

„ere The trajectory is an if^'f^nua- 

A IS one of the Its distance from the center 
tion of the straight line AC (Figure ¿ ¿¿J- ^ 
of the earth is determined from the expression 

= Ä-<r* 

Figure 2.22. Trajectories of earth satellites. 
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Tl vu« the initial point A is the more distant ^ th® ^he 
gravitational pull and is called the apogee. The [he 
closer to the center of gravitational pull of the point), 

per igee . 

Tn HHs connection it 1.« apparent from Figure 2.22 that the section 
of the tro^tory w up to encounter with the „urfece of the earth f. the 

real section. 

In the extreme ease, when rB - R, the elliptical “^it will touch 
the surface of the earth at the point of the perigee . (in the absence 

nf air resistance). 

2 . V ■“ I 

In this case VQ^Vgoro becomes equal to first 
The equation for the trajectory assumes the form r = 

moves on a circular orbit. 

cosmic velocity, 
rg. The satellite 

3. 2 > v> 1 

In this case the equation for the trajectory is determined by ex¬ 

pression (2.148). 

For the vertices A and B of the ellipse we secure (tj = 0 and tj - *) 

V 
Fa — r* — 2 — * 

The initial point 
pull of the point and is 

A is the one closer to the center of gravitational 
called the perigee, and point B is the apogee. 

As velocity increases 
and the apogee point becomes 
gravitational pull. 

the position of the perigee remains the same 
more and more distant from the center of 

4. » ^ 2 

With y = 2; v0 = K2i7o second cosmic velocity is achieved, 

these circumstances one gets 

e — l; CO. 

Under 

The point, moving on an open curve (a parabola), departs into in 

finity. 

With V > 2 e > I the trajectory of the point is a hyperbola. 
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I„ conclusion wo siny .-cmark that the conclusions carding the in 
finito «mocsl of a movlns point fro. the oarthwh.>2 ucrc «athad 
without taking into account the gravitational field of the sun. Actually 
^hen 1 body attains second cosmic speed in departing rom the - th t 

becomes an artificial plan.it of the solar of the 
from the earth to a distance of a million kilometers the attraction or 

sun becomes predominant. 

The period of revolution of a satellite around the earth can be 

calculated by taking as point of departure (2.96) 

do 
It 

V £ .11 rqVq COS 

whence 

Examining a 
we get 

dt-^do. 

full revolution around the earth in an elliptical orbit 

where o is the area of the ellipse, determined from the expre 
(a and b arc the large and the small half-axes of the ellips ) 

From analytic geometry we are aware that 

the expression o — 

Thus we have 

j. __ ^kVp a*'t 
(2.150) 

During movement on a circu lar orbit v = I; e = 0; a =* b — r0; c *» VoTo- 

Under these circumstances 

Expressing vq 
through the parameter of velocity »“1 we secure 
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Example 

T *b2* y 

At an altitude of 300 km: 

* * ^81 jrTW ” 9 B1 S r* * 

r = 2* = 2* = M40 w » 90,7 

Let us examine the case where at the same altitude h - 300 km, the 

parameter of velocity 

Here we have r#** 6,671 ■ 10*. ft-8.93. »* U * 80• 

% » Kw. * /TjWSÍ^ÕÕi' - 8100 MiceK. 

With 1.-0 

#«. — I »0,1; 
^ = V, = U-6,67I10* = 7,341 10*. 

Altitude of perigee 

rA = r0 = 6,671 • 10* m. 

Altitude of apogee 

rB ~ r# = 8,16 1°* ■*' 

Major half-axis 

a 7,42 -10« m. 

Furthermore 

c = /-,¾ = r0 l/ft'"« ■ 

Substituting the values of c and £ in expression (2.150), we secure 

T~ 
r.Kft 

or 
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2 .15. The Trajectory of Movement of a Satellite Relative to a Rot at ing. 
Earth 

The relationshipw examined above, for the movement of a material 
point in the field of terrestial gravity, correspond to a system of co¬ 
ordinates associated with a nonrotating earth. In order to take into ac¬ 
count the effect of rotation of the earth one must contemplate a system 
of coordinates associated with the rotating earth. 

In this process, beside the force of gravitational attraction of 
the earth one must consider also the force of inertia of migratory motion 
and the Coriolis inertia force. But in studying the movement of a point 
in the central field of gravity of the rotating earth a different method 
is customarily applied; its substance is set forth below: 

Let us examine the spherical surface associated with the earth and 
running through the origin of the elliptical section of the trajectory in 
a vacuum; the center of the sphere is to correspond with the center of the 
earth. From here on we shall call this sphere the moving sphere. The 
radius of the moving sphere is r0. The position of the initial point 
relative to the moving sphere will be defined by breadth Xo , and length 

<}w . In addition to the moving sphere we shall also consider a stationary 
spitere which coincides with the moving sphere at the initial moment of time. 

In Figure 2.23 in the plane of the drawing we show the curvature of 
the meridian of the initial point. Let us project an axis Oz in the di¬ 
rection of the vertical to the initial point, an axis Ox in the horizontal 
plane to the north, an axis Oy to the west. ^Let us call the plane running 
through the vertical and through the vector vor of initial velocity re a- 
tive to the earth the plane of departure. In this plane we project axis 
Oxi horizontally in the direction of flight and the axis Gyl to the 
The angle a , laid off from the plane of the meridian to the plane of de¬ 
parture, will be called the aximuth of the plane of departure. We shall 
be studying movement of a material point relative to the stationary sphere. 
On this account when we examine the initial conditions of flight we must 
consider, in addition to the initial velocity vor relative to the earth, 
also the migratory velocity of the initial point as it moves along with 
the earth. As may easily be seen, this velocity is 

^ = ^ COS X (2.151) 

and is directed inversely to the direction of axis X1 

The absolute initial velocity (¾ is determined from the ex¬ 

pression 



Figure 2.23. System of coordinates associated with the rotating earth. 

Projecting this equality upon the stationary axes of coordinates 
and dropping off the index ah we get (Figure 2.24): 

»o, cosacos a; 

= v0r cos 80• sin « — fo“ cos (2.152) 

■ va, sin 

Examining the horizontal projection of the vector of absolute 
velocity we see that 

Voy 

Vox 
Vor co> %sln » — r0 m cos \ 

Vorcos #o cos0 ! 
(2.153) 

where *i is the azimuth of the plane of departure in absolute motion. 

The angle Dot , formed by the vector of absolute velocity with the 
horizon of the initial point, is found from the expression 

C.154) 

z 

Figure 2.24. Vector Components of the Initial Speed Taking 
into Account Earth's Rotation 
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Tims the vector v0 of obsolete motion vl l bo dothrml"^ the Initial 
retards module and as reRards direction <fc, and .1) . Kno“‘np' ‘"‘'j 
conditions of flight, one can determine via °r ) { 
liptical theory, the trajectory of tlight n polar coordinates T. 
tivc to the Stationary sphere, tor the point of fa »j 2ß- 

Figure 2.25. Azimuth of fire, taking into account the rotation of the 

earth. 

Making use of spherical trigonometry formulas, 
geodesic coordinates of an arbitrary point, X and ÿ , 
ter tj of the elliptical trajectory and the azimuth at 
expression (2.153) (Figure 2.26). 

one can express the 
through the parame 

, determired from 

Figure 2.26. Geodesic coordinates of a rocket. 

Let us recall some basic 
relationships in spherical trigonometry. 
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If a, b, c (Figure 2.27) are the sides of a spherical triangle and 
a, ß, f are the angles opposite the corresponding sides, then 

tln a. a» Œîl (the s ine formu la) ; 
iln « tin p Mn i 

(2.155) 

COSrt =cosd-cost + sin A-sine-cosa (the cosine formula). (2.156) 

Examining Figures 2.26 and 2.27 we see that 

a = 90° — X; ¿> = 90°-}^ C =¾ 

« —«i; T *= ♦ — +0 ** At- 

Figure 2.27. A spherical triangle. 

Thus from expression (2.156) we have 

sinl = sin 1« cos r, 4 cos sin r, cos a,. (2.157) 

Having determined X , let us find according to formula (2.155) 

co»> _ »injL (2.158) 
sino, "iíínâtp ’ 

Having determined A+ from the last expression, let us find the value 

Thus we shall determine the spherical coordinates r, X, + , for an 
arbitrary point of the elliptical trajectory relative to a stationary 
sphere, corresponding to the position of the earth at the initial moment. 
In order to secure the coordinates of the point of the trajectory rela¬ 
tive to a rotating earth it suffices to take into account the angle of 
rotation of the earth over time t_ of the flight of the material point. 
In doing this it is apparent that the rotation of the mobile sphere rela¬ 
tive to a stationary one does not bring about change in the radius-vector 
of point r and of the latitude X . As regards longitude, this changes to 
the amount 8+ = ,,,/ , where <■> is the angular velocity of rotation of the 



earth =7.292 • ID'S l/sec. Finally, we secure, for an arbitrary point 
of the trajectory

♦ = ♦•+ A-H-urf.

In Figure 2.28 we show the general aspect of the traject^y of an 
earth satellite relative to a stationary and to the rotating earth.

fi^;!

Figure 2.28. Trajectory of motion of a satellite: a - >^^a*=ive to non-
Figure .otiting earth; b - relative to rotating earth.
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CHAPTER III. BALLISTIC DESIGNING OF GUIDED ROCKETS 

3.1. Statement of the Problem 

Working out a rocket constitutes a most laborious process, and it 

covers the following stages (1): 

-- working out the tactical technological requirements in the light 

of investigation of operations; 

-- preliminary draft designing; 

-- preparing working designs for the rocket (working designing); 

-- preparing and testing models and full-size examples. 

In execution of the first stage, initial data for designing the 
rocket are first developed and then handed over to the construction de¬ 

signers (1) : 

-- requisite range of flight X3; 

-- requisite probability of hitting target. 

-- requisite useful load; 

-- requirements as to economics of production; 

-- conditions of organization of military supply and servicing. 

Designing a rocket commences with selection of the general design 
scheme, the fuel, and the materials for the main structural units. Before 
proceeding to preparation of the preliminary draft design for the rocket 
as a whole and working out of the design for its individual units, one 
must at least approximately determine the weight, dimensional, and thrust 
characteristics of the rocket. Approximate calculation of these charac¬ 
teristics in the initial stage of designing is called ballistic designing. 
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The aim of ballistic designing is to determine the basic design 

parameters of the optimum ballistic pattern which, ensuring required range 

with required useful load, will have the lowest start weight with the fuel 

and materials characteristics adopted. 

With minimum weight and over-all dimensions of a rocket, its use is 

simplified; the weight, over-all dimensions, and output of its power units 

and lifting and transport devices are reduced; and the maneuverability of 

the rocket complex is enhanced. With reduction of weight of the rocket, 

fuel supply and expenditure of materials are diminished, and expenses on 

preparation for construction are lowered. Consequently one may assume 

that in first approximation the minimum oí start weight for a rocket, with 

required range and weight of useful fuel and other circumstances being 

equal (guidance method selected, characteristics of guidance system) pro¬ 

vides the minimum of material expe .diture in carrying out the military 

task. At the same time, the requirement of minimum start weight is dis¬ 

tinguished by simple analytical expression, which in fact makes possible 

its use as the basic criterion for optimum results in carrying out the 

design treatment. 

The aim of ballistic designing and the part it plays within the 

field of over-all rocket designing determine the applicability of one sort 

of computational method or another, and the requirements imposed upon pre¬ 

cision of resolution. In the ballistic designing stage one need not take 

into account all factors affecting the start weight of the rocket. Only 

the most essential are examined. At this stage of designing there is no 

need to achieve a great precision in determining the characteristics of 

the rocket, as they will alter and become refined in subsequent stages of 

designing. The methods of ballistic designing should be rather simple 

and -- the main thing -- they should ensure convenience of analysis of 

the influence of individual design parameters upon the characteristics of 

the rocket. 

The methods system of ballistic calculation set forth in Chapter II 

makes it possible to present the range of a single-stage guided rocket 

having vertical start as a function of six parameters. In order to ex¬ 

press these parameters in the form most convenient for the purposes of 

ballistic designing we transform the coefficients of equation (2.75). 

Inasmuch as 

n=/(*„) Pfa ~ PnoFa = FaPo[f{K)-^\ 
(3.1) 

where is the tabular gasodynamic func¬ 

tion (see (2)); 
Pq is the pressure in the chamber; 
\ is the nondimensional velocity in the outlet cross-section of 

the cone, determined by the relation Fa/Fcr, 
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then the coefficient A may be presented in the form 

4 _ PhoF‘ _ PH0 

P' R 

The coefficient B may be transformed as follows: 

7140/Ä^ 7140/5^ 7140/ 

Po nQ« — in# * 

where Qg is the start weight of the rocket; 

= initial transverse load. 
0 5 

(3.2) 

(3.3) 

When this is done maximum range may be presented in the form 

K*. lo. 11» Pq, ^a). (3.4) 

We may note that with selected fuel characteristics, pressure in 
engine po< and expansion of cone Fa/FCj-, which is to say with Xa given, 

the amount of unit impulse at the ground, J^q> is unequivocally determined. 
Consequently, with values of ijo, Ho, Po and \a , the value of pK which cor- 

responds to them for a given range. From here on, in examining treatment 

of the problem of ballistic designing we shall assume that the relationship 

tjo, n0. Po, Xa) is given. From here on we shall call the parame¬ 

ters T]o, n0. Po and Xa project parameters. Wh shall call the values of 

the project parameters that ensure minimum start weight of the rocket with 

the fuel and materials characteristics selected optimum values. 

In this chapter we examine in general form the problem of the bal¬ 

listic designing of a single-stage guided solid-fuel rocket. The methods 

system for solution of this problem comprises the following basic steps: 

-- utilization of the relationships connecting the weight of the 
rocket with the parameters of the motive assembly; 

-- calculation of the start weight of a rocket for a set range of 
fire, with fixed values for the project parameters; 

-- analysis of the influence of each of the project parameters upon 
the start weight of the rocket; selection of optimum value of project pa¬ 
rameters; 

-- determination of basic construction design parameters of the 
optimum ballistic variant. 

The use of electronic computers substantially expands the potenti¬ 

alities of ballistic designing, making it possible to carry out computa¬ 

tions for a large number of variants having various combinations of project 
parameters. 
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3.2. Weight Equation of Single-Stage Ballistic Rocket: 

The start weight of the rocket is 

Qo = fnH+?ny^ ¢.0 + (3.5) 

where ^nn = qui is the weight of the useful load (warhead, scientific in¬ 
vestigation apparatus, etc.); 

9ny = qfg is the weight of the apparatus for flight guidance of the 

rocket ; 
qoy = q 0 is the weight of the executant guidance organs and power 

transmissions (gasodynamic rudders, vernier engines, turning jets, rudder 
machines, and power assemblies); 

tfxy = Qse is the weight of the section casings carrying the useful 
load and the guidance apparatus; 

= qao is the weight of the aerodynamic organs (stabilizers, 
aerodynamic rudders, wings used in rockets having intermediate ballistics), 

qt(. = qcc is the weight of the connection and commutation units 
(fastening units and parts, cables and air conduits of guidance system); 

qk - qcap is the weight of the forward cap of the engine; 
<7e = qcone is the weight of the cone unit; 
<7Tp = qtr is the weight of the cylindrical part of the engine; 
u> is the weight of the rocket charge. 

Such a breakdown is arbitrary, but this has no effect upon the ap¬ 
proach to solution of the problem of ballistic designing. 

The weight equation must be transformed in such fashion as to secure 
the simplest possible relationships connecting the start weight of the 
rocket with the parameters of the motive apparatus, and through these, with 
the project parameters examined above. Similar relationships have been 
proposed by various authors (3, 6, 8). Essentially these relationships 
are based upon elementary theoretical considerations. But as statistical 
data secured from analyses of designs that have been worked out are accumu¬ 
lated , similar methods systems may be reinforced through the use of experi¬ 
mental statistical coefficients and formulas. 

Let us unite in a first group the weights of useful load, guidance 
apparatus on board, and the sections of the casing. The weight of the 
useful load is the initial characteristic in designing. One can assume 
the weight of the apparatus and the casing sections as being designated 
or selected independently of the start weight of the rocket. Let us call 
the sum of the weights of the first group the adduced weight of useful 
load : 

Qm —Qm ^ Qny + Qty (3.6) 

From here on we shall regard the adduced weight of useful load as 

a known quantity. 



We shall assign to a second group the units the weight of which may 
be assumed in first approximation to rise proportionately with the start 
weight of the rocket: 

?oy++ ^ = + + (3-7) 

where q0y, qk> and íao are wei8ht coefficients determined as mean sta¬ 
tistical quantities according to data on analogous models and on developed 
design treatments. 

For brevity's sake let us designate: 

* —floy + ^itc + ^o- 

A third group brings together the weight of the units of the motive 

apparatus. 

Let us introduce the designation: 

ftp + ft + ft ft, (3 • 9) 

where is the weight of the motive apparatus structure. 

The quantity a characterizes the weight ideality of the engine de¬ 
sign, for which reason it is called the engine coefficient. 

Sometimes in computations the coefficient ß = 1 + a is used in place 

of the coefficient a . 

The weight of the fuel may be presented in the form: 

« = u*ps + «»rs + <fts+ u>Aot 

where a>ps is the working supply of fuel; 
®rs is the reserve supply; 
ui,, is the prestart supply; 
<“*o is the weight of degressive residues. 

The reserve supply of fuel is selected so as to be such that the 
engine cuts off from the automatic guidance system at a certain range, and 
with firing at limit range. 

The prestart supply constitutes the weight of fuel burned after the 
igniter commences to operate and up to the attainment of thrust equal to 
the weight of the rocket. 

The residues of fuel which bum degressively after consumption of 
the basic mass of fuel are considered lost for the working process of a 
solid-fuel engine. The presence of degressive residues can be occasioned 
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by the form of the charge (for example, with a channel of star-shaped sec¬ 
tion) or by difference in vaulting (elliptical or conical character of 
channel, eccentricity of channel relative to diameter of rocket chamber). 

In amount these components differ substantially from one another. 
For a solid-fuel rocket engine the time of getting under way amounts, de¬ 
pending on caliber, to some hundredths to tenths of a second, as a conse 
quence of which the third component represents an infinitesimal quantity 
which can be disregarded in ballistic designing. The second and fourth 
components are more considerable, but they too represent a relatively 
small proportion of the working supply of fuel. The quantity of these 
components can be refined in the stage of preliminary draft designing. 
In ballistic designing they can be taken into account through a correc¬ 
tional coefficient ku , selected on the basis of processing statistical 
data for examples close in characteristics. 

Thus : 

u> = 

in which connection 

_ Mpa _ » _ 
!| Qa kmQ0 km 

Making use of the designations adopted, we secure 

= ^0+(1 + a)'u. 

whence 

= 1 — (1 + a) P« — £ 

or 

(3.10) 

(3.11a) 

(3.11b) 

The ratio QnHIQo may be called the design-weight ideality coef¬ 
ficient of the rocket. One can take this criterion as a guide in comparing, 
for a given range, models that differ as regards start weight and weight 

of useful load. 

With given adduced weight of useful load, if the characteristics 
ß and E are known the start weight of a rocket for a given range is de¬ 

fined as 

Q0 = 
I — ft*«—* ‘ 

(3.12) 



It should be emphasized that in equation (3.12), as in subsequent 
operations associated with its transformation, the value pK is introduced; 
it represents the ratio of the total weight of the charge to the start 
weight of the rocket. This value is times greater than that which en¬ 
sures a given range of fire, and it is secured by ballistic computation. 

3.3. The Weight Coefficient of a Solid-Fuel Rocket Engine 

Let us consider what the weight of the basic units of the solid 
fuel motive apparatus depends upon. 

The weight of the cylindrical portion of the casing (the tube) can 
be represented as the sum of the weights of the container envelope and of 
the heat insulation covering or the adhesion layer çTU . The container 
envelope is made of high-strength material and is the element of the struc¬ 
ture that takes up internal and external loads. In determination of the 
thickness of the container envelope, A„ » at the ballistic designing stage 
we shall start from its loading with internal pressure alone, regarding it 
as a thin-walled endless tube. Then 

%>» ’ 

(3.13) 

where % is the caliber of the engine 
pm is the computed pressure; 
o_ is the strength limit of the envelope material. 

Inasmuch as with present-day use in rocket technics of materials 
having high strength characteristics the thickness of the envelope const 
tu£es an inconsiderable portion of the caliber of the engine, in deter- 
miiflïït’ the weight of the envelope one may start from a very simple rela¬ 
tion: 

it. = (3.14) 

where T« is the unit weight of the envelope material; 
L is the length of the charge; 
k^ is the coefficient covering the difference between the lengths 

of the charge and the chamber. 

Inasmuch as the relative thickness of the envelope 

we may write 

9n = «Æ&tAZ. (3.15) 

A layer of heat-protective covering is applied to the. inner surface 
of the casing of the solid-fuel rocket engine. The thickness of this 

-134 - 



layer is selected in correspondence with the heat-exchange conditions in 
the section in question and with the thermophysical characteristics of the 
covering material adopted. In the section of the casing protected by the 
charge attached to it the thickness of this layer is slight and in large- 
caliber examples it comes to a few millimeters (in the solid-fuel engine 
of the "Minuteman" rocket it is 5 millimeters). 

When slotted charges are used or ones with conical burning faces, 
some part of the internal cylindrical surface of the casing comes into 
contact with hot gases from the start of combustion of the charge onward. 
As the charge burns the contact surface enlarges. These sections of the 
casing need reinforced heat protection. The thickness of the covering in 
these sections may reach some tens of millimeters. 

The temperature of the products of fuel combustion has a substantial 
influence on the thickness of the heat insulation covering (this ratio is 
close to linear); so do the solid particles found among the combustion 
products, and the chemically aggressive components. Computation of heat- 
protective coverings for solid-fuel rocket engines are examined in studies 
(8, 18). 

In order to ensure adhesion (bonding) of fuel to the inner surface 
of the casing, an adhesion layer the thickness of which is determined by 
technological considerations is applied to the latter. 

The weight of these coatings may be computed as 

If one assumes the thickness of the coating over the length of the 
cylindrical part of the casing to be a constant, equal to some mean value, 
we get 

Vt. = *A.AtA£- 

The weight of the cylindrical section of the casing is 

= 0T« + </t. = (ï« + 1-17)- 

(3.16) 

(3.17) 

Let us designate 

Top = T« + T« A. 

and let us call this quantity the adduced unit weight of the envelope. 
In the ballistic designing stage the ratio is selected on the basis 

Ai 

of statistical analysis of designs processed earlier. 



Equation (3.17) is transcribed in the following form: 

It = ln^D^àukLL (3.18) 

The weight of the jet cone can also be represented in the form of 
the sum of the weights of the container envelope and the heat insulation 

material: 

<7C = <7cit + (3.19) 

The thickness of the carrier envelope loaded with low pressure and 

protected from the action of high andW^hose 

reíaíínrírtírattachmenrto'it'of the ^gans for guiding the thrust vec-^ III? If one assumes the thickness of the container envelope to be propor 
tionàl to the diameter of the given section of the cone, its weight may 

represented in the form 

■I 

?«= \ ux&á'dl. (3.20) 

Inasmuch as 1/2JD|ctga| (see Figure 3.1), we secure 

». 

. 4"=*$ T^D^lctgaldD- (3.21) 

Figure 3.1. Elements of cone contour. 

With a given profile a* 
a fixed ratio Da/Ocr may be rep 
amount with some characteristic 

/(D) the weight of the cone envelope for 
resented in a general form associating its 
diameter, for which it is well to select 

DCf Then 

íe* «P» 
(3.22) 

or 

?» k F* 2. "ck' ip 

(3.23) 
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Inasmuch as the thrust of the engine is proportional to the area of 

the critical section of the cone, one may write 

= o-24> 

Coatings are ordinarily applied over the entire length of the cone 

of a solid-fuel rocket engine having long working time. Various plastics 

can be used for protection of the inlet and outlet funnels of the cone. 

In the area of the critical cross-section of the cone an insert of re¬ 

fractory erosion-resistant maLerial (graphite, molybdenum, tungsten) is 

positioned. If in first approximation we assume that the thickness of the 

heat-protective elements of the cone is proportional to the time of opera¬ 

tion of the engine t , the over-all weight of thes^ elements is expressed 

by the relationship 

f«. = J I ctg a I dD. (3.25) 

Carrying out transformations analogous to those examined in the 

foregoing case we secure 

Vc« — «p*. 

Assuming Fcr/v/P, we secure 

</ci — ~ *«4 

where I is the over-all impulse of thrust. 

(3.26) 

(3.27) 

The total weight of the cone comes to 

kctr. 0-28> 

For engines having long working time the second term may prove de¬ 

terminative. Thus Vandenkerkhove (2) considers that the weight of the 

cone is approximately proportional to the over-all impulse, i.e., 

qe~kcI. 

On the basis of analysis of designs examined he suggests taking kc as more 

or less equal to 2.5 ■ 10-^. If I is taken in kilogram times seconds, 

then with this coefficient the weight of the cone is secured in kilograms. 

According to data in the literature (4, 5), for some of the most recent 

solid-fuel rocket engine designs one gets 

¿c = (0,9- 1,2) 10-<. 

The relationships secured for qCK an^ Ven are correct, strictly 

speaking for geometrically similar cones, i.e., ones having equal Da^cr 
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ratios. Let us see how the coefficients qCH and Qc* will change as this 
relationship changes. Augmentation of the weight of the carrier envelope 
of the jet as the area of the outlet cross-section increases may be pre¬ 
sented as 

where AS is the augmentation of the surface of the cone which corresponds 

to augmentation of AF» • 

But AS = A/7, • ctg aa, 

where a* is the mean angle of conicity of the cone for the outlet portion. 

In turn, AFt = A ■ 

Accordingly: 

A?« = 7«A* ctg aaFKpA ( . 

From expression (3.23) we secure 

A^e* — ^"kp AAtck, 

(3.29) 

(3.29a) 

Equating the right-hand parts of equations (3.29) and (3.29a), we 

find that 

a u _ TÄctg«, A / F. ) 
“-41 T^rJ- 

Carrying out analogous transformations, we secure 

Me. = T-*,t/7.p Ctg 

whence 

A*«.*=ï-Vctg^A(-^). 

The cap of the casing is of spherical or elliptical shape. The 
thickness of the spherical cap should theoretically be equal to half the 
thickness of the cylindrical envelope of the casing. Actually the effec¬ 
tive thickness of the cap, by virtue of the placement of various supports 
and fastenings, will be considerably greater. The weight of the strong 
part qcc /weight, cap of casin¿7 for a rocket of a given class may, 
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evidently, be assumed to be proportionate to the area of the mid-section 
of the rocket: 

(3.30) 

A considerable part of the weight of the caps, particularly the 
cone one, consists of the weight of the heat-protective coating. Thus, 
for example, for the cone cap of the engine of the first stage of the 
'fclinuteman" rocket the thickness of the glass-plastic coating exceeds 50 
millimeters. In order to determine the weight of these coatings one may 
make use of a relation analogous to relation (3.26): 

4 tl 
(3.31) 

Accordingly: 

•Di 
i-—r-(*« + *„<). 

(3.32) 

The weight of the rocket charge is expressed by the formula 

(3.33) 

where & is the specific weight of the fuel; 
• is the coefficient of the extent to which the area of the cross 

section of the chamber is filled with the charge, Sr ; 
77 

f is a coefficient covering the difference between the a ea of the 
chamber and the mid-section of the rocket 

f = 
(3.34) 

When the charge consists of sections having substantially varying 
values of e (as, for example, a slotted charge), in examining relation 
(3.33) one should have in mind the corrected value 

* _ ‘7 + '7 _ <■, 
*7*» + 'y'» 

where •, and «j are values of ■ for individual sections of the charge; 
Li and L2 are the lengths of these sections. 

Substituting the values derived for the weight of individual ele¬ 
ments of the engine, in the initial equation (3.9), after contraction we 
have 
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(3.35) a 
l<fiL 

Inasmuch as t =//P and <a*=IIJlcp we secure 

*1« + ‘*Top*iilt^ ,, f L I I. Si 

a==-»í¡¿- +Acp(*« + * 
_li_ 

AM /> )• 
(3.36) 

After dividing both arms of the equation (3.33) by the area of the 
mid-section of the rocket and after having replaced ut with the product 

HkQo . we find that 

(3.37) 

or 

l»«n0 = 8<p«¿, (3.38) 

whence 

, t*«11» ■ 

•¿ =-íbtí!». 
if ‘ 

(3.39) 

(3.40) 

We shall substitute: 

’A Vo ' 
(3.41) 

Substituting expressions (3.40) and (3.41) into expression (3.36), 

we secure. 

d asas 
*•« + <Top*/Á¿ ., / b ,fc *_') (3.42) 
- -+ ylcp ^«c -b S. ^rio } 

The weight summary of the 15 KS 25,000 (4), set forth below, may 
give some idea of the distribution of weight for a low-thrust engine among 

its basic elements. 

The weight coefficient of an engine depends upon the selection of 
thrust parameters, the characteristics of the structural and heat-insua- 
tion materials used, and the design configuration of the individual units 

of the engine assembly. 

With increase in the dimensions of an engine the value of de¬ 
clines. For present-day large engines in single-stage rockets a - 0. 

to 0.08 (5, 15). 
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One can decrease the weight coefficient of an engine by. 

-- reducing the working pressure in the engine; 

-- using fuels having a low temperature ratio, thermostarting the 

engine, or regulating the cone with a view to diminishing the pressure- 

temperature ratio; 

-- making the casing of the engine of materials having high unit 

strength; 

-- increasing the density of the charging. 

As the computed pressure is decreased and the unit strength of the 

rocket chamber is increased, the part played by heat-insulating coatings, 

the caps, and the cone in the weight balance rises. 

Even in an engine of relatively small dimensions, as will be seen 

from the table presented, the weight of heat insulation and the cone make 

up about 25 percent of the weight of the engine structure. For various 

modifications of the "Polaris" rocket in the first-stage engine the over¬ 

all weight of the caps and the cone block, according to the data of Table 

3.1, makes up from 30 to 44 percent of the weight of the casing without 

heat insulation. In this connection the design refinement of the cones 

of solid-fuel rocket engines and the use of the most efficient heat- 

insulating materials take on significance. 

Table 3.1 

Weight, 

Element kg 

Casing 171 
Heat insulation 32 

Fuel 800 

Igniter 2 

Cone 21 

Total 1,026 

Characteristics 

of Engine__ 

Mean pressure 

Value of 
Characteristic 

With T° = + 21° C 

61.5 kg/cm^ 

Burning time of charge 12.7 sec 

Mean thrust 

Unit impulse 

12,110 kg 

219.8 sec 

3.4. Relationship Between Admissible Changes in Unit Impulse__gn,d Weight. 

of Engine Structure for Given Velocity of Rocket at End of Active Section 

In designing a rocket it is necessary to take into account the fac¬ 

tors which on the one hand increase unit impulse and on the other hand raise 

the weight of the engine structure. Let us enumerate the basic factors 

among these. 



h. . , Temperature of burning of fuel charge. Use of fuels having a 
high combustion temperature in the engine is the basic way of increasing 

stances theP Sa f a^ket engine. But under these circum- 
sLe ^ °r hGaV1Cr heat"insulation coatings, and for the use of 
special measures for protection of the cone against heat, as a result of 
increase in its weight, also increase (18). 

, 2• Working_pressure in the engine. As pressure increases, the 

YÎiCVe?ds t0 increase of I!, and at the same time the 
thickness of the walls of the engine casing mounts. 

. I' The Fa/Fcr ratio. As the outlet cross-section of the cone and 
the Fa/Fcr ratio rise, the mean value for /lrp in the active section also 
increases (up to a certain limit). At the same time the weight of the 
cone increases. 4 

j-n or^er to find a solution which will ensure maximum advantage in 
the weight of the rocket when the factors listed are taken into account 

rhe1S neí!SSfrynt0 establish an equivalent for changes in unit impulse and 
the weight of the engine structure vis-'a-vis maximum velocity of the rocket 

in determining this equivalent we shall assume that the parameters 
fjp and n„ are given. For ballistic parameters at the end of the active 
section of the trajectory which will ensure a given range of fire, the 
following condition must be met: 

dV, tm o dut »-fa, - dwK -/// 

whence 

(3.43) 

From formula (2.75) 

dwK _ d m, (pjj - ± d m, (pjj -f d [æi>, (p,, /10, ,,)1 _ (3.44) 

/,„ Tj)).* 

Inasmuch as the third and fourth terms of expression (3.44) repre¬ 
sent only a small part of the sun of the fi, ,;t two, in a majority of cases 
not exceeding 1-2 percent, their differentials may be regarded as quanti¬ 
ties of the second order of smallness. Dropping these components out in 
the expression for wk, and their differentials in the expression for dwu 
we secure a simplified equation K’ 

* To simplify the computation we take km as being equal to 1. 



(3.55) f*Ao 
/.0 

diu, (^)1 —Ij-rf(U.J WI 

We should note that the function UjOO approximates a linear ratio 
with great precision 

Z/j(|i)=a-f ¿P, 

where a = 0.1, b = 0.689. 

Making use of this approximation we secure: 

dWM\=rh-. 
d\UM\=bdf. 

The equation assumes the form 

a + bp dp. (3.56) 

Considering the fuel weight, <i> = pQo, as a constant we secure 

¿t*-Qo+ rfQo-H —0. (3-57) 

Since what we are examining is change in the weight of the rocket 
by virtue of the weight of the engine structure, then 

Consequently 

pdqt1 (3.58) 
—¢-- 

Substituting expression (3.58) into equation (3.56), we secure 

dgÂy 

Qo 

a + bp 
1-1* 

(1-1*) 

1 — I* 

J* Ao 

of tlie equation by the ratio 0» : 
?*T 

Multiplying botli arms 



a + V 
’i Ç>o(t (3.59) <*<hj 

íi» 

In 
~ ~ l1) dho 

iayl1 Ao 

Hence the percentage change in the weight of the engine structure 
which is equivalent to a 1 percent change in unit impulse is equal to 

D = 

_1_a -I- 
1 — t*_*) C>o I — I* 

<hy I1 

or, since Q0 (the passive weight of the rocket), 

D = 
I o -4- 

In » 
iiy * 

(3.60a) 

Considering that <7W = Qopa, this expression may also be presented 

in the form 

I a + tyi 
1—1»_t| I —I» ( 3.6 Ob ) 
. * a|»* ' 

From the relationships examined it follows that increase in the 
weight of the solid-fuel rocket engine structure is expedient if, with a 
weight increase of D percent, the unit impulse rises by no less than 
1 percent; and on the other hand, reduction of engine weight by virtue of 
diminution of unit impulse attains its goal if with reduction of weight 
by D percent the unit impulse falls off by no more than 1 percent. 

In Figure 3.2 there is set forth a graph for the dependence of aD 
upon Pk , computed for ») == 2, 4, 6 according to formula (3.60b). In order to 
determine the'value of D from it, one must know the weight coefficient a 
At present values of a from 0.08 to 0.1 are achieved in single-stage 
solid-fuel rocket engines and in the first stage of multiple-stage ones 
(5). Under these circumstances, for ij = 4—6 according to the graph anc 
for the range of pK under examination the characteristic D = 3-18. 

With rise in pK the ratio QJQm declines, i.e., the share of the 
weight of the engine structure in the passive weight of the rocket mounts 
The rocket becomes more sensitive to relative change in weight of the en¬ 
gine structure, for which reason the quentity D also declines with in¬ 
crease of fi* . For models of more up-to-date design of engine (low a ) 
the D characteristic is greater than for models having high a • This is 
explained by the fact that decrease of a with values of p* equal leads 
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to decrease in the proportion of the weight of the engine structure to the 

weight of the rocket, which lowers the sensitxvity 
in the weight of the engine structure. Increase m thrust-weigt ratio 
within limits T| < T),m (cf- 3.6) also leads to increase in D- Heightenig 
thrust-weight ratio is equivalent, from the standpoint of ensuring a given 
rocket speed" to reduction of ^ , i.e., to increase of the passive weight 
of the rocket, which in turn is accompanied by reduction of sensit y 

change in weight of the engine structure. 

3.5. Determination of Basic Dimensions of Charge 

The selection of basic dimensions of charge is imited by the 
existence of a certain value for the loading criterion which characteri es 
the threshold for normal functioning of the charge. T^e 
of the charge should be coordinated with each ocher and wjth tbe interio 
dimensions of the engine in such fashion that the value of the oading 
parameter ensured thereby shall be less than the limit admissible one. 

In domestic literature (6, 7, 8) , use is customarily made of the 
loading narameter * proposed by Professor Yu. A- Pobedonostsev as a cn 
terion for the combustion stability of the charge. There exists a certam 

maximum admissible value *nr, , upon exceeding which a"om^1°U" 
of charge commences, accompanied by sharp reduction o u . P . . h_ 
sometimes passing over into spasmodic combustion with complete extinguish 
ment. The value *nP depends essentially upon the level of working pres 
sure in the engine, the initial temperature of the charge, the brand of 
fuel, an5 some design peculiarities of the charge. In Figure 3.3 we pre¬ 
sent a graph associating the magnitude of the li nit value «„ "lth. ^ 
working pressure in the engine, secured for one of the recipes or 
listic fuel (7). Each of the curves on the graph, constructed fo ^ P 
cîfic vaïue foi the initial temperature of the charges, limits at the bot¬ 
tom the field of pressures which ensure stable combustion. Cbviously the 
value for *np chosen in designing should lie within this field. 

Let us examine some studies of foreign investigators on this ques¬ 
tion Wimprcss (9), examining the planning of engines for ballisti 
Zs th“Pat high values for the Fkp/Fcb ratio 

becomes decidedly sensitive to change m the dimensions of the 
\l the fuel. Basing himself upon experimental data, he asse^s that fo 

o chame in the shape of a cylindrical single-channel burner of JPN fuel 
with an initial temperature of 54" C the Fkp/Fcb ratio ^"uld not exceed 
0.5. He represents this ratio in the form F„ S inasmuen a ■S' 

F„ r«p 
the magnitude of the divisor is limited, Wimpiess considers that in plan¬ 
ning f charge the principle part is played by the quantity K,-»F«. . 

which is identical with x . 

Bedevant (10) recommends that in planning a charge one start from 
the amoi^t of admissible internal compression K, , *ich by definrtron cor- 

responds with our * parameter. 

afl à 
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Figure 3. 

Figure 3. 

2. Dependence of ,0 characteristic upon relative supply of fuel 
and initial thrust-weight ratio n . 
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Dependence of minimum admissible pressure upon , for one of 

f-Ah^ano1^ A618? .1 ” initial temperature of charge 
fiji; - zu C; 2 -- initial temperature of charge + 20° C; 
3 -- initial temperature of charge + 60° C. a -- kg/cm2’ 
b -- Field of pressures ensuring stable combustion of powder 
of a given brand. 
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Vandenkerkhove (2), Bartley and Mills (11), propose that in plan¬ 
ning a solid-fuel rocket engine charge use be made of a graph of the rela 
tionship associating pressure in the forward part of the engine 

and H-- / 
In Figure 3.4 we show such a graph, constructed for one 

of the mixed fuels according to data secured from stand tests of a solid- 
fuel rocket engine (11). It is not difficult to note that since K,-/- * » 
this graph admits of transposition into coordinates with /("F“» *) 

Figure 3.4. Relationship of pressure in forward part of engine to K and 
H for one of the mixed fuels (u^q - 0.38 cm/sec, »■"OÄ, 
Th = + 20° C) . 

Thus in all cases the criteria determining the selection of the 
geometry of the charge are two simplexes: x _ anc^ _5_ > t^e latter 

ten Fup 

of which, with given characteristics of fuel, determines the mean level 
of working pressure in the engine. 

In selecting the magnitude of the x parameter in computing a 
charge, one should bear the following circumstances in mind. On the one 
hand, as x rises (within the limits of the field of stable combustion of 
the charge) the density of loading increases. On the other hand, with 
rise of x the drop in pressure along the length of the charge rises, 
which with a given mean pressure in the engine leads to increase of pres¬ 
sure at the forward cap ol the engine at the initial moment of combustion 
of the charge. With a certain value of x there commences, and Vith fur¬ 
ther increase therein there is augmented, an erosive combustion of fuel 
accompanied with rise in pressure in the initial section of the pressure 
curve. This leads to increase in maximum pressure at the forward cap, in 
accordance with which the computed pressure determining the thickness of 
the wall of the rocket chamber is in fact selected. Obviously the optimum 
will be a value for x which ensures sufficiently high density of loading 



with a relatively low computed pressure. A final judgment on the optimum 
character of selection of * may be formed upon the basis of computations 
of the weight of the rocket performed with various arbitrarily selected 

given values of x . 

Hie difficulties associated with erosive combustion and with great 
falls in pressures along the length of the rocket chamber are eliminated 
If one uses a charge with face burning. In addition a charge burning from 
the face ensures maximum possible density of loading. 

But the deficiencies present in a charge with face burning block its 
use in ballistic rockets. With face burning, as fuel is consumed more and 
more new sections of the casing surface are laid bare and come into contact 
with burning gases. As a consequence of this, for the heat protection of 
the casing, and in particular for parts of the chamber facing the cone, a 
sufficiently thick and heavy heat insulation is required. In this respect 
the face charge is the antipode of a charge attached to the walls and burn¬ 
ing from within, which ensures optimum resolution of the heat protection 

problem. 

In addition, with face burning of charges of present-day fuels it 
is difficult to ensure a thrust-weight ratio such as is indispensable rot 

a guided ballistic rocket. 

The thrust provided with face burning may be calculated as 

p = = 

The thrust-weight ratio ensured thereby is 

1) ¿mtSrU 

Adopting in first approximation an area of charge face equal to the 

area of the midship section, we secure 

whence the necessary speed of combustion of fuel is equal to « _ ?L± 

Adopting Do “ 8000 kg/n.2 , Ilo = 230 kg-sec/kg, ä _ 1700 kgM3. we secure 

°=,lãcuI7iio=‘0’0211 "/scc 

With ï) - 3—6 , the requisite speed of face burning of charge comes to 

u = 60-120 mm/sec , 
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vhich is beyond the limits of the potentialities of present-day solid 

fuels. 

The relationships associated with the basic dimensions of the charge 
md the chamber with . have each their individual expression for each 
of the forms of charges. This limits the general character °£ * 
of the problem of ballistic planning, associating it with a specific for 
_r chame something which, strictly speaking, runs counter to the very 
tlríütiin ofthe problem, which calls for the finding of optimnm values 
for plan parameters and optimum forms and dimensions ch«ge. Ft™ this 
H ‘ ariscs a need for a generalized relationship, suitable for charges 
or^, sí^. a^d conjoined8 by a single feature most essentia tom he 
standpoint of their geometry. In planning a solid-fuel rocket engine, 
most cases departure is from the requirement for constant thrust, which in 
Upturn calls for constancy of the surface of the charge during combustion. 

Kith the condition S = const maintained independently ^ 
charge, the following system of equations may be used for determi a 

the coefficient of charging: 

X = 

»85^,; 

= 8£^,; 

S 
Au-o » 

where ei is the thickness of the vault which is burning. 

Solution of this system leads to the expression 

_**« 

(3.61) 

(3.62) 

(3.63) 

**t + ¿ • 
(3.64) 

whence 

*£t 
1 —• (3.65) 

If in formula (3.65) vie 
pression (3.39), we secure 

insert in place of 

Ml 
M|8y 
1^0 

c its value from ex- 

(3.66) 

We establish the relationship between the thickness of the burning 

vault and the initial thrust-weight ratio: 

__ Po AoO 
’to"" Oo Oo • 

éméhNAUí 



Inasmuch as with constant expenditure of fuel 

O 
t $ 

X = i 

where 0Cp is the speed of 
in the engine adopted , 

combustion of the fuel with the mean pressure 

Ao“«ep 

-QïT‘ (3.67) 

Since WQo = Pk , we secure 

(3.68) 

whence 

‘#Kgtp 

% 
(3.69) 

Substituting expression (3.69) into expression (3.66), we secure 

Z. = —r--. 

"Ho *Aoucp 
(3.70) 

3.6. Dependence of Start Weight of Rocket Upon Initial Thrust-Weight 

Ratio 

Let us examine the way change in initial thrust-weight ratio of a 

rocket influences the amount of velocity it achieves at the end of the ac 

tive section of the trajectory. 

With increase in thrust-weight ratio losses of velocity Ay 
- - r __* a... mm*. #-1-,0 +- imn r 

as- 
Witn increase ru 1.111.++0+. ..+--0---- -- • ., -. 

sociated with the operation of the force of gravity ^er the time the en¬ 

gine operates, expressed by the second term of formula (2.75) , 
In graph 3.5 we present computed values for this quantity, related t 
velocities l»u computed according to the Tsiolkovskiy formula. As will < 

be seen from the graph, with low thrust-weight ratio (^< 2) tae magnit e 

of thesef losses depending on p. may come to 15 to 36 percent of he maxt- 

mum possible velocity of the rocket. With increase in thrust-weight ratio 

the magnitude of these losses falls off, and with ^ = 6-8 it comes to 4-12 
percent of . Further increase in thrust-weight ratio leads to insub 

stantial change in these losses. 
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Figure 3.5. Change in loss in velocity of rocket occasioned by operation 
of force of gravity, with increase in initial thrust-weight 
ratio n) . Losses are expressed in percentages of velocity, 
computed by the Tsiolkovskiy formula for ^-0,4-0,9. 

Simultaneously with increase in thrust-weight ratio an abbreviation 
of the length of the active section takes place. High speeds of flight 
are achieved in the lower, dense strata of the atmosphere, as a consequence 
of which losses in velocity occasioned by the operation of frontal resist¬ 
ance mount. In the third term of expression (2.75), determining the amount 
of loss of velocity from frontal resistance, the parameter »I enters into 
the denominator of coefficient B, and also as the argument of function ¢2 • 
With increase in thrust-weight ratio this component grows. Thus, for exam¬ 
ple, with IL0 = 230 sec, n0 = 10000 kg/m2, ^=0.7 with change in thrust- 
weight ratio from 2.5 to 6 the magnitude of these losses, related to maxi¬ 
mum possible velocity oa , changes from 3.7 to 6.4 percent. As computa¬ 
tions show, the relative magnitude of these losses with Ilo>8000 kg/m is 
relatively slight; with tj<6 it does not exceed 7-8 percent. 

With reduction of the altitude of the active section the mean- 
trajectory value of the unit impulse declines, and consequently the cor¬ 
rection for velocity occasioned bv the increase of thrust with altitude 
is reduced (the third component in formula 2.75). 



With this sort of character of change in the individual components 
of expression (2.75) there must exist some value flum which ensures, with 
given values for p,„ Ho, Po and X, , the greatest velocity for the rocket 
at the end of the active section of the trajectory. Displacement from the 
value i]vni in the direction of less thrust-weight ratio leads to falling- 
off in velocity by virtue of increase in Aü4 • Exceeding the value V" 
increases losses in velocity by virtue of frontal resistance forces and 
reduction of the mid-trajectory value of the unit impulse. But one should 
note within the limits of increase of tj which are of practical interest, 
reduction in the velocity of the rocket with proves to be insub¬ 
stantial. The maximum of range, which is determined, not only by the 
amount of velocity of the rocket at the end of the active section, but 
also by the coordinates of that point, should correspond to i)xm < Hum . 

Obviously if one starts with a given range of flight of rocket, a 
minimum value for p« will correspond to the value Hxm . In view of the 
transcendent character of the relationships associating maximum range with 
the project parameter tj , analytical solution of the equation 

with X = X3 cannot be brought about, and the precise value of H*m can be 
determined only by checking over a large number of ballistic variants. 

But the influence of the thrust-weight ratio upon the start weight 
of a rocket is not limited by the quantity Ph necessary to ensure a set. 
range X3. It also becomes manifest in change of the weight coefficient 
of the engine, a • Increase in thrust-weight ratio with fixed level of 
mean pressure in the engine for a given fuel calls for reduction of the 
thickness of the burning valut, which reduces the density of loading, and 
consequently increases the quantity, a. For this reason the optimum 
thrust-weight ratio, at which minimum start weight of the rocket íf> en- 
sured, should be determined according to the minimum of the product of 

( 1 + a)Pk » i-6 ’ from the condition 

*14 
-jj- + (H- «) ■ 0. 

(3.71) 

From equation (3.42) 

dm dL A cp*M ^ ^ 

In order to determine the derivative JL_ we make use of formula 
dn 

(3.70) , from which 
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(3.73) 
4L 
du 

«S». 
^lo^cp (■S' 7' 

Substituting expression (3.73) into expression (3.72) we secure 

4a 
dT[ 

47np*Ã 

W (-S-^v) "W (3.74) 

The first term in the right-hand arm of equation (3.74) expresses 
increase in the coefficient a with a rise in thrust-weight ratio i\ by 
virtue of increased weight of rocket chamber. The second term expresses 
rïïctl™ of coefficient . by virtue of lightening of heat P-^ection of 
the cone an engine working time declines. The structure of equation (3^74) 
points toward the existence of a maximum of <* m accordance J1’ . 
such a maximum is not of practical interest, because by view of the sma 
ness of the second term, in the real range of change of »J one will always 
note an increase in a with increase in thrust-weight ratio. 

If on the basis of ballistic computations we construct a relation- 
ship 11, =/(1]) with X = X3 and if from it we determine the value of 

it will be possible, making use of expression (3.74), to h 
equation (3.71) the optimum value for thrust-weight ratio, which with other 
parameters fixed will determine the minimum start weight of a rocket for a 

set range. 

The existence of a dependence of a upon q leads to the fact that 
the value of the thrust-weight ratio which at given Ho, /io. e"^re 
minimum start weight of the rocket will be displaced to the left of the 
optimum value rjrm determined only through solution of external ballistics. 

Let us note that in the field of low thrust-weight relationships 
the weight characteristics of a solid-fuel rocket engine depend relatively 
slightly upon the magnitude of t] , something which makes it possible to 
adopt relatively high values of thrust for solid-fuel rockets. 

3.7. Selection of Initial Transverse Loadings- 

The influence of H» upon the start weight of a rocket may become 
manifest in the magnitude of , end also in the magnitude of the weight 

coefficient of the engine a . 

Change in the requisite value of pu of a rocket for a set range 

with change in n0 is associated with losses of ^C0U^ 
frontal resistance during the active section of the trajectory. Turning 
to Se reUtionship (2.75), one can follow the way the quantity | changes 
with change in n0 and with fixed values for t], p«,/io and p0 . In 
3^6 we show a graph of * =/(Ho) , which we have constructed in accordance 

lr5 



with data secured by computation according to formula (2.75), for two 
thrust-weight ratio values. As will be seen from the graph, the influence 
of n0 upon the amount of the velocity at the end of the active section of 
the trajectory is substantially pronounced only at low values of Flo (in 
the case examined, with n0 < 5000 kg/m2) . With values of Flo > 8000 kg/m2 
the quantity w changes very little. Thus, with ij — 2,5 changes of 
from 8,000 to 12,000 kg/m2 increases w by less than 2 percent. With rise 
in thrust-weight ratio the relative change in w provoked by increase in 
rises because with increase of q the latitude of the active section de¬ 
clines and great velocities are reached by the rocket in the lower, denser 
strata of the atmosphere, in view of which the part played by aerodynamic 
resistance rises and the sensitivity of velocity to change in the area of 
the midship section is heightened. But even with ij = 6, in the range of 
changes of FFo examined the relative change in w comes to 3 percent in all. 
Consequently, with Flo > 8000 kg/m2 maximum velocity at the end of the active 
section depenos but little upon initial transverse loading of the rocket. 

Figure 3.6. Change in relative velocity of rocket at end of active sec- 
' tion of trajectory with rise in initial transverse loading 

n« for a thrust-weight ratio tid-2.5; »»=6. 

Obviously, turning to the condition w = const, which corresponds 
to the requirement that a set range of fire be ensured, analogous conclu¬ 
sions may be reached with regard to change in Pk evoked by change in Ilo . 
Thus one can assume that with values of Flo>8000 kg/m2 this parameter 
will exhibit no substantial effect upon |% . 
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Let us examine the influence of IIo upon the weight coefficient of 
the engine, a . We detemine from equation (3.42) the extreme of a ac¬ 
cording to IIo . taking into account expression (3.70) 

da . 4 I. r 1_!_ 
¿nr ~ + Tap^L “ (iT - jp* y 

We introduce the designation 

(3.75) 

(3.76) 

Solving equation (3.75) relative to IIo and making use of expression 

(3.76) , we secure 

n an ' 

B +• 
■^r 

(3.77) 

Expression (3.77) determines the optimum value for the initial 
transverse loading at which minimum value of weight coefficient of engine, 

o , is achieved. 

In accordance with formula (3.77), the optimum value of n0 rises 
with increase in the unit weight of the fuel, with increase in the k/io«cp 
complex, and also with reduction in thrust-weight ratio r, . 

Let us examine the physical meaning of the existence of this opti¬ 
mum. Increase in IIo is associated with increase in Lp -- the length of 
the rocket, and consequently with lengthening of the engine and charge. 
According to relationship (3.64), with lengthening of the charge while 
value of the parameter of loading x remains fixed the quantity £ de¬ 
clines, i.e., the extent of filling of the chamber with fuel declines, 
something which of itself must lead to increase of the relative weight 
of the structure, i.e., to increase of a . Simultaneously with increase 
of IIo the caliber of the rocket % decreases. If one starts from the 
necessity of positioning in the chamber approximately one and the same 
quantity of fuel, the length of the chamber, determined without taking 
into account reduction in the density of charging, must rise proportion¬ 
ately with IIo. The perimeter of the chamber declines proportionately to 
I/VU • Consequently, the weight of the_chamber with a constant given 
volume must rise proportionately to . But with reduction of the mid¬ 
ship section of the rocket the weight of the caps of the rocket engine de¬ 
clines. Thus with short charges the coefficient a increases on account 
of increasing weight of caps, with long charges on account of reduction 



in density of charging and increasing weight of cylindrical envelope of 
casing. This in fact conditions the existence of an optimum extension of 
the engine in length and of the value of riooirr associated with it. 

The higher the value of the weight coefficients of the forward and 
cone caps Kx*t Kcm and , the less (in accordance with expression 3.76) 
is the value of complex B , and the greater is the value of Ho ont deter¬ 
mined according to formula (3.77). Bins with a heavier construction of 
caps the optimum Ho is displaced in the direction of longer charges, and, 
conversely, with light construction it is displaced into the field of short 
charges, for which a higher density of charging is ensured. 

In accordance with formula (3.77) the *Ao“cp complex has a considera 

ble influence upon the magnitude of the optimum value for ITo . 

Let us transcribe formula (3.64) in the form 

(3.78) 

Substituting here the value e^ from expression (3.69), we secure 

(3.79) 

Thus the complex examined, with L and Pk given, determines the 
density of charging. With increase of this complex the density of 
charging rises, something which, in accordance with equation (3.77), 
leads to displacement of the optimum value for a in the direction of 
longer charges. 

In final selection of the Flo value it is necessary to take into 
account the convenience of using and firing the rocket. If in planning 
one sets oneself a high value of Ho , the rocket may turn out to be ex¬ 
cessively long, something which will make its transport and setting up on 
the launch apparatus difficult. Such a rocket will possess a great equa¬ 
torial moment of inertia, which will make steering its flight difficult 
and will occasion high transverse overloading apon in effecting turning 
movements during the active section of the trajectory. 

In Table 3.2 we set forth the values of Ho which we have computed 
for solid-fuel rockets in accordance with the data set forth in 1.1. 
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Table 3.2 

Rocket 

”•[£] 

Sergeant Pershing Polaris Minuteman 

9,250 5,780 8,600 10,400 

3.8. Connection Between the 3.B. asmggxpg ... - Paramater and the Pressure In the Forward 
Part of the Engine (Taking Erosive Combustion Into Accountj. 

In order to make the computations associated with determination o£ 

the "optimum . value, it is necessary to know 
X parameter and pressure in the forward part of the eng . ... J? f 

mental graph presented in Figure 3.4 (11) is a graphic representation of 
this relationship. Analytical solution of this problem is considered in 

the studies (2, 9, 11). 

The solution set forth below is based upon the utilization ^tables 
of gasodynamic functions, and is for this reason methodologically the most 

convenient one. 

Let us examine the change in basic gasodynamic parameters along the 
lengths of charges burning from the flank surface, with a fr^e frea 0 
transverse section which is constant throughout the length of charg 
(cf. Figure 3.7). For a channel of constant section the full flow of the 

impulse is constant, i.e., 

V-0/^ + ^ = c°nst = (3.80) 

In the initial section of the channel, with v = 0, 

^ =PotFi(. 

(3.81) 

For an arbitrary section 

-V+ ^ = = const. e 

(3.82) 

where 
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(3.83) 

X«o/aKp -- the nondimensional velocity; 

k is the index of the adiabatic curve; 
R is the gas constant; 
T0 is the braking temperature of the products of combustion of the 

solid fuel. 

Equation (3.83) does not take into account the forces of friction 
of the gas flow upon the surface of the change. In the estimation of some 
investigators (11), with Reynolds numbers characteristic for the flow of 
a gas along a charge (Re 106) , for the initial period of combustion of 
the charge losses from friction come to not more than 2-5 percent of the 
falling off in pressure along the charge, associated with the flow of the 
mass of gases. 

From equations (3.82) and (3.83) it follows that static pressure 
along the channel changes as does 

p = p0lr(X). (3.84) 

With burning on the face surface facing the forward cap (Figure 
3.8) the initial section of the channel may be regarded as the final sec¬ 
tion of a fictitious channel having a flank surface equal to the area of 
the face Sj: 

where is the length of the fictitious section; 
Ó, is the perimeter of combustion. 

Bence /*nr=5T, 

(3.85) 

In order to associate change in the parameters of flow in the chan- 
' nel with the afflux of gas by reason of combustion of the fuel, we divide 

the elementary sector of combustion by an extent dx (Figure 3.7). Change 
in output through the transverse section of the channel in the sector dx_ 
is equal to the gas afflux in this sector: 

da^inrttuf(p)9{X)dx, 
(3.86) 
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where uio is the unit velocity of fuel combustion; 
f(p) is a function expressing the relationship of combustion velocity 

to pressure; 
*(*) is a function expressing the relationship of combustion velocity 

to velocity of the gas flow passing around it. 

The general expression for output of gases may be presented in the 
form 

0=S?Fv = ~ Fv. (3.87) 

Substituting the value £ from expression (3.84) and taking the tern 
perature of the gas through the length of the chamber as constant, equal 
to the braking temperature (this is in fact the temperature of the fuel 
combustion), we secure 

O — Fa^f\r(X). (3.88) 

Differentiating expression (3 A 7), we find that 

(3.89) 

Equating the right-hand arms of equations (3.88) and (3.89), we 
secure the basic equation for determination of the parameters of the flow 
along the length of the charge 

{r (*) + X [r (X)]) ¿X = 8 nr «,<,/(p) ? (v) dx. 
(3.90) 

In order to simplify the solution without substantially diminishing 
its accuracy, with values of X < 0,5 one can make use, in place of the re¬ 
lationship (3.83), of a simpler formula 

r(X) = 1 — X2. (3.91) 

Approximate and exact values of the function r(X) for k = 1.25 are 
set forth in Tabic 3.3. 

In accordance with Table 3.3, with values X < 0,4; fC = 1,1—1,25 the 
error of the approximation A remains less than 1 percent, and only with 
X =0,50-0,55 docs it rise sharply to 3-6 percent. 

The dependence of the speed of burning of a solid rocket fuel upon 
pressure is called the law of fuel combustion. Cxi the basis of a great 
deal of experimental material various formulas expressing this dependence 
have been proposed. In the internal ballistics of the solid-fuel rocket 
engine the following are the most frequently used: 



-- the graduated law of combustion, applied within the range of 

pressures running up to approximately 70 kg/cm : 

(3.92) 

30 to 120 
the linear law 
kg/cm^• 

of combustion, applied in the pressure range from 

« = «io(l + ¿/0- 

Table 3.3 

& 0,1 0,2 0,3 0,4 0,50 0,55 

/-(1)(3,91) 0,99 0,96 0,91 0,84 0,75 0,6975 

/-(1)(3,83) 0,9891 0,9572 0,9083 0,8467 0.7778 0,7419 

Ao/o +0,09 +0,28 +0,19 -0,79 -3,57 —5,97 

At present the Sumerfield law finds widespread use; it covers a 

wide range of pressures (from 1 to 100 kg/cm ): 

1+ */>•'•’ 

Upon movement o£ the ges flow along the surface of combustion of 
the charge the speed of burning of fuel increases. The increase in speed 
of combustion is occasioned by the effort of conveying heat from the gas 
to the fuel in the presence of turbulization of the gas flow in the neigti 
SotSood of tie surface of the charge. In the literature thru phenomenon 
ls tailed erosive combustion. A number of investigators have indicated 
iie «litanie of some threshold speed of flow, starting from Ouch the n- flieiii if the bathing of the surface with gases becomes manifest upon the 
iiÏÏi if burning of Se fuel. Relative change in the speed of fuel com- 
bustion is customarily expressed by the relation 

(3.93) 

where Ä* 
is an erosion constant which is characteristic of the fuel; 
is the threshold value of nondimensional speed, starting with 

a 1 - __a A -■m 4- 4a" 

which erosive combustion comnences to become manifest. 

With X < Xnp 9(0) = 1 
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Substituting expressions (3.91), (3.92), and (3.93) in equation 

(3.90) we secure 
i^5L(l-3X*)^ = 

=8 nr «„>/>;* 0 - V)' l1 + Mx - x"p)ldx- (3.94) 

To simplify computation it is logical to adopt 

[r(X)p = (1 — X*)’ = 1 — vX*. (3-95> 

One may judge of the greatest amount of error introduced by this 
change into the real range of change of X according to the data of Tab e 

3.4, computed for XK = 0,5 • 

Table 3.4 

[r (1)1^ 

1 —vX* 

Ao/o 

0.2 

0,95! 

0,950 

0.1 

0,3 

0,927 

0,925 

0.2 

0,5 

0,882 

0,875 

0,8 

0,7 

0,838 

0,825 

1,6 

Dividing the variables and integrating, we secure 

A 

J 
op 

1 — 3X* 

Vnp + **)(l -VÀ») 
d) = 

tnr ul0Rr 

to'pP'oA V 
(x X„p)t (3.96) 

where Xnf is a coordinate of the section at which nondimensional speed 

attains a value of Xop * 

For the sector x < Xnp equation (3.94) assumes the form 

Poa^p (3.97) 
—Rf- 

whence, after integrating, we secure 

? 1-3X1 ^ _ jgjogjl11^ Í3.98) 
J-nrw-ft 

0 

Determining from equation (3.98) the value Xnp and substituting 

it in expression (3.96) we secure 
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(3.99) 

X 
1-3*»_ 

l* *op)l (1 — ^*) 
¿X + 1-3*» dX 

8ii|0nr/?r 
Fa*vPu' X 

The left-hand part of the equation constitutes a function of 
X, Xnp. kx and v . An analytical expression of this function can be secured 
through integration: 

3 . 3 — », 1/^ +*np , 
* (X, kv Xnp. ^) = - X«p - 2Tp^ln + 

++(X — X^Jl-f ^ *3y,_(l_*x*(ip)*X 

X l^lnll + *x(X —Xnp)] --yin 
I “P 

1K.:,n 
2 ' nVi/K»-x «/K» +Xnp /J 

(3.100) 

V 

A graph 
0.3-0,7 is 

for the function ^ (X, Xnp, v) for Xnp = 0,15, 
set forth in Figure 3.9. 

1,0-5-5,0, 

Figure 3.8. Adduction of the area of the burning face toward the supple¬ 
mentary fictitious channel. 

Let us note that ïïtXfF is nothing other than the x criterion of 
Yu. A. Pobedonostsev. 

Thus : 

(3.101) 

Let 
channel of 

us determine the complete falling-off in pressure ov<ïr the 
the chamber from the cap to the critical cross-section. 

For the channel of the charge 

A/», — p0M pK _ poi [1 — r (*,)] 
(3.102) 
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(3.103) 

or, making use of expression (3.91), we secure 

The falling off in pressure in the precone space may be approxi¬ 
mately evaluated on the basis of general hydraulics relationships: 

where E is a coefficient of hydraulic losses. 

Let us examine the case ot a multiple-cone bloc (Figure 3.10), where 
basic losses of pressure are occasioned by the shock of the gas jet issuing 
from the channel into the cone cap. According to Idelchik (12) upon the 
issuance of the flow from the conduits and channels onto the baffle the 
magnitude of the coefficient of hydraulic losses is determined by the rela¬ 
tive distance from the outlet cross-section of the tube to the baffle. Ex¬ 
perimental values of this coefficient are set forth in Table 3.5 (12). 

Table 3.5 

kid 0,5 0,6 0,7 i.o 

1 1,37 1,20 Ml 1.00 

Figure 3.10. Diagram of cone portion of engine. 

Expressing density through static pressure in the outlet cross- 
section of the channel, and velocity in this cross-section through XkOkp » 
we secure: 

A/>e 
(3.104) 

or 

AP* ■* j-qp-f/,o»r (*«) • 
(3.105) 
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Full pressure In the outlet cross-section o£ toe channel is ex- 

pressed as 
P* _ AuMM roK 

ti 1ní;^ 

where 
» 

consists of 
MM 
*(M 

for the channel 

(3.107) 

T rtf full nressure prove quantitatively to be substantially Losses of full pressure p m relative maß- 
less than the falling off of static Pre®® ’ k = 1 25 for various values 
nitudes of these characteristics, computed with k 1.0 

of XK , are set forth in Table 3.6. 

Table 3.6 

The coefficient of restoration cf full pressure for the precone 

space is equal to 
__Pot — A/>, 

Po* 
1 àPC 

Pot ' 
(3.108) 

or after substituting expression (3.105) 

—i X*ic (X,). 
(3.109) 

In engineering computations over the range 

sufficient degree of accuracy, adopt 

En (X.) = 1. 

Xk<9,5 one can, with a 

dynamic 

The coefficient of restoration of full pres 

stretch of the chamber is 

sure for the entire gaso- 

. l6l:: - 
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.(»vx/¥L+!_i?ií- = Vo 
\ X)JZl Jy ("t)^ 

'0 (3.110) 

This coefficient makes it possible to express full pressure of the 
gas flor at entrance into the cone n 

j,w (3. 111) 

hence 

Poi _ _1_ 
Pot 

IT 
m 

(3.112) 

The expression secured establishes a connection between the non- 
dimensional speed at the end of the channel and the relation of full pres¬ 
sure at the forward end of the engine to that ahead of the cone. 

The aggregate falling off in static pressure for the entire gaso- 
dynamic stretch of the chamber is 

Va/, = A/7b +Vc=/,0JlXî[l +4^(1,)]. (3.113) 

The relationship between the nondimensional speed XK and the re¬ 
lation of the area of the cross-section of the channel to the area of the 
critical cross-section of the cone may be established from the equation 
of continuity for these cross-sections: 

Po*FiQ (^*)= Po*ccF*pVc> 

whence 

F, «cTc 

ï l*«) 
is. _ ,4«. r i 
i) ?(1«) L 

(3.114) 

In Table 3.7 we set forth PJFhp ratios corresponding to various 
values of with k = 1.25, £=1. 9c=l. 

Table 3.7 

** 0,2 0,3 0.4 0,5 0,6 

3,15 2,05 1,54 1,225 1,025 

If one starts from a given geometry of engine, after having deter¬ 
mined according to the /'k/^kp relation the magnitude of XK . and then ac¬ 
cording to it the value of the function (J>(X, Xo, v) , one can compute Pon 
in accordance with relationship (3.101): 
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1-* 

(3.115) f *“«* l/* + 1 D'*' 
Po»=|<RxjÇï~7) y ifk^o 

On the basis of the relation secured it is also possible to deter¬ 
mine the relationship of the maximum value Poamax , corresponding to the 
erosion peak of pressure, to the mean value of Pnacp , which can be as¬ 
sumed to be associated with mean values of x and o f <I>(X) over the time 
of the charge's burning: 

Pqi cm  r*nux® (1* ep) li—« 
Poxcp (*ep$ (A, 

The quantity xtp — — - — may be substituted in the form 

“tp 1 ■Ü2ÍÍ (l _i F* mta) 
2 I + ^7/' 

where Fk min Is the minimum cross-section of channel, in accordance with 
which xmai , corresponding with the start of the burn, is computed; 

^KAM i-s maximum cross-section of the channel at the end of the 
burn; assumed to be equal to the area of the chamber. 

The value of function G^Xncp) is determined in accordance with X« , 
figured for the Fkcp/^kp ratio, where P + . rïcp 2 

Inasmuch as 

then 

min *). 

*eP ^ "max (1 — I“) 

and 

ep ^ 2” ) " 

The relations we have introduced make it possible to determine, 
with given geometry of engine and of charge (fl(, Fuv, x) , the gasodynamic 
and ballistic parameters (poa, X,(. Pon/Poc) and to compute the geometry of 
charge and engine (FK, FKf), x) which will ensure prescribed values for poa 
and Poa/P oc • 
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For ballistic planning the problem of the second type offers the 
greatest interest. A possible scheme for solution consists of the follow¬ 
ing : 

1. We set ourselves a series of arbitrary values of XK , for which 
Pon is determined for given values of K, | and p0c according to formula 

(3.112). 

2. With given characteristics of fuel v, Xq we determine the 
function <D(X, kx, Xo, v), and then through formula (3.101) we compute the 
value of X . 

We utilize the values secured for x and Pon in computing the 
weight characteristics of the rocket. 

We have examined the case where the cross-section of the channel 
is constant over the length of the charge. Erosion burning of fuel and 
the "foaming" of pressure associated with it can be avoided if one makes 
the cross-section of the channel with enlargement in the direction of the 
cone. But this is bound up with reduction of density of charging and with 
variety of vaulting over the length of the charge. More complicated con¬ 
ditions of flow arise with the use of sectional cnarges, when sectors of 
the channel having small cross-section alternate with gaps between indi¬ 
vidual sections. In the intersectional gaps supplementary hydraulic losses 
arise which are occasioned by the formation of eddies and by sudden com¬ 
pression of the stream upon entry into the channel of the following sec¬ 
tion. The character of change in pressure along the channel of a sec¬ 
tional charge is set forth in a graph (Figure 3.11), which is computed for 
the solid-fuel rocket engine of the "Titan" ZS rocket (15). The value of 
the parameter x for this engine, computed with the faces taken into ac¬ 
count, is equal to approximately 90. The relation of the mean area of the 
channel to the area of the critical cross-section of the cone is approxi¬ 
mately 1.3. Maximum falling off of full pressure over the length of the 
engine is 12 percent. 

3.9. Selection of Optimum Values of Working Pressure and of the Loading 
Parameter 

Let us examine the basic consequences of increasing the working 
pressure in a solid-fuel rocket engine. 

Increase of unit impulse. As we are aware, unit impulse for 
conditions at the surface of the earth is sensitive to change in pressure 
with p < 70 kg/cm^ and practically does not depend upon pressure with 
p > 120 -150 kg/cm2 . 

In computing discharge (po = Ph) at the surface of the earth the 
relative change in unit impulse can be presented in first approximation 
through the following table (13): 

-168 - 



Figure 3.11. Change of pressure along sectional charge: a -- profile of 
charge; b -- graph of change of pressure; 1 -- braking pres¬ 
sure; 2 -- static pressure; 3 -- p, kg/cm^. 

Table 3.8 

Po KZlCJ’* 21 28 35 42 49 56 63 70 77 84 

T - ;I 
* Ulho 

0,88 0,92 0,93 0,95 0,96 0,98 0,99 1,00 1,02 1,025 

Obviously in order to heighten the amount of unit impulse, working 
pressure -- as may be seen from the table -- should logically be increased 
within limits running up to approximately 70 kg/cm^. 

2. Increase of speed of burning of fuel. If the thrust-weight 
ratio tj is given, increase in speed of burning of fuel makes it possible 
to augment the thickness of the burning vault, which, in harmony with the 
relations examined above, leads to increase of the density of charging. 

3. Increase of the weight of the structure of the engine. The 
rise in computed pressure occasioned by increase of working pressure in 
the engine leads to thickening of the carrier wall of the rocket chamber. 
This thickening, and the increase in weight associated with it, are pro¬ 
portional to the computed pressure. With increase of working pressure 
proportional to p°-8 the coefficient of heat surrender from gases to the 
internal surface of the engine rises. Inasmuch as the time of burning of 
the charge changes proportionally to \jp' , where as a rule v < 0,8, on the 



«aHswi1 

whole with increase of pressure the total amount of heat transmitted to 
the surface of the rocket chamber goes up. Consequently with increase 
of pressure requisite weight of heat-protective coatings of the engine 
should mount. 

Thus the influence of change in working pressure is manifested in 
directions contrary as regards their results. This in fact occasions the 
existence of an optimum value of working pressure, at which lightness of 
engine structure is linked with high value of unit impulse and great 
density of charging, something which ensures minimum start weight of rocket 
for a set range. 

One can select the optimum pressure only with application to a 
concrete motive apparatus layout, with fuel, materials, and other plan¬ 
ning parameters given for it. In selecting pg, with cognizance of the con¬ 
joint influence of pressure upon the magnitude of unit impulse and upon the 
weight of the engine structure, one can adopt as guide the relations set 
forth in 3.4. 

Selection of the optimum value for the parameter of charging is as¬ 
sociated with selection of working pressure in the engine. With rise of 
* the area of the free cross-section of the chamber diminishes. On the 
one hand this leads to rise in density of charging, i.e., to reduction of 
the weight coefficient of the engine, a . On the other hand, under these 
circumstances the erosion effect of the burning of the fuel increases and 
the falling off in pressure over the length of the charge in the precone 
space is heightened. Inasmuch as in determining the thickness of the car¬ 
rier envelope of the envelope computed pressure must be set using the high¬ 
est pressure at the forward cap as one's starting point, increase of x 
must lead to augmentation of the weight of :he engine structure. Hence in 
each individual case it is possible to determine an optimum value of x 
which will ensure sufficiently great density of charging with the least 
possible increase in computed pressure and which will be associated with 
a specific working (mean indicator) pressure in the engine. As a result 
of analysis we find the optimum combination of p, x , which will make it 
possible to secure the least weight for the product. 

3.10. Selection of Optimum Degree of Expansion of Cone 

Unit impulse of engine attains its maximum amount with computed 
discharge regime when the gases in the cone expand to the pressure of the. 
surrounding environment. But with change in altitude of flight of the 
rocket atmospheric pressure changes and the regime for gas discharge from 
the cone diverges considerably from the computed regime. 

If the cone operates at computed regime at the surface of the earth, 
then as the rocket rises it will work at an incomplete expansion regime, 
and conversely, if the cone of the engine is computed for high altitudes, 
then at low altitudes it will work at an overexpansion regime with con¬ 
siderable losses of unit impulse. 
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To start with, let us examine the question of the optimum degree 
of expansion of the cone, without touching upon the influence of this 
factor on the weight of the motive apparatus. With given values for Hk. t) 
and n0 the condition for maximum velocity of rocket with varying expan¬ 

sion of cone is written as 

dvt 
dXa 

(3.116) 

Here the nondimensional speed of the gas flow at the outlet cross-section 
of the cone, *0 , is adopted as the characteristic for expansion of the 

cone. 

Analytical solution of equation (3.116) is impossible in view of 
the transcendent character of the relationship of w to \a , inasmuch as 
X„ forms part of the functions (Di (pK. /10) and ¢2 (pu, ho, via the quan¬ 
tity lio- Setting ourselves arbitrary values of Xa , we can compute for 
them values of I10 and w; then, having constructed a graph v = gll0w> we 
can determine the maximum. In Table 3.9 we give the results of such a 
computation carried out for Pk = 0,6, Flo = 8000 kg/m , pq -^40 kg/cm , and 
for the value of the unit impulse with Pa = PH = ^ kg/cm , I10 - 235 
kg-sec/kg. Maximum speed is ensured with X0 — 2,3 • 

Table 3.9 

K 
/10. sec 

w 

V*. m/sec 
pa, kg/cm2 

2,17 

235 

0,810 

1863 

0,985 

2.3 

229,6 

0,8909 

200? 

0,475 

2.5 

170,7 

I,0723 

1796 

0,106 

2,6 

46,7 
3,187 

1459 

0,038 

The values I10 and pa are computed without taking into account the 
breaking away of the marginal stratum from the wall of the cone. In 
to determine the point of breaking away, use is frequently made of a simpli 
fied criterion proposed by Summerfield. According to Summerfield, for 
conical jets with a half-span angle of approximately 15 with Po/pu>\6 the 
danger of breaking away arises at a calculated value of Palpn<0,4- Accord¬ 
ing to data secured for large rocket cones, the breaking away sets in at 
p./p« equal to approximately 0.296 (3). Consequently, the point of the 
maximum as determined by us lies above the point of possible breaking away 
of the marginal stratum, and consequently the computations carried out 
maintain their validity for the field X„<2,37 (corresponding to 0,3 ). 

In selecting the optimum degree of expansion of cone it is also nec¬ 
essary to take into account the engine structure's becoming heavier as the 
FJFk ratio increases.* As a consequence of this the true optimum X0 is 

* See 3.3. 
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displaced toward the left, in the direction of less expansion, relative 
to the value which was determined on the basis of maximum speed without 
taking change in weight into account. Selection of height of cone depends 
in considerable degree upon pressure in the engine, upon relative supply 
of fuel, and upon thrust-weight ratio. With increase of relative supply 
of fuel and with reduction of thrust-weight ratio, when the extent of the 
active section of the trajectory increases, the optimum is shifted m the 
direction of great expansions. 

For the engine of the first stage of the "Minuteman" rocket the 
FJFty ratio comes to approximately 8 (14). 

Of late, in rocket technics abroad, a cone having a central body in 
which, at the supersonic section of flow, an internal expansion of flow 
to a pressure equal to the pressure of the surrounding environment is be¬ 
coming widespread. The free surface of the gas stream bathing the central 
body adapts itself to surrounding circumstances constantly as altitude of 
the flight changes. Thus a cone with central both may be regarded as a 
self-regulating apparatus ensuring computed discharge at exit from the 

cone. 

With a ratio of pressures Pq/ph l°wer t*1311 the computed one, i.e., 
the one at which the extreme characteristic of the expanding flow passes 
through the nozzle of the central body, for a cone having a central body 
higher unit impulse values are ensured than for a cone having internal ex¬ 
pansion operating on an over-expansion regime. 

In addition, the use of a cone with a central body makes it possible 
to decrease the over-all length of the rocket engine. It should be noted, 
however, that the use of a cone having a central body in a solid-fuel 
rocket engine is associated with certain difficulties, first and foremost 
with the problem of the erosion resistance of the material in the neigh¬ 
borhood of the critical cross-section. 

3.11. Determination of Basic Characteristics of Rocket 

The task of ballistic planning is to seek out the basic character¬ 
istics of the optimum design variant having a given useful load , such as 
to ensure a given range of fire with minimum start weight. In the course 
of ballistic planning values for project parameters that will guarantee 
optimum solution of this problem should be set up. Under earlier headings 
we have examined the approach to the determination of the optimum value 
for each of the project parameters on the condition that the values ot 
the remaining parameters remain fixed. In reality, in order to solve the 
problem it is necessary to examine a multiplicity of variants having van 
ous combinations of rjo, Oo, Po, X„ , and to select the one for which the start 
weight proves to be the least. Frequently the selection of optimum values 
of project parameters is limited by the real potentialities of the solid- 
fuel rocket engine and by supplementary requirements imposed upon the 
model. Thus, for example, optimum thrust-weight ratio at an acceptab e 
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level of pressure in the engine becomes impossible by reason of the non¬ 
existence of fuels having the requisite burning speed. The selection of 
transverse loading is often limited by the length of model admissible under 
use conditions. 

Let us write out the relationships we have 
for computation of the basic characteristics of a 
for project parameters: 

O_ÎSÜL 
'A — 1-(1 +«)P«-* ' 

secured that are intended 
rocket with given values 

(3.12) 

If • 
^>n0 

+ /l«p(*c+ ^)- 

*Ao«cp 
(3.42) 

Relation (3.42) makes it possible, with given values for pu. Ho, /10. 
/icp and with set characteristics of fuel and construction materials, to 
determine the weight coefficient of a rocket, and then, making use of this, 
to compute the start weight of the rocket in accordance with formula (3.12) 

thus : 
The area of the midship cross-section of the rocket is determined 

S, !£■-o». 
4 - n, * 

the fuel weight: 

• = ¿.aQo; 

the length of the charge 

n*« »Aop.tfcp 

BIBLIOGRAPHY 

1. Bonnie, E. A., Zukrow, M. .1., Besserer, K. U. , Basic Planning of 
Guided Missiles; Aerodynamics; Jet Engines; Construction and Computation 
Practice, Fizmatgiz Publishing House, 1960. 

2. Abramovich, G. N. , Applied Gas Dynamics, Gosteortekhizdat Pub¬ 
lishing House, 1953. 



3. Barrero., M. , Jomotte, A-, Bebel, B. F. , Vandenkerkhove, G. , 
Rocket Engines, Oborongiz Publishing House, 1962. 

4. Cameron, J. R. , "Programs on Rocket Propulsion at Carde," 
Canadian Aeronautics and Space Journal, Vol 9, No 1, 1963. 

5. Maxwell, W. , Young, G. , "Large Solid-Fuel Rocket Engines," 
Problems in Rocket Technics, No 1, 1962. 

6. Banning , J. E., "Optimum Dimensions of Rocket Engine. " Prob lems 
in Rocket Technics. No 1, 1962. 

7. Kurov, V. D. , Dolzhanskiy, Yu. M. , Fundamentals of Planning 
Powder-ImpeUcd Rocket Missiles, Oborongiz Publishing House, 1961. 

8. Orlov, B. V., Mazing, G. Yu., Thermodynamic and Ballistic Bases 
of Planning Solid-Fuel Rocket Engines, Oborongiz Publishing House, 1964. 

9. Wimp res s, R. N., Internal Ballistics of Powder-Impelied Rockets. 
Foreign Literature Publishing House, 1952. 

10. Bedevant, V., "Most Advantageous Shapes of Solid Fuel Charges," 
Problems in Rocket Techni:s, No 6, 1959. 

11. Bartley, Ch. E., Mills, M. M., "Solid-Fuel Rocket Engines," 
Jet Engines. symposium of translations under editorship of N. G. Dubrovskiy, 
Voyenizdat Publishing House, 1962. 

12. Idelchik, I. Ye., Manual on Hydraulic Resistances, Gosenergo- 
izdat Publishing House, 1960. 

13. Besserer, K. U. , Engineering Manual on Guided Missiles. 
Voyenizdat Publishing House, 1962. 

14. "The Boeing Firm's 'Minuteman' Intercontinental Ballistic 
Missile," Problems in Rocket Technics, No 6, 1963. 

15. Working Out of Heavy Solid-Fuel Rocket Engines in the US 
(survey), Problems in Rocket Technics. No 3, 1966. 

16. Working Out of the Rocket Carrier "Titan-3" in the US (survey), 
Problems in Rocket Technics, No 11, 1964. 

17. Hitch, Ch. , and Mackin, R. , Military Economics in the Atomic 
Age. 1964. 

18. Shapiro, Ya. M. , Mazing, G. Yu., Prudnikov, N. Ye., Theory 
of the Rocket Engine for Solid Fuel. Voyenizdat Publishing House, 1966. 

. I74 . 



CHAPTER IV. SOLID-FUEL ROCKET ENGINE STRENGTH COMPUTATION 

4.1. Working, Loads, Computed Cases, and Peculiarities of Computation for 

Strength of Engines 

One of the basic problems in planning solid-fuel rockets is deter¬ 

mination of the strength of the units of the rocket. 

In strength computations on a solid-fuel rocket it is necessary 

to take into account all possible loading cases (in transport, in serv¬ 

icing, in storage, at start, in flight) both of the structure as a whole 

and of its individual assemblies. 

The most substantial working loads operating upon a rocket in the 

process of its transportation and storage are static weight loads, vibra¬ 

tions, and overloads under different conditions of use. Transport and 

storage conditions depend on the type of the rocket, its over-all dimen¬ 

sions, and the character of its use. For example, for aviation rockets 

one of the computation cases is suspension of the rocket upon the carrier 

plane, and in storage of rockets on shipboard loading regimes will be de¬ 

termined basically by vibrations (1). 

For rockets the start of which takes place from stationary appa¬ 

ratus, the computations for strengtli will include the overloads which the 

rocket undergoes when the launch apparatus is fed and shifted. If the 

rocket must be on the launch table for a prolonged period and has an en¬ 

gine of large dimensions with solid fuel, working loads will be the loads 

from the weight and internal loads. Computation of elastic-plastic de¬ 

formations in the charge will occupy a special place in this case (5.8). 

At the moment of the actual launch there are taken into account 

in strength computations vibrations, the character of the rise in pres¬ 

sure in the rocket chamber, and also inertial loads as the rocket gathers 

speed, which depend upon the weight and the character of motion of the 

rocket along the launch apparatus. 



In flight the basic working loads are excess pressure in the rocket 
chamber; inertial loads upon construction units; aerodynamic forces and 
moments distributed upon the carrying surfaces and the casing, and also 
the effects of aeroelasticity (flutter); loads from guidance organs in 
the form of reactions developing at points where transmitting mechanisms 
are fastened to the casing, and also dynamic loads transmitted co ar¬ 
resting devices when rudders are shifted; loads upon the separation of 
launch engines, the separation of stages, the cutting off of thrust, and 
the braking of the ballistic warhead in the dense strata of the atmosphere. 

The operational regime of a solid-fuel rocket engine, the internal 
conditions during use, launch, and military application are different for 
each type of rocket. On this account establishment of computation cases 
is carried out in correspondence with concrete conditions for a specific 
design of rocket. 

Methods and procedures of computing rockets for strength against 
the operation of the static and dynamic loads listed above are examined 
in specialized literature. 

While a solid-fuel engine is operating the walls of the rocket 
chamber experience a temperature reaction on the part of the gases. The 
temperature of the gases in the chamber reaches 3,000-3,500° C. In order 
to create an efficient design for a solid-fuel guided rocket reliable heat 
insulation of the walls of the casing is indispensable. Heat insulation 
makes it possible to reduce the temperature of the surface of the engine 
walls to 300-800° C. At these temperatures the materials of the casing 
of the rocket preserve sufficiently high mechanical properties. 

Computations of the units of a solid-fuel rocket engine for strength 
under high temperature reaction are associated with great difficulties. 
This is explained by the fact that, aside from the actual circumstance 
that temperature stresses occasioned by the unevenness of the field arise, 
it is necessary to take into account change in the mechanical characteris¬ 
tics of the material. With rise in temperature the limit of viscosity of 
the material sometimes rises somewhat to begin with, then falls off, and 
the limit of strength falls off even more rapidly. 

The very short interval of time for the operation of the engine 
(a maximum of about two minutes) and the conditions associated therewith, 
of aIrnosf instantaneous application of working loads, require one to take 
into account not only the influence of high temperatures, but also those 
of elevated rates of deformation of materials (2). 

In Figure 4.1 we show the influence of temperature and of the rate 
of deformation on the tensile strength of annealed low-carbon steel, which 
has at room temperature os “ 6240 kg/cm2 and Í ■» 28,4 percent (3), according 
to data from the experiments of Inouye (Japan). 
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Figure 4.1. Influence of temperature and speed_of deformation on mechani¬ 
cal characteristics of materials /a = f(sl/. a -- icg/cm , 
b -- seconds. 

Tenacity diagrams (Figure 4.2) secured at various fixed speeds of 
deformation show that the sections of elastic deformations coincide, and 
that the rectilinear section reflecting the plastic range of deformatio s 
is the higher, the greater is the speed of deformation. 

formation. 

One must also take into account the fact that in the process of 
manufacture technological checking, and operating regime, the structural 

units of a solid-fuel rocket engine are ele^nts'of 
from force and temperature loadings. Repeated loading of the eleme ts 
an engine working in elastic-plastic ranges has an influence upon the 
mechanical properties of the material. 

One should note that preventative plastic deformation of one indi¬ 
cator worsens the resistance of the material relative to ^sequent plas¬ 
tic deformation of another indicator. This phenomenon is defined as the 

Bauschinger effect. 

In connection with the fact that stresses perceptibly exceeding 
the limit of elasticity develop in the units of a solid-fuel rocket en¬ 
gine, strength calculations should be carried out in the plastic range. 
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, ot-mctures which operate under circumstances 
In calculating for structures ^ £ to kno„ the functional 

of a complicated stressed state it s gtresged state m to the intensivity 
relationship of the intensify ° show that any compound spatial 
of the deformed state e¡ • whether the range under examination is in 
stressed state, independen y - , f ttons can be reduced to simple 
a state of elastic or of f ^te^e “e quantity ., according 
stretching of a bar cet3, for example the quantity o, , 

rcrr^ise6 00f ^tlry tenacity diagrams for a- • 

in connection with the ^'^“^“^ases^thot^of th“‘(as, 
above are important in settlngtPermi^iblf defor|natloni the Bauschinger 

for example, the influen e which cannot be determined analytically 
effect, et al.) the influence of which cannot in de. 
in the making of strength calculations, must 
termining the amount of strength reserv . 

• V. „aw nf the solid-fuel rocket engine is the 
The basic carrie P effect of excess pressure of gases, 

rocket chamber, which is under the r0cket engine for strength 
But calculation of the casing of a solid fueler g presaure, but 
must be carried out not according to the amount 
upon the computed pressure (pPac<i) 

formula 

The magnitude of computed pressure is determined according to the 

Pften “ hxkiPmn, 

where Rl is a coefficient tahing into accnunt ^admis^ble amount of 
maximum.presaure^variation^in^soUd^u back£lrl„g o£ pressure upon 

ignition of charge; greatest initial absolute temperature 
Pmax is maximum pressure at greatest imti« 

set for the engine. 

The coefficient for the is determWin a chccR 

computation evaluating the true stressed state o 

The amount nf the loads tahen nP -ing^of^he englne^depends 

Stthn: ff tî:: rtVi^r-d -a,. Of fastening the engine to 

the rocket (Figure 4.3). 

in the first -- ^e fastening pol"- 

:fosUePt: tK foniard^cap^and « the cone block. Sometimes fastening units 

are set up at three or even four points. 

4.4). 

This method of fnstening is used in the "Aerojet” engine (Figure 
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Figure 4.3. Diagram of fastening of engine to casing of rocket: 1 -- 

Fastening links set up on cylindrical part of rocket chamber; 

2 -- Fastening lines set up on forward cap of rocket chamber. 

Figure 4.4. Casing of engine with fastening units set up on cylindrical 

part of rocket chamber: 1 -- Rocket chamber; 2 -- Forward 

fastening brackets; 3 -- Rearward fastening brackets. 

In the second case (Figure 4.3) the fastening units are set up on 

the forward cap of the combustion chamber (2). 

Let us determine the axial force which will be operating, during 

the period the engine is working, at section AA of the casing of the com¬ 

bustion chamber, in which the charge is firmly fastened at the side wall. 

First Method of Fastening Engine 

Let us adopt the following assumptions: 

1. Cross-section AA is at a distance from fastening units 1 and 2 

which is greater than the zone of extent of local flexure (of marginal 

effect). 

2. We shall disregard the operation of the moment of flexure 

which is a consequence of reactions in the supports. 
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The assumptions made make it possible, in order to simplify the 
problem, to substitute provisionally for the effect of the reaction in 
the supports the effect of the evenly distributed loads qi (Figure 4.5) 
and q2 , directed along the generatrices of the external surface of the 
casing of the combustion chamber. These loads are applied to circum¬ 
ferences lying in planes which run respectively through the axes of 
fastening units 1 and 2 and perpendicular to the axis of the engine. Ac¬ 
tually with such placement no moments of flexure will develop in the sec¬ 
tion AA. 

Figure 4.5. Calculation diagram for determination of reaction in fasten¬ 
ing units, a -- rinteri0r; b -- rexteri0r- 

If we designate by Rj and Rjj the reactions in the supports for 
support 1 and 2 respectively, then it will be possible to write 

/?, = 2xrmql and /?„ = 2*/-,^,. 

The reactions in supports 1 and 2 can in first approximation be 
regarded as equal to each other; then 

(4.1) 

where P is the thrust of the engine; 
Rl = Rji are the reactions in supports 2 and 2 respectively; 
Q,-g is the weight of the engine without fuel; 
mt is the weight of the fuel at the moment of time t_ after launch 

of the rocket: / 
n is the coefficient of overload; 
1¾ is the external radius of the casing of the combustion chamber. 

», = <0 —(4.2) 

where « is the weight of fuel with t - 0; 
G is the expenditure of products of combustion over a unit of time. 

Let us write an equation of equilibrium for the parts of the rocket 
chamber located to the left of section AA (Figures 4.3 and 4.5): 
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(4.3) 
P— (Qg. g. + “/)n 

2 + N¡x ■ 2nrcp, 

whence 

s= 2p*K,BH — P+ (Qk. a. + "/)n (4.4) 
' 4wcp 

where , _ ^»H + fK 

cp— 2 

rßH is the interior radius of the casing of the 
PK is the pressure in the combustion chamber; 

is the unit meridional effort (2). 
INv 

combustion chamber; 

Second Method of Fastening 

In this case thrust is transmitted via fastening units located on 
the forward cap (2). Analogously to the first example, we shall write an 
equation of equilibrium for the left-hand part of the combustion chamber: 

P'*rl = P-(Q''t + u>t)n +-N“2«rcf, (4.5) 

whence 

■yn — p+ (<?«. M. + *1'n (4.6) 

The second method of fastening is used for the majority of designs 
of rocket engines using solid fuel. 

4.2. Calculating the Casing of the Engine for Strength 

A rocket chamber consists of a cylindrical thin-walled envelope 
within which hot gas under elevated pressure is contained. To calculate 
for strength a distinction whoulc be made between long and short cylin¬ 
drical envelopes. The combustion chamber of a solid-fuel rocket engine 
may be referred to the class of long cylindrical envelopes. An envelope 
may be regarded as long if it satisfies the following inequality (5): 

¿>2,4KW, (4.7) 

where L is the length of the envelope; 
R is the internal radius; 
i is the thickness of the wall. 

As an example confirming the correctness of the inequality (4-7) 
for casings of rocket engines, we may make use of the results of calcula¬ 
tion of the optimum variant of a solid-fuel rocket engine having a pres¬ 
sure in the chamber ot 120 kg'cm2, set forth in study (6). Engines with 
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such pressure must have the following optimum geometrical dimensions: 
length of combustion chamber 133 centimeters; internal radius about 12.0 
centimeters . 

The casing of the rocket chamber of such an engine, made of steel 
having an admissible stretch a = 7500 kg/cm2, has a wall thickness of 
about 2 millimeters. Hence, in accordance with condition (4.7), we have 

133 > 2,4 KT¡n^2 = 3,84. 

Having secured confirmation of the fact that the casing of the 
rocket engine falls among the type of long envelopes, in calculating the 
casing for strength we may disregard the influence of loads, applied to 
one margin, upon the stress state at the other margin (5). 

Inasmuch as the relative thickness of the walls of the combustion 
chamber is small, in the case examined being, for example, 0.2/12 or about 
0.01, the requisite precision of calculation makes it possible to con¬ 
sider themodule of elasticity (if the material of the casing lies within 
the zone of elastic deformations) and the coefficient of linear expansion 
of the material of the envelope as constant quantities, equal to their mean 
value within the interval of the temperatures of the external and the in¬ 
ternal surfaces of the envelope. 

Further it may be assumed that temperature through the thickness 
of the wall changes in linear fashion from the value Tjj on the internal 
surface of the envelope to the value Tfl on the external one. 

For such an envelope, heated to an uneven extent at various points 
of its thickness and under the action of pressure £ and axial force Nx. 
shifting of points of the median surfcce 0*c) will be characterized by 
the following differential equation (4): 

D tPW 
dx* + 

fcp» 
~w W: •P+ F 

Nx 
R 

cpfcp® 
r.+ 

+ ^(1+F)«ep d*(¿r) 
» ' djfl ' 

(4.8) 

E S* 
where /) = __££___ is the cylindrical rigidity, kg • cm; 

Ecp is the module of elasticity of the material on the median sur¬ 
face, kg/cm2; 

H is the Poisson coefficient; 
p is the internal pressure, kg/cm2; 
R is the radius of the median surface, cm; 
a is the coefficient of linear expansion, 1/°C; 
T _ T* + F» the temperature of the median surface of the envelope 
* o *= j 

in degrees; 
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t-he temperatures of the ex- 
is the difference between th P 

temal and intaraa! sarfacea of the eave.ope in degrees. ^ 

I„ the general case To ™d thf^ie 10^(Figure 4.6) (n 
- — tinning operate, per unit of 

length (4): 

shearing force in kg/cm 

-d*W 

- moment of flexure in kg-cm/cm 

(4.9) 

(4.10) 

•incr i-hrouah th6 3xis) the 
m longitudinal section (a section passing 

following operate upon a unit of length (4) . 

-- stretching force in kg/cm 

N, = -_ 

moment of flexure in kg-cm/cm 

My = -d[p-0+ 

(4.11) 

(4.12) 

m « m Nm one can reckon 
Knowing the d-rnal force factors^, 

the stresses developing e"combustion chamlier, distant by an 
arbitrary stratum of the wall ot ^ and nomal stresses develop^ 
amount a from the median surface tangent o£ the shc ing force 

The tangential stresses eve the thickness of the enve ope, 
Q, and for their distribution throug 5) ; 
0« can have recourse to the pa.ab ^ ^ 

inn of the envelope are 1 *- «m r. rï a 111 il sect ion U i- 

rdod- ; udiMl e££orts 

Bornai stresses, a"ord-9’ 

£ "arbii^^-tum of the envelope they can be 

ing to the formula: 



•or 

Figure 4.6. 
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(4.14) 

t 
12M ir, 

N. 12M* 
Z. 

The value Nx for the two methods of attaching the ^loe to the 
rocket can be determined according to formulas (4.4) and (4.6). 

The amount of the maximum tangential stress is as a rule consider¬ 
ably less than the maximum normal stress. For this reason the mos 
heavily stressed points will always be external or internal points of the 
wall, at which normal stresses are reckoned according to the formulas (4), 

kw=4- ± 
6Afx 

V (o,). 
N 
f ± 

6My 

~w 
(4.15) 

Thus it is apparent that for determination of the over-all bearing 
capacity of the casing of the combustion chamber it is necessary to find 
function W(x). In study (4) there is set forth an approximate solution 
of equation (4.8), the general integral of which will be an expression 

the form 

W (JC) = e-*x (C, • sin kx + ct- cos kx) — (4.16) 

where L j^3 (| is a parameter depending upon the dimensions of the 

envelope. 

The last two terms of the function W(x) constitute a partial solu¬ 
tion of equation (4.8). Thus, for example, with interior pressure £ con¬ 
stant over the length and with absence of temperature stresses this partial 

solution has the form (5): 

(4.18) 

The values of the coefficients c i and C2 are found from the limit 

conditions. With x = 0 

r (0) = -/^70.1 (4.19) 

W" (0)=0 I 

Substituting the value W(0) in equation (4.16) we secure 

)■ 

- 1>; 

(4.20) 



If we differentiate equation (4.16) 
the value W'(0) from the system (4.19), we 

through for x and substitute 
secure 

«P» V 
pR* 

£, 
(4.21) 

Now, substituting the values and C2 respectively from equations 
(4.20) and (4.21) in equation (4.16), we secure a solution of differential 
equation (4.8): 

For determination of internal force factors Q(x), Mx(x), Ny(x), 
and My(x) we find the first, second, and third derivatives of the function 
W(x) : 

W (*) = (1 — I*sin*Jf + cos Ax- 
•ff* / N \ (4.2 3 ) 

— cosAx — sin Ax)J — — 2k | ^ 1-_x.|i j kx-, 

W"(X) =■ — 2A(l — \e-**kcos Ax — ke~kx sin Ax) = ^ 

■* — 2A* ^ 1 — (cos Ax — sin Ax) e~kx\ 

XCr"“ ~ 2A* (1 ~ 14\e~kx (cos^ - sin Ax) + 

+ (- sin Ax - cos Ax) 1 = (4 25) 

“ ~ 4** (1 -14 ^ cos Ax 

After substituting the values W(x), W'ix), W"(x) , and W"'(x) 
secured from equations (4.22), (4.23), (4.24), and (4.25) respectively 
in equations (4.9), (4 10), (4.11), and (4.12) and after simple trans¬ 
formations we secure: 

Q(*)“ —-£(l—|i-£¡J-)*-*'cosAx; (4.26) 

^)=^(1-^)^^0,Ax-sinAxH^!^. (427) 

Nf » \*NS — pR ( I — i» -^-) [e~kl (cos Ax + sin Ax)J; (4.28) 

= p( 1 — F ) e~kx(cos Ax— sin Ax) + . (4.29) 
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Now we shall determine computational formulas for figuring out in¬ 
ternal force factors for two characteristic sections. 

1. We shall examine a section of the combustion chamber located 
around the forward cap or around the cone block (at the entrr.ice into the 
cone). The origin of the coordinates is located in the section referred 
to above, i.e., x = 0; then: 

Q<0> —£(1-,$); 

(4.30) 

2. For a section located in the middle part (as regards length) 
of the combustion chamber, i.e., with ¿* , in the system of coordi- 

2 

nates adopted in the first case we shall have: 

**•(•£ )=■as. (1 -1*7? )(cos *-7 - s>" *-x) + 

+ 12(1 — jo * 

/»^(l ~ k~r cos A -y- + sinÄ ; 

+ "12(1-V) 

(4.31) 

We make use of formulas (4.30) and (4.31) for calculation of a 
casing the material of which in the calculated case does not depart from 
the zone of plastic deformations. But, as was shown in 4.1, the casing 
of the combustion chamber of a solid-fuel rocket engine frequently works 
under circumstances of elastic-plastic deformations. In the case of 
elastic-plastic deformations the connection between deformations and 
stress can be presented in the form (4): 



(4.32) 

where g is the secant module of elasticity; 
• «i 

• is the coefficient of linear expansion. 

Actually, let us suppose that •*» and •*« are the full relative 
elongations at a point on the casing of the combustion chamber, occasioned 
by loads Pi, Nx, and T. Then the relative elongations occasioned only by 
Pi and Nx can be presented in the following form: 

(4.33) 

we multiply the left and right-hand arms of the system of equations (4.33) 
by Ec, and we get equation (4.32). 

Let us examine the condition of equilibrium for an element of the 
envelope having central angle rff (Figure 4.7). Pressure P1 operates upon 
the internal surface of the element of the envelope: 

(4.34) 

Figure 4.7. Element of envelope having central angle </* . 

The amount of unit force Nx can be determined as follows: 
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(4.3S> f Vf* 
"7 

Let ua substitute, in the equations (4.34) and ¢4.35) which we 
hove secured, respectively the values and a, from the system of equa~ 
tions (4.32). Without committing any great error -- as the envelope is a 
thin-walled one -- we can consider Iim and sVn as not depending on £, 
and we solve the resultant equations relative to and ** (4): 

+ T 
J £<* (*) T (*) dt 

« 
“7 _ 

+ 7 
J 

-7 

+ 7 
/ (/) T (/) dt 

~ 7_ 

+ 7 
J 

”7 

(4.36) 

It is impossible to determine the values of ty and cx from ex 
pressions (4.36), since the secant module Ec which forms part of the 
right-hand arm of the formulas is a function of tx and sv . 

Expressions (4.36) can be considerably simplified if one assumes 
that the coefficient of linear expansion a and the secant module of 
elasticity Ec do not depend on £, and that temperature changes in linear 
fashion, i.e., 

Then 

7-(^) = 7-,+ -7^. 
(4.37) 

S +8 (7*,); 

•,=-^ + * (7,). 

(4.38) 
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If we now substitute the values of *■ and s* from expressions (4.38) 
in formula (4.32) we secure: 

•y + £taro— £ta^rf + + 

0,--¾1 + £,ara-£ta[r, + ^i]--^L + «-T-|fif* 

where z varies from - -j- to + 

a, and aH have maximum values with £ * : 

•jr «U — *^p + a -^p 

The system of equations (4.39) can be solved by the method of sue 
cessive approximations (4). For example, as first approximation one can 
adopt the values of and determined in accordance with formulas 
(4.15). Knowing the values of o* and av , one can determine the value 
of the intensivity of the stressed state o< ! 

«i —y«J —V,+ «J. (4.40) 

In accordance with the magnitude of «i we find from the correspond¬ 
ing diagram of stretching or elongation the value of the intensivity of 
the deformed state •< . The value of *i can also be figured out accord¬ 
ing to the formula (4): 

(4.41) 
‘TT? + ,Jf,y+ *>• 

for which we determine in advance, in correspondence with the values ox 
and e* , the values s* and iv . 

Further, we find the value of the secant module of elasticity 
vi and substitute it in formula (4.39) in order to determine the 

£c=-r 
values o, and o* in second approximation. The approximations must be 
continued until the differences between the preceding and the following 
approximations satisfies the required precision of calculation. After 
this, one can determine the stress sought in accordance with formulas 

(4.39). 
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Thus, In order to determine stresses sought we must know the 
parameters of the nonstationary temperature field. The function T(z), 
determining the distribution of temperature within the wall depending on 
current values of does not alter in linear fashion. Questions of 
distribution of temperature in the wall are examined in greater detail 
in courses of heat transfer. 

4.3. Evaluation of the Reliability of the Structure of Large Solid-Fuel 
Rocket Engines 

By the reliability of a system we understand the capacity of the 
system to carry out assigned functions under specific conditions of use 
and over the course of specific time. 

In the working process of creating solid-fuel rocket engines two 
methods of calculating the reliability of the system have become highly 
developed: determination of the characteristics of reliability based 
upon utilization of experimental statistical data, and upon nonstatisti- 
cal criteria of reliability. 

The statistical method of analysis of distribution curves, used 
for evaluation of the reliability of a solid-fuel rocket engine, is based 
upon derivations of the theory of probability and mathematical statistics. 
This method is applicable under circumstances where a large cycle of 
single-type stand and flight tests are carried out. For this reason the 
accumulation of statistical information regarding the operation of an en¬ 
gine, and regarding the strength of the casing of a solid-fuel rocket en¬ 
gine and its individual elements are of decisive significance for evalua¬ 
tion of the reliability of the structure of a solid-fuel rocket engine. 

Qualitative results of the carrying out of a program of flight 
tests on large rocket engines are presented in a graph (Figure 4.8); they 
show that for intercontinental ballistic rockets and for rockets to 
launch artificial earth satellites reliability is a function of the num¬ 
ber of tests. This function rises asymptotically with increase of the 
number of tests from a relatively small initial value (7, 8). Inasmuch 
as the enormous expense of testing large rocket engines will limit the 
number of possible flight tests, the amount of reliability of systems 
must be taken from the initial field of these curves. In this field 
solid-fuel rocket engines prove to be systems of high reliability (9). 
This is confirmed by the comparative reliability data set forth in Table 
4.1 (7, 8), based solely on study of the work of the engines to the ex¬ 
clusion of disturbance during work by the guidance systems, and for purely 
hypothetical values for the reliability of the individual stages of the 
rocket. It is also assumed that breakdowns in ignition of engines occa¬ 
sion just such failures as does burning-through of the combustion chamber. 

A deficiency of the statistical method in evaluating the strength 
and reliability of the structure of a solid-fuel rocket engine with the 
requisite credibility of 90-95 percent is the need for carrying out a 
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large number of teats, even for medium reliability values. For example, 
for the NOFA carrier rocket the reliability of each engine in the packet 
must come to 99 percent (10). In order to secure 95 percent credibility, 
it is necessary to carry out no-fail fire tests on 295 engines, which is 
too expensive and takes a great deal of time. 

Figure 4.8. Dependence of reliability factor on number of flight tests 
in process of working through, a -- Reliability of power 
apparatus; b -- RDTT /jsolid^fuel rocket engine/; c -- ZhRD 
¿liquid-fuel rocket engine?/ with displacer system of fuel 
feed; d -- ZhRD with turbine-pump system of fuel feed. 

Tab le 4.1 

Reliability of 
Individual Stage 

Type of 
Engine 

Number of 
Stages 

Total 
Reliability 

0.8 
0.8 
0.98 

Liquid 3 
Liquid 4 
Solid fuel 4 

0.512 
0.410 
0.922 

Of late the methods system of prognosis of reliability in planning 
engines has assumed great importance (10, 11). The reliability of an en¬ 
gine is expressed as the product of the reliability of structure and 
the reliability of operational capability Rp. 

Evaluation of Reliability of Structure 

Reliability of structure may be regarded as the probability of 
successful (without disassembly) work on the part of the basic structural 
units of the engine apparatus under circumstances where force loads of 
the surrounding milieu are operating. The method for evaluation of the 
probability of failure or reliability of the structure is set forth in 
study (11). The methods system for prior calculation of reliability is 
based upon two fundamental assumptions. 
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1. It is considered that all types and causes of failures leading 
to destruction of an engine are known (11). For this reason it is possible 
to make use of the data from preceding programs of developing solid-fuel 
rocket engines and to select coefficients for reserve strength so as to 
ensure reliable operation under circumstances which have earlier led to 
failure. 

2. The distribution of stress in elements from the operation of 
surrounding circumstances and of admissible stress for the material of 
the element are subject to the normal law of distribution of random quan¬ 
tities, in which connection their mean values x and their dispersion 
are known. In Figure 4.9 there are set forth functions of distribution 
of stresses. 

Figure 4.9. Functions of normal distribution of stresses: 1 -- Function 
of distribution of operative stress; 2 -- Function of dis¬ 
tribution of admissible stress. 

For prognosis of reliability of structure the solid-fuel rocket 
engine is broken down into a series of basic sub-systems (Fi3ure 4.10) 
and detailed analysis of the possible types of failures is carried out. 
AH independent and reciprocally linked causes of failure are tabulated. 

Let xl be a stress which arises in an element of the structure 
from an external reaction of specified intensivity E; X2 -- the admissible 
stress for the material of the element. If r«*]_;x,>0 > a failure in 
work will not occur. 

Inasmuch as E is a variable quantity, the mean value (the mathe¬ 
matical expectancy) for x is equal to 

¿«¿j-jc,. (4.42) 

Analogously the mean-square dispersion of x is equal to 

= (4.43) 

The law of distribution of probability of >c is written in the form 
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(4.44) 
y- 

I 
PST' 9 

Figure 4.10. Basic subsystems of solid-fuel rocket engine: 1 -- the 
solid-fuel rocket engine; 2 -- casing; 3 -- rocket chamber; 
4 -- forward cap; 5 -- rearward cap; 6 -- forward "skirt"; 
7 -- rearward "skirt"; 8 -- armor; 9 -- elements; 10 -- in¬ 
sulation; 11 -- fuel; 12 -- components; 13 -- cone or jet; 
14 — conical part of jet; 15 -- insert in critical cross- 
section of cone; 16 -- system for guidance of vector of 
thrust; 17 -- guidance organs; 18 -- ignition system; 19 -- 
ignition charge; 20 — envelope of igniter; 21-- safety 
apparatus; 22 -- igniter; 23 — destruct system; 24 -- elec¬ 
tric fuse. 

The probability of nonfailure will be equal to 

/>(*>0) 

Introduction of the substitution 

Z 
•s 

(4.45) 

(4.46) 

makes it possible to express the probability of nonfailure with the help 
of the function q , the value of which can be secured from existing 

tables (12). 

Then 
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P(x>0) 
(4.47) 

t4-I‘ 
—• 

Next the coefficient for reserve strength is introduced: 

(4*48) 
*1 + 3»i 

as are the coefficients for variation of operative and admissible 
stresses (a and b), determined by the relations: 

a =3¾.. (4.49) 
Jf| ’ 

(4.50) 
Jf* 

After transformation formula (4.48) takes on the form 

(1 + «) 
(4.51) 

Then the relation may be expressed through K, and b,, 

making use of formulas (4.42) and (4.43) 

Xt-Xj 0 
i I + « , 
*rr*_I (4.52) 

An approximate solution can be secured in the event only nominal 
values for the quantities xi and 5¾ are used, i.e., when ^ xt • 

= xt 

Expression 4.52 assumes a simplified form 

5 _o K-\ _ (4.53) 
«, ~ Y a*+ PK* ' 

The function j f°und for each basic subsystem from the 

tables in accordance with the values figures out for • 
•* 

For each type of failure, it is necessary to set up corresponding 
values for a, b, and k(K) in evaluating reliability. 
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The resulta are summarized in Table 4.2, in the last column of 
which the probability of nonfailure working while under the operation of 
the surrounding milieu is entered. v 

Table 4.2 

Type of 
Failures 

» « • «1 1 p 

1 •1 *. *i( ) Pt 

2 •t *. *.( ) P. 

• 
• 
• 

• 
• 
• 

• 
• 
• 

• 
• 
• 

t 

• 

• 
• 

a *. ♦»O Pn 

Taking into account the fact that the types of failures are inde¬ 
pendent quantities, and that some elements of the structure may have a 
number of causes of failures, the probability of what the first system 
will not show will be presented by the product 

P (subsystem) 

Die value of the reliability of the structure of a solid-fuel 
rocket engine will be expressed as the product of the resultant proba¬ 
bilities of nonfailure operation for each of the subsystems (10, 11): 

ff.-P, P, P#...P, 

In Figures 4.11 and 4.12 we set forth the dependence of reliability 
upon the coefficient of variation for varioi s values of k, K, a, and b 
(10, 11). 

Example 1. Let us determine the probability of bursting of the 
casing of/a solid-fuel rocket engine under working condicions, with the 
following basic data. Calculated working pressure in the combustion 
chamber is «. 42 ** ' Pr®ssure by reason of change in speed of burning 

of solid fuel can reach 2.52 kg/cm^ (amount of normal dispersion). Casing 
of engine is made of steel having a tensile strength of 12,500 kg/cm2. 
Magnitude of normal dispersion of indicated strength of material is 
120 kg/cm2. Coefficient of reserve strength K = 1.25 from calculation 
at limit load. 

Solution. From analysis of possible anomalies in the working of 
a solid-fuel rocket engine we reach the conclusion that the basic cause 
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of bursting of the casing is breakage of the binding ring (hoop). Wë de¬ 
termine in accordance with formulas (4.49) and (4.50) the coefficients of 
variation of operative loads and admissible loads for the material: 

a *■ 3 « 3—» 0,181; 

8 ** " ®'T335&*m 

Making use of formula (4.53) we find that 

S. m 3-.,.. 3--r a 3,31. 

(i* + *«/C»)T (0,181* +0,0288* 1,25*)T 

The table value of function O (3.51) * 0.9996. Consequently, 
the reliability of breakage of the binding ring (hoop) under working con¬ 
ditions is equal to 0.04 percent. 

0 MS TÍ0 ¢15 
(b) KotppuliutMm tapuauuu S 

0,20 

Figure 4.11. Dependence of reliability R upon coefficient of variation b 
(0,01 <6 <0,20): 
4 — *-l. a-0,05; fl - *-l, a-0,10: C —« = |, a=0,l5; 
D-x-l, o-o,20; £-«-1.1, 0.01 < a< 0.2; £-«-1,1, 

0,01 < «, • < 0,2 

a -- Reliability, R; b -- Coefficient of variation, B. 

The methods system for prior calculation of reliability which we 
have examined makes it possible to carry out reliability analysis for the 
material of the structure and facilitates careful selection of material. 
The possibility of considerable increase in the relationship of normal 
dispersion to nominal amount of strength of material is of great 
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importance. On this account, this circumstance must indispensably be 
taken into account upon the use of new materials appearing in rocket 
building and having higher strength characteristics. As an example we 
shall set forth the calculation of probability of nonfailure operation 
of the Individual elements with various values for the coefficient b. 

Figure 4.12. Dependence of reliability R upon coefficient of variation b 
with use of nominal values for magnitude of K: a -- K = l74 
b -- K = 1.3; c -- K = 1.2; d -- K = 1.1. 
a -- Reliability, R; b -- Coefficient of variation, B. 

Example 2. The elements of the structure of a solid-fuel rocket 
engine are made of different materials A and B. The coefficient of re¬ 
serve strength for both materials, K, is 1.25. (From calculation of nomi¬ 
nal values for stresses.) 

Let coefficient ¿ be 15 percent for both materials. We shall take 
the coefficient of variation of admissible stresses (v) for material A 
as being 5 percent, and for material B as being 20 percent. We shall de¬ 
termine the reliability of the material of the structure. 

Solution. Making use of equation (4.53) for the solution, we 
secure: 
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Then for ^JLj .4,61 the table value of reliability 0 (4,61) is equal to 

Pa - 0.9998 , 

for I x\ „the table value of reliability ♦ (2,69) is equal to 
It/,*2 ; 

P, - 0,9962 . 

The difference in the reliability of the two elements, depending 

on the characteristics of the materials, is relatively slight. But in 

complicated systems even a slight reduction in reliability of elements 

may considerably affect the reliability of the system. Let us note that 

the requisite reliability of structure can be secured upon changing the 

coefficient for reserve strength K. The methods system for prior calcu¬ 

lation of reliability which we have examined makes it possible to intro¬ 

duce necessary changes into the characteristics of reliability in order 

to ensure an assigned reliability of successful working on the part of a 

solid-fuel rocket engine. 

Evaluation of Exploitational Reliability 

By exploitational reliability (reliability of working capability) 
we mean the probability of reliable working of an engine within assigned 

limits of working characteristics. The fire testing of a real engine is 

imitated with the help of a programmed computing apparatus modeling the 

processes of the internal ballistics of a solid-fuel rocket engine. Com¬ 

putation of the characteristics of an engine is based upon utilization of 

the probability properties of the input parameters. Knowing the technical 

requirements imposed upon the working of the engine, one can carry out 

evaluation of reliability in accordance with the quantity of computations 

on the modeling machine (imitation of starts) in which the engine has been 

working within the assigned limits (11). The program computing set-up for 

computation of the reliability in use is made identical to the program in 

accordance with which prior checking of the correctness of the design of 

the charge of solid fuel and evaluation of the operation of the engine up 

to launch has been carried out (11). This is apparent also from a partial 

listing of the basic input parameters: 

k -- relation of unit heat capacities of basic components of fuel; 

A -- coefficient of consumption, or coefficient of discharge of 

gases ; 
Si -- unit speed of combustion in exponential law of combustion 

(u-urp*) ; 
v -- index of degree in law of combustion; 

• -- coefficient of increase in speed of combustion of fuel on 

account of heat action of gas flow upon intensivity of combustion of 

charge ; 

p -- density of solid fuel; 

Tg - temperature of gases in rocket chamber; 

Foutl "" area of outlet cross-section of cone; 
-- angle of half-span of cone of jet; 
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-- effective coefficient of thrust; 
cr T -- change in area of critical cross-section of cone depending 

on time of operation of engine. 

To this listing some further input data, making it possible to de 
termine the form of the burner of solid fuel as a function of time, are 
added : 

l/t -- mean amount of thrust; 
Pk -- pressure in forward part of combustion chamber of engine; 
p, __ pressure in chamber at conclusion of engine's work; 
Fcb^/Fkp relation of area of transverse cross-section of chamber 

for free passage of gas flow to area of critical cross-section of cone; 
S -- complete surface of combustion of burner of solid fuel; 
P -- thrust; 
I -- complete impulse; 

-- unit (specific) impulse; 
X -- time of working of engine. 

In order to investigate the influence of dispersion of input varia¬ 
bles upon the characteristic of the engine the method of statistical 
trials (the Monte Carlo method) is used (8, 11). It is also assumed that 
the majority of input parameters are subject to the normal law of distri¬ 
bution. The use of the method of statistical trials gives just the same 
evaluation of reliability as does that for experimental launches, in view 
of the relation of the number of successful launches to the number of 
modeled launches. Such an evaluation of the reliability of a real en¬ 
gine with the help of a modeling set-up is sufficiently objective, as 
in confirmed by comparison of previously computed and of experimental 
characteristics (Table 4.3). 

Comparison of Computed and Experimental Oiaracteristics of Solid-Fuel 
Rocket Engine* 

Variance Relative to 
Ballistic Characteristics Normal Value, 7-- 

Mean thrust 0-9 
Total impulse ^.1 
Time of working of engine 4.7 

* Secured as result of 20 modeled launches. 

The accuracy of the evaluation is affected by the degree of inde¬ 
pendence of the input parameters and the character of the correspondence 
of the modeled launch to the actual one. Refinement of modeling of the 
real process will follow the course of improvement in the imitation of 
shorter intervals of time of the ignition of the charge of solid fuel and 
further approximation of the process of the burning of solid fuel taking 
into account the heat reaction of the gas flow upon the speed of 
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combustion of the charge. The introduction of variables subjected to .he 

law of normal distribution of random quantities makes it possible to 

evaluate the conjoint influence of random change in these variables upon 

the basic parameters determining the working capability of a solid-fuel 

rocket engine . 

In conclusion we should note that computation in accordance with 

the methods system of prognosis of reliability determines the reliability 

of some ideal plan for a solid-fuel rocket engine. Reduction of relia¬ 

bility in the process of production and in use is possible. 
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CHAPTER V. STRENGTH OF CHARGES OF SOLID ROCKET FUEL 

5.1. Working Characteristics and Character of Be fognation of_ 

Rocket fliarges 

QnUd fuels must be distinguished not only by high energy, ballis 

^ -- ó"- 
must be no sloughing off ot 1 cracks or fractures. In addition, 
combustion chamber, no appearing f h assigned law of change 

fo^iíC”“ tc^Crte0ad»l“tbíeP«nount, *ich wlU lead to -plosion 

of the rocket engine. 

During the period the rocket engine is working the solid fuel is 
During P forces and gas pressures in the combustion 

chamber." ihesc"forces provoke deformation o^the charge^the character^ 

Tn rocket engines with burners inserted loose in the chamber and 

SfPPhrtloads referr^fto rte fue ^gUudin.ï compres- of the loads referred to cne 1 rFíBurc 5.1). At the end 
. j 4-^ m? in transverse direction J**/* ° 

of°the engine's work the tubular charge ^^“ ^^^f^ngitídinã^sta- 
insufficient strength of the charge the burner ma> b 

biHt,. Breakage of the charge ÍnJuí t-pera- 
local stresses exceed the f V burner m not crumplo 

^Ccr^a be'chS.«frLed by a high per„i«aible.tre,, 

r.Îu:PliÏ; épuration the tree î^^’t kan 
the face part of the humer and the size of the bearing surra 
into account; they arc found from the condition 
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where n is the coefficient of overload, equal to the relationship of maxi 

mum acceleration of the rocket to acceleration of the force of gravity; 

• is the weight of the charge of solid fuel; 
«t« is the permissible stress of the burner of solid fuel under 

warping at a charge temperature of + 50° C. 

Figure 5.1. Diagram of stresses and character of deformations of a charge 
of solid fuel placed loose in the combustion chamber and 

resting upon the diaphragm. 

A face-burning charge is stressed by forces running in contrary di¬ 

rections (Figure 5.2) (pressure forces pchan * and inertial forces). 

In flight the inertial forces will be less than the pressure forces. 
Under the pressure of the gases in the chamber the burner may considerably 

reduce in length. But if the fuel burner is enclosed in an elastic en¬ 

velope, loosely lying against the walls of the chamber (a jacket), the 

forces of pressure in the chamber will operate as a hydrostatic load, ac¬ 
companied by small deformation and very little reduction of the volume of 

the burner (2) . 

Figure 5.2. Diagram of solid-fuel rocket engine with face-burning charge. 

In rocket engines having charges that burn on the inward surface 

(Figure 5.3) pressure is transmitted via the fuel to the walls of the com¬ 

bustion chamber. Under the operation of forces from the falling off of 

pressure along the chamber and from acceleration, the charge strives to 

move toward the cone (Figure 5.4). Forces operating counter to displace¬ 

ment of the charge are the forces connecting the fuel to the walls of the 

combustion chamber (adhesion forces), and also the internal attachment 

forces of the fuel. Dangerous dislocation forces are ordinarily the 

stresses arising in points where the fuel is cemented to the envelope. 
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Figure 5.3. Diagram of solid-fuel rocket engine with charge which bums 

internally. 

In solid-fuel rocket engines of large dimensions the substantial 

loads operating on the solid fuel charge are loads from weight and from 

inertial forces, which at the moment of launch and during flight of the 

rocket provoke a perceptible axial slippage of the burner (Figure 5.4), 

leading to reduction of the area of the channel for the exit of gases. 

Outline of charge 
I as deformed 

Figure 5.4. Character of deformations in a charge of solid fuel firmly 
fastened to the interior surface of the combustion chamber. 

Computations show (4) that for a single-channel charge having a 

relative thickness of vault of 50 percent, with a hard casing and a firm 

fastening of the face of the charge, the magnitude of relative decrease 

in area of the channel F^an at the cone face has proved to be equal to 

Where E is the module of elasticity (Young); 
R is the exterior radius of the burner of the equivalent tubular 

charge ^ 
P is the specific weight of the fuel charge. 

For charges having relatively great diameter the maximum value of 

relative change in the passage cross-section will be approximately 10 per¬ 

cent per 1 £ (6). 

Depending on the working regime of the engine, requirements im¬ 

posed upon the mechanical properties of the fuel may be different. In 

the solid-fuel rocket engine of the first stage of a rocket, when the. 

charge is subjected to short-term operation of inertial forces, clogging 

in the chamber does not occur (unless it has not taken place in advance 
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under the effects of weight and upon assonihly of the rocket), since the 
speed of combustion of the solid fuel is ordinarily greater than the speed 
of creepage. The second stage of a rocket is subjected to the action of 
acceleration over a longer period. For this reason it is logical to se¬ 
lect a charge having a harder module, great relaxation time, or a channel 
expanding toward the outlet. 

5.2. Mechanical Properties of Solid Rocket Fuels 

In Table 5.1 we set forth some mechanical characteristics of bal¬ 
listic fuels. 

Table 5.1. Typical Mechanical and Thermophysical Properties of Solid Bal¬ 
listic Fuels (1) 

Ch aract eristic Denominat ion Amount 

Module of elasticity at 20° C 
Module of elasticity at 50° C 
Poisson coefficient 
Coefficient of linear thermic expansion 

Solid ballistic fuel may be regarded as an absolutely elastic and 
isotropic material. At positive temperatures such a fuel is characterized 
by a g lass-like (hard) state of material. At negative temperatures it be¬ 
comes friable. In Figures 5.5, 5.6, and 5.7 there are set forth curves 
indicating the influence of temperature upon the mechanical characteris¬ 
tics of ballistic fuels, and also the results of experiments (5) to de¬ 
termine critical stresses upon loss of longitudinal stability of burners 
of 25-millimeter diameter having no channels. The indicated dependences 
are in qualitative agreement with computations carried out according to 
the familiar Euler formula for critical stress: 

E, kg/cm2 
E, kg/cm2 

I» 
I 

•’'IT 

1,000-3,000 
200-1,000 

0.35-0.5 
1.2-10-J- 

a (5.2) 

where E is the module of elasticity of a solid fuel; 
L is the adduced length of the burner; 
ri is the radius of inertia of the transverse section of the burner. 

Let us examine limit deformation of a tubular charge (Figure 5.1) 
from the standpoint of maximum permissible crumpling of the charge to an 
extent leading to coverage of free openings for passage of gases, which 
in the last analysis leads to breakage or destruction of the charge. A 
force Pi, arising as a result of the falling off of pressure along the 
length of the burners, operates on a charge in the form of tubular burn¬ 
ers: 
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Pt^iPi Pi) Sr* (5.3) 

where pi and P2 are the pressure of gases respectively at the forward and 
the rearward ends of the charge; 

Sj is the area of the faces of the charge. 

In addition, an inertial force P2 from longitudinal acceleration 
of the rocket operates upon the charge: 

P. <a - It. (5.4) 

Figure 5.5. Compression strength and maximum compression stress for a 
burner of ballistic fuel, a — Stress, kg/cm2; b -- tempera¬ 
ture, °C; c -- Fuel A-l: d -- Compression strength; e -- 
Fuel JPN; f -- Maximum compression stress; g -- In flight; 
h -- On stand. 

Under the action of these forces and in consequence of the rela¬ 
tively low module of elasticity of solid fuel, particularly at high tempera 
tures, the charge is deformed (Figure 5.1) and thereby the free area for 
passage of gases in the chamber is reduced. 

The expression for a>ûal stress 0 , arising at the end of the charge 
next to the diaphragm, can be written as follows: 

•“(P.-Pf) + £prA (5.5) 

where L is the length of the charge; 
h- is the mass density of the fuel; 
J is the longitudinal acceleration of the rocket. 
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Figure 5.6* Dependence of module of elasticity upon temperature for vari- 
, ous brands of solid fuel: KDS -- brand of fuel possessing 

low mechanical strength, specially prepared for experimental 
purposes- a -- Module of elasticity, gk/cm2; b -- Tempera¬ 
ture, °C. 

Figure 5.7. Strength of burner of JPN solid fuel under longitudinal 
flexure, a -- Critical stress; b -- L/r¿ ratio. 

The dependence of the area of transverse section of the charge, S, 
upon the magnitude of stress is expressed by the formula (2) 
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Sr~Srt(¡ + 2-a-o), (5.6) 

where Sx0 the initial area of the transverse section of the charge; 
f* is the Poisson coefficient; 
E is the module of elasticity. 

Taking into account heat expansion of the burner of the fuel, we 
convert formula (5.6) to the following form: 

-Sr = |1 + 2^(7-,-7-)1 (l + 2-I-0), (5,7) 

where « is the coefficient of linear thermic expansion of the fuel; 
T0 is the initial temperature of the fuel; 
T is the standard temperature of the fuel, equal to 15° C. 

Bearing in mind the relationship 

Z7» = Fgn, - Sri FeWt = F... -ST<f (5.8) 

where F(jb is the area for passage of gases in the chamber; 
F¿g is the initial area for passage of gases in the chamber; 
^cham *-s area of transverse section of the chamber, and taking 

Fcham as more or less equal to ZSjo» one can transform equation (5.6) as 
follows : 

(5.9) 

where oo Is stress in the charge up to start of work of engine. 

Possessing data regarding the dependence of falling off in pressure 
(or, which is the same thing, regarding 0 in the fuel) upon the amount 
of free passage section, one can show diagramnatically (Figure 5.8) the 
influence of the module of elasticity of fuel upon the character of de¬ 
formation in the charge. 

In the region of Point A (the stable field) deformations of the 
charge correspond to stresses which have been evoked by the gas flow 

V «0 / 

on account of falling off in pressure, and these stresses will be less 
than the permissible elastic stresses which take place under circum¬ 
stances of reduced area of channels. In the region of Point B (unstable 
field) displacement to the right leads to reduction of area for passage 
of gases in the chamber and to increase of pressure, as a result of 
which destruction of the charge takes place. 

Equations (5.8) and (5.9), upon substitution therein of internal 
ballistics characteristics, make it possible to determine, taking into 
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account the deformation of the charge, the relation Fcrit/Frn as it de¬ 

pends upon the module of elasticity E. In Figure 5.9 this dependence is 

presented on the basis of results of the calculation of a tubular charge 

made of ballistic fuel (1), Mien the module of elasticity E is suf¬ 

ficiently high, deformations of the charge practically do not take place 

and the quantity Fcrit/FcB differs little from its initial value. Reduc¬ 
tion of the module of elasticity of the fuel leads to rise in the ratio 

Pcrit/fCB and with E » Emin (Point M) a limit of stability which is de- 
termined by the condition sets in. The portion of the 

curve located higher than Point M describes a process corresponding to 

increase of pressure, when the input of gases coming from the hot sur¬ 

faces of the charge will be greater than the output of gases through the 

free area of the transverse section of the chamber, something which in the 
last analysis will lead to explosion of the engine. 

Figure 5.8. Diagrammatic drawing of change of stresses in a charge of 

solid fuel as they depend upon the amount of free area for 
passage of gases (FQg). a — Reduction of module; b — 

Permissible deformation; c -- Critical value of module; 
d -- Destruction of charge. 

In analysis of the mechanical properties of mixed fuels a series 
of substantial assumptions are adopted, the main one of which is that of 

regarding the fuel as an isotropic and homogeneous material, possessing 

linear viscous-elastic properties, i.e., when deformations remain pro¬ 

portionate to loads, even though both parameters may change over time. 

At the same time one should take into account the fact that al¬ 

though the particles of the oxidizer are moistened (enveloped) by the hot 

polymer binder, there is nevertheless a faint interaction between the 

oxidizer and the binder. For this reason the mechanical properties of a 

mixed fuel are almost completely determined by the physical properties 

of the combustible. In Table 5.2 there are set forth data regarding the 
limit of strength of some combustible binders. 
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Figure 5.9. Dependence of ratio Fc^/Fcb upon amount of module of elas¬ 
ticity of a tubular charge of solid fuel of JPN brand, a -- 
Area of critical section of cone/Free area for passage of 
gases; b -- Module of elasticity, kg/cm2; c -- Under static 
circumstances; d -- In flight. 

Table 5.2. Strength Characteristics of Combustible Binders of Solid Fuels 
(7) 

Plastic Resins 
Possessing 
Casting Properties 

Limit of Breaking Strength 
in Vulcani :wd Form Without 
Additives, kg/cm2 

Epoxide resins 28-914 
Epoxy-polysulphides 70-703 
Phenolic resins 280-492 
Polyethers 422-703 
Polyethylenes 105-387 
Polyurethanes 211-281 
Vinyls 70-633 

In Figure 5.10 we set forth data on the strength of a fuel in de 
pendence upon the percentage content of binder in the fuel. Obviously 
breakage strength is approximately proportionate to combustible binder 
content. 

In Table 5.3 we set forth approximate values for some character¬ 
istics of mixed fuels. 

The mechanical characteristics of viscous-elastic fuels depend 
markedly upon temperature and speed of deformation. 
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ble 5.3. TyPW —rnÄTrU. P— - — 

40° C 
+ 15° C 

nesignation 

E, kg/ctn2 
E, kg/cm^ 
E, kg/cnr 

•’«if 

Quantity, 

1,000-2,000 
100- 200 
50- 100 

0.35-0.50 

0.5-10‘t- 
1.5-10-^ 

aracteristic 

dule of elasticity at 
dule of elasticity at 
>dule of elasticity at + 41 C 

» fHclent^ofC linear tbetmlc expansion 

In figure 5.11 we set forth ^’^‘^^“'At'^he temperature 
Ighly-flUed mixed fuel at ''arlous temperatur s^ alterlng us 

last Ic-p last le Propùrtiesl:PloIBes*the^capacity'for^any^conslderable^^^ 

fh»th« ofr,8U.: transition, TglMS, the fuel becomes brlt- 

1.6 • 
/,i._ rheological factor) in in 

inclusion of the time parmseter (the rheo^g^^^ sttength 

restigatlng the dependence of Jcfo— ^ even a simplified physi- 
:,lculation considerably ™ore cMpllcated^ ^ el(mgat.lng affort „pon the 
:ai picture, showing the lnf^uen , Jin be useful for understanding 
nechanical characteristics of a ^ ,ence of elongations upon tempera- 
fîf the causes of defects in fu - pOiicati0n of elongating effort Is 
ture at various speeds of speeds of 5.12. From this it is ap- 
iHustrated by the of application of elongating effort, 
parent that the greater the speea oi 
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the higher the temperature at which the friability state sets in. Conse¬ 
quently, at the moment of ignition rapid application of load is dangerous 
with low initial temperatures of fuel (4). 

Figure 5.11. Typical diagrams of elongation of elastic mixed fuels. 
a -- Relative elongation, cm/cm; b -- Speed of application 
of elongating force. 4 cm per minute; c -- Destruction; 
d -- Limit of elasticity. 

Figure 5.12. Dependence of elongations corresponding to maximum permissible 
stresses in elastic mixed fuel upon temperature at various 
speeds of application of elongating effort, a -- Relative 
elongation at maximum permissible stress; b -- Temperature, 
°C; c -- Speed of application of elongating effort: 0.0025 
cm/min; d -- 25 cm/min; e -- 2,500 cm/min. 

In qualitative examination of deformation of a burner as it depends 
upon speed of deformation the following observation may be made. To begin 
with, with rise of deformation, the values of the limit stress, like those 
of limit deformation, rise monotonically. But this increase continues up 
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to a certain critical speed of deformation, the magnitude of which will 
be determined by the physical properties of the fuel (for example, by 
temperature). Then with further increase of speed of defomation one 
observes a reduction of the values of limit stresses and deformations. 

SrpureCrubb™e(3)y ^ presented ln Figure 5'13* s^ed by Smith 

I! 

/ \ 
/ 

1 1' 
/ ' 

L 

. 

r-i i i i rî 
Figure 5.13. Qiaracteristic profile of curve showing dependence of limit 

stresses upon speed of deformation, with elongation along 
a single axis: • -- speed of deformation; a^ -- temperature 
parameter, a -- Stress in percent of maximum, <r * 100; b -- 
Speed of deformation. 

., ^h® relationship given as existing between limit deformations and 
spedd of deformation was established in testing examples for monaxial 
deformation. Examples were carried through to destruction at various 
constant speeds of deformation. 

,,AtJ?ve .8ame tlaie i,: has been established theoretically and experi¬ 
mentally (3) that it is possible to associate the critical speed of de¬ 
formation (or the time of destruction at a constant speed of deformation) 
with temperature, namely: 

-) ^. (5.11) 

where aj is the temperature parameter; 
tx is the time of observing a given phenomenon at absolute tempera- 

ture i 
t0 is the time with initial temperature T0; 
^glass *-8 th® temperature at which the module is equal to the module 

of a glass-like body (lower than this temperature the material is essen¬ 
tially friable); 

ki, k2 may be regarded as universal empirical constants for many 
polymers. 



In the analysis of elastic deformations and stresses of solid fuel 

charges a considerable part is played by the Poisson coefficient (5.9). 

The ratio of transverse deformation to longitudinal deformation is not 

constant, but is a function of time or of deformation, and it depends 

both on the viscous-elastic properties of the fuel and upon the condi¬ 

tions of loading. As a result of analysis carried out on various elastic- 

compressible media it has been shown (6) that the Poisson coefficient is 

a rising function of time or of deformation (Figure 5.14). 

ftf 

W 

Ç4 

w 
I* 
w 

% 

HU 

Figure 5.14. The Poisson coefficient, j, , as a function of time, » 

for various viscous-elastic media subjected to elastic 

compression at a constant speed of stress (»-rf): » is a 

quantity characterizing the mechanical properties of the 
fuel, a -- Four-parameter model; b -- Maxwell model; c -- 

Typical solid body; d -- Kelvin model. 

5.3. The Strength Criterion 

Independently of the degree to which success is encountered in 

carrying out analysis of elastic or nonelastic deformations, analysis of 
strength cannot be completed until a strength criterion is established. 

At present the conditions under which destruction of elastic-plastic ma¬ 

terials, among which are solid fuels, take place have been insufficiently 

studied. 

For the field of elastic deformations one can make use of customary 

strength theories and one can adopt as the criterion of strength either 

maximum normal deformation, or shear deformation. 
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In the elastic-plastic field one can make use (3), for the strength 
criterion, of maximum normal deformation, as the occurrence of destruction 
as encountered in mixed-fuel rocket engines depends much more markedly 
upon deformation than upon stress. 

Let us examine the possibility of utilizing as a strength criterion 
the amount of maximum octahedral shear deformation, and let us establish 
a connection between three-dimensional and one-dimensional failure. The 
maximum octahedral shear deformation V0ct i® associated with specific 
energy of shape formation , which is determined as follows in its gen¬ 
eral form: 

5, - jyj (K -•,)’ + («, — «.)' + (». - "i)1 + 6K, + ’Î . + 'îj] “ 

“W K»| —*)’ + («•-'’•>' + (•»-•il'l 

where a„ Op °s are the principal stresses, 
E is the module of elasticity of second type. 

u 5(1+10 

(5.12) 

Octahedral tangential stresses may be expressed through principal 
stresses and principal deformations: 

*0«T = -j-J^ —^)1 + K—«1)* +K-0!)* 

="T 0 K («i — «í)' + («ï—•»)* + («» -•i)1 • 

(5.13) 

After insertion of formula (5.13) into formula (5.12), the ex¬ 
pression of the energy of shape alteration assumes the form: 

3* “ T K1'— •*)* + (•»- •»)* + (■*—«i)')* 
(5.14) 

Applying to equation (5.13) the Guk jJHocky law, we secure 

T«t = 4 ^- H)' + (¾- «.)* + («,-«i)*• (5'15> 

höw, substituting expression (5.15) in expression (5.14), we can 
express in terms of Voct: 

f (5.16) 

In computing the charge of solid fuel for strength it is advisable 
to make use of principal cylindrical deformations »r , ■* , and •* . 

Then expression (5.15) can be transcribed in the form: 

- 216 - 



t-t “ -f V («, - «,)* + (•„ -.,)» -f (., - .,)* . (5.15') 

Now let us examine a one-dimensional trial (Figure 5.15), for which 
we have 

•, = «» = - t“r 

Substituting the last expression in formula (5.15') we secure: 

KT (1 + (.).,. (5.16') 

r 

Figure 5.15. Diagram of distributior of principal stresses and principal 
deformations in one-dimensional stress. 

If we now designate limit defomation by Efaiiure> then at the 
moment of failure in the case under examination 

** "failure 

Then from expression (5.161) we find that 

•failure 4(I + ji)T0*1’ 
(5.17) 

Inasmuch as the quantity Yoct is invariant relative to transformation of 
coordinates, the value Cfailure. at which the quantity Yoct attains 
critical magnitude, will be equal to 

•pwp — 
(1 +1»)V (g' ~ ^(t> ~ + (>i ~ ^ 

(5.18) 
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In plane deformation of a tubular charge tt 
(5.18) assumes the form 

:0. Then expression 

"FTTT+7)^ (5.19) 

Let us examine, as an example, the stress in a charging having a 
star-shaped channel at the moment of ignition. The dangerous section will 
be the star-shaped points, for which, from the law of stress-deformation 
with plane deformation, we have (4): 

(5.20) 

For uncompressed fuel (p = 0,5) tr = «s,; then 

2 ^ 1 IK' 

(5.21) 

■p»»p 

where «’ is the permissible annular deformation at the ends of the rays 
of the star-shaped channel in the burner. 

Thus on the basic of the criterion selected it is necessary that 
for the given type of fuel permissible deformation on the rays of the 
star come to approximately 85 percent of the limit deformation measured 

during elongation tests (4). 

5.4. Calculating of a Solid Fuel Oiarge for Strength During Working of 

Rocket Engine 

For the sake of simplicity of computation we carry out an analysis 
of stresses and deformations set up in a dylindrical single-channel burner 
firmly fastened to the wall of the chamber, under the influence of internal 
pressure evenly applied in all directions (Figure 5.16). We disregard 
axial acceleration and falling off of pressure over the length of the 

burner during its combustion. 

In addition, in order to simplify we assume that the chamber and 
the burner are subject to the laws of ideal elasticity (the nonlinear 
effects provoked by plasticity are insignificant)^ the burner, is long 
enough so that in accordance with the Sen-Venan ¿St.-Venant?/ principle 
and effect can be disregarded, and that any transverse section perpendicu¬ 
lar to the axis of the chamber will remain plane under the operation o 
stress upon the burner (longitudinal stress does not depend upon radius). 

The burner is subjected to the operation of internal pressure Pi, 
which is equal to effective pressure within the interior channel and ex¬ 
ternal effective pressure pg, occasioned by the presence of a thin-wa 

chamber. 
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The stresses developing in the solid fuel charge can be expressed 
through effective pressures with the help of the Lyame ^Lame^Z formulas 
for thin-wall tubes. In the case of a plane problem, at all points of 
the charge radial and tangential stresses will operate (3): 

W'i—A'? , (A— ft)'?'! (5.22) 

ft'i-A'a (A-ft)'?'! (5.23) 

where r is the current radius; 
p¿ is the internal effective pressure operating on the burner; 
pB is the external effective pressure operating on the burner. 

Figure 5.16. As regards question of strength calculation for a charge 
under influence of internal pressure. 

If the charge burns, for example, upon its inward surfaces, then 

Pi “ Pchan " Pa* 

where pcham is t*ie absolute pressure in the chamber, 
pa is atmospheric pressure. 

We shall note that the sum a, + ^ for all points of the charge must 
be constant; 

(5.24) 

Introducing into the Lyame formulas the nondimensional parameters 

and 

we secure: 
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(5.25) 

(5.26) 

in calc,!Tri^alySíS 0f îormulas <5-25) “d (5-26) one may conclude that 
1 tl”f f ch«rge for streugth, when the inequality pt>pB holds 

thtil tan®entlal stresses °* are of decisive significance; they achieve 
their maximum value on the internal surface of the channel of the burner 
Wien pg =* U2 

-rz^r* (5.27) 

Inasmuch as in the scheme of computation adopted radial 

stresses Í * «* compressive, and tangential 
limits be^JÜ n "S*? In practlce th® quantity m can vary within 
to îhîs T À 'à'*™*011 a- wlU vary f'om to infinity. 

ÎÎLf ’ ln °eder í° 8reat ®lon8ative stresses, one should 
nr ^.hV^r f°u thf Parameter £ which is lower than 0.5 or 0.6, 
or (which is the same thing) the relative thickness of the vault of the 

mitely’o 5-oT(1)° ^ ^11° °f the chmher' should not exceed approxi- 

one ranAÍTÍn8 a” idcal fastening together of the chamber and the burner 
^ a! equal upon the fastening surface (r “ r2) the tan¬ 

gential and axial deformations in the burner and in the chamber (* =« \ : 
I *u/ 

(5.28) 

(5.29) 

s “ -f !•. -1* <•. + K - m + ..jj; 

rl*.-i*(*.+•.)) -¿-i.,, - h(.,, + 

re spec t Ive ly^1 the "°duleS 0i of the fuel and the chamber, 

and are the Poisson coefficients of the burner and the casing 

( 
If one regards the material of the chamber as absolutely rigid 
with r * r2), then equations (5.28) and (5.29) assume the form! 

+ )1-0. 

(5.30) 

(5.31) 

Eliminating e, from expressions (5.30) and (5.31), we secure (1): 
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•♦-I* (^ + ^,)=0. (5.32) 

The value of effective external pressure can be determined if one 
substitutes in equation (5.32) the values for or and os secured from 
formulas (5.26) and (5.25), under the condition that • 

*r=~P¿ 
2m*p, - {I + m*)p, 

I-«» 

whereupon 

P. 1 + m* — 2¡i 
(5.33) 

Now, substituting the pg values in the Lyame formulas one can de¬ 
termine the values of tangential and radial stresses as functions of the 
parameters m, p , and p . With m = 0 maximum tangential stress, (0t)m» » 
becomes equal to effective pressure in the chamber; such an amount is in¬ 
admissible for elastic and soft fuels used in charges fastened to the walls 
of the chamber. The Poisson coefficient, p , exercises marked influence 
upon the amount of stresses in the burner. If the fuel constitutes an 
almost incompressible resin-like material (p = 0,5) , then at elevated 
temperatures tangential deformations become insignificant. But if the 
fuel is sensitive to deformations, it is desirable to make the relative 
rigidities of the chamber and of the burner itself such that the fuel 
shall not deform. In this case we proceed to the scheme of the rocket 
engine having a loosely inserted charge, where passage of gases to the 
outward surface of the burner is ensured and the solid fuel burner finds 
itself amid circumstances of evenly applied hydrostatic pressure ^ = 

Pcham)• 

5.5. Analysis of Concentrations of Stresses in Solid Fuel Charge Having 
Compound Perforations of the Internal Channel of the Burner 

Up to this point in our computations we have examined charges of 
simple configuration in the form of thin-walled cylinders. In reality 
burners of solid fuel have considerably more complicated shapes, for 
example a burner having a star-shaped channel or a burner profiled in¬ 
ternally (Figure 5.17). In burners having a compound geometrical shape, 
around the angles stresses concentrate which reduce the strength of the 
charge under the action of force or temperature factors upon the burner. 
Real stresses at the points of the star in the channel of a burner exceed 
by several times the stresses developing in a simple thin-walled cylinder. 

Special experiments (1, 3) upon thin-walled cylinders having sym¬ 
metrical interior cut-outs of various depths, breadths, and shapes have 
made it possible, applying the method of photoelasticity, to study the 
influence of the geometrical shape of the interior channel of the burner 
upon the concentration in the charge of stresses occasioned by the pres¬ 
sure of gases in the combustion chamber. 
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Figure 5.17. Typical model of charge having profiles (slots). 

As an index of concentration of stresses the coefficient of con 
cent rat ion^f stresses K, is adopted (3), which may be defxned as 

*« 
•»—«r 

(5.34) 

where o. and a 
are the actual amounts of tangential and radial stresses; 

o' and 'a are the stresses «hich »ould develop in an equrvalent 
charge *!n the shape of a thick-walled cylinder. 

In Figure 5.18 we P“““ ^esti¡ftingehurners 

is apparent from 

rSÄr^irrtnc^Ærof^aU in the pro- 

files. 

Figure 5.18. 
Dependence of coefficient of concentration of stresses upon 
geometrical dimensions of burner. 
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Large experiments have been carried out (1, 3) upon photoelastic 
models in order to investigate the field of stresses in charges having 
star-shaped internal channel of various configurations, stressed with 
pressure on the external surface. Making use of the conclusions of the 
method of photoelasticity, the coefficient of concentration of stresses 
Ki can be defined experimentally as the relationship of the actual number 
of bands at the point examined to the number which would exisV in an 
equivalent thick-walled cylinder with the same falling off in pressures 
(Pext “ Pint)' I*' Figure 5.19 we show a typical photoelastic model of a 
charge. The isochromatlc bands are secured as a result of imitation of 
interior pressure. Data from experiments show that one can also reduce 
the concentration of stresses in the fuel burner, taking into account the 
recommendations made earlier, if one Increases the relative thickness of 
the vault and the number of rays of the star with values of W and of 
given, having Increased the angle of the aperture of a ray of the star 
and the breadth of the slot of the ray of the star.

Figure 5.19. Typical aspect of photoelastic model of solid fuel charge 
having star-shaped channel.

In precise strength computations of solid fuel charges one must 
take into account not only the thermic and mechanical stresses referred 
to above, but also the phenomenon of relaxation, and likewise stress al
lowing for the viscous-elastic properties of the fuel.

5.6. Strength Calculation of Rocket Charge Allowing for Elastic-Plastic 
Deformations and Rheological Properties of Solid Fuel

For the case of thick-walled cylindrical burners, one can secure 
from the general theory of elasticity analytical expressions and rela
tively simple solutions. The strength of charges having a compound shape 
of chaiinel can bo evaluated with the help of data relative to the strength 
of a simple charge, taking the coefficient of concentration of stresses 
into account.
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But for precise computation of solid fuel charges for strength it 
is not possible to apply the usual methods of elastic analysis, because 
a solid fuel is characterized by a potentially nonlinear elastic- 
plasticity, and plastic elastic deformations thereof are time (rheologi¬ 
cal) processes. 

In a solid fuel two characteristic 
place. In this connection deformation ® 
pression 

where E is the Young module. 

Deformation t relates to shear or torsion, and in unidimensional 
form it is written as follows: 

t-0.T, (5.36') 

where G is the module of shear. 

It has been established in special experiments (3) that the dis¬ 
tribution of stresses in an isotropic incompressible elastic-plastic 
medium coincides with the distribution of stresses in an elastic medium, 
if the limit conditions are applied only one the stresses. Making use of 
a mathematical apparatus of operational calculus, a method for figuring 
out elastic-plastic stresses and dislocations was worked out for many 
problems (3). 

Without going into detailed analysis we may remark that for figuring 
out stresses and deformations direct methods of investigating a broad 
class of elastic-plastic problems are applicable if what is involved is a 
fuel characterized by approximately linear plasticity. 

In order to set up equations associating the stresses and deforma¬ 
tions in solid fuels one must apply the classical method of presenting 
the material in the form of mechanical models consisting of elementary 
springs and dampers. Hie model is composed of springs and dampers in such 
fashion that as a whole it reproduces, under loads, the behavior of a 
solid fuel. 

Th^ simplest model is the linear spring (the Guk /Hook?/ model), 
vriiich affords a direct proportionality between stress and deformation 
(Figure 5.20). The constant of the spring is an analog of the Young 
model. Another simple model is the unit damper (the Newton model) 
(Figure 5.21), which is characterized by proportionality between stress 
and speed of deformation. A natural generalization of these very simple 
models would be a model consisting of a spring and a damper. If one 
joins the spring and the damper in parallel, fashion (Figure 5.22), one 
will get a model known as the Voit /Voigt?/ model (stresses are 

deformations, a and t , take 
relates to elongation or com- 

(5.35) 
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superimposed). With sequential connection of the spring and the model 
we secure the Maxwell model (deformations are superimposed) (Figure 5.23). 
In many problems one may expect that the Voit and Maxwell models will 
give a good approximation to the real reaction of a fuel with small de¬ 
formations over a limited interval of time. 

Figure 5.20. Single-element Guk /Hook?,/ model. 

Figure 5.21. Sing le-element Newton model. 

With the help of the Voit model (Figure 5.22), in the investiga 
tion of creep under constant load the following equation was secured 
(3, 4, 6): 

-*"TI 

where is the stress corresponding to 
t is time; 

t-J- 
m 

i| and m are the constants of the damper and the spring. 

With very high values of time «(/) static deformation is approached. 
Such behavior of a material is called creep (retarded deformation). 

The process of relaxation (weakening of stresses or restoration 
of initial form after cutting off of operation of load), according to the 
same model (Figure 5.22), is described by equations of the form 

0<f</„ 

constant load; 

(5.36) 
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•-0; «(O -«,* (5.37) 
-Sízísl 

' for />/„ 

lAere *, is deformation at moment of removal of load; 
ti is time at moment of removal of load. 

Figure 5.22. Double-element Voit 
model. 

Figure 5.23. Double-element Max¬ 
well model. 

But if on the Voit model we model through the processes taking 
place with constant speed of deformation «, these processes can be de¬ 
scribed by the following equations: 

*-¿*(/4-J-). (5.38) 

where $mm~. is speed of deformation. 

With the help of the Maxwell model it is also possible to model 
creep under constant load. 
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In this case the processes are described by the following equa¬ 
tions: 

•(*)*■• + “f’} for (5.39) 

and after removal of load 

• -<* sW-JLÍL for t>ir (5.40) 

The processes taking place with constant speed of deformation can 
be modeled according to the same scheme (Figure 5.23) and can be described 
by equations of the form 

(5.41) 

The processes of relaxation on the Maxwell model (Figure 5.23) are 
described by the equation (•»•o): 

« JL 
• (/) —V»* * for />0. 

If necessary, one can model with three- and four-element models 
(Figure 5.24). But practically speaking, calculations with such models 
present great difficulties and can be carried out only for burners having 
a very simple geometrical shape. As a rule, in calculations models are 
used which constitute a maximum of two elements. 

Figure 5.24. Three-element mechanical model representing reaction of ma¬ 
terial under shear. 

Let us determine the elastic-plastic deformations under the opera¬ 
tion of pressure upon an infinitely long tubular cylindrical burner en¬ 
closed in an elastic envelope. 
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The solution in the elastic field of deformations for an incom¬ 
pressible fuel (p=0,5) and in the presence Of a thin envelope under the 
action of internal pressure in projections of stresses has the form (3): 

(V 
I + JZl 

W- 
i + 

V, 

(fr 
0-^) 

I + 
C-KÏ) ^ 

(fF 

0^) ^ 

•w 

Pi. 

-Pi. 

(5.42) 

where E and p are the Young module and the Poisson coefficient for the 
fuel; 

and pB are the Young module and the Poisson coefficient for the 
material of the chamber; 

Í, is the thickness of the chamber wall. 

We represent an isotropic elastic-plastic material with the help 
of the Voit model. Then the lag in shear with time can be written as fol¬ 
lows : 

(5.43) 

Applying the Laplace transformation to equation (5.43) for initial 
conditions, we secure 

*i/-(W-*-(5.44) 

From the theory of elasticity for incompressible materials it fol¬ 
lows that 

J (5.45) 

From equations (5.44) and (5.45) we secure the value of the equi¬ 
valent module of elasticity 

£(P)-*3(v+0) (5.46') 

Substituting the module determined by the operator expression 
(5.461) in each of the initial equations for elastic deformation, we find 
the corresponding elastic-plastic deformations (3): 
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1 [*(*) i-> ]lV + G)+ 

~ L (ï) -] 
Pl (/>). (5.46) 

where the upper sign corresponds to or , and the lower sign to «» . 

Assuming ¿ 8-£L, the transformed equation (5.46) will assume the 
ri p 

form 

¡k_Jí±J°L (5.47) 

where 

K =-A-xi-Pi 

«0 = 

(*)■- 

m -] i°+2, 
[ m-j h 

(5.48) 

(5.49) 

(5.50) 

Making the inverse Laplace transformation, we secure an expression 
for physical stresses allowing for the rheological properties of a solid 

fue 1 

(5.51) 

where t is time; 
H and m are coefficients of the model, determined experimentally. 

For the case where r = r2, pressure between the burner and the en¬ 
velope is damped down with constant time t , and stresses can be deter¬ 

mined according to the formula 



(5.52) 

Thus stresses in a charge depend on the elastic-plastic constants 
E and G, which form part of formula (5.52) and of the expression for 
time t . At the same time, the influence of speed (tj) is allowed for 
only in expression (5.50), written for time of relaxation * . 

It is also appropriate to note that with a rigid envelope £K-+-oo, 
> -+■ oo , and orfa)-*■ — Pi ’ 

Finally, calculation of a stressed-deformed charge with allowance 
for the rheological properties of a solid fuel is carried out according 
to the formulas (3): 

(5.53) 

Differentiating, we secure the speed of deformation 

•r, = -5- S (ri)> 

whereupon 

(5.53') 

Making use of the Snith curve (Figure 5.13) and the relationships 
secured, we can determine the reserve of strength of a solid fuel charge. 



5,7* Taking Temperature Stresses Into Account in Calculatine a Solid Fuel 
Charge for Strength 

In the majority of cases rocket engines on solid fuel are subject 
to the action of the temperature of the surrounding environment during 
prolonged storage. The action of temperature stresses is more strongly 
marked upon charges fastened to the envelope than upon charges loosely 
placed in the combustion chamber. 

In order to study thermic stresses we shall make the following as¬ 
sumptions: 

1. In its initial state the engine with the fuel charge cast into 
it is free of thermic stresses and deformations. 

2. Distribution of temperature is symmetrical relative to the axis 
and does not depend upon the axial coordinate z. 

3. The module of elasticity, the coefficient of linear expansion 
a , and the Poisson coefficient do not depend upon temperature. 

4. Upon examination the charge is assumed to be pretty long, so 
that in accordance with the St. Venant principle one may disregard end 
effects. 

The general expressions for radial, tangential, and axial stresses 
in a charge of solid fuel firmly fastened to a thin elastic envelope may 
be written as follows (3): 

(5.54) 

(5.55) 

where 

(5.56) 

(5.57) 
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Examining the picture of elastic-plastic shear with the help of 

the Maxwell model and assuming a linear law of temperature change for the 

charge over time (T° “ k't), we can secure final computation formulas for 
stresses in the charge under the operation of temperature stresses and 

taking into account the rheological properties of a solid fuel; 

where 

(5.58) 

(5.59) 

(5.60') 

(5.60) 

These equations show the exponential character of the rise in 

stresses in all directions, something which corresponds with the proposed 
Maxwell mechanical model, which absorbs the energy of deformation. 

5-8. Calculating Elastic-Plastic Deformations in a Solid Fuel Charge 
Under the Effect of Wbight 

The tangents of shear stress from the actual weight of a cylindri¬ 
cal single-channel burner, set up in vertical position and supported by 

an elastic envelope, are determined (disregarding margin effects) by the 
equation 

To these stresses there corresponds a coincident dislocation (dis¬ 

location at the point where the burner is fastened to the envelope is 
equal to zero), expressed by the formula 

- 232 - 



(5.62) 

Let us present the characteristics of the material by means of a 

mechanical three-element elastic-plastic model (Figure 5.24). Assuming 
that when the burner is set up in vertical position weight rises in a 
sharp jump, and considering that p = 0,5, the final expression for deter 

mination of axial slippage assumes the following form: 

(5.63) 

where t _I-—) i-s constant of time for constant stress; 

ï), m^ and m2 are the coefficients of the damper and the two springs. 

With large values for t_ deformation approaches the elastic and de¬ 

pends upon the constant shear module of the material (mi or m2). 
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CHAPTER VI. EXECUTANT ORGANS FOR GUIDANCE OF A ROCKET 

HAVING SOLID-FUEL ENGINE 

The executant organs of guidance of a rocket are intended to regu¬ 
late the thrust vector of a solid-fuel rocket engine in flight as regards 
amount and direction. 

6.1. Regulation of Thrust in Amount 

Studies (1, 6) describe mechanical means for prelaunch adjustment 
of an engine to receive a constant amount of thrust when soliu fuel charges 

having various initial temperatures are used. In flight the system for 

regulating the amount of thrust of a solid-fuel rocket engine must: 

-- change thrust over time in accordance with a set program; 

-- maintain the necessary amount of thrust independently of random 

factors (for example, chance alterations in speed of fuel combustion and 

surface of charge, erosion of cone, and the like) provoking alteration 
therein (3); 

-- cut off working of engine upon achievement of velocity assigned 
for rocket. 

Regulation of the amount of thrust of a solid-fuel rocket engine 

may be achieved through appropriate selection of the characteristics of 
a solid fuel and the geometry of a charge. 

The simplest principle for alteration of thrust over time is the 

two-stage principle, corresponding to the launch and route regimes of a 

solid-fuel rocket engine. 

In Figure 6.1a we show transverse sections of two possible variants 

of the solid-fuel rocket engine, in which a two-stage principle of thrust 

change is put into effect. In the launch regime the engine develops high 

thrust in relatively brief time and communicates to the rocket the velocity 

necessary for flight and maneuver (4). In the route regime, for which 
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long time of engine work at low thrust is characteristic, the rocket re 
ceives supplementary velocity or retains the velocity achieved at the 
start of the launch sector (Figure 6.1b). 

Figure 6.1. Various shapes of solid fuel charges providing two-stage 
principle of thrust change: a -- transverse sections of two 
possible variants of solid-fuel rocket engine; b -- diagram 
of two-stage principle of thrust change: 1 -- combustion 
surface for launch stage; 2 -- combustion surface for route 
stage; 3-- rapid-burning fuel for launch stage; 4 -- slow- 
burning fuel for route stage. 

Uninterrupted regulation of amount of thrust of a solid-fuel rocket 
engine in flight is a more complicated design problem. For this purpose 
schemes having self-regulating cones may be used. An acceleration inte¬ 
grator, which sends signals to the executant organs in accordance with 
the amount of metered accelerations, can serve as a monitor for the regu¬ 
lating system; the organs change the magnitude of the critical cross- 
section of the cone (5) , 

One of the well-known methods for regulating thrust as regards 
amount in a solid-fuel rocket engine is the use of a cone having a con¬ 
toured spindle (Figure 6.2). In the combustion chamber there is placed 
at the critical cross-section of the engine cone a spindle (a choke) which 
can move along the longitudinal axis of the engine by means of a hydraulic 
drive. As the spindle changes position it changes the area of the criti¬ 
cal section of the cone depending upon pressure in the chamber. In order 
to cut off the engine the spindle is drawn into the chamber to the maximum 
extent. In this case the area of critical section of the cone is con¬ 
siderably augmented, the pressure falls off sharply, and the engine stops 
working. During the carrying out of experimental investigations a solid 
fuel rocket engine was turned on six times at intervals of 10 minutes and 
each time it worked for 3-4 seconds (6). By means of this method of regu¬ 
lation it is only possible to lower the amount of spread of thrust. In 
addition, regulation of thrust based upon alteration only of the area of 
critical cross-section of the cone alone becomes ineffective (4) when 
fuels having *-»>0 are used. In all cases the cone, the contoured spin¬ 
dle, and other elements of the regulating mechanism must be made of heat- 
resistant materials with the use of heat insulants. In some cases con¬ 
stant cooling of the regulating apparatus is required. 
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iteong new regulation methods we have: 1) regulation of thrust by
letting gas pass through or by leading it aside from the cone block;
2) reaction on the process of combustion of solid fuel by sound vibra
tions generated in the solid-fuel rocket engine combustion chamber;
3) regulation by changing the delivery of the liquid component in combined 
(hybrid) engines using solid fuel (3).

Among promising methods for regulating thrust as regards amount 
there are the nonmechanical methods of changing the area of the critical 
cross-section by blowing* auxiliary gas at high velocity into the critical 
section of the cone (7). Such cones may be called cones with gasodyna- 
oietrically variable critical cross-section area (Figure 6.3). If auxiliary 
gas is blown into the critical section of the cone (or near it) annularly, 
then this flow will, as it were, move the basic flow of outward-flowing 
gases toward the axis and will thus reduce the area of the critical sec
tion of the cone. The blowing may take place through a narrow fissure or 
through a series of apertures located around the critical cross-section. 
Reduction of the area of critical cross-section by blrtue of the blowing 
in of gas leads to considerable increase of pressure in the combustion 
chamber, of mass delivery, and of thrust.

Cl
y

Figure 6.3. ;ical cross-section 
susceptible of regula-

Figure 6.2. A solid-fuel rocket
engine with regulated

For approximate analysis of the effect of changing the area of the 
critical cross-section of the cone we apply the gas balance equation (1)

Diagram.of cone with 
criti 
susct. 
tion.

(6.1)

In study (1) it is shown that for the stage principle of velocity 
of combustion a relationship of the following form is correct:

I

T=i (6.2)

* In foreign literature the process of blswing gas into the critical 
section of the cone is called secondary ejection.
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Then, taking into account expression (6.2), the right-hand arm of 
equation (6.1) can be written as follows: 

0«. (6.3) 

For determination of the thrust of the engine we have the formula 

p ~ y «. d F. (/>, - Pm) 
(6.4) 

In the thrust equation the quantities and Fa do not depend upon 

change in the area of the critical cross-section of the cone, and the value 
of the effective speed of outward flow of gas from the cone, ue, changes 

little as Ffcp changes, this latter change being occasioned by the blowing 

in of auxiliary gas. For this reason in first approximation one can write 
equation (6.4) in the following form: 

(6.5) 

If one designates with the index 0 the terms of the equation which 
relate to equilibrated flow at initial area of critical section of cone 
Fkp0, and leaves the index off those terms which relate to equilibrated 
flow at altered area F^, one gets the final expression (1, 7) 

/» 
-T. 

/VY 

0««"# + P^é-P^é 

(6.6) 

Upon blowing of gas into the cone with reduction of critical sec¬ 
tion, when the index of degree in the combustion principle, v , is less 
than 1 the pressure in the rocket chamber increases (6.2). In correspond¬ 
ence with this, the amount of mass discharge per second rises, which is 
confirmed by equation (6.3). The results of theoretical analysis are 
found to be in agreement with experimental data secured in study (7). 
In a cone the degree of expansion of which was made equal to ,- 

Pa ,0, 
blowing in of air in order to regulate thrust as regards quantity was 
carried out on an experimental rocket engine. In order to supply aux¬ 
iliary air at low temperature in the critical section of the cone an 
annular fissue was made (Figure 6.4). The breadth of the fissure was 
changed with the help of gaskets. In Figure 6.5 we show the dependence 
of change of discharge of basic flow upon discharge of auxiliary air 
blown in (Gp2>* With increase of discharge of air blown in (Gp2) the 

discharge of the basic flow increases considerably, and consequently the 
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thrust of the engine rises in accordance with equation (6.4). Of practi¬ 
cal interest are the results of experiments showing the dependence of the 
discharge of the basic flow upon the pressure of the gases of the flow 
blown in at various breadths of fissure (Figure 6.6). With the help of 
this graph it is possible to determine pressure of air blown in for a 
given change in discharge of basic flow. 

Supersonic ^ 
part of jet in 
form of cone 

Gasket for 
changing breadt 
of fissure 

Figure 6.4. Diagram of experimental cone. 

Inasmuch as pressure of secondary ges blown in cannot exceed the 
pressure of the basic flow, the actual combustion chamber of a solid-fuel 
rocket engine might serve as an auxiliary source of feed. But use of gas 
from the combustion chamber for secondary blowing in of gas would, as a 
consequence of its high temperature, complicate the cooling of the cone 
at its critical cross-section. But the use of cold gas, kept in a reser¬ 
voir, for the secondary injection will cool the cone. 

6.2. Interception of Thrust 

Interception of thrust, as one of the forms of regulating thrust, 
is being mûre and more used in the design of ballistic and space rockets, 
and also in other jet flight apparatus, the flight trajectories of which 
must be exactly adjusted. 

In order to guide exactly the range of flight of a ballistic 
rocket it is necessary to regulate the time duration of the operation of 
the solid-fuel rocket engine's thrust. As an interception (cut-off) 
monitor of the thrust of an engine at the requisite moment one can use 
a hydroscopic acceleration integrator. 
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Figure 6.5. Öiange of discharge of basic flow in relation to discharge 
of auxiliary gas blown in: ■* discharge of gas blown 

in; Gp0 discharge of basic flow, a -- Breadth of fissure; 

b -- Diameter of critical cross-section. 

Figure 6.6. 
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Let us examine some design systems for controlling the range of a 
rocket's flight. In Figure 6.7 we represent a rocket bundle in the middle 
of which the rocket's warhead is located. When an assigned speed is 
reached the working engines separate from the warhead and, increasing 
their velocity in consequence of reduction of load, move away from the 
warhead of the rocket, which continues to move along the program trajec¬ 
tory (8). The time of operation of thrust in a solid-fuel rocket engine 
can also be regulated either by creating a counterthrust, or by cutting 
off the combustion of the charge completely. In Figure 6.8 we show a de¬ 
sign diagram for cutting off thrust through extinction of the flame and 
conplete cessation of the combustion of the charge (9). Experiments car¬ 
ried out with solid-fuel rocket engines the charges of which weighed about 
one ton have shown that to extinguish the flame of combustion of the charge 
in question about 11.0 liters of water were required (20). For complete 
assurance of thrust cut-off, at the moment of cut-off supplementary aper¬ 
tures in the forward part of the chamber open, as a result of which pres¬ 
sure in the rocket chamber falls. 

Figure 6.7. Diagram of control of range of flight of rocket. 
a -- Engine; b -- Useful load; c -- Engine; d -- 
Locks or clamps. 

The most widespread method of cutting off thrust is reversal of 
thrust (creation of counterthrust). In the engine of the second stage 
of the "Polaris" rocket cut-off of thrust occurs as a result of the open¬ 
ing of four reverse cones which are turned forward. The falling off of 
pressure in the engine is combined with equilibration of thrust by the 
counterthrust of the supplementary cones (Figure 6.9). The operation of 
thrust is cut short in 50 milliseconds, which makes it possible to con¬ 
trol the final velocity of the rocket with a precision of 10 meters per 
second (3). More severe requirements are imposed for, the thrust cut-off 
system in the monoblock "Bead or Bid Package No 6" ßj] solid-fuel rocket 
engine. Fall of thrust by 50 percent in a given experimental engine must 
occur within 5 milliseconds after the system has been turned on (11). 



"Tmnrr " Tíirnarnre BiaWTfSPWIS r m¡ i im .i i . 

Figure 6.8. Design diagram of thrust cut-off: a -- Engine before thrust 
cut-off; b -- Engine at moment of thrust cut-off; 1 -- aper¬ 
ture for creation of counterthrust; 2 -- return channel; 
3 -- rubber sack; 4 -- stopper with breakable diaphragm. 

Figure 6.9. Reverse jets for cutting off thrust. 

The time of the system's operation (Figure 6.10) is characterized 
by an amount of pressure gradient dp/dt, directly associated with the 
assigned principle of opening apertures in order to reverse thrust. From 
the equation for the balance of matter in a solid-fuel rocket engine dur¬ 
ing work (12) an expression has been secured which characterizes the de¬ 
pendence of the area of opening of the apertures for reversing thrust upon 
time: 

(6.7) 

where trev is the time of opening the apertures for reversing thrust; 

Vfree is the free volume of the chamber, equal to the initial free 
volume plus the volume becoming free through the part of the fuel con¬ 
sumed, at the moment when reversing of thrust commences; 

f = RT0 is the power of the solid fuel; 
• is the coefficient of discharge. 
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From equation (6.7) one can secure a graphic dependency of change 
in pressure in the chamber upon time after commencement of reversing of 
thrust for various values of the area of the apertures opened (Figure 
6.11). In study (12) there is adduced an example of the figuring out of 
the principle of opening apertures for reversing thrust by the method ex¬ 
plained. To begin with, for an engine having given parameters an experi¬ 
mental dependence of change in pressure in the chamber upon time after the 
cut-off signal is obtained. In accordance with this experimentally deter¬ 
mined dependence it is calculated that the effective opening of the re¬ 
verse thrust apertures is achieved approximately 45 milliseconds after the 
signal, and complete opening after 160 milliseconds (12). 

Figure 6.10. Regarding cut-off of thrust in a solid-fuel rocket engine: 
Frev area of all opened critical apertures for reversing 

thrust; n -- number of apertures. 

Figure 6.11. Calculated dependence of pressure in chamber upon time after 
conmencement of gas flow through thrust reversal apertures: 
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moment of opening of thrust reversal apertures 

p -- pressure in chamber 
in process of reversing 
thrust; prev * Pk ~ 
pressure in chamber at 
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Thrust of a solid-fuel rocket engine can be reduced to zero by 
breaking off combustion of the engine's charge, which is achieved by 
lowering pressure in the engine. Rapid lowering of pressure in the com¬ 
bustion chamber can be secured by opening an outlet aperture in the cham¬ 
ber -- for example, by separating the rearward cap of the engine together 
with the cone (Figure 6.12a) or by opening supplementary radial openings 
(Figure 6.12b). Tests carried out under stand conditions have shown that 
the arrangement for "radial cast-off" of pressure illustrated in Figure 
6.12a creates at the moment of separating the cone block an increase of 
thrust amounting to 4-6 times (9). Despite the fact that the peak of 
thrust is brief in time, it is still undesirable since it diminishes the 
reliability of the apparatus on board. Uiis can be avoided by using 
"radial cast-off" of pressure (Figure 6.12b). Such an arrangement for 
cutting off pressure partially balances the direct thrust created by the 
cone of the engine. 

b a 

Figure 6.12. Possible methods of reducing pressure in combustion chamber: 
a -- "axial cast-off" system for reducing pressure in engine; 
b -- "radial cast-off" system. 

The Influence of rapid reduction of pressure upon combustion of 
solid fuel has been investigated under laboratory conditions on a device 
of "combustion interrupter" type (3). Tests have shown that the basic in¬ 
fluence upon interruption of combustion with sudden fall of pressure is 
exercised by the speed with which pressure is reduced. Complete cutting 
off of the combustion process was observed only at a particular value for 
rapidity in fall of pressure, which in study (3) is called the critical 
value (dp/dt)cr. 

The quantity (dp/dt)cr is determined by the composition of the 

fuel and the working pressure in the chamber of the engine. 

For a mixed fuel the minimum value of rapidity of reduction of 
pressure in the chamber which will ensure definitive cutting off of com¬ 
bustion was equal to 5,200 atm/sec with an initial pressure in the cham¬ 
ber of 38 ata. The higher the working pressure in the engine, the greater 
the rapidity of reduction of pressure that is necessary for reliable ex¬ 
tinguishment of the charge. The quantity (dp/dt)cr changes in linear 

fashion with increase of pressure in the chamber. 
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6.3. RcKulatinK the Vector of Thrust as Regards Direction 

Modern ballistic and space rockets need uninterrupted regulation 
of the vector of thrust as regards direction in order to guide flight in 
carrying out a program. 

The rocket can carry out a command maneuver relative to the axes 
of pitch, yaw, and bank if a force is applied to the rocket which is di¬ 
rected at a certain angle relative to the position of the tangent to the 
trajectory. The constituent of this force, directed along the normal to 
the trajectory, is called the control constituent. A complex of apparatus 
and devices for measurement of deviations of the actual movement of the 
rocket from the required direction of flight, the formulation of an ap¬ 
propriate signal, and the creation, with the help of the guidance organs, 
of a steering force, forms part of the system for controlling a rocket 
engine. 

Depending on the nature of the forces taking part in control of 
the rocket's movement, the guidance organs can be divided into three types: 
aerodynamic, gasodynamic, and combined (14). The aerodynamic guidance or¬ 
gans (rudders, wings, stabilizers, ailerons, interceptors) create steering 
force only during flight under atmospheric conditions, by virtue of turning 
the vector of aerodynamic forces. The gasodynamic guidance organs consti¬ 
tute a complex of devices regulating the vector of thrust as regards di¬ 
rection. Canbined guidance organs for créating steering force make use 
of aerodynamic forces and thrust. 

Among the basic executant guidance organs of a solid-fuel rocket 
one may mention: gas rudders, obliquely cut cones, annular gas rudders, 
deflectors, rotating cones, turning engines, and apparatus for gasodynamic 
guidance of the vector of thrust by means of secondary injection of gas 
or injection of liquids in the supersonic part of the cone. 

Gas rudders. As far back as the start of the 20th century the 
father of astronautics K. E. Tsiolkovskiy anticipated the possibility of 
steering a rocket by means of rudders located in the stream of outward- 
flowing gases. In the K. E. Tsiolkovskiy home museum at Kaluga there is 
a diagram drawing "Turning of a Rocket by Explosion With Inclination of 
Rudder" (15). This diagram of K. E. Tsiolkovskiy affords a prototype of 
gas-jet apparatus for steering the flight of present-day rockets. 

Possible layouts of finned gas-jet rudders are shown in Figure 
6.13. The following operate on a gas rudder located in the flow of gases 
issuing from the cone of an engine: 

-- frontal force 
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-- lifting force or flank thrust y 

where v is the speed of flow bathing the rudder; 
p is the density of gas in flow; 
S is the characteristic area of ruddet; 
1 is the characteristic length of rudder. 

The forming of steering flank force by turning one of the hori¬ 
zontal gas rudders to an angle 8 is graphically presented in Figure 6.14. 
If a force Kr.p is applied to the center of mass of a rocket, then a mo¬ 

ment made up of the pair of forces Kr.p and Kr p will turn the rocket 

around the center of mass (CM) to a certain angle of attack, a . This 
will lead to the development of lifting force Y applied to the rocket at 
the center of mass. The difference between the forces K —K,!p will 

constitute the magnitude of the steering force under the action of which 
the center of mass of the rocket will commence to deviate in the direction 
of the operation of the steering force (16, 17). 

The angle of turning of rudders in the flow varies within limits 
of Í 25° for long-range ballistic rockets. This leads to a state of af¬ 
fairs where the forces operating on a rudder vary within broad limits. 
In Figure 6.15 we set forth the results of experiments in determining the 
flank thrust of a gas rudder (18). Experimental investigations show that 
flank thrust upon changing the inclination of a gas rudder is subject to 
an approximately linear law. The differencs between the axial thrust of 
a free stream and the axial thrust of an inclined stream is equivalent to 
the frontal resistance of the rudder. Measurements have shown that for 
all types of rudders the magnitude of losses comes on the average to 60 
percent of the flank thrust secured. 

Figure 6.14. Regarding the question of formation of steering force with 
a gas rudder. 
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Figure 6.15. Experimental data on determination of flank thrust of gas 
rudders (pk = 50 kg/cm^) : 

- change of flank thrust with change of angle of attack 
of central gas rudder (r = 0); 

---- change of flank thrust with change of angle of attack 
of displaced gas rudder (the rudder is located at a 
distance of r 8.6 mm from the axis of the stream, 

a -- Flank thrust, kg; b -- Angle of attack, 0 degrees. 

. In multiple-chamber engines gas rudders can be set up in neutral 
position between chambers. In this case the gas rudders will be under 
the action of the gas flow only when the rudders are turned. 

Cone with inclined section. Deflection of the stream in a cone 
having an oblique section (Figure 6.16) leads to formation of flank force. 
Effective transverse expansion of the stream in cones of such design can 
be created in the presence of elevated pressure at the cone section as 
compared with the atmospheric pressure. The results of experiments are 
set forth in the graph (Figure 6.17). A cone cut off at an angle of 
deflects the stream by 4°. In this connection the flank thrust secured 
is equal to the flank thrust of an ordinary gas rudder set at a 6 attack: 

angle (18). 

A more effective design of cone for controlling the vector of thrust 
in flight is a cone with a cut cylindrical adapter (Figure 6.16b). The 
experimental data shown in graph (Figure 6.18) show that with increase of 
the length of the adapter flank thrust increases, at first in linear 
fashion, and ach' ves its maximum magnitude when the adapter catches in 
its entirety the stream flowing from the cone. 
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Figure 6.16. Cone with oblique section. 

Figure 6.17. Dependence of flank thrust upon angle of section of cone at 
various pressures in rocket chamber, a -- Flank thrust, 
^flank’ kS; b -- Angle of section, 0 degrees. 

Losses of axial thrust occasioned by the presence of an inclined 
flow are insignificant, and come to about 2.5 percent of full thrust (18). 

Cylindrical turning adapter. In this system for controlling the 
vector of thrust the same principle of deflection of the jet stream by 
means of a rudder apparatus is used and in the application of gas rudders. 
But the advantage of this executant organ of control as compared with gas 
rudders is the fact that a cylindrical turning adapter reacts with streams 
of gases only during the time a conmand signal for the creation of a flank¬ 
ing vector of thrust is in operation (Figure 6.19). 

Turning around its transverse axis, the cylindrical adapter or 
curved vane rudder creates a flank force the magnitude of which depends 
on the angle of turning and the length of the adapter (Figures 6.20, 
6.21) (18). With turning to one and the same angle the executant organ 
for steering a rocket which is in the form of , -ylindrical adapter gives 
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a greater magnitude of thrust than does a gas rudder. The maximum flank 

thrust corresponds to a length of cylindrical adapter equal to approxi¬ 

mately three calibers of the critical section of the cone. A deficiency 

of this apparatus is the great quantity of hinge moment. 

Figure 6.18. Dependence of flank force upon length of adapter with oblique 

section, under various pressures in the rocket chamber, 

a -- Flank thrust, Yfiank., kg; b -- Length of cut adapter, 

x , mm. 

Figure 6.19. Cylindrical turning adapter for control of vector of thrust, 

a -- Outlet diameter; b -- Critical diameter. 



Figure 6.20. Dependence of flank thrust upon angle of turning of cylindri¬ 
cal adapter (according to experimental data). a -- Flank 
thrust, Yfiank, kg; b -- Angle of turning of adapter, 9 de¬ 

grees . 

Figure 6.21. Dependence of flank thrust upon length of cylindrical 
adapter (according to experimental data), a -- Flank 
thrust, Yfiank» kg; b -- Length of tube, S, mm. 

Figure 6.22. Deflector for regulating vector of thrust as regards direc 
tion. 
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The application of deflectors as executant organs for gasodynamic^ 

guidance of a rocket ls^ ^^“j^Flgur” 6.22) consists of a spherical 
cal turning adapters. The def e J; ° d is introduced into the gas 
polished ring which turns on hing PP changes the direction of the 
flow where, deflecting tie ow, create flank forces a rela- 
vector of thrust. In order to turn f^c^sC^atadvantage in such a da¬ 
tively low hinge moment is lequire , aware that deflectors are set 
sign of rudder. From the itera ure stages of the "Polaris A-l" and 
up on each of the four cones of the first stages 

"Polaris A-2" rockets. 

Turning on-Hnes and cones. One can steer 

combustion chamber of the engine ( wiH depend on the angle 
stituent of thrust P-sinB us.. h aneie 0f turning the chamber, 8 , 

is small!* the^steering^orce'changes approximately according to the linear 

relation. 

The loss of thrust, XyDp 
will be a very small quantity, and its 

xne iusa ta a. t... ^ — c - , .-»ui« - 

value is determined from the expression ^ 

XyBp=P-Pcose=P(i —cos ejsiP-y. 

Figure 6.23. 
Steering flight of rocket by means of turning engine com¬ 

bustion chamber. 

Deflection fr™ the trajectory of flight^ reason^pitch^and 

yau are detected ‘J1““5 Jr^°j'rPand theSguidance chain to servomechanisms 
transmitted through an amp universal-joint suspen- 
which turn the combustion chamber, set up in its universa 

sion. 

Direction of thrust force can 6e controlled^ Ourning^U^ni- 

r,"orÆngÎn:r*en tifvector of velocity of the rocket 
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coiHcides with the assigned direction the flow of gases from each flank 

iectorv13*1 Cal' Up0n deflection of the rocket from the assigned t, 
J y> a 8yr°scoPe gives a signal to special mechanisms which turn the 
i cess ary flank engines. The flows of gases issuing from the turned en¬ 
gines create a force which turns the rocket relative to its center of 

Mon^f'fV £!r lu* 3X18 °f the r0cket coincides with the assigned direc¬ 
tion of flight, the gyroscope breaks the circuit of excitation of the 
electromagnet and special apparatus return the flank engines to thei 
initial position. 

ra¬ 

íl r 

In solving the problem of regulating the direction of thrust turn- 
ing cones are often used which have low weight and slow losses of axial 
thrust when the direction of actual thrust force is deflected from the 

r/lch ahe rrket £9)‘ |The "Minuteman" rocket may serve as an example 
of such a system. On each stage of the rocket there is a set of four 
turning cones, the deflection of which to the requisite angle is carried 
out by corresponding hydraulic circuits. In Figure 6.24 we set fortTthe 
!ystf";.of 0Per3tl0n of the turning cones for guidance of the flight of 
the 'Minuteman” rocket. Control with respect to angle of pitch is car¬ 
ried out by turning two cones upward or downward (a); maneuvers with re¬ 
spect to angle of yaw (on the course) are carried out by turning both 
cones ocated in the vertical plane to one side or the other (b) ; control 
as regards angle of bank is carried out by turning the cones located in 
the . -rizontal plane in different directions (c). The cone (Figure 6.25) 

in-Snaír ai stJtiona7 Part l' £n annular turning gasket 2, and a turn- 
° part 3’ whlc:h can deflect on hinge-pins 4 to an angle of up to 8°. 

Figure 6.24. System of operation of turning cones for guidance of rocket 
flight. 

Evaluation of the magnitude of hinge moments of such a design of 
cones was carried out through the testing of an experimental rocket en¬ 
gine having a thrust of 3.2 tons with a pressure of 35 kgW in the cham- 
er. Turning the cone for deflection of the thrust vector by 10° was ac¬ 

complished with a maximum torque of 2 kg.m (20). 

In the engine group of the accelerator of the "Nova" rocket a cone 
with universal joint suspension is used (Figure 6.26). Ordinarily such a 
cone is fastened to the universal joint apparatus with hinges at two 
points. In the plane perpendicular to this suspension the ring of the 
universal joint suspension is hinge-fastened to the casing of the engine. 



y Rotation relative 

y 
Figure 6.25. Diagram of turning cone. 
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Figure 6.26. Turning cone with universal joint suspension, a -- Turning 
relative to y-y axis relative to ring of universal joint 
suspension; b -- Turning relative to x-x axis of the ring 
of the universal joint suspension with respect to stationary 
casing. 

Control of turning cones is accomplished via pneumatic and hy¬ 
draulic conduits. In Figure 6.27 we set forth a diagram of a pneumatic 
servosystem using hot gas. A powder pressure accumulator (PAD) is used 
as a source of the working medium for the servosystem. In order to pre¬ 
vent clogging of the system there are fine filters in the structure of 
the servosystem (21). 

In the diagram on Figure 6.28 we show the apparatus of a turning 
cone with sylphon bellows packing. Flexible metallic sylphon connecting 
the cone to the engine constitutes a movable gas packing. 

The area of stationary gas around the throat of the cone preserves 
the delicate sylphon from heating up from the combustion products of the 
fuel (9, 22). 
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Figure 6.27. Diagram of pneumatic servosystem for turning executant con¬ 
trol organs of rocket: 1 -- thermocouple (when necessary to 

use ignition signal); 2 -- pressure regulating valve; 3 -- 

constant throttles; 4 -- receiver filter; 5 -- unit-cast 
rubber packing; 6-- four-bladed turning rudder machine using 

hot gas (quadrant); 7 -- generator for gas; 8 -- powder pres¬ 

sure accumulator (PAD); 9 -- filter and packing for protec¬ 

tion from moisture; 10 -- igniter; 11 -- removable plug for 

ground inspection; 12 and 13 -- supplying of gas to rudder 

machine; 14 -- electromechanical transformer; 15 -- return 

link spring; 16 -- slotted guiding connections; 17 -- output 

shaft; 18 -- rudder machine (seen from behind); 19 -- guid¬ 

ance signal; 20 -- fastening of return link spring; 21 -- 

electromechanical transformer; 22 -- baffle. 

Figure 6.28. Diagram of turning cone with sylphon packing: 1 -- flexible 

sylphon; 2 -- area beyond skirt. 
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6.4. Controlling the Vector of Thrust by Injecting Gas or by Injecting« 

Liquid Into the Postcritical Part of the Cone 

From the materials published in the foreign press it is apparent 

that the working out of methods to create flank thrust is at present one 

of the most difficult and important problems engineers encounter in plan¬ 

ning large solid-fuel engines (23). 

At present great attention is being devoted to the method of con¬ 

trolling the thrust vector through blowing in gas or injecting liquid into 

the cone of a rocket engine. When this method is applied there is no con¬ 

tact between the moving units and the gases flowing out of the cone. The 

gas or liquid introduced into the cone deflects the basic flow, creating 

flank force which is used for control of the rocket. 

In this connection two types of systems for supplying working medium 

are being examined: that with blowing-in of hot gas, and the system of 

injecting a liquid. Each system, for purposes of regulating thrust vector, 

requires an additional quantity of working medium used in the rocket, at 

the cost of reducing the amount of useful load. In tests carried out in 

order to give effect to the method under examination the following are used 

as working media: not gas, gaseous nitrogen, liquid nitrogen, liquid hydro¬ 

gen, water, and freon-12. 

' When hot gas is blown in it is supplied from an auxiliary gas gen¬ 

erator or is taken from the basic combustion chamber. Then this gas enters 

the postcritical part of the cone via regulating channels. The "Thiocol" 

firm has worked out a system for admitting hot gases with a thrust of 

2,270 kilograms from the engine combustion chamber into the postcritical 

part of the cone. Tests of this system of supply have shown reliable 

working over a time of 50 seconds on the part of a needle valve made of 

porous materials saturated with copper and cooled by exudation. The dis¬ 

charge of gases through the valve did not exceed 3 percent of the maximum 

discharge from the basic combustion chamber. The weight of the conduit 

mechanism and valve are less than 1.8 kilograms (24). 

The use of freon somewhat facilitates the problem of supplying gas, 

but it requires auxiliary tanks, in which the freon is under helium or 

nitrogen pressure. 

Physical scheme of process. The flow of liquid or gas introduced 

into the supersonic part of the cone interacts with the supersonic flow 

of gaseous products of combustion of the fuel and, constituting a barrier 

to the basic flow, it brakes this flow. Thus in the cone there are cre¬ 

ated conditions leading to the constitution of a sharp jump in the com¬ 

pression arising upon the interaction of the supersonic flow with the bar¬ 

rier (transverse flow) in the form of the stream introduced. The flow 

* In some sources the processes of blowing in gases and injecting a liquid 
are called iniection, the working medium an injectant, and the supply sys¬ 

tem the injector. 
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introduced, deviating from its initial direction, runs down along the 
flow to the cut-off of the cone, mixing with the basic flow (Figure 6.20). 

(c) 
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Figure 6.29. Elements of physical scheme of process in cone upon blowing 
of gas into postcritical part of cone, a -- Shock wave pro¬ 
voked by injection of secondary liquid; b -- Weak shock wave 
c -- mo, limit stratum; d -- Secondary flow; e -- Break-off 
area. 

At the same time, as silhouette photographs of the process show 
(23), an interaction takes place between the curvilinear shock wave de¬ 
veloping and the limit stratum, which leads to breaking off of the sec¬ 
ondary flow from the wall upon which the injection aperture is located. 
Position of the point of break-off from the limits of the break-off zone 
and of the mixing stratum depends on the discharge of the introduced com¬ 
ponent (and consequently upon pressure) and upon the Mach number in the 
cross-section of the injection. After the mixing of the gases they expand 
isentropically to a static pressure equal to the static pressure of an un¬ 
disturbed supersonic flow. After the jump in compression the velocity of 
the gas falls off sharply, and pressure rises. When this happens pressure 
on the wall of the cone below the injection point along the flow proves to 
be greater than in the event no injection had occurred. This circumstance 
leads to the development of a flank force Yfiank the magnitude of which is 
equal to the sum of all forces from the diversion of pressure operating on 
the wall of the cone after the jump in compression. 

The shape of the shock wave. In all experiments (23) the shock 
waves forming upon the injection of gas or liquid, independently of the 
physical properties of the component introduced, are analogous in shape 
to those presented in Figure 6.29. The inclination of the shock wave in 
any section increases with increase of the discharge of the component in¬ 
troduced and declines with diminution of the Mach number at the cross- 
section of introduction. In some combinations of introduced component 
and of positioning of the aperture for introduction the shock wave falls 
upon the opposite wall of the cone and is reflected from it. This is 
most frequently observed when the point of injection is located close to 
the critical cross-section of the cone, or the discharge of the component 
introduced is too great. In this case, the specific flank thrust related 
to a unit of mass discharge of the component introduced falls off. The 



effectiveness of creation of flank thrust also declines in the presence 

of a blurred contour of shock wave is present and there are high dis¬ 

charges of the component introduced, when the system of jumps commences 

to diffuse radially. In both cases disturbances of pressure go beyond 

the limits of the plane normal to the plane of injection. 

Various approximate methods for theoretical investigation of the 

processes of injecting gas or liquid into the cone are examined in the 

literature (25, 26). 

Experimental investigation of flank forces (23) arising upon intro¬ 

duction of secondary liquid into engine cone. Tests have been carried out 

with solid-fuel rocket engines the charges of which consisted of mixed 

fuel composed of polyurethane and ammonium perchlorate. In operation of 

the engine 590-680 kilograms of thrust were developed in 8 seconds. Ex¬ 

perimental cones weru made in the form of cones having a gas expansion 
rate of 25:1. Depending on the placement of the aperture for introduction 

of the component, the character of the interaction of the induced shock 

wave with the opposite wall of the cone changed. The induced jump does 

not hit the opposite wall of the cone when there is a cone expansion rate 

(sj) of 9.9 at the point of introduction of the component. The jump falls 

and is reflected from the opposite wall when «=2,65. The angle, defined 

by the opposite wall and a line connecting the point of injection with 

the point of reflection, determining the level of pressure on the oppo¬ 

site wall is equal to approximately 53°. 

Freon-12, water, and gaseous nitrogen were used as working media 

for introduction into the postcritical section of the cone. The ratio of 

weight discharges of injected substance and basic flow fell within limits 

from 0.039 to 0.118. Pressure measured along the wall of the cone ran 

from 0.07 to 1 kilogram/square centimeter. 

In Figures 6.30 and 6.31 we show typical pressure profiles along 

the surface of a cone, secured for identical « upon introduction of 

freon-12 and N2 through drainage apertures located in one quadrant of a 
conical jet. Comparison of the pressure profiles shows a substantial rise 

in positive pressure over the pressure of an undisturbed flow in the field 

back of the point of introduction of nitrogen relative to the direction 

of the flow. The relatively high characteristic of gaseous nitrogen as 

compared with the characteristic of freon-12 is partially explained 
through the fact that nitrogen is already in gaseous state and the amount 

of movement of the nitrogen stream is considerably greater than that of 

the freon-12 stream at identical mass discharges of flow. 

As the pressure profiles show, the basic part of the flank force 

is reflected lower along the flow than the point of injection and is to 

be explained by disturbances in the distribution of pressure on the wall 

of the cone. 
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Figure 6.30. Typical pressure profiles along surface of cone upon injec¬ 

tion of freon-12: „ „ *inpm 
-—-»-«i 

SsiüLjto.m, t,ts9.»i ¢, s s,» mm 
UC*K, ‘ 

a -- Pressure upon wall of cone; b -- Distance along axis 
of cone; c -- o -- undisturbed profile; d -- Point of in¬ 

jection; e -- Cut-off of cone. 

Figure 6.31. Typical pressure profiles along surface upon cone upon in¬ 
jection of gaseous nitrogen: _ _ ^mbh. 

'/rop».“7*-9 7? ; -*7-=2'11 

«0.04» «.«•.» é.mifiMM. 
UCIH, 

a -- Pressure upon wall of cone; b -- Distance along axis 

of cone; c -- 0 -- undisturbed profile; d — Point of in¬ 

jection; e -- Cut-off of cone. 
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In Tabic 6.1 we present: experimental data on aggregate force, and 
these are compared with data secured in the measuring of thrust on a six- 
component stand. 

Table 6.1. Comparative Thrust Characteristics of Solid-Fuel Rocket Engine 
Upon Injection of Freon-12 in Supersonic Fart of Cone 

(1) Bmhhnhu, nosyneHHue sa ochomhhh HSMepesnl 
npo^Haa AaMeHHH* 

„V 

Bauwiii, B&iyieH* 
mm wcTpanaiauHeR 
AMHiii ao iaM«py 

(2) OoaoaoR Tara 

«• 
m 

^oT 
61^" 

Jjat 
5f®*« 

5V 
si0«" '5 i isr" 

<5V 
Í51 •*** 

^oT 

0° 0,06 0,0216 0,0233 0,305 0,071 0,0253 0,06 

40" 0,103 0,363 0,0387 0,393 0,0152 0,013 0,103 

Key: 1 

2 

3 

4 

5 
6 
7 

* 

Quantities secured on basis of measurements of pressure pro¬ 
files* 

Quantities secured by extrapolation of data on measurement of 
flank thrust 

Part of flank force determined by redistribution of pressure 
on wall of cone, in kg 

Increment in amount of axial force by virtue of operation of 
secondary flow, in kg A/’ocm 

Axial and flank thrusts, kg P*t**P*o* 
Weight discharges of injected liquid and basic flow Oi ■ <?• 
Angle of injection of liquid relative to normal to wall of 

cone, positive in direction upward along flow • 
Secured by integrating pressure profile and impulse as measured 

in the process of injecting liquid. 

The arising of flank forces upon the injection of liquid or gas 
into the postcritical part of the cone provokes increase of the axial 
thrust of an engine. The axial augmentation of thrust has a tendency to 
ward direct proportionality with the discharge of the secondary flow. 
For given discharges of secondary components and for a selected shape of 
cone, the augmentation in axial thrust force comes approximately to 1/3 
of the flank thrust developing in this connection. 

In Figure 6.32 we show the influence of discharge of freon-12 upon 
the magnitude of specific impulse. Extrapolation of experimental data co 
incides pretty well with the computed value for effective unit impulse of 
the secondary liquid, equal to 156 kilograms • second/kilogram, the theo¬ 
retical computation of which is carried out in study (27). 

In the literature schemes for blowing gases taken off the combus¬ 
tion chamber into the postcritical part of a fixed cone partially embedded 
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In the casing are described (Figure 6.33). The cone can be embedded In 
the casing to the extent of 30-80 percent of Its length, depending on the 
design of the engine. In tests of solid-fuel rocket engines at a thrust 
of 7.7 T over 70 seconds and with a pressure of 50 atmospheres In the 
chamber, the vector of thrust by virtue of the Injection of gases into 
the postcritical part of the cone inclined by 3° in two planes (18). In¬ 
jection of gas Into the cone was carried out through two needle valves, 
the axes of which were at a 90° angle to each other. The needle was made 
of porous tungsten saturated with copper. As the valve operated the cop¬ 
per boiled out of the pores, ensuring elimination of heat. 

Figure 6.32. Influence of discharge of freon-12 upon magnitude of specific 
impulse: -- effective specific impulse of secondary in¬ 
jected liquid. 

Figure 6.33. Diagram of solid-fuel rocket engine with cone partly em¬ 
bedded in casing: 1 -- Solid fuel charge; 2 -- needle of 
valve; 3 — valve lor in je«. Li a of gases from rocket cham¬ 
ber into postcritical part of cone; 4 — nozzle for injec¬ 
tion of gases; 6 -- lower cap of casing of engine; 7 -- 
rocket chamber; 8 -- heat insulation. 
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CHAPTER VII. MOTION OF THE CENTER OF MASS OF AN UNGUIDED ROCKET 

7.1. Equations for the Motion of an Unguided Rocket Over the Active Part 
of Its Trajectory 

The launch of unguided rockets is carried out from rocket launch 
stands set on an incline. During the time of its motion along the guides 
the rocket takes on a relatively low velocity necessary for its stable 
flight in the active part of its trajectory. 

The altitude of the active part of the trajectory of an unguided 
rocket does not exceed 1-2 kilometers. Under these circumstances for ap¬ 
proximate calculations one may leave out of account change in the thrust 
of the engine with altitude. From here on we shall write the expression 
for reactive force in the following form: 

where ue is the effective speed of outward flow. 

By means of this quantity we take into account not only the actual 
characteristics of the engine itself, but also the influence of external 
atmospheric pressure upon the amount of the engine's thrust. 

Into the expression for frontal resistance 

X-Jf!-Sc.(í) (72) 

we introduce the function F(v), customarily applied in the ballistics of 
unguided missiles and determined from the relationship 

F(v) - • 10-«t>*c, 

Hereupon expression 7.2 assumes the form X^“^-l(IOOH{y)F{v), 

- 263 - 



where -- a function allowing for change in the density of air 

with altitude. 

In view of the slight altitude of the active part of the trajectory 
it is ordinarily assumed that 

Let us write an equation for motion of the center of mass of a 
rocket relative to the tangent 

m (/) 9 - —í2L 1000//00 F(v)~m (/) g sin •. (7.3) 

With the introduction of substitutions: 

in —«,(1 — ^)--^-(1 — p) 

(7.4) 

(7.5) 

equation (7.3) is brought to the form 

(7.6) 

Let us write another equation, for motion relative to the normal 

-££2L* (7.7) 

and the kinematic equations 

veos 8; 

>—vsin#. 

(7.8) 

(7.9) 

Equations (7.6)-(7.9) define the motion of the rocket on the active sec¬ 
tion of the trajectory. The initial conditions corresponding to the mo¬ 
ment the rocket leaves the guides have the following form: 

with /«/o; Xo-0; >• — (>. V—V« 8 — 

In order to determine velocity v0 it is necessary to examine separately 
the motion of the rocket along the guides. Acceleration of motion of 
the rocket among the guides will be determined from the expression 
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p_ 
"h flinV 

(7.10) 
r-y— 

If one can assume that m Is a constant and £ is a constant ■ then ^ Is a 
constant and the velocity at which the rocket leaves the guides will be 
determined from expression 

(7.11) 

where so is the course of the rocket's motion along the guide. 

The time of motion along the guide is determined from the expres¬ 
sion 

/.-^-125 

But the assumption regarding constancy of engine thrust for the initial 
period of its working can in some cases lead to considerable errors. In 
this case it is necessary to integrate the motion of the rocket along the 
guides while taking the curve P(t) into account. It is also not diffi¬ 
cult to determine the initial velocity v0 experimentally. 

Ordinarily in study of the motion of the rocket beyond the guides 
it is assumed that P * PCp = constant. But if the character of the curve 
P(t) is such that the mean value for thrust Pcp upon motion along the 
guides and beyond them is substantially different, then it is useful to 
introduce the concept of a fictitious length of guides, Sq fict* This 
length is determined from the condition of securing the real amount of v0 
for a value of Pcp corresponding to flight of the rockets beyond the 
guides. The value so fict can b® secured from formula (7.11) 

whence 

7.2. Integration of Equations for Motion of Rocket in Active Section of 
Trajectory, in First Approximation 

Equations (7.6)-(7.9) can be integrated exactly only by one of the 
methods for numerical integration of differential equations. In first ap¬ 
proximation, let us examine the method for determining the elements of 
the trajectory of motion of a rocket without taking air resistance into 
account. In addition, let us replace angle B in equation (7.6) by its 
mean value along the active trajectory or by its initial 
value 8o . 2 
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Equation (7.6) assumes the following form: 

ecp 

Taking into account expressions ¢7.1) and ¢7.4) and designating fsllllcp 
as gi, we secure 

(7.13) 

Integrating from the start of motion of the rocket to an arbitrary moment 

in time, we secure the Tsiolkovskiy formula with the weight of the rocket 

taken into consideration 

vh TTí M~ft*- (7.14) 

By the wave sign (~) we indicate the magnitude of the first approxima¬ 

tion. The values of ¿/i(p) are given in Annex 2. 

The velocity of the rocket at the end of the active section of the 

trajectory is determined from the expression 

where t is the full time of the engine's working; 

’‘■“’S'- 

We find the length of the arc of the trajectory from the expression 

s 
“t-ftT- 

Substituting dt from expression ¢7.4) 

it ~dr. (7.15) 

we secure 

Wë introduce the designation 



(7.16) 

By doing this we secure 

Values for the function Ki(n) are given in Table 7.1. 

Table 7.1 

» ff.»» ffifr) p ff.fr) ff.fr) p ff.fr) . ff.fr) 

iiiiiiiiililliiililililiiilliil! 

0,00005 
0,00006 
0,00007 
0,00008 
0,00010 
0,00011 
0,00013 
0,00015 
0,00016 
0,00018 
0,00020 
0,00022 
0,00024 
0,00027 
0,00029 
0,00032 
0,00034 
0,00037 
0,00040 
0,00042 
0,00045 
0,00065 
0,00083 
0,00107 
0,00126 
0,00151 
0,0018 
0,0022 
0,0025 
0,0029 
0,0033 
0,0038 

0,0000 
0,0945 
0,0181 
0,2604 
0,3340 
0,4026 
0,4668 
0,5271 
0,5838 
0,6373 
0,6881 
0,7364 
0,7825 
0,8265 
0,8686 
0,9089 
0,9477 
0,9849 
1,020 
1,055 
1,088 
1,241 
1,372 
1,488 
1,591 
1,684 
1,769 
1,846 
1,917 
1,984 
2,016 
2,104 

0,090 
0,095 
0,100 
0,105 
0^110 
0,115 
0,120 
0,125 
0,180 
<M35 
0,140 
<M45 
<U50 
0,155 
0^160 
0,165 
0,170 
0,175 
0,180 
0,185 
0,190 
0,195 
0,20 
0,2! 
0,22 
0,23 
0,24 
0,25 
0,26 
0,27 
0,28 
0¿9 

0,0042 
0,0047 
0,0051 
0,0057 
0,0062 
0,0069 
0,0075 
0,0082 
0,0088 
0,0096 
0,0103 
0,0110 
0,0119 
0,0127 
0,0135 
0,0144 
0,0154 
0,0163 
0,0172 
0,0183 
0,0193 
0,0204 
0,0215 
0,0238 
0,0262 
0,0287 
0,0315 
0,0342 
0,0372 
0,0403 
0,0435 
0,0468 

2,159 
2,210 
2,259 
2,305 
2,349 
2,391 
2,431 
2,470 
2,506 
2,541 
2,575 
2,608 
2,639 
2,669 
2,699 
2,727 
2,754 
2,780 
2,806 
2,831 
2,855 
2,878 
2,901 
2,945 
2,986 
3,025 
3,063 
3,098 
3,132 
3,165 
3,196 
3,226 

0¿0 
OkSI 
0£2 
0£8 
«¿4 
0¿5 
0¿6 
0£7 
0¿8 
0¿9 
0^40 
9.41 
0,42 
0L43 
0.44 
0,45 
0,46 
0,47 
0,48 
0,49 
0¿0 
0^2 
0^54 
OkH 
0^58 
0^0 
0y62 
0,64 
OJBß 
0¿8 
%70 

0,0503 
0,0539 
0,0577 
0,0617 
0,0658 
0,0700 
0,0744 
0,0789 
0,0836 
0,0885 
0,0935 
0,0987 
0,1041 
0,1096 
0,1153 
0,1212 
0,1273 
0,1335 
0,1400 
0,1466 
0,1534 
0,1677 
0,1828 
0,1988 
0,2156 
0,2335 
0,2523 
0,2722 
0,2932 
0,3154 
0,3612 

3,254 
3,282 
3,308 
3,334 
3,358 
3,382 
3,405 
3,427 
3,448 
3,468 
3,488 
3,508 
3,526 
3,544 
3,562 
3,579 
3,595 
3.611 
3,627 
3.612 
3,657 
3,685 
3,711 
3,736 
3,760 
3,782 
3,804 
3,824 
3,843 
3,861 
3,878 

In order to determine the angle 0 , of incline of the vector of 
velocity to the horizon, we integrate expression (7.7) through: 

where t0 is the moment at which the rocket departs from the guides. 
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In determining angle 0 we shall disregard, in the expression for 
velocity (7.14), the second term of the right-hand part. In doing this, 
with expression (7.15) taken into account, we secure 

! (7.17) 

We introduce the designations: 

‘«-f-5rr-|n,*(4-+T): 

From this we get 

«(•)-*(%) — XSC- [tft(p) _ *,(*)] - 
(7.18) 

The values for function /(j(p) are given in Table 7.1. 
Ihe value of po Is determined from expression (7.4) 

s—' 

and t0 is determined according to formula (7.12). 

Uhen change of angle 6 is slight, the left-hand arm of equation 
(7.17) may be calculated from the expression 

Í' 

whereupon expression (7.18) 

AI-- 

At At 
COfijp cot 9, ' 

assumes the form 

~ l^i (^) ~ Kt 
(7.19) 

For the end of the active part we secure 

(*,(*)-y,(is)i. 
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Example. Let us calculate In first approximation the elements of 
the end of the active section of the trajectory of a rocket, characterized 
by the following parameters: 

D = 200 mm; Q0 = 200 kg; *t = 96 kg; t = 3.0 sec; ue = 2,000 m/sec; t|| * 45°. 

The length of the run of the rocket along the guides is L = s0 * 7.8 meters. 

We determine the parameter p« : 

Me determine the thrust of the rocket, which we assume to be con¬ 
stant : 

»- 96-2000 
ft ~ 9.81-3 := IjSTT “ 6520 kg 

We determine the initial acceleration of the rocket 

A«ln»o^ -65¾^1—9.*»'<W>7*3|3 «/sec2 

We determine the velocity v0 for the departure of the rocket from 
the guides: 

t* = V^TZ-= * 70 m/sec 

We determine the time of motion along the guides: 

We determine the initial relative expenditure of fuel: 

Wé determine in accordance with formula (7.19) the change in 
angle • : 

(3,627-1,254)^5,15.10-* radians -2,95o; 

•« = #•—A# = 45° — 2,95-° « 42,05°; 

-j-« «,52°. 

We determine velocity at che end of the active section: 



*« ** (bulo»)—f Sin Ocp X s 3000 0^54—9,81-0,689-3 » 1288 m/sec 

Me determine the length of the Active section, si, according to 
formula (7.16): 

<■ K, 0»,) - /,ln V* - ^^„0 _ 9,81 .Q&9.V 

tie determine the height of the active section: 

1720 M. 

t, rn ^Sin I" = 1720-0,689 - 1185 m. 

7-3. Allowing for Air Resistance 

In calculating the velocity of the rocket in second approximation 
we shall take into account additionally the air resistance. In doing this 
we secure from expression (7.6), taking expression (7.15) into accoimt: 

where 

flÄ-af (r) 

e 

(7.20) 

Integrating within appropriate limits, we secure: 

la(7.21) 

Mb express by dv, on the basis of expression (7.20) the multiplier 
forming part of the right-hand ana of the last equation; under these I — |J 

circumstances 

* —[«. - * (1 -1*> 

Taking expresalon (7.15) into account and designating 

(7.22) 

we secure 

□EliUBn 
Or T 
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The integral in expression (7.21) assumes the form

. ^ r F{v)dv
«j ~ J I a/^(l/) + {t(l-a)~

Bie quantity

(7.23)

expressing the ratio of the weight of the rocket and frontal resistance 
to engine thrust can be regarded as a quantity of the first order of 
smallness. Eliminating small quantities higher than the first order, we 
can write

When this is done expression (7.23) assumes the form

^-^jF(v)dv-t- lF(v)l>dv + jr(v)dv.

We may note that expression (7.23) is a quantity of the first order of 
smallness relative to the first term of the right-hand aim of expression 
(7.21). For this reason, eliminating the quantity «* in expression 
(7.23), we essentially disregard a quantity of the third order of small
ness relative to the velocity of the rocket.

From expressions (7.21) and (7.24) ve secure

o,

In the last term of the right-hand arm (I—p) is taken out in its mean 
value.

We introduce the designations:

(7.25)
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ItW-jfOd* (7.26) 

(7': 

Under these circumstances we secure 

•-ï—£[• + jjMn 

Sie functions tl(v) and L2(v) are figured out conformably to the "1930 
lav of air resistance" (1) (Figure 2.9). 

Taking expression (7.22) into account we secure 

ao 
where 

Finally the expression for velocity assumes the following form*: 

(7'28 

* Xhe functions Li(vfs) and L2(vra) are Introduced in study (1) as func 
tiens of the velocity according to Tslolkovskly 

The values for Li(v) and I.2(v) *** given In Table 7.2. 

Bquatlon (7.28) contains only one unknown, jr« vhlch must be deter¬ 
mined by trial and error, as the velocity falls under the sign of two 
tabulated functions. In practice proceeding in the following fashion 
may be recommended. Let us designate the right-hand arm of equation 
(7.28) by f(v), whereupon we secure 

à*-/(9)-0.0. (7 29) 

Let ue assUn ourselves three values of velocity, with vi » v, V2 and V3 
less than v by S percent and by 10 percent. The values for velocity are 
rounded off in such fashion as to spare oneself interpolation in 
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determining the table values Li(v) and L2(v). Having determined the 

value , we construct a graph for the dependence of Ao upon v¿ and 
we find the value of v at which An-0 . This will give us the value for 
velocity which is being sought. 

Table 7.2 

9 10“'i,*») • • (•) 

too 
no 
120 
130 
140 
ISO 
160 
170 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
490 
460 
470 
480 
490 
900 
910 
920 
930 
940 

0,029 
0,039 
0,050 
0,064 
0,080 
0,096 
0,119 
0,143 
0,170 
0,200 
0,233 
0,270 
0,310 
0,355 
0,403 
0,456 
0,513 
0,574 
0,640 
0,712 
0,791 
0,881 
0,990 
M2 
1,29 
1,49 
1.71 
1,93 
2.17 
2,42 
2,69 
2,97 
3,26 
3,56 
3,87 
4,20 
4,54 
4,89 
5.25 
5,63 
6,01 

f-41 
6,82 
7.25 
7,68 

0,00002 
0,00002 
0,00004 
0,00006 
0,00008 
0,00012 
0,00016 
0,00022 
0,00029 
0,00038 
0,00049 
0,00063 
0,00079 
0,00099 
0,0012 
0,0015 
0,0018 
0,0022 
0,0026 
0,0032 
0,0038 
0,0046 
0,0057 
0,0075 
0,0104 
0,0144 
0,0190 
0,0242 
0,0300 
0,0363 
0,0433 
0,0510 
0,0594 
0,0685 
0,0784 
0,0890 
0,100 
0,113 
0,126 
0,140 
0,155 
0,171 
0,188 
0,206 
0,224 

550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 

8,12 
8,58 
9,04 
9,52 

10,01 
10,51 
11,02 
11.55 
12,08 
12.63 
13,20 
13,78 
14,37 
14,98 
15,60 
16.24 
16.89 
17.56 
18.24 
18,93 
19.63 
20,35 
21,08 
21,82 
22,58 
23.34 
24,12 
24,91 
25,7! 
26,52 
27.35 
28,19 
29,04 
29.90 
30,78 
31,67 
32.57 
33,48 
34,41 
35,34 
36,29 
37,26 
38,23 
39.22 
40.22 

0,244 
0,265 
0,287 
0,309 
0,333 
0,358 
0,384 
0,420 
0,441 
0,471 
0,503 
0,537 
0,572 
0,609 
0,648 
0,688 
0,731 
0,775 
0,821 
0,869 
0,919 
0,970 
1,028 
1,078 
1,135 
1,194 
1,254 
1,317 
1,381 
1,447 
1,516 
1,586 
1,658 
1,733 
1,809 
1,888 
1,969 
2,053 
2,138 
2,226 
2,316 
2,409 
2,504 
2,602 
2,702 

1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 
1150 
1160 
1170 
1180 
1190 
1200 
1210 
1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 

41,23 
42,26 
43,29 
44.34 
45,40 
46,48 
47,56 
48.66 
49,78 
50,90 
52,M 
53,19 
54.35 
55.53 
56,72 
57,92 
59,13 
60.35 
61,60 
62,85 
64,11 
65,38 
66.67 
67.97 
69.28 
70,61 
71,94 
73.29 
74.66 
76,03 
77,42 
78,82 
80,23 
81.66 
83,09 
84.54 
86,01 
87,48 
88.97 
90,47 
91,96 
93,50 
95,04 
96,59 
96,15 

2,804 
2,910 
3,017 
3,128 
3,240 
3,356 
3,474 
3,595 
3,719 
3,846 
3,975 
4,107 
4,242 
4,381 
4,522 
4,66 
4.813 
4,963 
5,116 
5,272 
5,432 
5,594 
5,760 
5,929 
6,110 
6,277 
6,456 
6,638 
6,823 
7,012 
7,205 
7,401 
7,600 
7,803 
8,010 
8,220 
8,434 
8,651 
8,873 
9,093 
9,326 
9,559 
9,795 

10,03 
10,28 

Example. Let us calculate the velocity of a rocket at the end of 
the active section for the example examined in first approximation in 
7.2. In this example the velocity was determined without allowing for 
air resistance (v = 1,288). 
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Let the coefficient of the shape of the rocket, t, be 1.75 under the 
"1930 resistance law." 

According to Table 1 of the annex we find 

«O'*) = = H{m) = 0i944- 

Vfe determine 

~S¿m "rUf 

I,75 0,2*I0*0,W4.3 
9ti-¿00u 

We compute 
QcptinOcp (200-0^-96)-0.W9 

-P--652Õ- 
0,0160. 

1,032-10-». 

Expression (7.29) assumes the form 

Av » 1268 - 1,032-10-»-1,0162.,(tf)-1.032*- lO"*^ (w) - w = 0 

or finally 
Aw = 1288- 1,05-10-»£, (») - 1.068-10-*£. (wl - w = 0. 

Solving this equation by trial and error, we select in accordance with 
what has been said above three values for Vi, and from Table 7.2 we de¬ 
termine Li and L2: 

*!< £, • 10”* £,-10-« lj05-10-»£, 1,068-10-«£, 

1280 
1220 
1160 

74.66 
66.67 
59,13 

6,823 
5,760 
4,813 

78,5 
70.1 
62.1 

7,3 
6,1 
5.2 

We compute the values of A»i ; 

to, « 1288 - 78,5 - 7,3 - 1280 = - 78; 
to, s 1288 - 70,1 - 6,1 - 1220 = - 8; 
to, » 1288 - 62,1 - 5,2 - 1160 = + 61. 

Wë enter the values secured for on the graph Figure 7.1 and we 
find the value of vi to be 1,213, with Aw-0. 

Finally we get v^ ■ 1,213 meters per second. 
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«V 

Figure 7.1. Graphical solution of equation ¢7.28). 

Calculating the tonath of th£ Arc 

In 7.2 we got a relationship (7.16) for detensination of the length 
of the arc sk without taking air resistance into account. Let us exaaine 
a methods system for taking air resistance into account in computing the 
length of the arc. In doing this we take it that the coordinates of the 
end of the active section can be determined with precision relative to the 
lesser precision of the computation of velocity. Let us write the correc¬ 
tions which take into account the influence of air resistance in the fora: 

tog-t-s. 

Calculations show that one may approximately regard acceleration 
of the force of air resistance upon the active section of the trajectory 
as being proportional to the square cf the time of flight: 

Hence it follows that 

Am«™ T: 

Finally for the end of the active section wc secure 

(7.30) 

where ào* is determined from expression (7.28). 

For the example considered above wc have 

I 



«brace 

Sé- 
—1213 
1- 3*«4, 

ino-H. 104 M. 

fijlSVUtlM the Anele K 

Tor angle • we eecure fron expreaslon (7.7) 

Ihe substitution under the Intoral 
cording to the Tsiolkovskiy fonsule 

sign of velocity £ by velocity ec- 

va « ^ la (|t) 

O? iiT*!!1*/! ’l9> ’ U lAich th* lnflu«‘c« the weight of the rocket 
ra of eir resistance was not taken Into account. In order to allow ra> 

ttr,lJoL0: th#M UCt0r> ^ th* 'or vr.îrâuyl0r«Th. 

•-■••UiO*)-#,/ - Ao# 

«diere Aq, is doterai nod free expression (7.30), 
coefficient £ Is detemlned fron expression 

O-31) 

In idiich connection the 

Thus for an arbitrary aaeant of tlae we heve 

and expression (7.31) assinas the following foras 

nhere 

r— 

(7 32) 
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Regarding 

éL±JS. 

as a quantity of the first order of saallness, we transform the 

^ JT-/ + -^=)- 

or 

-ji*;*^* 
The first tens was taken Into account In deriving fomula (7.19) 
correction to this formula assumes the form 

I(â9) cot^p^ <f. 

Lot us replace vjs with its approximated expression 

Mien this is done expression (7.33) assumes the form 

For the end of the active section we get 

•(*•) *■ ■Ç’ + TÍ*1 ~ iDj* 

Ohe re 

integral 

lhe 

(7.33) 

(7.34) 

(7 35) 

Por the example we have been examining 



M *“* *«» 9,81 -co» 43*31' __ . 
A “ ¡B»  -^551-- 0,693-10-*, 

f|h-^- = f»ta •«p in . 931 0,689-2,303 lgI3^5 r I7A 

-^»(9-0^24«) . 12,4; 

8(88) » 0^83-10-«(17^ + 12,4) - 20,7.10"« /»8 « 0.12*. 

He get 
I (il) = 0,12° = 7,2-. 

Taking this correction into account we secure: 

¿8 - 2,95 + 0,12 « 3,07° = 
8, - ^ — il = 45° — 3,07° -- 41,9:»° 110 W. 

After refining the values sfe and 1,, we determine the values for the co¬ 
ordinates of the end of the active section from expressions 

xt - (K cot 

Por the exasg>le being examined we have: 

. .45*-1,54° - 4346* - 43^8-, 

a, - 1624-cm 43*28' . 1180 jt. 

- 1834 >la43*2r « 1120 m. 

7.4. Determining the Full Ranee of Plight of the Rocket 

In order to determine the full range of flight of the rocket one 
must calculate the elements of the passive section of the trajectory. 
For this purpose one can make use of equations (7.6)-(7.9), taking P ■ 0 
and in them and taking into account in expllclty form the 

change In the density of the air and in tlic* speed of sound with altitude. 
In ballistics the following system of differential equations of motions, 
with Independence of the variable x, is the generally used (2): 

(736) 
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In these equations: 

P = tgO; 
g /O'IO» . 

*-5T* 
a sVcosS; 

V?-. 

/w-«00 

(7.37) 

(7.38) 

(7.39) 

Equations (7.36)-(7.39) are integrated numerically with initial conditions 
corresponding to the end of the active section of the trajectory. 

No approximate methods exist which might enable one to integrate 
with acceptable accuracy the equations for the motion of a rocket on the 
passive section of the trajectory. 

It is possible, however, to make use of ballistic tables (collec¬ 
tions) drawn up for artillery shells, in which values for the elements 
of the point of fall X, vc, , and T and for the height of trajectory 
Y as they depend upon the three initial parameters £, v0, and 8b (2). 
As applied to the passive section of the trajectory"of a rocket the 
initial values will be: c^, v^, and 0K, where 

Cg — cH(yt). 

In this connection one must recall that the initial values of the 
tables: X, vc, 0c , £ -- will correspond in this case not to the point 
of fall C , but to the point £ where the trajectory intersects with the 
horizon of the end of the active section of the trajectory (Figure 7.2). 

In order to determine the elements of the point of fall, it is 
necessary in addition to calculate the section of the trajectory CC'. 
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Insstnuch &s ths extent of this section is not greet a the elements 
of the point of fall can be calculated in accordance with approximate 
formulas secured by expansion in series of the functions v, o , and £ 
over the stages xe . For the ^ ordinates we secure the following 
relationship: 

2v¿cos-8r 3i£ cos,8i 0(^). 

The last tern in the right-hand arm can ordinarily be disregarded, and 
the quantity Ax can be determined from the expression 

AX--±Ä j/zn¡ü + Ay*, 
(7.40) 

where 

4_2»,cq«»8, 

Üie full range of the rocket will be determined from the expression 

Ax, 

v^ere Xtab is determined in accordance with the ballistic collection and 
Ax in accordance with formula (7.40). 
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CHAPTER VIII. PLANE OSCILLATIONS AND DISPERSION 
OF FINNED UNGUIDED ROCKETS 

8.1. Factors Determining Dispersion of Umtuided Rockaf 

Dispersion of unguided rockets considerably exceeds dispersion of 
artillery shells in fire over an identical range. This relates particu¬ 
larly to flank dispersion. It is customary to evaluate dispersion in fire 
by the magnitudes of probable or mean deflections of shells in a flank di¬ 
rection (Bb) and in range (Bd) . A central strip of the ellipse of disper¬ 
sion having a breadth of 2Bd will contain 50 percent of all falls. The 
same applies to the central strip of an ellipse of dispersion having a 
length of 2Bd. 

If the quantities BB and Bd relate to range of fire, then the dis¬ 
persion of artillery shells can as a mean be characterised by the quanti¬ 
ties : 

Unguided rockets used during World War II are characterised by the 
mean values : 

Bf _ I . Bd i 

at maximum range of fire. The causes of the considerable augmentation in 
dispersion of unguided rockets as compared with artillery shells will be 
analyzed on the basis of the example of unguided finned rockets. The de¬ 
parture of an artillery shell from the bore of a gun is accompanied by 
initial disturbances occasioning oscillation of the axis of the projectile 
having a maximum amplitude of 5 percent. These oscillations provoke he 
appearance of a flank aerodynamic force inclining the vector of lnit.al 
velocity from the plane of fire. The initial disturbances referred to are 
a random character and together with aiming errors they produce flank dis¬ 
persion of shells. But the mean magnitude of angular deflection of the 



vector of velocity cows to very little (approximately 1/2000), vhich pro¬ 
duce* amall flank dispersion of artillery shells. Ihe not ion of unguided 
rockets along the guides is also accoupanied by Initial disturbances pro¬ 
ducing oscillation of the axis of the rocket with an asplitude of the sssm 
order as in artillery shells. But in this case the oscillations of the 
axis of the rocket provoke the appearance not only of flank aerodynssdc 
force, but also of a flank constituent reactive force. The latter exceeds 
by «any tiaras the flank aerodynamic force, something which leads to sub¬ 
stantial increase in the angular deflection of the vector of velocity. An 
important factor which increases the dispersion of unguided rockets is the 
presence of eccentricity of the reactive force. Wth ideal symmetry of 
the rocket the vector of the reactIvc force is directed along the axis of 
the rocket. Under real circumstances a skewing of the reactive force de¬ 
velops, and the line of its operation deflects from the center of mass of 
the rocket by a quantity à , called the eccentricity of reactive force. 
The moment Af¿ of reactive force, evoked by this eccentricity, relative 
to the center of mass of the rocket increases the oscillation of the axis 
of the rocket and as a consequence, the angular dispersion of the rocket. 

In addition to eccentricity of reactive force, disturbances upon 
the departure of the rocket from the guide, provoked by imprecision in the 
manufacture of the latter and by vibrations of the launch stand as the 
rocket moves along the guide, also Influence the angular dispersion of 
rockets. The factors referred to provoke initial oscillations of the axis 
of the rocket upon its departing from the guide, and these are character¬ 
ised by an angle fs between the axis of the rocket and the undisturbed 
position of the axis of the guide, and also by angular velocity fo . 

In addition to the disturbance factors referred to above, the force 
of gravity affects the deflection of the vector of velocity. But consider¬ 
ing that the operation of the force of gravity is of % systematic character 
and does not in practice affect the dispersion of rockets, we shall examine 
from here on plans oscillations of rockets without taking this force into 
account. In particular, it is possible to examine plane oscillations of 
a rocket in the horlsontal plana which arise through the undisturbed po¬ 
sition of the axis of the guide. 

8.2. Motion of the Rocket Alona the Guide 

During the time of notion along the guiding launch apparatus the 
rocket takes on a velocity v0 necessary for its stable flight over the ac¬ 
tive part of the trajectory. In this connection it is desirable that the 
design of guides should make it possible co .vduce to a minimum the dis¬ 
turbance factors which provoke deflection of the rocket from the axis of 
the guide (fs) and appearance of an angular velocity (^) of rotation of 
the rocket about an axis perpendicular to the axis of symmetry of the 
rocket. The quantities fs and fs (along with the moment from the ec¬ 
centricity of the reactive force) are the Initial disturbances which de¬ 
termine oscillation of the rocket on the active section of the trajectory, 
and dispersion of rockets. The design of the guides nay be in the form of 



tubes, chutes, or runners, along uhich the guiding slides of the rocket 
run. Launch apparatus my be of two types as regards the character of U<e 
connection between the rocket and the guide. One nay refer to apparatus 
of the first type the guide runner, to which the rocket is hung by two 
slides. After the first slide cobms free, the head part of the rocket is 
in a position to drop, turning around the rear slide (Figure 8.1). ■»an 
this occurs point K of contact of the rocket with the guide, ran lining eta- 
tionary relative to the rocket, slides relative to the guide, tea nay in¬ 
clude with the sane type also a guide along idilch a rocket novas, contacting 
it with two cylindrical centering bands. After the first centering band 
departs, contact with the guide takes place at a single point, stationary 
relative to the rocket (Figure 8.2). 

Figure 8.1. Oleg ran of suspension of rocket to guide of first type. 

Figure 8.2. Contact of rocket with guide via centering bands. 

Jta apparatus of the second type is the guide along tdilch the rocket 
noves slidliç on the cylindrical part of its body without protruding parts. 
After the center of gravity of the rocket passes the forward section of 
the guide the head part of the rocket comeuces to drop. Wien this occurs 
rotation of the rocket takes ¡>iace around the point of contact, stationary 
relative to the guide (Figure 8.3). Launch apparatus of the first type 
are the sM>rc widespread. 



Figure 8.3. Diagram of guide of second type. 

Launch Apparatus of the First I^BS. 

Let ue exmaine the motion of a rocket along the guide of « l*«nch 
apparatus of the fir.t type, after the forward contact has been freed. 

• ei».,« g 4 c ia the center of mass of the rocket; K is the point 

.Î-Î ïh« axis of the guide, and axis Ky perpendicular to it. We 
dîlîiiîi. ï» C “h* aí-U'OÍ inclination o. ti,., cuide to the horizon, and 
£ «»I« of inclination of the -in of the rocket to the K* axis. 
Iks designate I as equal to KC. 

Figure 8.4. Motion of rocket relative to guide of first type. 

Let us write equations for motion of L.,e center of mass of the 

rocket: 

«¿#. Pcos f - «r «ta 

mjft ■- Af — Psin f - **f cos k* 

(8.1) 

(8.2) 



where N is the reaction on the part of the guide at the point of contact. 

We shall consider mass m and thrust P as being constant. 

Let us write an equation for rotation of the rocket around its ''.en¬ 
ter of mass. In doing this we shall take into account the moment of reac¬ 
tion, N, and the moment from the eccentricity of reactive force, AfA. 

The equation will assume the following form: 

Ap — Af* + M cos f, (8.3) 

where A is the equatorial moment of inertia of the rocket; 
1 is the distance from the center of mass of the rocket to the rear 

slide. 

From here on, considering the smallness of the angle ç , we shall 

adopt 

sinf%v; cosf%l. 

In addition, we shall exclude the reaction from equations (8.2) and 
(8.3). When this is done we secure the following equations: 

X' = -^ — giin%=j\ <8'4) 

A<p *= Af4 + lP<f + mgl cos 90 + tmÿc. (8.5) 

For an ideally rectilinear and stationary guide we have: 

Taking into account possible curvature of the guide and vibration 
of the launch apparatus, let us write an expression for yc in the form 

yt*=y>-l% (8-6) 

where yK = yK(t) will be regarded as a function determined experimentally 
or theoretically with the design and dynamic characteristics of the launch 
apparatus taken as point of departure. From equations (8.5) and (8.6) we 
secure 

(A + mt) ç = /P<p + mgl cos ^ + lmÿ* (8 • 7> 

or finally 

(8.8) 

where 

f— X*j«=/(0, 



X* 4 + mP ' 
(8.9) 

/(0 — Á + mp [mgl cos «o + Af4 + tmy,]. (8.10) 

If the function jtr = yK(t) is known, then by double differentiation it is 
possible to determine and the right-hand arm of equation (8.8) will be 
a known function of time. At the same time, equation (8.4) makes it pos¬ 
sible to determine the relationship 

*,(')—r-/*’ 

and the value t0 corresponding to the end of the period of motion of the 
rocket along the guide. 

The solution of equation (8.8) without the right-hand arm has the 
form 

Ÿ “H V • 

Applying the methods of variation of an arbitrary constant, we secure for 
the nonhomogeneous equation (8.8) the following relationship: 

t + Cje -u (8.11) 

Let us examine the particular case of the metion of a rocket in a sta¬ 
tionary rectilinear guide without taking into account the moment provoked 
by eccentricity of the reactive force. In this case 

Ai4 = 0, ¿*==0; 

m 
mgtau% 
À + mP — const = B. 

(8.12) 

From equation (8.11) we secure 

f - €/*+ c¿-u + (ch W - 1 ). (8.13) 

Me shall start from the following initial conditions for the instant when 
the forward slide departs from the guides: 

*1=0; *, = ()■, 9,=0. 

. 286 . 



Under these c ir einst anees it is not difficult to secure arbitrary con¬ 
stants ci * 0; c2 * 0, and expression (8.13) assisses the fom 

f »-pr(diW—!)• 

Substituting the values B and X from expressions (8.9) and (8.12), m 
secure 

y ^g?A(ch>/-lX (8.14) 

Differentiating the last expression, we secure a relationship for angular 
velocity f of rotation of the axis of the rocket 

<»15> 

In expressions (8.14) and (8.IS) tisn was counted fron the iastant 
the forward slide left the guide. If the tine count is fron the start of 
motion of the rocket, it is necessary to replace £ by t - ti, idiera tf is 
the Interval of tine from the start of motion of the rocket to the Instant 
the first slide Is freed. For the Instant t0 of cessation of the connec¬ 
tion of the rocket with the guide we get: 

|ch»(/, (8.16) 

«l7> 

Die values t0 and ti are determined from the expressions 

where xi and x0 are the displacement of the center of mass of the rocket 
up to the freeing of the forward and of the rearward slides respectively: 

/-¿.-¿coil 

At the instant t0 the constituent of the velocity of the txr.»er of mass of 
the rocket along axis £ is equal to 

and the vector of velocity will turn over an angle HI , determined from 
the expression 

tg 48 % 48 * . 

7 - 



Under these circumstances the angle of attack ao , formed by the axis of the 
rocket with the vector of velocity Vq, will be determined from the expression
ao = «po—A6o.

Example. The characteristics of the rocket and the guide are de
termined by the following parameters: Q = 194 kg; P = 3,040 kg; 1_ = 1 m;
XI = 1.5 m; Xq = 2.8 m; A = 14 kg • m • sec^; j = 152 m/sec2.

We determine

A + mP
3040-1 = 9.5 l/c«r.

t, — tx = 0flS2ceic.
I Wo - U) = 9.5 -0.052 = 0.495; 

chlWo-<i)= M25; • •
•hi Wo-/,)=--0,515;

|ch 1 (<,-<,)- 11 = ‘^3^-0.125 = 0.0056 radians = 0.032» = 19-; 

191-0.707 9 5.0 5,5 ^ 93,-2

: 0.006° = 3.6';
P

Jjo. 1-0.312
3040

= 0.0107 radiansV, Jtt ~ 152 -0.192 
„ =1 ^ — = 0.032 — 0.006 = 0.026° = 15.4'.

Launch Apparatus of Second Type

In launch apparatus of the second type the point of contact remains 
stationary relative to the guide. In this case the distance from the cen

ter of gravity of the rocket to the point of contact is equal to Xc - Xc', 
where x^.' is the course of the center of mass of the rocket from the start 
of its motion and up to its passing the end of the guide. In equation (8.3)
it is necessary to replace 1. with Xc - X( 
the contact and substituting

y.-y.-(<«»-■«*•)»

we secure an equation for angle f in the form

After eliminating reaction in

• -1- cos 8, -1- mg<f sin 6„ (8.18)

\^ere Xc and x<. are determined from equation (8.4).

• Equation (8.18) can be integrated numerically.
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In the case where from evaluation of the coefficients of
equations (8.7) and (8.18) it follows that turning of the rocket, 90 . 
under operation of the force of gravity is less for launch apparatus of 
the second type as compared ith this quantity for launch apparatus of the 
first type.

8.3. Differential Equations of Plane Oscillation of the Rocket in the. 
Active Part of the Traiectory

In formulating equations of plane oscillations of a rocket we shall 
consider

-- reactive force P;

— frontal resistance X = -^Sc„',

— lifting (flank) aerodynamic force K=*^5cJ«;

-- aerodynamic stabilizing moment M, = —

-- aerodynamic damping moment —pvSL*myf >

-- the moment provoked by eccentricity of reactive force.

In the expressions derived 9 is the angle of turning of the axis 
of the rocket from the axis of undisturbed position of the vector of 
initial velocity; a is the angle of artack. From here on we shall further 
introduce into our examination the angle ^ of deflection of the vector of 
velocity from its initial undisturbed position. Between angles 9, 
and a an obvious relationship exists (Figure 8.5):

9 = <^ + o.

The differential equations for motion of the rocket have the following 
form:

mV =Pcosa— X; 

mv^ =Psina— Y\ 

i49 = Af + -J- Mjy

(8.19)

(8.20) 

(8.21)
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From here on we shall assume that a is a small quantity, so that

cosa:^!; sin a ^ a.

Uie fundamental investigations carried out in study (1) show that the 
basic factors determining oscillation of the axis of a rocket are reac

tive force P, moment and stabilizing aerodynamic moment Mz. The re

maining forces entering into equations (8.19)-(8.21) are of secondary 
significance. From here on we shall examine oscillations of the axis of 
a rocket under the operation of the basic forces referred to. In this con

nection equations (8.19)-(8.21) assume the form:

■■ a — 0*0*0,

(8.22)

(8.23)

(8.24)

where

jL — k. ?SLm]

In study (1) it is shown that in investigation of oscillation of the axis 
of a rocket and of angular deflection of the \ector of velocity it is pos
sible to adopt coefficients a, b, and o as constants.

Considering that we transform equation (8.24):

a = a — 0*0*0 — ^.

Hie quantity ♦ is determined from equations (8.22) and (8.23):

V*-
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(8.25) 

When this is done equation (8.24) assumes the form 

8.4. Oscillation of a Rocket in the Presence of Eccentricity of Reactive 
Force 

We shall examine the oscillation of a rocket in the presence of only 
one disturbance fact -- eccentricity of the reactive force A , forming part 
of the right-hand arm of equation (8.25). In this connection it is assumed 
that initial disturbances upon the departure of the rocket from the guide 
are absent, and equations (8.23)-(8.25) are to be integrated with initial 
conditions : 

/-¾ «0 = 0, «„ = 0, +,, = 0. 

For integration of equation (8.25) it is convenient to shift to the 
independent variable 

where s is the length of the arc of the trajectory of the center of mass 
of the rocket. We introduce the substitutions: 

‘--Ti¬ 

lt is not difficult to see that x, y, and £ are nondimensional quantities. 
From the expressions: 

I tf« 
« ' ds 

kwmavyM; 

iwmavÿjt+ avy'Jx = aòyx+ atftoy*. 

substituting the values a and a in expression (8.25) and considering 
that with constancy of acceleration b 

we shall secure equations (8.23) and (8.25) in the following form: 

^ + (1 
(8.26) 

(8.27) 

- 291- 



From here on we shall distinguish with an apostrophe (') the derivative 
in accordance with x. Every differential equation of the form 

/’ + f(x)ÿ + f{x)y=*0 

may be reduced to a two-tenn form through substitution 

y^ue 

In the present case this substitution has the form* 

U —JL- y Y*' (8.28) 

Substitution into equation (8.26) the values y, y', and y", we secure after 
simple transformations 

«*+ IT 1 

Wi- 
!Rie integral of the homogeneous equation 

«»4- B asO 

has the form 

C» sin X. 

(8.29) 

(8.30) 

(8.31) 

Applying the method of variation of arbitrary constants, we secure the 
following differential equations for cl and C2: 

cjcosx + cisinxnO; 

— sin x + Cj cos x =» • 

Determining the values and C2 , we shall secure: 

«ÜlJt . .. COS X 

3 Wî’ 
M Æ 

* This substitution is distinguished only as regards the constants from 
the substitution u ■ va, first introduced in study (1). 
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Substituting the values ci and c2 into equation (8.31) and taking into ac¬ 
count substitution (8.28) and the initial conditions x ■ x0, y0 - 0, and 
y¿ 3 0, we shall secure 

• J 
a 

(8.32) 

Introducing the Frenelle integral, determined by the equations 

‘W-pkjTr** 

(8.33) 

(8 34) 

and designating for brevity's sake 

C-c(x); C,-c(x,); C;-c(jc)-c(x,); 

J-*(x); J#-*(x,); $;-*(*)-s(jg, 

we shall secure equation (8.32) in the form 

The substitution 

(8 35) 

reduces expression (8.33) to the form 

Expression (8.36) makes it possible to determine the angle of attack for 
any value if the parameters of the rocket e> A. & and the eccen¬ 
tricity of the reactive force A are known. 

Values for the Frenelle integrals c(x) and s(x) are given in Table 
8.1. Graphs of these functions are shown in Figure 8.6. 

In order to determine the deflection of the vector of velocity f , 
one must substitute in equation (8.27) the value £ froa equation (8.35). 

On doing this we secure 



Tabic 8.1. Frenelle Integrals

0.1
2
3
4
5
6
7
8 
9

1.0
1
2
3
4
5
6
7
8 
9

2.0
1
2
3
4
5
6
7
8 
9

3.0

2
3
4
5
6
7
8 
9

4.0 
1 
2
3
4 
3 
6
7
8 
9

5.0

0.0084 
0.0237 
0,0431 
0,0605 
0,0924 
0,1205 
0,1504 
0,1818 
0,2143 
0,2470 
0,2813 
0,3153 
0,3491 
0,3826 
0,4155 
0,4475 
0,4785 
0,5081 
0,5363 
0,5629 
0,5876 
0,6103 
0,0310 
0,6406 
0,6658 
0,6797 
0,6913 
0,7005 
0,7073 
0,7117 
0,7138 
0,7136 
0,7112 
0,7067 
0,7002 
0,6918 
0,6816 
0,6699 
0,6566 
0,6421 
0,6265 
0,6099 
0,5926 
0,5748 
0,5565 
0,5380 
0,5196 
0,5013 
0,4834 
0.4659

0.2521
0.3.554
0,4.331
0,4966
0,5502
0,.59f.2
0,63 V.
0,6693
0,6979
0,7217
0,7410
0,75»i3
0,7676
0,7751
0,7791
0,7798
0,7773
0,7719
0,7639
0,7.533
0,7405
0,72.56
0,7089
0,6906
0,6710
0,6503
0,6287
0.6064
0,58,38
0,5610
0,.5383
0,51.58
0,4938
0,4725
0,4521
0,4326
0,4144
0,3975
0,3821
0,3682
0,3560
0,3156
0.3359
0,3302
0.32.53
0,32-22
0,3211
0,3218
0,3242
0,3285

3
4
5
6
7
8 
9

6,0
1
2
3
4
5
6
7
8 
9

7.0 
1 
2
3
4
5
6
7
8 
9

8.0 
1 
2
3
4
5
6
7
8 
9

9.0 
1 o
3
4
5
6
7
8 
9

10.0

0,4492 
0,4333 
0,4183 
0,4045 
0,.3918 
0,3805 
0,3706 
0,3621 
0,3552 
0,3499 
0,3461 
0,3140 
0,3434 
0,3445 
0,3471 
0,3512 
0,3568 
0,3637 
0,3718 
0,3812 
0,3916 
0,4030 
0,4152 
0,4-281 
0,4415 
0,4553 
0,4695 
0,4837 
0,4970 
0,5120 
0,.52,58 
0..5392 
0,5.5-20 
0..5641 
0,57.55 
0,.58,59 
0,5954 
0,6038 
0,6111 
0,6172 
0,6-220 
0,6256 
0,6-279 
0,6-289 
0,6-286 
0,6270 
0,6241 
0.6200 
0,6148 
0,6084

0.3343
0,3418
0,3507
0,3610
0,.3724
0,38.50
0.3985
0,4129
0,4278
0,4433
0,4591
0,4750
0,4909
0,5067
0,5220
0,5372
0,5517
0,5654
0,5782
0,5901
0,6009
0,6106
0,6190
0,6261
0,6.319
0.63V2
0.6391
0.640t-.
0.6407
0,6.39.3
0.63*36
0,6325
0,6271
0,6206
0,6129
0,6011
0,5944
0..5839
0,,5727
0..5608
0,5485
0„5358
0,5229
0.5099
0,4969
0.4841
0.4716
0.4595
0,4480
0,4370

10,1 
2
3
4
5
6
7
8 
9

11,0
1
2
3
4
5
6
7
8 
9

12,0
1
2
3
4
5
6
7
8 
9

13.0 
1 
2
3
4
5
6
7
8 
9

14.0 
1
2
3
4
5
6
7
8 
9

15.0

0,6011
0,5928
0,5836
0 5737
0,5632
0,5.521
0,5406
0,5288
0,5168
0,5048
0,4928
0.4810
0,4695
0,4584
0,4478
0.4378
0,4286
0.4201
0,4125
0,40.59
0,4014
0.3955
0.3920
0.3895
0,3882
0.3880
0,3890
0,3910
0..3941
0..3933
0,4034
0,4095
0,4164
0,4241
0.43-25
0,4415
0,4510
0,4610
0.4713
0,4818
0,4924
0,5030
0.5135
0,5236
0,5337
0,5433
0,5524
0.5609
0,5687
0,5758

0,4-268
0,4174
0,4090
0.4015
0.3951
0,3898
0,3857
0..3827
0,3809
0.3804
0,3810
0,38-29
0,3859
0,3900
0,3952
0,4013
0,4084
0,41W
0,4251
0,4346
0,4446
0,4,5.50
0,4658
0,4769
0,4882
0,4994
0,5106
0,5216
0.5322
0,5425
0.5523
0,5615
0,5700
0,5777
0,5846
0,5906
0,5956
0.5997
0 6027
0,6047
0.6057
0,6055
0,6043
0.6C21
0,.5989
0.5947
0,5896
0,5836
0,5768
0,5693
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»-tÍ VtÍ 

Integrating temwiae, we have 
M 

* — -J* V~^T J (•*" *’ Ci ~ COtxSi) -jy* — 
*» 

-T *«-»•* ^))^ + 

+ tfpjKco«*-C; + iin* í;)<*+•InJ'iiC; - coi««S¡|¡ 

On the basis of expressions (8.33) and (8.34) we have 

ria xrfCf ~ cos «IS? ■> 0 

(8.37) 

and 

(CM »C»+ + 

Figure 8.6. Frene He integrals. 

After sone transformât ions expression (8.37) asstases the form 

The index A emphasizes the fact that the disturbance influence of the ec 
centricity of reactive force has been taken into account. 

Takim into account the expression 



wc secure finally 

t* - £ ( T KQ)’ + (^7) + (S¡ ^»x-Cg tía X)} (8 39) 

Fonuila (8*39) «akes it possible to reckon the deflection t« of the vec¬ 
tor of velocity v frosi its initial undisturbed position, as provoked by 
the influence of the eccentricity of the reactive force. 

With angle of departure Is and with the condition that eccentricity 
A is perpendicular to the plane of fire, angular deflection of the latter 
is equal to ♦* . If X is the full range of fire, the flank deflection 

CM % 
of the point of fall At will be determined from expression 

¢8.40) 

Inasmuch as eccentricity A is a randan quantity, we can examine a probable 
magnitude Ä* of eccentricity perpendicular to the plane of fire. Substi¬ 
tuting in formulas (8.39) and «.40) A by Ä, , we secure the probable mag¬ 
nitude of angular deflection from expression (8.39) and the probable 
magnitude of flank dispersion from expression 

00- X. 
(8.41) 

BxMBjj,. bet us examine a rocket the characteristics of which are 
as follows: Q - 42.5 kg; -w - 7.2 kg; QCp ' Q - 0.2b -r - 40.7 kg; mCp - 
4.14; Sq a 5 m; s * 148 m; • • 0.0845 1/H; 4 - » 3 kg • m/soc¿. Vb shall 
examine the case where & • | «a • |<M a * 

We compute: 

s-«s-OjOMS ISO- 12,30: 

% - s% • OUUMS-S - 0,422. 

From the table of Prenelle integrals we find: 

«U)-QA00!; C¿ - -0,1201( 

«U)«ajNfc •(s.l-OjOnO; s;-03182. 

Wss-iln 123-1.90s--da 031 ■ . -OjOSm 

SM M — SM OuOl« - 0;9083 m I. 



Ve substitute into expression (8.39): 

“Krisr (1 0,3162-0,0817 0,1209) J 

■ 1JB6° - l"«'. 

.0,029 /w3< 

▲astmins that the angle of departure 4-45«, the probable magnitude of ec- 
îenScUv Ï = W Z and the'full range of fire X = 10 km, we secure the 
probable Lgnitude of flank dispersion from the expression 

: -111 T 4 

cot 9b 
,0^^10000 - 200 M, 

whence 

B6 I 
X “-ST 

8.5. The Critical Section of the Trajectory. 

The character of change in angles a and 
depending on the flank eccentricity of reactive 
guided finned rocket are shown in Figure 8.7. 

$ along the trajectory 
force for a typical un- 

f 

Figure 8.7 Oscillation of angles 
tricity. 

and « in the presence of eccen- 

From examination of the graphs in Figure 8.7, it is apparent that 
the change in angle « bears the character of diminishing oscillations. 
The length of the trajectory corresponding to the first half-wave of the 
«ciU^tÍon of «gle ♦ is called the critical section of the trajectory. 
STihin Agnate the nondimensional length of the critical section as 
T - ■ scr The maximum of angle * corresponds to the value 
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X = xcr. Under these circumstances angle a = 0, which follows directly 
from equation (8.23), since with a=0 we secure ¢-0, corresponding to 
the condition of the extreme of function ÿ (/). The extent of the criti¬ 
cal section comes to one-third of the active section of the trajectory. 
From what has been said it follows that the forming of the angular deflec¬ 
tion of the vector of velocity, and consequently also of the angular dis¬ 
persion, takes place basically in the critical section. At the beginning 
of this section the velocity of the rocket is low, and consequently the 
stabilizing aerodynamic moment is low. Under these circumstances, under 
the operation of moment from the eccentricity of reactive force a consider¬ 
able deflection of the axis takes place and the flank constituent of reac¬ 
tive force increases, which leads to deflection of the vector of velocity. 
Subsequently increase of stabilizing moment approximately balances the in¬ 
fluence of eccentricity of reactive force, and change in angle 4* possesses 
the character of small oscillations. The circumstance that with x > xcr 
angle ¢4 changes little makes it possible to simplify computation of the 
quantity ¢4 , taking in place of x * x^, corresponding to the end of the 
active section, the quantity xcr. It is not difficult to show that the 
quantity xcr depends only upon x0. For this reason formula (8.38) can be 
replaced by a dependence in the form F°r 2» the following in¬ 
terpolating formula may be proposed: 

(8.42) 

whence 

■h _ _4m_ , _ 0,2 
*** to ' 0,3 + x, • 

For the example examined above we have 

IO-M.14-0,2 
0.5 0,0845 (0.3 + 0,4/2) 

0,027 radians. 

Formula (8.42) makes it possible to analyze directly the influence of 
various factors upon angular deflection ¢4 of the vector of velocity. 
Considering that Xo^oSo, whfî^e 

Oss 

(8.43) 

we come to the conclusion that the quantity 1*4 declines: with decrease 
in eccentricity A ; with increase of length s0 of the motion of the rocket 
along the guide; with increase of coefficient m£ of stabilizing moment, 
which is associated with increase of the area of the fins. 

But it must be noted that increase of the length of the guides leads 
to substantial increase of the weight of the apparatus. Excessive increase 
in the area of the finds increases the sensitivity of the rocket to gusts 
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of wind, which may lead to increase of dispersion on the part of the rocket 
when the wind is gusty. Selection of design parmeters of a rocket and 01 

the launch apparatus is carried out with all the factors referred to taken 
into account. 

8.6. Oscillation of a Rocket in the Presence of Initial PiltmhWCfl 
and f* 

In order to study the influence of initial disturbances upon angular 
deflection of the axis of a rocket we shall assume that eccentricity A is 
equal to zero. In this event it is necessary to assuae in equation (8.25) 
that a ■ 0. The equations for oscillations of the axis of the rocket as¬ 
sume the following form: 

J..4 (sV-^)a-Ot (8.44) 

t-4-n (8.45) 

Shifting co the independent variable x-è# makes it possible to transform 
the last equations into the following form: 

(8.46) 

(8.47) 

where the derivative according to x is designated by an apostrophe. In¬ 
tegration of the homogeneous equation (8.46) with the substitution 

makes it possible to secure the general integrsl 

(8.48) 

where ci and c2 are determined from the initial conditions.^ lÆt us examine 
separately the influences of initial disturbances f» and ¿ . 

The initial conditions are 

*»0 and fk^O. 

Let us express the initial conditions for « and 8 through the initial 
conditions for f ■ 



From express ion 

considering Chat 

♦-{v* 

no have directly f»*0 under any initial conditions for a . In this event, 
from the condition *-0 it follows that a«-0 . 

Furthermore, from the expression p»~-f4« . taking into account the 
fact that 

wc secure the initial conditions for equations (8.46), (8.47) In the fol¬ 
lowing fora: with +,-0- 

Starting fr<m these initial conditions, we secure: 

and the expression for angle of attack a assisses che followii« form: 

Considering that 

oI-lX- m-e,^- 

we shall finally secure 

"Vi** (8 50) 

the relationship secured makes it possible to determine the oscil¬ 
lation of the angle of attack depending on the nondimens Iona 1 length of 
the arc of the trajectory £. In order to determine the ai«le + of de¬ 
flection of the vector of velocity, it is necessary to substitute the 
value secured for a in equation (8.47). On doing this we shall secure 



f *V^ 

Integrating partially and considering that 

12*^+JKKC}; 

~2yr.si. 

after soae transforwatlons we ehall lecure 

The initial conditions are 

He shall find the initial conditions for a and + by taking into 
account the fact that 

J 

4ii"^ 

In doing this we secure from the expression f-a+t: 

Finally, we secure the following initial conditions: 

with t~t¿ « — 

Detemining the arbitrary constants in equation (8.48) and con 
sidering that 

¿«.-ti-* 
we secure 



then the exprceeion for the „„le of att.ck the („Uool^ fone: 

«-sK*CO»(Jt-n,> (8.32) 

Subetitutlng the .«lee „cered for . into equetlon (8.47) ne Meure: 

'«“‘-«‘"h th.t ue .«„re, nfter einpl, 

^¥co,<'*~^>+^*«h(ilnH(C-cot^R)J (8.53) 

fSîïîîü/îf^L*^ i8'52)r "“ï® U P°Mible to dotemine the engul.r de- 
•• * f yecï°r ofLvelorlty provoked by the initial disturbances 

pTgu". 8^.0^8 9 8raP f0r Ch*n8®’ ln an«le8 • “d ♦ «e shown in 

Picure 8.8. Oscillation of angles • and 4 with disturbance ¿ 

rise lnPL0:irr:,\tiOn ?f the*! 8raph8 ic is «PP«--*“* that a substantial 
tiî! 1 ^68 uUc® ^ ln the crltic«1 section of the trajec- 
oHni-MÜ! theZr' ?8n8® in an8le + POS8es*es the character of Lall 
fi ^18 m*k*8 U possible to simplify computation of anele é» 
for the end of the active section, substituting L -T“'8“?? hL alrLÍl 

ÍSd $ÍTLÍl function oí * fUnrti0n °f Xo* for reason one can re- 
* function of x0. Conputations which have been carried out 

«"«.Sine t*C°ITith! f,,UOWing f0m,U* 01 1» order 

*«.”1% i+Lr: (8.54) 
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(8.55) 

Figure 8.9. Oscillation of angles • and ♦ with disturbance ft . 

For the example examined in 8.4 we have x0 = 0.422; b * 408 m/sec2- 
• - 0.0845 1/m. 

Taking *«0,002 rad, **0,l 1/sec, we secure: 

áà _ 0.6 _ J, 

p^Oi.0,0845 ’ i + 2 0,422 * 0,0055 radians ; 

^ * 0,0009 radians. 

In conclusion we may note that the relationships secured in 8.4-8.6, de¬ 
termining the oscillation of the axis of the rocket and of the vector of 
velocity in the plane perpendicular to the plane of fire can also be ap¬ 
plied for the case of application of the axis of the rocket in the plane 
of fire. This is explained by the fact that the weight of the rocket has 
practically no effect upon oscillations of the axis of the rocket provoked 
by random disturbance factors. 

8.7. Axial Rotation of Finned Rockets 

In the flight of nonrotating rockets the flank moment provoked by 
eccentricity of reactive force retains its position stationary in space, 
which leads to considerable deflection of the vector of velocity. In 
order to reduce the influence of eccentricity of reactive force upon the 
dispersion of finned rockets they are given a slow axial rotation which 
periodically alters the direction of flank moment and substantially 
reduces the angular deflection of the vector of velocity and the dispersion 
of the rockets. It has been said earlier that the disturbance effect of 



eccentricity of reactive force takes place basically in the critical sec¬ 
tion of the trajectory. For this reason it is necessary that the rocket 
should complete several rotations around its axis in this initial part of 
the trajectory. 

In this event angular velocity of the rocket proves to be relatively 
slight, tens of times less than the angular velocity necessary for gyro¬ 
scopic stability of finless missiles and rockets. Finned rockets to which 
a slight rotation is coimumicated to reduce their dispersion are called 
rotating rockets. 

For a rotating rocket the differential equation of oscillation of 
the axis of the rocket assumes the following form: 

+ (o*»*- £ 
*» 

^ a =* ¿a cos », (8.56) 

where 8 is the angle of turning of the plane of eccentricity. Ulis equa¬ 
tion is distinguished from expression (8.25) only through the presence of 
the multiplier cos® in the right-hand arm. Integration of equation (8.56) 
together with equation (8.23) makes it possible to determine the deflection 
of the axis of a rotating rocket in the presence of eccentricity. 

Computations show (2) that rotation reduces dispersion occasioned 
by eccentricity, proportionally to the number of rotations of the rocket 
in the critical section. But excessive increase of the angular velocity 
of a rocket increases initial disturbances upon the rocket's leaving the 
guide, 90 and ç0 , which in the last analysis increases dispersion. This 
circumstance must be taken into account in selecting an optimum rotation 
for the rocket. 

The most efficient method of a rocket's rotation is a method in 
which the rocket receives rotation in the launch apparatus itself, which 
is provided with spiral guides. The rocket rotates with constant angular 
velocity after its departure from the launch apparatus. In the event of 
reactive rotation of the rocket the rotational moment Mp can be determined 
from the expression 

Mp —PR sin 

where R is the radius of a circumference running through the centers of 
the outlet sections of inclined cones; 

T is the angle of inclination of the cone to the plane of an angu¬ 
lar section running through the critica1 softion of the cone. 

The equation for rotation of the axis of the rocket has the follow¬ 
ing form: 

(8.57) 

ÜlílitfMaiaiittÉÉkaüí 
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where | is the angle of the rocket's turning; 
r is the angular velocity of the rocket; 
C is the polar moment of inertia of the rocket. 

Taking into account the equation of forward motion 

—PcO«|, 

one can write equation (8.57) thus: 

(8.58) 

where 

If the rocket rotates in the launch apparatus, then, Integrating equation 
(8.58) on the left from zero to £ and on the r ght from zero to £, we shall 
secure: 

I——A«; 
• -to 

If the rocket comnences to rotate only after departure from the launch ap¬ 
paratus, then, taking as limits of integfation to the left from zero to 
£ and on the left from v0 to v, we secure: 

r —k(v-~vty, (8.59) 
• -*<«-*)-*>,(/-4). 

Considering that: 

we secure expression (8.59) in the following form: 

»-TrW-V-iO'i-Kïÿ. <«‘°> 

Setting ourselves a number of rotations of the rocket £ in the critical 
section and determining the length of the critical section Scr> we secure 
the expression 

k 2m (8.61) 

from which we shall find the necessary angle of Inclination of the cones. 
In the case whore the rocket rotates by means of spiral guides on the 



launch apparatus, the angular velocity of the rocket at the nxnent of its 
departure from the launch apparatus will be determined from the expression 

r.-iyP, (862) 

vAicre p is the angle of incline of the spiral line; 
0 is the diameter of a cylinder corresponding to this spiral line. 

The angular velocity r0 remains practically constant in the critical sec* 
tion of the trajectory. Under these circumstances 

<8‘63) 

The last expression, together with formula (8.52), makes it possible to 
determine the angle of incline of the spiral line which will ensure the 
necessary number of rotations ncr in the critical section of the trajec¬ 
tory. 

8.8. Influence of Wind on the Flight of Finned Rockets 

Let us examine the Influence of a flank wind Wz blowing to the 
right, i.o., in the direction of axis £ (Figure 8!0). Let us introduce 
a movable system of coordinates moving progress!vols with velocity tfz in 
the direction of the wind. Relative to this system the velocity of the 
wind is equal to /ero. 1« doing this u’< murt r.ike into account the fact 
that the initial velocity of the rocket relative to a stationary system 
of coordinates (v0) will differ from initial velocity vor relative to the 
movable system by the anount of the translational ve locity v0c » Wz : 

»»-••“ÏP. (8.64) 

Projecting the last equation upon the axis oi the coordinates, we seure: 

(*%)# "■••«>• V 
(f^)f — sin 

In the movable system of coordinates the plane of departure inclines to 
the left at angle Pi determined from the expression 

lit, ■bCM t 
(8.65) 

and flank deflection of the rocket will be found from the expression 

*r-JM|t.- 
*r. 

*«bCOt V 

. Jijé . 



Figure 8.10. Influence of wind on flight of rocket. 

Shifting to the stationery system of coordinates, 

where U2t is the displacement of the movable system over the time of mo¬ 
tion of the rocket. 

Carrying out a number of transformations, we shall secure 

Hie flank velocity of the rocket will be determined from the expression 

For angular deflection of the plane of fire we shall secure the expression 

where u ■> x is the horizontal projection of velocity. 

Relations (8.66)-(8.68) are secured irrespectively of the system 
of forces operating upon the rocket, and for this reason are correct for 
the active and the passive sections of the trajectory, and also for artil¬ 
lery shells. Let us note, however, that for artillery shells ««<•. 
and consequently a shell deflects in the direction of the wind. For the 
active part of the trajectory of a rocket we have if>u« , for which reason 
the rocket deflects against the wind. This circumstance was noted for the 
first time and explained by K. I. Konstantinov (3). 
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A flank wind, deflecting the tail group In lts ^fUnk 
the head part of a rocket against the wind, as a result of which the flank 
constituent of reactive force deflects the vector o! velocity of the rocket 

against the wind. 

In deriving «wallon (8.68) « did not take V“, 
that in a movable system of coordinates the vector of initial velocity is 
rotatina*at°an angle * , «id the axis of the rocket coincides with the un- 
disturbed position of the axis of the guide. 
the movable svstem of counting at the initial moment t0 the axis » the 
rockende fleets from the vector vor wind the wind at an angle * determined 

from the expression 

l*Va 
wt 
% 

Tta presence oí an Initial di.torb.nce » will provoke 
of the vector of velocity V . dotemlned by mans of egpro.aloo. (8.53) 
or (8.55). Designating .. — Íijl* w0 aecuro 

T* «* 

t*, ‘ lb ™ t,, * • 

Supplementary Jefle tien ». of the plane of departure, provoked by angle 
4 , is determined tr*xn ttie expression 
•f* 

t.- 

Over-all deflection ». of the plane of fire will be secured fro« the ex- 

pression or 

Pot the end of the «tive acetion t*lng C0.C-C0.», . we ah.ll finally 

secure 

__ïaJiZÎk.-J.y 
cesli V ^ *■ ' 

(8.69) 

Ifc shall find the deflection of the point ot fall of the rocket from the 

expression 
(8.70) 

to the cate of a longitudinal wind a. ft l. not difficult to ahov. 
formula (8.69) assumes the form 

à 



(8.71) 

where is the change of angle Ah at the end of the active section of 
the trajectory provoked by the longitudinal wind. In this event with 
y.>0. Alt,>0. W* may note that for the passive section of the trajectory 
fORFiula (8.66) renains correct. In this ronnection, taking the start of 
the count as being the end of the active section of the trajectory, we 
secure for the point of fall 

(8.72) 

gxaaplc. For the example examined in 8.6 we have s»-«*-#.«. We 
shall furthermore take v0 - 60 m/sec; vk - 400 m/sec; fc-48* ; full range 
X ■ 8,000 m; full time of flight T - 42 sec; W* ■ 5 m/sec. According to 
formula (8.S3) we secure 

öjTTO“0,45^ 

According to formula (8.69) we have 

V - “To (0jw " ¿) • -*** 

the deflection at the point of fall, provoked by the Influence of a flank 
wind In the active section, will he determined from the expression 

- -mm osm • -»7 « 
wl w$ 

Assuming that an equal wind Wz « 5 m sec is blowing in the passive section 
of the trajectory, and taking Tpas » T, Xp™ « X, fc-fc. we secure from ex¬ 
pression (8.72) 

-69 

The over-all deflection is 

t * *M ♦ Shm — " 867 ♦ 69 — 29S a 

From the exasqtle exmnlned It is apparent that the influence of wind in the 
active section of the trajectory ir decisive. Inasmuch as in the terrestial 
strata of the atmosphere wind is often of an intermittent character, this 
must have an effect upon the dispersion of rockets. If one examines the 
probable deviation of the wind from its mean value B|| and assumes By ■ 
1 m/sec, then for the example examined we secure a corresponding amount 
ef flank dispersion evoked by wind <00^ - ¿j?*73 meters. 
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CHAPTER IX. ROTATORY NOTION OF TURBOJET MISSILES 

9.1. BEftflMLVP ELffcrcftti«! Equ^loM for Hotl?n of a Rock«! 

In the flight of a fínicas rocket static aerodyiunic aonent Is a 
tilting BOSMnt, and the stability of the rocket is ensured by virtue of 
the gyroscopic effect of its rotation. Rotation of the rocket coaeiences 
on the launch apparatus (tube) In such fashion that upon leaving the tube 
the rocket is already stable. The angular velocity of the rocket's own 
rotation is determined from the relationship (8.58) 

(9.1) 

Initial disturbances of the axis of the rocket produce its oscillations, 
precession, and nutation, and the appearance of flank constituents of re¬ 
active force. The last provoke angular deflections of velocity which are 
the basic factor determining the flank dispersion of rotating rockets. 

In studying the rotatory motion of turbojet missiles we shall con¬ 
sider: 

-• reactive force P - mb, where b is the accelerat ion of the center 
of mass of the rocket; 

-- reactive rotatory moment 

Mj^PRúnf, (9.2) 

-- aerodynamic tilting moment 

(93) 

He do not take the force of gravity into account, for reasons Indicated 
in 8.1. 



In order to determine the position of the vector of velocity end 
of the axis of the rocket we mist select a system of coordinates 0123, in 
jhich axis 03 lines along the direction of the vector v0, axis 01 lies In 
the plane of fire, and axis 02 Is perpendicular to it (Figure 9.1). The 
disturbed direction of the vector of velocity is determined by the engles 
¢, «id ft , «d the disturbed direction of the axis of the rocket by the 
angles fi and ft . 

Figure 9.1. Diagram of constituents of the angle of pitch and of the angle 
of attack. 

From here on we shall examine the angles fi. f*. ♦* end their 
derivatives as quantities of the first order of smallness and we shall dis¬ 
regard quantities having smaller orders of smallness. Mb shall introduce 
the designations: 

■»"ti-tf (9.4) 
■•-ti - ti. 

where at and ei ere the constituents of the angle of attack. Thus we 
indicate vertical deflections by index 1 and flank deflections by index 2. 
lie shall introduce into the consideration the unit vector of the tangent 
« and the unit vector of the axis of the rocket ï. It is not difficult 
to see that with a precision up to small quantities of the first order: 
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«i-t* «»—I: 
¿»“t* Z(»L 

(9.5) 

lie shall write the equations for not ion of the cantar of nass of the 
rocket in the following fons: 

(9.6) 

Mb shall write the equation for rotation of the axis of the rocket in vac* 
tor font: 

^ ™ 2 Ä ■■ + . (9.7) 

where Li* the kinetic ement of the rocket, Uiich we shall write in the 
following forn: 

Cr2, 

where A is the equatorial mnent of inertia; 
C is the polar aoraant of inertia; 
¿ is the angular velocity of rotation of the rocket around an axis 

perpendicular to it. 

It la easy to see that the vectors » , I, and I are reciprocally 
perpendicular (Figure 9.2); under thesa circunstances the following rela¬ 
tion holds good: 

f 

Figure 9.2. Angular velocity • of axis of rocket. 

The expression for kinetic moment assumes the form 

Cr2 



(9.7) 

ion and substituting in equation Differentiating the last express 
, we secure 

ÃZ <Ï+Crj+ CrI=Y.M (9.8) 

Mb shall write the equation for axial reactive moment in vector form 

7R,«Pftsin •{Z. 

One can write equation (9.3) for tilting aerodynamic moment thus: 

M, — SLmrp X Z. 

It is true that 

|t X 2| ~ tin (¾¾ — «ina»* 

Substituting the values ííp and Ffz into expression (9.8) we secure 

>Cx2+Cr2’+CrZ--í^*5¿«; tx2+P/?sinT*2! *9 9* 

The last terms in both arms of the equation (9.9) are contracted on the 
basis of the equation for axial rotation of the rocket 

(9.10) —PPsin?. 

Taking expression (9.1) into account as well, we secure equation (9.9) in 

the following form: 

2 X £+ 2Xv2*»p«* X 2, 
(9.11) 

where 

(9.12) 

we secure Table 9.1. 

- 



Tab le 9•1 

Vector 
Projection on Axes 

oi <a dt 

t 
2 
* 
2 

2 

2x2 

*> 
Ti 

Ti 

ft 

Z.2, — — ft 

t> 

ti 

ft 
Z»2| — Z%%i = ft 
— xtZt - f, 

1 
1 

0 

0 

The equations for oscillation of the axis of the rocket assume the follow¬ 
ing form: 

f, + 2Xt4, — fo*«, 3= 0. 

Let us move on to the complex variables A, d>, and y , determined by the 
expressions 

(9.14) 

(9.15) 

A“«, + fa,; 

•“ti + ifti 
^-♦,4 

Multiplying equation (9.14) by - t and adding it to equation (9.15) we 
secu re 

¢- 2ikvÓ>- pt>*A -=0 (9 16) 

Equations (9.6) for $1 and ¢, can also be written in complex form 

*—La. <9-17> 

Mb substitute in equation (9.16) the values: 

A; 

*-.$4 Ä 
and we consider that 

¥- £ 
V 

À. 
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Under these circumstances equation (9.16) assumes the following form: 

* + (t-2Av)à —(£+ 2A*+ k)a=o. (918) 

Equation (9.18) determines oscillation of the axis of the rocket relative 
to the vector of velocity. 

Equation (9. 17) determines oscillatión of the vector of velocity. 

9.2. Integrating the Equations for Rotatory Motion of a Rocket 

In equation (9.18) we shift to the independent variable ¿ and intro¬ 
duce the substitution . a 

A“ w • 
whereupon 

A-wT-i-a'-f Ig-a, 
where the derivative according to s. is marked with an apostrophe. Equation 
(9.18) assumes the following form: 

a" — 2i\u' — p« = 0. 

The general integral of this equation has the form 

B —¢,^+ 
whence 

where 

*,..-»(1 ±K5): 

We shall assume that as the rocket departs from the launch apparatus the 
following initial disturbances take place: 

with A » A0; Á » A0 

Determining the arbitrary constants from equation (9.19) we secure: 

(9.19) 

(9.20) 

(9.21) 
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*1 
(9.22) A.+ 

—A«— 

- 

In equation ¢9.19) the length of the arc s, is counted off from the instant 
the rocket departs from the launch tube. 

Equations (9.19)-(9.23) determine the oscillations of the angle of 
attack which are provoked by the initial disturbances upon the departure 
of the rocket. In order to determine the deflection of the vector of 
velocity it is necessary to substitute the value A from expression (9.19) 
into equation (9.17). 

Under these circumstances, shifting to the independent variable ¿ 
we secure: 

d~ **')** (9.23) 

Integrating within appropriate limits and substituting the values ki 2 > we 
secure 

+ (9.24 

In expression (9.24) let us shift to the variable of integration ( , de¬ 
termined from the expression .v ■ 

' V, 

Here, considering that 

we have: 

s#); 

v0 = y26s0, 

Equation (9.24) assumes the following 

1 

form: 

-|i— 

(9.25) 
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where 

* —k#(l + K5); 

m —*j,(l — Vo). 
(9.26) 

Considering that 

and introducing the designations: 

I 

we finally secure 

V »K I) + % («, S)1 + If, («, S) + if, (m, ¢)]. (9’27) 

The functions fz and fc can be expressed through Frenelle integrals: 

+ än*-ls(W)-s(k)l}; (9.28) 

/, (M) -1 - + K5ÍÃ (sin * • [c («*) - c(A)l- 
- eos*-(»(«"J —*(*)!}. 

Expression (9.27) makes it possible to determine the deflection of the 
vector of velocity provoked by the initial disturbances. 

Particular Case of Initial Conditions An = 0; A» ^ 0 

This case is the most typical one for rotating shells and rockets. 
Here, from expressions (9.2?) and (9.23), we have: 

* Á, Ap 

Expression (9.19) assumes the following form: 
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or 

A —---77=- lin* K«* (cos Xj+ /»inXi). 
ivy « 

(9.29) 

Hë shall recall that A is a complex quantity determined by the expression 

A -Si+f «3t 

whence 

Let us note that disturbance A0 can be in any plane. Let the Jis‘ 
turbance (impetus) take place in the vertical plane. Here aw-0 and ex¬ 
pression (9.29) assumes the following form: 

a, + /cus=—ÎÂ_sin xJ/^s(cosls-MsinXi). 
ivy 9 

Hé divide the real and the imaginary arms and secure: 

a. =s —^=-sin 1K® * • cos Is; 
ivy 9 

a.» a*°/= sin X l^õsvsin Xs. 
ivy 9 

(9.30) 

(9.31) 

In the expressions for «1 and a2 an augmenting velocity forms Part of 
the denominator. TMs shows that oscillations of the angle of attack are 
diminishing in both planes. 

Expression (9.27) for the angle V assumes the following form: 

%=\U (*, *) -/« («. 5)1; (9.32) 

[/.(».«-/.KOI- (9'33) 

^ig^jPgj-t-^rnj^r^Pase_of^Initral Conditions .^0— 

In this case the initial conditions for the angle of attack have 

the form (8.6): 

A = A¿ À)= Aí 
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Here we secure the following values for the arbitrary constants: 

~2V7 ’ 

' 2pT • 

(9.34) 

The expression for angle A assumes the following form: 

A (Ä [cos w+ ^sin « ¿-J - 
(9.35) 

Assuming that at the initial moment the angle of attack falls in the verti- 
ca p ane, after dividing the real and the imaginary, arms we secure: 

««“?(^¡5(«cos«-l--/ncos«^-); (9.36') 

•«"•Äö(ÄSin <9-36> 

form- The eXpressl0ns for the “S168 *> and k assume the following 

♦i " W* ("• ^ 5>1 ï (9.37 ) 

♦* " Wei”1' 0 - «/, («. ¢)1. (9.38) 

We will recall that index (i) corresponds to the vertical plane. 

Example. Let us compute the angular deflection, at the end of the 
active section of the trajectory, of the vector of velocity of a turboiet 
missile under the following conditions: 

» - » - 0,0016¾ . . 0,8; ». - ; -,,300^..,2,. 

Let the initial disturbance upon departure of the rocket from the 
launch tube be characterized by a magnitude of angular velocity Ain “ 

■ Tv. ueC\ The indeX shows that the plane of rotation Ain coincides 
with the plane of fire (inclination of the head part upward), ffe deter¬ 
mine in advance the values of the Frenelle integrals. Mb have: 
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M := l*(l + V~T) «0,0675-2 1,8 = 0.24¾ 
m = —K^T) « 0,0675-2 0,2 « 0,027; 

i 
300 
4Ü5 7Ä 

m? -- 1,41; «5» = 12,65; m(r- I) = «(P- I) = 12,4; 
S(m?) = 0386. S in?) = 0,388; S (*) = 0,001; S (*) = 0,032; 

T («P) = 0,776; C(nl1 = 0,505; C(*») = 0,131; C(#i) = 0,391. 

Computing the functions fg and f£ in accordance with fomuLas (9.28), we 
have 

/,(*». Í) = -+ ^‘¿* 0,027 ( co$0,027 (C (1,41) -C(0,027)1 + 

-I- sio 0,027 (S (1,41) - s (0,0x7)] ) » 0,134. 

Analogously we compute: 

/, (a, () = 0,0273; fc (at, 6) = 0,887; /c (a, |) » 0,474. 

In accordance with formulas (9.32) and (9.33) we determine: 

* 2^0,0675-41,5-0,8 ^0,887 ~ °-474l - 0.°002 f*à » 0°32'; 

* '¿-0,0675-41,5-0,810,253 0,,341 = 0.0031 pad = 0°11*. 

Thus if a turbojet missile with the characteristics indicated re¬ 
ceives an upward impetus upon departing from the launch tube, so that 
aio - 0.1 1/sec, as a result of oscillations of the axis of the rocket 
the vector of velocity will incline upward at the end of the active section 
of the trajectory at an angle ÿ'ik=0o32/ and to the right at an angle of 
O0!!1. If the impulse had been to the right, the corresponding inclina¬ 
tion of the vector of velocity would have proved to be 0°321 to the right 
and O0!!* downward. 

9.3. The Condition of the Gyroscopic Stability of Turbojet Missiles 

Inasmuch as the static aerodynamic moment operating upon a finless 
missile is a tilting moment, in order to avoid tilting of the missile it 
is necessary to communicate to it a rapid rotation around its axis of sym¬ 
metry. This ensures so-called gyroscopic stability of the missile. 

The relations secured in 9.2 (9.30, 9.31) for the constituents of 
the angle of attack show that they are expressed through trigonometric 
functions and are limited quantities. But this will apply only in the 
case where J/o- is a real number, i.e., when o>0. If o<0, then expand¬ 
ing expression (9.19) we shall secure along with the periodic terms also 
constantly increasing terms which bring about constant increse in the 
angle of attack and in the tilting of the rocket. 
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From expression (9.21) we secure the following conditions of gyro 
scopic stability for a turbojet missile 

• ™ 1 —pr>0- 

Substituting the values ß and X from expressions (9.12) and (9.13), we 
secure 

T*’®’ JPm*tgtT 11 

whence 

The inequality secured makes it possible to determine the minimum angle 
of inclination of the cones which is necessary for gyroscopic stability 
of the rocket. In order that it may be possible to replace the inequality 
(9.39) with an equality it is necessary to introduce a coefficient of re¬ 
serve of stability, a . Here we secure 

(9.40) 

In order to compute angle T it is necessary to know not only the 
geometrical dimensions of the rocket and the equatorial moment of inertia 
A, but also the aerodynamic coefficient m| and the coefficient of reserve 
oi stability a , determined through experiment. In view of the limited 
character of these data we make use of characteristics known for artillery 
shells (1). Here we shall start from the form of writing the expression 
for tilting moment which is adopted in the ballistics of artillery shells 

M» —10»A/Cv)w*/C.«, 
(9.41) 

where 1¾ is the aerodynamic coefficient of tilting moment. We shall de¬ 
termine the quantity h from the expression 

A »A, + 0,57 Ar — 0.16D, (9.42) 

where hi is the distance from the center of gravity to the base of the 
ogival head part; 

hr is the height of the head part; 
D is the caliber. 

The values of % secured by D. A. Ventzel for artillery shells are 
set forth in Table 9.2. 
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Table 9.2 

V w*« V IV km V 

<200 
250 
275 
300 
325 

0,97 
i.oo 
1,05 
1,13 
1.24 

350 
375 
400 
450 
500 

1,32 
1,36 
1,39 
1,39 
1,38 

600 
700 
800 
900 

1000 

1.33 
1.S 
1.32 
1,31 
1.30 

The expression (9.40) assumes the form 

tgi 200 AhKm- (9.43) 

For artillery shells it is assumed that (1^1,35 . In nondimensional 
parameters the last expression can be transcribed in the following form: 

where r is the nondimensional radius of inertia determined from 

(9.44) 

r r 
~U 

Cq is the weight coefficient, defined as the relation of weight of 
the shell to the cube of the caliber expressed in decimeters, Cq = Q/Da; 

The wave (^) indicates the linear quantities related to the cali¬ 
ber D. 

Example. Let us determine the angle of incline of a cone T , nec 
essary for stability of a rocket at the end of the active section, and 
defined by the following characteristics: 

C# * 7; r =-- 1,9; Â -- 2,0; R = 0,38; a = 1,35; vK = 320 Mjceic. 

From Table 9.2 we find that 1¾ - 1.22- 10"5. 
According to formula (9.44) we determine that 

„ 1,35-1,9 1/2,0-1,22 • IO-* 
,glra2“Q¿r V —?— 

= 0,252; 

1 * 14°. 
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If gyroscopic stability of a rocket at the end of the active section 
is assured, then practically speaking the rocket is stable also in all the 
active and passive sections of the trajectory. 

In conclusion we may notethat expression (9.42) for the quantity h,, 
and also the values set forth in Table 9.2, are secured for artillery 
shells just as is the coefficient of reserve of stability. For this reason 
these quantities can be utilized only for rotating rockets the character¬ 
istics of which are close to the characteristics of artillery shells. 

9.4. Over-All Dispersion of Unguided Rockets 

The character of the oscillation of unguided rockets in the active 
part of the trajectory determines the angular dispersion of the vector of 
velocity at the end of the active section. If the initial disturbances 
Ço and fo upon departure of the rocket from the guide and the eccen¬ 
tricity of reactive force are known, then by means of the methods set 
forth in Chapters VIII and IX one can compute the corresponding deflec¬ 
tions of the vector of velocity $|„ and . 

The disturbances referred to are of a random character, and for 
evaluation of angular dispersion one must start from probable or mean 
values for the disturbances r^, , referred to. These quantities, and 
also ^ , can be determined experimentally through motion picture photog¬ 
raphy of the flight of a rocket on the initial section of the trajectory. 

!ftie flank dispersion of a rocket depends not only upon angular dis¬ 
persion but furthermore upon the disturbance factors operating on the 
passive section (busts of wind, oscillation of rocket). These factors 
are conveniently defined by the quantity, rj , of dispersion of flank ac¬ 
celeration. The corresponding flank dispersion of the point of fall is 
determined from the expression 

(9.45) 

Inasmuch as and rj may be regarded as independent random quantities, 
the over-all flank dispersion will be determined from the expression 

«'»=v =K <'**>’ + ('/ -T )’ (9-46> 
If is known, then, having determined the quantity ßö in accordance 
with the data from test firing, it is possible to reckon the value rj 
from the expression (9.46), and to determine dispersion for various angles 
of departure. Dispersion in range depends not only on angular dispersion 
in the vertical plane, **„ , but also on dispersion of the velocity 
of the rocket at the end of the active section of the trajectory vk and 
upon disturbance factors operating on the passive section of the trajec¬ 
tory. The quantity ^ depends on the nonhomogeneity of the working of 
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rocket. It Is convenient to reduce all these factors to oscillation of 
the ballistic coefficient £. Taking the three disturbance factors V % . 
*«» referred to into account, it is possible to write an expression tor 00, 
characterizing dispersion in range, in the following form: 

(9.47) 

where dX dX_ dX are corrective coefficients determining change in range 
’ dvu ’ dc 

in consequence of a slight change in #k. respectively. 

These corrective coefficients are determined in accordance with 
special tables (2). For artillery shells the values r,§, r. are character¬ 
ized by the following mean values: 

For rockets these quantities are regarded as the lower limit of possible 
dispersion of these parameters. 

It should be noted that with small angles of departure the factor 
r, is decisive and dispersion according to range is determined almost en 
tirely by angular dispersion rH . 

With increase of the angle of departure the part played by this 
factor falls off, and it becomes minimal at 8o~45“. 
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CHAPTER X. BALLISTIC PLANNING OF UNGUIDED ROCKET MISSILES 

Posing the Problem 

ready domestic availability of materials, assume front-r^k imnorí 8”’ 

ïîvÙTÎnlhe CO"diClr f°ï °f manufacture and high p ^c- “ 

:^:^rtLhec=todi^XTofrr:s ^:t?P“rx:is 

T^Ty- :s^Tai^ti\Ty 
certain extent predetermine the aelectron of desS UyTte f”eL J- 

aîthX tTeySen^re0hfl^Sbànisticttchar”cterlstrLrinethel: 

chlrJt^^oríhe^r1“0!1"' rd USe; AU 0f f-^ ^trrmí^et^^eTfn^' 

flecuL^in^tÎ^m^Sftïïfs^lfp^"15511“' fi"ds - 

The basic aim of ballistic planning consists in determining the 

Si5niPrrameterS °f 3 missile ^ich will ensure minimu^ start 
Íhhíh ffth? m0íel f0r a given ran§e with ®iven «eight °f useful load 

with the fuel and materials selected, and with the values for project pa¬ 
rameters adopted (U, * , pm, 0B , etc.). project pa 

In harmony with the supplementary conditions 
upon the solution, three basic cases are possible: 

or limitations imposed 

1. A missile not limited as to length of model and 
of burning vault (the optimum ballistic variant). 

as to thickness 

2. A missile limited as to length. 

3. A missile with an assigned time of combustion of charge. 
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The first case is the most characteristic for the planning of finaed 
missiles, where the method of stabilizing the missile in flight permits any 
length of missile. 

The second case corresponds to the planning of turbojet missiles, 
the stability of which in flight can be ensured only with a relative length 
of missile which does not exceed 7-8 calibers. This case, however, is not 
confined to the planning of turbojet rocket missiles; it is always used 
when a limitation is imposed upon the ■ length of the model by conditions of 
use. 

The third case becomes applicable in the planning of antitank un¬ 
guided finned missiles and launch engines. In order to ensure the high 
grouping necessary to hit a tank, it is necessary that the combustion time 
of the charge be less than the time of motion of the missile in the criti¬ 
cal section of the trajectory. It is ordinarily also required of launch 
engines that the attainment of set velocity of the rocket (the flight ap¬ 
paratus) take place in the course of an assigned time. 

The solutions of problems in the ballistic planning of unguided 
rocket missiles set forth below are based upon a simplified method of de¬ 
termining maximum range of fire. In determining Xmax lb postulated that 
the rocket charge burns instantaneously, and that the angle of maximum range 
6mat is equal to 45°. This makes it possible to consider maximum range as 
a function of two parameters: maximum velocity vmax computed according to 
the Tsiolkovskiy formula, and the ballistic coefficient c_, computed for a 
missile with charge burned out at y = 0. 

Divergence in the results of computation of range carried out by 
the approximative and the precise methods systems comes to 1-3 percent, 
which is within the limits of precision of solution for the problems of 
ballistic planning. 

In order to explain so felicitous a coincidence of results, it is 
sufficient to compare the velocity of the missile for both cases (precise 
solution and approximative solution) at a single check point of the tra¬ 
jectory. We shall take as such the point A, corresponding to the end of 
the active section for a variant having progressive combustion of charge 
(the precise solution). It is obvious that beyond this point the develop¬ 
ment of the trajectory for both variants will be determined by three pa¬ 
rameters: 6a, £ and VA- The difference in ranges for the two variants 
of the treatment with equal values of 6a and c_ will be determined on y 
by the differences in velocities at point A. For each of the variants 
velocity at point A can be presented in the form: 

VA, — — àVgt — ÁVX‘ 
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where vjs is the value calculated according to the Tsiolkovskiy formula; 
ávg is the gravitational losses in the section of the trajectory 

being examined; 
Av* is the loss in velocity by reason of air resistance; 

the index (^) relates to the variant having instantaneous combustion 
(simplified treatment); the index (2) to the variant which takes into ac¬ 
count progressive combustion of charge (precise treatment). 

flie difference in velocities at point A, characterizing the error 
of the simplified method of solution, comes to 

- va, - VA, “ - Awfi) + (AV, - 

The mean velocity of motion of the missile in the section QA for the first 
variant comes to ¡»vis. for the second variant to «vTs/2. The times of 
motion in this section for the first and the second variants are propor¬ 
tionate: t2*s2/Vit . For the second variant gravitational losses 
will be higher by virtue of considerably greater time of motion. Consé¬ 
quent ly : 

útV, ~ AtV, < o. 

Losses of velocity from frontal resistance, on the other hand, will 
be higher for the first variant, for which mean velocity of motion in the 
section being examined is approximately twice as great as for the second. 
Consequently : 

As analysis shows, for the high thrust weight ratios that character 
ize unguided rocket missiles the following condition is met: 

Here 

and 

Utilization of the approximative method for determining range cuts 
down the number of project parameters and thereby considerably simplifies 
the selection of the optimum ballistic variant. The characteristics of 
this variant may then be refined on the basis of the more perfect methods 
for computing range set forth in Chapter VII. 

-328. - 



10.2. The Weight Equation for an Unaulded Rocket Mit» ci le 

It is desirable to present the weight equation for an unguided 
rocket missile in the form 

(10.1) 

where qjj represents the over-all weight of the caps of the rocket chamber, 
the diaphragm and other fastening units of the charge, and the stabilizer. 

Me shall assume the weights of these units do not change with change 
in the length of the charge and that with the design layout and the ma¬ 
terial adopted they depend only on the caliber of the missile: 

The weight of the cylindrical part of the engine casing can be pre¬ 
sented in the form (Figure 10.1) 

O*.)!. + (OÎ- OJh.l. (10-2> 

where Dr is the interior diameter of the tube (the carrier unit of the 
structure); 

Da is the interior diameter of the heat insulation; 
Tw is the specific weight of the structural material; 
Ta is the specific weight of the heat insulation; 

L is the length of the charge; 
k^ is a coefficient taking into account the amount by which the 

length of the chamber exceeds the length of the charge. 

Figure 10.1. Transverse section of rocket chamber. 



Let us introduce the designations: 

Making use of them, we can present the relation for q^p in the form 

-M-s- ¿>¡<! - fij)[T„+aj T.]. < 10.3) 

The expression within brackets can be regarded as the adduced spe 
cific weight of the wall of the engine 

T* T. + 3¡ 
I-*¡¡ 

(10.4) 

consequently 

ft* ■“ X (i—^ (10.5) 

For an engine without heat insulation: 

T.P-T.. 

Dm Dm 
*• 

I 

vdiere p¿ is the computed pressure; 
Oj is the limit of strength of the structural material. 

(10.6) 

Having divided both arms of equation (10.6) by Dy and having solved 
the equation secured relative to Bh • Dr/Dh, we find that 

*f ,-.. (10.7) 
•* + P 

The quantity Br is determined by the conditions of heat exchange 
in the chamber and by the thermophysical characteristics of the coating. 
In ballistic planning this quantity is assigned in approximate form, in 
accordance with the analogy of existing models of similar type. 

The weight of the rocket charge, making use of the designations 
adopted (see 3.2), is expressed by the formula 

b&*l 
(10.8) 
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From here on we shall have to examine change of parameters of 
the missile with change in the length of the missile. In doing this the 
weight of such units of the structure as the diaphragm, the cap, and the 
stabilizer are conveniently conjoined in equation (10.1) with the weight 
of the warhead in a single term, which we shall call the adduced weight 
of useful load 

(10.9) 

Then 

Q-C+M-^-(l-^)Tnp+* «°î (10.10) 

10.3. Change of Ballistic and Structural Characteristics of an Unguided 
Rocket Missile With Length of Charge. Condition of Maximum Range 

In order to elucidate the approach to a solution of the problem 
posed, let us examine how ballistic and structural-weight parameters of 
an unguided rocket missile of assigned caliber, having assigned weight of 
warhead, change with change in the length of the charge (Figure 10.2). 

With increase in the length of charge of a shape adopted, the sur¬ 
face of its combustion inevitably rises. In order that under these circum¬ 
stances a permissible value for the Yu. A. Pobedonostsev parameter may be 
retained, it is necessary to increase correspondingly the free cross-section 
of the chamber, i.e., to reduce the density of the charging. The influence 
of this factor may become predominant at a certain length, which will lead 
to reduction in the weight of the charge. At the limit it is possible to 
conceive of a case where with very great length of charge its weight would 
become zero, inasmuch as with great combustion surface it is necessary to 
assume the entire transverse section of the chamber for passage of the gas 
flow. The charge is converted into a sort of parchment-thin roll with 
disappearing thickness of vaulting. 

The weight of the cylindrical part of the chamber qjp rises in 
linear fashion with the length of the charge. Together with it, the 
passive weight of the missile follows in linear relation: 

1 = 1u»+<lrr 

It is obvious that the maximum ratio w/q with increase of the 
length of the charge is achieved earlier than the maximum of its weight, 
inasmuch as in the field of maximum weight of the charge with linear rise 
in passive weight q. the ratio w/q will decline. Maximum velocity (vm)max 
coincides with maximum «o/<7 ratio. This quantity represents a velocity of 
missile which is the maximum attainable with given caliber and useful load. 

The second factor determining maximum range of the model is the 
ballistic coefficient £, which changes in inverse proportion to passive 
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weight, and consequently to the length of the charge, which must be pro¬ 
pitious to increase of range over the entire scope of lengths examined. 
Obviously maximum of range will be located to the right of maximum velocity 
for the model. As investigations show, for various combinations of bal¬ 
listic and structural parameters the extreme of range is only insubstan- 
tially different from the range corresponding to the maximum of velocity. 
Consequently, taking as limit for the attainability of the range which 
corresponds to (vm)max> we lower to an insignificant extent the ballistic 
potentialities of the assigned caliber, but we link the conditional limit 
of range obtained in this way with a structural variant having less weight 
and length. Ms shall in fact consider such a variant the optimum ballistic 
solution of the problem. 

Figure 10.2. Change of weight and ballistic characteristics of unguided 
rocket missile with rise in length of charge. 
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Inasmuch as the extreme of range is attained with maximum ratio mlq 
(the Tsiolkovskiy number), we shall pass on to determination of this maxi¬ 

mum. 

From the weight equation for an unguided rocket missile (10.10) we 

secure 

fn + kn.L 
(10.11) 

Dividing the numerator and the denominator of the right-hand arm by 
the cube of the caliber, we secure 

(10.12) 

where 

In seeking the maximum for the ratio it is a matter of indif¬ 
ference which of the two reciprocally linked quantities -- L or • -- is 
assumed to be the independent variable, inasmuch as the dependence of L 
on « is unambiguous. In order to simplify mathematical computations it 
is well to take t as the independent variable. Bien, differentiating ex¬ 
pression (10.12) according to s and making the derivative equal to zero, 
we secure 

¢..4- + ^..+ xW1-«’.)!’-0 (io. 13) 

or 

•7r, + I . *,(10.14) 
L' 4 C. 

Equation (10.14) expresses in general form the condition of maxi¬ 
mum range of an unguided rocket missile of unlimited length with a given 
weight of useful load. In order to secure a numerical solution, in equa 
tion (10.14) we must substitute a concrete expression of the functional 
relation Z=f (t) for a charge of the form adopted. Then, having solve 
the equation, we shall find the value of «m.* which determines maximum 

range. 
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10.4. Connection Between Dimensions of Charge and Coefficient of Charging 
• for Chargea of Various Shapes 

The basic dimensions of a charge being planned should be harmonious 
among themselves and with the internal dimensions of the rocket chamber in 
such fashion that a charging parameter which is the lowest permissible in 
accordance with the conditions of stability of combustion is achieved. 

Let us examine the relations which establish such a connection for 
some typical shapes of charges. In doing this we shall limit ourselves to 
shapes guaranteeing constancy of combustion surface, such as are most fre¬ 
quently used in unguided rocket missiles. 

Inasmuch as in an unguided rocket missile both charges with loose 
charging of chamber and those fastened to the casing of the engine may be 
used, we shall examine shapes characteristic for both groups. The first 
group is represented by a charge of cylindrical single-channel burners, 
the second by a telescopic charge and a charging having a star-shaped sec¬ 
tion. 

A. Charge Consisting of Single-Channel Cylindrical Burners 

ffe shall introduce the designations: 

n -- number of burners; 
D -- exterior diameter of burners; 
d -- diameter of channel. 

In determining the parameter x for such a charge there is a differ¬ 
ence between «int» calculated for conditions of combustion within the chan¬ 
nel of the burner, and *ext> calculated for conditions of combustion on the 
exterior surface of the burners. 

In this case 

(10.15) 

lutDL 

X (°«—nDt) 

4nDL 
~Dl-nD> ' 

(10.16) 

Some investigators (1), in planning charges of cylindrical burners, 
start from an equality in fallings-off of pressure for the channels and 
the exterior gaps of the charge. With inequality in fallings-off, at the 
forward cap of the engine an escape of gas fron one gap to another com¬ 
mences, something which worsens the combustion circumstances of the charge 
and contributes to the appearance of anomalies in combustion. It is par¬ 
ticularly important to fulfill this condition at the start of combustion 



of the charge with minimum free section of the chamber, when the velocity 
of gas flows and fallings-off in pressure are greatest. 

In Chapter III it was shown that there is an unambiguous connection 
between falling off in pressure along the burning surface of the charge 
and the » parameter. Consequently the requirement of equality in fallings- 
off which is being examined may be reduced to the requirement that 

Kip- 

Let us equivalate the right-hand arms of equations (10.15) and 
(10.16) and determine 

d 
&K-ntß (10.17) 

mr 
The coefficient of charging of the section of the chamber for a 

charge of single-channel cylindrical burners is 

D» —d*) (10.18) 

From equation (10.18) 

/ «D* -•D? (10.19) 

Equating the right-hand arms of equations (10.17) and (10.18) and 
solving the equality secured relative to D, we secure 

D V n (2 —O 
(10.20) 

Substituting expression (10.20) into expression (10.19), we secure 

^ (1 — «) (10.21) 

rf = 0(l —«). (10.22) 

Substituting expression (10.21) into expression (10.15), we find 

, xd t) (10.23) 

In order to simplify subsequent calculations we must shift to rela¬ 
tive dimensions, dividing the values secured by the caliber of the engine. 
WË shall secure 
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(10.24) 

(10.25) 

(10.26) 

In some cases, for example in planning short multiple-burner mis 

siles, when falling off in pressures along the length of the charge is 

slight, it is well to depart from the equality of Xint and xext' For 

arbitrary relationships of x deduction of a dependency of D, d, and L 

upon • differs from the one which has been examined in that a supple¬ 

mentary parameter m « «int/*ext is introduced. 

With *int * 2 xext 

(10.27) 

(10.28) 

(10.29) 

Tfe shall designate 

(10.30) 

Then for the type of charge under examination the dependence of E 
upon « can be written in the general form 

¿ = A/(«); 

for «int * *ext 

for *int = 2 *ext 

/(0 = 1-.. 

Graphs for the dependence of t upon L for these two cases, con¬ 

structed with various values of A, are presented in Figures 10.3 and 10.4. 
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Figure 10.3. Dependence of coefficient of charging section of chamber • 
upon relative length Ü of charge consisting of cylindrical 
sing le-channel burners, with *int = *ext* 

Figure 10.4. Dependence of coefficient of charging section of chamber ■ 
upon relative length L of charge consisting of cylindrical 
single-channel burners, with = 2 ieXf 

In the planning of a multiple-burner charge a supplementary condi¬ 
tion determining the possibility of placing a charge, with the assigned 
number of burners and having dimensions satisfying the assigned value * , 
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in the rocket chamber arises. It 
ter of the burner to the interior 
value Dnp corresponding to tight 
of n, i.e., 

is necessary that the ratio of the diame- 
diameter of the chamber not exceed the 
packing of the charge with a given vale 

and 

The value D™ depends >’nly upon the number of burners n and is de- 

dk = 1. 

Values of Dt for various values of n are set forth in Table 10.1. 

Table 10.1 

A 3 4 5 7 12 14 19 

©.«UM 0,414 0,370 0,333 0,244 0,220 0,200 

•■p 
I*»« = 2***p) 

0,452 
0,610 

0,511 
0,656 

0,539 

0,650 

0,714 

0,7(V2 

0,633 

0,692 

0,668 

0,650 

0,757 

0,745 

substituting in equation (10.24) 0'«.«.“Õw> find Er«, it the 
value •» , corresponding to tight packing with *int - *exf 

(10.31) 

In the general case with * ¿nt * »ext t*16 dependence for np 

takes on the form 

'■p 
\ amOap ' J 

From equation (10.32) for xint = 2 *ext we secure 

I 
Hp == 0,5 + nDr„^ 

(10.32) 

(10.33) 

Values of inp calculated in accordance with relations (10.31) and 
(10.33) for various values of n are set forth in Table 10.1. 

The number of burners which will ensure greatest density of packing 

is determined from the formula 

- 338 - 



a =s 1 -f 3 (¿ + i*), (10.34) 

where i_ is a whole number (i = 1, 2, 3, ...)• 

B. The Telescopic Charge 

The section of a telescopic charge, with basic designations, is set 
forth in Figure 10.5. For both elements of the charge the thickness of 
the burning vault must be identical. Consequently 

whence 

D = D„ + d. 

The surface of combustion of the charge is 

S=*L(Dm + d). 

The area of free passage is 

(10.35) 

/'.--rOP-oy. 
The Pobedonostsev parameter is defined as being 

S 4¿ 
' = TZ’ssd=T&' 

(10.36) 

whence 
4L 
n 

(10.37) 

The coefficient of charging of the section of the chamber with fuel 

is 

_ -Î- (» - f-tiL 
-r—-“l-V (10.38) 

T0* 

Substituting into expression (10.38) expressions (10.35) and (10.37), 

we secure 

i 4£ • = ‘ —77T 
(10.39) 



Inasmuch as D = DhBhBr. we secure

(10.40)

Figure 10.5. Characteristic dimensions of telescopic charge.

B. Charge With Channel of Star-Shaped Section

The section of a charge having characteristic dimensions is pre
sented in Figure 10.6.

The coefficient of filling the cross-section of the chamber with 
the charge is expressed by the relation

} Sin —COSO n (10.41)

where n is the number of rays of the star; , ^ u
Z ft is the relative thickness of the burning vault (D is the diame-

ter of the charge) ; j ..u
- r is the radius of rounding-off at the tip of a ray (D is the

r./• = -o
diameter of the charge);

a is the angle describing half the original arc of the rounding off;
5 is the angle at the tip of a projection of the charge.
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Figure 10.6. Characteristic dimensions of charge having channel of star

shaped section.

After the charge has burned out to a thickness of combustion vault 
el there remain degressively burning elements which must be regarded as 
lost for the working process of the engine. The degressive remnants of 
the charge actually constitute a supplement to the passive weight of the 
rocket, and in order to reduce this weight it is well to replace these 
elements of the charge with inserts of a light material (foam plastic)
(5).

The ratio of the area of transverse section of these elements to 
the area of the transverse section of the chamber is called the coefficient 
of residue, ;

♦« = 1 —l(^ + + (^+ «i)(0,5 —r—^,)sin<p,l, (10.42)

where = -^ -t- arc sin
ti

(0.5—? —»i)sln-^ . 
r + 7t

As analysis of this shape of charge shows, for each value of n 
there is a unique geometrical variant which will ensure constancy of com
bustion surface, characterized by a definite ratio of the parameters ei, 
a and 6 (2). The basic characteristics of these variants are presented
inTable 10.2. As will be seen from the table, these variants are charac
terized by high values for ^ . The usefully exploited area of the section
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of the chanter rises if a certain progressive character of combustion is 
assumed. In the same table there are set forth the characteristics of a 
charge with o* = 1,1 . Increase of permissible progressive character of sur

face of the charge with reduction cf 4>k makes it possible to increase the 
thickness of the burning vault and the density of charging • .

Table 10.2

m
.,= 1.0 ., = !.«

■
6 r 8 6 7 s

«i 0,150 0,142 0,125 0,206 0,190 0,181
■ 0,824 0,755 0,666 0,865 0,796 0,757

IS 12,7 11.7 8,8 8.3 6,9
Vi 25,6 18,1 13,5 26,6 17,5 14,9

The weight of the effectively utilized charge can be computed ac

cording to the formula

The weight of the rocket chamber, taking into account the weight 
of the degressive elements of the charge or their substitutes, is computed
as

(10.44)

where T4, is the specific weight of the fuex or filling.

This relation can be reduced to a general form if one introduces a 
new expression for the adduced specific weight of the wall:

(10.45)

Then

4'k
Tap — T"P + T+ •

(10.46)

The initial value of the relative perimeter of combustion is

= = - + sine
• —rctg®.

(10.47)
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The parameter of charging, x t is computed as
nn,£. _ 4Zn„ (10.48)

hence

-g__
Z (10.49)

Inasmuch as for a charge h^ing a constant surface of combustion 
with a given number n the values [Ic and t are reciprocally linked and 
correspond to the single coinbination of geometrical parameters which en
sure that 0=1 , they define the single value for the nondimens^onal ratio 
x/L. For the variants set forth in Table 10.2 the values of x/L are given 
in the last graph. Making use of this relationship, with a given value 
for * one can determine the permissible length of the charge and its 
weight.

If one starts from the desired elongation of the charge Z, one can 
select a number of rays of the star n at which the value of » realized 
approaches the permissible value. Thus, in contradistinction to the charge 
of single-channel cylindrical burners, in the present case it is not pos
sible to change the relative length of the charge without interruption, 
while preserving the number of rays and without in doing so changing the 
characteristics of progressivlty of the charge. For this reason, deter
mining from expression (10.49) the value of • as

1 (10.50)

one should note that strictly speaking with 0^=1 this formula covers the 
totality of individual variants which are different as to the n number.

But the relation (10.50), as also the graphs in Figure 10.7, con
structed on the basis of data from Table 10.2, express a general tendency 
toward change of * with elongation of a charge of a given type at fixed 
value for x • As follows from the graph, over a pretty long range of 
elongations of charge with a channel of star-shaped section it is possible 
in first approximation to consider that the coefficient of charging * 
changes in linear fashion with rise in L.

10.5. Determination of Basic Design Pafttmeters of Optimum Ballistic Model 
for Charge Consisting of Cylindrical Single-Channel Burners

For a charge of cylindrical single-channel burners, with *int " 
*ext we secure from formula (10.26)

• —3
— (10.51)
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Figure 10.7. Dependence of coefficient of charging • upon L/x for charges 
having channel of star-shaped section and possessing constant 
surface of combustion.

Substituting expressions (10.26) and (10.51) into equation (10.14) 
we secure

_3.* + 9t—4
2(1— 16 K n C'

(10.52)

Analytical solution of equation (10.52) relative to • proves to be 
too cumbersome. For this reason in order to determine (m» it is well to 
make use of the graphic method. The left-hand arm of the equality consti
tutes the function /(«„„)•

The right-hand arm of the equality (10.52) represents a nondimen- 
sional complex made up of the project parameters and the relative weight 
of useful load. Me shall designate it by the symbol N.

Setting oneself arbitrary values of i one can compute the values 
of the function /(f„,„)=^ that correspond to them. It is well to present 
the results of computations in coordinates = (Figure 10.8). In
order to determine the value of it is necessary to compute, in ac
cordance with given values of the project parameters for a given value 
C , the magnitude of the complex N and to enter the graph or
the table with it. Finding »m« from the graph or from the table, one can 
then compute all the basic ballistic and design parameters determined by 
it.

Let us examine the character of the function 
lowing equality corresponds to the condition N = 0:

-3.*-|-9t-4=0.

the roots of which are equal to

., = 2,62; ., = 0.543.

=/(A0- The fol- 

(10.53)
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(10.54)

Figure 10.8. Dependence of coefficient of charging «a>i , ensuring maximum 
velocity of unguided rocket missile, upon complex N with 
*int = -ext-

Inasmuch as a value t>l is devoid of physical meaning, the only 
acceptable root of the equation in question, determining the initial ordi

nate of the graph , is

•o«i (0) ~ 0.543.

The following equality corresponds to the condition A^=oo:

- »)s=0,
which is satisfied with ei=2 and e2=l.

Eliminating the first of these as contradictory to reality, we 
secure This is an asymptotic value, toward which the function

(AO trends with Af ->• oo .

The condition N = 0 is met with °° or with Bh = 1- In this
event the weight of the rocket chamber becomes negligibly small in ca
parison with the weight of useful load, in one case by virtue of infinite 
rise of , in the other by virtue of trending of the thickness of the 
wall of the rocket chamber toward zero (for example by virtue of the use 
of material having infinitely high strength characteristics). Obviously 
in practice these conditions cannot be fulfilled, and the case N - 0 may 
be regarded as only a limit toward which this complex trends for some real 
designs.

Let us note that equation (10.53) can be secured from the condition 
of maximum weight of charge.

In harmony with equation (10.8)
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dm -r^m
Making the derivative equal to zero we secure the equation

which, after substitution of expressions (10.26) and (10.51), leads to 
equation (10.53).

Table 10.3

N D,0 0^ 0.C 0.6 0.8

0 0,543 0,559 0,574 0,586 0,598
1 0,608 0,618 0,628 0,6.36 0,r>42
2 0,648 0,651 0,f)60 0,666 0,672
3 0,678 0,684 0,688 0,692 0,696
4 0,700 0,704 0,708 0,712 0,716
S 0,720 0,724 0,728 0,732 0,734
6 0,736 0,738 0,740 0,742 0,744
7 0,746 0,748 0,750 0,7,52 0,7.54
8 0,756 0,758 0,760 0,762 0,764
9 0,766 0,768 0,770 0,772 0,774

10 0,776 0,778 0,780 0,781 0,782
11 0,783 0,784 0,785 0,786 0,787
12 0,788 0,789 0,790 0,791 0,792
13 0,793 0,794 0,795 0,796 0,797
14 0,798 0,800 0,801 0,802 0,803
15 0,804 0,804 0,805 0,806 0,807
16 0,808 0,808 0,809 0,810 0,811
17 0,812 0,812 0,813 0,814 0,815
18 0,816 0,816 0,817 0,818 0,819
19 0,820 0,820 0,821 0,822 0,823
20 0,824 0,824 0,825 0,826 0.826
21 0,827 0,828 0,8>8 0,829 0,829
22 0,830 0,831 0,831 0,832 0,832
23 0,833 0,834 0,831 0,835 0,835
24 0,836 0,836 0,837 0,837 0,837

Thus with N = 0 the maximum velocity of an unguided rocket missile 
coincides with maximum weight of rocket charge, vrtiich corresponds to the 
phvsical meaning of the condition N = 0 as revealed above: for a missile
in which the weight of the rocket chamber plays an insignificant part amid 
the passive weight, the maximum for the ratio ^/g must approach the maxi
mum for CD .

Anong the conditions ensuring the equality N = oo, let us examine 
one: x = <x> . This means that in planning a charge there are no limita
tions upon » . In this event the maximum velocity is achieved with maxi
mum filling of the cross-section of the chamber with fuel (*=l).
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The real values of are to be found within the range

0.543

Let us examine the sequence of computation of maximum possible 
range of flight of an unguided rocket missile with given caliber and weight 
of useful load.

1. In accordance with assigned values D, and of project pa

rameters "b, Tnp. *. . the magnitude of N is computed, in accordance
with which the value of is determined fran the graph.

2. In accordance with formulas (10.20), (10.22), and (10.23), with 
e=i„„ the basic parameters of the charge are determined.

3. In accordance with formulas (10.8) and (10.5) the weights of 
the charge id and of the rocket chamber flxp are computed, and the passive 
weight of the missile q= + ^tp determined.

4. The following formula is computed:

5. The ballistic coefficient is computed:

6. In accordance with ballistic tables for 8o = 45° the maximum 
range of fire is determined.

In accordance with the results of the confutations carried out for 
various calibers and useful load weights, one can construct a graph for

which the reverse problem can be solved; 
to detemine the caliber in accordance with given values of and X^ax.
and in accordance with it also the remaining parameters of the optimum 
model.

A solution analogous to the one examined may be carried out for 
other shapes of charge as well. For this purpose it is necessary to sub
stitute into expression (10.14) the relationship L=f(t) pertinent to a 
charge of given shape.

10.6. Determination of Basic Desien Parameters of Optimum Ballistic Model 
for Charge of Any Given Shape (Generalized Graph-Analytical Method of Solu
tion)

The method of solution examined in the preceding section is con
structed upon relations suitable only for a charge of a definite shape, in
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which connection even in this case the use of these relationships is lim

ited by supplementary conditions, for example «int “ *axt- The first de

ficiency of the method examined lies in this circumstance. A second and 
even more substantial deficiency of the method consists in the use of 
graphs for X=f{D„. (}[,„) which can be computed and constructed only for a 
certain combination of values of project parameters. If in planning the 
adopted value even of only one of the project parameters proven to be dif

ferent from the one for which a graph has been constructed, use thereof 
becomes impossible. At the same time, steady technical progress forces 
the designer to seek new design solutions associated with the use of new 
layouts, fuels, and materials, and consequently characterized by constantly 
changing values for project parameters.

A virtue of the method set forth is its universality, i.e., its 
suitability for charges of any shape, ar.d also for any numerical values 
of project parameters and their combinations.

Analysis of the relationship * = f {L) for charges of varying shape 
shows that in the majority of cases over the range IT which is of practical 
interest, it can be approximated with a sufficient degree of precision 
through the following formula;

(10.55)

The specifics of the shape of the charge and the influence of the 
parameter of charging are reflected in this relationship in the magnitude 
of the coefficient •

In order to convince oneself of the correctness of formula (10.55) 
it suffices to return to the graphs in Figures 10.3, 10.4, and 10.7 and 
to formulas (10.29), (10.40), and (10.50). From the formulas referred to 
one secures an analytical expression for :

for a charge of cylindrical single-channel burners with *int ~ 2xn:

ft 4inr.
' xB,B, •

for a telescopic charge:

for a charge having a channel of sLa- shaped section:

In the remaining cases ft, is determined frem the graph for *—f (X) 
as the tangent of the angle of incline of the approximating straight line 
in the section $= i^Q—0,6 •
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Making use of relationship (10.55) we secure 

(10.56) 

rfl J_ (10.57) 
* *.* 

Substituting expressions (10.56) and (10.57) into the general solu¬ 
tion (10.14) we secure 

2«—1 t 9 *¿Tnp0— 
(10.58) 

Let us designate 

* 7«pQ ~ ^*) 
< *7 cl ' «■a 

(10.59) 

Consequently 

79 
2«—1 

= (T^- 

(10.60) 

Solving this equation relative to • we secure 

(l + tf)±Km (10.61) 
Jt 

Let us evaluate the error introduced by the approximation (10.55) 
into the solution_of the problem with the greatest divergence of the re¬ 
lationship (L) from the linear, for a charge of cylindrical single¬ 
channel burners with *int = *ext> A = 40. 

Let us take N = 10. From the expression for N it follows that 

« AiJopO—Æj?) N 
T c'-~T* 

The complex 

_ ^m) _ 
* *• C' „„ 

N_J_ 
A *, 

is used in the universal solution. 



Then 

From the graph (Figure 10.3) for the range ^ = 0-j- H, « - 1 -f-0,6 

t 1—0,6 ftft.>Qß. w-W- 8.45: 
*. = —¡4 * " - 40 0,0-m>> 

9,45-^9,45 
p5 

; 0,755. 

According to Table (10.3) for AT--10 = 0,776 • 

Thus the divergence in the quantity *ITm for the two methods of so¬ 
lution comes to 2.8 percent. The divergence in the quantity Lmax. calcu¬ 
lated according to formulas (10.23) and (10.56), comes to 2.2 percent 
(Li = 8.0, L2 = 8.28). Thus the divergence between the results of compu¬ 
tations according to both methods lies within the limits of precision for 

solution of the problem. 

The relative weights of the basic elements of a rocket engine will 

be expressed in the following fashion: 

c„=-S-»b;:b2*i=t8tt (‘»-s2) 

(10.63) 

Cl can ♦nu 
be determined from expression (10.59) 

Making use of expressions (10.62) and (10.63) one can write 

(10.64) 

C. « BlBl (1 -«1« 

* C, «r + C¿nN t +-=-) 

(10.65) 

Substituting expression (10.60) into expression (10.65) we secure 

_g BkB1_(2e — 1 ). 

The equality (10.66) can be presented in the form 

(10.66) 

(10.67) 
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«here 

B- # ^ Bî5*IT3^- 

Die expression for the ballistic coefficient cj 
the form 

llil» IOÎIO* • 

*--?-~T 

(10.68) 

(10.69) 

be preMnted in 

(10.70) 

or 

Ml • 
e-?-KT- 

(10.71) 

In formula (10.71), in contradistinction to formula (10.70), the 
caliber PC is expressed in decimeters, which has in feet led to she ap¬ 
pearance of the transitive multiplier 10. 

Substituting into formula (10.71) the values for C. and from 

expressions (10,62) and (10.66) we secure 

mu 6. I fc“’. (10.72) 

From the expression for V 

0.-Ÿ (10.73) 

Substituting expression (10.73) into expression (10.72) m secure 

c~ y~j¡ 

This relationship can be presented as follonas 

i *-1 
(10.74) 

(10.75) 

where 

(10.76) 



(10.77)

A solution of the problem can be secured with the help of the graph 
(Figure 10.9). In the upper left quadrant there are set forth the curves 
establishing a connection between range of fire, maximum velocity, and the 
ballistic coefficient. With the system of solution adopted one must con

struct these in a V - c system of coordinates. These curves are constructed 
for the 1943 resistance principle. Beneath these there is a graph for the 
relationship c — f(*m»x) with 0 = constant, constructed in accordance with 
formula (10.75). In the upper right quadrant curves for the dependence of 
Vtn upon Z = u)/<? , as calculated from the Tsiolkovskiy formula for various 
values of Ii, are placed. Beneath these in the lower right quadrant curves 
for Z=/(»ni»i) with B constant, constructed according to formula (10.67), 
are set up.

3,-250

Figure 10.9. Nomogram for determination of basic parameters of optimum 
ballistic model.

The layout for solution of the problem is shown by dashed straight 
lines. It is necessary, in advance and in accordance with the values for
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project parameters adopted for the solution, to figure out the values of 
the coefficients B and <I> and to find the curves which correspond to them 
in the lower quadrants. Moving along the curve X=\3ag we shall be getting 
various values for c and Z, for which we shall find from the lower graphs, 
with constant B and <l) , the values for tmaxi=9(c) and *mK2“9(2) that cor

respond to them. Obviously an equality must correspond to the
solution of the problem. Having achieved coincidence of these values and 
having secured in this manner the desired quantity *mai , and knowing also 
from the graphs the values for c and Z which correspond to it, we easily 
find all the other parameters of the optimum ballistic model. The caliber 
of the missile can be determined from expression (10.72):

D.
40/*. 2a-l

**tTnp(l-B2)c ‘U-*)

(10.78')

The passive weight of the missile can be defined as follows;

10*. (10.79')

and the following can be found in accordance with the value of Z

(10.80')

The full weight of the model is determined as follows:

(?o = ?+».

The basic dimensions of the missile are determined in accordance 
with the value found for n=e2 = Emas.

Thus, for example, for a charge of cylindrical single-channel burn

ers the dimensions D, d, and L which are of interest to us can be computed 
in accordance with formulas (10.20), (10.22), and (10.23).

If the quantity ft. , found from the graph «=/(£), is used in solving, 
in the event of need the precision of the solution can be heightened by 
virtue of a second approximation. In the second approximation a refined 
value for ft, is used; this is secured via approximation of graph s=f{Z) 
to the straight line within a narrower field defined by the value for Cmai 
from the first solution.

Example 1. To determine the basic design parameters of an optimum 
ballistic model for a range of 25 kilometers with adduced weight of useful 
load v^ = 250 kg.

For computation we adopt the following project parameter values:
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1.p

B,

„-l- P* = 200 OT/C.W’; Sg = 3500
7,82 KZ/dM*-. » = 1,60 Ki/dM*; I = 1.3; ^ 1,02;

>czceK. _ --------- ,7(j
1: /, = 20o:

L B.= 

1 B: 

3, A

3500

*«+/’«
« Bl

3500 + 200

I

: 0,95.

i - Bi *i
»B, _ 170.0,95

■jyT r~

!iT2r=S5’Ti2= ''®®-
r: 40,4.

4. From the graph in Figure 10.3 we find, in accordance with the 
confuted v_alue A = 10.4, *, as the tangent of the angle of incline of the
curve «-f(4) over the section t-O.S+O.S:

& 4>: 10/ 
■i---------

— t, 0,8 — 0,5 
Z,-Z, "16.3-7.1 : 0.0326.

10-13 r 4 0,0326
_«7,8.' (1 _ 0,95*) 1,02. : 0.292.

6. From the graph we find that equality of the values for t , de

termined from the left and the right portions of the graph, is ensured 
under the following conditions:

: 0,61; c = 0.24; Z = 0.4; v„ mJL.
401k, 2*n.»-'
(l ~ ®h) ‘ *'"•» (* *ni*x)

40 1.3 0.OC26 2 0,61 — 1

&

« 1,02.7,82(1 -0.95M 0.24 0,61 (1 — 0,61) 

l,3-0,268»

= 2,68 dM.

Jll0» 10* = 388c ■ 0,24
a m = gZ = 388 0.4 ^ 155,5 n.
10. <?, = » + ?= 156 + 388 = 544 «. 
j, 2_ _ 170-0,95 1-0,61

I2./7' 

IX d .

4yn yr^

. D,B,

V‘2 — 0,6!
13,3;

L = 133-2,68 = 35,8 dM. 
2,68-0,95 : 2,16 dM.

|/■n(2 —•) K2 —0,61 
D (1 - •) = 2,16 (1 - 0,61) = 0,845 dM.
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14. We check whether the assigned value for 
the dimensions computed:

is ensured with

=
jU

d ''
«2.I6.35.H

-|-[{0.95.2.68>»-2.I6»|

« I72A

10.7. Selection of Optimum Design Variant of Unguided Rocket Missile

At the basis of the selection of an optimum ballistic variant there 
lies a single criterion -- minimum launch weight; which, despite all its 
significance, is not all-inclusive. In practice it is sometimes well to 
depart a little from the optimum ballistic solution in order to meet other 
requirements imposed upon the model being planned. Thus, for example, in 
some cases the optimum ballistic variant may turn out to be excessively 
long, and for this reason it will be justifiable to shift to another larger 
caliber in order to make the model shorter at the cost of its becoming 
somewhat heavier.

In order to determine the basic design parameters of variants close 
in caliber to the optimum, one can exploit one of the properties of the co

efficient a for weight of the engine.

At the great elongations of the charge characteristic for the op

timum ballistic variant the coefficient a changes faintly with length.
This conclusion can be extended to models having close relative lengths 
of charge and calibers as regards amount, i.e. , it can be assumed that 
the value of o found for the optimum ballistic variant can be transferred 
to these models as well.

In Figure 10.10 a graph is set forth which can be utilized for solu

tion of the problem posed. The left side of the graph is filled with 
curves which establish the connection between range of fire and maximum 
velocity at various fixed values for the ballistic coefficient £. In the 
right half there are curves for the dependence of Vn, upon p at various 
values of unit impulse Ii. The scale for p is duplicated in the values 
of the variable ^ which are linked with p by the ratio

Cutting through the bundle of curves in the left half of the graph 
with a verticiil corresponding to the range assigned, we secure a number 
of values for £, to each of which corresponds, at the adopted value for 
II, one definite value of p or Z. In other words, a number of combina

tions of reciprocally linked values of £ and Z (or p ) correspond to the 
assigned range. Making use of these values one must determine the design 
parameters of the model which will ensure them.
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With the value for |i secured from the graph, the launch weight of 
the model is defined as

v* 1-U + •)!*

The weight of the charge can be defined as 

The passive weight of the charge Is

(10.78)

The caliber of the model is found from the expression for the bal

listic coefficient:
<-(1 - I*)wrw- (10.79)

In order to determine the basic linear dimensions of the charge we 
must make use of the graph for dependence, of relative weight uf a charge 
of the assigned type upon its relative length. The relative weight of the 
charge is

For the sake of convenience in computing we shall Introduce a new 
characteristic

_£=--- *•£.c: (10.80)

As an example, thereare set forth in Figures 10.11 and 10.12 
graphs for the ratio Ci.-/(£) constructed with various values for

*Vn
for the cases »int = *ext a"** *int “ 2 «gxt charges of cylindrical 
single-channel burners.

Thus, having determined the value and having divided it by

the complex l-^EPE^ it is necessary, in accordance with the value secured

for , to go into a graph simUar to Figure 10.11, and to determine L 
from it, and in accordance with L the remaining dimensions of the charge.

After solution of the problem it is well, on the basis of the di
mensions secured for the chamber and the charge, to reckon the value of
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the weight characteristic of the engine, P , and to compare it with the 
value with which one started. If they diverge considerably, which is ordi

narily possible only when there is a decidedly considerable deviation from 
the caliber of the optimum model, it is necessary to recompute all the 
characteristics of the missile, starting with the value secured for P .

y

0 __ /

/
/
h r

i// ub

//
/

35

Id

V

f

25

—
-20

15

lU

f i

) n nr *>nj

Figure 10.11. Dependence of adduced'relative weight of charge C„ con

sisting of single-channel cylindrical burners, upon rela

tive length L for *int = »ext-

Example 2. To compute the basic design parameters of one of the 
variants of a model for a range of 25 km and with weight of useful load 
230 kg.

The values of the project parameters are taken to be the same as 
in example 1.

We shall carry out computation for the variant c = 0.30.

1. According to the gr£^>h. Figure 10.10, with a range of 25 km 
corresponds to this value.
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2. The weight coefficient of the engine, ■ , Is determined in ac

cordance with the data of example 1. For computation we shall take it as 
being • 20 kg. Then

+ 388 - 230^20
“ • ’ 156 “ 1,01.

.*638 «a* 1 -(1 +.)p. ■ l-i O.32

4 M pQ, <= 0.32-638 = 204 «.

& f s 0,(t—p) - 0.68-638 * 434 wa

D, =■ 3.07 dM

3,07* 1.6-^ 0.93«
654.

8. From the graph, Figure 10.11, with 6,24 ^-40; £-8.14. From 
the graph, Figure 10.3, with «£nt “ *ext A • 40, •-0.767 corresponds 
to this value for L.

9. - = .4 -f /^ = 0,767-8,14-1.6 ^ 0.93«-3.07* - 2W «.

Thus the value secured for • corresponds to the one we were set.

We may note that for an engine having loose filling of the chamber 
without heat insulation the values of the coefficient • are very high and 
come to 0.85-1.25. Thus, for example, for the "Honest John" rocket, in 
accordance with (1) the over-all weight comes to 2,700 kg, to 675 kg,
• to 930 kg. Consequently for the engine of this rocket.

_2700-WO-675 _ , ^

11. Let us compare some characteristics of the model computed in 
this example with the characteristics of the optimum ballistic variant.

Ratio of launch weights

tA- 638'm' I.I7&

Ratio of charge lengths
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<T
Ratio of charge weights

35,8

“ 8.14-3.07

155,5

Figure 10.12. Dependence of adduced relative weight of charge C, con

sisting of cylindrical single-channel burners, upon rela

tive length of charge T for »int = 2 *ext-

Thus increase of the caliber from 268 mm to 307 mm while preserving 
the assigned range of fire has led to increase of launch weight by 17.5 
percent with preservation of the length of the missile, only by virtue of 
shortening the length of the charge (by 1.5 times) to 1 meter. But when 
this occurs the weight of the charge rose sharply (by 31 percent).

Similar computations carried out for various cases show that with 
increase of the caliber of an unguided rocket missile above that which
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ensures the optimum ballistic solution and in the presence of a small de¬ 

parture from Du opj. one observes a relatively slow rise in launch weight 

combined with substantial shortening of the length of the missile. With 

further increase of caliber the shortening of length becomes less and less 

perceptible, and the launch weight commences to rise rapidly. In each 

concrete case it is possible, on the basis of such computations, to estab¬ 

lish a boundary for reasonable exceeding of Djj op,., at which considerable 

shortening of the length of the model is achieved, but with only slight 
increase in launch weight. 

Peculiarities of Planning Turbojet Missiles 

As has already been pointed out above, the stability in flight of 

turbojet missiles is ensured with a length L^g not exceeding 7-8 calibers, 
the length being distributed among the warhead, the cone block, and the 

rocket chanber. If one considers that the length of the ogival part for 

such missiles ordinarily comes to 1.5-2 calibers, then it will prove to be 
the case that no more than 4-5 calibers fall to the share of the rocket 

chamber. In a series of cases the relative length of the rocket chamber 
may prove to be substantially less than this quantity. 

With such a short chamber the most acceptable charge is a multiple- 
burner one, ensuring short combustion time and symmetrical disposition of 
the mass of fuel upon consumption. With short charge combustion time the 
turbojet rocket missile, during the time it is moving along the guides, 

takes on an angular velocity of rotation sufficient to ensure its stability 
in the initial section of free flight. Short combustion time makes it 

possible to avoid burning out the critical cross-sections, which in a 

turbojet rocket missile are of very small diameter and as a consequence 
arc decidedly sensitive to erosion. 

At the same time, with a relatively short length a sufficiently high 
coefficient of charging » , not much smaller than for a single-burner mis¬ 
sile, is ensured for the multiple-burner charge. 

In planning charges for turbojet rocket missiles it is necessary 
to take into account that the centrifugal forces which reach their peak 

toward the end of combustion of the charge produce in the elements of the 

charge considerable stresses, which sometimes lead to their breaking down. 

Breakdown of remnants of the charge, accompanied by sharp increase of sur¬ 

face, in its turn occasions a foaming of pressures which may lead to de¬ 

struction of the chamber. For this reason the brand of fuel used in a 

turbojet rocket missile must possess enough mechanical strength. As ex¬ 

perience shows, some additives to the fuel reduce its friability at low 

temperatures -- for instance, diethylphthalate (3). Rise of pressure at 

the end of combustion of the charge must be taken into account in setting 

computed pressure, for which purpose the results of tests of turbojet 

rocket engines on a special stand offering the missile the ability to ro¬ 

tate during the test at the same speed as during flight are made use of (3). 



In determining the necessary wall thickness it is necessary to take 
into account not only the stresses provoked in the material by pressure 
but also the stress arising as a result of the operation of centrifugal 
forces. Regarding the chamber as a thin-walled vessel and computing it 
only for tangential stress we secure 

(10.81) 

where n is the number of revolutions achieved at a given moment of time; 
^ is the portion of the charge which has burned up at a given moment 

of time; 
d3 is the mean diameter over which the remaining part of the charge 

is distributed. 

Here the first term expresses stresses provoked by pressure forces, 
the second term the stress arising in the wall from centrifugal forces op¬ 
erating on the mass of the wall, and the third term stresses provoked by 
centrifugal forces pressing the unbumed part of the charge against the 
interior surface of the chamber. 

We shall transcribe formula (10.81) in the form 

a I + Üa.+ 2-^-110 
T n [ i Pm gPmLDm 

(10.82) 

The expression within the square brackets may be regarded as a co¬ 
efficient taking into account the operation of centrifugal forces. We 
shall designate it by 1¾. Then the necessary wall thickness is 

A = , (10.83) 

whence 

o (10.84) 

Let us determine the basic design parameters of a turbojet rocket 
missile for a specified range of fire. 

The volume occupied by the warhead for a given weight thereof can 
be determined approximately by starting from the mean value for the coef¬ 
ficient of charging an : 

2801.+ 
Tea 

(1 — 

Tu (10.85) 
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where T“ and T« are the specific weights of the missile and of the ma

terial of the casing

The volume of the ogival part. If one starts from the proximity of 
its shape to the paraboloid, can be computed according to the formula

IT ~'-^L

where Log is the length of the ogival part.

To the cylindrical part of the warhead there falls a length

^ uDi
i rt 7

(10.86)

The relative length of the warhead is

^ “ -3 2<.« 4 .
(10.87)

Making use of formula (10.85), one can present relation (10.87) in the 
form

1^
Li« (10.88)

where •

To the rocket part there remains

Making use of formula (10.88) we secure

- T - T ^

If we designate « / «■ . »-«■■ ^‘ . we secure 
» VTe. T« / Te

7 «=Z__ -7 —£*^13 ----iiT •

The relative length of the charge is determined as

(10.89)

(10.99)
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In accordance with the magnitude of L one can determine the coef

ficient of charging « , for this purpose making use of 'die graphs, Figure 
10.3 or Figure 10.4, or of the relations (10.26) or (10.29).

With *iut “ *ext> relation (10.26)

and with Xj^nt = 2 Xgxt

zI -

(10.100)

(10.101)

In accordance with the quantity i one can then confute the relative 
weight of the charge.

In planning turbojet rocket missiles the cone block is made in the 
form of a cap-cone -- a solid-cast unit with jets drilled around its cir
cumference. With such a design the weight of the cone block depends sub
stantially on the linear dimensions of the cone, which determine the thick
ness of the unit. In turn, the linear dimensions of the cone for a given 
value Fcr and given da/dcr ratio and angle of funnel p depend upon the 
number of jets. It will be necessary to consider not only our desire to 
reduce the weight of the cone block in selecting the number of jets, but 
also the possibility of placing them on a single circumference of the 
greatest possible diameter in order to secure the highest torque.

The maximum possible number of jets n^ax which can be placed in a 
single row in a cone block having a face area Py with an adduced over-all 
area of outlet cross-sections of jets Fa can be determined from the equa-

fu __
^ ,1 t

where

Here Ad is the minimum permissible amount of the interval between 
the circumferences of the outlet cross-sections of the jets.

Minimum values for the ratio ^/Fa computed in accordance with this 
formula for various values of n are set forth in Table 10.4. In the selec
tion of n the ratio %/f4 serves as an initial quantity; here in first ap
proximation Fa is taken as being equal to .

-364 -



Table 10.4

■ 10 12 U 16 18 20 22 24 28 30

1,75 i.w 2,12 2,31 2,S2 2.71 2,91 3,10 3,30 3,70

Let us examine the sequence of computation in determining the char

acteristics of a turbojet missile having a given weight of warhead and a 
given range of fire X.

1. With value for selected we determine the mean specific 
weight for the warhead, t# •

2. We set ourselves a number of calibers for the turbojet rocket 
missile and for each of them we determine

3. For each of the variants we compute, in accordance with formula 
(10.89), the length of the charge, L.

4. We determine the magnitude of coefficient Bh. setting ourselves 
the value of kn from experience in working out similar objects.

5. Setting ourselves the number of burners and the value for pa

rameter X , and making use of the value secured for Bji, for each of the 
variants we comptite in accordance with formula (10.100) the coefficient 
of charging • .

6. We determine the weight of the charges in accordance with 
formula (10.8).

7. In accordance with formula (10.3) we compute the weights of the 
rocket chambers. Having determined the weights of the structural elements

we determine for each of the variants the passive weight

8. In accordance with the Tsiolkovskly formula we compute v^ for 
each of the variants, taking the value adopted for Ii as starting point.

9. With the adopted value for the coefficient of shape we compute 
in accordance with q and Djj the values for the ballistic coeffi~ie;.t C.

10. In accordance with v^ and C with So>*45°, we compute the range 
of fire for each of the variants.

11. We construct a graph for X “ f(DH). from which we determine 
the caliber which will ensure the range set, and we refine all the basic 
characteristics for this caliber.
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10.9. Determination of Basic Design Parameters of Model Having Set Qiarfie 
Combustion Time

In planning models having set charge combustion time two limit cases 
are possible:

1. Planning of an engine of specified caliber which at a given use
ful load will ensure maximum possible velocity.

2. Planning of an engine which will ensure a specified velocity 
with a given useful load and with least weight of its own.

In botli cases the specified charge combustion time, together with 
the characteristics of the fuel selected and with the working pressure in 
the engine selected, determines the thickness of the burning vault of the 
fue1, ei.

Let us examine a solution for the first case. Let us determine the 
optimum parameters for a model with specified thickness of burning vault 
ei, parameters such as to ensure greatest velocity (Vm)inax with the project 
parameters adopted. For this purpose we make use of equation (3.65), for 
a charge having a specified thickness of burning vault

1-t -

whence

(10.102)

Substituting expressions (3.66) and (10.102) into expression 
(10.14), after elementary transformations we secure

(!-.)»- 4 c'----------

■ m / * ®h)“i (10.103)

We carry out the substitution

*J^u
------- 1----
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and we designate

(10.104)

Then

I +M • (10.105)

Substituting expression (10.105) into expression (3.65) we secure

L — (10.106)

With set caliber of engine, relations (10.104), (10.105), and 
(10.106) determine all the design and ballistic characteristics of a model 
which will ensure maximum velocity with set values for e^ and set project 
parameters.

Making use of the expressions secured for Lmax in order
to determine the ratio we secure

(10.107)

From expression (10.104) we fird that

* • (10.108)

Dividing the numerator and the denominator of the right-hand arm 
of the equality (10.107) by the numerator, and utilizing the substitution 
of formula (10.108) we secure:

«
f 7«P

I »:

J-1 V (10.109)
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Using the designations adopted in 10.6 we can transcribe this rela

tion in the form

Z = b(. M N*
I + M; (10.110)

In the general case the caliber is the quantity sought. A solution 
of the problem can be secured with the help of the graph presented in Fig
ure 10.13. The left half of this graph is in no wise distinguished from 
the right-hand upper quadrant of the graph in Figure 10.10 which estab
lishes the connection between maximum velocity, the value of Ii, and the 
variable Z = u>lq- The right half of the graph expresses the depen ence of 
Z upon M with B = constant. As a result of this, in accordance with set 
values for v^ and Ii and the value for B computed for the project parame
ters adopted, one determines the parameter M, in accordance with which the 
optimum caliber of the engine is then computed:

rv M

OUT

- 8;) Vn:

(10.111)

Figure 10.13. Nomogram for determination of M complex in planning an un

guided rocket missile having a set fuel combustion time.

The solution we have examined, based upon a general property of 
charges having a constant combustion surface and a set thickness of burn

ing vault, does not take into consideration certain specific properties 
of charges of individual shapes. In the case of a charge of cylindrical 
single-channel burners, after determining the general characteristics of 
the charge it is necessary in addition to solve the problem of placement 
of this charge in the rocket chamber of the optimum model.
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Let us examine this on the example of a variant *int 
which d—D(l—•); consequently.

*ext.

Having divided both parts of the equation by the interior diameter 
of the chamber Dr = DjjBh, we secure:

4
4#, D. (10.112)

In order that a charge of n burners with set values and Djj may 
fit in the chamber, it is necessary that the relation of the diameter of 
the burner to the diameter of the chamber, as determined through equation 
(10.112), should be no greater than 5np for a given n. Accordingly the 
limit condition for fitting in the chamber proves to be the equation

—p (10.113)

Having computed the complex in the left“hand arm, one can determine 
from Table 10.1 the number of burners, n, which corresponds to it.

In Figure 10.14 we set forth a graph for t=f{Llxe,) with indication 
of the points corresponding to tap for charges having different numbers 
of cylindrical single-channel burners, when *int = *ext-

Figure 10.14. Dependence of coefficient of charging * upon L/xe^ for 
charges having a set thickness of burning vault.

Let us examine the solution for the second case. Let us determine 
the basic parameters of an engine which will ensure a specified range with 
least weight of its own. Obviously the minimum for the weight coefficient
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a , secured for a set thickness of burning vault, will correspond to the 
requirement for least weight of engine.

In order to simplify the solution it is well to present the over

all weight of the cone, caps, and diaphragm in the form

Then the expression for a assumes the form

n, I Top »-b; j_ 
IBlBlxe, 1 -« '■ ‘ ■

(10.114)

Differentiating expression (10.114) in accordance with * and 
equating the derivative to zero, let i.s tolve the relation secured with 
reference to * :

« _l/ lnp(l -
I —« V n, • (10.115)

Let us designate

M = l/ J-p(*
r III,

(10.116)

Then the conditions ensuring optimum value for a will be:

- W . (10.117)

1 + »7’

L = ^ (10.118)

M

The optimum value, amin , will be expressed by the relation

(10.119)
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The weight of a charge necessary to accelerate the flight apparatus 
to a set velocity will be

(10.120)

The caliber of the engine is equal to

(10.121)

Example. To determine the characteristics of a launch engine to 
accelerate a flight apparatus weighing 1 ton to a velocity of 500 meters 
per second over a time of 2 seconds. The values of the project parameters 
are taken to be the same as in Example 1, 10.6. Assume n. - 4, «cp •• 10 jut/rrx.

•• = ■'Bq, = 2-10 MM = 0,2 dM.

Z M = |/ 7,82(1 —0.95’)-1.02-170 0.2 2,617.

& M 2^617 
1 +

0,724.

. , 170 0,2
^ ^ = "Wr"
& «. 1,60-0,95’ . 170-0.2 (I - 0,95») 1.02 0,966.

1000-0.225
1 —(I +0.966)0,225 -103 Kt.

ID- 1/ 4-403(1 + 2,617)
■ ■“ r *.1,60-

. -r >,vw )

1,60-0,95’- 170-0.J "■

• It is also possible to use groups of engines, the diameter of each 
of which is equal to ^ , where m is the nuniber of engines in the

"• Vm
group. With m = 4, Dh ~ 3.066 dm; with m=6, 1^=2.51 dm.

8. Let us examine the possibility of placing in the engine charges 
of single-channel cylindrical burners when the condition *int ~ *ext is 
met.

The diameter of a burner is

4-0,2
0,724 1,108 dji.

For a single engine
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pp SSf-'Tw'.'

1,108
Afi* 6,132 0,95’ -0,19.

In accordance with Table 10.1 under these circumstances it is pos

sible to use a charge of 19 burners. For a group of 4 or 6 engines we 
secure a permissible number of burners per engine equal respectively to 
5 and to 4.

Thus we have examined the two extreme cases. The first of these is 
the more characteristic for the planning of antitank unguided rocket mis

siles, where the caliber of the warhead is given, and the caliber of the 
rocket part is taken as being equal to the caliber of the warhead or as 
equal to a specified portion of this caliber (for example, from the con

dition of placement of fins which do not project beyond the caliber of 
the warhead). The second case is the more characteristic for the planning 
of launch engines, where in accordance with the conditions of placement 
of the launch engines on a flight apparatus rigid requirements are as a 
rule not imposed upon the caliber of the engine.

A common deficiency of both solutions is the fact that the parame

ters of the engine are determined from the conditions of an extreme which 
is of a very sharply inclined character for some variants. In the first 
case this leads to the computed variant's being secured excessively long, 
and for practical purposes it can be shortened without substantial reduc

tion of the velocity of the unguided rocket missile. In the second case, 
on the other hand, the computed variant is sometimes secured in shortened 
form, and permits, in order to reduce the caliber of the engine, a certain 
elongation without substantial augmentation of the weight of the design.

In the computation of variants which exhibit some departure from 
the optimum ones as secured from solutions for the extreme cases, one 
must set oneself a length of charge and determine the caliber which with 
this length will ensure a specified velocity for the model, i.e., the re

quired ratio tolQ=Z .

From equation (10.11):

- * -f -I- (1 _ Bi) k^LDlZ = 0. (10.122)

Let us designate

Substituting into expression (10.122) the value for « from expres

sion (3.64) and solving with reference to caliber we find that:
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(10.123) 

1 
t; 

T+ 
1 r7 
TO 

Examole. 

To determine the basic parameters of an engine for an infantry re¬ 
active grenade with the following initial data: 

f«. ■ “ 2 vm — I» M/cex: p'm --- 600 Kt/cMr, 

•a « 7000 n/cM'-. I . |,6 Kt/dM*. 7 « 7,8 m/d** 

» 1,05c * * 100; /, » 200 n ceie/icr. 

#i - 1,5 MM-. L » 250 MM 

1. From graph 10.13 we find, with = 200 kg-sec/kg, that vm = 
150 m/sec; Z “ 0.0792. 

<» » _ *a 7000 
«. “pm ’ '7000 + 600 " °'92 

a £ - 1,6 -J- 0,92* - 1,06 KtldMV 

4 T - 7,8-J- (1 — 0,92») 1,05 - 0,99 «/<}*'. 

','°'0WJ , - 0,4« 
X ' Ho-- 0,0792-0,99 \ 

r Viõreí5- + I ) 

Let us take Dh s 46 mm. 

. 7 £ 250 

7. « I 
—£3- 
100-0,015 + ' 

0^75. 

8. For determination of a suitable number of burners we make use 
of formula (10.26) : 

„-[«¿MI-0 i» / 100 0,92 0,625 \* . 
IIZV2— J " ( 7¾] - ¿'w “4*29- 

Let us take n = 4. 
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9. D . 
^-17=^==-=46--^ 

ftob 
16,6 MM. 

10. rf« ß(l _t) = 16,6.0,623 

= !W=Bi , ,,M 
10,4 MM. 

mm. 

i.e., this corresponds to the value set. 

11. Let us check whether the set value * is ensured with these 
measurements : 

* -= + _ 4 4 25.0(1.)¼¾ +. |,ai) 
O' —n(0» —<T) 0.vr2’»,0; — 4 (l.tio2 - 1.0|J) " 

12. Let us determine the weights of the individual elements: 

« ^ » n-i- (CP — d') L - 1,6-4(O.lfiC*-0.101«) 2.5 0,21 w. 

f. - T LÜ^ = 0,99-2,5 0,46* * 0,522 a/. 

<?• - 4« + 4« + - = 2.0 + 0,21 + 0,522 =- 2,732 kz. 

Thus the required value for Z is ensured with a reserve of 5 per¬ 
cent . p 

‘J’-10- Initial Data and Project Parameters Determinim; Basic Design 
Characteristics of an Un^uided Rocket Missile 

Weight and Over-All Dimensions of Warhead 

The weight of the warhead with a set type of armament is determined 
in lirst approximation by the power of action of the missile at its target. 
Sometimes the weight of the armament, qQj, is specified in a tactical- 
te-lmical assignment in place of the weight of the warhead. One can shift 
trom the weight of the armament to the full weight of the warhead of the 
missile by making use of mean statistical values for the coefficient of 
filling for a given type of warhead. The coefficient of filling repre¬ 
sents the ratio of the weight of the armament of the warhead to its full 
weigh t : 

isa. 1009,. 

Let us indicate typical values of this coefficient for warheads of 
various types: 

50-60 percent -- for warhead of high-explosive effect, 
10-15 percent -- for warhead of fragmentation effect, 
25-30 percent -- for warhead of fragmentation-high explosive effect. 



In first approximation the weight of the warhead is determined as

^nH = -^100.

An important design characteristic of the warhead is the relative 
thickness of the walls of the casing in calibers. Cta the basis of litera
ture data available (4) one can furnish orienting values of this quantity 
for warheads for various purposes:

high-explosive warhead 
fragmentation warhead 
fragmentation-high explosive 

warhead

I*t = 0.023 (M31, USSR) 
"cT = 0.1 (M8, USSR)

0.1 (M13, USSR)

The relative weight of the warhead can vary within pretty

broad limits. It is nevertheless well to indicate the value thereof for 
some known examples (4):

= 2 (300 mm missile, Germany) 
= 6 (M8, USSR)

= 8 (M13, USSR)

For high-explosive effect missile 
For fragmentation effect missile 
For fragmentation-high explosive 

effect missile

In using the methods of ballistic planning of an unguided rocket 
missile examined above, the weight of the warhead includes the weight of 
the cone block and the tail group. For small rocket missiles Vandenkerkhove 
recommends taking the weight of the caps, the cone, and the tail g^up as 
equal to 0.04425 rA (1). The half-caliber of the rocket missile should be 
taken in centimeters; when this is done the weight of the elements indi
cated is secured in kilograms. This corresponds to a value of - 5.53
kg/dm^. But as the author himself points out, the formula gives exag
gerated results in a number of cases. According to the data for the ,
M13, and M31, one can take C as being equal to 2.2 kg/dm for finned un
guided rocket missiles of medium caliber.

Selection of the Number of Burners

In planning unguided rocket missiles with a charge of single-channel 
cylindrical burners one of the project parameters is the number of burners, 
n. Let us examine what influence this parameter has upon the basic char
acteristics of an unguided rocket missile.

In Figure 10.15 we set forth graphs for maximum velocity of an un
guided rocket missile computed by Professor Ya. M. Shapiro for charges^ 
having different numbers of burners at different elongations L. From tiie 
graphs it is apparent that at any elongations of the charge the greatest 
velocity is ensured by a single-burner charge. Comparison of the quantity 
Vn, for various multiple-burner variants shows that with a relative length

-375 -



of charge L greater than 8 the greatest velocities are ensured by a charge 
of three burners, when L = 5 to 8 by a charge of four burners, and when L 
is less than 5, by a charge of seven burners.

Figure 10.15. Dependence of maximum velocity of unguided rocket missile 
on relative length of charge for variants having different 
numbers of burners (n = 1, 3, 4, 5, 6, 7).

The need for using in an unguided rocket missile a multiple-burner 
charge in place of a single-burner one, wliich in all cases ensures great
est range, is brought about first and foremost by requirements associated 
with grouping of fire. Above we have examined the causes calling for the 
use of multiple-burner charges in turbojet rocket missiles. Ihe applica
tion of multiple-burner charges in finned unguided rocket missiles in order 
to increase speed of departure from the guides makes it possible to reduce 
the influence of a flank wind, which provokes flank dispersion of an un
guided rocket lissile. Upon the thrust-weight ratio of an unguided rocket 
missile, associated with the number of burners, depends reduction of the 
angle of incline of the tangent to the trajectory in the active section.
In Figure 10.16 we set forth a graph for the dependence of this angle at 
the end of the active part -- Oo -- upon the thrust-weight ratio, com
puted for p„=0,35. 6o = 45°with varying lengths of guides, according to 
formula (7.18).

From the graph it is apparent that the steepness of the 6a=/(^) 
curves diminishes as thrust-weight ratio rises. With t) ^20 the increase 
in thrust-weight ratio already has little effect upon change in the angle 
8a . With ti<12 change in the angle of incline of the tangent to the tra
jectory in the active section comes to more than 10°.

The great steepness of the curves 8a = f(»l) at low thrust-weight 
ratio brings about a high sensitivity of 6a to random changes in thrust- 
weight ratio brought about, for example, by scattering of thrust. In turn, 
scattering of the size of 8a brings about spread of the unguided rocket
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missile as regards range, 
high thrust-weight ratio.

Hence arises a need for ensuring relatively

Figure 10.16. Dependence of angle of incline of tangent to trajectory of 
unguided rocket missile at the end of the active section,
•• , upon the thrust-weight ratio with different lengths 
of guides.

Let us note that with increase of the caliber of an unguided rocket 
missile one observes a tendency toward reduction of thrust-weight ratio. 
This is to be explained in the following fashion. With increase in the 
caliber of a model, while preserving geometrical similarity, the working 
time of the engine increases proportionately to the thickness of the burn
ing vault, i.e., proportionately to the caliber in the first stage. The 
weight of the charge, as also the weight of the entire model, rises pro
portionately to the cube of the caliber:

The output of product.s of combustion, and consequently also the 
thrust of the engine, change under these circumstances as
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Consequently the initial thrust-weight ratio of the model must 
change with increase in caliber as

For this reason, in order to ensure a set thrust-weight ratio in 
a missile of large caliber it is necessary to use charges with less rela

tive thickness of vault e'l than in models of small caliber, i.e., to 
proceed to the use of charges having a larger number of burners.

Thrust Diagram

Increasing the speed of an unguided rocket missile's departure from 
the guides by increasing the number of burners, i.e., by decreasing the 
thickness of the vault, is associated with falling off in the density of 
charging and, as a consequence, with reduction in range of fire.

It is possible to increase the speed of departure of the unguided 
rocket missile without reduction of the thickness of the vault of the 
basic charge by applying a staged thrust diagram, the upper stage of 
which coincides in time with the motion of the missile along the guide (7).

A staged thrust diagram can be ensured: by using a launch engine 
having a charge that is consumed upon the guide; a two-stage engine work
ing successively at a launch thrust rate (on the guide) and at a route 
thrust rate (the free flight portion).

Questions regarding the arrangement of two-rate engines were 
examined in Qiapter VI.

Computed Pressure Pi^

In selecting the amount of maximum pressure in accordance with 
wliich the thickness of the engine wall is computed, one must take the fol
lowing circumstances into account:

a) the need for ensuring stable combustion of the specific fuel 
for the most unfavorable temperature conditions, i.e. at the T^iin con
stituting the lower boundary of the temperature interval for which the 
model being workel out is intended; from this condition one selects the 
minimum permissible pressure Pniir.;

b) the possibility of degressive combustion of the charge or the 
presence of a staged pressure diagram, characterized by the ratio between 
maximum and minimum pressures:

c) presence of a dependence of speed of fuel combustion upon tem
perature, which in the case of an unregulated engine leads to rise in 
pressure with the temperature of the charge. This change in pressure is 
defined by the coefficient
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{Pmti

(fmti)f

where m and D are the thermochemical constants of the fuel (see (6));

d) spread of magnitude of maximum pressure at the upper boundary 
of the temperature interval for use of the model, characterized by the 
coefficient ;

e) scattering of strength characteristics of the material and of 
the thickness of the wall in consequence of tolerances in the manufacture 
of the rocket chamber; this scattering is taken into account through the 
reserve strength coefficient Tip .

Under these circumstances computed pressure is defined as

(10.124)

The magnitude of computed pressure can be reduced by using fuels 
which burn stably under low working pressures in the engine and which 
possess a low temperature dependence, and also by regulating the cone of 
a solid-fuel rocket engine in accordance with the temperature of the 
charge or by thermostating the engine.

The Charging Parameter x

General considerations regarding the selection of this parameter 
were set forth in 3.9. They continue to be in force for unguided reactive 
missiles as well.

But for unguided rocket missiles, in contradistinction to guided 
missiles having a vertical launch, greater development of the combustion 
surface is characteristic; this is occasioned by the greater thrust-weight 
ratio necessary with an inclined launch.

For this reason the optimum value of x for an unguided rocket 
missile is shifted in the direction of its increase so as to approach the 
value which determines the limit of the field of stable combustion. Tlie 
selection of the x parameter is inseparable from the selection of working 
pressure in the engine which will ensure stable combustion of the charge 
at minimum temperature thereof.
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ANJEX 1. CHANGE IN METEOROLOGICAL ELEMENTS VTCTH ALTITUDE

0
300
400
600
800

1000
1200
1400
16/0
1800
2000
2200
2400
2600
2800
3000
3200
3400
3600
3800
4000
4200
4400
4600
4800
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400

1,000
0,976
0,953
0,930
0,907
0,885
0,863
0,812
0,821
0,800
0,780
0,761
0,742
0,723
0,705
0,687
0,670
0,653
0,636
0,619
0,603
0,587
0,572
0,557
0,542
0,527
0,513
0,499
0,486
0,473
0,460
0,448
0,435
0,423
0,412
0,400
0,389
0,378

l,0O!1 
0,980 
0,960 
0,940 
0,921 
0,902 
0,884 
0,866 
0,848 
0,831 
0,813 
0,796 
0,779 
0,763 
0,747 
0,731 
0,715 
0 700 
0,585 
0,670 
0 655 
0,541 
0,627 
0,613 
0,600 
0,586 
0,573 
0,560 
0,548 
0,535 
0,523 
0,511 
0,499 
0,487 
0,476 
0,4(i5 
0,4.54 
0,443

1,000

1,010

1,021

1,032

1,043

1,054

1,066

1.078

7600
7800
8000
8'200
8400
8600
88(W
9000
9200
9100
9TiOO
9800

10000
lO’JOO
10100
lOiVTO
10800
liOOO
11200
11400
11500
11800
12000
12200
12400
12000
12800
13000
13200
13400
13600
1,3800
14000
14200
14400
14600
14800
1.5000

0,367
0,356
0,346
0,336
0,327
0,317
0..108
0,299
0.291
0.28>
0,274
0.-266
0,2.58
0,250
0,243
O.ZV,
0.2-28
0,221
0,214
0,207
0,201
0,195
0,189
0,183
0.178
0,172
0,167
0,162

,157
0,152
0,148
0,143
0,139
0,135
0,130
0,126
0,122
0,118

Mifl

0,433 
0,422 
0,412 
0,402 
0,393 
0..383 
0.374 
0,»i.> 
0,3.56 
0,317 
0.3.1V 
0,310 
0..323 
0,314 
0,.306 
0,298 
0,2<« 
0,282 
0,274 
0,266 
0,2.58 
0,251 
0,243 
0,236 
0,2-29 
0,2-22 
0,215 
0,208 
0,202 
0,195 
0.189 
0,183 
0,177 
0,172 
0,167 
0,162 
0,157 
0,152

1,091

1,104

1,118

1,133

1,133

1,133

1,133

1.133
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Annex 1 (continued)

«(yi «(yi Miff

15200
15100

15000
15800
ICiOOO

16200

16400

I6(i00
16800
17000

17200

17400

17600

17800

IROOO

19000

20000

21000

?2000

23000

24000

25000
26000

27000
28000

29000

30000

31000

32000

0.114 
0,111 
0,107 
0,104 
0.101 
0.980.10- 
0,950 
0,923 
0,895 
0,867 
0,841 
0,815 
0,790 
0,766 
0,742 
.0,635 
0,543 
0,465 
0,398 
0,341 
0,-299 
0,251 
0,216 
0,185 
0,159.10-' 
0,137 
0,118 
0,102 
0,876.10-«

0,148 
0,143 
0,139 
0,131 
0,130 
0,126 
0,1-22 
0,118 
0,115 
0,111 
0,108 
0.105 
0,101

0,980.10-'

0,9.52

0,814

0,697

0,591

0,507

0,432

0 369
0,316

0,270

0,231

0,198.10-'

0,169

0,145

0,125

0,107

1,133

1,133

1,13j

1,133

1,133

1,130

1,128

1,125

1,123

1,121

1,118

1,116

1,114

1,112

1,109

1,107

1,105

33000

.-14000

35000

36000

37000

38000

39000

40000

41000

42000

43000

44000

45000

46000

47000

48000

49000

.50000

55000

60000

65000

70000

75000

800TJ

85000

90000

95000

loOOOO

0,7.56 
0,652 
0,563 
0,487 
0,423 
0,.369 
0,322 
0,283 
0,249 
0,219 
0,191 
0,172 
0,153 
0,136 
0,122 
0,109 
0,977.10-’ 
0,878 
0,508 
3,284 
0,152 
0,774.10-‘ 
0,372 
0,167 
0,721.10-’ 
0,310 
0,134 
0,5o0.10-«

0,919.10-’

0,790

0,679

0,573
0,485

0,413

0,352
0,302
0,260

0,224

0,191

0,168

0,147

0,128

0,112

0,984.10-’

0,866

0,761

0,473

0,282

0,163

0,895.10-*

0,468

0,229

0,990.10-’

0,429

0,185

0,800.10-’

1,102

1,100

1,098

1,084

1,071

1,058

1,046

1,034

1,0-22

1,011

1,000

0,999
0,979
0,969
0,960
0,951
0.942

0,933
0,963
0,997
1,034

1,075

1,122

1,176

1,176

1,176

1,176

1,176
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ANNEX 2

U.-U, u. = -^(u,y

0,01
2
3
4
5
6
7
8 
9

0,10

90,00
90,00
90,00
89,86
88,02
86,?2
84,46
82,76
81,09
79,51

0,0100
■202
301
408
513
619
726
834
943

0,1054

0,0100
200
300
400
500
600
700
799
898
997

0
0,0002

4
8

0,0013
18
25
33
42
51

0
0
0
0
0
0

0,0001
2
3
5

0
0
0
0
0
0

0,0001
2
3
5

0
0
0
0

0,0002
7

0,0015
26
40
57

1
2
3
4
5
6
7
8 
9

0,20

77,97
76,57
75,30
74.13
73.06
72.01
71.01
70.07
69.13 
68,'20

0,1166
1279
1393
1509
1625
1743
1863
1984
2107
•2231

0,1095
1193
1290
1386
1482
1577
1672
1766
1860
1953

62
74
87

0,0101
116
132
149
167
187
207

7
0,0010

13
17
21
26
32
38
45
53

1 67,25 2357 ■2046 228 62 56 382

2 66,33 2484 2138 250 71 64 422

3 65,43 2613 2229 273 82 73 463

4 64,53 2744 2320 298 93 83 505

5 63,65 2876 2410 233 0,0105 93 549

6 62,77 3010, 2499 349 119 0,0104 594

0,27 61,88 3146 2588 377 133 116 540

8 61,00 3284 2676 405 148 129 588

9 60,12 3424 2763 434 165 142 638

0,30 59,23 3566 2849 464 183 156 688

1 58,35 3710 2935 495 201 171 740

2 57,46 3856 3020 527 221 187 793

3 56,58 4004 3104 560 243 204 847

4 55,70 4154 3187 594 266 ■221 903

5 54,83 4307 32r,9 629 290 240 960

6 53,98 4462 33,)0 665 315 259 0,1018

7 53,14 46'20 3430 701 342 279 1078

8 52,28 4780 3:10 739 371 300 1138

9 51,43 4943 3589 777 401 322 1200

0,40 50,59 5108 3667 816 432 345 1263

1 49.77 5276 3744 856 466 368 1327

2 48,96 5447 3820 897 500 393 1392

3 48,14 5621 3898 938 537 419 1458

4 47,33 5798 3969 980 575 445 1.525

9 46,51 5978 4042 0,10‘23 616 473 1594

7
9

0,0012
16

‘20
24
29
35
41
48

76
98

0,0122
149
177
207
239
272
308
344
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Annex 2 (continued)

p U. U. u. U. U. U,

6 45,69 0,6162 0,4114 0,1067 0,0658 0,0501 0,1C)C)3

7 44,88 6349 4185 1112 702 530 1733

8 44,06 6539 4255 1156 748 560 1805

9 43,25 6733 4324 1202 796 591 1878

0.50 42,83 6931 4392 1249 846 623 1951

1 42,83 7133 4460 1297 897 656 •2024
2 42,83 7339 4528 134() 950 688 •2097

3 42,83 7550 4596 1397 0,1005 722 2170

4 42,83 7765 4(«4 1487 1061 7.56 •2244
5 42,83 7985 4732 1.502 1119 790 ■2317

0,56 42,83 8210 4800 1557 1178 824 2390

7 42,83 8440 4868 1614 1‘239 860 2464
8 42,83 8675 4936 1672 1302 89(i 2537

9 42,83 8916 5004 1732 1367 932 •2610

0,60 42,83 9163 5072 1793 1433 969 2634

\ 42,83 9416 5140 1856 1501 0,1007 2757

2 42,83 9676 5208 1921 1571 1044 28,30
3 42,83 9943 5276 1988 1043 1083 ■2903
4 42,83 1,0217 5344 2057 1717 11-22 •2977
5 42,83 0499 5412 2127 1793 1161 3050

6 42,83 0789 5480 2199 1870 1201 31-23
7 42,83 1087 5548 2274 1951 1241 3197
8 42,83 1396 5616 '23.50 ■2033 1282 3270
9 ' 42,83 1714 5(584 2429 2118 1323 3343

0,70 42,83 2042 5752 2509 2205 1365 3417

1 42,83 2381 5820 2593 •2295 1408 3490
2 42,83 2732 5888 2678 2387 14.50 3563
3 42,83 3096 5956 2766 2482 1494 3636
4 42,83 3473 6024 2856 2579 1538 3710
5 42,83 3865 6092 2949 2679 1582 3783
6 42,83 4274 6160 3045 2782 1627 3856
7 42,83 4699 6228 3143 2889 1672 3930
8 42,83 5144 6296 3244 2998 1718 4003
9 42,83 5609 6364 3349 3111 1764 4076

0,80 42,83 6097 6432 3457 3227 1811 4150

1 42,83 6610 6500 3568 3347 1859 4223
2 42,83 7151 6568 3683 3471 1906 4296
3 42,83 77'23 6636 3801 3597 1955 4370
4 42,83 8329 6704 3924 3731 2004 4443

5 42,83 8975 6772 40 j1 3868 2053 4516
6 42,83 9665 6840 4182 4009 2103 4.589
7 42,83 2,0406 6908 4318 4156 2153 4663

8 42,83 1206 6976 441)0 4308 2204 4736

9 42,83 2077 7044 4607 4467 2255 4809
0,90 42,83 3030 7112 4760 4633 2307 4883
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ANNEX 3. GRAPHS FOR FUNCTION ¢,(¾ ■*. rt F0R CHAPTER II 
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