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Figure 1.1. Winged "Lacrosse' solid-fuel rocket.

Figure 1.2. Two-stage "pershing' ballistic rocket with solid-fuel en-
gines.

For striking aerial targets zenith guided rockets (ZUR) belonging
to the "surface-to-air' class are used. In this class of rockets the
solid-fuel engine is as a rule used as a starting stage. Interceptor
rockets also fall among the means of antiaircraft defense. In Figure 1.6
we show an interceptor rocket of the "sur face-to-air" class with solid-
fuel rocket engines set up on the start and the route stages.

Antimissile rockets, intended to intercept the warheads of inter-
continental ballistic rockets and medium-range ballistic missiles at rela-
tively low altitudes, occupy a special place among rockets of the "'sur-
face-to-air" class. The "sprint' antimissile rocket (Figure 1.7), of come







from one another by their design layouts, their working characteristics,
and other features. On this account, in studying the technological, de-
sign, and use peculiarities of rockets and establishing logical fields

for their use it is possible to classify them also according to other fea-
tures (purpose, sort of solid fuel used, etc.).
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"Sergeant" guided Figure 1.5. 'Minuteman' interconti-
rocket using solid nental ballistic rocket
fuel. using solid fuel.

Figure 1.4.

2 Peculiarities of Design and Arrangement Layouts of Solid-Fuel

Rocket Engines and Elements of Degigns

RDTT Design Layouts

The solid-fuel rocket engine is the basic structure of a rocket.

Joined to it are the instrument block, the executive organs of guidance,
and also the stabilizers, rudders, wings, and other elements. In Figure
1.9 we present a present-day design layout for a RDTT with a mixed charge
attached to the walls of the chamber. The basic properties of this fuel
are ability to burn steadily at a working pressure of 30-40 kilograms per
square centimeter and possibility of charging the engine by pouring into
a combustion chamber of any dimensions. Combustion of the fuel takes
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Figure 1.10. Solid-fuel rocket engine

of high power: a -- gen-

eral view of engine of &4-

meter caliber; b -- parc

of engine bearing rotatory

cone. Figure 1.11. Rocket chamber

and spine-core
section before
pouring of
solid fuel at
start platform.

For the most powerful engines modular burners are used (Figure
1.13), made up of a number of cast and individually polymerized fuel ele-
ment modules (6). The individual modules are more transportable, are ac-
cessible to quality checking, and are easily replaced in case of need.
In Figure 1.14 we show the assembling of a modular burner at the moment
when the forward part of the engine is being let down to unite with the
fifth section of the fuel charge.
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Figure 1.19.

Layout of RDIT with
cone attached di-
rectly to solid
fuel charge: 1 --
critical part of
cone; 2 -- expand-
ing part of cone.

Figure 1.21.

As heat flows in the
the critical section of the cone

Design of cone having
special form of heat
insvlation: 1 --
porous insert; 2 ==
plates of metallic
hydride; 3 -- steel
plates: 4 -- channel
for passage of gases.
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Figure 1.20.

wall of the cone reach tl

Swinging cone for
RDTT of 4-meter
caliber: 1 -- sta-
tionary part of cone;

2 -- pivot; 3 --
power ring of rocker
assembly; 4 -- mova-

ble part of cone.

seir maximum value in
(about 107 kilocalories per square meter



























Figure 1.33. "Honest John'" unguided rocket missile of "surface-to-surface"
class.

A-A

Figur> 1.34. Layout of installation of RDTT with free-inserted charge of

solid fuel: 1 -- casing of rocket chamber; 2 -- cone; 3 -~
forward cap; 4 -- charge of solid fuel; 5 -- diaphragm;
6 -- igniter; 7 -- cartridge igniter.

The main elements of the engine are the combustion chamber, 1, in
which the solid-fuel charge 4 is located; the cone block 2; the forward
cap 3: the ignition apparatus 6: and the diaphragm 5, preventing the
ejection of the burners of the solid fuel charge through the cone.

Along with the main elements of the design layout which have been
referred to, there may also be preventer valves for emergency release of
pressure, cassettes for burners, charge holders, catches on the exterior
surface of the charge where the charge lies against the walls of the com-
bustion chamber, cone stoppers tc seal the engine and other parts. In
these engines ballistite solid fuels are used -- nitroglycerine powders.
Charges of this tvpe of fuel in the form of cylindrical single-channel
and multiple-channel burners are inserted freely in the combustion cham-
ber. With this sort of loading of the chamber the products of combustion
of the fuel touch the casing along its whole inner surface, which leads
to intense heating up of the casing and reduction of the strength charac-
teristics of the material. In connection with this supp lementary diffi-
culties associated with protecting the chamber against heating arise.


































































































































































































































































earth = 7.292 10-5 1/sec. Finally, we secure, for amn arbitrary point

of the trajectory

Q::Qoﬁ-A¢4—mL

2 .28 we show the general aspect of the trajectory of an

In Figure 2
earth satellite relative to a stationary and to the rotating earth.
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Figure 2.28. Trajectory of motion of a satellite: a -- relative to non-
rotating earth; b -- relative to rotating earth.
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Large experiments have been carried out (1, 3) upon photoelastic
models in order to investigate the field of stresses in charges having »
star-shaped internal channel of various configurations, stressed with
pressure on the external surface. Making use of the conclusions of the
method of photoelasticity, the coefficient of concentration of stresses
Ki can be defined experimentally as the relationship of the actual number
of bands at the point examined to the number which would existy in an
equivalent thick-walled cylinder with the same falling off in pressures
(Pext = Pint). In Figure 5.19 we show a typical photoelastic model of a
charge. The isochromatic bands are secured as a result of imitation of
interior pressure. Data from experiments show that one can also reduce
the concentration of stresses in the fuel burner, taking into account the
recommendations made earlier, if one increases the relative thickness of
the vault and the number of rays of the star with values of W and of
given, having increased the angle of the aperture of a ray of the star
and the breadth of the slot of the ray of the star.

Figure 5.19. Typical aspect of photoelastic model of solid fuel charge
having star-shaped channel.

In precise strength computations of solid fuel charges one must
take into account not only the thermic and mechanical stresses referred
to above, but also the phenomenon of relaxation, and likewise stress al-
lowing for the viscous-elastic properties of the fuel.

5.6. Strength Calculation of Rocket Charge Allowing for Elastic-Plastic
Deformations and Rheological Properties of Solid Fuel

For the case of thick-walled cylindrical burners, one can secure
from the general theory of elasticity analytical expressions and rela-
tively simple solutions. The strength of charges having a compound shape
of channel can be evaluated with the help of data relative to the strength
of a simple charge, taking the coefficient of concentration of stresses
into account.








































Among new regulation methods we have: 1) regulation of thrust by
letting gas pass through or by leading it aside from the cone block;
2) reaction on the process of combustion of solid fuel by sound vibra-
tions generated in the solid-fuel rocket engine combustion chamber;
3) regulation by changing the delivery of the liquid component in combined
(hybrid) engines using solid fuel (3).

Among promising methods for regulating thrust as regards amount
there are the nonmechanical methods of changing the area of the critical
cross-section by blowing* auxiliary gas at high velocity into the critical
section of the cone (7). Such cones may be called cones with gasodyna-
metrically variable critical cross-section area (Figure 6.3). If auxiliary
gas is blown into the critical section of the cone (or near it) annularly,
then this flow will, as it were, move the basic flow of outward-flowing
gases toward the axis and will thus reduce the area of the critical sec-
tion of the cone. The blowing may take place through a narrow fissure or
through a series of apertures located around the critical cross-section.
Reduction of the area of critical cross-section by birtue of the blowing
in of gas leads to considerable increase of pressure in the combustion
chamber, of mass delivery, and of thrust.

Blowing in
of secondary

. (auxiliary)
| gas
7
y
Figure 6.2. A solid-fuel rocket Figure 6.3. Diagram of cone with
engine with regulated critical crosg-section
thrust. ggsceptible of regula-
ion.

For approximate analysis of the effect of changing the area of the
critical cross-section of the cone we apply the gas balance 2quation (1)

wwws=()VE G s

In study (1) it is shown that for the stage principle of velocity
of combustion a relationship of the following form is correct:

- g (6.2)
Pe=(Fu) "

* 1In foreign literature the process of blowing gas into the critical
section of the cone is called secondary ejection.
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The integral in expression (7.21) assumes the form

4 dp _a [ F(v)dv
'ff(")Tr, _T,'Jl_-r(o)'+l(l—:)‘ @.23)
o o %

The quantity

aFv) +B(1—p) _
% g

expressing the ratio of the weight of the rocket and frontal resistance
to engine thrust can be regarded as a quantity of the first order of
smallness. Eliminating small quantities higher than the first order, we
can write

1
T =14+¢4+0()=1+4¢

When this is done expression (7.23) assumes the form

‘SF(')'I:'—.. =%5[1 + o F(+ 28] F(o)do=
(7.24)

-;‘;SF(v)dv-r -‘é‘flf-‘(v)l'dv + 3—%:—'—)25F(v)dv.

We may note that expression (7.23) is a quantity of the first order of
smallness relative to the first term of the right-hand arm of expression
(7.21). For this reason, eliminating the quantity ¢ in expression
(7.23), we essentially disregard a quantity of the third order of small-
ness relative to the velocity of the rocket.

From expressions (7.21) and (7.24) we secure
v--,ln-l_'_—’—(,t—-:—.SF(v)dv—%SIF(V)I’“ -—T4"—')’ S’F(o)dv.

In the last term of the right-hand armm (l—p) is taken out in its mean
value.

We introduce the designations:

- 1 (7.25)
v=g,ln——gb
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Under these circumstances the angle of attack @, , formed by the axis of the
rocket with the vector of velocity Vo, will be determined from the expression
@y = 9 — A6,.

Example. The characteristics of the rocket and the guide are de-
termined by the following parameters: Q = 194 kg; P = 3,040 kg; 1 = 1 m;
x] = 1.5m; xg =2.8m; A=14 kg - m - sec?; j = 152 m/sec2.

We determine

]/ Pl 3040-1 =
A= F - 194. 9,5 1/cex;

53

t.-'/ v lg’ = 0,192 cex;
-1,5

._y l/ = _0140wr.

to—1t, = 0052 cex; .
A (¢ —t;) = 9,5-0,052 = 0,495;

chA(t, — ;) = 1,125;

sh A (¢, — t;) = 0,515;

°°:'° [chA (to—t)— 1] = !“Tf&omo,ns — 00056 radians =0032° = 19;

194-0.707
3040

R Q%’;o Ashd (fo—1;) = 9,5-0,515 = 0312 1/cex;

_E_ v _ 10312 adians = 0,006° = 36"
a6, = Jt, ~ 152.0,192 00107 radians 3,6%

.. = gp— A8, = 0,032 — 0,006 = 0,026° = 154".

Launch Apparatus of Second Type

In launch apparatus of the second type the point of contact remains
stationary relative to the guide. In this case the distance from the cen-
ter of gravity of the rocket to the point of contact is equal to x¢ - X¢',
where x.!' is the course of the center of mass of the rocket from the start
of its motion and up to its passing the end of the guide. In equation (8.3)
it is necessary to replace 1 with x¢ - x.'. After eliminating reaction in
the contact and substituting

Ye=r— ("e T xg')?

we secure an equation for angle ¢ in the form

A+m(x,—x,.) . M
x,(—‘x,. ) ’=x _: —2mx¢?+ mg cos 8, + mge sin 6, (8.18)

where xc and x. are determined from equation (8.4).

. Equation (8.18) can be integrated numerically.
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In the case where M.=0, from evaluation of the coefficients of
equations (8.7) and (8.18) it follows that turning of the rocket, ¢o ,
under operation of the force of gravity is less for launch apparatus of
the second type as compared . ith this quantity for launch apparatus of the
first type.

8.3. Differential Equations of Plane Oscillation of the Rocket in the
Active Part of the Trajectory

In formulating equations of plane oscillacions of a rocket we shall
consider

-- reactive force P;

-- frontal resistance X=-%:-Sc,;
-- lifting (flank) aerodynamic force Y=%SL‘,¢;
-- aerodynamic stabilizing moment M.=—%SLM:¢;

-- aerodynamic damping moment Mo=—PUSL’InZ<'p;
-- the moment M, =P,, provoked by eccentricity of reactive force.

In the expressions derived @ is the angle of turning of the axis
of the rocket from the axis of undisturbed position of the vector of
initial velocity; a is the angle of attack. From here on we shall further
introduce into our examination the angle ¢ of deflection of the vector of
velocity from its initial undisturbed position. Between angles ¢, $>
and @ an obvious relationship exists (Figure 8.5):

The differential eguations for motion of the rocket have the following
form:

mv =Pcosa— X; (8.19)
mvy =Psina—Y; (8.20)
Ag =M+ M, + Mp, (8.21)




Figure 8.5. The angle determininz oscillation of a rocket.
From here on we shall assume that a is a small quantity, so that
cosa=1; sina=<a

The fundamental investigations carried out in study (1) show that the
basic factors determining oscillation of the axis of a rocket are reac-
tive force P, moment M, and stabilizing aerodynamic moment M. The re-
maining forces entering irto equations (8.19)-(8.21) are of secondary
significance. From here on we shall examine oscillations of the axis of

a rocket under the operation of the basic forc:s referred to. 1In this con-
nection equations (8.19)-(8.21) assume the form:

oL s, (8.22)
=t =vw ” (8.23)
;=%—%SLM:-G=a—c’v?a, (8.24)
where
£=k—':é-=a; c’='s2_L:':,

In study (1) it is shown that in investigation of oscillation of the axis
of a rocket and of angular deflection of the vector of velocity it is pos-
sible to adopt coefficients a, b, and ¢ as constants.

Considering that ¢=¢+a we transform equation (8.24):
a=a—»czv’:z—qﬁ.

The quantity ¢ is determined from equations (8.22) and (8.23):

= $ - B » B~
Q=—?-vz+71=—?a+ T
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Table 8.1.

Frenelle Integrals

s (x) c(n s (x) cixn s(x) ¢ (x)

.1 | 0,0084 | 0,2521 1 | 0,4492 | 0,3343 0,6011 | 0,4268
2 | 0,0237 | 0,355 2 | 0,4333 | 0,3418 0,5928 | 0,4174
3 | 0,0431 | 0,4331 3 | 0,4183 | 0,3507 0,5836 | 0,409
4 | 0,0665 | 0,496 4 | 0,4045 | 0,3610 0,5737 | 0,4015
s | 0,0924 | 0,5502 5 | 0,3918 | 0,3724 0,5632 | 0,3951
6 | 0,1205 | 0,592 6 | 0,385 | 0,3850 0,5521 | 0,3898
7 | 0,1504 | 0,63% 7 | 0,3706 | 0,3985 0,5406 | 0,3857
8 | 0,1818 | 0,6693 8 | 90,3621 | 0,4129 0,5288 | 0,3827
9 | 0,2143 | 0,6979 9 | 0,3552 | 0,4278 0,5168 | 0,3809
.0 | 0,2476 0,7217 6,0 | 0,349 | 0,4433 5 0,5048 | 0,3804
1 | 0,2813 | 0,7410 1 | 0,3461 | 0,4591 0,4928 | 0,3810
2 | 0,3153 | 0,7563 2 | 0,3440 | 0,4750 0,4810 | 0,3829
3 | 0,3491 | 0,7676 3| 0,3434 | 0,4909 0,4695 | 0,3859
4 | 0,3826 | 0,7751 4 | 0,3445 | 0,5067 0,4584 | 0,3900
5 | 0,4155 | 0,7791 5 | 0,3471 | 0,5220 0,4478 | 0,3952
6 | 0,4475 | 0,7798 6 | 0,3512 | 0,5372 0,4378 | 0,4013
7 | 0,4785 | 0,7773 7 | 0,3568 | 0,5517 0,4286 | 0,4084
8 | 0,5081 | 0,7719 8 | 0,3637 | 0,5654 0,4201 | 0,4164
9 | 0,533 | 0,7639 9 | 0,3718 | 0,5782 0,4125 | 0,425
0 | 0,529 | 0,7533 ,0 | 0,3812 | 0,5901 g 0,4059 | 0,4346
1 | 0,5876 | 0,7405 1 | 0,3916 ,6009 0,4014 | 0,4446
2 | 0,6103 | 0,7256 2 | 0,4030 | 0,6106 0,3955 | 0,4550
3 | 0,6310 | 0,7089 3| 0,4152 | 0,6190 0,3920 | 0,4658
4 | 0,649 | 0,6906 4 | 0,4281 | 0,6261 0,3895 | 0,4769
5| 0,6658 | 0,6710 5 | 0,4415 | 0,6319 0,3882 | 0,4882
6 | 0,6797 | 0,6503 6 | 0,4553 | 0,6362 0,3880 | 0,4994
7 | 0,6913 | 0,6287 7 | 0,4695 | 0,6391 0,3800 | 0,5106
8 | 0,7005 | 0.6064 8 | 0,4837 | 0,6406 0,3910 | 0,5216
9 | 0,7073 | 0,5838 9 | 0,4979 | 0,6407 0,3941 | 0,5322
,0 | 0,7117 | 0,5610 .0 | 0,5120 | 0,6393 5 0,3933 | 0,5425
1| 0,7138 | 0,5383 1 | 0,52358 | 0,6366 0,4034 | 0,5523
2 | 0,7136 | 0,5158 2 | 0,5392 | 0,6325 0,4095 | 0,5615
3| 0,7112 | 0,4938 3 | 0,5520 | 0,6271 0,4164 | 0,5700
4 | 0,7067 | 0,4725 4 | 0,5641 | 0,6206 0,4241 | 0,5777
5 | 0,7002 | 0,452l 5 | 0,5755 | 0,6129 0,4325 | 0,5846
6 | 0,6918 | 0,4326 6 | 0,5859 | 0,604l 0,4415 | 0,5906
7 | 0,6816 | 0,4144 7 | 0,5954 | 0,5944 0,4510 | 0,5956
8 | 0,6699 | 0,3975 8 | 0,6038 | 0,5839 0,4610 | 0,5997
910, 0,3821 9 | 0,6111 | 0,5727 0.4713 | 0,6027
0 | 0,6421 | 0,3682 0 | 0,6172 | 0,5608 b 0,4818 | 0,6047
1| 0,6265 | 0,3560 1 | 06220 | 0,5485 0.4924 | 0,6057
2 | 0,6099 | 0,346 o | 0.6256 | 0,5358 0.5030 | 0,6055
3 | 0,5926 | 0,3369 3| 0,6279 | 0,5229 0,5135 | O,

4 | 0,5748 | 0,3302 4 | 0,6289 | 0,509 0,5236 | 0,601
5 | 0,5565 | 0,3253 5 | 0,628 | 0,4969 0.5337 | 0,5989
6 | 0,538 | 0,3222 6 | 0,6270 | 0,4841 5433 | 0,5947
7 | 0.51% | 0,3211 7 | 06241 | 0,4716 0.5524 | 0,589
8 | 0,5013 | 0,3218 g | 0,6200 | 0.4595 0,5609 | 0,5836
9 | 0,4834 | 90,3242 9 | 0.6148 | 0,4480 0,5687 | 0,5768
,0 | 0,4659 0,3285 .0 | 0,6084 | 0,4370 8 0,5758 | 0,5693










































































































































Inasmuch as D = DyByBg, we secure

P T
e=1 B (10.40)

Figure 10.5. GCharacteristic dimensions of telescopic charge.

B. Charge With channel of Star-Shaped Section

The section of a charge having characteristic dimensions is pre-
sented in Figure 10.6.

The coefficient of filling the cross-section of the chamber with
the charge is expressed by the relation

4n - - = )3 sin ——cosa
-=1—7[(0.5—e,—r—%¢.) JT'F;’(G—tga)]. (10.41)

where n is the number of rays of the star;
;lc% is the relative thickness of the burning vault (D is the diame-
ter of the charge);
- r is the radius of rounding-off at the tip of a ray (D is the
f.f=-5
diameter of the charge);
a is the angle describing half the original arc of the rounding off;
¢ is the angle at the tip of a projection of the charge.



Figure 10.6. Characteristic dimensions of charge having channel of star-
shaped section.

After the charge has burmed out to a thickness of combustion vault
el there remain degressively burning elements which must be regarded as
lost for the working process of the engine. The degressive remnants of
the charge actually constitute a supplement to the passive weight of the
rocket, and in order to reduce this weight it is well to replace these
elements of the charge with inserts of a light material (foam plastic)

(5).
The ratio of the area of transverse section of these elements to

the area of the transverse section of the chamber is called the coefficient
of residue, ¢k ;

Qo= l— % (7 + e)e, + (7+ 2)(05—7—&,) sing,], (10:42)

where (05—7r—2¢) sln% r

= .
o, =— + arcsin =
Je r+e

As analysis of this shape of charge shows, for each value of n
there is a unique geometrical variant which will ensure constancy of com-
bustion surface, characterized by a definite ratio of the parameters €1,

a, and § (2). The basic characteristics of these variants are presented
in Table 10.2. As will be seen from the table, these variants are charac-
terized by high values for ¢x . The usefully exploited area of the section



of the chamber rises if a certain progressive character of combustion is
assumed. In the same table there are set forth the characteristics of a
charge with ¢,=11 . 1Increase of permissible progressive character of sur-
face of the charge with reduction cf ¢« makes it possible to increase the
thickness of the burning vault and the density of charging & .

Table 10.2
i ¢'=I,G c'=l,l
6 7 8 6 7 8
P 0,150 0,142 0,125 0,206 0,19 0,181
. 0,824 0,755 0,666 0,865 0,7% 0,757
= % 15 12,7 1147 8,8 8,3 6,9
+/L 25,6 18,1 13,5 26,6 17,5 14,9

The weight of the effectively utilized charge can be computed ac-
cording to the formula 2

=D, (l— *')L. (10.43)

.=GTC P

The weight of the rocket chamber, taking into account the weight
of the degressive elements of the charge or their substitutes, is computed
as
7 [1e (1 — BY) + 1.0, (10.44)

Grp = kLL

where To is the specific weight of the fuei or filling.

This relation can be reduced to a general form if one introduces a
new expression for the adduced specific weight of the wall:

Top=Top+ Ty Ty (10:55)
o
Then
' =D? 2
Grp= Top. 4. kL1 — Bfl) (10.46)

The initial value of the relative perimeter of combustion is

(o5 —?.-F)sln—:-
-yt sin 0

—7ctg0. (10.47)

=
I
ol

- slipi.




The parameter of charging, x , is computed as

o Ml 0 47h 0.
2 Fx(l—l)—:(l—':)' fan
hence
- 41
"i-‘=m—_"—.). (10.49)

Inasmuch as for a charge having a constant surface of combustion
with a given number n the values [l and s are reciprocally linked and
correspond to the single combination of geometrical parameters which en-
sure that o=1 , they define the single value for the nondimensional ratic
x/L. For the variants set forth in Table 10.2 the values of x/L are given
in the last graph. Making use of this relationship, with a given value
for x one can determine the permissible length of the charge and its
weight.

If one starts from the desired elongation of the charge T, one can
select a number of rays of the star n at which the value of x realized
approaches the permissible value. Thus, in contradistinction to the charge
of single-channel cylindrical burners, in the present case it is not pos-
sible to change the relative length of the charge without interruption,
while preserving the number of rays and without in doing so changing the
characteristics of progressivity of the charge. For this reason, deter-
mining from expression (10.49) the value of g as

e=1—40aT (10.50)
t 13

one should note that strictly speaking with o.=! this formula covers the
totality of individual variants which are different as to the n number.

But the relation (10.50), as also the graphs in Figure 10.7, con-
structed on the basis of data from Table 10.2, express a general tendency
toward change of ¢ with elongation of a charge of a given type at fixed
value for x . As follows from the graph, over a pretty long range of
elongations of charge with a channel of star-shaped section it is possible
in first approximation to consider that the coefficient of charging ¢
changes in linear fashion with rise in L.

10.5. Determination of Basic Design Pfneters of Optimum Ballistic Model
for Charge Consisting of Cylindrical Single-Channel Burners

For a charge of cylindrical single-channel burners, with Xjpt =
xeoxt we secure from formula (10.26)
dL _ BB, «—3
ds Wn2e—9gy2—s (10.50)
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Figure 10.7. Dependence of coefficient of charging ¢« upon L/x for charges
having channel of star-shaped section and possessing constant
surface of combustion.

Substituting expressions (10.26) and (10.51) into equation (10.14)
we secure

—8P -4 n1.,kLB.B‘(| —B,’,)
2(1—ep ) 2—¢ lGVTC;“ . (10.52)

Analytical solution of equation (10.52) relative to & proves to be
too cumbersome. For this reason in order to determine emax it is well to
make use of the graphic method. The left-hand arm of the equality consti-
tutes the function f(e . )-

The right-hand arm of the equality (10.52) represents a nondimen-
sional complex made up of the project parameters and the relative weight
of useful load. We shall designate it by the symbol N.

Setting oneself arbitrary values of ¢ one can compute the values
of the function f(e,,,)=N that correspond to them. It is well to present
the results of computations in coordinates c_“=f(N) (Figure 10.8). 1In
order to determine the value of ¢, it is necessary to compute, in ac-
cordance with given values of the project parameters for a given value

;“ , the magnitude of the complex N and to enter the graph emax=[(N) or
the table with it. Finding €max from the graph or from the table, one can
then compute all the basic ballistic and design parameters determined by
1.

Let us examine the character of the function e, = f(N). The fol-
lowing equality corresponds to the condition N = 0:

— 304 9e— 40, (10.53)

the roots of which are equal to

o =262 =053

- 344 -




Erm
"]
08 —
a7 Va
Qi
051
0 5 10 15 20 N

Figure 10.8. Dependence of coefficient of charging sma: , ensuring maximum
velocity of unguided rocket missile, upon complex N with
Eint = *exge

Inasmuch as a value ¢>1 is devoid of physical meaning, the only
acceptable root of the equation in question, determining the initial ordi-
nate of the graph ¢ =f(N), is

max 0 = 0,543,

The following equality corresponds to the condition N=oo:

V2=i(1— ey =, (10. 54)

which is satisfied with e =2 and e2=1.

Eliminating the first of these as contradictory to reality, we
secure 1,,,,”,,=|. This is an asymptotic value, toward which the function
€., (N) trends with N - oo .

The condition N = 0 is met with C;“u=°° or with By = 1. In this
event the weight of the rocket chamber becomes negligibly small in com-
parison with the weight of useful load, in one case by virtue of infinite
rise of ¢g,, , in the other by virtue of trending of the thickness of the
wall of the rocket chamber toward zero (for example by virtue of the use
of material having infinitely high strength characteristics). Obviously
in practice these conditions cannot be fulfilled, and the case N = 0 may
be regarded as only a limit toward which this complex trends for some real
designs.

Let us note that equation (10.53) can be secured from the condition
of maximum weight of charge.

In harmony with equation (10.8)
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Making the derivative equal to zero we secure the equation

‘;—I;t+1_.=0,

which, after substitution of expressions (10.26) and (10.51), leads to
equation (10.53).

Table 10.3
tmax = (V)
N 00 02 0.4 0,6 08
(1] 0,543 0,559 0,574 0,586 0,598
1 0,608 0,618 0,628 0,636 0,642
2 0,648 0,654 0,660 0,666 0,672
-] 0,678 0,684 0,688 0,692 0,696
4 0,700 0,704 0,708 0,712 0,716
5 0,720 0,724 0,728 0,732 0,734
6 0,736 0,738 0,740 0,742 0,744
7 0,746 0,748 0,750 0,752 0,754
8 0,756 0,758 0,760 0,762 0,764
9 0,766 0,768 0,770 0,772 0,774
10 0,776 0.778 0,780 0,781 0,752
1 0,783 0,784 0,785 0,786 0,787
12 0,788 0,789 0,790 0,791 0,792
13 0,793 0,794 0,795 0,79% 0,797
14 0,798 0,800 0,801 0,802 0,803
15 0,804 0,804 0,805 0,806 0,807
16 0,808 0,808 0,809 0,810 0,811
17 0,812 0,812 0,813 0,814 0,815
18 0,816 0,816 0,817 0,818 0,819
19 0,820 0,820 0,821 0,822 0,823
20 0,824 - 0,824 0,825 0,826 0,826
24 0,827 0,828 0,828 0,829 0,829
2 0,830 0,831 0,831 0,832 0,832
2 0,833 0,834 0,834 0,835 0,835
‘24 0,836 0,836 0,837 0,837 0,837

Thus with N = O the maximum velocity of an unguided rocket missile
coincides with maximum weight of rocket charge, which corresponds to the
physical meaning of the condition N = 0 as revealed above: for a missile
in which the weight of the rocket chamber plays an insignificant part amid
the passive weight, the maximum for the ratio w/¢ must approach the maxi-
mum for o.

Among the conditions ensuring the equality N=oo0, let us examine
one: x=oo . This means that in planning a charge there are no limita-
tions upon y . In this event the maximum velocity is achieved with maxi-
mum filling of the cross-section of the chamber with fuel (e=1).
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The real values of ¢, are to be found within the range
0543 <, <L

Let us examine the sequence of computation of maximum possible
range of flight of an unguided rocket missile with given caliber and weight
of useful load.

1. 1In accordance with assigned values ¢, D, and of project pa-
rameters % 9g, Pp Tnp O R, , the magnitude of N is computed, in accordance
with which the value of e, is determined from the graph.

2. 1In accordance with formulas (10.20), (10.22), and (10.23), with
e=s_, the basic parameters of the charge are determined.

3. 1In accordance with formulas (10.8) and (10.5) the weights of
the charge ® and of the rocket chamber g:p are computed, and the passive
weight of the missile ¢= ¢, +¢,, is determined.

4. The following formula is computed:

O =1igln (14 ).

5. The ballistic coefficient is computed:

.- 108
=10

6. 1In accordance with ballistic tables for B,=45° the maximum
range of fire is determined.

In accordance with the results of the computations carried out for
various calibers and useful load weights, one can construct a graph for
max = f(D_, g..), with the help of which the reverse problem can be solved;
to determine the caliber in accordance with given values of ¢, and Xpax,
and in accordance with it also the remaining parameters of the optimum
model.

A solution analogous to the one examined may be carried out for
other shapes of charge as well. For this purpose it is necessary to sub-
stitute into expression (10.14) the relationship L=f(¢) pertinent to a
charge of given shape.

10.6. Determination of Basic Design Parameters of Optimum Ballistic Model
for Charge of Any Given Shape (Generalized Graph-Analytical Method of Solu-

tion)

The method of solution examined in the preceding section is con-
structed upon relations suitable only for a charge of a definite shape, in
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which connection even in this case the use of these relationships is lim-
ited by supplementary conditions, for example xint = xoxt. The first de-
ficiency of the method examined lies in this circumstance. A second and
even more substantial deficiency of the method consists in the use of
graphs for X=f(D,.q,,) which can be computed and constructed only for a
certain combination of values of project parameters. f in planning the
adopted value even of only one of the project parameters proves to be dif-
ferent from the one for which a graph has been constructed, use thereof
becomes impossible. At the same time, steady technical progress forces
the designer to seek new design solutions associated with the use of new
layouts, fuels, and materials, and consequently characterized by constantly
changing values for project parameters.

A virtue of the method set forth is its universality, i.e., its
suitability for charges of any shape, and also for any numerical values
of project parameters and their combinations.

Analysis of the relationship e=F[ (L) for charges of varying shape
shows that in the majority of cases over the range L which is of practical
interest, it can be approximated with a sufficient degree of precision
through the following formula:

o=1—k7, (10.55)

The specifics of the shape of the charge and the influence of the
parameter of charging are reflected in this relationship in the magnitude
of the coefficient k, .

In order to convince oneself of the correctness of formula (10.55)
it suffices to return to the graphs in Figures 10.3, 10.4, and 10.7 and
to formulas (10.29), (10.40), and (10.50). From the formulas referred to
one secures an analytical expression for k, :

for a charge of cylindrical single-channel burners with xjnh+ = 2xy:

k _ 4V,

DR

for a telescopic charge:
,=4I!B.B.;
for a charge having a chaunel of sta. shaped section:

ka = 4[7,0/1!!,

In the remaining cases Kk, is determined from the graph for e=f (Z)
as the tangent of the angle of incline of the approximating straight line
in the section g= | 0—0,6 -













75 (O )—-—l/“:::)’- (10.77)

A solution of the problem can be secured with the help of the graph
(Figure 10.9). 1In the upper left quadrant there are set forth the curves
establishing a connection between range of fire, maximum velocity, and the
ballistic coefficient. With the system of solution adopted one must con-
struct these in a v - ¢ system of coordinates. These curves are constructed
for the 1943 resistance principle. Beneath these there is a graph for the
relationship ¢ = f[(smax) with ®=constant, constructed in accordance with
formula (10.75). 1In the upper right quadrant curves for the dependence of
Vm upon Z=w/q, as calculated from the Tsiolkovskiy formula for various
values of I1, are placed. Beneath these in the lower right quadrant curves
for Z=f(emay) With B constant, constructed according to formula (10.67),
are set up.
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Figure 10.9. Nomogram for determination of basic parameters of optimum
ballistic model.

The layout for solution of the problem is shown by dashed straight
lines. It is necessary, in advance and in accordance with the values for
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project parameters adopted for the solution, to figure out the values of
the coefficients B and ¢ and to find the curves which correspond to them
in the lower quadrants. Moving along the curve X=Xy, we shall be getting
various values for ¢ and Z, for which we shall find from the lower graphs,
with constant B and @ , the values for emax1=9(€) and emax2=9(Z) that cor-
respond to them. Obviously an equality e_,, =¢€,,,» must correspond to the
solution of the problem. Having achieved coincidence of these values and
having secured in this manner the desired quantity ¢max , and knowing also
from the graphs the values for ¢ and Z which correspond to it, we easily
find all the other parameters of the optimum ballistic model. The caliber
of the missile can be determined from expression (10.72):

. . =a (10.78")
" mkqgp (1—Bl)e «(1—0)

The passive weight of the missile can be defined as follows:
D}
= (10.79")

and the following can be found in accordance with the value of Z
0o=2"9 (10.80")
The full weight of the model is determined as follows:

0 =¢ + o.

The basic dimensions of the missile are determined in accordance
with the value found for £ =e2=é€max.

Thus, for example, for a charge of cylindrical single-channel burn-
ers the dimensions D, d, and L which are of interest to us can be computed
in accordance with formulas (10.20), (10.22), and (10.23).

If the quantity K, , found from the graph e=f(L), is used in solving,
in the event of need the precision of the solution can be heightened by
virtue of a second approximation. In the second approximation a refined
value for &, is used; this is secured via approximation of graph e=f(l‘)
to the straight line within a narrower field defined by the value for emax
from the first solution.

Example 1. To determine the basic design parameters of an optimum
ballistic model for a range of 25 kilometers with adduced weight of useful

load g, =250kg.

For computation we adopt the following project parameter values:
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n=1; ' = 200 x2/cu?, op = 3500 xz/cm?;
Top = 7,82 xz/d.u’ B = 1,60 xz/dn®, I=13 k, = 1,02;

By=1 L= xu‘Kzex: 2 = %y = L70.
‘s 350 __ _ pos.

L By= ¢.+P = 3500 + 200 '

8 ik BL 1 16 095

m—-—-f 3 7‘)1-—093’T_‘ LS8

3 A= “B" =100 a0,

—

Wa T

4. From the graph in Figure 10.3 we find, in accordance with the

computed value A = 10.4, k, as the tangent of the angle of incline of the
curve s=f(L) over the section s=08+05:

== 08—05 RE
L,—L; lG.3 1= 0,0326.

4.0,0326
=78 (1—oomT;m | - 029%

6. From the graph we find that equality of the values for ¢ , de-

termmined from the left and the right portions of the graph, is ensured
under the following conditions:

max = 061 ¢ =024; Z=04; v,,,_660—.

cex
- aoik, T
TR SR tep (1—BY) ¢ Smax (0 —fmm)
2 Top o max max
40-13-0,0026 2.061—1

= ST TR (1 — 0902 0T (1—0pD) — 0 0%

" 1,3-0,2681 -

8 q=—t—10'—-——0'24 10® = 388 xa.
9 e=¢gZ=2388-04 == 1555 xz.

10. Qy = » + ¢ = 156 + 388 = 544 «x2.

=B, 1—s _ 170-095 1—061
ni=—=x. = Sl 0 133
Wn V2—s 4 Vi2i—o6

= 133268 = 358 ou.
12 D= DaBa_ _ 268095

_DaBe, _ 2EBAS ot
Vat—9 V2-oel ¥
13. d = D(1—«) = 2,16 (1 — 061) = 0,845 .

_'j")Lé_




4. We check whether the assigned value for = is ensured with
the dimensions computed:

4L 4.35

)

Vg = = 08 = 170;
S =L _ =216-358

= = 1728
e () + [095.268 — 2,169

10.7. Selection of Optimum Design Variant of Unguided Rocket Missile

At the basis of the selection of an optimum ballistic variant there
lies a single criterion -- minimum launch weight; which, despite all its
significance, is not all-inclusive. In practice it is sometimes well to
depart a little from the optimum ballistic solution in order to meet other
requirements imposed upon the model being planned. Thus, for example, in
some cases the optimum ballistic variant may turn out to be excessively
long, and for this reason it will be justifiable to shift to another larger
caliber in order to make the model shorter at the cost of its becoming
somewhat heavier.

In order to determine the basic design parameters of variants close
in caliber to the optimum, one can exploit one of the properties of the co-
efficient a for weight of the engine.

At the great elongations of the charge characteristic for the op-
timum ballistic variant the coefficient a changes faintly with length.
This conclusion can be extended to models having close relative lengths
of charge and calibers as regards amount, i.e., it can be assumed that
the value of @ found for the optimum ballistic variant can be transferred
to these models as well.

In Figure 10.10 a greph is set forth which can be utilized for solu-
tion of the probiem posed. The left side of the graph is filled with
curves which establish the connection between range of fire and maximum
velocity at various fixed values for the ballistic coefficient ¢. 1In the
right half there are curves for the dependence of vp upon p at various
values of unit impulse Ij. The scale for p is duplicated in the values
of the variable Z= %; which are linked with p by the ratio

>
o ey

Cutting through the bundle of curves in the left half of the graph
with a verticol corresponding to the range assigned, we secure a number
of values for ¢, to each of which corresponds, at the adopted value for
I7, one definite value of p or Z. In other words, a number of combina-
tions of reciprocally linked values of ¢ and Z (or p ) correspond to the
assigned range. Making use of these values one must determine the design
parameters of the model which will ensure them.
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With the value for p secured from the graph, the launch weight of

the model is defined as
L = L) .
Q‘]_u-'.c)p T— b

The weight of the charge can be defined as
o =pQ,

The passive weight of the charge is

9=Q(1—p)=gq,, ll_—a:. (10.78)

The caliber of the model is found from the expression for the bal-
listic coefficient:

wl(l—p)
.=V > “V(_",,.“ (10.79)

In order to determine the basic linear dimensions of the charge we
must make use of the graph for dependence of relative weight of a charge
of the assigned type upon its relative leagth. The relative weight of the
charge is

c,-é-z:a; B:BL.

For the sake of convenience in computing we shall introduce a new
characteristic

- =cel.
c. ._:.am (10.80)

As an example, there are set forth in Figures 10.11 and 10.12
graphs for the ratio C, =f(L) constructed with various values for p _ »B,B,
473

for the cases xjnt = Yext and xjpr = 2 ¥ex¢ for charges of cylindrical
single-channel burners.

Thus, having determined the value C.=# and having divided it by
L
the complex ;_'.B:BI it is necessary, in accordance with the value secured

for C, , to go into a graph similar to Figure 10.11, and to determine L
from it, and in accordance with L the remaining dimensions of the charge.

After solucion of the problem it is well, on the basis of the di-
mensions secured for the chamber and the charge, to reckon the value of
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the weight characteristic of the engine, B, and to compare it with the
value with which one started. If they diverge considerably, which is ordi-
narily possible only when there is a decidedly considerable deviation from
the caliber of the optimum model, it is necessary to recompute all the
characteristics of the missile, starting with the value secured for B .

‘w 4=50
/
10 //’
i/’iih
/
A D
/
/ /,/’%
30
5 25
N
~20
15
g/ &l
5
’
) 5 0 15 200

Figure 10.11. Dependence of adduced’relative weight of charge C, con-
sisting of single-channel cylindrical burners, upon rela-

tive length L for sint = =xext-

Example 2. To compute the basic design parameters of one of the
variants of a model for a range of 25 km and with weight of useful load

230 kg.

The values of the project parameters are taken to be the same as
in example 1.

We shall carry out computation for the variant c = 0.30.

1. According to the graph, Figure 10.10, with a range of 25 km
corresponds to this value.




2. The weight coefficient of the engine, &« , is determined in ac-
cordance with the data of example 1. For computation we shall take it as
being qg = 20 kg. Then

.-"-':+" = mw—m+”-lﬂl.

= Gnn - 230
Q= = +ap 1—2.032

4 w:= pQ.=0.3?'633 = 204 x2.

= 638 xz.

5. ¢=Qy(l —p) =068-638 = 434 x2.

]/"‘ /0.30-334
6.Du= ¥ i l IJIOJ"O':‘O?"

D, = 307 o~.
' ® 204
7.Co= g - =624,
D)8 B} 30716 095

8. From the graph, Figure 10.11, with C,=621 A=40, [=814. From

the graph, Figure 10.3, with zjnt = 2gx¢ and A = 40, ¢=0767 corresponds
to this value for L.

9. = L5 8B} D} = 0767-8,14-16 4 095-3,07 = 204 Az.

10 .=!;':!u=‘3_‘i§‘i"3=l.oo.

Thus the value secured for s corresponds to the one we were set.

We may note that for an engine having loose filling of the chamber
without heat insulation the values of the coefficient a are very high and
come to 0.85-1.25. Thus, for example, for the '"Honest John' rocket, in
accordance with (1) the over-all weight comes to 2,700 kg, ¢as to 675 kg,
@ to 930 kg. Consequently for the engine of this rocket.

-o.—l—!.! ’m—m—m- l.ll

11. Let us compare some characteristics of the model computed in
this example with the characteristics of the optimum ballistic variant.

Ratio of launch weights

o = S = s

Ratio of charge lengths
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Figure 10.12.
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Dependence of adduced relative weight of charge C. con-
sisting of cylindrical single-channel burners, upon rela-

tive length of charge T for zint = 2 zext-

Thus increase of the caliber from 268 mm to 307 mm while preserving

the assigned range of fire has led to increase of launch weight by 17.5

percent with preservation of the length of the missile, only by virtue of
shortening the length of the charge (by 1.5 times) to 1 meter.
this occurs the weight of the charge rose sharply (by 31 percent).

Similar computations carried out for various cases show that with

increase of the caliber of an unguided rocket missile above that which
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where 7Tes and Ts are the specific weights of the missile and of the ma-
terial of the casing

The volume of the ogival part, if one starts from the proximity of
its shape to the paraboloid, can be computed according to the formula

=D} ) .
Weu =5 Loa =" Low

where Log is the length of the ogival part.

To the cylindrical part of the warhead there falls a length

= Wou — Wou _ Aw, 2 -
L= = ~70du (10.86)
e

The relative length of the warhead is

Z“-E..*-[.-—;Za...._‘%‘ (10°87)

Making use of formula (10.85), one can present relation (10.87) in the
form

7 l 7 4 a | —ay
L“-?Lo-"’fcﬁq =i 4 - ]t (10.88)

Teu

where Cq, —-3— "
-

To the rocket part there remains

L"Ll - Z‘..
Making use of formula (10.88) we secure

ay, | —ay
[=Ln—§Llu—5Cmlsr* )- (10.89)

If we designate _f_(_ﬁ-_ '—‘-)__L, we secure
 \Ten Tu T

- - 1 » s
L=La— 5 Lu——2 (10.99)

The relative length of the charge is determined as

L=3,
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In accordance with the magnitude of L one can determine the coef-
ficient of charging e , for this purpose making use of tlie graphs, Figure
10.3 or Figure 10.4, or of the relations (10.26) or (10.29).

With xijpnt = ¥ext, from relation (10.26)

--1—.2%il/(l__£?)’+(2%_ )' (10.100)

and with xjn+ = 2 xext

.=|-%, (10.101)

In accordance with the quantity & one can then compute the relative
weight of the charge.

In planning turbojet rocket missiles the cone block is made in the
form of a cap-cone -- a solid-cast unit with jets drilled around its cir-
cumference. With such a design the weight of the cone block depends sub-
stantially on the linear dimensions of the cone, which determine the thick-
ness of the unit. In turn, the linear dimensions of the cone for a given
value For and given dz/der ratio and angle of funnel B depend upon the
number of jets. It will be necessary to consider not only our desire to
reduce the weight of the cone block in selecting the number of jets, but
also the possibility of placing them on a single circumference of the
greatest possible diameter in order to secure the highest torque.

The maximum possible number of jets npax which can be placed in a
single row in a cone block having a face area Fy with an adduced over-all
area of outlet cross-sections of jets F can be determined from the equa-

tion 5
g\
i "(' t7)

g

where
F,=3(d,+ adyn. F,=—(D,— Ad).
Here Ad is the minimum permissible amount of the interval between
the circumferences of the outlet cross-sections of the jets.
Minimum values for the ratio FM/F; computed in accordance with this
formula for various values of n are set forth in Table 10.4. 1In the selec-

tion of n the ratio FM/Fa serves as an initial quantity; here in first ap-
proximation Fa is taken as being equal to Fygt? .
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Table 10.4

n 10 12 14 16 18 20 2 P2 28 30

PJ#. 1,75 | 1,94 | 2,12 | 2,31 | 2,52 | 2,71 | 2,91 | 3,10 | 3,50 | 3,70

Let us examine the sequence of computation in determining the char-
acteristics of a turbojet missile having a given weight of warhead and a
given range of fire X.

1. With value for @s selected we determine the mean specific
weight for the warhead, 71¢ .

2. We set ourselves a number of calibers for the turbojet rocket
missile and for each of them we determine Co6a=qeu/D}.

3. For each of the variants _we compute, in accordance with formula
(10.89), the length of the charge, L.

4. We determine the magnitude of coefficient By, setting ourselves
the value of kp from experience in working out similar objects.

5. Setting ourselves the number of burners and the value for pa-
rameter x , and making use of the value secured for By, for each of the
variants we compute in accordance with formula (10.100) the coefficient
of charging s .

6. We detemmine the weight of the charges in accordance with
formula (10.8).

7. In accordance with formula (10.3) we compute the weights of the
rocket chambers. Having determined the weights of the structural elements
q..-C' D3, we determine for each of the variants the passive weight

L
9=qx+qou+Grp,

8. In accordance with the Tsiolkovskiy formula we compute vy for
each of the variants, taking the value adopted for I) as starting point.

9. With the adopted value for the coefficient of shape i, we compute
in accordance with q and Dy the values for the ballistic coefficient C.

10. In accordance with vy and C with 8,=45°, we compute the range
of fire for each of the variants.

l11. We construct a graph for X = £(Dy), from which we determine

the caliber which will ensure the range set, and we refine all the basic
characteristics for this caliber.
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10.9. Determination of Basic Design Parameters of Model Having Set Charge
Combustion Time

In planning models having set charge combustion time two limit cases
are possible:

1. Planning of an engine of specified caliber which at a given use-
ful load will ensure maximum possible velocity.

2. Planning of an engine which will ensure a specified velocity
with a given useful load and with least weight of its own.

In both cases the specified charge combustion time, togetber with
the characteristics of the fuel selected and with the working pressure in
the engine selected, determines the thickness of the burning vault of the
fuel, ej.

Let us examine a solution for the first case. Let us determine the
optimum parameters for a model with specified thickness of burning vault
e]l, parameters such as to ensure greatest velocity (Vp)max with the project
parameters adopted. For this purpose we make use of equation (3.65), for
a charge having a specified thickness of burning vault

whence
T TS (10.102)
R i

Substituting expressions (3.66) and (10.102) into expression
(10.14), after elementary transformations we secure

¢ ' kyTap (1 — B)) <2
== Gl
You
or
/ ,an(‘ Bl (10.103)
l—. l 'n

We carry out the substitution

e __‘tD’l
Ce 9on
ox




and we designate

/ S O
M_V %;:,,,(I—B:)hw,. (10.104)
Then
— r ' (10. 105)

Substituting expression (10.105) into expression (3.65) we secure

Lo =5 (10.106)

With set caliber of engine, relations (10.104), (10.105), and
(10.106) determine all the design and ballistic characteristics of a model
which will ensure maximum velocity with set values for e; and set project
parameters.

Making use of the expressions secured for Ipax and ¢, in order
to determine the ratio T", we secure

OB B
' . 1 b 5 —. (10.107)
You + Top- D, (1 = BY) 31

-
-_—
q

From expression (10.104) we fird that
M

=D? -
o 3t 2 (1 8)

l¢l=-

(10.108)

Dividing the rumerator and the denominator of the right-hand amm
of the equality (10.107) by the numerator, and utilizing the substitution
of formula (10.108) we secure:

or

( M ):- (10.109)




< . Using the designations adopted in 10.6 we can transcribe this rela-
tion in the form

M \2
Z=8(7+m)" (10.110)

In the general case the caliber is the quantity sought. A solution
of the problem can be secured with the help of the graph presented in Fig-
ure 10.13. The left half of this graph is in no wise distinguished from
the right-hand upper quadrant of the graph in Figure 10.10 which estab-
lishes the connection between maximum velocity, the value of Ij, and the
variable Z=w/g. The right half of the graph expresses the depen’ence of
Z upon M with B = constant. As a result of this, in accordance with set
values for vy and I] and the value for B computed for the project parame-
ters adopted, one determines the parameter M, in accordance with which the
optimum caliber of the engine is then computed:

Dy ome = Vj:— 1..p(lh—‘8';'.)k,,m/q;;.‘ (10.111)

\ Z 5=20 T 10

\\\\ - 035 / / // [
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Figure 10.13. Nomogram for determination of M complex in planning an un-
guided rocket missile having a set fuel combustion time.

The solution we have examined, based upon a general property of
charges having a constant combustion surface and a set thickness of burn-
ing vault, does not take into consideration certain specific properties
of charges of individual shapes. 1In the case of a charge of cylindrical
single-channel burners, after determining the general characteristics of
the charge it is necessary in addition to solve the problem of p lacement
of this charge in the rocket chamber of the optimum model.
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Let us examine this on the example of a variant *jpt = xext, for
which d=D{l—s); consequently,

D—d
==

Having divided both parts of the equation by the interior diameter
of the chamber Dg = DyBy, we secure:

e, _ De & £ 10.112
12&2-—__7- or Lh;ﬂ — /) ( )

In order that a charge of n burners with set values e; and Dy may
fit in the chamber, it is necessary that the relation of the diameter of
the burner to the diameter of the chamber, as determined through equation
(10.112), should be no greater than Py, for a given n. Accordingly the
limit condition for fitting in the chamber proves to be the equation

ey
'B..ﬂll

=D, (10.113)

Having computed the complex in the left-hand arm, one can determine
from Table 10.1 the number of burners, n, which corresponds to it.

In Figure 10.14 we set forth a graph for e=[(L/xe)) with indication
of the points corresponding to emp for charges having di fferent numbers
of cylindrical single-channel burners, when xint = Xext.

€
03

a7

s

04 \

Q3

62

02 04 05 08 10 12 1& 16 L8 20L/xe

Figure 10.14. Dependence of coefficient of charging s upon L/xej for
charges having a set thickness of burning vault.

Let us examine the solution for the second case. Let us determine

the basic parameters of an engine which will ensure a specified range with
least weight of its own. Obviously the minimum for the weight coefficient

:\( Q _




a , secured for a set thickness of burning vault, will correspond to the
requirement for least weight of engine
In order to simplify the solution it is well to present the over-

all weight of the cone, caps, and diaphragm in the form

:D’

=1

Then the expression for a assumes the form

=D, =0, (1—B), 1=

_ 9rta _n' 7 tTw .
= = = - 5
2 (1 — ) %e
or
2
n 1 Top ! — By 1
5 -+ B 8333 L (10.114)

. ——3
3BIBxe, | —¢
Differentiating expression (10.114) in accordance with € and
equating the derivative to zero, let us colve the relation secured with

reference to € :

1= )
1oy = |/ =B, (10.115)
| 4
Let us designate
5 l/,np(. BI) ke, (10.116)
Then the conditions ensuring optimum value for a will be:
—— T (10.117)
14+ M
— X (10.118)
M

@min , will be expressed by the relation

The optimum value,
(10.119)

. _i+Mln
M

~ Bk,
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The weight of a charge necessary to accelerate the flight apparatus
to a set velocity will be
Gnut

ST e

(10. 120)

The caliber of the engine is equal to

D l/:w?B* 0+ M. (10.121)

Example. To determine the characteristics of a launch engine to
accelerate a flight apparatus weighing 1 ton to a velocity of 500 meters
per second over a time of 2 seconds. The values of the project parameters
are taken to be the same as in Example 1, 10.6. Assume [lx =4, ucp = 10 snjcex.

L e =%Uep =2-10 =20 ww =02 dn.

+ ]/ 7,82 (1 — 0,95%)-1,02-170-0,2
2 M = ( : 102-170-02 _ 2617.

M
de=—r-vo-= %;— = 0,724,

1+M

170-0,2
4 L‘— 2617 13 du.

1 +2617 [ 4.2617
% % = 50005 [ 170-.02 *+ 78201 —095) '.02] ~ 0,966,

1000-0,22

= > = 403 xe.

1— (1 + 0,966) 0,225

V- Daw V AL 20N 6132 o

=-1,60-0,952-170-0,2

* It is also possible to use groups of engines, the diameter of each
of which is equal to p _ Dy | where m is the number of engines in the
H, ;'

group. Withm =4, Dy = 3.066 dm; with m = 6, Dg = 2.51 dm.

8. Let us examine the possibility of placing in the engine charges
of single-channel cylindrical burners when the condition *jpt = *ext is

met.

The diameter of a burner is

de, _ 402

For a single engine



= D
b _ 1108
D,B, ~ 132005 = %19

In accordance with Table 10.1 under these circumstances it is pos-
sible to use a charge of 19 burners. For a group of 4 or 6 engines we
secure a permissible number of burners per engine equal respectively to
5 and to 4.

Thus we have examined the two extreme cases. The first of these is
the more characteristic for the planning of antitank unguided rocket mis-
siles, where the caliber of the warhead is given, and the caliber of the
rocket part is taken as being equal to the caliber of the warhead or as
equal to a specified portion of this caliber (for example, from the con-
dition of placement of fins which do not project beyond the caliber of
the warhead). The second case is the more characteristic for the planning
of launch engines, where in accordance with the conditions of placement
of the launch engines on a flight apparatus rigid requirements are as a
rule not imposed upon the caliber of the engine.

A common deficiency of both solutions is the fact that the parame-
ters of the engine are determined from the conditions of an extreme which
is of a very sharply inclined character for some variants. In the first
case this leads to the computed variant's being secured excessively long,
and for practical purposes it can be shortened without substantial reduc-
tion of the velocity of the unguided rocket missile. In the second case,
on the other hand, the computed variant is sometimes secured in shortened
form, and permits, in order to reduce the caliber of the engine, a certain
elongation without substantial augmentation of the weight of the design.

In the computation of variants which exhibit some departure from
the optimum ones as secured from solutions for the extreme cases, one
must set oneself a length of charge and determine the caliber which with

this length will ensure a specified velocity for the model, i.e., the re-
quired ratio w/g=Z.

From equation (10.11):
24, — 35 BBiLD + 1,0+ (1 — Bk, LD:Z—0.  (10.122)

Let us designate

o i =
E=38

rﬂzrn'% (l _ B:)kt.

Substituting into expression (10.122) the value for & from expres-
sion (3.64) and solving with reference to caliber we find that:

= BT









In first approximation the weight of the warhead is determined as
Gou =12 100,

An important design characteristic of the warhead is the relative
thickness of the walls of the casing in calibers. On the basis of litera-
ture data available (4) one can furnish orienting values of this quantity
for warheads for various purposes:

high-explosive warhead 3o = 0.023 (M31, USSR)
fragmentation warhead der = 0.1 (M8, USSR)
fragmentation-high explosive

warhead der = 0.1 (M13, USSR)

The relative weight of the warhead C;""==%;% can vary within pretty

o
broad limits. It is nevertheless well to indicate the value thereof for
some known examples (4):

For high-explosive effect missile Cenw = 2 (300 mm missile, Germany)
For fragmentation effect missile aw = 6 (M8, USSR)
For fragmentation-high explosive

effect missile Conw = 8 (M13, USSR)

In using the methods of ballistic planning of an unguided rocket
missile examined above, the weight of the warhead includes the weight of
the cone block and the tail group. For small rocket missiles Vandenkerkhove
recommends taking the weight of the caps, the cone, and the tail group as
equal to 0.04425 Rﬁ (1). The half-caliber of the rocket missile should be
taken in centimeters; when this is done the weight of the elements indi-
cated is secured in kilograms. This corresponds to a value of C ) = 5-53
kg/dm3. But as the author himself points out, the formula gives exag-
gerated results in a number of cases. According to the data for the M8,
M13, and M31, one can take C . as being equal to 2.2 kg/dm3 for finned un-
guided rocket missiles of megium caliber.

Selection of the Number of Burners

In planning unguided rocket missiles with a charge of single-channel
cylindrical burners one of the project parameters is the number of burners,
n. Let us examine what influence this parameter has upon the basic char-
acteristics of an unguided rocket missile.

In Figure 10.15 we set forth graphs for maximum velocity of an un-
guided rocket missile computed by Professor Ya. M. Shapiro for charges
having different numbers of burners at different elongations T. From the
graphs it is apparent that at any elongations of the charge the greatest
velocity is ensured by a single-burmer charge. Comparison of the quantity
vp for various multiple-burner variants shows that with a relative length



of charge L greater than 8 the greatest velocities are ensured by a charge
of three burners, when L = 5 to 8 by a charge of four burmers, and when L
is less than 5, by a charge of seven burners.
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Figure 10.15. Dependence of maximum velocity of unguided rocket missile
on relative length of charge for variants having different
numbers of burners (n = 1, 3, 4, 5, 6, 7).

The need for using in an unguided rocket missile a multiple-burner
charge in place of a single-burner one, which in all cases ensures great-
est range, is brought about first and foremost by requirements associated
with grouping of fire. Above we have examined the causes calling for the
use of multiple-burner charges in turbojet rocket missiles. The applica-
tion of multiple-burner charges in finned uaguided rocket missiles in order
to increase speed of departure from the guides makes it possible to reduce
the influence of a flank wind, which provokes flank dispersion of an un-
guided rocket wissile. Upon the thrust-weight ratio of an unguided rocket
missile, associated with the number of burners, depends reduction of the
angle of incline of the tangent to the trajectory in the active section.
In Figure 10.16 we set forth a graph for the dependence of this angle at
the end of the active part -- 0, -- upon the thrust-weight ratio, com-
puted for pg=0,35, B,=45° with varying lengths of guides, according to
formula (7.18).

From the graph it is apparent that the steepness of the 8.=F(7)
curves diminishes as thrust-weicht ratio rises. With n>20 the increase
in thrust-weight ratio already has little effect upon change in the angle
8, - With <12 change in the angle of incline of the tangent to the tra-
jectory in the active section comes to more than 10°.

The great steepness of the curves §,=f(n) at low thrust-weight
ratio brings about a high sensitivity of g, to random changes in thrust-
weight ratio brought about, for example, by scattering of thrust. In turn,
scattering of the size of 8, brings about spread of the unguided rocket
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missile as regards range. Hence arises a need for ensuring relatively
high thrust-weight ratio.

9
e Lo™im
’l'”. / ?’.
) i /// ’
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Figure 10.16. Dependence of angle of incline of tangent to trajectory of
unguided rocket missile at the end of the active section,
% , upon the thrust-weight ratio with different lengths
of guides.

Let us note that with increase of the caliber of an unguided rocket
missile one observes a tendency toward reduction of thrust-weight ratio.
This is to be explained in the following fashion. With increase in the
caliber of a model, while preserving geometrical similarity, the working
time of the engine increases proportionately to the thickness of the burn-
ing vault, i.e., proportionately to the caliber in the first stage. The
weight of the charge, as also the weight of the entire model, rises pro-
portionately to the cube of the caliber:

QO“'D:. .~D."

The output of products of combustion, and consequently also the
thrust of the engine, change under these circumstances as
P-I,G:::ll—:-;

o
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Consequently the initial thrust-weight ratio of the model must
change with increase in caliber as

n__——-«.fzu sl
o D’ /| Dy -

For this reason, in order to ensure a set thrust-weight ratio in
a missile of large caliber it is necessary to use charges with less rela-
tive thickness of vault €] than in models of small caliber, i.e., to
proceed to the use of charges having a larger number of burners.

Thrust Diagram

Increasing the speed of an unguided rocket missile's departure from
the guides by increasing the number of burners, i.e., by decreasing the
thickness of the vault, is associated with falling off in the density of
charging and, as a consequence, with reduction in range of fire.

It is possible to increase the speed of departure of the unguided
rocket missile without reduction of the thickness of the vault of the
basic charge by applying a staged thrust diagram, the upper stage of
which coincides in time with the motion of the missile along the guide (7).

A staged thrust diagram can be ensured: by using a launch engine
having a charge that is consumed upon the guide; a two-stage engine work-
ing successively at a launch thrust rate (on the guide) and at a route
thrust rate (the free flight portion).

Questions regarding the arrangement of two-rate engines were
examined in Chapter VI.

Computed Pressure p&

In selecting the amount of maximum pressure in accordance with
which the thickness of the engine wall is computed, one must take the fol-
lowing circumstances into account:

a) the need for ensuring stable combustion of the specific fuel
for the most unfavorable temperature conditions, i.e. at the Tpjn con-
stituting the lower boundary of the temperature interval for which the
model being workel out is intended; from this condition one selects the
minimum permissible pressure ppjn:

b) the possibility of degressive combustion of the charge or the
presence of a staged pressure diagram, characterized by the ratio between
maximum and minimum pressures: p_ . /p . =¢&;

c) presence of a dependence of speed of fuel combustion upon tem-
perature, which in the case of an unregulated engine leads to rise in
pressure with the temperature of the charge. This change in pressure is
defined by the coefficient
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(’mn)rm" . %’(rmu_rmln)

(pmn),-mm J

where m and D are the thermochemical constants of the fuel (see (6));

d) spread of magnitude of maximum pressure at the upper boundary
of the temperature interval for use of the model, characterized by the
coefficient @p ;

e) scattering of strength characteristics of the material and of
the thickness of the wall in consequence of tolerances in the manufacture
of the rocket chamber; this scattering is taken into account through the
reserve strength coefficient mp .

Under these circumstances computed pressure is defined as

+D
T Vme—Tai) (10.124)

P =17,9,€

The magnitude of computed pressure can be reduced by using fuels
which burn stably under low working pressures in the engine and which
possess a low temperature dependence, and also by regulating the cone of
a solid-fuel rocket engine in accordance with the temperature of the
charge or by thermostating the engine.

The Charging Parameter x

General considerations regarding the selection of this parameter
were set forth in 3.9. They continue to be in force for unguided reactive
missiles as well.

But for unguided rocket missiles, in contradistinction to guided
missiles having a vertical launch, greater development of the combustion
surface is characteristic; this is occasioned by the greater thrust-weight
ratio necessary with an inclined launch.

For this reason the optimum value of x for an unguided rocket
missile is shifted in the direction of its increase so as to approach the
value which determines the limit of the field of stable combustion. The
selection of the x parameter is inseparable from the selection of working
pressure in the engine which will ensure stable combustion of the charge
at minimum temperature thereof.
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CHANGE IN METEOROLOGICAL ELEMENTS WITH ALTITUDE

ANNEX 1.
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Annex 1 (continued)

Y z(y Hy ‘/§ e ) Hay I/Z;:
15200| 0,114 0,148 33000 | 0,756 0,919.10-2 | 1,102
15100 0,111 0,143 34000| 0,652 0,790 1,100
15600 0,107 0,139 35000 | 0,563 0,679 1,098
15800| 0,104 0,134 36000 | 0,487 0,573 1,084
16000| 0,101 0,130 1,133} 37000 | 0,423 0,485 1,071
16200 0,980.10—' | 0,126 38000| 0,369 0,413 1,058
16400 | 0,950 0,122 39000| 0,322 0,352 1,046
16600 | 0,923 0,118 40000 0,283 0,302 1,034
16800 | 0,895 0,115 41000 | 0,249 0,260 1,022
17000 | 0,867 0,111 1,133] 42000 0,219 0,224 1,011
17200| 0,841 0,108 43000| 0,194 0,191 1,000
17400| 0,815 0,105 44000| 0,172 0,168 0,999
17600 | 0,790 0,101 45000| 0,153 0,147 0,979
17800| 0,766 0,980.10—* 16000 0,136 0,128 0,969
18000 | 0,742 0,952 1,13s] 47000| 0,122 0,112 0,960
19000| 0,635 0,814 1,133 48000 0,109 0,984.10-* | 0,951
20000| 0,543 0,697 1,133] 49000| 0,977.10—3| 0,866 0.942
21000 | 0,465 0,59 1,130 50000| 0,878 0,764 0,933
22000| 0,398 0,507 1,128 55000| 0,508 0,473 0,963
23000| 0,341 0,432 1,125| 60000| 0,284 0,282 0,997
24000 | 0,299 0 369 1,123 | 65000 | 0,152 0,163 1,034
25000 | 0,251 0,316 1,121] 70000| 0,774.10-¢| 0,895.10—* | 1,075
26000 | 0,216 0,270 1,118 75000 | 0,372 0,468 1,122
27000( 0,185 0,231 1,116] 8000 | 0,167 0,229 1,176
28000 0,159.10-* | 0,198.10~* | 1,114| 85000 0,721.10-*| 0,990.10-* | 1,176
29000| 0,137 0,169 1,112 90000 0,310 0,429 1,176
30000| 0,118 0,145 1,109 95000 0,134 0,185 1,176
31000 0,102 0,125 1,107 |100000| 0,5¢0.10—¢| 0,800.10-¢| 1,176
32000{ 0,876.10~2| 0,107 1,105




ANNEX 2

1
I, —11, W = 5 Wy
B L u, u, u, u, I, u,
0,01 90,00 0,0100 0,0100 0 0 0 0
2 90,00 202 200 0,0002 0 0 0
3 90,00 304 300 4 0 0 0
4 89,86 408 400 8 0 0 0
5 88,02 513 500 | 0,0013 0 0 | 0,0002
6 86,22 619 600 18 0 0 7
7 84,46 726 700 25 | 0,0001 0,0001 0,0015
8 82,76 834 799 33 2 2 26
9 81,09 943 898 42 3 3 40
0,10 79,51 0,105 997 51 5 5 57
1 77,97 0,1166 0,1095 62 7 7 76
2 76,57 1279 1193 74 0,0010 9 98
3 75,30 1393 1290 87 13 | 0,0012 0,0122
4 74,13 1509 1386 | 0,0101 17 16 149
5 73,06 1625 1482 116 i 20 177
6 72,04 1743 1577 132 26 24 207
7 71,04 1863 1672 149 32 29 239
8 70,07 1984 1766 167 38 35 272
9 69,13 2107 1860 187 45 41 308
,20 68,20 2231 1953 207 53 48 344
1 67,25 2357 2046 228 62 56 382
2 66,33 2484 213 250 71 64 422
3 65,43 2613 2229 273 82 73 463
4 64,53 2744 2320 298 93 83 505
5 63,65 2876 2410 233 | 0,0105 93 549
6 62,77 3010, 2499 349 119 | 0,0104 594
0,27 61,88 3146 2588 377 133 116 540
8 61,00 3284 2676 405 148 129 588
9 60,12 3424 2763 434 165 142 638
0,39 59,23 3566 284¢ 464 183 156 688
1 58,35 3710 293 495 201 171 740
2 57,46 3856 20 527 221 187 793
3 5,58 4004 3104 560 243 204 847
4 55,70 4154 3187 594 266 221 903
S 54,83 4307 3269 629 290 240 960
6 53,98 4462 3350 665 315 259 | 0,1018
7 53,14 4620 3430 701 342 279 1078
8 52,28 4780 3510 739 371 300 1138
9 51,43 4943 3589 777 401 322 1200
0,40 50,59 5108 3667 816 432 345 1263
1 49,77 5276 3744 856 466 368 1327
2 48,96 5447 3820 897 500 393 1392
3 48,14 5621 3898 938 537 419 1458
4 47,33 5798 3969 980 575 445 1525
S 46,51 5978 4042 | 0,1023 616 473 1594




Annex 2 (continued)

1 ] L u. u, u, s ua u,
6 45,69 0,6162 0,4114 0, 1067 0,0658 0,0501 |0,1663

7 44,88 6349 4185 112 702 530 1733

8 44,06 6539 1255 1156 748 560 1805

9 43,25 6733 4324 1202 796 591 1878
0,50 42,83 6931 4392 1249 816 623 1951
1 42,83 7133 4460 1207 897 656 2024

2 42,83 7339 4528 1346 950 688 2007

3 42,83 7550 4596 1397 0,1005 722 2170

4 42,83 7765 4664 1487 1061 756 2244

S5 42,83 7985 4732 1502 119 790 2317
0,56 42 83 8210 4800 1557 1178 821 2390
7 42,83 8440 4868 1614 1239 860 2464

8 42 83 8675 4936 1672 1302 896 2537

9 42 83 8916 5004 1732 1367 932 2610
0,60 42 83 9163 5072 1793 1433 969 2634
1 42 83 l 9416 5140 1856 1501 | 0,1007 2757

2 42,83 9676 5208 1921 1571 1044 2830

3 42,83 9913 5276 1988 1643 1083 2903

4 42,83 1,0217 5344 2057 1717 1122 2977

5 42,83 0499 5412 2127 1793 1161 3050

6 42,83 0789 5480 2199 1870 1201 3123

7 42 83 1087 5548 2274 1951 1241 3197

8 42 83 1395 5616 2350 2033 1282 3270

9 M 42,83 1714 5684 2429 2118 1323 3343
0,70 42 .83 2042 5752 2509 2205 1365 3417
1 42,83 2381 5820 2593 2295 1408 3490

2 42 83 2732 5888 2678 2387 1450 3563

3 42,83 3096 5936 2766 2482 1494 3636

4 42,83 3473 6024 2856 2579 1538 3710

S 42 83 3865 6092 2919 2679 1582 3783

6 42,83 4274 6160 3045 2782 1627 3856

7 42,83 4699 6228 3143 2889 1672 3930

8 42,83 5144 6296 3244 2998 1718 4003

9 42,83 5609 6364 3349 3111 1764 4076
0,80 42 83 6097 6432 3457 3227 1811 4150
1 42,83 6610 6500 3568 3347 1859 4223

2 42 83 7151 6568 3683 3H71 1906 4296

3 42 83 7723 6636 3801 3597 1955 4370

4 42,83 8329 6704 3924 3731 2004 4443

5 42,83 8975 6772 4001 3868 2053 4516

6 42,83 9665 6840 4182 4009 2103 4589

7 42,83 2,0406 6908 4318 4156 2153 4663

8 42,83 1206 6976 4460 4308 2204 4736

9 42,83 2077 7044 4607 1467 2255 4809
0,9 42,83 3030 7112 4760 4633 2307 4883
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