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ABSTRACT 

The representation of a random process as the output of a causal and 

causally invertible linear system driven by white noise is called canonical 

and specifies, quite simply, the whitening filter for the process. 

Whitening filter techniques replace the observation process, without loss 

of information, by a white noise process and allow simple formulation of 

the solutions of estimation and detection problems in terms of the equiva¬ 

lent process obtained by the whitening. Constructive methods based on the 

solution of a matrix Rlccati equation are given for determining the canonical 

representation of differentiable observation processes which consist of a 

linear combination of the component processes of a finite dimensional Markov 

process. Implementation of filtering solutions and likelihood ratios for 

detection are then obtained in a common formulation for a variety of signal 

with colored noise situations. The approach emphasises the canonical 

representation of the observation process while requiring a minimum of 

attention to models for signal and noise components of the observation. 

Finite time Interval problems for differentiable processes require attention 

to "Initial condition" random variables and the solutions discussed account 

for their contribution In a natural way. 

Presented at the Symposium on Computer Processing in Communications 

Polytechnic Institute of Brooklyn, April 8, 9, lo, I969 



1. Introduction 

^ree problems of detection, estimation, and covariance factor¬ 

ization are intimately related and this relationship has become clear for 

processes which are the sum of a smooth signal process and a white noise 

process such that the cross-covariance function of the signal and noise 

is of a particular "one-sided" form [1], [2], [3]. a unified formulation 

for the three problems in such a situation arises from the occurrence of a 

common Wiener-Hopf integral equation involving the covariance function of 

the observed process. When the kernel function of the covariance has a 

separable form, the solution of the Wiener-Hopf Integral equation may be 

obtained in terms of an associated matrix Riccati equation. This leads to 

effective digital computational schemes for solving these three important 

problems in the analysis of stochastic processes. 

In this paper we will show how the results obtained for the additive 

white noise situation may be easily extended to stochastic problems 

concerned with observed processes which do not contain an additive white 

noise but which have certain differentiability properties. An innovations 

approach for differentiable processes is formulated which extends the 

innovations approach to least-squares filtering developed by Kallath [1] 

for the additive white noise problem. Ihe innovations approach is to first 

convert the observation process to a white noise, called the innovation 

process, by means of a causal and causally invertible linear transformation 

and then treat the simplified estimation or detection problem based on 

(derived) white noise observations. This whitening filter approach was 

applied by Kallath to extend the technique used by Bode and Shannon in the 

solution of the Wiener filtering proMem for stationary processes over a 

interval. In reference [l], the nonstationary continuous 
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time process over a finite time interval is handled and the Kalman-Bucy 

recursive filtering formulas are simply derived. 

The innovations approach to estimation and detection reflects on the 

covariance factorization problem which seeks a causal linear filter that 

when driven by white noise yields an output process with the given 

covariance (see [4] and [5] and the references cited therein). In general 

there may be no such representation, but if one exists there is an essen¬ 

tially unique causally invertible representation called the canonical 

representation (CR). In a previous paper [4], the authors give several 

examples of these facts and point out that the CR is just the inverse of 

the whitening filter giving the innovation process. Conversely, then, the 

implementation of the whitening filtet approach to estimation and detection 

is readily carried out if the canonical representation is obtained as the 

solution of the covariance factorization problem. 

In this paper, we will determine the CR for a class of differentiable 

observation processes and show solutions for estimation and detection in 

terms of this representation. 

2. The Additive White Noise Case 

In this section we will summarize results for an observation process 

containing additive white noise and show the relation of solutions for 

estimation, detection and covariance factorization. The details are 

presented in references [1], [2], and [3]. 

Consider a process of the form 

y(t) - 2(t) + v(t), 0 § t « T; E[v(t)v(s)) = ?,(t - s) (l) 

where the cross-covariance function of the signal and noise is of the 
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particular one-sided fora 

Efz(t)v(s)] = 0, s > t (2) 

Assume that E[z(t)v(s)] is continuous on the triangle ü § s 5 t g T and 

that E[z(t)z(s)] is continuous on G 5 s,t S T. Let 

K(t,s) = E[z(t)z(s)] + E[z(t)v(s)] + Efv(t)z(s)] (3) 

Then the synmetric kernel function K(t,s) is continuous on 0 § s,t s T. 

We will use an obvious integral operator notation in which the covariance 

function Ry of the process (1) has the form Ry = I + K where I is the 

identity operator whose kernel function is ç(t - s) and K is the operator 

corresponding to the kernel function (3). 

The significance of the assumption (2) is that the covariance function 

Ry = I -I- K is positive definite and hence that -1 is not an eigenvalue of 

the integral operator K. This result is established by Kailath in 

reference [3] where the converse result is also shown. Namely, for every 

process yt having covariance function Ry of the form 

Ry * I + K, -1 not an eigenvalue of K, (4) 

with K(t,s) continuous in t and s, there exists a signal process zt and 

white noise process vt such that the process yt has the fora (l) with 

properties (2) and (3). In fact, for a canonical representation of the 

observation process we seek the unique sum decomposition of the form (1) 

such that the white noise appearing in the representation can be recovered 

by a causal linear operation on the observation process. We show the 

solution below. 
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The solutions for the three problems of estimation, detection and 

covariance factorization will now be shown in terms of the solution of the 

Wlener-Hopf integral equation which may be associated with a covariance 

function of the form (U). Let h denote the Volterra operator whose causal 

kernel function h(t,s) (h(t,s) » 0, s > t] is the solution of 

h(t,s) + fSi(t,a)K(T,s)d; = K(t,s) , 0 S s < t S T (^) 

In operator notation, this W-H equation can be written 

h + {hK}+ = {K}+ (6) 

where (A}+ denotes the causal part of an operator A whose kernel function 

is determined by 

{A(t,s)}+ 
|A(t,s) , 8 < t 

I o t < s 

Through an identity obtained by Kailath [6] for the Fredholm resolvent 

of the integral operator K, with continuous kernel function, it may be 

shown that a necessary and sufficient condition for the W-H equation (5) 

and (6) to have a solution h with continuous kernel h(t,s) on 0 « s < t s T 

is that -1 is not an eigenvalue of K. This resolvent Identity shows that 

the solution h satisfies 

I - h - h* + h*h a (l - h*)(l - h) = (I + K)’1 (7) 

where h is the adjoint of h with kernel function 

i*/- \ I Osst 

( ,s) ~ I h(s,t) t < s 
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Th* otl—tion problem which consists of determining the linear, 

least-squares estimate of process *t given observations (Vs,s 5 t), where 

Yt *,a, form (l) under condition («•), is obtained by an application of 

the prolection theorem (see the discussion by Kailath in [1)). This 

estimate, denoted by s(t) is a causal linear operation on the observation 

and has the general form 

t(t) - /^h(t,T)y(t)d: (8) 

By the protection theorem (E[{*t - * 0 , s < t), the causal kernel 

h(t,i) satisfies the W-H equation (5) where K(t,s) is given by (j). 

It is well known in the theory of Integral operators that for h a 

Vo1 terra operator having continuous kernel function, then 

(I - h)*1 - (I + k) (9) 

for a uniquely determined Volterra operator k having continuous, causal 

kernel function k(t,s). Thus, the resolvent identity (7) shows that 

covariance factorisation Is achieved through the solution of the W-H 

equation (6) as 

Ry - (I ♦ K) - (I - h)’l(l - hV1 = (I ♦ k)(l + k#) (10) 

But here, the causal factorisation of Ry in (t:) is Indeed causally 

Invertible by the relation (9). 

The canonical representation for the process whose covariance function 

Is of the form (b) is then 

y » (I ♦ k)V = V. + rtk(t,i)vdi 
t c c o 1 

5 

(11) 



where is a white noise process with E[vtvg] = f)(t - s) since the 

covariance of the representation (11) is given by (lu). The complete 

association of the CR with the solution of the estimation problem is made 

by writing (11) as 

yt = (I - h)‘Ivt (1¿) 

Then 

vt = (I - h)yt = yt - S. (13) 

where the causal estimate is identified from (8). This relation (I3) 

is the expression of the innovations theorem given by Kallath in [1]. The 

Innovations theorem states that for the observation process (1), under the 

assumption (2), the process y£ - £^, called the innovation process, is a 

white noise process with the same covariance as v£ process. Thus the CR 

in (11) determines the innovation process ln (I3) through the relation (9) 

end hence determines the solution of the estimation problem as 

A 

(iM 

Conversely, we have shown that the causal filter h which gives the solution 

of the estimation problem determines the CR in (11) through the relation (9). 

The Gaussian signal in white Gaussian noise detection problem to be 

considered is that of observing a Gaussian process y^ , 0 < t £ T 

(of tero mean) and choosing between the hypotheses 

<». H, : R 
1 y 

I 4- K , -1 not an eigenvalue of K, 

K(t,s) continuous on 0 < t,s 5 T 



This detection problem is nonsingular as is shown by Shepp (Theorem 1 

[ï]). However, under we can obtain the CR of the observation process 

and regard this detection problem as being one of slgnal-ln«nolse with 

one-sided cross-correlation of the signal and noise. For the CR given In 

(11) under H^, consider 

*t = kvt 3 

Then the detection problem (lr<) becomes 

", : yt 

", = yt 

*t + Vt , EivtVg] * - s) 

E[*tVgl 3 0 , s > t 

(16) 

The likelihood ratio for this slgnal-ln-nolse detection probleai with 

one-sided cross-correlation has been obtained by Kallath (3), (8] in an 

"estimator-correlator" form In terms of the causal linear estimate ¿c of 

the signal given the observations under This formula for the likelihood 

ratio Is 

L.R. - exp j /£tytdt - * £*t2dt - ^rjh(t,t)dtj rT* 2, I (17) 

where h(t, ') Is the kernel function of the causal filter for The 

stochastic Integral In the first term of the exponent of (17) is of the 

Stratonovlch form and Is well defined for this detection problem with 

continuous kernel K (see the discussions In (3] and (8]). 

But we showed above that such a causal estimate la given by the 

solution h of the W-H equation (6) with kernel function K(t,s) given In 



the statement (1‘). Thus the solution (!,') for the detection problem (1 ) 

is also specified by the solution of the W-H equation (o). 

This section has shown that the three problems of estimation, detection 

and covariance factorization for an observation process with additive white 

noise are solved in terms of the solution of a common Wiener-Hopf integral 

equation involving the kernel function K which is the continuous part of 

the covariance function of the observation process. In the following 

section we will show that for kernel K of "separable" form, the form of 

solutions given in this section may be readily implemented in terms of the 

solution of a matrix Riccatl differential equation which may be effectively 

solved by digital computation. 

3. Separable Kernel Function 

In engineering applications, the signal process in (1) is typically 

the output of a finite dimensional linear system driven by white noise which 

we will call a lumped process. When a particular dynamical model is known 

for such a lumped process, the Kalman-Bucy [9] recursive solution for the 

estimation problem is computationally effective and has received widespread 

application. The treatment in [9] shows that the solution of the Wiener-Hopf 

Integral equation can be obtained by the solution of a matrix Riccatl equation 

formed in terms of the coefficients of the model of the process. However, 

for some estimation problems and many detection problems, such a model for 

the signal process is not known and only the covariance function is available. 

The determination of a lumped model for the process from a covariance function 

is non-trivial and is the essence of the covariance factorization problem 

Itself. 



But Anderson [10] has shown that the covariance function for an 

observation process (1) with the signal process having a lumped model (which 

guarantees that condition (2) applies) is of the form 

Ry(t,s) = &(t-s) + a^tvs) b(t/ss) (18) 

(where t^s denotes maximum of t and s and t^s denotes minimum of t and s) 

for n-vector functions a(t) and b(t). In the operator notation of Section 2, 

the form of the covariance (18) is = I + K with "separable" kernel function 

K(t,s) = a*(tvs) b(t/vs) (19) 

Further, Anderson shows that covariance factorization for (l8) is 

achieved in terms of the solution of a matrix Riccati equation with coefficients 

given by the n-vector functions a(t) and b(t). This solution given by 

Anderson is 

I + K * (I + k) (l + k*) (20a) 

k(t,t) = a+(t) iKt), t « t (20b) 

\|r(t) = b(t) - P(t) a(t) (20c) 

for n X n matrix function P determined by the solution of 

P(t) = (P(t) a(t) - b(t)] [P(t) a(t) - b(t)]t, P(o) = 0 (21) 

A more physically revealing account of the occurrence of the Riccati equation 

(21) is made in [2] where the relation of (21) to the Riccati equation arising 

In the Kalman-Bucy filter is explored and references are made to other work 

9 



relating integral equations to Riccati differential equations. 

The factorization given in (20a, b, c) is, however, causally invertible 

(see the discussion of equation (9)) so that the kernel function k(t,x) 

given by (20b) determines the CR for the process yt. The discussions in 

Section 2 then show that the solution h of the W-H equation (5), for the 

separable kernel (I9), is determined through the solution of the Riccati 

equation (21) by 

h = k(l + k)’1 (22) 

Although we have not simply determined the kernel function h(t,x), a realization 

for the filter having impulse response h(t,x) is easily obtained. Let (F, G, 

H) denote the linear system 

X = Fx + Gu 

y = H+x 

(with u and y denoting input and output respectively). Then the kernel function 

(20b) has the realization ( o, i)r> a) and a realization for h determined in 

(22) is 

h: (-ta+, \|r, a) (23) 

This reveals our motive for exploring the relationship of the canonical 

representation to solutions for estimation and detection in Section 2. Through 

the determination of the CR, we have obtained a realization of the filter h 

(which determines the solutions for the estimation and detection problems) in 

terms of the solution P of the Riccati equation (21). Note that from (23) 
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h(t,t) -a (t) t(t) = k(t,t) so that the bias term in the solution (I.7) for the 

detection problem is also readily formed. 

We point out that if the separable kernel K in (I9) does not have eigen¬ 

value -1 and a(t) and b(t) are continuous, the nonlinear differential equation 

(21) has a well defined solution. This is seen by using the solution h of W-H 

equation (5), which has a continuous solution for such K, to form 

P(t) = /^(t)^+(T)dT, *(t) = b(t) - /^h(t,T)b(x)dT (2U) 

Then direct calculation, using the W-H equation for h, will show that P(t) 

satisfies the Riccati equation (21). Furthermore, continuity of a, b gives a 

Lipschitz constant on the solution of (21) so that (24) is the unique solution. 

4. Differentiable Processes 

In this section we will consider observation processes which are differ¬ 

entiable such that the ath derivative process contains additive white noise. 

The technique for obtaining solutions for estimation and detection problems by 

differentiating an observation process a sufficient number of times to recover 

a derivative process which contains white noise and then treating the under¬ 

lying additive white noise problem is well used In particular, Bryson and 

Johansen [11] use the technique for colored noise filtering problems in order 

to apply the Kalman-Bucy filter. As in the Kalman-Bucy problem, the Bryson- 

Johansen procedure is applied to processes for which a lumped model is known. 

Here, by extension of the results of the previous sections, we will obtain 

solutions for estimation, detection and covariance factorization which do not 

require a priori knowledge of a lumped model. It is shown by example in [5] 

that the form of solution obtained here for filtering may be expressed in 
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terms of the system matrices of a given model to give the solution in the form 

obtained by the Bryson-Johansen procedure. 

In order to perform estimation and detection by utilizing a derivative 

process it is necessary to properly incorporate the "initial condition" random 

variables which relate the derivative process to the given observation. Our 

approach is to perform a decomposition of the observation into a sum of un¬ 

correlated processes such that an innovation process may be separately deter¬ 

mined for each. The appropriate decomposition to be used below is shown by 

Shepp [7]. 

We will consider an Q£ times differentiable process y(t); 0 ^ t 5 T 

(denoting the i**1 derivative process by y^(t)) such that 

Ra(t,s) = E[ya(t)ya(s)] = ô(t - s) + K(t,s) {'¿5) 

with K(t,s) continuous in (t,s), and such that the covariance matrix 

Ry = E[YY+] of the a vector of random variables 

Y £ [y(0),yi(0), ... y^O))' (26) 

is nonsingular. A slightly more general form would allow 

Ra(t,s) = r2(t)&(t - s) + K(t,s) 

2 
But for continuous r (t) >0, Ost § T, the following Innovations approach 

can be followed by replacing process ya(t) with the process (ya(t)/r(t)). 

The desired uncorrelated sum decomposition of process yt is obtained 

by forming the orthogonal projection of random variables yfc onto the family 

I 
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of random variables which comprise Che vector Y. Let 

y(t) - E[y(t)/Y] (¿7a) 

= C+(t)Ry"lY (27b) 

where the cx.vector function 

C(t) * E[Yy(t)] (2?c) 

Then 

y(t) = 9(t) + y(t) (28) 

for y(t) ■ y(t) - y(t) , and E[ÿ(t)y(s)] « 0 for all t,s by the projection 

theorem. 

The component y(t) in the decomposition (28) is said to be "pinned at 

zero" by Shepp since the derivative processes y^(t) satisfy 

5^(0) * o , i = o, l, ••• (a - i) 

with probability one. Ihen 

ya(t) - day(t)/dta 

and 

■ /(a ■ 1)! <' - ,><a ' ‘’»at1)«1 

showing that the processes y(t) and ya(t) can be obtained from each other 

by causal linear operations. Thus y(t) is equivalent to ya(0 in that they 

contain the same statistical information as far as linear operations are 

13 



concerned and implies that Che innovation process for ya(0 will be Che 

innovación process for y(t). Notice that y(t) and ya(0 are not equivalent 

since y(t) is not recoverable from ya(0 alone due to the presence of non¬ 

degenerate Initial condition random variables for y(t) process. 

The covariance function for y^(t) process is 

Ba(t,s) = E[ya(t)ya(s)] = Ra(t,s) - Ra(t,s) 

= 6(t - s) + K(t,s) - <£(t)RÇlCa(s) 

= 6(t - s) + B(t,s) (2)) 

Then if -1 is not an eigenvalue of ï!, we may obtain the innovation process 

for ya(t), and hence for y(t), by applying the results of Section 2, using 

the kernel function R(t,s) in the associated Wiener-Hopf equation. 

Returning to the decomposition (28), we will Interpret an innovation 

process for the degenerate component y(t) (a deterministic process) to be a 

vector of independent, standard normal random variables V. Then the complete 

innovation process for y(t) is formed by "augmenting" the white noise innova¬ 

tion process, v(t), of the component y(t) by the vector of random variables 

V, independent of v(t) process and considered to occur at t » 0. 

The canonical representation of process y(l) in terms of the augmented 

innovation process (V,v(t)) is carried out in two steps. At first, we relate 

the process y(t) to the augmented process (Y,ya(t)) by the causal and causal¬ 

ly invertible linear operation 

y(t) = C+(t)RÇ1Y + (t - x)(a “ l)ya0)di (?0a) 

This linear operation is causally invertible since the components of Y 



vector are (theoretically) generated at t = 0. Then, the augmented process 

(^(0) rePresented in terms of the augmented innovation process 

(V,v(t)) by 

yQ(0 = V(t) + /^Íc(t,T)v(T)dT (30b) 

(30c) Y = R^V 

where is an arbitrary non-singular square root of the positive definite 

covariance matrix R^ and the kernel îc(t,t) solves 

(I + k) (I + k ) « I + (31) 

for K given in (29). The causal representation (30b, c) is causally 

invertible with 

vt » (I - ff)ya(t) (32a) 

V - R^Y (32b) 

for (1-(1)-(1 + i?)’1 . 

We will now construct the CR of (30a, b, c) for a differentiable 

process yt with separable covariance function having the form 

R(t,s) « A+(tvs) B(t^s), 0 S t, s s T (33) 

where A(t) and B(t) are n-vector functions. Such a covariance function 

corresponds to a process with additive white noise component in the 

derivative process ya (a in), whose covariance function R0 is of the form 

(25), if end only if 

(i) A(t) and B(t) are continuously a-dlfferentlable [with ith deriv¬ 

atives indicated by A^(t) and B^(t)] 

(ii) A^Jt) B^t) - B^t) At(t) =- 0, 0 < t < T (314a) 

i * 1, 2, ..., a - 2 if a > 1 

15 



(34b) Vl^' Ba<c> - Aa(c) = 1» 0 ^ t ^ T 

for arbitrary a 

It is shown by Brandenburg and Meadows [12], that (34a) is necessary and 

sufficient for mean-square differentiability of order a - 1 and that the 

left hand side of (34b) is nonnegative. So, by repeated differentiation 

of the conditions (34a), the covariances for the derivative processes are 

obtained as 

AJ(t) Bj(s)» s ^ t 
R^it.s) = E[yi(t)yj(s)] = 

Aj(s)> * < s 

(35) 

(36) 

for i, j ^ a -1. Then application of (34b) gives 

/ V à 6 / y 

R ( t, s ) = R . , ( t, s ) 
av ' òt òs a-1, a-lv 

= 6(t-s)+ A^(tvs)Ba(t^s) 

But for Y vector defined as in (26), the covariance matrix R^ is 

determined by (35) to be 

\ = Q>) Qb(o) 

where the nxCt matrix functions and are composed of columns as 

Q^(0 = [A(b), ••• AQ_j(b)] 

QB(t) = [B(t), ... B^^t)] 

It is also shown in [12] that the a x a matrix 

Q^(t) Qg(t) is nonsingular for all t 

so that R^ is nonsingular, permitting the decomposition described in (2’7), 

(28) to be carried out. 

The covariance functions for the component processes y and y of the 

decomposition are easily determined from (33) to be 

16 
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(38a) 

(38b) 

(39) 
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(^0) R(t»s) = E[y(t) y(s)] = A+(t)P A(s) 
o 

for nxn matrix P formed as 
o 

p0 = qb(o) [»It”) «¡i0) (41) 
and 

R(t,s) = R(t,s) - R(t,s) 

= A+(tvs) [BÍt/^s) - Po A(t^s)] (42) 

Then from (36) and (4o), 

Ra(t,s) = E[ya(t) ya(s)] = Ra(t,s) - Ra(t,s) 

= 6(t-s) + A¿(tvs) [Ba(t.s) - Po Aa(t,s)] 

= 6(t-s) + 8!(t,s) (43) 

If -1 is not an eigenvalue of Rf in (43), the results of Section 3 may 

be applied to determine the CR for the derivative process y . The covari¬ 

ance factorization (20a, b, c) is applied to the separable kernel function 

Kit.s) = A^(tvs) Ba(t-s) 

where ffQ(t) is identified in (43) to be 

Ba(t) = Ba(t) - PoAa(t) 

and the associated matrix Riccati equation is 

^ = (?Aa * (?Aa _ ®a)+* ?(°) = 0 (44a) 

Then the canonical representation of process ya is obtained in terms of 

the white noise innovation process vt> whose covariance is 6(t-s), as 

yQ = (l+tc)v (45a) 

= A^(t) Ht), t ? t (45b) 

*(t) = Ba(t) - P(t) Aa(t) (45c) 

We may change the Riccati variable in (44a) by 
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p(t) = p(t) - P0 

giving the more convenient equation 

P = (PAa - B^) (P/^ - Bb) + , P(0) = Pq (kkb) 

so then 

*(t) = Ba(t) - P(t) Aa(t) (U5d) 

This Riccati equation (44b) will have a well defined solution for the ini¬ 

tial condition matrix Pq given in (4l) whenever the solution of equation 

(44a) is well defined, which follows when -1 is not an eigenvalue of K in 

(^3) as will be discussed in more detail at the conclusion of this section. 

To complete the canonical representation of the observation process, 

we will evaluate (30a) in terms of the representation (45a) for process. 

A* 

Denote the kernel function which relates y to y^ by 

SU.T) (t -T)“-1, T 5 c (½) 

Then in operator notation 

y = Sya = S(l + k)v (47) 

for kernel k(t,t) given in (45b). It is shown in [5] and [12] hat a solu¬ 

tion of Riccati equation (44b), whose coefficients Aa(t) and B^(t) are re¬ 

lated to the separable covariance function satisfying (34a, b), must nec¬ 

essarily satisfy 

p(t) QA(t) = QB(t) for all t (48) 

So then 

A^(t) \|r(t) = A*(t) [Ba(t) - P(t) Aa(t)] 

= A*(t) Ba(t) - bJ(0 Aa(t) 

and it also follows from the properties (34a) that the right hand side is 

identically zero for i = 0, 1, .... a - 2. With (34b), this gives 
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A¿(t) 'KO = °» for «Il t, i » 0, 1, ..., a - 2 (^90 

A^_1(t) \|f(t) = 1, for «11 t (U9b) 

The relations (U9a, b) allow making an explicit evaluation of the 

kernel function for S(l + k) by performing repeated integration by parta 

to get 

S(t,0 + S(t,o) A^(o) ,|f(T)d0 

= A+(t) t S t 

Thus from (4?), 

y(0 » /J A+(t)\|r(T)v(T)dT (50a) 

The representation of component process ÿ in (30a) is obtained by 

using the relations (35) to evaluate (27) giving 

y(t) - A+(t) qb(o) 

where V is the CUvector of standard normal random variables forming the 

augmentation of the innovation process. But in this situation of separable 

covariance function, it is convenient to denote an n-vector of random vari¬ 

ables by 

X,, - Q,(0) R^V, Elx^l - P0 

where ?o is given in (1+1). So then 

9(t) = A+(t) (50b) 

and the Inverse relation for the vector in this representation is obtain¬ 

ed by applying (32b) to get 

Xq - Q,(o) RÇ1V (51) 

Now equations (50a) and (50b) give the desired canonical representa¬ 

tion for a differentiable process with separable covariance function and a 

realization is obtained by noting that the component ÿ in (50b) is generat- 
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ed by adding initial conditions to the obvious realization for (50a). 

This combined realization for the CR is 

Xt = x(°) = x0. Etvtvs] = :(t-s) (% a) 

yt = A+(t)xt, EtXoO “ Po 

where 

Po = Qb(0) [Qa(0) Qb(0)]-1 Qb(o). t(t) = Ba(t) - P(t)Aj(t) (5.c) 

and P(t) solves the Riccati equation (Ultb). 

By the above discussion of equations (30a, b, c), this construction 

of the realization (%a, b, c) is indeed causally invertible and we may 

evaluate the inverse relations (3£a, b) for this separable case. First, 

the inverse of (30a) is 

y (t) = y (t) - ÿ (t) 

= yt(t) - A^t) Qb(0) (53) 

by using (51)- Then a realization for ÍÍ = íc(l + £) \ where ic(t, t) is 

given in (U5b), is obtained by applying (¿3) to get 

h: (- ^A*, \(f, A ) 

The complete inverse operation which results by applying (3£a» b) to (53) 

(using 51) is then realized by the linear system 

wt -- I-*(t) A+/(t)]wt + ^(t) yu(t), w(0) =» Xq (5^a) 

vt = - Ar^(t)wt + ya(t) (51^) 

x0 = Qb(o) RÇ1y (5Uc) 

This system (5ba, b, c) is then the whitening filter which yields the 

augmented innovation process (xo»Vt) for the observation process yt having 
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separable covariance function. Notice that the differentiability proper¬ 

ties of the process imply constraints on the representation (52a, b) 

such that the complete initial condition random vector ^ (an n-vector) is 

determined by the a components of Y = [y(0), y^(0), ... y^ ^(0)]+ as shown 

by (5I4C). Since the CR and the whitening filter have the identical initial 

condition vector, the whitening filter in (5^a> b, c) is actually an in¬ 

verse system to the CR which satisfies wt = xt f°r t (properties of 

inverses for linear systems are given by L. Silverman [I3] and discussed 

in [5] in relation to the canonical property for representations of stoch¬ 

astic processes). Applications of this explicit realization for the whit¬ 

ening filter will be made in Sections 5 and 6. 

The CR in (52&, b, c) is expressed in terms of the solution P of the 

Riccati equation (UUb) and it was pointed out in Section 3 Chat this matrix 

differential equation has a well defined solution if and only if -1 is not 

an eigenvalue of the kernel function K(t,T) in (1+3). For applications in 

many situations, a sufficient condition for this spectral property of K is 

that the given differentiable process be a lumped process. However, we 

will not require a priori that a model be given explicitly, but will show 

that existence of such guarantees that the canonical representations (l+5a, 

b) and (52a, b) can be obtained through solution of the Riccati equation. 

Thus the applications given in the following sections, which exploit the 

causal invertibility of the CR, will be well defined by knowledge that the 

separable covariance function for an observation process is in fact the 

covariance of a lumped process. 

As is shown by Kalman [ l¿+], the structure of a lumped process implies 

the existence of a nonnegative, increasing matrix function W(t), (Wt - 0, 
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wt - 0 ^or t) such that the separable covariance function of the lumped 

process is of the form 

R(t,s) = A + (tvS) B(t-s) = A+(t) W(t^s) A(s) (5‘;a) 

A realization for a process yt with covariance (55a) is given by 

xt = ut, x(0) = xo E[utup = W(t) ô(t-s) (55b) 

yt = A+(t)xt E‘x0xo^ = w(°) (55c) 

But such a realization does not correspond to a CR for process y^ since in 

general the vector white noise process ut and the initial condition random 

vector xq are not uniquely recoverable from the observation (in particular, 

the rank of W(t) may be greater than unity so that the vector white noise 

process ut is not equivalent to the innovation process v ). 

From (55a)> the matrix function W satisfies 

W(t) A(t) = B(t) for all t 

and in consideration of the differentiability of the lumped process, the 

relations (3ha, b) imply that 

Ba(t) = W(t) Aa(t) + W(t) A^it) for all t 

W(t) A^U) 3 1 

(see [5], Lemma 2.6 for detailed calculations). Thus the covariance 

(1+3 ) becomes 

(56a) 

(56b) 

R in 
a 

Ra(t,s) = 5(t-s) + K(t,s) 

= 6(t-s) +A^(t) [W(t-s) - Pq] Aa(s) 

+ A^(tvs) W(t-s) A^^t-s) (57) 

and a realization of process y is obtained as 
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(58a) 

= Aa-l(t) ut ’ E[utus+] = W(t)&(t-s) 

E[xout+] =0 

, E[xo2+] = W(0) - Po 

(58c) 

(58b) 

A direct calculation of the covariance of the process modeled in (58a, b, 

c) will give the covariance function (57) since 

E[Vs] =4-1^ W(t) A^s) 6(t-s) = 6(t-s) 

by (56b) and 

E[ Vs] = Aa(t) [w(t"s) - p0] Aa(s) 

E[Vs] = Aa-i^s) » s s c (59) 

0 , t < s 

But then ya is the sum of a signal process and white noise v^ with 

one-sided cross-covariance function, which is the situation discussed in 

Section 2 for the general covariance function having the form (4). Thus, 

the desired conclusion that -1 is not an eigenvalue of the continuous 

kernel K of the covariance function Ra follows, in this situation of lumped 

observation process, from the existence of ^ and vt in (58b) satisfying 

(59). We point out again that the (in general non-canonical) realization 

(55b, c) which results from the assumption of a lumped observation process 

need not be explicitly known to perform the canonical representation of 

(52a, b, c); but the existence of the realization (58a,b, c) implies exist¬ 

ence of a well behaved solution for the matrix Riccati equation (44b) which 

specifies the CR in (52a, b, c). 

5. Estimation 

In this section we will discuss the linear least-squares estimation of 
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a random process given observation of a related random process 

iyt, T á t} by the whitening filter technique. For an observation process 

yt having a separable covariance function in the form discussed in Section 

h, we will show that the solution of this estimation problem, denoted by 

z(t/t), can be implemented in terms of the whitening filter of the observa¬ 

tion process. In the whitening filter technique, the only data required in 

addition to the whitening filter for the observation is the cross-covariance 

function 

V'-') =e!Vt1' t s c 
which determines an appropriate output gain vector function to be applied 

to the state variable of the whitening filter. The goal here is to divorce 

the solution of the filtering problem from any particular coordinate system 

for models of and y^ processes so that solutions may be obtained in sit¬ 

uations where models for the processes are not given a priori. 

Consider an observation process y^ with separable covariance function 

of the form (33), 

Ry(t,s) = A+(tvs) B(t-s), 0 S t, s S T (33) 

such that the differentiability properties discussed in Section ¡4 apply. 

Let zt be an arbitrary random process for which there exists an n-vector 

function C(t) such that 

Rzy(t»= = c + (t) B('0» T < t (60) 

where vector function B(t) appears in the separation of covariance function 

Ry. Then the canonical representation of the observation process with 

realization as in (52a» b, c) simultaneously models the estimate process 

z(t/t) (but not zt itself) as is shown by an application of the projection 

theorem in the following. 
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The projection theorem (see the discussion in [1]) gives tte linear 

least-squares estimate z(t/t) as the solution of 

E[{z(t) - z(t/t)) y(î)] = 0, T ë t (61) 

and we will consider the process C+(t) xt where xt is the state vector in 

the canonical representation (5^s> b, c) of the observation process y^. 

Then since yt = A+(t) xt from (32b), 

E[C+(t) Xt yT] = c+(t) E[ x(t) x+(T)] A(t) 

= C+(t) {/o iIí(ct) ijr+(a) da + Po) A(t) (62) 

for \Jr given in (52c) and Pq the covariance ma'./ix of the initial condition 

Xo in (52a). The bracketed term in (62) is inmediately seen to be the 

solution P(t) of the Riccati equation (M+b); but from (48) 

P(t) A(t) = B(t) 

so that 

E[c*(t) xt y,) = cf(t) p(ot) a(t) 

= Ct(t) B(t), i < t 

= E[z(t) y(i)], t g t (63) 

from the assumption (60). This verifies that the solution of (6l) is the 

process C+(t) xt. 

Now we use the canonical property (causal invertibility) of the CR 

for the observation process to causally reconstruct the state vector xt 

from the observation process itself. This reconstruction is provided by 

the state vector wt of the whitening filter (54a, b, c) since the whiten¬ 

ing filter is an inverse system to the CR as discussed in Section 4. Thus 

the solution for the general estimation problem described above is simply 

obtained by applying vector function C(t) as an output vector on the state 
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equation (5^a) of the whitening filter giving the realization of the filter 

for estimation as 

Wt = [-t(t) A^(t)]wt + i!r(t)ya(t), w(0) = QB(o) Ry Y (6Ua) 

z(t/t) = C+(t) wt (6Ub) 

The serarable form (60) of the cross-covariance function is easily deter¬ 

mined in a variety of situations where and y^ are lumped processes. 

First consider the (noncanonical) model (550, c) for the lumped observation 

til 
process with covariance function (55a) and consider z^(t) to be the i 

component of the state vector xt in (55b) [i.e., z^(t) = e| x(t) where e^ 

is the unit vector obtained from the i^ column of the identity matrix]. 

Then 

Et^U) y(T)] = e£ E[xtx^ a(t) 

= e| W(t^T) A(t) 

= B ( T ), T § t 

showing that C(t) in the separation of the cross-covariance is given by the 

unit vector e^. Thus the solution of the state estimation problem for a 

lumped observation process is simply given by the state of the whitening 

filter, i.e. 

x(t/t) = wt (an n-vector estimate) (65) 

If a lumped model for the observed process is given a priori, the 

given coordinates may have the more common feedback form of state equation 

x'(t) = F(t) x'(t) + G(t) u(t) (66a) 

yt = H+(t) x'(t) (66b) 

However, the fundamental solution matrix for the system equation (66a) 
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determines a state transformation 

x'(t) = T(t) x(t) 

which relates the state x(t) of the model (55b, c) to the state x'(t) of 

the given model. Then, by the linearity of the estimate, 

x'(t/t) = T(t) x(t/t) = T(t) wt (67) 

giving the solution of the state estimate proHem in arbitrary coordinates 

in terms of the realization (6ta) for the whitening filter. But, we may 

also apply transformation T to the state equation (6Ua) to implement an 

equivalent realization of the whitening filter which has state variable 

(equivalent to) x'(t/t) directly. The resulting realization for the whiten¬ 

ing filter may be determined without explicitly evaluating the transforma¬ 

tion T as is shown by example in [5]. 

A common problem in filtering consists of observing the sum of signal 

process zt and a noise process vt (colored noise) where both and vt are 

lumped processes. Suppose xz(t) and xv(t) are state vectors of models 

(noncanonical) for processes and v^ respectively, and 

zt = HI(t) xz(t)* vt = Hv(t) (68a) 

Then = Z£ + ^as a lumped model which is formed by augmenting the 

state vector x (t) by the state vector x (t) of the noise model. Denoting 

this augmented state vector by x'(t) gives 

yt= [HI(t) : Hv(t)] (68b) 

The solution for the estimate z(t/t) of the signal process z^ from observa¬ 

tion of yt is then obtained by forming 

2(t/t) = [H+(t) : o] x'(t/t) 

where x'(t/t) is the state estimate for the augmented model of the observa- 
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tion process. As discussed above, the solution for this state estimation 

problem is obtained by realizing the whitening filter for the observation 

process in the appropriate coordinate w'(t) [corresponding to x'(t) in 

(68b)] which gives 

i(t/t) - (H*(t) : o] v'(t) (69) 
£ • 

Formulas (6Ub) and (69) demonstrate the nature of solutions for esti¬ 

mation which are obtained by the whitening filter approach. Namely, it is 

the whitening filter for the observed process which contains the structure 

needed to perform filtering. Given the whitening filter, the solution for 

estimation in particular situations then requires only the determination of 

an appropriate coordinate system for realizing the whitening filter and the 

determination of the output vector to be applied to the realization of the 

whitening filter - such determinations involving only algebraic analysis of 

the data (covariance functions or lumped models). 

The whitening filter approach to estimation reveals that in situations 

which require stochastic modeling as well as filter design, the overall 

computational effort is minimized by achieving the canonical property in 

the modeling phase. Although other (noncanonical) solutions for stochastic 

modeling are possible, filter design for process models not possessing the 

canonical property is indeed nontrivial. But by directly determining the 

canonical representation for the observed process as in Section 4, which 

quite simply provides the whitening filter as a result of the causal in- 

vertibility of the CR, a minimum of detail and computation is subsequently 

required to obtain solutions for filtering. 
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6. Detection 

Discrimination between two Gaussian processes of the type discussed 

in Section 4 is basic to many detection problems of interest. However, 

it is more convenient to discuss the simpler problem of discrimination 

between a differentiable process and an integrated white noise since the 

chain rule for likelihood ratios may be used in the more general situation. 

Consider ^ to be the hypothesis that the observed process yfc is some 

Gaussian process (of zero mean) such that the ath derivative process 

has covariance function of the form I + for continuous kernel function 

K^(t,s) and such that the initial condition random variables of the 

derivative processes through order a - 1 are linearly independent with 

nonsingular covariance matrix J [see (25) and (26)]. And, consider the 

observed process under the testing hypothesis Hr to be the ofold 

integration of Gaussian white noise vt (E[vtVg] = 6[t-s)) as given by 

a-1 

.Ço t IT i \ * iWT-ÎTT <c - '> 
(a - 1) 

V dT 
T 

(70) 

where vQ, ... are independent, standard normal variables. As in 

Section 4, the covariance function of the ath derivative process y (t) 

is denoted by Ra(t,s) and the covariance matrix of the «-vector of 

initial condition random variables Y is denoted by R^. 

Then, under each of the hypotheses and Ho, the observation process 

yt is bivalent to the augmented process {Y, ya(t)} since yt is related 

t0 y«(t)^ trough an invertible linear operation (the differentia¬ 

bility is the same under each hypothesis). This equivalence implies that 

the detection problem which tests ^ versus H, can be replaced (through a 
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change of variable in the likelihood ratio), without affecting the proba¬ 

bility of error, by the detection problem for augmented observations 

{Y, ya(t)} having hypotheses 

Ra(t,s) = 6(t - s) + K^t.s) 

Ky =J 

Ra(t,s) = 5^t “ s) 

^ = 1 

(71) 

Under H^, we can obtain a representation for (Y, ya(t)} by applying 

the methods of Section 4 [see (29) and (30a, b, c)] which are based on 

performing covariance factorization for 

K^t.s) = K^t.s) - C^(t)J_1Ca(S) (72) 

where 

If 

ca(t) = E[Yya(t)/H1] (73) 

-1 is not an eigenvalue of K^(t,s) (74) 

covariance factorization gives kernel k^(t,T) which solves 

(I +^)(1 +k\*) (75) 

and results in a representation for (Y, ya(t)} in terms of augmented 

innovation process [V^, V^(t)} (E[V^V^ ] = I, E[ v^(t) v^(s)] = f'[ t - s]). 

This representation is given by 

ai; 
1 

Y = J^V 

(76a) 

(76b) 

30 



The representation (76a) is of the form of signal plus white noise with a 

signal process 

*i(t) = c*(t)j"¿v + (k^Vjit) (76c) 

which is dependent on both components of the aupnented innovation process. 

Under H^, ya(t) is white noise and is independent of Y so that 

ya(t) = v2(t) 

Y = V 

(77a) 

(77b) 

where also E[V2V2+] = I and E[ v2(t) v2(s)] = &(t - s). 

For this detection problem which discriminates between and H. 

based on the augmented observation process (Y, ya(t)}, the likelihood 

ratio is formed as a product of likelihood ratios. The first factor is 

the likelihood ratio for discrimination between = J and ^=1 and is 

the ratio of probability densities for a-vectors of Gaussian random 

variables given by 

IjI"" exp {-jY+(j”1 - I)Y) (78) 

where |j | denotes the matrix determinant of J. Recall that J was 

assumed nonsingular for the differentiable process observed under H^. 

The second factor is the likelihood ratio for the conditional hypothesis 

test 
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(79) 

H1 : ya = + 

: ya = vr(t) 

Y 
where (t) is the signal process (?6c) conditioned on Y and given by 

z*(t) = C¿(t)J_1Y + (k^v^t) (<0) 

Problem (79) is a test for signal in additive white noise like the 

problem (15) discussed in Section .. except that here the signal process 
y 

zt(t) is of nonzero (conditional) mean. However, the form of likelihood 

ratio (17) for the detection problem (I5) and the conditions for non¬ 

singular detection are unaffected by the presence of nonzero, square 

integrable mean as discussed by Kailath in [3] and [8]. Since kernel 

Kj^t.s) was assumed continuous, E[y^ (t)/Y,H1] is square integrable so 

that the condition for nonsingular detection for the problem (79), and 

hence for testing versus H, , is the same spectral condition (?h) 

which yields the representation for (Y, ya(t)} under Hj. This condition 

has been given by Shepp [7, Theorem 3]. To apply the likelihood ratio 

formula (I7) to the problem (79). we identify ?|(t) to be the causal 

Y _y 
estimate of the signal z^(t) under H^. But since the representation 

(76a, b), given Y, is causally invertible, we obtain 

^(t) = ya(t) - V^t) (Rla) 

= (h1)ya(t) + (I - fyc^OJ^Y (81b) 
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for a causal filter determined by 

Thus the likelihood ratio for the conditional hypothesis test (79) is 

exp ! . 4 /Jt^(t)]£dt 

- i .oMt.Odt j (83) 

The complete likelihood ratio for the original problem testing ^ 

versus is obtained, through the sequence of arguments above, as the 

product of (76) and (83) giving (in terms of the derived observations 

(y, ya(t)}) 

L. R. = IjT- exp J - tY+(j_1 - I)Y + o^(t)ya(t)dt 

- è/X(e)]£dt - ¿j (81.) 

y 
where z^t) is given by (8lb) in terms of íy Thus the solution for 

detection problems with differentiable observations is essentially reduced 

to determining the causal filter íy But from the results given in 

Section 2, the causal filter h'1 determined in (82) by the covariance 

factorization (75) will also solve a Wiener-Hopf equation of the form (6) 

which under becomes 
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hi + 'hÄl+ = tKi)+ 

'V . . 

for given in (72). This gives an alternative to performing covariance 

factorization ir evaluating (82). 

In the situation that the differentiable process under has the 

separable covariance function 

R(t,s) = At(tvs)B(t-s) 

satisfying the differentiability properties (32a, b), the results of 

Section 2 for such processes are readily applied to determine the causal 

filter hj. In Section 2 we first performed covariance factorization 

giving [see (25b, d)] as 

ki(t,T) = Aj(t)[Ba(T)-P(T)Aa(T)] = A^(t)^(i), i < t 

where P(t) is the solution of matrix Riccati equation (22b). Then the 

whitening filter (52a, b, c) is obtained by applying the relations (22) 

and (23) to the realization for k^. But the relation (52b) for the 

whitening filter gives 

ya(t) - Vjft) =A¿(t>t 
Y 

so that the evaluation of (8la) for z^t) is immediately obtained in 

terms of the state variable wt in the whitening filter. The covariance 

matrix J for the separable covariance function is evaluated in (37) os 

J = QA(0) V°> 
where matrices and Qß are given by (38a, b). 

The likelihood ratio for detecting a differentiable process with 

32 



separable covariance function (with testing process (73)) is then 

the explicit evaluation of (8^) given by 

L. R. = |Q^(0) Qb(0)|-' exp ¡4Yf([Q^(0) Qgio)]’1 - I)Y 

T T T 
+ r A.+ (t)w(t)y (t)dt -¿Jr[A^(t)w(t)]‘:dt-|fA‘f(t)^(t)dt ¡ (85) 

ò 0 ò a ’ 

where w(t) solves 

wt = [-ilr(t) A^(t)]wt + (86a) 

w(o) = qb(o)[q^(o) Qb(o)]-1 Y (86b) 

and 

*(t) = Bu(t) - P(t) Aa(t) (86c) 

for P(t) the solution of matrix Riccati equation (U4b) with initial 

condition matrix (4l). 

As pointed out in the previous section discussing estimation, it 

is the whitening filter for the observed process which contains the 

structure for formulating solutions for problems of statistical inference. 

This point is further demonstrated here by the likelihood ratio formula 

Y 
(84) based on the quantities J, z^(t), and fi^(t,t), all of which appear 

in the structure of the whitening filter for the observation process under 

hypothesis The explicit likelihood ratio formula (8b) for discrim¬ 

ination of a process with separable covariance function shows how the 

state variable in the lumped whitening filter (86a, b) is incorporated. 

A change of state variable to realize the whitening filter in other 

coordinates may be performed as described for the estimation problem in 
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Section 5» but the likelihood ratio formula is only changed by 

/\Y 
evaluating z^(t) by 

¿[(t) = (A'(t) I-l(t)] w'(t) 

for the state transformation T(t) which determines 

w'(t) = T(t) w(t) 

7. Conclusion 

This paper has developed solutions for estimation and detection 

with differentiable observations. Such observation processes occur 

for many problems with colored noise, but the methods discussed here 

emphasize the analysis of the observed process itself without paying 

particular attention to signal and noise components of the observation. 

The techniques used have been based on the whitening filter for the 

observation process and the causally invertible representation (CR) 

which readily determines the whitening filter. Quite explicit 

solutions have been given for estimation and detection problems involv¬ 

ing processes with separable covariance functions. These solutions, 

given in Sections 5 and 6, are based on the solution of a matrix Riccati 

equation and are in a form to which effective computational methods may 

be applied. 
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