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ABSTRACT OF THE DISSERTATION 

Finito-Dimenaional Ternary Algebras 

toy 

Howard Barry Ritea 

Doctor of philosophy in Mathematics 

University of California^ .Dos' Angeles, I967 

Professor Magnus R. He a tenes, Chairman 

A ternary algebra furnishes a convenient structure within 

which rectangular matrices may be studied. If m and n represent 

positive integers, the system of all » * n matrices over the 

field of complex numbers is an example of a finite-dimensional 

ternary algebra. The present paper is devoted to a study of the 

algebraic structure of ternary algebras. In particular, it is shown 

that an arbitrary finite-dimensional ternary algebra over the com¬ 

plex numbers has a representation as a ternary algebra of rectangu¬ 

lar matrices. 

The aforementioned characterization 1. obtained by »king 

um of an Ideal theoiy in a ternary algebra. In addition to the 

concept, of a right «d left id.al, . third typ. of .ub.pace, call.d 



a centrai ideal, Is introduced and studied. An analysis is then 

made of minimal ideals. With the proper assumptions, a i 

ideal has a characterisation as an inner-product space. 

It is then shown that any finite-dimensional ternaiy algebra 

admits of a decomposition into a direct sum of minimal right ideals 

having certain orthogonality properties with one another. Moreover, 

a corresponding decomposition holds for minimal left ideals. Both 

direct sums then allow the algebra to be represented as a direct sum 

of central ideals, each having either dimension sero or dimension 

one. 

Prom each one-dimensional central ideal in the above de¬ 

composition, a non-sero element is chosen and appropriately normal¬ 

ised. This provides a generalised orthonormal basis for the algebra. 

Ivexy element then has a matrix representation with respect to this 

basis, and an additive and multiplicative isomorphism is established 

between the original ternaiy algebra and a ternary algebra of 

matrices. 

The implications of the absence of the axiom called the 

positivity condition are then’given for a finite-dimensional ternary 

algebra. 

This is followed by a discussion and analysis of 

central ideals in a finite-dimensional ternary algebra when the 

scalars are assumed to be real. The results obtained are used to 

find a characterisation of such an algebra. 

vi 
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The paper concludes with applications of several of the 

results to ternary algebras of matrices and circulants. In 

particular, a characterisation is found for an orthononnal basis 

of a metric algebra. 

vi:L 





1. INTRODICTION 

The concept of a ternary algebra was introduced and studied 

several years ago by M. R. Hestenes [1]. It was shown at the time 

tnat such an algebra provides a natural setting in which to study 

rectangular matrices. For positive integers m and n, the 

class of all m x n complex matrices is an example of a finite¬ 

dimensional ternary algebra. 

In this paper we are concerned with a study of the algebraic 

structure of ternary algebras. Among other things, it is shown 

that a finite-dimensional complex ternary algebra G can be 

characterized as a ternary algebra of rectangular matrices. 

The concept of an ideal is of central importance to the 

theory. This theory does not require finite-dimensionality. Three 

types of ideals are introduced and studied in a ternary algebra, 

the first two being right and left ideals. The ternary composi¬ 

tion leads to the definition of a third type of subspace, called 

a central ideal. 

Following a discussion of some basic properties of right, 

left and central ideals, attention is concentrated on minimal 

ideals. It is shown that under mild restrictions, which are always 

satisfied in the finite-dimensional case, a minimal ideal is an 

inner-product space. An arbitrary finite-dimensional ternary 

algebra is then decomposed into a direct sum of minimal right ideals, 

* 
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and then into a direct sun of minimal left ideals. The decomposi¬ 

tion is effected in such a way that the minimal right ideals possess 

certain orthogonality properties with one another, with a similar 

statement holding for the decomposition into minimal left ideals. 

Such decompositions are shown to he unique to within an isomorphism. 

Both direct sums are then combined to give a decomposition of the 

ternary algebra into central ideals, possessing the orthogonality 

properties of both the minimal right ideals and the minimal left 

ideals. Moreover, each of these central ideals has either dimension 

tero or dimension one. A non-tero element is then chosen from each 

of the one-dimensional central ideals, and after suitable normali¬ 

sation, a generalized orthonormal basis is obtained. Each element 

in the algebra then has a matrix representation relative to this 

basis, and the algebra is then shown to be isomorphic to a ternary 

algebra of matrices. The results are analogous to those of the 

Wedderburn theory for binary algebras. 

A discussion of the axiom known as the positivity condition 

is given for a ternary algebra with special emphasis on the finite¬ 

dimensional case. 

Attention is then turned to the theory of a real finite¬ 

dimensional ternary-algebra, and a representation is achieved using 

the properties of minimal central ideals in such a system. Here it 

is shown that a minimal central ideal is of dimension one, two or 

four. 



Finally, a study is made of metric algebras and circulante 

and a characterization is obtained for an orthonormal basis of a 

metric algebra. 

The paper is divided into fourteen sections. The first tvo 

provide an introduction and a summary of several of the concepts 

discussed in [1]. In Section 3 the notion of an ideal in a ternary 

algebra is introduced, and the following three sections contain 

various characterizations of minimal ideals. In particular, it is 

shown that a minimal ideal is an inner-product space. Several de¬ 

compositions of a finite-dimensional ternary algebra into direct sums 

of minimal ideals are given in Section 7, and uniqueness proofs 

appear in Section 8. These decompositions allow the construction of 

a generalized orthonormal basis in Section 9. In the following 

section, such a basis is used to obtain a representation of a finite¬ 

dimensional ternary algebra as an algebra of matrices. The positi¬ 

vity condition is discussed in Section 11. A characterization of a 

real finite-dimensional ternary algebra is given in the succeeding 

section. The last two sections contain applications to matrices 

and circulants. 



2. FUNDAMENTAL CONCEPTS 

I 
t » 

Several definitions and concepts which will be of imediate 

use are given here. Others will be introduced as they are needed. 

Two types of ternary algebras will now be defined. 

A gcneraHzcd ternary algebra over the set C of all com¬ 

plex numbers is a linear space C over f such that to any three 

elements A,B,C of û there corresponds a unique element AB*C in 

0# subject to the following four conditions: 

■ 1. AA*A »0 if and oniy if A - 0. 

2» If AjB,C,D,E 6 G, ‘then 

(AB»KJ)D*E » A(DOB)*E ■ AB*(CD»E) . 

3* IT X € C, then 

(xa)b#c - x(abm:) . abkxc) . 

h: For any elements A,B,C,D in G we have 

(A + B)C*D - AC*D + BC*D , 

DC*(A + B) = DCWA + DC*B . 

Condition (2) iioplies that we may use the symbol AB*CD*E 

to denote the element 

AB#CD#E » (AB^)D»E » AB#(CD»E) . 

This generalized ternary algebra is the algebra considered by 

Hestenes in [1]. Foi- our purposes, however, a more restrictive type 

of algebra will be considered, known as a ternary algebra. 

By a ternary algebra will be meant a generalized ternary 
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algebra subject to the following additional conditions: 

5- If A is a non-zero element of G such that AA*A * AA 

for some complex number then A > 0. 

6. A(B + C)*D = AB*D + AC#D for all A,B,C,D in G. 

7* If A,B,C e G and A is a complex number, then 

A(AB)*C = MASK) , 

where A denotes the complex conjugate of A. 

In the case when all the scalars A sure real, G will be 

called a real ternary algebra or a real generalized ternary algebra. 

if conditions (5)>(6) and (7) are not fulfilled. 

Suppose that G is a real or complex ternary algebra. A 

linear subspace ß of G will be called a ternary subalgebra of 

G if whenever A,B,C e ß, we have that AB*C e ß also. Such a 

subspace ß will occasionally be referred to as a subalgebra of G. 

Requirement (5) is called the positivity condition in G. A 

discussion of this condition will be given in Section 11. It should 

be noted that ( 5) implies ( 1). 

Axioms (6) and (7) are referred to as »-additivity and 

1-homogeneity respectively. Taken together they comprise the condi¬ 

tion known as »-linearity. 

The symbol 3* by itself has not been defined. Its main use 

is in applications to matrices and linear transformations. More 

precisely, let G be the class of all m x n matrices A with 

complex elements. Denote by A» the conjugate transpose of A. 

G is then a linear space over the field of complex numbers and is 



closed under the triple product AB*C. It is then easy to verify 

that Q is a ternary algebra. 

Before continuing, it should be stated that proofs of »ii 

results stated or alluded to in the remainder of this section are 

valid in both ternary algebras and generalized ternary algebras. 

Two other basic concepts will be reviewed at this time, 

since they will be used repeatedly throughout. 

The first is that of orthogonality. Let G be a ternary 

algebra and let A ,*nd B' be in G. B is said to be left ortho- 

gonal to A if AA#B ■ 0 and to be right orthogonal to A if 

AB*B - 0. B is palled orthogonal to A if AA*B « BA*A « 0. 

The following lemma will be of importance. A simple proof 

pan be found in [1]. 

kEMMA 2.1. The following statements are ayHynian»-« 

(1) AB*C - 0 for all C in Gj 

(2) AB*B « 0; 

(3) BA*C = 0 for all C in G; 

(4) BA*A - 0. 

Similarly, the following statements are equival»«».. 

(5) CB#A ■ 0 for all C in Gj 

(6) BB»A-0i 

(7) CA*B » 0 for all C in G; 

(8) AA*B = 0. 

The second concept is that of the »-reciprocal. Let A be 

an element of a ternary algebra G. If there exists an element A* 



in Q satisfying 

A = A'A*A » AA'*A = AA*A' , 

A' - AA'*A' - A'A*A' - A'A'^A , 

then A* is called the ^-reciprocal of A. For matrices A' is 

the conjugate transpose of the pseudo-inverse of A [3],[4],[5]. 

It can be shown [1] that if one of the two sets of relations 

(a) A «= A'A#A , A' * A'A'*A 

(b) A - AA*A' , A' » AA'^A' 

holds, they both hold, and A' is the ^-reciprocal of A. If the 

«-reciprocal exists, it is unique. 

Condition ( 1) in the definition of a generalized ternary 

algebra plays an important role in regard to the existence of the 

«-reciprocal in the finite-dimensional case. 

THEOREM 2.1. Let G be a finite-dimensional linear space 

of elements satisfying conditions (2),(3) and (4) in the above 

definition of a generalized ternary algebra. Then a necessary ana 

sufficient condition for the existence of the «-reciprocal of any 

element of <£ is that condition ( 1) holds. 

A proof of the sufficiency can be found in [1]. 

For the necessity, suppose A’ exists for every A. If 

A = 0, condition ( 4) implies that AA*A = 0, and if AA«A = 0, 

then again using (4) we obtain A,A'«(AA«A) » 0. But 

A'A'«(AA«A) » (A'A,«A)A*A = A'A«A = A , 

thus proving the theorem. 

Many other results on the «-reciprocal can be found in (1]. 



Fron among these results the following lemma will suffice for our 

later applications. For a proof, the reader is again referred to 

[1]. 

LEMMA 2.2. Let A be an element possessing a »-reciprocal 

A'. The relations 

A'A*C - AA'*C , CA*A' » CA'*A 

told for every e^aent C In 0. An .le«nt B 1. --- 

to A jf and only if the relata r>n« 

A'A*B = 0 , BA*A' ■ 0 

—TÈ£-5iSESat B íb left orthogonal to A if and only if 

A'A*B " 0 Md is right orthogonal to A if and only If bA*A» - 0. 
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3. IDEALS IN TERNARY ALGEBRAS 

Right, left and central ideals will now be introduced and 

studied. The various concepts of orthogonality as given in Section 

2 will lead to the construction of an orthogonal complement for each 

type of ideal. 

In the theorems below the assumption of the existence of the 

♦-reciprocal is superfluous in the finite-dimensional case. 

A right ideal ft is a linear subspace of G such that if 

Reft, then RR*A e ft for every A in G. In other words, ft 

is closed relative to "right multiplication" by elements of G. By 

a left ideal £ will be meant a linear subspace of G such that if 

L e £, we have that« A!*L e £ for every A e G. 

The formation of ternary products allows a third type of 

ideal to be defined: a central ideal C is a ternary subalgebra 

of G satisfying the condition that CC*AC*C e C for every element 

C in C and A in G. 

LEMMA J.l. Let ft be either a right, left, or central 

ideal in G. If B is an element of ft for which B* exists, 

then B' e ft. 

First suppose ft is a right ideal in G. Then 

B' ■ BB*( B'B'frB') ; which is an element of ft. 

If ft is a left ideal, then B' « (B'B'^B'jB^B, an element 

of ft. 
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Finally, if B is a central ideal, then 

B' - an element of 6. 

The following theorems give equivalent defining conditions 

for right, left and central ideals. 

THEOREM 5.1. Let ft,£ and C be linear subspaces of Q. 

Assume the existence of the ^-reciprocal for each element of 

ft,£ and C. Then: 

(1) A necessary and sufficient condition that ft be a 

right ideal is that R ' R*A be_¿n ft fçu^aLLje^mçnts 

Reft and A e G. 

(11) £ is a left ideal if and only if AL#L' e £ for 

all elements L e £ and A e G. 

(HI) C is a central ideal if and only if CC^AC^' e C 

for all elements C e C and A e G and C i8 a 

subalgebra of G. 

To prove ( i), suppose ft is a right ideal and that Reft 

and A e G. Ry Lemma 2.2 and the defining equations for the 

■»-reciprocal of R, we have 

R'R*A « RR'#A = RiR'R'fcR^A - RR^R'R'^A) , 

Vhich is an element of ft, since R'R'#A is in G. 

Conversely, if Reft and A e G, then since R ■ R'R»R, 

' RR*A. = R'R#(RR*A) » • 

is an element of ft. 

The proofs of (ii) and (iii) are similar. 



THEOREM J.2. Let R,X and C be linear subspaces of G 

vith the added assumption that the »-reciprocal of each element of 

and C exists. Then: 

( i) A necessary and sufficient condition that ft be a right 

ideal is that RA*B 6 ft for all Reft and A,B 6 G. 

(ii) Z is a left ideal in G if and only if AB*L e Z for 

all L e £ and A,B £ G. 

(iii) C is a central ideal in G if and only if CA#C £ C 

for all C £ C and A £ G and C is a subalgebra 

of G. 

For the proof of ( i), assume ft is a right ideal and let 

Reft and A,B £ G. Then since R » RR*R', we have 

RA*B = RR*(R'A*B) , 

which is an element of ft. 

Conversely, if RA*B £ ft for all R £ ft, and A,B £ G, 

then clearly RR*A £ ft for all R £ ft and A £ G. 

The proof of (ii) is similar. 

For statement ( iii), suppose C is a central ideal and let 

C £ C and A e G. Then 

. ca#c = cc*(caík;')c*c 

is in C. 

For the sufficiency, note that CC*AC*C = C(CA*C)*C is an 

element of C. 

The above theorem shows that right and left ideals in G 



are subalgebras of G. 

Certain subspaces of G can now be constructed with regard 

to right, left and central ideals. They will be useful for 

various decomposition theorems to appear later. The first type to 

be discussed is that formed from the intersection of a collection 

of ideals. The result is stated in the form of a lemma whose use 

will be delayed until a further section. 

Now let R be a subclass of G. By the left orthogonal 

complement RJ of R will be meant the set of all elements A 

in G such that RR*A = 0 for aU Re R. m other words, any 

element of RJ must be left orthogonal to every element in R. 

THEOREM 3.3. RJ is a right ideal in Q for anv right- 

ideal R. 

If A and B are in RJ and if Re R, then 

RR*(A + B) * RR*A + RR*B * 0 + 0 = 0 . 

Also, if A e RJ, R e R and X is a complex number, then 

RR*(XA) = X(RR*A) = 0 . 

Hence, RJ is a linear subspace of G. Finally, let A e RJ 

and B e G. Then if R is any element in R, we have 

RR*( AB*B) - ( RR#A) B*B - 0 , 



so that A3*E Thus aJ is a right ideal i.-¿ û. - ^ 

j.r. a cor.e^ponding fashion the right orthorooái c oxgle^isrit 

of a s^-class x is defined to be the set £L of all elements A 

in G ¿utis..yin¿ AL*L — Q for all L c £. 

Th-iOi\EX i-*»» I_f £ ¿s__a_left__ideal_J;n Ct; then £“ 

—s also• 

The proof is entirely analogous to that of Tneorem 3.5 and 

will be omitted. 

?or the sake of completeness we define the ortho;-cnal 

coaple: cat of a subclass C to be the set C-1 of all elements in 

G which are orthogonal to every element in C. 

IhlCEJT'. 3.3. For ary central ideal C in C, is a 

central tical also. 

Following a line of reasoning similar to that in the proof 

of Theorem 3*3> ib is easily verified that is a ternary sub¬ 

algebra of G. Suppose B e Cx and that A e G. If C is any 

element 01 C, then using the orthogonality of B and C, we 

get 

(BA*B)C*C = BA*(BC-»(C) = 0 

and 

CC*( BA*B) = (CC*B)A*B = 0, 

so that BA*B e Hence, by Theorem 3.2 (iii), 1- is a central 

ideal in G. 

IHEGREM 3.0. Let ß and C be subclasses : 
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that fl C C. Then CJ C ßJ, C1 Ç ß1- and Cx C ß- 

To prove that 01 C ßJ, we merely note that since ß C C, 

ary element which is left orthogonal to every element in C is 

automatically left orthogonal to every element in ß. Correspond- 

remarks prove the remaining statements. 

It should be noted that the right orthogonal complement of 

a right ideal ft, in general, is not a right ideal in G. An 

obvious corresponding statement is true of left ideals as well. 

The section will conclude with a discussion of subideals. 

Let a be a right ideal in G. A subspace S of a will be 

called a subideal of a if g is a right ideal with resoect to 

ft, i-e., if S e g and Rea, then SS*R is in g also. 

Similarly, a subspace m of a left ideal £ is said to be a sub¬ 

ideal of £ if tn is a left ideal with respect to £. An 

analogous statement defines a subideal of a central ideal. 

THEOREM 5.7. Let g,!h and $ be subideals of the right 

ideal a, left ideal £, and central ideal C respectively. 

Then if the «-reciprocal of each .1.^ g>In ^ & 

* ^.ri^t ideal in G, m is a left ideal in G and & is__a 

central ideal in G. 

Let S e g and A e G. It will be shown that SS*A e g. 

Since g Ç R, Sea and because a is a right ideal in Q, 

SS*A e a also. Hence 

SS*A = (S,S*S)S*A = S1 S*(SS*A) , 
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an element of S since & is a right ideal in ft. 

A similar argument proves the result for the subideals IU 

and Ù. 



k. MINIMAL IDEALS 

in this section various properties and characterizations of an 

important class of right and left ideals will be given. It will be 

assumed that Q is a ternary algebra, not necessarily finite¬ 

dimensional. 

A non-zero right ideal ft in G is called minimal if ft 

contains no right ideals other than itself and the zero-ideal, i.e., 

the ideal whose only element is 0. Similarly, by a minimal left 

ideal will be meant a non-zero left ideal which contains no left 

ideals but itself and the zero-ideal. Finally, an obvious statement 

defines a minimal central ideal. 

Clearly, any one-dimensional ideal is minimal. For another 

example, we return briefly to the case in which G is the ternary 

algebra of all m x n matrices over the complex numbers. Suppose 

ft is a non-zero right ideal in G such that any element R of ft 

has the form R = uv# where u is a fixed m-dimensional column 

vector and v is an n-dimensional column vector dependent upon R. 

Using results of this section it will be possible to show that ft 

is a minimal right ideal. This example will be further pursued 

later. 

Hereafter the existence of the ^-reciprocal will be assumed 

gratis, it is important to recall, however, that the existence is 

ensured in the case when G is finite-dimensional. 

16 



The first theorem characterizes minimal right ideals as 

those right ideals which contain no non-zero left orthogonal 

elements. 

THEOREM 4.1. Let ft be a right ideal in Q. Then ft is 

minimal if and only if for any elements R,S in ft, the relation 

RR*S = 0 holds only in the event either R = 0 or S = 0. 

Suppose that ft is a minimal right ideal and that RR#S = G 

for R,S in ft and R / 0. Denote by 3 the set of all elements 

T in ft such that RR*T = 0. 3 is non-empt^ since S & 3> 

Also, it is easy to see that 3 is a linear subspace of Q. To 

show that 3 is a right ideal in G, let T e 3 and A e G. 

Then RR*(TT*A) = (RR*T)T*A = 0, so that TT*A e 3. Thus, since 

3 C ft and ft is minimal, either 3 = {0}, the zero-ideal, or 

3 = ft. But 3 / ft since Reft and R / 0 implies that 

RR*R 4 Hence, 3 = (0}, and since S e 3, S = 0. 

Conversely, suppose ft contains no pair of non-zero left 

orthogonal elements. Let ft be a right ideal in G such that 

ft C ft and ft / (0}. Choose S e ft, S / 0. If R is any element 

in ft and T = S’S*R - R, then 

SS#T = SS*( S ' S*R - R) = ( SS#S1 ) S*R - SS*R = 0 . 

Since S and T are both in ft and S / 0, we conclude that 

T = 0. in other words, R = S,S*R, which is in ft, since ft is 

a right ideal. Hence, ft C ft so that ft = ft and ft is 

minimal. 
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The corresponding result for left ideals is as follows: 

THEOREM k.2. Let Z be a left ideal in G. Then 

Z is minimal if and only if Z contains no pair of non-zero 

right orthogonal elements. 

The proof is the dual of that of Theorem 4.1. 

THEOREM 4.3. Let ft and Z be a non-zero right ideal 

and a non-zero left ideal in G respectively. Then the following 

two conditions are equivalent: 

(i) ft contains no non-zero left orthogonal elements. 

(ii) R'R*S = S for all R,S e ft with R / 0. 

Similarly, the following two conditions are equivalent: 

(iii) Z contains no non-zero right orthogonal elements, 

(iv) LM*M' = L for all L,M e Z with M / 0, 

We prove only the equivalence of (i) and (ii). Assume (i) 

and let R,S eft, R ^ 0. Let D = R»R*S - S. Then D e ft and 

RR*D = 0. Since R / 0, D = 0, that is, R'R#S = S. 

Now suppose (ii) holds and that RK*S = 0 for R,S e ft 

and R / 0. By Lemma 2.2, R*R*S = Ò also. Hence, 

S = R'R*S = p . 

The following theorem is an immediate consequence of the 

preceding results. 

THEOREM 4.4. Suppose ft and Z are non-zero right and 

left ideals in G respectively. Then the following statements 

are valid: 



(i) ft ^ minimal If and only if R'R*S = S for all 

RjS e ft with R / 0. 

(i.i) Z is minimal if and only if LM*M' = L for all 

L,M e Z with M / 0. 

Again let ft and £ he right and left ideals in G 

respectively. For any A £ ft, A ^ 0, denote by ftA the set of 

all elements of the form A’A*B for all B £ G. Similarly, for 

any A £ £, A ^ 0, Z^ will represent all elements of the form 

BA*A' for B £ G. With these conventions in mind we have the 

following 

COROLLARY. 

(i) ft is a right ideal in G and ft is minimal if 

and only if ftA = R for all A £ ft with A / 0. 

(Ü) Z is a left ideal in G and £ is minimal if 

and only if £. = £ for all A £ £ with A =/ 0. 
IX 

Only the proof of (i) will be given. To show that ftA 

is a right ideal, let R,S £ ftA and let \ and ^ be any 

complex numbers. Then there exist elements B,C in G such that 

R = A'A*B and S = A'A*C. Therefore^ XR + pB =* A'A^D where 

D = XB + pC, and so ft. is a linear subspace. Also, if 
lx 

R = A'A*B £ ftA and C,D £ G, then 

RC#D = A'A*(BC*D) £ ftA 

and ftA is a right ideal in G. 

Now suppose ft is minimal. For any A £ ft, all 



elemer.ts of the form A'A*B, where B e G, are contained in 

ß since ß is a right ideal in G. In other words, ß C ß for 
A — 

anjr A e ß. 3y the minimality of ß, ßA = ß in the case when 

A e ß and A / 0. 

Conversely, assume ßA = ß for all A e ß, A / 0. 

Choose R,S' in ß with R / 0. In particular, = ß so that 

there exists A € G such that S = R'R*A. Hence, 

R'R^S = R'R*(R'R#A) = R'R*A = S 

and by the theorem, ß is minimal. 

We remark at this point that the notions of linear 

independence and linear dependence of a finite set of elements 

have the usual meanings in G when considered as a linear space. 

THEOREM 4.5. If ß is a linear subspace of G such that 

ÍQT-gagh triple of elements A,B,C in ß for which C / 0 we 

have that AB*C = \C for some complex number A, then A de- 

pends only upon A and B. 

Suppose AB*C = AC and AB*D = for elements A,B,C,D 

where C / 0 and D ^ 0 and complex numbers A and n. We show 

that A ® (i. There exists a number v such that 

. AB*(C + D) = v(C + D) . 

But 

Hence 

AB*C + AB*D = AC + |iD . 

(A - v)C + (^ - v)D = 0 . 



If C and D are linearly independent, then. X-v=^-v=»0, 

so that X = If C and D are linearly dependent, say 

D = oC, then 

AB*D = QAB*C = OXC = nD = OjiC . 

Since C/O and a / 0, X = 

COROLLARY. Let ft be a linear subspace of G satisfy¬ 

ing the assumptions of the theorem. For any elements A, B and C 

in ft, let X be the complex number such that AB*C = XC. Then 

3A*C = XC. 

First note that if AB*C = 0, then by the theorem 

AB*B = 0 also. Lemma 2.1 then implies that BA*C = 0 for all 

C in ft. We thus assume that AB*C / 0. 

Let n be the complex number such that BA*C = ^C. It 

will be shown that |i = X. The theorem implies that 

AB*( BA*C) = XBA^<C = XjiC, and also that AB*B = XB. Hence 

AB*BA*C = A(AB*B)^C = A(XB)*C = \HE*C = XXC . 

xherefore, X^iC = XXC and since C / 0, Xp = XX. Since it must 

also be true that X / 0, we have that ^ = X. 

COROLLARY. Suppose ft is a right ideal in G. If 

RS*T = XT for all R, S,T £ ft for which T / 0 and some complex 

number X, then ft is a minimal right ideal. 

Suppose R £ R, R / 0 and let S £ ft. If S = 0, then 

R'R*S = 0 = S. Hence, suppose S / 0. By assumption there exists 

a complex number X such that R'R*S = XS. By the theorem, X 

does not depend upon S, so that we also have R'R*R = AR. 



Since R'R*R = R, X = 1. Hence, R'R*s = S and by Theorem k.k 

R is a minimal right ideal. 

The corresponding results for left ideals are as follows: 

THEOREM 4.6. if ¿ is a linear subspace of Q such that 

j^r-each triple of elements A,B,C in £ for which A / 0 we 

have that AB*C = XA for some complex number X, then X de- 

pends only upon B and C. 

COROLLARY. Let £ be a linear subsnace cf G satisfy- 

ingjhe assumptions of the theorem. For any elements A,B and C 

— ¿í ^ be the complex number such that AB*C = XA. Then 

AC*B = XA. 

COROLLARY. Suppose £ is a left ideal ^ Q. jf 

I^N = XL for .all L,M,N £ £ for which L / 0 and some 

complex number X, then £ is a minimal left. 

As particular instances of the last results we see that any 

right ideal R or left ideal £ which is an inner-product space 

is minimal, if A,B,C e ft the inner product as contained in the 

term AB*C is taken between A and B. For £, B and C 

comprise the inner product. As an example, consider the case in 

which ft is the right ideal of matrices of rank one as described 

in the opening of this section. If r = Uv*, S = uw» and 

T = ux* are elements of ft, then 

RS*T = uv*wu*ux* « ( v*w) ( u*u) ux* = XT , 

where X = (v*v)(u*u). By the second corollary to Theorem 4.5, 



ft is minimal. 

In the next section it will be shown that the converse is 

also true, namely, that a minimal right or left ideal with a 

suitable restriction can be construed as an inner-product space. 

LEMMA 4.1. Let ft and £ be a right and a left ideal in 

G respectively. 

(i) If R e ft and R = S + T where S and T are right 

orthogonal, then S £ ft and T t ft. 

(ii) If - L £ £ and L = M + N where M and N are left 

orthogonal, then M £ £ and N £ £. 

For a slight change of pace we prove (ii), the result for 

left ideals. Since L = M + N, 

M'M*L = M'M*M + M'M*N = M + M'M*N 

and 

N'N*L = N'N*M + N'N*N = N'N*M + N . 

Using the fact that M and N are left orthogonal, Lemma 2.2 

implies that M'M*N = N'N*M = 0. Hence, M = M'M*L and N = N'N*L, 

both of which are in £ since £ is a left ideal in G. 

In order to continue, we introduce the notion of the degree 

of an element. Suppose A is in G and let A^ ^ = A, 

Pl^ = AA*A and in general = AA*A^k”^ for 

k = 1,2,3,..• . If there exists an integer n for which 

A^ ,A^,.. .,A^n+^ are linearly dependent, then A is said to 

be of finite degree. The smallest integer for which such a relation 
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holds is called the degree of A. For an element A of degree one 

there exists a scalar a such that AA*A = QA. The positivity 

condition insures that a > 0 if A / 0. If G is finite¬ 

dimensional then every element is of finite degree. It should be 

noted, however, that the converse is not in general true. Consider, 

for example, the ternary algebra of infinite-dimensional matrices 

A= (O^j) with complex elements 0^(1,3 = 1,2,3,...) of which 

at most a finite number are non-zero. Here, the ♦‘■operation is 

taken as conjugate transpose. Each element has finite degree, 

although G is not finite-dimensional. 

LEMMA' .Every non-zero element of finite degree in a 

minimal right ideal or minimal left ideal is of degree one. 

To fix the ideas, suppose R is a minimal right ideal and 

that R is a non-zero element of finite degree n in R. Suppose 

that n > 1. In [1] it is proved (Theorem 12.4, page I75) that 

R may be written in the fonn R = S + T where S and T are 

orthogonal and each is of degree at most n - 1. If either S = 0 

or T = 0, then R is of degree at most n - 1, a contradiction. 

Hence, S / 0 and T / 0. Since S and T are right ortho¬ 

gonal, Lemma 4.1 (i) implies S e R and T e R. Also, S and T 

are non-zero left orthogonal elements of R, contradicting 

Theorem 4.1. Hence, n < 1, and since R ft 0 we have that n - 1 

and the lemma is proved. 



5. MINIMAL IDEALS AS INNER-PRODUCT SPACES 

It will be shown in this section that any minimal right 

or left ideal in which each element is of finite degree may be 

considered an inner-product space. This, however, will be preceded 

by a result of a more general nature, namely, that a *-linear 

generalized ternary algebra G in which each element is of degree 

one is an inner-product space. The result for minimal ideals will 

follow directly from this fact. We first prove a sequence of 

lemmas. To avoid repetition, it will be assumed in Lemmas 5.I 

through 5*5 below that G is a *-linear generalized ternary algebra 

in which each element is of degree one. 

LEMMA 5.1. If A and B are any two elements of G 

which are orthogonal, then either A = 0 or B = 0. 

Suppose A 5/ 0 and B ^ 0. Then using the orthogonality 

of A and B, it is easy to show that they are linearly indepen¬ 

dent. Because A and B are both of degree one, there exist real 

numbers a and ß such that AA*A = OA and BB*B = ßB. Since A 

and B are both non-zero, we have that a / 0 and ß ^ 0. Let y 

be any non-zero real number such that <y2ß ^ a. For this number 7 

there exists a scalar A such that 

(A + 7B)(A + yB)*(A + yB) = A(A + yB) . 

Using the orthogonality of A and B, this last equation becomes 

25 
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AA*A + y5BB*B = A(A + 7B) 

or, 

OA + Y^ßB = XA + yXB 

Hence, 

(X - a)A + y(X - Y2ß)B = 0 . 

Since A and B are linearly independent and y / 0, we get that 

2 
X = a = y ß , 

a contradiction. Therefore, either A = 0 or B = 0. 

LEMMA 5-2. Let A and B be elements of Q for which 

A 4 l¿en either A'A#B = B or BA*A'^ B. 

In [1] it is shown (Theorem 7.2, page I5I+) that B may 

be represented in the form 

where 

B=C+D + E + F , 

C = A'A*BA*A', 

D = B + A'A*BA*A' - A'A*B - BA*A' , 

E = BA*A' - A'A*BA*A' , 

F = A'A*B - A'A*BA*A' , 

and D is orthogonal to A. Since A / 0, Lemma 5.I implies 

that D = 0. Also, it is easy to check that the elements E and 

F are orthogonal. Hence, by Lemma 5.I, either E = 0 or F = 0. 

If E = 0, then B » C + F = A'A*B and if F = 0, then 

B = C + E = BA*A'. 
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LEMMA 5.J» A and B are two elements of G 

satisfying A'A*B = B = BA*A,i then there exists a complex n»"foer 

H sach that B = ^A. 

If A = 0, then B = A'A*B = 0, so that |i is arbitrary. 

If B = 0, then again ^=0. Thus, we may assume that A / 0 

and B 5/ 0. For some real numbers oc and ß we therefore have 

that AA*A = OA and BB*B = ßB. Let R = A + AB and S = A - AB 

where A is an arbitrary non-zero complex number. Since R and 

S are both of degree one, RR*R = pR and SS*S = oS for some 

real numbers p and a. From the equations 

A'A*B = B = BA*A' and the fact that A = OA', we get that 

AA*B = OB = BA* A. Also, 

pR = RR*R = OA + 2oAB + AAB*A + A2BA*B 

+ AÃ( AB*B + BB*A) + AÄAßB 

and 

oS = SS*S = QA - 2aAB - AAB*A + A2BA*B 

+AÃ( AB*B + BB*A) - AAAßB . 

Hence 

|( pR - crS) = (2a + AAß)AB + AAB*A 

so that AB*A = yA + 6B, where 
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Suppose that A and B are linearly independent. Then for 

any K, we have that R / 0 and S / 0 so that p / 0 and 

o / 0. Also, y and 6 are unique. Since we may choose A = 1, 

7 and 6 are real. Thus, 7 = ( p - cr)/2A is real for all X 

and hence 7=0. 

How 

a2B - AA*BA*A = A( AB*A)*A 

= A(6B)*A = 6AB*A = 6¾ , 

2 2 
so that 6 - a / 0. Also 

QBA*B = ( AA*B) A*B = A(AB»A)*B = 6AB*B 

and 

aBA*B = BA*( BA*A) = B( AB*A) *A = 6BB^A . 

Since 5^0 we have that AB*B = BB*A. By Lemma 5.2, either 

B'B»A = A or AB*B' = A. The fact that B = ßB' implies that 

either BB#A = ßA or AB*B = ßA. Hence, 

AB*B = BB*A = ßA . 

In addition, 

pR + OS) = OA + A2BA*B + XÃ( AB^B + BB*A) 

= (a + 2AÄß)A + A2BA*B . 

Therefore, 
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since y - 0 implies that p = a. But also 

BA*B = - &AB»B = I 6A ; 

so that 

or. 

(p - a - 2XXß) -¾ = I 6 = - 2a " ^) Z > 
X. X 

p = 2a + ßXX + 6^= a + 2ßXX 6 ^ X 

We therefore have that 

a-ßÜ + 6T-&|x2=0 Xa 

for all X ^ 0. Letting X = 1 + i yields 

(a - 2ß) - i|(a+ 2ß) = 0 , 

so that 

a - 2ß = 0 and a + 2ß = 0 

and therefore a = ß = 0, a contradiction. 

Hence, A and B are dependent, so that there exist 

scalars . i] and Ç, not both zero, such that t]A + £8= 0. If 

T) = 0, then £ / 0 and B = 0 and if £ = 0, then t) ^ 0 

and A = 0. Thus, either case leads to a contradiction, so that tj 

and £ are both non-zero. Therefore B = ^A, where 

n = - T]£ . 



LEMMA. 5.4. If A is a non-zero element of G, then 

either A'A*B = B for all B e G, or BA*A' = B for all B e G. 

Let B be an arbitrary element of G. Then by Lemma 5.2, 

either A'A*B = B or BA*A' = B. Suppose A'A*B = B. We mày then 

write B = C+D, where C = A,A*BA*AI and D =i ^^*8-A,A*BA*A'. 

Hence, A'A*C = C and ÇA*A' = C, so that by Lemma 5*3 there 

exists a scalar n such that. C = ^A. Note also that DA*A’ =0. There¬ 

fore, B = jiA + D, where DA*A' = 0. In a similar way it can be 

shown that if BA*A' = B, then B = ^A + D, where A'A*D = 0 

and DA*A' = D. 

If G is not one-dimensional, there exists a non-zero 

element B in G such that A and B are linearly independent 

and either A'A*B = B or BA*A' = B. Let us assume that 

A'A*B = B. Then as shown above, B = nA + D, where DA*A' = 0. 

Note also that D / 0 and that A'A*D = D. Now suppose that E 

is any other element of G such that EA*A' = E and A'A*E = 0. 

Then 

EE*D = EE*A'A*D = E(AA'*E)*D = E(A'A*E)*D = 0 

and 

ED*D = EA*A'D*D = E(DA'*A)*D = E(DA*A')*D = 0 , 

so that E and D are orthogonal. Since D 7/ 0, Lemma 5.I 

implies that E = 0. Thus, every element C of G is of the form 

C = AA + F, where A is a scalar, F A*A' = 0 and A'A*F = F. 

Therefore, A'A*C = C for every element C in G. If we had 



assumed instead that BA*A'= B, then a similar argument would show 

that CA*A' = C for every C in G. 

LEMMA 5.5« Either C'C*D = D for every pair of elements 

C and D in G for which C ^ 0, or DC*C’ = D for each pair 

C,D in G with C ^ 0. 

Let A be a non-zero element of G. By Lemma 5.4 we have 

that either A'A*B = B for all B £ G or BA*A* = B for all Be G. 

Let us assume the first possibility. Suppose C is an arbitrary 

non-zero element of G. For the above element A, Lemma 5.2 implies 

that either C'C*A = A or AC*C = A. If AC*C' = A, let 

E = C'C*A = C'C*AC*C'. Then C'C*E = E = EC*C'. By Lemma 5.3 there 

exists a complex number (i such that E = = C'C*A. If = 0, 

then C'C*A » 0 and Lemmas 2.1 and 2.2 combine to give that 

A'A*C = 0. But by assumption, A'A*C = C, so that C = 0, a con- 

/ -1 
tradiction. Hence, u f 0 and "thus C = n C'C*A. Therefore, 

CA*A' = u ^'C^AA^A' = u \j'C*A = C. Lemma 5-3 again implies the 

existence of a complex number A, necessarily non-zero, such that 

C = XA. It then follows easily that C'C*A = A. Hence, for the 

above element A we have that C'C*A = A for all C £ G for 

which C ^ 0. 

To complete the proof, let C and D be arbitrary 

elements of G such that C ^ 0. Then 

C'C*D = A'A*C 'C*D = A'(CC '*A)*D 

= A'(C'C*A)*D = A'A*D = D . 



If the initial assumption had been that BA*A' = B, then a 

similar line of reasoning would have shown that DC*C' = D for 

every pair C,D in G for which C / 0. 

We are now able to prove the main result. 

THEOREM Let G be a »-linear generalized ternary 

algebra in which each element is of degree one. Then one of the 

following two alternatives is true: 

(i) If A,B and C are any three elements of G for 

which C ^ 0, then there exists a unique complex 

number X, independent of C, such that 

AB*C = AC and BA*C = ÄC. 

(ii) For any triple of elements A,B,C in G for which 

A ^ 0, there exists a unique complex number A, 

independent of A, such that 

AB*C = AA and AC*B = ÃA . 

By Lemma 5.5 we have that either D'D*E = E for each pair 

of elements D,E in G for which D / 0 or ED*D' = E for any 

two elements D,E in G with D / 0. We shall suppose that the 

first alternative holds, and show that this assumption leads to 

conclusion ( i) of the present theorem. A proof analogous to the 

one below may be used to show that the second alternative implies 

conclusion ( ii). 

Let A,B,C by any triple of elements in G for which 

C =/ 0. If either A = 0 or B = 0, A will be set equal to zero. 
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Thus, assume A / 0 and B ^ 0. 

If A and B are linearly dependent, there exists a com¬ 

plex number |i such that A = ^B* Since B is a non-zero element 

of degree one, there exists a non-zero real number v such that 

BB*B = vB. It is easy to check that B' = — B and A' = —- B 
V ÜV 

Thus A = |iB = (uv)B' and B = (üv)A'. Hence, 

AB*C = (nv)B'B*C = (nv)C 

and 

BA^ = (^Iv)A'A*C = (ÍIv)C , 

so that in this case X = ^v. 

Now assume that A and B are linearly independent. Since 

A, B, A + B and A + iB (where i2 = - 1) are all / 0, we have 

that 

I 

(5.1) A'A*C = C , 

(5.2) b'B*C = C , 

(5.3) (A + B) '(A + B)*C = C , 

(5.M (A + iB) '(A + iB)*C = C . 

Since A, B, A + B and A + iB are all of degree one, there exist 

real numbers Ct,ß}y and 6 such that 

AA*A = OA , 

BB*B = ßB , 

(A + B)( A + B)*( A + B) = t(A + B) 
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and 

(A + IB)(A + IB)*(A + iB) = 6(A + iB) . 

From these last equations it is not too difficult to check that 

A = oA', B = ßB', A + B = t( A + B) ' and A + iB = 6( A + iB) '. 

Equations (5.1) and (5.2) thus become AA*C = OC and BB^C = ßC 

and from equations (5«3) and (5*4) we get that 

yC = (A + B) ( A + B)*C = AA*C + AB*C + BA*C + BB*C 

= OC + AB*C +: BA*C + ßC, . . 

and 

6C = (A + iB)(A + iB)*C = AA*C - iAB^C + iBA*C + BB^C 

= OC - iAB^C + iBA*C + ßC . 

These last two equations are now written in the form 

AB#C + BA*C = (y - a - ß)C , 

AB^C - BA*C = i(6 - a - ß)C . 

Solving for AB*C and BA*C yields AB*C = XC and BA*C = ÃC, 

where 

X = i[(Y - a - ß) + i(6 - a - ß)] . 

To show that A is unique, suppose that AB*C = XC and 

AB*C = uC. Since C •/ 0, X = u* ïhe fact that X is independent 

of C follows from Theorem 4.5. This concludes the proof. 

It should be noted that the above result need not be true 

in the case when G is a real ^-linear generalized ternary algebra 

in which each element is of degree one. Consider, for example, the 

collection $ of all complex numbers regarded as a linear space 



over the field of real numbers. If B is a complex number, let 

B* = B, the complex conjugate of B. d is then a real ternary 

algebra and each element of $ is of degree one. However, if 

A,B,C is any triple of elements in $, the product AB*C is, in 

general, neither a real multiple of A nor a real multiple of C . 

As a simple consequence of the last theorem we have the 

following 

COROLLARY. Let ft be a minimal right ideal in a ternary 

—G such that each element of ft is of finite degree. If 

R,S and T are any three elements of ft, then there exists a 

unique complex number X, independent of T, such that 

RS*T = XT and SR*T = XT . 

For the proof, note that Lemma 4.2 ensures that each element 

of ft is of degree one. Also, by Theorem 4.4 we have that 

R'R*S = S for each pair R,S in ft for which R / 0. As was seen 

in the proof of Theorem 5.I, t. is property yields the desired result. 

COROLLARY. Let £ b«_a minimal left ideal in a ternary 

~S-b-ra G _guch that each element of £ is of finite degree. Tf 

L'M'N -e any three dements of £, then there exists a unique 

complex number X, . independent of L, such that 

LM*N = XL and LN*M = XL . 

The proof in this case depends upon the fact that each 

element of £ is of degree one and that LM*M' = L for each pair 

of elements L,M of £ for which M / 0. 
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Now let ft be a minimal right ideal and let R,S and T be 

any three elements of ft. By the first corollary to Theorem 5.I 

there exists a unique complex number X such that RS*T = XT and 

SR*T = XT. We shall write X = (R,S), so that RS*T = <R,S)T. 

Since X is independent of T, we could equally well have defined 

(R,S) to be that number X such that RS*S = XS. The same 

notation will be used in the case of a minimal left ideal £. If 

L,M,N £ Z, for example, then LM#N = XL and LN*M = XL, so that 

here X = (M,N). It is of interest to note that a minimal right 

ideal behaves like an inner-product space of row vectors and a mini¬ 

mal left ideal as an inner-product space of column vectors. These 

ideas will now be made precise with the next two theorems. 

THEOREM 5.2. Let ft be a minimal right ideal in which 

each element is of finite degree. Then ft is an inner-product 

space. 

Suppose that R and S are elements of ft and that S / 0. 

Then 

(R,S)S = RS*S and SR*S = (R,S)S . 

But SR*S = (S,R)S also. Hence, (S,R) = (R,S). 

If R^,Rg,S e ft and S ^ 0, then 

(a1R1 + a2R2,s)s = (a^ + QgRg) s*s 

= 0^8*8 + a2R2S*S = 0^,3)8 + Q^(R2,S)S , 

so that 



(¾ + OfeR^S) = ^(R^S) + 0^,8) . 

Finally, using the positivity condition in ft it is easy 

to see that (R,R) > 0 and (R,R) = 0 if and only if R = 0. 

THEOREM 5»5* Let £ be a, minimal left ideal in which each 

element is of finite degree. Then £ is an inner-product space. 

The above notation may also be used in the case when G 

is a ternary algebra in which each element has degree one. For 

example, if A,B and C are in G and AB*C = XC and 

BA*C = XC, we set (A,B) = X. With this convention G is an 

inner-product space. 



6. MINIMAL CENTRAL IDEALS 

The results of the previous section will now be used to 

complete the study of minimal ideals and special reference will 

be made to minimal central ideals. It still will not be 

necessary to assume that the ternary algebra G is finite¬ 

dimensional. We shall suppose only that every element of an ideal 

possesses a ^-reciprocal. 

THEOREM 6.1. If ft and £ are right and left ideals in 

G respectively, then ft n £ is a central ideal. 

Let C = ft n £. C is clearly a linear subspace of G. 

Choose C e C and A e G. Since C e ft, the element 

CC*AC-»*C = CC*(AC*C) is in ft, and because C e £ the same 

element CC*AC*C = (CC*A)C*C must belong to £. Hence, 

CC*AC*C £ ft n £ = c 
so that C is a central ideal. 

THEOREM 6.2. Let ft be a minimal right ideal and let '£ 

be a minimal left ideal in G. Then if each element in both ft and 

^ is of finite degree, ft n £ jjs either the zero-ideal or^is^one- 

dimensional. 

Suppose ft n £ ^ {0) and choose A e ft n £, A ^ 0. Let 

B £ ft n £. Then since ft is a minimal right ideal, Theorem 4.4 (i) 

implies that A'A*B «B. By Lemma 2.2, A'A*B = AA'*B. Finally, 
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since £ is a minimal left ideal and A,A',B e £, the second 

corollary to Theorem 5.I implies that there exists a complex number 

X such that B = AA'*B = XA, where X = <A',B). Hence, ft n £ 

is of dimension one. 

As a result of the last two theorems, we have the following 

COROLLARY. Let ft and £ be minimal right and left ideals 

ill C respectively. Then if each element in both ft and £ is 

of finite degree, ft D £ is a minimal central ideal. 

The next theorem will not be of use until later, but it will 

be appropriate to discuss it now. 

THEOREM b.J. Let ft and ft be minimal right ideals and 

let £ and to be minimal left ideals in Q. Suppose A e ft n £, 

Beftn£ and CeSnfo. Then; 

( i) AB*C e ft n to. 

(ii) If AB*C = 0, then either A = 0 or B = 0 or C = 0. 

To prove ( i), we have that A e ft and ft isa right ideal, 

so that AB*C e ft also. Since C € to and to is a left ideal, 

AB*C £ to. Thus, AB*C e ft n to. 

For the proof of ( ii), suppose AB*C = 0 and that A / 0 

and B / 0. Then since A and B are elements of the minimal 

left ideal £, Theorem 4.4 ( ii) implies that BA*A' = B. Similarly, 

using the fact that B and C are in the minimal right ideal ft, 

B'B*C = C. Hence, 

0 = B'A'*(AB*C) = B'(BA*A')*C = B'B*C = C . 



We now turn our attention to the study of minimal central 

ideals. 

THEOREM 6.4. . If C is a minimal central ideal, then C 

contains no non-zero right orthogonal or left orthogonal elements. 

The theorem will be proved in the case of left orthogonal 

elements. Thus, suppose C and D are elements of C such that 

CC*D = 0 and that C J Q. Let & denote the set of all elements 

E in C such that CC*E = 0. C- is a non-empty linear subspace 

of G. Also, if E £ e and A e G, then 

CC*(EA*E) = ( CC*E) A*E = 0 , 

so that EA*E £ ß. Hence, ß is a central ideal in G and 

ß C C. By the minimality of C, either ß = [O) or ß = C. But 

since C £ C and C ¿ ß we have that ß = (0} and thus D = 0. 

The proof for right orthogonality is similar. 

An element B in G is called centrally orthogonal to 

another element A in G if AB*A = 0. This relation is not 

symmetric in A and B. 

THEOREM 6.5. A central ideal C is minimal if C contains 

no non-zero centrally orthogonal elements. 

Suppose A is a central ideal in G such that ACC. If 

A / choose D £ A, D / 0. Let C £ C. Then the element 

c0 = D'D^CL^D' - C is centrally orthogonal to D, i.e., 

DCq*!) = 0. Since D / 0 and C contains no non-zero centrally 

orthogonal elements, we must have that Cq = 0. Hence, 
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C = D'DKJD^D', an element of £ since & is a central ideal. 

Thus, C C so that £ = C and C is therefore minimal. 

For any central ideal C and any element C in C, 

will denote as before the set of all elements of the form C'C^A 

where A varies over G. By $c will be meant all elements of 

the form AC*C for A ranging over G. As was shown previously, 

ft and Zr are right and left ideals in G respectively. 

The following theorem gives a characterization of minimal 

central ideals akin to those obtained for right and left ideals; 

THEOREM 6.6. A necessary and sufficient condition that a 

non-zero central ideal C be minimal is that C = 0 for 

every non-zero element C in C. 

Suppose that C is minimal and that C e C, C / 0. If 

D e R_ n £ , then there exist elements A and B in G such 
C w 

that D = C'C*A = BC*C'. This implies that C'C*D = D and 

LC*C' = D. Hence, D = C'C*DC*C, which is in C, so that 

Rc n £C - C‘ ^ 111601,61,16,1> i8 a central ideal in G* 

Since C is minimal, either Rc n £^ = {0) or Rq n = 

But since C = C'C*C = CC*C, we have that C e R^ n £^ and 

C ^ 0. Hence, C = R n £ . 
C c 

For the converse, assume that C = Rc n £^, for every non¬ 

zero element C in C. It will be shown that C contains no non¬ 

zero centrally orthogonal elements. Suppose that D and E are 

in C and that DE*D *=0. If D ^ 0, then C = R^ n £^. Thus, 



there exist A and B in G such that E = D'D«-A = BD*D'. As a 

result, D'D^E = E = ED^D', so that 

E = D'D*EI>*D' = D'(DE^D)*D' = 0 . 

By Theorem 6.5, then, C is minimal. 

COROLLARY. A central ideal C is minimal if and only if 

C'C*D = D = DC*C ' 

for all elements C and D in C with C / 0. 

If C is minimal, then C = ft n £ for all non-zero 
V C 

elements C in C. Hence, if D € C, there exist A and B 

in G such that D = C'C*A = BC*C'. Therefore, 

C'C*D = D = DC*C ' . 

To prove the converse, suppose that C'C*D = D = DOC* for 

all C,D in C, C / 0. If CD*C = 0 for C,D in C and C / 0, 

then 

D 0 C'C*DC*C' = C'(CD^C)^»C' = 0 . 

By Theorem 6.5, C is minimal. 

LEMMA 6.1. Let C be a central ideal and let C be an 

element of C such that C = D + E for some D and E in G. 

Then if D is orthogonal to E, both D and E are ln C. 

In [1] it is shown that the orthogonality of D and E 

implies that C = D' + E'. Using the left and right orthogonality 

of D and E along with Lemmas 2.1 and 2.2, we get that 

D'E*D = E'D»D = E'E*D 

DD*E' = DE^D' * DE»E' = 0 . 



Thus, 

C'C*D = D'D^D + D'E*D + E'l^D + E'E*D = D']>D = D 

DC*C = DI^D' + DD^E' + DE*D' + DE^E' = DD^D' = D 

Therefore, D = C'C*DC*C belongs to C. Qy symmetry, EeC 

also. 

6-2- Eveiy non-zero element of finite degree in a 

niininiâl^cGritrûJ^^^dcâl C ^is__oi^cl.6grg6 ons » 

Let C be a non-zero element of finite degree n in C. 

Suppose that n > 1. As in the proof of Lemma 4.2, write 

C = D + E .where D and E are orthogonal and each is of degree 

at most n - 1. If either D = 0 or E = 0, then C is of degree 

at most n - 1, a contradiction. Hence, D / 0 and E / 0. Since 

L and E are orthogonal, Lemma 6.1 implies that both D and E 

belong to C. Also, D and E are non-zero right orthogonal 

elements of C, contradicting Theorem 6.4. Hence n < 1, and 

since C/0, we have that n = 1, completing the proof. 

We are now able to completely characterize any minimal central 

ideal in which each element is of finite degree. 

THEOREM 6.7. If C is a central ideal of dimension one. 

— C Íi_minimal. Conversely, if C is a minimal central ideal 

in_which each element is of finite degree, then C has dimension 

one. 

The first statement is obvious. To prove the second, we 



have by the corollary to Theorem 6.6 that C’C*D = D = DC*C for 

all C,D in C for which C / 0. Also, Lemma 6.2 implies that 

all elements of C are of degree one. Thus, Theorem 5.I implies 

that for any three elements C,D and E in C there exists a 

complex number X such that CD*E =: AC. Hence, if C is any 

non-zero element of C and D e C is arbitrary, then 

D = C'C*D = CC'*D = AC 

for some complex number A. The theorem is thus proved. 



7. DECOMPOSITION THEOREMS 

It will now be shown that a finite-dimensional ternary algebra 

admits a decomposition into left orthogonal minimal right ideals and 

into right orthogonal minimal left ideals. Together, these de¬ 

compositions will allow the algebra to be represented as a direct 

sum of minimal central ideals possessing certain orthogonality 

properties. 

The first result does not require finite-dimensionality. The 

symbol © will denote a direct sum. 

LEMMA. 7.1. Let G be a ternary algebra and suppose ft is 

a minimal right ideal and that £ is a minimal left ideal in Q 

such that the •»-reciprocal of each element of ft and £ exists. 

Then G has the decompositions G = ft © ftJ and G = X © £L. 

To prove the first decomposition, let A be an arbitrary 

element of G. Then if R is any non-zero element of ft, 

A = R'R*A + (A - R'R*A) . 

Since ft is a right ideal in G, R'R*A eft. Let S = A - R'R*A. 

It will be shown that S e ft1. For this purpose, let T be any 

element of ft. Since Reft and R 0, Theorem 4.4 implies 

that R'R*T = T. Hence, 

TT*S = TT*A - TT*R ' R*A = TT*A - T(RR'*T)*A 

= TT*A - T(R'R*T)*A = TT*A - TT*A = 0 , 
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where we have used Lemma 2.2. Thus, S t ft1, so that ft and ft1 

together generate G. Finally, if D e ft n ftJ, then since D e RJ, 

D is left orthogonal to every element of ft. But since Deft, 

D is left orthogonal to itself and is thus' zero. Hence, 

G = ft © ftJ. 

An analogous argument proves the result for X. 

THEOREM 7Let G be a finite-dimensional ternary 

algebra. Then there exist mutually left orthogonal minimal right 

ideals ft^,..., ft^ and mutually right orthogonal minimal left ideals 

Xi> • • • > ^n such th5*1 

G = ftn © • • • © ft ¿ £. © ... © X 
1 ml n 

For the proof, we note that G is itself a right ideal.' 

Either G is minimal, in which case we are through, or C contains 

a non-zero right ideal Either is Mnimal or contains 

a non-zero right ideal Sg. Continuing in this way, we are led to 

a descending chain of right ideals : G 3 g^ D Sg D •••, where the 

process must terminate after a finite number of steps, since G 

is finite-dimensional. We thus arrive at a non-zero right ideal 

g^ which contains.no right ideals other than itself and the zero- 

ideal. Hence, g^. is minimal. Let ft^ = g^. Ry Lemma 7.1, 

G = © ft^. Theorem 3.5 implies that ft^ is a right ideal in G. 

Either ft'j* is minimal, in which case the argument is completed, or 

by a line of reasoning similar to that above we get that ft^ 

contains a minimal right ideal ftg. By Theorem 3.7, ftg is a 



right ideal in G. It will now be shown that 

»X = »2 ®(Rx n • 

Let A be an arbitrary element of Then if R 

element of Rg, we have that 

A = R'R*A + (A - R'R*A) . 

Let B = R'R*A and C = A - R'R*A. Clearly, B e R2 

that C e n R2, let S e and T e Rg. Since 

have that SS*A = 0, and because R t Rg C R^ and 

SS*R = 0. Hence, 

SS*C = SS*A - SS*R'R*A = - SS*RR'*A = 0 , 

so that C £ R^. Also, since R,T e Rg and R / 0, 

Therefore, 

TT*C = TT*A - TT*R'R*A 

= TT*A - T(R'R*T)*A = 0 

and so C £ Rg. Finally, R^ n R^ Ç R^ implies that 

Rg n (R^ n Rg) = {0} 

so that 

= Rg © ( R^ n R^) 

as asserted. 

G = R1 © R^ = Ri © ^ © ( n t 

is any non-zero 

. To show 

A £ R^, we 

S £ R^, 

R'R*T = T. 

Thus, 



so 

Since n is a right ideal, either it is minimal or the 

process continues. In the former case we have that Rg C 

that Rg is left orthogonal to and R^ n R^ is contained 

in both R^ and R^ and is thus left orthogonal to both 

Rg. In the latter case we arrive at a minimal left ideal 

have that 

G = R1 ® R2 © r5 © ( R^ n Rg n R^) . 

Since G is finite-dimensional, the procedure must termi¬ 

nate in a finite number of steps. Hence, there exist mutually left 

orthogonal minimal right ideals Rn,...,R such that 
1 m 

G = R, © ••• ©R . 
1 m 

The decomposition into left ideals is proved similarly. 

THEOREM 7*2. Let G be a finite-dimensional ternary 

algebra. 

U) R is a right ideal in G, then G=R©RJ. 

(ii) If £ is a left ideal in G, then G = £ © £L. 

The proof of (i) will be given. If R is minimal, then 

Lemma 7.I implies that G = R © RJ and we are through. Otherwise, 

by a process like that used in the proof of Theorem 7.I, R 

contains a minimal right ideal R^ Theorem 5.7 then implies that 

Rx is a right ideal in G. Hence, G = Rx © R^. it will now be 

shown that R = R1 © ( R¿ n R) • Suppose R is an arbitrary element 

of R. Then R = S + T, where S e Rj^ and T e R^. Since 

R^ and 

and 



ft1 C R we have that Seft and T=R-Seft. Hence, 

T e n R. Also, it is clear that R^ n (R^ n R) = {0}. The 

assertion is thus proved. 

Now note that if R^ n ß = {0}, then R = R^ a minimal 

right ideal. This contradiction implies that R^ n R / {0}, and 

R^ n R contains a minimal right ideal Rg. The possibility that 

R^ n R = Rg is not excluded. As was shown in the proof of 

Theorem 7*1/ "we have that 

G = R1® R2 © (R^ n R2) . 

Now let R £ R. Then R = R^ + R^ + s, where R^ £lR^, 

R2 £ R2 and S £ R^ n Rg. Since Rx C R and fL Ç R, 

S = R - R1 - Rg is an element of R also. Therefore, 

R = R1 © Rg © ( R n R-^ n . 

If R n R^ n R^ = {0}, then R = Rx © Rg and G = R © ( R^ n Rg). 

To complete this case, it will be shown that R^ n RgJ = RJ. 

For this purpose, let S £ R^ n Rg. Then if R is any element of 

R, we may write R = R^ + Rg, where Rj. £ R1 and Rg £ Rg. 

Hence, 

SS*R = SS*R1 + SS*Rg = 0 + 0 = 0 , 

so that S £ RJ. To prove the reverse inclusion, note that since 

R], — ß ani^ ^2 — Theorem J.6 implies that RJ C R^ and 

RJ C Rg. Thus, RJ C R^ n R^ and the equality is established. 

Therefore, if R n R^ 0 R^1 = {0}, then G = R © R-1. 



contains a minimal If R n n ícj / [o}, then ft n n 

right ideal ft^ and the above procedure is repeated until we arrive 

at a minimal right ideal ft_ such that . 
* P 

ft n n ... n ftJ - {0} > 

ft - ft © ... © ft and 
1 P 

G = ft©(fc! n ••• n ftJ). 
i p 

As above, it is easy to show that ft^ n ... n = RJ and there¬ 

fore that G » ft 0 ftJ. This completes the proof. 

In the remainder of this section it will be assumed that G 

is a finite-dimensional ternary algebra having decompositions 

G ■ ft. © ... © ft and G « £. © • * • © X , where ft,,...,R„ are 
1 m 1 n 1 m 

mutually left orthogonal minimal right ideals and £^,... ,Z\ are 

mutually right orthogonal minimal left ideals. 

LEMMA 7*2. Let A be an arbitrary element of G. 

( i) is an arbitrary non-zero element of ft^ for 

i - 1,...,m, then 

A - RjRIjA +“.+ R¿R*A ... 

( ii) is an arbitrary non-zero element of £^ for 

j ■ 1,...,n, then. 

A = AL*L' +..•+ AL*L* 
11 n n 

Since G * ft. © * * • © ft , we may write A = A. + ... + A , 
X m 1 m 

where A¿ e (i « 1,...,m). Therefore, if 1 < i < m, 



R-RJA » R^RJA^, since R^ is left orthogonal to Aj if i / J. 

But since R^ and A^ cure both in the minimal right ideal ft1 

and Ri 4 Theorem 4.4 implies that R^RJA^ ■ A^. Hence, 

A - R£RJA +...+ R¿RJA 

as asserted. 

For the proof of (ii), the decomposition G a £ © ... ©£ 
l n 

is employed in an analogous manner. 

For each i » 1,... ,m, the element R|R|A is called the 

left ■projection of A by R^. it is a projection of A into the 

right ideal R.. Similarly, each of the éléments AL*L' for 
J J 

j ■ 1,...,n is called the right projection of A by L.. 
J 

LEMMA'T*?. Let A be an element df G. If -is an 

arbitrary non-zero element of for i«l,...,m an¿ if 

is any non-zero.élément òf for J » 1,...,n, then A has the 

decomposition 

A - ï ¿ • 
i»l j«l 

By Lemma 7.2, A = 1 R^R*A and A = AL*L'. Hence, 



Îffl n 

w - Z Ri8ï ( I »fÔ 
i»l i»l J»l. 

ni n ■ I Z *îw - 
i=l J=1 

as vas to be shown. 

k 
If »^...,0 are subspaces of Q, the notation S 1»1 i 

will denote the direct sum of 

MEOREM 7.3. G has the decomposition 

m n 
Û* © © (R. n £.) . 

i-1 J-l 1 J 

The subspaces R^ n £^ are central ideals which are either the 

zero-ideal or are one-dimensional. 
, « 

If A is any element of G, we have by Lemma 7.3 that 

m n 

A - Z Z RiBïÂ3Lj ' 
i-i d»i 

where is an arbitrary non-zero element of R^ (i » 1,...,m). 

and Lj is any non-zero element of £, ( J « l,...,n). Since the 

element R'RJALJLj belongs to both Ri and £ we see that the 

subspaces RA n £¿ generate G. Also, using the left orthogonality 

of R^,...,Rm and the right orthogonality of £^,...,£ it is 
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seen that if e n for i 

cu ■0- thTO 

• • • ;m and j ■ l|«««^n and 

0Ü°Í/ ( Î ¿C13 ) °îiCii 
i-1 J-l 

A A 

“ ¿ ¿ WhWii 
i-i j-i 

n 

• Z °¿/wíuoú 
3-1 

■ 0Ú05i°lUCíí0k/ - Cki > 

for any k > 1,...,m and i » 1,...,n. Hence, the subspaces 

fti n are independent. 

This proves the first statement. The second assertion is a 

direct result of Theorems 6.1 and 6.2. 

The section will be concluded with a study of the relation¬ 

ships between the subspaces ft. n £ . 
* « 

THEOREM 7.4. For each ft. there exists an £. such that ¿ J ~~ 

Ri 0 £j {o}. Also« for each £^ there exists an ft^ such 

that »i n / Í0). 

The result will be proved by showing that for any fixed 

integer i, 



3. 

- ( &! n £^) © • • • © ( ^ n £n) 

Let R e ti . Then since 

G ■ £, © ... © £ 
J- n 

and s « 0, th.r. .*i.t .l«..nt. a (J . 1.a) ^ ^ 

R ■ + ••• + L^. Therefore, 

R ■ R'R»R ■ R'R»l. + + r>r*l . 
x n 

N0V thit E'S#LJ ‘ ^ n for J . i.. ,0 that th, 

subspaces R1 n n g«n.rate Also, these sam« 

•pacas ara Ind.pand.nt, sine, th.y ara autuaUy right orthogonal. 

This proves the assertion. 

Hanca, If Rj n ^ . (0) for } . 1,...,n, than ^ . (0), 

a contradiction. 

The second statement of the theorem Is proved by using a 

similar argument to show that 

ij - (Riivij) ®... ®((^n£) . 

The minimal central ideals 

CiJ “ Ri n £j (1 - J j «= l,...,n) 

into which G has been decomposed may be considered in the form 

of an array as follows: 

4 
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CU c32 - Cta 

Cai ea2 ••• C2„ 

• • • • 

Cnl Cffl2 inn 

As noted In Theorem 7.J, each central ideal C1;J is either 

the zero-ideal or else is one-dimensional. Also, Theorem 7.I* 

guarantees that each row and each column in the above array con¬ 

tains at least one non-zero subspace C^. « is of interest to 

study the arrangement of the zero and non-zero subspaces. 

IÄMA7.I*. Oppose that « and 8 are minim.) 

ideals and that i and m .are minimal left ideals in q. ^ 

0-8 08,8.8 0 11,,6.808 end 3-8 0 11,. If any two nf 

C’4'e’* ~ n°n'“r° subspaces- tee remaining two ...u.p.— 

are either both non-zero or are both 

All of the possibiUtie. that can occur are treated 

similarly. As illustrations, on]y two such possibilities will be 

considered. 

For example, let us assume that C ^ [oj and 6/(0). if 

» / (0) also, choose 0 s C, E s 6 and F s 3 such that C,E 

and F are all noil-zero. Theorem 6.3 then implies that CE»F e 8 

and that CE*F ^ 0. 

As a second case, suppose that ¢/(0) and 6 / (o) but 

that 3 . (o). let D be an arbitraiy element of 8. Then if c 

is any non-zero element selected from the subspace ¢, and if E 



is & non-zero element of 6 we have by Theorem 6.3 that 

EC*D.e ft n ll\ « 3. Hence, EC*D * 0 and since E / 0 and C / 0, 

the same theorem implies tlut D = 0. 

Similar arguments employing the same theorem prove all 

remaining cases. 

Consider again the decomposition 

t: m n 
G - © © G 

i-1 j-1 10 

where n and recall that for any integer ¡ there 

exists an integer i such that C.. ^ (0}. 

THEOREM 7.5. i be.an integer each that / {0}. 

Vfrt Clá / ip) (J - 1,...,^), Ciá - {0) (J - 

Clá y (0) Cá * etc. ...Then» ... 

(i) î£ k is any other integer such that <2^ ^ {0), we 

have that 

( J “ * •* * # ^ {®^ {J “ iJg+l# • • • >«Jj), Jat^. 

(li) If h is an integer such that ■ {0), we have 

that - Í0) (á - - {0) 

(J “ > etc. 

To prove (ij, let 1 < J < Then since / {0), 

Cil / {0) and / {0), Lemma 7.4 implies that ^ (0) also. 

If d! + 1 < J < then . {0), Cu / (0) and / (0). 

Hence, by Lemma 7*4 we have that ** {0). All remaining cases 

j are treated similarly. 



For the proof of (ii), let 1 < d < Then / {0), 

{0) and ■ {0). Therefore, ■ (0) hy Lemma 7.k. 
The remaining cases are proved in the same way. 

The last result makes clear the arrangement of the zero 

and non-zero subspaces C^. For suppose that row i in the 

array (C^) has the fora 

cu •" •" i0) Ci,J2+l"" V (0) ••• . 

Then every other row is either of the form 

“kl "• SjJ01 "• t0) cfc,i2+l •" 'ig •" 

or 

Í0) "• l0) Cic,31+i - ^°) r i°) Ok.jj+i •" • 
» 

The right ideals (^,...,fta and the left ideals ,Xn 

can be rearranged so that the'organization of the aubspaces 

ia óf the form 

81 0 0 ••• 0 

0 ß2 0 0 

• • • • • 

0 0 0 ... ß 

where each ßj^ is a block of non-zero subspaces (C ) and each 

0 represents a rectangular matrix of zero-subspaces. This 

arrangement will be referred to as a canonical decomposition of G. 



Either au of the subapacea are non-zero or elae 0 haa 

such a decomposition. 

The décompositions of this section may be used to obtain 

an alternate proof of the fact that any non-zero minimal central 

ideal in G has dimension one. 

THEOREM J.b. Let C be a non-zero minimal central ideal 

— C' —-n there exi8t a minimal right ideal R and * 

left ideal £ in_ Q such that 

C ■ R n £ . 

5y Theorem 6.6, C has the representation 
.% 

c" ^ nlt </• 

for every non-zero element c in C, where and % are' thé 

right and left ideals as defined in Section 6. jf Rc 1, not 

minimal, then Theorem 7.1 ImpUea the existence of mutually left 

orthogonal minimal right ideal, m ^ .„ch that 

Rjej -, R1 © ••• © R^ , 

By Theorem 5.7, each of ^.ftp i, a right id«a in 0. Sow 

let D be any ,l«n.nt of C. Then B e (¾ and there exiat 

elements Bi » ^ (1 - 1,...,p) such that 

D *» R1 + • e . + R 
1 P 

= LCK1 

» R^C*C• + ••• + R C*C' , 



where we have used the corollary to Theorem 6.6. Since 

RjC*C' £ H for i ■ l,.,.,p, the subspaces 

»1 n ...n Xc generate C. Because Rx n £c,...,Rp n 

are left orthogonal, 
i 

J 
C- £c) ®... 0(Rpn£c) . 

There exists at least one integer k such that ^ n £c / {o}. 

^ n iB 4 central ideal properly contained in R- n £_ ■ C, a c c 
contradiction. Therefore, is minimal. A similar argument 

proves that is minimal. If we now fix the non-zero element 

C and let R ■ R^ and £ ■ £^,, the result fpllows. 

Theorem 6.7 is now a direct corollary of this last result 
» > 

and Theorem 6.2. 

0 

I 
I 
I 



8. UNIQUENESS OF THE DECOMPOSITIONS 

Let G be a ternary algebra, not necessarily finite¬ 

dimensional. G will be called simple if it is not possible to 

decompose G in the fora G « ß © C, where ß and C are non¬ 

zero orthogonal ternary subalgebras of G. 

As an example of a ternary algebra which is not simple, 

suppose that Û is finite-dimensional and ha* the decomposition 

m n 
_ f' © c 
û " i=l ,1=1 

as in the previous section. If at least one of the central ideals 

C1J is the zero-subspace, then as was shown at the end of Section 

T, G has the canonical decomposition 

ß1 o o ••• 0 

0 ßg o • • • o 

• • #•••'• 

o 0 0 ... ß . 
p 

It is clear that ß^...,ßp are mutually orthogonal subalgebras 

and that G = ß, © •.. © ß . - 
1 P — 

By a two-sided ideal in G will be meant a linear subspace 

ï of G such that 3 is both a left and a right ideal in G. 

LEMMA 8.1. If ••*;ßp are mutually orthogonal ternary 

subalgebras of G such that G=ß1©...©ßp, then ß^...^ 
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are all cwo sided Ideals in G. 

Let i be a fixed integer between 1- and p inclusive, 

and choose BjL e If a is an arbitrary element of G, then 

there exist elements ^ £ ßk (k = 1,...,p) 8Uch that 

A * A, + • • • + . L P 

Using the orthogonality of ß1,...,ßp we get that B^A - 

and AB*B^ » Since ß^^ is a subalgebra of G, both 

Bi^Ai and A1B*B1 are elements of ßi. This completes the 

proof. 

THEOREM 8.1. ,Jf Q is a non-simple finite-dimensional 

ternary algebra, then there exist mutually orthogonal simule mih- 

algebras ß^...^ of G ¿uch that G-^e-.-eß. purther- 
i p ' 

aa. thls d.CQmpoeltlon of Û Is mime to vlthln a ^ 

f,ßp* 

Since G is non-simple, there exist orthogonal subalgebras 

ft and C of G such that ‘ G = ft © C. Either ß is simple or 

else ft contains- orthogonal subalgebras & and e such that 

ft - £ © S. This procedure can only be repeated a finite number of 

times, since G is finite-dimensional. We therefore arrive 

finally at a decomposition 

G « ft. © •.. © ß 
X P 

of G into mutually orthogonal simple subalgebras. 

To prove the uniqueness, suppose that are also 
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mutually orthogonal simple subalgebras of G such that 

G ■ (^ © • • • © Cq. By Lemma 8.1 we have that ...,ßp and 

0-,...,0 are two-sided ideals in G. 
» 

Let B1 be an arbitrary element of Then 

+ * * * + where e 0^ ( i « 1,..., q). But also 

B1 = B^B1 = B^BJCj, + ••• + Bj_B*Cq , 

where 6 n ^or i “ 1;•••;<!• Thus, the subalgebras 

ñ1 n C1,. ..,B1 n Cq generate ß1. Also, since ß n 0. C 0 for 

J “ •••/<! and 0^,...;Cq are mutualiy orthogonal, it is clear 

that ß1 n 0^...,ß1 n Cq are orthogonal. Hence, 

ßx - (ß1 n 0^ © ••• ®(ß^ n Cq) , 

a decomposition of ß^ into mutually orthogonal subalgebras. Since 

ñl is simple, all but one of ßx n 0^... ,ß1 n Cq must be the 

zero-subspace. Therefore, there exists an integer i± such that 

ß. » ß. n C. . 
11 

By an argument similar to that above, it can be shown that 

C = (C n ß ) © ... ©(C n ß ) , 
1 1 il p 

and because C. is simple and C. n ß =s ß a non-zero 
1 ' ± 1 1 

subalgebra, we have that C = C n ß, = ßn. Repeating the 
J-1 ^1 i X 

argument for ßg,...we fiat that there exist integers 

# such t#h&t —- 



Also, since ßi is orthogonal to if i / j, it is seen that 

the integers i^,•••ji^ are all distinct. By symmetry, there 

exist distinct integers suchthat 

Cl " 6J1'-"'Cq‘ Bjq • 

Hence, there is a one-to-one correspondence between ß,,...,ft and. 
1 ' p 

^1,’’’,Cq 80 5=¾ and. C^,...,C^ is merely a rearrange¬ 

ment of ß^...,ßp. 

It will be assumed throughout the remainder of this section 

that G is a finite-dimensional ternary algebra. If ß is a 

subspace, then dim( ß) will denote the dimension of ß. 

LEMMA 8.2. 

(i) Let A and g be minimal right ideals in Q. if ß 

Jüâ * are not left orthogonal, then ft and ß have 

the same dimension. 

(ii) Let £ and Ift be minimal left ideals in G. if £ 

is.not right orthogonal to fo, then dim(£) = dim(to). 

Choose non-zero elements Reft and S e S such that 

RR*S / 0. If T and U are non-zero elements of ft and S 

respectively, such that TT*U = 0, then 

0 * T,T'*(TT*U)U,*U' = T'TX-U' . 

Hence, 

0 = RR*(T'T*U')U*S B R(T'I*R)*(U'U^S) = RR*S , 



since T,R eft nnd T / 0 and U,S e 8 and U / 0. Our 

supposition that TT^U = 0 thus leads to a contradiction, so that 

TT*U / 0 for all non-zero elements T £ ft and U £ 8. 

Since 8 is an inner-product space, 8 has a basis 

S1,...,Sn suchthat SiSjSj = 6ijSj, where is the 

Kronecker delta. If R is any non-zero element of ft, then 

RR*S1,...,RR*Sn are all non-zero and belong to ft. They are 

also linearly independent, for if Xi rr*si - 0, then 

n 

ï ) 
i=l 

n ■ I 
i»l. 

for d = 1,...,n. Hence, = 0. Therefore dim(ft) > dim(8). 

By symmetry, dim(8) > dim(R), and part (i) is proved. 

The proof of ( ii) is based on the fact that Uil*M V 0 for 

any non-zero elements L £ £ and M £ Ri. 

LEMMA 8.3. . 

(i) If ft and 8 are minimal right ideals in Q, then 

R M » are not orthogonal, they have the 

dimension. 

0 - (2 \®*s1 ) SJS;1 . 

i-1 

(ii) If £ and m are minimal left ideals in Q, then if 
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£ is not orthogonal to 1U, then dim( £) = dim( fo). 

We may assume that ft is left orthogonal to », since 

othervise Lemma 8.2 implies that ft and » have the same 

dimension. 

Let G » £1 © • • • © £n be a decomposition of G into 

mutually right orthogonal minimal left ideals. Using the same 

argument as in the proof of Theorem 7 A it can be shown that 

ft = (ft n £^ © ... © (ft n £n) 

and that 

» <= (8 n £x) © ... © (g n £n) . 

Since ft / (0), there exists an integer k such that 

‘ft / {o}» 

Suppos^ that . 8 n £^ « (o). If j is an integer such that 

R n £ y (0), we have by Lemma 7.4 that 8 n £ « {0}. Hence, if 
U J 

we denote by I the index set .for which ft n £ y {0}, then 
J 

^ n “ (0) ^or j 6 I. It will now be shown that ft and 8 

are orthogonal. Let Reft and S £ 8. Then R a 2 R and 
i€l i 

® “ ^iel'Si' where R^ e ft n £^, e 8 n £^ and I* denotes 

the complement of I. Then 

RS*S = ¿j X RiSJS = ° ’ 

iel jel' 
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since Ri and belong to different right orthogonal left ideals. 

Also, RR*s = 0 since R and g are left orthogonal. Because 

R and S were arbitrary, R is orthogonal to g. This 

contradiction implies that S n ^ / {0}. Lemma 7.4 then implies 

that if 1 < J < n, then R n and g n £^ are either both 

non-zero or are both zero-subspaces. Thus, if 1 is again the 

index set for which R n £^ / (0), then g n £^ / {0} for d * I 

also, in addition, if d e I then both R n £^ and g n £^ have 

dimension one. R and g therefore have the same dimension. 

The proof of (ii) is accomplished by using the decomposition 

Cb s R. ^ ^ ^ 
^ zu 

of Q into mutually left orthogonal minimal right ideals. 

THEOREM 8.2. Let G be slnmle. >rw. 

(i) If G = Rx © ••• © R^ is any decomposition of Q into 

mutually left orthogonal minimal right ideals, then 

^l'*,,,\ All have the same dimension. 

(ii) If G - ¾ © • •. © £n is a decomposition of Q into 

mutually right orthogonal minimal left ideals, then 

£l'''*'£n All have the same dimension. 

Let G - ^ © • • • © £n be a decomposition of G into 

mutually right orthogonal minimal left ideals. As in Theorem 7.4 

we have that 

^i “ (^ n £^) © ... © ( R¿ n 



for i = 1,Since G is simple, each of n n £ 

is non-zero and is therefore of dimension one. Hence, 

dimCfy = n for i = 1,...,m. 

The proof of ( ii) will be omitted. 

COROLLARY. Suppose that G is simple. Then; 

(1) Any two minimal right ideals in Q have the same 

dimension. 

(U) Any two minimal left Ideals In G have the same 

dimension. 

Let ft and g be two minimal right ideals in G, and let 

G = ft1 © • • • © ftm be a decomposition of G into mutually left 

orthogonal minimal right ideals. If ft were left orthogonal to 

each of ft^,. • .,Rm, then ft would be left orthogonal to 

R-L © • • • © Rm *= G. In particular, then, ft would be left ortho¬ 

gonal to itself, a contradiction. Thus, there exists a right ideal 

Ri such that ft is not left orthogonal to f^. By Lemma 8.1, 

dim(R) = dim(Ri). The same argument may also be used to show that 

there exists a right ideal ft^ such that dim(g) = dim(ft ). By 

the theorem, R^ and ft^ have the same dimension, so that 

dim( ft) = dim( g). 

The proof of (ii) is of course a result of statement ( ii) of 

the theorem. 

We are now ready to prove the first uniqueness theorem. 



QHEOREM 8. J. Let G = R. © • • • © ft and 
1__ m —— 

G = S1 © • • • © 8p be any two decompositions of G Into mutually 

left orthogonal minimal right ideals. Then m = p and for each 

fti there exists an such that dia^) = dia^). Also, for 

tach. gj^ there exists an ft such that dia(g ) = dia<R ). 

If G Is simple, then the corollary to Theorem 8.2 implies 

that gp ...,gp all have the same dimension. Let n 

denote this common dimension. Then an = pn, so that m * p and 

the first case is proved. 

Now suppose that G is not simple. Then by Theorem 8.1, 

there exists a unique collection of mutually orthogonal simple 

subalgebras ...,such that 

G = ß ©••.•© ß . 
1 k 

Let i denote a fixed integer between 1 and m and let A be 

a non-zero element of. ft^ Then 

A « + ••• + 

.¡where Bj 6 Since ß^ is.right orthogonal to ß^ if J / i, 

repeated use of Lemma 4.1 shows that are all elements 

of ft^. Also, Bj is left orthogonal to B^ if $ 4 There¬ 

fore, Theorem 4.1 inqpiies that at most one of B.,...,B is 

non-zero. If Bj denotes this non-zero element, then A e ß . 
•) 

We now assert that all elements of are contained in ß . For, 
w 

if C is any other non-zero element of ft such that C e ß , 
* í 

where l 4 then A and C are two non-zero left orthogonal 
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elements of R^, a contradiction to Theorem 4.1. Hence, R Cft . 
* — J 

Each minimal right ideal R^,..., R^ is therefore contained in one 

and only one of ß1,... ,ßk. 

Note also that each subalgebra ß^ contains at least one 

right ideal R,. For if this were not the case, each R. would be 
* z 

contained in a subalgebra other than ß.. Since ß. is orthogonal 
j j 

to ß, if J / /, ß. would be orthogonal to each of R.,...,R 
* j 1 m 

and therefore to R. © • • • ® R = G, a contradiction. 
X m 

Suppose that R-,...,R are contained in ß., that 

. 1 1 
Rii+1;• • •,fií® contained in 0^, etc. Let B € ß^. Then since 

G » Rx © • • • © Rm we have that B = R. + • • • + R , where B. 6 R . 

Rearranging R^...,Rm yields 

B - (R1+ -. + R ) + (R + ... + B ) + .... 
11 2 

Therefore, 

B-- (Ri + ... + R^) . (R^ + ... t R^) + .„ . 

The left-hand side of this last equation is contained in and 

the right-hand side is an element of ß« © ••• © ß . Since ß 
¿ K 1 

is orthogonal to each of ß2,...,ßk, it is also true that ß1 is 

orthogonal to ßg © ••• © ß^. Therefore, B - (R^ + • • • + R^ ) is 

orthogonal to itself and is thus zero. In other words, 

B * R1 + ... so that R^ ...,Ri generate ß^ Also, 

sJLncc ^ • # # R 
1^ * * * ' ®r® left orthogonal, they are independent sub- 



spaces, so that © • • • © Rj, . 

The same type of argument proves that 

8i- 8i ©8, 

for some integer ¿y Since is simple, the first case is 

applicable and we get that i1 = ^ and that Rj^,...,Ri , 

8.,...,8. all have the same dimension. 
x •'l 

Similar remarks apply to each of ^,...,8^ thus completing 

the proof. 

As expected, a corresponding result is valid for the de¬ 

composition of G into minima.! left ideals. 

THEOREM 8.4. Let G a> £. ® * * * © £ and Q = |U. © • •. ® tH 
1 n •— 1 q 

be any two decompositions of G into mutually right orthogonal 

minimal left ideals. Then n ** q and for each £^ there exists 

an Itlj such that dim(£^) = dim(ftj) and for each there 

exists an £' such that dim(n\.) » dim(£.). 
d i J 

The proof is similar to that of Theorem 8.3 and will be 

omitted. 



9. ORTHONORMAL BASES 

The concept of orthononnfülty will now be generalized with 

regard to a finite-dimensional ternary algebra. It will be seen 

that every such algebra Q has an orthonormal basis. Certain 

expansions of elements of the algebra will be given relative to 

such a basis. 

We shall assume throughout this section that Q is a 

finite-dimensional ternary algebra having the decompositions 

G ■ ^ © • • • © 

and 

G * © • • • © 

into mutually left orthogonal minimal right ideals and mutually 

right orthogonal minimal left ideals respectively. Let 

m . n 
G » © © C 

i=l j=l 

the corresponding decomposition of G into central ideals 

■ n £^ as in Theorem 7.3. 

As before, the notation 6, . will denote the Kronecker 

delta. 

ing of 

LEMMA 9.1. If G 

non-zero elements 

(i) CidCijCii “ C 

is simple, then G has a basis cor.sist- 

CiJ 6 ^ij an<^ satisfying: 

U 



where X is a non-zern 

(il) Vï/u = CS1 
^lli' CghCiJCla ' 6hJ6ikM:gi' 

complex number dependent upon and Ci£. 

Since C is simple, (^/{0} for i = 1,...,m end 

J - 1,...,n. Prom each central ideal Cj choose a non-zero 

element B^. is of degree one, slice it belongs to the 

minimal right ideal Thus, there exists a positive seal« ß 

such that 

Bi3B13BiJ " P B1J • 

L«‘ cl3 . Then 

cijcïjcij - ciy 

so that.. 0^.0^. 

To prove.(i), note that since and cu are elements 

of the minimal right ideal ^ and 0 J o, v. have 
13 

C¿J%CU = Cu • 

that 

But since C’j « 0^, this is the same as 

The equation 

cifticu - cu • 

C C* C - r giirii cgi 

is a result of the fact that Cgi and both belong to the 

minimal left ideal X . 

72 * 
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Sin« cgh - Rg n ^ ç £h and ty m 

have that Cgh is right orthogonal to if h ^ j. Also, 

because C ^ and Ç it is seen that is left 

orthogonal to if i / k. Hence, 

= 0 gh ij ki 

if either h ^ j or i / k. 

To complete the proof, let h = ¿J and i «= k. We must 

consider the element A = cKjCf;jCii* If A = 0, Theorem 6.J 

implies that at least one of 0^,0^,0^ is 0, a contradiction. 

The same theorem gives us that 

A e ft n £. 
g i ■gi * 

Since Cg^ ’ has dimension one and the element C is a basis for 

Csi' there exists a non-zero scalar X such that 

A-XCgi. 

X is necessarily dependent upon C .,0.. and C . 
So ij U 

Let {CiJ} be a basis of Q as in the preceding lemma. 

Then 

. CghCijCU = 6hjôik X Cgi # 

where X depends upon 0^,0^ and Cu. We shall emphasize 

this dependency by writing X^f, so that 
gi 

now 



The following results provide information about the scalars 

LEMMA. 9.2. If G is simple and has a basis {C } 

satisfying conditions (1).,(it) and (ill), of Lemma 9.I, then 

\XlÍ\ “ Also> = 1 if either g = i or j = 

As in the proof of Lemma 9.I, let A = C C* C . Then 
gj ij U 

M*A = 

■ cgj(ci¿cLcij)*0ij(cijc^cgí)#cli 

= °gdc!3cijcïjcu 

‘ 0K)CÏ3°U 

A , 

where conclusions .( i) and (ii) of Lemma 9.1 have been used. It is 

also true that A =. C^. Therefore, 

A = AA*A = Xóf C .C* C 
gi gi gi g£ g£ 

= X^ tf* X^ C = IX^I2 a 
~ gi gi gi gi-- I gi' A ' 

so that |A^| « l. 

Finally, 
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and 

V cet - cg/cucu = cei ■ 

Hence, - 1 end = 1. 

LEMMA 9.J. If Û is simple and has a basis {C } 

satisfying conditions (i),(ii) and (iii) of Lemma 9.1, then 

rJL Tih 
gi " V Xik Xik V ' 

^ ¿SÉ ^ are arbitrary integers between 1 and m and 

1 and n respectively. 

Again let A “ CgjC£jC Then 

A ■ ce¡%hfh% 

x£h xjh - 
^ik gi Cgh ‘ 

But also A « Therefore, 

A CLCkh * Xgi CgiCLCkh 

= A^ f C . . 
gi gk gh 

Thus, 

xj^À^h ,üh , jh 
V ^-gk - xik xgi - 
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¿h 

lgk 
and since |X_, | = 1, we have that 

gi V xik \i ■ 

Let i = j. Then by Lemma 9.2, 

1 = *tt > 6« ik gi ’ 

so that 

= \Jh xJ11 
gi gk ik 

Hence, 

\£h \¿h \Jh yJh 
V ik V Aik 

- TJh 
- Agk Aik Aik V ; 

as was to be. proved. 

h 

In the factorization of 

k = 1. Then 

in the preceding lemma, let 

Recall that 

= \J1 X^1 xn T-21 
V gl X11 XU V ' 

c C* c 
gj ij U 

U .C* C - i0 YJ-1- •v*-!- Vül « 
ei id i¿ V xn xii ^gl cgi , 

Hence, 
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or, 

Letting = ci;j therefore yields 

Since each is a multiple of C^, the orthogonality relations 

which hold for the elements hold also for the elements E . 

In other words, 

(9.1) 
Ww = • 

A basis (Ey) satisfying this last condition will be caUed an 

orthonormal basis of G. We have now proved 

THEOREM 9•1. Every simóle finite-dimensional ternary 

algebra possesses an orthononral basis. 

If G is not simple, then Theorem 8.1 implies that we may 

write 

G = © • • • © ß j 
P 

where are mutually orthogonal simple subalgebras of G. 

Each ßk therefore has an orthonormal basis {E^). The totality 

of all of these orthonormal bases forms such a basis for G. This 

proves 

THEOREM 9.2. Every finite-dimensional ternary algebra has 

an orthonormal basis. 



It is important to note that the definition of orthonormal¬ 

ity as given here specializes to the usual notion of orthonormality 

of row or column vectors. For example, suppose that the elements 

Eij are a set of »-dimensional column vectors e^ The second 

subscript ¿ is immaterial. Then if * denotes conjugate 

transpose, condition (9.I) becomes 

or 

If each Eid is an m-dimensional row vector f^, then equation 

(9.1) yields 

tf* = 6. 4 . h j hj 

The expansions which hold for orthonormal vectors are also 

valid for an orthonormal basis of a ternary algebra. 

THEOREM 9.3. û be a finite-dimensional ternary 

algebra and let (E^J be an orthonormal basis nf Q. Then ir A 

element of G, the following expansion, hold t.^o. 

m 

and 

n 

A ElbEk¿ (k - .. .,m) . 



Since 

( i = i,.. 

Therefore, 

and so 

) isa basis of G, there exist complex numbers 

.,m » ¿ = 1,...,n) such that 

m n 

I 1¾ A = ; > “i/u • 

i=l J=1 

A f 

'LL01! EAA - L L aijWid 
i=l J-l 

m n 

II“: 

i=l j=l 
■iJ6hh5giEgj 

Z agdEgJ ' 
d=i 

® m n 

) E . E*.-.A = ) ) a E = A 
L gh gïi L L gj gj 
e=i- g=i j=i 

For the second expansion, we have that 
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m n 

A % • I I VíjVm 
i=i d-i 

m n 

“ Z X aiJ5j/kkEii 
i-1 J=1 

m 

Z au\i * 

i-1 

Hence, 

A m n 

¿ A I£íEk¿ * I I “iA, - a • 
¿=1 i-1 ¿=1 

Tç make clear the analogy between the immediately preceding 

expansions, and thoae for a vector space, let V be an m-dimensional 

space of.-.coluam vectors and let .em be an orthonormal basis 

for V. Then if a is any element of V, 

m 

I (e!a) eg 
g=l 

m Ze e* a . 
g g 

g=l 

a - 



The correspondence between this last equation and the first 

expansion in Theorem 9.3 is obvious. 

1 
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10. REPRESENTATIONS 

The orthonorjnal bases as constructed in the previous section 

will now be used to show that every finite-dimensional ternary 

algebra may be characterized as a ternary algebra of matrices. 

This result is analogous to that of Wedderburn [6] in the binary 

case. The results of Section 8 will then permit a proof of the 

uniqueness of this representation. 

THEOREM 10.1. Let G be a simple finite-dimanslonal 

ternary algebra. Then there exist integers m and n ’ such that 

G is Isomorphic to the ternary algebra of all m x n matrices 

over the field of complex numbers. 

Since G is simple, there exist integers m and n such 

that G has an orthonormal basis (E. .), where i = 1,...,m 

d “ 1; • • • >n and each E^^ =/ 0. Hence, if A is any element 

of. G, then for some complex numbers a. . it is true that 

m n 

A “ I I Vu ■ 
i=l j=l 

(°^) is thus an ' m x n matrix associated with A. Clearly, this 

correspondence preserves sums and scalar multiples. It is also 

product-preserving. For, suppose that B and C are any other 

elements of G with associated matrices (ß ) and (<y ) re- 
t j ij 

spectively. Then 

82 



AB*C = 

L aJ: 
gii>kr-l h, j,^=l 

!ghßi^U6hJ6ikEgi 

£ 
g,fcl ¿,l=l “tíWgí 

n m 

Jx J ( j ï VkjYfc,) Egi 
¢=1 ¿=1 lfc=l j=l / 6 

Therefore, the matrix associated with P = AB*C is 

m n 

1^1 j=l 

the usual matrix product 

1^ G is not simple, 

orthogonal simple subalgebras 

exist integers m^ and n. 

then G is the direct sum of mutually 

ßl>For each ßi there 

such that ßi is isomorphic to the 
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ternary algebra of all x n^ matrices over the complex numbers. 

We may of course assume that Û has the canonical decomposition 

ß, 0 0 ... o“ 
x 

0 ß2 o ••• o 

• • • • • • • 

o 0 Ò • • • ß 
_ p__ 

as discussed at the end of Section 7. Therefore, with each element 

A of G there is associated a matrix of the form 

••• 0 "] 

i 

,., 0 

• • • • 

... g 
P 

wnere is an nn x n^ matrix of complex numbers and the "0" 

in the (i,j)-position is an m^ x n^ array of zeroes. Let 

m = m^ + ••• + m^ and n = n^ + ••• + n^. The above argument 

proves 

THEOREM 10.2. Let G be a non-simple finitñ-dimensional 

ternary algebra._Then there exist integers m and n such that 

^ 15 isomorphic to a subalgebra of the ternary algebra of all 

m x n ^trices over the complex numbers. Each matrix in this 

(10.1) 

Bx 0 0 

0 b2 0 

subalf'cbra has the form ( 10.1) . 



It is possible to prove a converse to Theorem 10.1. This 

will be accomplished by finding an equivalent characterization of 

simple ternary algebras in the finite-dimensional case. We begin 

by proving the following result, which is a generalization of a 

well-known theorem on binary algebras. 

THEOREM 10.3. For any positive Integers m and n, let 

"Wi the ternary algebra of all m x n matrices over th. 

field of complex numbers. Then In^ contains no too-sided 

other than ¿tsel^and^he^zero-ideal. 

The matrices (1 , 1,...,m ¡ J = ^ a x ln 

the (1,3)-position and zeroes elsewhere form a basis for In . in 
" mn 

fact, it is easy to verify that the elements E are an ortho- 

normal basis for IU . 
mn 

Suppose 3 is a non-zero two-sided ideal in fo . Let T 
mn 

be a non-zero element of ff. Then there exist scalars t such 
gh 

that 

m n 

1 " I I Vgh ■ 
g=l b=l 

Since T ^ O, there exists a non-zero coefficient . Hence, 

since ¡J is two-sided, it will contain 
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m n 

t-1e, w<- TE* E 
iAd id iJ i-e 

= T -1 V y 
id L L 

g=l h=l 

T E E* E E* E 
gh^rij gh id 

m n 

•’S 11 T B B E E^ E 
gn dd ig W1 id i-i 

g=l h=l 

n 

Tij Z 'tihEkhEijEii 
h=l 

n 

= Tid Z Tüi&hj&iiEki 
b=l 

" TijTiJEU 

= E. M 

for any k and i. Therefore ï = tn . mn 

THEOREM 10.4. Let G he a finite-dimensional ternary 

algebra. Then G is simple if and only if G contains no two- 

sided ideals other than itself and the zero-ideal. 

First suppose that G is simple. Then Theorem 10.1 implies 

that there exist integers m and n such that G is isomorphic 

to the ternary algebra Ifi of all m x n matrices over the com- mn 

plex numbers. By Theorem 10.3, contains no two-sided ideals 

other than itself and the zero-ideal. The isomorphism then • 



establishes that the same is true of G. 

Now assume that G is not simple and let ß and C be 

non-zero orthogonal subalgebras of G such that 

G = ß © C . 

Clearly, ß and C are properly contained in G. Also, by 

Lemma 8.1 we have that ß and C- are two-sided ideals in G. 

This completes the proof. 

The following corollary is the desired converse to Theorem 

10.1. 

COROLLARY. For any positive integers m and n, the 

ternary algebra of all m X n matrices over the field of 

complex numbers is simple. 

COROLLARY. Let G be a finite-dimensional ternary algebra 

having the decomposition 

m n 

û = © © C., 

i=l j=l 1J 

into central ideals ^ as in Theorem 7 • 3 • Then G is simple 

if and only if =/ (0} for i=l,...,m and j = l,...,n. 

If there exist integers k and £ such that = (o), 

then G has the canonical decomposition into orthogonal subalgebras 

as discussed at the end of Section 7« Therefore, G is non-simple. 

Suppose now that C {0} for i = 1,...,m and 
**• J 

j = 1,...,n. Then G is isomorphic to the ternary algebra . 
mn 



By the first corollary, is simple, and so G is simple also. 

We shall now show that the aforementioned representations 

are unique. 

LEMMA 10.1. Let G be a simple finite-dimensional ternary 

algebra and suppose that (i = 1,...,m ; j = 1,...,n) ^ 

Fki (k= ***iP » ¿ '= are two orthonormal bases of G. 

Then m = p and n = q. 

For any integer i between 1 and m, denote by ^ the 

set of all elements R e C which can be written in the form 

n 

K=I Yu • 
j=l 

Ri is clearly a linear subspace of G. Also, each ^ is a 

minimal right ideal in G. For, suppose that R e and that 

A is an arbitrary element of G. Then there exist scalars o 
. d 
U “ and (k » l,...,m ; ¿ = suchthat 

n 

R = I °dEid 
J=1 

and 

m n 

A= I I Vu • 
k=l ¿=1 
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Therefore, 

RR*A 

n n m n 

ïîïl 
tel j=l lc=l ¿=1 

A n m n 

lIlL ViVhj^Ai 
11=1 3=1 lt=l i=l 

3=1 Í-1 

n 

)Z a. E 
U U 

¿=1 

so that RR*A e ft . 

To show that ft. is minimal, suppose that R and 

two elements of such that RR*S = 0 and that R / o. 

exist complex numbers and Oj (j * i,.. .,n) fiuch that 

n 

B = I P3?13 
J = 1 

and 

n 

S ‘ I °3Ei3 • 

S are 

There 



Hence, 

O = RR*S 

o o o E , E* .E 
phpjiihijii 

I 
h,d,i=l 

phpjai&hd5iiEU 

n 

I »jV/iü 

■(î '»j'OÎvu 
j=i x=i 

n 

•Œ 
d=i 

pj s . 

n 2 
Since R / G, we have that |p^| ^ 0, and therefore S = 0. 

By theorem 4.1, then, is minimal. 

It is easy to verify that is left orthogonal to R^ if 

i ^ j and that 

© R . 
in û = © • • • 
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For i = 1,...,p, let represent the totality of 

elements S e G which are of the form 

S = ? o.F,, a- id 

Then as above we can show that ...,3p are left orthogonal 

minimal right ideals in G and that 

G = S, © * • • © S . 
1 P 

Since G is simple, Theorem 8.3 implies that m = p. 

To prove that n =q, we have only to let £ denote all 
J 

elements of the form 

L ■ I 
i=l 

and designate by all elements of the form 

M = H,F,. 
'i ik 

for j = 1, ...,n and k = 1, ...,q. Then it is easy to show that 

are mutually right orthogonal minimal left ideals in C 

and that the same is true of tl^,... ,IT\^. Also, 

G = £, © • • • © £ 
i n 
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and 

G = ITU © • • • © lU . 
1 q 

Therei'ore, by Theorem 8.4 we have that n = q. 

THEOREM IO.5. Let G be a simple finite-dimensional 

ternary algebra. If A is any element of G, let (0^.) be the 

matrix representation of A relative to some orthonormal basis 

(i = 1, ...,m ; i = 1,...,n). Then if (5^) is the matrix 

renresentation of A relative to another orthonormal basis 

then (Q^j) and (^) ar>. of the same size. 

The proof is an immediate consequence of Lemma 10.1. 

In the case when G is not simple, G has a unique de¬ 

composition into mutually orthogonal simple subalgebras: 

G = ß, © • • • © ß . 
1 P 

The matrix representation of any element of G has the form ( 10.1). 

Theorem 10.5 then ensures that each submatrix IL has the same 

size if any other orthonormal basis is used to obtain this repre¬ 

sentation. This proves 

THEOREM 10.6. Let G be a non-simple finite-dimensional 

ternary algebra. If A is any element of G, let (o^.) be the 

matrix associated with A. Assume further that (0^) has the 

canonical form ( 10.1). Then the size of each submatrix is 

invariant for any orthonormal basis used to obtain the repre- 

sentation. 



11. THE POSITIVITY CONDITION 

We shall now dispense with condition (5) in the definition 

of a ternary algebra and study the implications of the absence of 

this positivity condition within the framework of a finite¬ 

dimensional ternary algebra. However, condition ( 1) ( that AA*A = 0 

if and only if A = 0) will be retained. 

Throughout this section it will be assumed that C is a 

*-linear finite-dimensional generalized ternary algebra. 

If A is a non-zero element of G of degree one, so that 

AA*A = OA , 

then either a > 0 or a < 0. 

An element P of G such that ?P*P = P is called a 

positive unit. An element N satisfying M*N = - N is referred 

t0 as a negative unit. Note that P' = P and N' =-N. A unit 

is defined to be an element R for which R' = RR*R. it is shown 

in [1] that every unit may be represented as the sum 

R = P + N 

of a positive unit P and a negative unit N such that P and N 

are orthogonal. 

LEMMA 11.1. If P is a non-zero -positive unit and N is 

a non-zero negative unit in G, then ? and N are linearly in¬ 

dependent. 

95 



Suppose that there exist constants a and ß, not both 

zero, such that 

aP + ßN = 0 . 

Clearly, a and ß must both be non-zero. Thus, P = XN, where 

X = - ofV Hence 

P = PP^P = XÃXNN*N = - XÄXN = - AÃP , 

2 
and so (1 + |X| )P = 0 which yields P = 0, a contradiction. 

Therefore, P and N are linearly independent. 

THEOREM 11.1. Let ß be either a minimal right ideal or 

a minimal left ideal in G. Then one and only one of the follow¬ 

ing two alternatives is true: 

( i) For every non-zero element B in ß there exists a 

positive number ß such that BB*B = ßB. 

(ii) If B is any non-zero element of ß, then BB*E = ßB 

for some ß < 0. 

To fix the ideas, let us assume that ß is a minimal right 

ideal in G. Each element in ß has degree one. Also, if A,B 

and C are any three elements of ß there exists a complex number 

X such that 

AB*C = XC and BA*C = XC . 

It must be stressed that this last fact was proved without making 

use of the positivity condition, which was only needed to show 

that ß is an inner-product space when this assumption is made. 
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Suppose that B is a non-zero element of ß such that 

BB*B = ß3 for some positive number ß. Let 0 be some other 

element of ß such that CC*C = 7C, where y < 0. It will now 

be shown that the assumption y < 0 leads to a contradiction. 

Let P = ( l/Vß) B and N = ( l/\f- y) C. Then PP^P = p 

and M*N = - N. By Lemma 11.1, P and N are linearly indepen¬ 

dent, and so \P + N / 0 for every scalar X. Also, by the above 

remarks, there exists a complex number ^ such that 

PN*A = nA and NP^A = JTa 

for every A e ß. 

For any fixed real number X, let Q = XP + N. Then 

0 / (XP + N)(XP + N)*Q 

. 2 
= A. PP<-Q + A.PN*Q + + 

2 
= A. Q + A41Q + AjiQ - Q 

= [A2 + 2(Re n)\ - 1]Q . 

But the polynomial X2 + 2(Re - 1 has the two real zeroes 

(Re n) + /(Re n)2 + 1 , 

thus yielding a contradiction. Therefore, y = 0, and the theorem 

is proved. 

In Theorems 11.2 through 11.7 below we shall assume that G 

is simpxe and has the decompositions 



into mutually left orthogonal minimal right ideals and mutually 

right orthogonal minimal left ideals respectively. These de¬ 

compositions were obtained without making use of the positivity 

condition in Q. A non-zero element A of degree one, 

AA*A = OA , 

will be called positive if a > 0 and negative if a < 0. 

THEOREM 11.2. Jf there exists an or an contain¬ 

ing a positive element A, then every non-zero element in each of 

‘ ‘ ‘ ‘is_£ositive. 

Every element in each of ^,... £^..,^ is of 

degree one. Suppose that contains a positive element A. 

Then by Theorem 11.1, every non-zero element in ft,, is positive. 

Since Q is simple we have that ft. n £. ^ {0} for 

j = 1, ...,n. For any j, choose a non-zero element L e. ft n £ 
j i y 

Since Lj e ft^, L^. is positive. Because it is also true that 

Thoorem 11.1 implies that every non-zero element in £ 

is positive. Since j was arbitrary, every non-zero element in 

each of £^,...,£^ is positive. 

Now let j be fixed. Then SL ii £. / {o} for 
^ J 

k = 1,...,m. For any integer k, choose Reft, il £ such that 
K K J 
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Rk / 0. Since e X., R^ is positive^ and because Reft,, 

every non-zero element in is positive. Since k was arbi¬ 

trary, each non-zero element in each of ft,,...,ft is positive. 
1 m 

A similar argument proves the theorem when it is assumed 

that Xj contains a positive element A. 

THEOREM 11.3« If there exists an ft^ or an X^ contain- 

ing a negative element A, then every non-zero element in each of 

ft^,...,ftm> X^,...,£ is negative. 

The proof is like that of Theorem 11.2 and will be omitted. 

THEOREM 11.4. If there exists an ft.^ or an X^ contain¬ 

ing a positive element, then every non-zero element of G of 

degree one is positive. 

Suppose that A is a negative element of G, and in fact, 

without loss of generality, that AA*A = - A. Using the decom¬ 

position 

G = fti © • • • © ft , 
j- m 

we may write 

A = An + .. • + A , 
1 m ' 

where Ai t ft and A A*A = 0 for i / j. 
i «L J 

Hence, 
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AA*A I 

z 
i,j=l 

A. A*A. 
1 d d 

Therefore, if 1 < k < m, 

m m 

Z WiAjAj - - Z Wi ' 
i,d=i i=i 

and using the left orthogonality of k,,...,k this reduces to 
1 m 

m 

Z \wjAr - ^ • 
d=i 

Since A^ e and is a minimal right ic^al, we have that for 

every non-zero element A^ 

such that A^A*A^ = . 

m z 
d=i 

there exists a non-zero scalar 

By Theorem 11.2, ^. > 0. Thus, 

VkAjAj " " w 
and therefore 
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m 

I vsys\ - - vsV - \v 
J=i 

Also, 

1 V!ajK VJa3)*\ = V5< 

= • 

If Aj 4 0> then ^ / 0 and 

= ^WjAjK • 

The element = A^AjAj belongs to and = o If and 

only if » 0- « Rig / 0 there exists a scalar 

4 0 such that 

\jRkjRkj = ^kjRkJ ’ 

By Theorem 11.2, ^>0. Hence, = R^ and 

RkjRkj\ = = ^kJ^St * 

Therefore, 
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m 

- VSc = I 
d=i 

m 

d=i 

= (¿ x¡^)\ 

j=i 

for k = 1,.. .,m. If 

m _i 
Aj >0, a contradiction. This completes the proof. 

The following is the- corresponding result; for negative 

elements and is proved in an analogous manner: 

v THEOREM II.5. If there exists an ft. or an £ contain- 
A J 

ing a negative element, then every non-zero element of G of 

degree one is negative. 

We are of course still retaining the assumption that G is 

simple. 

' THEOREM 11.6. If G contains a positive element, then 

every other non-zero element of G of degree one is positive. 

Denote by A this positive element. Using the de¬ 

composition 

G = ft. © • • • © ft 

4 0, then - < 0 and 
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ve may write 

A = A, + • • • + A 
1 m 

where A. £ R. ( i = 1,... ,m). Also^ for each A. there exists 
11 1 

a scalar X. such that A.A*A. = A.A.. Since A ^ 0, at least 
i i 'i i i i ' 

one of A,»....A niust be non-zero. Hence, there exists some X. 
1 m j 

which is non-zero. If A. < 0, then A. is negative and so 
V J 

Theorem 11.5 implies thai A is a negative element, a contra¬ 

diction. Thus, A. > 0, and by Theorem 11.4 we have the desired 
J 

result. 

THEOREM 1Í.7. If û contains a negative element, then 

every other non-zero element of G of degree one is negative. 

The proof is the dual of that of Theorem 11.6. 

The last two theorems imply that if G is simple, then 

either every non-zero element of G of degree one is positive or 

every such element is negative. Thus, if the positivity condi¬ 

tion does not hold in G, it is possible to introduce a new rule 

of composition 

AB+C = - AB*C , 

so that the positivity condition is now satisfied relative to the 

product AB^C. 

If G is not simple, then there exist mutually orthogonal 

simple subalgebras ß1,of G such that 

G = ß. © • • • © ß . G = ß^ © 
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For each ßi the positivity condition either holds for 

AB*C or for the product AB+C as discussed above. 



12. REAL FINITE-DIMENSIONAL TERNARY ALGEBRAS 

The present section will be devoted to a study of finite¬ 

dimensional ternary algebras in which the scalars are restricted 

to be real. Many of the results already proved for complex ternary 

algebras are also valid in the real case. In particular, if ft 

is a minimal right ideal in a real finite-dimensional ternary 

algebra G, then A'A*B = B for all elements A,B in ft for 

which A / 0. Similarly, if £ is a minimal left ideal in G, 

then BA*A' = B for each pair A,B in £ for which A ^ 0. If 

C is a minimal central ideal in G, then CODC-kC* = D for all 

elements C,D in C for which C / 0. Every element in ft,£ or 

C has degree one. Also, the following decompositions of G 

remain true: 

(12.1) G = R. © ••• © ft 
i m 

and 

( 12.2) G = £1 © © £ 

where ft^,..., ftm are mutually left orthogonal minimal right ideals 

and ...,£n are mutually right orthogonal minimal left ideals. 

The resulting decomposition 

m n 

(^.2) 

105 
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> 

a representation of G. As in the complex case, we have that G 

is simple if and only if C.. / {0} for i = 1,...,m and 

j = 1,...,n. However, it is not necessarily true in the real case 

that if G is simple, then each C.. has dimension one. Until 

further notice, it will be assumed in this section that G is a 

simple, real finite-dimensional ternary algebra having the de¬ 

compositions (12.1),(12.2) and (12.3). 

LEMMA 12.1. Suppose that C is a minimal central, ideal in 

G such that dim(C > 1 and that A and B are two linearly 

independent elements of C such that AA*A = OA and BB*B = ßB. 

Then ; 

( Tnerfe exists a real number X such that 

= Xa - OB „ and BA*B = ÀB - ßA . 

( ii) ÁÊ*A = - aB if and only if BA*B = - ßA. 

Uáing the cdrollary to Theorem 6.6 arid Lemma 6.2, we have 

that 

AA*C = aA'A*C = QC , 

and 

BB*C = ßB'B*C = ßC 

for any element C in C. Moreover, 

BA*A = aBA*A' = aB 

and 
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AB*B = ßAB*B' = ßA . 

Also, there exists a positive number a such that 

(A + B)(A + B)*(A + B) = o(A + B) . 

Therefore, 

(A + B)(A + B)*C = cr(A + B) '(A + B)*C = oC 

for any C in C. 

The above equations yield 

oC = AA*C + AB*C + BA*C + BB*C 

= QC + AB*C + BA*C + ßC , 

and so 

AB*C + BA*C = XC , 

where X = a - a - ß. Letting C = A, we get that 

AB*A = XA - OS 

and if C = B, then 

BA*B = XB - ßA . 

To prove (ii), note that if AB*A = - aB, then X = 0 

and therefore BA*B = - ßA. The converse is similar. 

LEMMA 12.2. Ii_ C __ „"ual central ideal whose 

-dirr.ension is > 1, then there exist linearly indeuendent elements 

U and V in C such that 

UU*U = U , Wx-V ^ V , 

v.
n 



Let A and B be two linearly independent elements of C 

such that AA*A = OA and BB*B = ßB. Then by Lemma 12.1 we have 

that for any real number 

A( B + ■ ^A) *A = AB*A + ^AA*A 

= XA - aB + pdA 

= ( X + 2^a) A - a( B + ^A) . 

■Hence, if n = - ^\/ct), then 

A( B + pA) *A = - q( B + nA) . 

It may be verified that for this 4, 

(B + hA)( B + nA)*(B + pA) = (ß - ii2a)(B + pA) , 

2 
so that ß - ^ a > o and conclusion (ii) of Lemma 12.1 implies 

that 

(B + ¿A)A*(B + uA) = - (e - ^ajA . 

Therefore, letting 

u = —1 

and V = (1//0)A, we have the desired result. 

THEOREM 12.1. If C is a minimal central ideal whose 

^■ensi0n is >2, diKC)>5 and there exist linearly 
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independent elements U,I,J,K in C such that if A,B and C 

are any three distinct elements from the act (U,I,J,K), then 

AB*C = - BA*C = - AC*B = - CB*A . 

By Lemma 12.2, there exist linearly independent elements U 

and V in C such that UU*U = U, W*V = V, VU»V = - U and 

UV*U = - V. Let J be independent of U and V and assume with¬ 

out loss of generality that JJ*J . j, ju*j . - u UJ#u = - J. 

By Lemma 12.1 there exists a real number \ such that for any 

real number p, 

J(V + . jvwj + jij 

s 'Xj - y + uJ 

= (X + 2u)j - (V + mJ) . 

Thus, If ve let 4 » - (\/2) and W « V + 4J, then JW#J - - w. 

Also, 

UW*U ■ uv*u + uUJ*U 

“ - V - 4J 

= - w . 

A straightforward computation shows that WW*W * ( 1 - 42)w for 
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U - - (X/2). Let I = (1/^ _ ^2)W. Then U*i = m^u _ . j 

axA by Lemma 02.1, IU*I = - U. In addition, JI*J = - i and 

U*I * - J. These equations yield 

IU*J = - JI*JU*J = jx*u 

= - = - Jü»I . 

Let K = IU*J. it will now be shown that U,I,J and K are 

linearly independent. Suppose that 

and let' 

L=0iU+ßI + ^ + 6K»0 

M = OU - ßl - ryj - 6K. 

Then 

0 = LU»M = ( O2 + ß2 + 72 + 62)U , 

so that a=ß = 7= g = 0. 

The following equations may be easily verified. 

KK*K = K , UK*U = - K , IK*I = - K , 

KI*K =-1, JK*J e - K, KJ*K = - J . 

Thu., if A and .B are any two dietirît elements from the set 

tU,I,J,K), then AB»A = - B. Henoe, if a,B,C e (U,I,J,K) end 

A,B,C are distinct, then 

AB^KJ « AB*AA*C « - BA*C 
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and 

AB*C = AC*CB*€ » - AC*B . 

These equations imply that 

AB*€ = - BA*C = BC*A = - CB#A . 

This completes the proof. 

THEOREM 12.2. If C is any minimal central ideal in G, 

then the dimension of C is at most four. 

Suppose that C is a minimal central ideal in G such that 

dim(C) >4. Let U,I,J and K = IU*J be linearly independent 

elements of C as described in Theorem 12.1. Assume that L is 

an element of C independent of U,I,J and K, and without loss 

of generality that UL*U = - L. fiy Lemma 12.1 there exist real 

numbers A and ^ such that 

IL*I = XI - L and JL*J = nJ - L . 

Therefore, if 

M=L-~I-^j ; 

then 

IM*-! = IL*I - ^ H*i - ä 

= Al - L- ^I + ^j 

= - L + ^I+Hj 

= - M 



» 

no 

and 

JM*J ■ JL*J - ^ JI*J - M jj*j 

= HJ - L + ^ I - ^ J 

“ “L + ^I+^J 

» - M . 

Also, 

Heneé, 

UM*U » UL*U - g UI*U - ^ ÜJ*U 

“"L+^I+^J 

= - M. 

JÏ^I a (J^J)J*I a - HJ#I as _ 

a - MÏ*(IJ*I) » MI*J •» II*Mr*J 

= I(IM*I)*J - - IM*J . 

This last equation implies that 

KM*K a IU*JM*IU*J 

= - IU*IM*JU*J a - UM*U 

= M . 

But there exists a real number v such that KM*K a vK - M. Thus, 

vK - M - M , 
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or, 

vK - 2M = 0 , 

so that M and K are linearly dependent, and therefore L is 

not independent of I,J and K, a contradiction. 

LEMMA 12.3. Let ft and g be minimal right ideals and 

let £ and m be minimal left ideals in Q. Let C = R n £, 

£=Rnm, e=8n£ and 3 =* g n fo. if c,Ä,e and 3 are all 

non-zero subspaces, then C,Ä,ß and 3 all have the same 

dimension. 

Note that C,Ä,ß and 3 are all minimal central ideals in 

0. Suppose that diiii( C) = P and let .., ,c be a basis for 

C. Choose non-zero elements E c ft and F t 3. Then by Theorem 

Ó.3 we have that C^F e Ù and that C^F / 0 for i = 1,...,p. 

It will now be shown that 0^,...,0^ are linearly independent. 

First of all, since E and F are non-zero elements of the minimal 

right ideal g, F'F*E = E. Similarly,■ since (i = 1, ...,p) 

and E belong to £, C^E'- ^ for i = 1,...,p. Therefore, if 

^Cj^E^F = 0 ) 

then 



o - XjCjEKFF'fcE' = X^^F'F^E)^' 

so that = 0 (i = 1,...,p). This implies that dim(C) < dim(fi). 

The reverse inequality follows by symmetry, and so din<C) = din{Ä). 

To prove that dim(C) = dim( 6), choose non-zero elements 

F e 5 and D e Then as above, FD*^ is a non-zero element 

of Z for i = 1, ...,p and FD*C^,.. ,,FI>#Cp are linearly in¬ 

dependent. The remainder of the proof then follows immediately. 

We emphasize that G is still assumed to be simple. 

THEOREM 12.3. If C and 5 are minimal central ideals 

in G, then C and 5 have the same dimension. 

Ry Theorem 7.6, there exist minimal right ideals ft and 

g and minimal left ideals £ and m in G such that 

C = ft n £ and 3 = g n to . 

Three cases will be considered. Suppose first that C 

and 3 are not left orthogcnal. Let & = ft n to and e = g n £. 

Note that by Lemma 7.4, & = (0}. if and only if £ = {0}. We 

shall show that the assumption 6 = (0} leads to a contradiction. 

Choose C e C Ç £ and Seg. Then SS*C ê g n £ = £ - <{0}, so 



that C is left orthogonal to g and is therefore left orthogonal 

to 5, a contradiction. Hence, and 3 are all non-zero, 

and by Lemma 12.} all have the same dimension. 

A similar proof applies in the case when C and 9 are 

not right orthogonal. 

Finally, suppose that C iS orthogonal to 3. If ft is 

not left orthogonal to 8, there exist non-zero elements Reft 

and S e 8 such that RR*S / 0. If T and U are any two non¬ 

zero elements of ft and $ respectively, such that TT*U = 0, 

then T'T*U' = 0 and 

0 = RR*T'T*U'U*S = -R( T'T*R)*( U'U*S) = RR*S , 

a contradiction. Hence, TT*U / 0 for any non-zéro elements 

T e ft and U e 8.' ‘In particular, if TeftnX=C and 

U e 8 n la = 3 and T / 0 and U / 0, then TT*U / 0, contra¬ 

dicting the fact that C and 3 are orthogonal. Therefore, ft 

is left orthogonal to 8. Similarly, £ is right orthogonal to 

tU. Let ft^ = ft, ftg * 8, = £, £g = in. Then as in the proof 

of Theorem 7.I, 

Û - R1 ©ft2 © (ftj[ n ft¿) 

and 

G = £x ®.£g ¢(£^ n . 

Continuing the procedure as before, 



0= Ri © • • • © R 
-L m 

and 

G =£ ©... ©£ 
1 n ’ 

Where are mutually left orthogonal minimal right ideals 

ana are mutually right orthogonal minimal left ideals. 

Since G is simple, Ri n ^ (0} for ^ 

¿3 = 1,...,n. In particular, ^ n £g = R n fo = ß ^ (0) and 

R2n£i=gn£ = e/ {0). Lemma 12.3 again implies that C,fl,e 

and 3 all have the same dimension. This completes the proof. 

Suppose now that ß is a real or complex ternary algebra 

containing a positive unit U such that AU*U = ÜU*A a a for 

every element A in ß. Let a nfew law of composition be defined 

in ß as follows: 

A 0 B a AU*B . 

With this operation ß is a binary algebra. The adjoint of A 

relative to U is defined to be 

A+ = UA*U . 

-- 3,C is any triple of elements in ß, then 

A 0 ' B+ • C = AU*B+U*C = AU*UB*UU*C = AB*C , 

a.... tne original ternary composit on is regained. Each central 

ideal in the algebra G = ©. ^ contaihs such a 

positive unit and is therefore a binary subalgebra of G. 

Theorems 12.1 and 12.2 combine to give us that if G is 



simple, then each C^j has either dimension one, two or four. If 

dim(Cij) = 1, then is isomorphic to the field of real numbers. 

In the case when is of dimension two, Lemma 12.2 ensures 

the existence of linearly independent elements U and V In 

satisfying 

UU*U - U , W*V = V , 

VU*V » - U and UV*U = - V . 

The element U also has the property that AU*U = UU*A = A for 

each A e C^. As above, define A 0 B « AU*B and for conven¬ 

ience, A = A « A. Then = U, V*~ = - U and V* = - V. If 

A and B axe elements of C^, there exist real numbers 

and 6 such. that 

A - OU + ßV and B - yU + 6V . 

Hence, 

A • :B » (aU + ßV)U»(yU + EV) 

« ay UU*U + OBUU»V + ßyVU*U +. ß6VU*V 

= OyU + Q6V + ß^V - ß6U 

• - (Oy - ß6)U + (06 + ßy)V , 

A+ - UA*U - U(OÄJ + ßV)*U - QU - ßV . 

and 



Therefore, is isomorphic to the field of complex numbers. 

Finally, if has dimension four, then Theorem 12.1 gives 

the following characterization of C^j. Let UylyJyK denote the 

basis elements of as described in the aforementioned theorem. 

If A and B belong to C^, again define A o b = AU*B and 

2 
A = A » A. Then the elements U,I,J and K satisfy 

2 2 2 
I = J = K = - U , 

IoJ=-JoI = K. ,J oK=-KoJ = I, 

KoI=-loK = J . 

is thus isomorphic to the division ring of real quaternions. 

. « » 

These facts, along with Theorem 12.}, prove the following 

reáult s 

THEOREM 12.4. Let G; be a simple, real finite- 

dimensional ternary algebra. Theri there e^ist integers m an^ n 

such that either: 

( i) G is isomorphic to the ternary algebra of all real 

m X n matrices, or; 

( ii) G is the direct sum of mn minimal central ideals 

each of which is isomorphic to the complex 

numbers and such that is left orthogonal to 

if i / k and is right orthogonal to if 

J y or: 



(‘il) G la.«!» direct ,m of m Mnlml «ntral ^..n. 

C1J' —h °f vlll,!h 1’ l«on°n.h<r to th« .,-r 

°L.r«al quaternlonfl and ^ l8 ltft 

£22^ 1£ ‘A «d ClJ 1. right 

ssssi to ei/ if j / /. 

xn th, case vh,„ G i. not elmpU> w, a„e01IpoS(1 0 ^ 

mutually orthogonal .impie .ubalgebra. B.,...,# ¡ 
1 P 

Q = ß1 © ©ß 

Theorem 12.4 may th«, be applied to each B, to obtain , repre- 

sentatlon of Q. 



j-3» APPLICATIONS TO MATRICES 

Our attention will now be reetrieted to the study of tenuuy 

algebras of matrices. The appUcations will include a character!- 

zation of an orthonormal basis of such an algebra. 

The *-operation will as usual denote conjugate transpose. 

All vectors will be understood to be coluan vectors. If x ls 

a vector then the nonn of x is \\x\\ = 

The following well-known result [2J win be of importance. 

LM« «.I. ¿et A bejn m x n matrix of rsnw r > 0. 

Then .there exists an ortbonnr.^ ... -f m-dimens.on.. - 

ÍX1""'V Q^honormal set of ... 

tyl.^ a Mt r ^eltlv. number, (i , , 

such that 1 

r 

= ¿ . 
i=l 

Furthermore. Av - i .... 

-- Vi’ A ‘i " Vi âiâ xr are 
eigenvectors n-r m* wmip v 

-— yli,,,^r Me eigenvector« A*A# 

Since A is of rank r. a#a -i a %. i 2 2 «i« r, a*a is of rank r also. Thus, 

let XV“'Xr be the non-zero eigenvalues of A*A with 

associated orthonormal eigenvectors v „ »» “ vectors ... ,yr. We may assume 

that Xi>0(i » 1,...,r). 

Let yrfly*“>yn be “ orthonormal basis for the null- 

space of A*A such that y . v v 
*,,yr,yr+1,••*,yn is an orthonormal 
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basis of rf1) Euclidean n-dimensional space. 

Let 

for i»l, Then 

II2 = (Ay^*^) =. yj( A* Ay t) 

' ■ xi - 

so that = II (i = l>«**>r)* Also, 

“ Tlw? 

“ TP^f .^i= X*xi 

for i = 1,...,r and so x^,...,xr are eigenvectors of AA*. 

To see that ...,xr are orthonormal, note that. , 

XJ ' "h 
“ 6U = BiJ • 

In addition, if 1 < i < r, 

^ = llAyJI^ = \\ 

and 



A#X1 ■ Wjl ■ 11^1 - Vi • 

Now let D - A - Then if 1 < d < r, 

r 

• I ViVj 
1-1 

■Vj'Vd 
- 0 . 

If r-.+ 1 < J < n, then 

. "V1 V ¿ Vi^d* 
•i-1 

. 0 , 

since ' Yj 'is ih‘the null-space of A*A and therefore in the 

null-space of A. Hence, D - 0 on En so that 

r 

A ■ I Vin 

i-l 

as desired. 

The following theorem is the converse to a result mentioned 

in Section 4. will denote as before the ternary algebra of 

all m X n complex matrices. 



THEOREM 13.1. If ft is a minimal right Ideal In 

or in a subalgebra of then every element À t ft is of the 

form 

A = uv* , 

where u is an m-dimenslonal vector independent of A and v is 

an n-dimensional vector. 

Suppose that A c ft and assume that A has rank r > 0. 

It will he shown that r ■ 1. if r > 1; we may write 

A “ ï Wï 
i=l 

where (x^.,xr) and } are orthonormal sets. Let 

Ei Ä for 1 * 1;• Then 

*1*1 " Wjil * 6i/i»3 

and 

so that Ei is orthogonal to E^ if i / J. Repeated use of 

Lemma 4.1 gives us that E^ .. .,Er~ are all elements of ft. But 

the fact that E. is left orthogonal to E. for i ^ j contra- 

diets Theorem 4.1. Hence, r = 1, so that for some integer k, 

A- vw • 
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Let u = and V = yk> Then 

A = uv* . 

To show that u is independent of A, let B & ft. Then as above, 

we can show the existence of an m-dimensional vector w and an 

n-dimensional vector x such that 

B » wx* . 

Since ft is a minimal right ideal and A / 0, A'A*B * B. Also, 

it is easy to check that A' = (l/a)A, where o - ||u||2||v||2. 

Therefore, 

B = A'A*B = o“Wb = a"1(uv*)(vu*)(wx») 

= a v^v) ( u^) ux«- * uy* , 

where y = a v*v)(w*u)x. This completes the proof. 

The corresponding result for left ideals is as follows: 

THEOREM 13.2. Jf £ is a minimal left ideal in 

or in a subalgebra of then every A.e £ is of the form 

A = uv* , 

~5r.e u Is an m-dlmensional vector and v is an tonal 

vector independent' of A. 

Within the proper coordinate system, minimal right ideals 

ft in in^ may be regarded as rows of an , m x n matrix; Each 

element Reft has the form R ■ uv* where u is some fixed 

; 



m-dimenßional vector. If it happens that u is the vector with a 

1 in the i-th coordinate and zeroes elsewhere, then R has the 

form 

where (occurring in row i) are the components of the 

vector V dependent upon R. In a suitable coordinate system, 

•minimal left ideals in ft may be regarded as columns of an 
mn —1 . 

m X n matrix. Also, every minimal central ideal C in ' (U is 
mn 

of dimension one, pnd so each element C e C may be regarded as 

an individual entry of an m x n matrix. 

Every finite-dimensional ternary algebra G is either 

isomorphic to or to a subalgebra thereof. The above remarks 

•indicate that in the proper coordinate system, the decomposition of 

G into left orthogonal minimal fight ideals may be regarded as 

the sum of the rows of the matrix associated with an element 

A t G. The decomposition into right orthogonal minimal left 

ideals can be interpreted as the sum of the columns of the matrix. 

Finally, when G is decomposed into minimal central ideals, we 

may regard this as the sum of mn matrices, each containing a 



single component of the associated matrix and zeroes elsewhere. 

The following theorem provides a characterization of an 

orthonormal basis of ll\ • 

( 1 = 1,... ,m ; j = 1,... ,n) forms an orthonormal basis of til 
' mn 

if and only if there exists an orthonoraal set of m-dimensional 

vectors (e,,...,e„} and an orthonormal set of n-dimensional 
" i. m ,w"" ■■■■»■■■ ■ .. ■■■■ i 

vectors (f^...,fn) such that 

Eu ■ ‘i*! 

for i ** 1; • • <¿m and J = 1^...^n. 

It is easy to see that this condition is sufficient. For, 

we have that 

“ BH)6lkVï 

= B. .6,,E hj ih gi * 

To prove the necessity, for each i * l,,..,m, let 

denote the set of all elements A e III which can be written in mn 
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n 

J-l 

the form 



where are sc&lars. Uaing exactly the same argument as 

in the proof of Lemma 10.1, we get that are minimal 

right ideals in G. Also, since E.. is right orthogonal to E. 

if J 5/ /, repeated use of Lemma 4.1 shows that E,. f. R for 

j = 1,...,n. Therefore, by Theorem 13.I there exists an 

m-dimensional vector and an n-dimensional vector x, such 

that 

Eii “ VÏJ • 
V 

If we now denote by Xj all elements B in G which'arfe 

of the form 

B 

in 

I eiV 
i=l 

then it is not difficult to show that £.,,..,X are minimal left 
1 n 

ideals in G and that E^ e £^ for 1=1,.,.,0. Hence, by 

Theorem 1¿.2, 

E. . = V b* . 
ij yi;n ; 

where y is an m-dimensional vector and b. is n-dimensional. 

Thus, 
J 

VÏJ “ hft > 

so that yiJ » \ja1, where = *1. Note that 

l 
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0; a if “ °' then aillxijll2 

contradiction. Hence, 

0 and therefore 

EiJ = * 

Assume without loss of generality that ||aj| « ||bj || » l, since 

otherwise we may absorb the normalizing constants Into the scalar 

A... Now note that 

Vik( 

■ WAt 

- ,Vij\/(*ï*k)('îbj)ag'1 • 

Let h - j. Then 

6ik(Xgiagbi) " # 

so that 

(«.« *i\ " Xg/Xgj\jXki) ^ik # 

and therefore a^. is orthogonal to ií i ^ k. Also, if 

i « k, then 

V Vgl1 " \Áa\t{ ‘ghi ’ 
and bh is orthogonal to b^ if h ^ J. 
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Let i = k in equation (IJ.l). Then 

V “ xe^iS^t - 

Since the left-hand side of this last equation is independent of 

i;J and k, we may let i = j = k = 1 to get that 

\t ' XglIllXU • 

Therefore, 

where 

yields 

\) ■ m HiVuS’l ' °i43 > 

\l^ll^i ^ ¿ rePresent^i0n Eu 

- ciWcidî 

and so ||cj| • ||dj|| - 1. Also, since c^ is a multiple of 

and dj is a multiple of h^, we have that are 

mutually orthogonal and that the same is true of d^,...,dn. 

Thus, letting 

FJ 
and 
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we have that 

' 'ft ■ llc'jl • l|d3|| =11¾ - Eld - 

where e^...,e^ are orthonomal and fare 

orthonormal. 



lU. CIRCULANTS 

A special class of matrices will now be studied within the 

framework of a ternary algebra. Attention will at first be re¬ 

stricted to the case when the matrices are square. A generali¬ 

zation will then be given for the rectangular case. This, along 

with previous results, will allow a decomposition of any finite¬ 

dimensional ternary algebra into commutative binary subalgebras. 

An n X n matrix of the form 

A = 

aí . °k °n 

a a, ou .••• a , n 1 ii n-1 

û« i «i ’•••a « n-1 n 1 n-2 
• • e • • • • 

(¾ Oj a4 -.¾ 

where 0^,...,¾ are complex numbers, is called a circulant. Let 

denote the k x k identity matrix and let 

~° w 
J = , 

1 0 - 

where the elements 0 are blocks of zeroes of appropriate sizes# 

Then 



, etc. 

V • 

Any circulant A nay therefore be expressed in the form 

A = ^n + V + V2 + ‘ ‘ + a/’1 . 

Note also that since Jn = we have that a jn"^ ■ 

where * as usual denotes conjugate transpose. Fron thd* last 

equation it is seen that 

( jV ■ ( J*)* - (J*1)11 ■ jik . 

'As a convention, sot ■ jn ■ Xh. above expansion-of fk 

now becomes 

A = J a/'1 . 

i«l 

A ternary algebra Q is called commutative if AB#C ■ CB*A 

for all elements A,B and C in G. 

THEOREM 14.1. The class C of all n x n complex 

circulants is a commutative binary algebra of dlmen^nn n, 

C is clearly a linear space over the complex numbers. Let 

A and B be any two elements of C. Then there exist scalars 
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and x i » 1,..., n) such that 

n n 

a " X vl"x* b “ X v1”1 • 
i«l i»l 

Hence, 

“ ■ Î w1*3*2 

i,d-i 

■ I ( Z °iw ) - 
te=l 

which is a circulant. Obviously; AB=BA. ..The remaining axioms 

for a binary .algebra are readily verified. 

Finally^ since In;J;...;J form a basis for C; the 

dimension of C is n. 

If B is a circulant, then B* is also. Thus, the 

preceding theorem implies that C is closed under the triple 

product AB*C and AB*C = CB*A for-every triple A,B,C in G. 

This proves the following 

COROLLARY. C is a commutative ternary algebra of dimension 

n. 



1J2 

The following theorem characterizes minimal ideals in C, 

regarded as a ternary algebra. 

THEOREM 14.2. Let A be either a right or a left ideal 

in C. Then is minimal if and only if the dimcnajon of A 

is one. 

If A has dimension one, then A is clearly minimal. 

For the converse, suppose that A is a minimal right 

ideal in C. Let 

»1 ¾ »3 oa ~ 

j,. pn °l Oa •" »tt-i 
• • • • • • • 

P2 Pj P4 PX ' 

be a non-zero element of A. Theorem 13.1 implies that R has 

rank one. Thus, there is one column of R of which every other 

is a multiple. Since all columns of R contain exactly the 

same elements, there exists a scalar a such that 

pn-l 



Therefore, 

yields pn « 

i * 1,2,..., 

PnfO, so 

the form of 

R - 

where X - 

Pi *= “P^.i for 1 “ 2,5,...,n and p^^ = Qtpn. 

cf1 ^p^ ■ If Pn “ 0> then p^ ■ 0 for 

n-1, and so R - 0, a contradiction. Hence, 

that qP - 1. Since pA ■ for i - 1,2 

R is now 

c^1 

OPi 

op! a Pl • • • 

P1 P1 ^1 

o?p, o? 

a*-1* 

px ••• 

■ Pi 

1 a a2 • • • oP“1 

c^“1 1 ï!a ••• a“*2 

c? c? 

■ Xaaa* , 

V 

a « 

a 

0? 

of"1 

and a ■ 

a11“1 

a“-2 

This 



Now let B be any other non-zero element of ñ, Then 

B - nßbb#, where Is a scalar, ß = 1, 

ß 

ß2 

ß* 

ä“-2 
n-1 

and : b 

If a / b, then a / b and et J ß. Therefore, 

A*B = ( Act) ( nß) aa#bb# 

» (Ä5i)(jiß)(a#b) ab* . 

i11“1 
n-2 

ß 

• ' 

ß2 

ß 

1 

Now 

a*b » 1 + oß + Q?ß2 + • • • + 

1 - ^ß11 

1 - Öß 

a 0 , 

so that A and B are two non-zero left orthogonal elements of 

the minimal right ideal ß, a contradiction to Theorem 4.1. 

Hence, a a b, a » b and a » ß. Therefore, 

B » (iCtaa* a jiA A , 
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and the proof Is completed. 

Let denote the n distinct n-th roots of 

unity and let 

fti “ 

w. 

w 
n-1 

and a. 

n-1 
•a). 

u 

u. 

n-2 

for i > 1,...,n. Finally, put 

Ai “ wÂaï (i ■ 1>• • •#») • 

Lernas 14.1. ...,An are n mutually orthogonal 

elements which form-a basis for C. 

It was shown in the proof of the preceding theorem that if 

i / then AJAj « 0. Also, if i / J, then 

yj ■ ViVïVi 

and 

— —2 2 -n-1 n-1 
»t*3 ■1 + “i“i+ Vi+ + “i "i 

, -n n 
1 - U) U) _la 
i - 

o . 

U u> 
i á 
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Hence, A^,...,An are mutually orthogonal and are therefore n 

linearly independent elements of the n-dimensional algebra C. 

THEOREM 14.3. C is the direct sum of n mnttmiiy 

orthogonal one-dimensional subalgebras, each of vhich la a. wiriimni 

two-sided ideal in C. 

Let A^,...jA^ again denote the n orthogonal elements 

of the preceding lemma. For each i * 1,..,,n, let be the 

set of all elements A e C which are scalar multiples of A^. 

Then is orthogonal to if 1 / J. Also, since 

A^> • • •, An form a basis for C, the one-dimensional subalgebras 

Ci,...,Cn generate C. Therefore, 

C » C. © • • • © C . 
1 n 

By Lemma 8.1, ...,Cn are all two-sided ideals in C. 

The concept of a circulant will now be generalized to in¬ 

clude rectangular matrices. An m x n matrix A » (a..), 

where 1 < m < n, will be called a circulant if the elements 

satisfy 

i+l,J 
a J«l' ^ - = í J = 2,t•,,n) 

and 

ai+l,l * ai,n (i - - 1) . 

l 
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We shall make the convention that any 1 x n matrix forms a 

circulant. If m > n, then A is called a circulant if A* 

is. For example, a 2 x 3 circulant has the form 

“a ß y~\ 
JY a ßj ' 

and a 4x3 circulant would appear as 

"a ß «y" 

6 a ß 

76a 
ß 7 6 

Rectangular circulants do not, in general, form ternary 

algebras. In the class C of all 2x3 circulants, let 
» 

r 1 0 0 1 r o i o i 
a = J ' B “ 

Lo 1 0 J L00 1J 

and 

1 ' 

0 J 

Then 

AB«C 
0 0 1 J 



» 

which is not an element of C. Such circulants, however, are 

useful with regard to the study of finite-dimensional ternary 

algebras. 

We begin by considering a simple example. Let 0 be the 

ternary algebra of all 2 x J complex matrices. If A = (a,.) 

is an element of G, write A * A1 + Ag + A^, where 

vL 
“u 0 0 -° «12 0 

. V 
°8ê ^ L0 0 Ofej 

and 

r 0 0 a 

°fel 
0 0 J 

The form of each of A^Ag and is suggestive of a 2 x 3 

circulant. Let G^ be the class of all matrices having the same 

form as for i = 1,2,3. Let 

riooi r o i o i 
U1 - L ' U2 ■ L o i oJ Lo o iJ 

and 

v[° ° I- ' L 1 0 0 J 
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Then it is easy to check that each is a ternary subalgebra 

of G with the positive unit satisfying U^U*A^ = A^U*U^ = 

for each element A^ in G^. Therefore, by the remarks made in 

Section 12, Gj^ iß a binary algebra with the composition 

A^ 0 = A^U|B^. Also, we have that A^ 0 B^ = B^ 0 A^. Thus, 

G is decomposed into a direct sum of three commutative binary 

algebras. 

The following theorem generalizes this result. 

THEOREM 14.4. Every simple ternary algebra G of finite 

dimension is the direct sum of a finite number of commutative 

binary subalgebras, all having the same dimension. 

Let E^j (i = 1,...,m ; J = 1,..,,n) be an orthonormal 

basis for G. Assume for the present that m < n. If A is any 

element of G, then there exist scalars a.. such that 

m n 

A -1 I Vij • 
i*i d-i 

Let 

(14.1) 

m 

I 
i=l 

ai,i+d-iEi,i+d-i 

for J b 1, ...,n - m + 1, and 



ai,i+d-iEi,i+d-i 

(14.2) 

+ L “lil+dKn+lJ^^i+JKn+l) 
i=n-d+2 

for J s n - m 2;.. .,n. It should be noted that the above de¬ 

composition of the matrix (a^) is the same as that of the pre¬ 

ceding example. Also, we have that 

n 

J”1 

For each d “ 1,..., n, let denote the class of all elements 

Aj in G having the form ( 14.1) if ‘l < d < n - m + 1 and the 

form ( 14.2) if n-m+2<d<n. Suppose that l<d<n-m+l 

and let 



1. 

Then 

V3V 

m 

Cd “ Z 

l4l 

m 

Z “i, i+J-A, k+J -l7/, /+J -lEi, i+á -1% k+J -1E/, /+j -1 
i,k,/=l 

m 

Z ai, i+J -A, k+j-l7/, /+j-I6 
i,k,Z=l 

i+J-l,k+J-l6k/Ei,/+j-l 

m 

Z ai,i+J"l* 
i=l 

?i,i+d-i7i,i+d-iEi>i+d-i * 

hy symmetry, AjBJCj = CdB3AJ* If we ^ 

m 

ud = Z Ei>i+d-i ; 
1=1 

then clearly AjU*Uj = UjUjAj “ Aj for each Aj in • There¬ 

fore, each Gj (d = li.».,n-m+l) is an m-dimensional 



commutative binary subalgebra of G. 

Similarly, if n - m + 2 < j < n, and 

n-i+i 

L ßi,i+J-lEi,i+J-l 
i=l 

m 

I i+j -( n+l) Ei, i+J -(:n+l) 
i»n-J+2 

and 

n-i*l 

L 7i,i+d-iEi,i+d-i 
i-l 

m 

* I 
i=n-J+2 

n+l) Ei,i+J-( wl) ^ 

then a straightforward computation yields 

‘d^d “ L ’ ai,i+d-Ä,i+d-i7!,i+d-iEi,i+d-i 
i=l 

i«n-i+2 
i+d -( n+l) pi, i+j -( n+l) Ti, i+J -( n+l) % i+j -( rnl) * 



no 

I 

Symmetry again gives us that ajB*Cj = CjB*Aj. Now if we let 

n-j+1 m 

ud = L Ei,i+J-i+ I Ei, 
i=l i=n-j+2 

i+J -( n+1) ; 

then AjU*Uj = UjUjAj = Aj for every in G^. Hence, if 

n-m + 2<j<n, then G^ is an m-dimensional commutative 

binary subalgebra of G. 

The linear independence of the elements E. . proves that 

the subalgebras ...,Gn are independent, so that 

Û o Q ©■••©G • 
1 n 

A similar argument may be used to prove the theorem in 

the case when m > n. 

If G is not simple, then G has a unique decomposition 

into mutually orthogonal simple subalgebras ...,ß^: 

G = ß ffi .. • © ft . 
1 p 

By Theorem 14.4, each fti is the direct sum of a finite number 

of commutative binary subalgebras, all of the same dimension.: 

© • • • 
) 

so that 



» 
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0=00., . 
i=l 1,Ji 

This proves 

THEOREM 14.5. Every finite-dimensional ternary algebra 

is the direct sum of a finite number of commutative binary 

subalgebras. 

' 
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devoted to a study of the algebraic structure of ternary algebras. In particular it 
Is shown that an arbitrary finite-dimensional ternary algebra has a representation 
as a ternary algebra of matrices. U 

The aforementioned characterization is obtained by making use of an ideal theory 
in a ternary algebra. Right, left and central ideals are introduced and studied. 
Minimal ideals are then characterised as inner«product spaces. U 

Using decompositions of a finite «dimensionai ternary algebra ¿t- into direct sums 
of minimal right, left and central ideals, a generalized orthonormal basis is obtained.. 
Every element in Ct then has a matrix, representation relative to this basis, ar.d an 
additive and multiplicative isomorphism is established between Ol- and a ternary alge¬ 
bra of matrices. U 

The implications of the absence of the axiom called the positivity condition are 
then given for a finite-dimensional tarnary algebra.. 

A characterization is found for a finite-dimensional ternary algebra when the 
scalars are restricted to be real. The paper concludes with applications of several 
of tftp results to ternary algebras of matrices. U 
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