

병상 관계 연애가 있는 것

CCL REPORT NO. 244

FINAL REPORT

INVESTIGATING FUEL-ALCOHOL EFFECTS ON ELASTOMER COMPONENTS OF DIESEL INJECTOR SYSTEMS

BY

M. E. LEPERA & C. A. VOGEL

JANUARY 1968

FEB 13 1968

28

AD

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

U. S. ARMY COATING & CHEMICAL LABORATORY

Aberdeen Proving Ground Maryland

> Reproduced by the CLEARINGHOUSE for Federal Scientific & Technical Information Springfield Va. 22151

DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this report from Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314.

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION, UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

22 101 10 Very ter (371 104 S. 27108 D THE WE WE STAR BOATT CHE ANAL MINT T DI.T.

UNCLASSIFIED

Standard States

CCL REPORT NO. 244

FINAL REPORT

INVESTIGATING FUEL-ALCOHOL EFFECTS ON ELASTOMER COMPONENTS OF DIESEL INJECTOR SYSTEMS

BY

M. E. LEPERA & C. A. VOGEL

JANUARY 1968

AMCMS CODE NO. 5025.11.80000

DEPARTMENT OF THE ARMY PROJECT NO. 1G024401A106

U. S. ARMY COATING AND CHEMILAL LABORATORY ABERDEEN PROVING GROUND MARYLAND

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

UNCLASSIFIED

i

ABSTRACT

An investigation was conducted to define possible deleterious effects on injector system "o-ring" components resulting from additions of freeze-point depressants to diesel fuel. An accelerated test method was subsequently developed to determine the compatibility of fuelalcohol mixtures with a variety of molded "o-ring" components currently in use by equipment manufacturers. It was found that as low as three percent additions of ethanol to diesel fuel resulted in significant losses in elastomer properties. In addition, the incorporating of a stress mode of exposure enhanced the degradatory effects of alcoholfuel mixtures or the test "o-ring" components.

DEPARTMENT OF THE ARMY M. E. LePera/kw1/3367 U.S. ARMY COATING AND CHEMICAL LABORATORY ABERDEEN PROVING GROUND, MARYLAND 21005

AMXCC-FL

B-6653

26 February 1968

SUBJECT: CCL Report 44, Investigating Fuel-Alcohol Effects on Elastomer Co Inents of Diesel Injector Systems

TO: Defense Documentation Center Cameron Station Alexandria, Virginia 22314

The following pen ink changes should be made to subject report:

a. Page 12, Table III - under "Volume Change %" on line 11, the value for "BX-2" in "DF-2" should read "6.2" instead of "10.1".

b. Page 12, Table III - under "Volume Change %" on line 14, the value for "CP-1" in "DF-2" should read "18.8" instead of "28.4".

c. Page 12, Table 111 - under "Volume Change %" on line 15, the value for "CP-1" in "DF-2 + 3% ROH" should read "28.4" instead of "0.1".

FOR THE COMMANDER:

H J. ammium

H. L. AMMLUNG Deputy Technical Director

TABLE OF CONTENTS

	Page NO.
TITLE PAGE	i
ABSTRACT	ii
INTRODUCTION	1
DETAILS OF TEST	1 - 4
RESULTS OF TEST	4 - 7
CONCLUSIONS	7
LITERATURE CITED	7 - 8
APPENDIX A	9
Tables I - VIII	9 - 17
APPENDIX B	18
Standard Immersion Test	18 - 20
DISTRIBUTION LIST	21 - 26
DD FORM 1473	27

BLANK PAGE

I. INTRODUCTION

The effective operation of current automotive machinery requires the mechanical seal protection given by elastomeric o-rings. The selection of "o-ring" elastomer type is dependent upon the specific environmental conditions (1); namely, temperature, solvent media, and seal design requirements. In diesel injector systems, nitrile rubber (designated as "NBR") normally provides satisfactory service for a variety of hydrocarbon fuels under both static and dynamic operating conditions. Operation of diesel powered vehicles in arctic environments presents serious problems attributed to the formation of "condensate" water, resulting in plugged filters and/or fuel lines. This problem has been lessened, to some extent, in gasoline powered systems by additions of low molecular weight alcohols to the fuel (2); however, the application of these alcohols, functioning as freeze-point depressants, for use in diesel powered equipment, has not been as extensive as compared to gasoline powered equipment.

In order to anticipate possible field problems resulting from the additions of alcohol to diesel injector systems, a program was subsequently conducted at Development & Proof Services, Aberdeen Proving Ground, Maryland. Using a Bacharack Fuel Injector Calibration Stand, the results obtained indicated (3) no problems to occur from additions of up to 10% ethanol (absolute grade) to diesel fuel in terms of flow control, injector seizure, or wear tendencies. However, disassembly of the bench scale injector pump revealed significant deterioration of NBR "o-ring" components. Similar experience of leaking "o-rings" in the fuel dispensing unit (burets) of this injector tester were also observed

In order to define the extent of this possible incompatibility, a program was initiated to determine the effects of additions of alcohols to petroleum fuels on molded "o-ring" components of different compositions. It should be noted that the specific types of "o-ring" materials selected have satisfactory resistance to diesel and other petroleum fuels as well as having a marginal resistance to alcohols. The extent of deterioration was determined by comparative exposure of sample materials to hydrocarbon and hydrocarbon-alcohol mixtures under fixed test conditions using volume change, hardness, and tensile strength measurements.

II. DETAILS OF TEST

A. Background.

Fluid resistance of elastomers are currently determined by direct immersion of the elastomer sample in a specified test fluid as outlined (4) in ASTM D 471-63T (Changes in Properties of Elastomeric Vulcanizates Resulting From Immersion in Liquids). This method is

designed to evaluate the comparative ability of a rubber or elastomeric specimen to withstand the effects of fluids by evaluation of the sample before and after specified exposure periods. Such measurements as percent volume increase, drop in tensile strength and hardness characterize the ability of the elastomer to be resistant to the test fluid during the required exposure period. Owing to the wide variations of time-temperature conditions usually present in operational environments, no direct correlations between this static immersion and service performance may be given or implied. However, this test provides comparative data for predicting service performance and is especially useful in research and development work. In general, this test recommends one of eight "standard" temperatures, ranging from 23 + 1.1° to 250 + 1°C., and one of four immersion periods, ranging from 22 + 2hours to 28 days, depending upon the anticipated service requirement. From the standpoint of simulating actual service conditions, any static immersion test would be inadequate. Since a literature survey revealed no laboratory procedures for evaluating the effects of alcohol-hydrocarbon environments on elastomer specimens, a static immersion test was developed to define possible deleterious effects.

B. Development of the Standard Immersion Test.

In order to establish "realistic" test conditions, evaluations consisting of various fuel-alcohol level, diesel fuel and alcohol types, temperature variations, and exposure times were performed using 1 square inch samples cut from 1/16" calandared nitrile rubber sheetstock. The sheetstock material was utilized for developing the test conditions of the immersion test for reasons of materiel availability and uniformity of composition due to calandaring processes. The static immersion tests were conducted by exposing the elastomer sample in sealed widemouth screw-cap jars (430 ml. capacity) containing 200 ml of test fluid. The fuels initially evaluated were as follows:

- Military Specification MIL~F-45121B, (CITE.R) Fuel, Compression Ignition and Turbine Engine, Referee Grade.
- 2. Military Specification MIL-T-5624G, Turbine Fuel, Aviation Grade JP-5.
- 3. Federal Specification VV-F-800a, Fuel Oil, Diesel, Grades DF-2 (Regular), and DF-A (Arctic).
- Federal Specification TT-S-735, Standard Test Fluid, Hydrocarbon, Type II (Iso-octane and aromatic mixture).
- 5. Caterpillar 1-H Engine Test, Reference Grade Diesel Fuel.

The alcohols tested were absolute ethanol, methyl cellusolve (ethylene glycol mono methyl ether), and isopropanol. Methanol was not evaluated due to its limited solubility in diesel fuels. For evaluation of

ethanol in DF-2, additions of alcohol in concentrations (% volume) of nil, 1%, 3%, 6%, 10%, 20% were employed. For other fuel-alcohol evaluations, the alcohol component was fixed at the 3% level. Exposure conditions varied from 8 to 137 hours at 70°C., 16 hours at 100°C., and l week at room temperature. Before and after exposure, the NBR speciments were evaluated for hardness decrease and change in volume. The results of variation of exposure media and test duration obtained using the nitrile rubber sheetstock material in terms of volume increase and hardness change are given in Tables I and II (see Appendix A).

The results of these tests indicated the maximum distending of nitrile rubber to occur after a 16-hour exposure period at 70°C. in a diesel fuel containing 3%(vol) ethanol. Utilizing these "selected" standard conditions, additional evaluations were made with representative moulded o-ring components obtained from injector and diesel engine manufacturers. The results obtained are given in Table III (see Appendix A). For the evaluation of these "o-rings" of varied geometry, it was found that o-rings, having size configurations of approximately 2 inch 1.D. and .300 inch cross section were satisfactory with respect to sample requirements for available testing equipment. In addition, the ratio of exposed surface to fuel volume for "o-rings" of the above configuration correlated with that ratio for the NBR sheetstock specimens.

Standard size o-rings of 2.122 in 1.D. and .308 inches cross sectional area of the following types were obtained from a commercial supplier:

- 1. nitrile rubber low acrylonitrile content
- 2. nitrile rubber " medium acrylonitrile content
- 3. nitrile rubber high acrylonitrile content
- 4. neoprene
- 5. viton A
- 6. fluorosilicon
- 7. polysulfide

The individual o-ring types were evaluated in duplicate, excepting the fluorosilicon, under the conditions of the standard immersion test (see Test Procedure 1, Appendix B). The effects of this exposure period on the respective "o-rings" swell, tensile strength, and hardness changes are tabulated in Table IV. It should be noted that the individual properties of each "o-ring" type were included in Table IV for comparison purposes. Hydrin 200, a copolymer of epichlorohydrin and ethylene oxide reported (5) to have excellent fuel resistance, was

also evaluated and the results included in Table IV; however, due to its non-availability in the required "o-ring" size configuration, the respective evaluation tests were conducted on one square inch specimens and standard dumbbells.

C. Evaluation of "O-rings" Types Under Stress Conditions.

Although it was beyond the scope of this work to determine the serviceability of different "o-ring" types under conditions of dynamic operation, a simple stress-immersion test was desired to provide additional information relating to alcohol-fuel schubility interactions. Due to the complexity of apparatus required or the dynamic testing of "o-ring" components, a test to define additional effects of exposure media resulting from evaluating elastomers under conditions of stress (elongation) was developed. Essentially, the conditions of the standard immersion test were repeated with the individual "o-ring" specimen being evaluated under a stretched configuration on a stainless steel bar; namely, the amount of stretch (or stress) being ca. 28% elongation. Details of this test modification are given in Appendix B. It should be noted that the inclusion of this "stress test" would, in addition to the defining of effects resulting from exposure under stressed conditions, enable the determining of any permanent set tendencies. The six "o-ring" types were subsequently evaluated in the standard immersion test under 28% elongation, and the results obtained are given in Table V (see Appendix A). To illustrate the effects produced by additions of alcohol to the two exposure tests, a tabulation was prepared to show any significant changes in physical properties and the results are given in Table VI (see Appendix A).

III. RESULTS OF TEST

The initial evaluations of the nitrile rubber sheetstock specimens resulting from fuel-alcohol interactions revealed the following trends:

A. Of all fuels tested, DF-2 produced the greatest degree of swell (a maximum of 10%) and hardness decrease (10%) at 70°C.

B. A 3%(vol.) addition of absolute ethanol to DF-2 resulted in a twofold increase in volume (maximum being realized after 12 hours at 70°C.). In addition, the resultant hardness decrease was 17% after 4 days at 70°C. This apparent ethanol-diesel fuel synergism is similar to that reported (6) for natural rubber in hexane-ethanol and for nitrile rubber in benzene-methanol (7).

C. With higher exposure temperatures (100°C. versus 70°C.), there was a smaller increase in volume (one-fourth less than that observed at 70°C.) after exposure to the DF-2 containing 3% ethanol. Hardness decrease, however, was enhanced at the elevated test temperatures as an additional one-third decrease above the 70°C. condition was realized. D. Increasing the alcohol content produced a gain in the swelling tendency and significant decreases in hardness. The swell increase, however, was proportionally less for increasing alcohol content.

Samples of "o-ring" parts obtained from commercial fuel injector manufacturers permitted on evaluation of representative materials currently in use. More specifically, those parts demonstrating poor resistance to alcohol-fuel mixtures would be indicative of potential problem areas requiring additional investigation. These "o-rings" primarily consisted of nitrile rubber of unknown compounding specifications for proprietary reasons. Most of the results obtained on the nitrile rubber o-rings followed those previously determined for the sheetstock specimens. However, a "shape-size" factor gave uncorrelatible results which the following exemplifies:

A. Two identical "o-rings" (Part No. BX-2) were exposed for 16 hours at 70°C. in 100 ml. and 900 ml. total volume solutions of 3% ethanol in DF-2 respectively. After exposure, the "o-ring" from the 100 ml. solution had a 16.5% increase in volume and a final tensile strength of 3340 psi. (initial tensile strength being 4160 psi.) whereas the "o-ring" from the 900 ml. solution had a 19.4% increase in volume and a final tensile strength of 2380 psi.

B. The small "o-rings" (Part No. CU-2) showed low swell but a significant variation in test results under identical exposure conditions. It should be noted that, due to its small size, this o-ring sample (Part No. CU-2) has a relatively high surface to volume ratio with small mass which would possibly permit an intermediate "equilibrium" condition to occur prior to weighing, testing, etc. that was unobserved in the larger "o-ring" exposure tests. This potential variation of results supplemented the standardizing on the larger "o-ring" size configurations.

<u>Standard Immersion Test</u>. The percent swell and change in physical properties varied widely among the "o-ring" types. The volume change was rather consistent in duplicate runs, usually within a percent, based upon a 100% change. The high variability between samples in original tensile strength seems to indicate the differences may be either inherent experimental error or manufacture variability rather than exposure test differences.

Of the "o-rings" tested, all types except neoprene appeared to be suitable for use in diesel fuel. The Viton had the lowest swell in the diesel fuel-alcohol mixture, followed by fluorosilicon, polysulfide, and the nitrile rubber. The percentage of original properties retained parallel to some degree, the results obtained for percent swell increase with the exception of fluorosilicone; namely, its low retention of tensile strength in DF-2 containing 3% ethanol. However, the low initial tensile strength of fluorosilicone and polysulfide make their desireability questionable. The nitrile results were not completely dependent upon the acrylonitrile level. The high acrylonitrile gave the lowest swell in diesel fuel and the highest swell in the alcohol-diesel mixture whereas the low acrylonitrile had the highest swell in diesel fuel with the lowest in alcohol-diesel mixture. Similar trends were followed in percent of original hardness and retention of tensile strength; however, the tensile strength and swell results of the nitrile-medium acrylonitrile content did not fall between the high acrylonitrile and low acrylonitrile as was anticipated. With the exception of the Viton and polysulfide, the nitriles retained the highest percentage of their original properties. The low acrylonitrile was best in this respect, although only marginally, and had the lower tensile strength of all the nitriles evaluated.

The swell characteristics of Hydrin 200 were comparable to high acrylonitrile NBR. Its initial experimental tensile strength of 1700 psi was somewhat lower than its reported (8) 2050 psi. Its retention of tensile strength in alcohol-diesel fuel mixture was good but its comparative retention in DF-2 alone was relatively poor. The specimen difference existing between slab versus "o-ring" plus non-duplicate determinations make comparison of results between Hydrin 200 and that of the standard "o-rings" questionable.

Evaluation of the standard "o-rings" under the stress of approximately 28% elongation revealed the following significant trends:

- A. Greater swell resulted.
- B. Less retention of original tensile strength.
- C. More of the original hardness retained.

It was observed that the polysulfide samples had much poorer retention of physical properties under these "stressed" conditions. Although Viton maintained nearly all its original properties after exposure to this "stress" modification, a very severe tension and compression set was observed to have resulted. For the nitriles, the swell and hardness results were as before. Yet when tested under stress, the high acrylonitrile maintained the greatest percentage of original tensile strength; namely, approximately 68% compared to the low acrylonitriles approximately 59% in the alcohol-diesel fuel mixture.

Work recently conducted at Rock Island Arsenal (8) involving the investigation of elastomer compatibility with various fluids revealed similar results as were obtained by this Laboratory. To illustrate this point and to also provide supplemental information, the results of evaluating representative elastomers for 70 hours at 212°F. in MIL-F-25524A (Fuel, Aircraft Turbine and Jet Engine, Thermally Stable) are shown on Table VI (see Appendix A). It should be noted that polyurethanes were not included in their investigation because of the reported (9, 10) poor resistance to alcohols. To further illustrate the possible incompatibility of fuel-resistant elastomers with alcoholfuel mixtures, selected data was obtained from a recent publication (11) and the results are given in Table VII (see Appendix A). It is evident that elastomers having satisfactory alcohol resistance usually have unsatisfactory resistance to hydrocarbon fuels.

IV. CONCLUSIONS

A test procedure was developed to determine the compatibility of alcohol-diesel fuel mixtures with elastomeric materials currently used in injector fuel systems. It was found that test conditions of 16 hours at 70°C. with exposure to diesel fuel containing 3% ethanol resulted in the greatest loss of elastomeric properties for nitrile rubber samples. The effect of the alcohol-diesel fuel mixture was significantly more severe than diesel fuel alone for most elastomer components tested. The results obtained with the representative "o-ring" samples indicate that a potential problem area may exist where the frequent addition of alcohol is required. A stress-immersion test was utilized to define additional deleterious effects resulting from exposure of elastomers under stress conditions. Viton had the best retention of physical properties, but its tendency to form permanent set resulting in marginal dynamic-seal capabilities make its selection somewhat questionable. Considering the maximum retention of physical properties after testing, the polysulfide and fluorosilicon would seem satisfactory; however, both elastomer types had low initial physical properties and the polysulfide demonstrated tendencies towards permanent set under the stress conditions.

It should be recognized that such physical property measurements yield empirical values which may be misleading for the prediction of "o-ring" performance capabilities. The ultimate requirements for determining or predicting satisfactory performance of elastomer parts would necessitate their evaluation in actual field hardware environments. However, a recent publication (12) provides a physio-chemical approach for the prediction of elastomer-fluid compatibility by the determining of three specific solvency indexes; namely, solubility parameter, hydrogen bonding, and dipole moment.

V. LITERATURE CITED

1. _____, Seal Compound Manual, C-5702, Parker Seal Company, August 1965.

2. _____, Operation and Maintenance of Army Materiel in Extreme Cold Weather, TM9-207, Department of the Army Technical Manual, September 1959.

3. J. F. Brown, Jr., "Research Test of Effects of Alcohol and Water in Fuel", USATECOM Report No. DPS-2303, Aberdeen Proving Ground, March 1967.

4. <u>A.S.T.M. Standards</u>, <u>Part 2B</u> - Rubber; Carbon Black; Gaskets, 1966, ed., American Society for Testing and Materials, Philadelphia 1966.

5. _____, Properties of Hydrin 200 Elastomers, Section 1, B. F. Goodrich Chemical Company, 1967.

6. G. Gee, "The Interaction Between Rubber and Liquids", Transactions Faraday Society 40, 463-80 (1940).

7. L. A. Root, I. M. Malofeeva, E. N. Gubenkova, and S. A. Glikman, "Phase Equilibrium in Polymer - Binary Solvent Systems", Colloid Journal (USSR) 27, 738-741 (1965).

8. R. A. Foard, "Compatibility of Elastomers With Hydraulic Fluids, Lubricants and Fuels", U. S. Army Weapons Command, Rock Island Arsenal Report No. 67-1148, May 1967.

9. _____, Engineering Guide to the Chemical Resistance of DuPont Synthetic Rubbers, E. I. duPont de Nemours & Company, Inc., October 1965.

10. _____, Adiprene L-100, Bulletin No. 7, E. I. duPont de Nemours & Company, Inc., October 1965.

11. _____, Enjay Butyl Rubber Chemical Resistance Handbook, Enjay Chemical Company, 1966.

12. A. Beerbower, L. A. Kaye, and D. A. Patterson, "Picking the Right Elastomer to Fit Your Fluids", <u>Chemical Engineering</u>, 118, December 18, 1967.

13. Federal Test Method Standard No. 601, Rubber: Sampling and Testing, April 1955.

14. Military Specification MIL-T-5624G Turbine Fuel, Aviation Grade JP-5.

15. Military Specification MIL-F-25524A Fuel, Aircraft Turbine and Jet Engine Fuel, Thermally Stable.

16. Military Specification MIL-F-45121B (CITE.R) Fuel, Compression Ignition and Turbine Engine, Referee Grade.

17. Federal Specification TT-S-735, Standard Test Fluid; Hydrocarbon, Type II (Iso-octane and aromatic mixture).

18. Federal Specification VV-F-800a, Fuel Oil, Diesel Grades DF-A (Arctic Grade) and DF-2 (Regular Grade).

APPENDIX A

TABLE 1

FUEL-ALCOHOL EFFECTS ON NITRILE RUBBER SHEETSTOCK SAMPLES EXPOSED AT 70°C.

Fuel EvaluatedAlcohol Added, & VolumeExposure Time (Hrs)% Change In VolumeHardness Change (Shore A Poin)VV-F-800, DF2(neat)87.7-7VV-F-800, DF2Ethanol, 3%820.9-11VV-F-800, DF2(neat)169.0-6VV-F-800, DF2(neat)166.1-7VV-F-800, DF2Ethanol, 3%1621.4-13VV-F-800, DF2Ethanol, 10%1626.2-16VV-F-800, DF2Ethanol, 20%1631.3-19VV-F-800, DF2Ethanol, 3%2421.0-8VV-F-800, DF2Ineat)4810.9-10VV-F-800, DF2Ethanol, 1%4814.4-10VV-F-800, DF2Ethanol, 3%6810.2-10VV-F-800, DF2Ineat)6810.2-10VV-F-800, DF2Ethanol, 3%6819.5-12VV-F-800, DF2Ineat)6810.2-10VV-F-800, DF2Cellusolve, 3%6820.7-14VV-F-800, DF2Isopropanol, 3%6817.5-14VV-F-800, DF2Isopropanol, 3%6817.5-14	
Evaluatec $\frac{2}{8}$ VolumeTime (Hrs)In Volume(Shore A PoinVV-F-800, DF2(neat)87.7-7VV-F-800, DF2Ethanol, 3%820.9-11VV-F-800, DF2(neat)169.0-6VV-F-800, DF2(neat)166.1-7VV-F-800, DF2Ethanol, 3%1621.4-13VV-F-800, DF2Ethanol, 10%1626.2-16VV-F-800, DF2Ethanol, 20%1631.3-19VV-F-800, DF2Ineat)2411.0-8VV-F-800, DF2Ineat)2421.0-8VV-F-800, DF2Ineat)4810.9-10VV-F-800, DF2Ineat)4810.9-10VV-F-800, DF2Ethanol, 1%4814.4-10VV-F-800, DF2Ethanol, 3%4820.4-14VV-F-800, DF2Ethanol, 3%4820.4-14VV-F-800, DF2Ethanol, 3%6810.2-10VV-F-800, DF2Ethanol, 3%6810.2-10VV-F-800, DF2Cellusolve, 3%6817.5-14VV-F-800, DF2Isopropanol, 3%6817.5-14VV-F-800, DF2(neat)9410.2-10	je
VV-F-800, DF2(neat)87.7-7VV-F-800, DF2Ethanol, 3%8 20.9 -11VV-F-800, DF2(neat)16 9.0 -6VV-F-800, DF2(neat)16 6.1 -7VV-F-800, DF2Ethanol, 3%16 21.4 -13VV-F-800, DF2Ethanol, 10%16 26.2 -16VV-F-800, DF2Ethanol, 20%16 31.3 -19VV-F-800, DF2(neat)2411.0-8VV-F-800, DF2(neat)4810.9-10VV-F-800, DF2(neat)4814.4-10VV-F-800, DF2Ethanol, 3%4820.4-14VV-F-800, DF2Ethanol, 6%4825.8-14VV-F-800, DF2(neat)6810.2-10VV-F-800, DF2Ethanol, 3%6819.5-12VV-F-800, DF2Ethanol, 3%6817.5-14VV-F-800, DF2Ethanol, 3%6817.5-14VV-F-800, DF2Isopropanol, 3%6817.5-14	ts)
VV-F-800, DF2 Ethanol, 3% 8 20.9 -11 VV-F-800, DF2 (neat) 16 9.0 -6 VV-F-800, DF2 (neat) 16 6.1 -7 VV-F-800, DF2 Ethanol, 3% 16 21.4 -13 VV-F-800, DF2 Ethanol, 10% 16 26.2 -16 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 Ethanol, 3% 24 21.0 -8 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 (neat) 68 19.5 -12 VV-F-800, DF2 (neat) 68 19.5 -12 VV-F-800, DF2 Ethanol, 3% 68 20.7 </td <td></td>	
VV-F-800, DF2 Ethanti, 3% 16 9.0 -6 VV-F-800, DF2 (neat) 16 6.1 -7 VV-F-800, DF2 Ethanol, 3% 16 21.4 -13 VV-F-800, DF2 Ethanol, 10% 16 26.2 -16 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 (neat) 48 14.4 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68	
VV-F-800, DF2 (neat) 16 6.1 -7 VV-F-800, DF2 Ethanol, 3% 16 21.4 -13 VV-F-800, DF2 Ethanol, 10% 16 26.2 -16 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 Ineat) 24 11.0 -8 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 (neat) 48 14.4 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Ethanol, 3% 68 17.5 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 Isopropanol, 3% 68	
VV-F-800, DF2 Ethanol, 3% 16 21.4 -13 VV-F-800, DF2 Ethanol, 10% 16 26.2 -16 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 (neat) 24 21.0 -8 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 (neat) 48 14.4 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 (neat) 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14	
VV-F-800, DF2Ethanol, 3%1021.419VV-F-800, DF2Ethanol, 10%1631.3-19VV-F-800, DF2Ethanol, 20%1631.3-19VV-F-800, DF2(neat)2411.0-8VV-F-800, DF2Ethanol, 3%2421.0-8VV-F-800, DF2(neat)4810.9-10VV-F-800, DF2Ethanol, 1%4814.4-10VV-F-800, DF2Ethanol, 3%4820.4-14VV-F-800, DF2Ethanol, 6%4825.8-14VV-F-800, DF2(neat)6810.2-10VV-F-800, DF2Ethanol, 3%6819.5-12VV-F-800, DF2Cellusolve, 3%6817.5-14VV-F-800, DF2Isopropanol, 3%6817.5-14VV-F-800, DF2(neat)9410.2-10	
VV-F-800, DF2 Ethanol, 10% 10 20.2 10 VV-F-800, DF2 Ethanol, 20% 16 31.3 -19 VV-F-800, DF2 (neat) 24 11.0 -8 VV-F-800, DF2 Ethanol, 3% 24 21.0 -8 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 Ethanol, 1% 48 14.4 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14	
VV-F-800, DF2Ethanol, 20%10 31.3 19VV-F-800, DF2(neat)24 11.0 -8 VV-F-800, DF2Ethanol, 3%24 21.0 -8 VV-F-800, DF2(neat)48 10.9 -10 VV-F-800, DF2Ethanol, 1%48 14.4 -10 VV-F-800, DF2Ethanol, 3%48 20.4 -14 VV-F-800, DF2Ethanol, 6%48 25.8 -14 VV-F-800, DF2(neat)68 10.2 -10 VV-F-800, DF2Ethanol, 3%68 19.5 -12 VV-F-800, DF2Cellusolve, 3%68 20.7 -14 VV-F-800, DF2Isopropanol, 3%68 17.5 -14	
VV-F-800, DF2DF2(neat)2411.0 \circ VV-F-800, DF2Ethanol, 3%2421.0 -8 VV-F-800, DF2(neat)4810.9 -10 VV-F-800, DF2Ethanol, 1%4814.4 -10 VV-F-800, DF2Ethanol, 3%4820.4 -14 VV-F-800, DF2Ethanol, 6%4825.8 -14 VV-F-800, DF2(neat)6810.2 -10 VV-F-800, DF2Ethanol, 3%6819.5 -12 VV-F-800, DF2Cellusolve, 3%6820.7 -14 VV-F-800, DF2Isopropanol, 3%6817.5 -14 VV-F-800, DF2(neat)9410.2 -10	
VV-F-800, DF2 Ethanol, 3% 24 21.0 0 VV-F-800, DF2 (neat) 48 10.9 -10 VV-F-800, DF2 Ethanol, 1% 48 14.4 -10 VV-F-800, DF2 Ethanol, 3% 48 20.4 -14 VV-F-800, DF2 Ethanol, 6% 48 25.8 -14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 (neat) 94 10.2 -10	
VV-F-800, $DF2$ $(neat)$ 40 10.3 10 $VV-F-800$, $DF2$ Ethanol, $1%$ 48 14.4 -10 $VV-F-800$, $DF2$ Ethanol, $3%$ 48 20.4 -14 $VV-F-800$, $DF2$ Ethanol, $6%$ 48 25.8 -14 $VV-F-800$, $DF2$ (neat) 68 10.2 -10 $VV-F-800$, $DF2$ Ethanol, $3%$ 68 19.5 -12 $VV-F-800$, $DF2$ Cellusolve, $3%$ 68 20.7 -14 $VV-F-800$, $DF2$ Isopropanol, $3%$ 68 17.5 -14 $VV-F-800$, $DF2$ (neat) 94 10.2 -10	
VV-F-800, $DF2$ Ethanol, 1%4614.410 $VV-F-800$, $DF2$ Ethanol, 3%4820.4-14 $VV-F-800$, $DF2$ Ethanol, 6%4825.8-14 $VV-F-800$, $DF2$ (neat)6810.2-10 $VV-F-800$, $DF2$ Ethanol, 3%6819.5-12 $VV-F-800$, $DF2$ Cellusolve, 3%6820.7-14 $VV-F-800$, $DF2$ Isopropanol, 3%6817.5-14 $VV-F-800$, $DF2$ (neat)9410.2-10	
VV-F-800, $DF2$ Ethanol, 32 40 20.4 14 $VV-F-800$, $DF2$ Ethanol, $6%$ 48 25.8 -14 $VV-F-800$, $DF2$ (neat) 68 10.2 -10 $VV-F-800$, $DF2$ Ethanol, $3%$ 68 19.5 -12 $VV-F-800$, $DF2$ Cellusolve, $3%$ 68 20.7 -14 $VV-F-800$, $DF2$ Isopropanol, $3%$ 68 17.5 -14 $VV-F-800$, $DF2$ (neat) 94 10.2 -10	
VV-F-800, DF2 Ethanol, 6% 40 25.0 14 VV-F-800, DF2 (neat) 68 10.2 -10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 (neat) 94 10.2 -10	
VV-F-800, DF2 (neat) 60 10.2 10 VV-F-800, DF2 Ethanol, 3% 68 19.5 -12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 (neat) 94 10.2 -10	
VV-F-800, DF2 Ethanol, 3% 66 19.5 12 VV-F-800, DF2 Cellusolve, 3% 68 20.7 -14 VV-F-800, DF2 Isopropanol, 3% 68 17.5 -14 VV-F-800, DF2 (neat) 94 10.2 -10	
VV-F-800, DF2 Cellusolve, 3% 60 20.7 14 $VV-F-800$, DF2 Isopropanol, 3% 68 17.5 -14 $VV-F-800$, DF2 (neat) 94 10.2 -10	
VV-F-800, DF2 (neat) 94 10.2 -10	
VV-E-800 DE2 (neat) 94 IU.2 10	
VV-F-800, DF2 Ethanol, 3% 94 10.4 -14	
VV-F-800, DF2 (neat) 137 9.0 -10	
VV-F-800, DF2 Ethanol, 3% 137 18.2 -14	
VV-F-800, DFA (neat) 48 6.8 -8	
VV-F-800, DFA Ethanol, 3% 48 14.0 -11	
MIL-T-5624G (peat) 24 4.0 -8	
MIL-T-5624G (neat) 68 3.9 -7	
WIL-T-5624G Ethanol 3% 68 9.2 -11	
MIL-T-56246 Cellusolve, 3% 68 9.8 -10	
MIL-F-45121B (neat) 48 5.7 -5	
MIL-F-45121B Ethanol, 3% 48 13.6 -11	
MIL-F-45121B Cellusolve, 3% 48 13.6 -10	
MIL-F-45121B Isopropanol, 3% 48 11.8 -10	
MIL-F-45121B (neat) 68 4.5 -7	
MIL-F-45121B Ethanol, 3% 68 11.0 -10	

TABLE I (CONTINUED)

Fuel Evaluated	Alcohol Added, % Volume	Exposure Time (Hrs)	% Change In Volume	Hardness Change (Shore A Points)
1-H Diesel	(neat)	68	2.6	-7
I-H Diesel	Ethanol, 3%	68	9.5	-9
1-H Diesel	Cellusolve, 3%	68	11.1	-11
TT-S-735. 11	(neat)	48	16.1	-12
TT-S-735, 11	Ethanol, 3%	48	24.5	-16

TABLE II

FUEL-ALCOHOL EFFECTS ON NITRILE RUBBER SHEETSTOCK SAMPLES

Euro)				Durometer
ruei	Alcohol Added,	Exposure	% Change	Hardness Change
Evaluated	% Volume	Conditions	In Volume	(Shore A Points)
VV-F-800, DF2	(neat)	16 hrs/100°C.	7.1	-10
VV-F-800, DF2	Ethanol, 3%	16 hrs/100°C.	15.1	-14
VV-F-800, DF2	Cellusolve, 3%	16 hrs/100°C.	21.7	- 16
VV-F-800, DF2	Ethanol, 6%	16 hrs/100°C.	21.5	-13
VV-F-800, DF2	(neat)	16 hrs/100°C.	7.3	-7
VV-F-800, DF2	Ethanol, 2%	16 hrs/100°C.	10.9	-10
VV-F-800, DF2	lsopropanol,3%	16 hrs/100°C.	10.8	- 10
MIL-F-45121B	(neat)	16 hrs/100°C.	6.2	-5
VV-F-800, DF2	(neat)	7 days/25°C.	6.5	-5
VV-F-800, DF2	Ethanol, 3%	7 days/25°C.	22.9	-13
MIL-F-45121B	(neat)	7 days/25°C.	6.2	-6
MIL-F-45121B	Ethanol, 3%	7 days/25°C.	13.1	-10
TT-S-735, 11	(neat)	7 days/25°C.	16.6	-8
TT-S-735, II	Ethanol, 3%	7 days/25°C.	20.9	-13

TABLE III

FUEL-ALCOHOL EFFECTS ON "O-RINGS" OBTAINED FROM EQUIPMENT SUPPLIERS

				Tensile	
Part		Test	Volume	Strength	Hardness
Designation	Exposure Hedia	Duration	Change %	Retained %	Change Pts.
BX-1	DF2	16 hours	8.3	96.8	- 4
BX-1	DF2 + 3% ROH	16 hours	22.0	54.9	-9
BX-1	DF2	62 hours	12.6	83.9	-7
BX-1	DF2 + 3% ROH	62 hours	21.7	87.2	-20
CU-1	DF2	16 hours	26.2	58.7	-5
CU-1	DF2 + 3% ROH	16 hours	19.8	70.8	- 4
CII-2	DF2	16 hours	6.6	100.0	-1
		16 hours	5.7	77.8	-4
CU-2	DE2 + 39 ROH	16 hours	0.9	64.7	- 4
CU-2	DF2 + 3% ROH	16 hours	12.8	77.3	-13
PY_2	DE2	16 hours	10.1	(3960)	-10
BX-22	DE2 + 39 ROH	16 hours	16.5	(3335)	-18
BX-23	DF2 + 3% ROH	16 hours	19.4	(2380)	-19
	DF2	16 hours	28.4	82.2	-2
CP-1	DF2 + 3% ROH	16 hours	0.1	78.5	-4
B0-1	DE2	16 hours	0.1	(3240)	-2
B0-1	DF2 + 3% ROH	16 hours	-3.5	(3500)	-4

¹Initial Properties of O-Ring Samples were:

Part No.	Ten. Strength	Hardness	<u>0. D.</u>	Cross- Section Area	Elastomer Materiel
BX-1	2045	69	2.00"	0.01515	NBR
	3560	63	1.20"	0.00422	NBR
	4360	67	1.25"	0.00362	NBR
BY-2	N. D.	73	2.35"	0.03362	NBR
CP-1	3210	64	0.75"	0.00873	NBR
B0-1	N. D.	68	0.75"	0.00468	VITON

²Total Volume of exposure media being 100 ml.

³Total Volume of exposure media being 900 ml.

NOTE: Total Volume of media for standard immersion test is 200 ml.

TABLE IV

FUEL-ALCOHOL EFFECTS ON SELECTED STANDARD O-RINGS AFTER EXPOSURE TO STANDARD IMMERSION TEST

Elastomer Type ³	Exposure Medi	Volume a Change %	Hardness Change Pts.	Strength Retained, %
Nitrile - low				
acrylonitrile	DF2	13.7	-6	105
Nitrile - low				
acrylonitrile	DF2 + 3% ROH	22.3	-12	77.9
NITTIE - medium	0.50		_	
Nitrile - medium	UFZ	14.0	-9	79.5
acrylonitrile	DE2 + 39 ROH	25 h	-12	(0, 7)
Nitrile - high		23.4	-12	69./
acrylonitrile	DF2	12.8	-7	88 0
Nitrile - high			,	00.0
acrylonitrile	DF2 + 3% ROH	27.3	-12	73.7
Neoprene	DF2	57.5	-8	43.9
Neoprene	DF2 + 3% ROH	62.7	-12	42.8
VITON	DF2	0.5	- 1	109
VITON	DF2 + 3% ROH	3.8	-2	92.2
Fluorosilicon	DF2	5.6	Ō	93.6
Fluorosilicon	DF2 + 3% ROH	7.3	-1	59.6
Polysulfide	DF2	7.0	-4	90.4
Polysulfide	DF2 + 3% ROH	13.2	-8	82.2
HYDRIN 200 ²	DF2	13.0		
HYDRIN 200	DF2 + 3% ROH	26.3		

¹Exposure conditions being 16 hours at 70°C.

²Results obtained from samples cut from calandered stock.

³Initial Properties of Standard O-Rings were as follows:

Elastomer Type	Tensile Strength, psi	Hardness
HYDRIN 200	1700	62
Nitrile - low acrylonitrile	1610	68
Nitrile - medium acrylonitr	ile 2140	67
Nitrile - high acrylonitril	e 2360	69
Neoprene	2330	67
VITON	1130	68
Fluorosilicon	760	55
Polysulfide	590	63

TABLE V

FUEL-ALCOHOL EFFECTS ON SELECTED STANDARD O-RINGS (UNDER STRESS) AFTER EXPOSURE TO STANDARD IMMERSION TEST

Elastomer Type ²	Exposure Media	Volume Change %	Hardness Change Pts.	Tensile Strength <u>Retain</u> ed, %
Nitrile - low acrylonitrile Nitrile - low	DF2	18.1	-4	100
acrylonitrile Nitrile - medium	DF2 + 3% ROH	26.3	-7	58.6
acrylonitrile Nitrile - medium	DF2	16.4	- 4	81.8
acrylonitrile Nitrile - high	DF2 + 3% ROH	28.4	-9	54.5
acrylonitrile Nitrile - high	DF2	16.1	-4	90.7
acrylonitrile Neoprene	DF2 + 3% ROH DF2	30.6 64 6	-10	68.1
Neoprene VITON	DF2 + 3% ROH DF2	69.7	-11	40.4
VITON Fluorosilicon	DF2 + 3% ROH DF2	3.9	-4 -1	83.5
Fluorosilicon Polysulfide	DF2 + 3% ROH DF2	7.9	- 1	^{65.2} 59.6
Polysulfide	DF2 + 3% ROH	13.5	-8	(broke) 60.3

Exposure conditions being 16 hours at 70°C. with o-ring tested at 28% constant elongation.

²Initial Properties of Standard O-Rings were as follows:

Elastomer Type	Tensile Strength, psi	Hardness
Nitrile - low acrylonitril	e 1610	68
Nitrile - medium acrylonit	rile 2140	67
Nitrile - high acrylonitri	le 2360	69
Neoprene	2330	67
VITON	1130	68
Fluorosilicon	760	55
Polysulfide	590	63

TABLE VI

DIFFERENCE IN PHYSICAL PROPERTIES OF STANDARD O-RINGS RESULTING FROM ADDITIONS OF ETHANOL

Elastomer	Test	Difference of	Value Percenta	ges in:
Туре	Conducted	Volume Change	Ten. Strength	Hardness
Nitrile - low	Std. Immer.	Test +8.6%	-37.1%	-6
Nitrile - low	Std. Immer.	Test -		
	Stressed	+8.2%	-41.4	-3
Nitrile - med.	Std. immer.	Test +11.4%	-9.8%	-3
Nitrile - med.	Std. Immer.	Test -		
	Stressed	+12.0	-27.3%	-5
Nitrile - high	Std. Immer.	Test +14.5%	-29.8%	-5
Nitrile - high	Std. Immer.	Test -	-	-
5	Stressed	+14.5	-22.6	-5
Neoprene	Std. Immer.	Test +5.2%	-1.1%	- 4
Neoprene	Std. Immer.	Test -		
	Stressed	+5.1	-27.7	-2
VITON	Std. Immer.	Test +3.3%	-16.8%	-1
VITON	Std. Immer.	Test -		
	Stressed	+3.2	-22.5	- 4
Fluorosilicon	Std. Immer.	Test +1.7%	-34.0%	-1
Fluorosilicon	Std. Immer.	Test -		
	Stressed	+1.5%	-25.6	- 2
Polysulfide	Std. Immer.	Test +6.2%	-8.2	- 4
Polysulfide	Std. Immer.	Test -		
	Stressed	+7.0		-4

TABLE VII

PHYSICAL PROPERTY CHANGES OF ELASTOMER VULCANIZES AFTER EXPOSURE TO MIL-F-25524A (THERMALLY STABLE JET FUEL) FOR 70 HOURS AT 212°F.

Elastomer Tested ²	Volume Change, १	Hardness Change, %	Tensile Strength Change, %	Elongation Change, %
Paracril A	+25	-14	-29	-30
Paracril B	+13	-7	-17	-32
SBR 1023	+154	-39	-92	-65
Enjay Butyl 325	Severe	-47	-93	- 75
Nordel 1070	+166	-28	- 78	-59
Genthane S	+2	- 1	-16	- 4
Adiprene C	+16	-7	-55	-31
HYDRIN 200	+5	+2	-3	-33
SE 555U	+260	+4	-31	-93
LS-422	+11	-42	-31	-18
VITON A	+3	0	0	0

Values taken from following reference: R. A. Faord, "Compatibility of Elastomers With Hydraulic Fluids, Lubricants & Fueis", Rock Island Arsenal Report No. 67-1148, p. 14, 1967 May 1967.

²Elastomer types were as described as:

Paracril A:	Butadiene-Acrylonitrile (82/18)
Paracril B:	Butadiene-Acrylonitrile (74/26)
SBR 1023:	Styrene-Butadiene
Enjay Butyl 325:	Isobutylene-Isoprene Copolymer
Nordel 1070:	Ethylene-Propylene Terpolymer
Genthane S:	Polyurethane Ester
Adiprene C:	Polyurethane Ether
HYDRIN 200:	Epichlorohydrin Copolymer
SE 555U:	Silicone
LS-422:	Fluorinated Silicone
VITON A:	Vinylidiene Fluoride - Hexafluoropropylene Copolymer

TABLE VIII

PHYSICAL PROPERTY CHANGES¹ OF ELASTOMERS AFTER EXPOSURE TO VARIOUS FLUIDS FOR 72 HOURS AT 212°F.

6	Fluid	Volume	Hardness	Tensile Strength	Elongatior
Elastomer Tested	Type	Change, %	Change, Pts.	Change, %	Change, ³
Enjay Butyl 218	Ethanol	+2.1	۳ <mark>-</mark>	91.0	82.9
Enjay Butyl 218	l sop ropano l	+2.4	ŗ	8.9.8	91.6
Enjay Butyl 218	ASTM Fuel A	+159.0	-40	18.1	25.5
Enjay Butyl 218	ASTM Fuel C	+233.0	-47	13.3	21.0
Enjay Butyl 035	Ethanol	+1.5	ہ ۔	90.3	88.7
Enjay Butyl 035	Toluene	+309.0	-53	6.9	26.9
Enjay Butyl HT 10-66	Ethanol	6.4+	-	92.4	72.9
Enjay Butyl HT 10-66	Prem. Gasoline	+167.0	-34	21.7	28.9
Enjay Butyl HT 10-66	Toluene	+238.0	-41	17.7	29.9
Natural Rubber	Ethanol	+2.4	0	78.4	58.4
Natural Aubber	Toluene	N.A.	N.A.	N.A.	N.A.
Styrene-Butadiene Rubber	Ethanol	-0.1	+3	70.9	47.3
Styrene-Butadiene Rubber	Toluene	+256.0	-38	11.1	18.4
Butadiene-Acrylonitrile Rubber	Ethanol	+22.3	-10	52.6	49.8
Butadiene-Acrylonitrile Rubber	Prem. Gasoline	+29.1	- 16	62.9	62.9
Butadiene-Acrylonitrile Rubber	Toluene	+125.0	-31	10.7	17.0
Polychloroprene (Neoprene)	Ethanol	+2.9	-4	85.6	4.67
Polychloroprene (Neoprene)	Prem. Gasoline	9.69+	-28	41.2	58.3
Polychloroprene (Neoprene)	Toluene	+209.0	- 44	15.9	37.2
HYPALON	Ethanol	+4.8	-6	81.1	82.1
HYPALON	Prem. Gasoline	105.0	-30	25.4	53.1
HYPALON	Toluene	0.171+	-37	17.8	36.2

¹Values taken from "Enjay Butyl Rubber Resistance Handbook".

²Elastomer Types were: (a) Butyl 218: Isobutylene-isoprene copolymer; (b) Butyl 035: Isobutylene-isoprene copolymer (low unsaturation); (c) Butyl HT 10-66: Chlorinated isobutylene-isoprene copolymer.

1

APPENDIX B

STANDARD IMMERSION TEST

1. <u>Scope</u>. This method is designed for evaluating the compatibility of elastomer o-rings with hydrocarbon and hydrocarbon-alcohol mixture in terms of physical property changes; namely volume change, tensile strength loss, and hardness decrease. This method provides for the evaluating of o-rings under conditions of stress (in a stretched configuration) as well as the normal relaxed condition.

2. Outline of Method. O-rings of a specified size are exposed for 16 hours at 70°C. (158°F.) in a diesel fuel (or other distillate-type fuels) and diesel fuel containing 3%(vol) ethanol media respectively. After termination of test, physical property measurements are determined to evaluate the effects of the two test media. Concurrent with this, similar o-rings are exposed in identical media under stress conditions (constant 28% elongation) to permit the defining of additional deleterious effects resulting from the stressed exposure conditions.

3. <u>Specimen</u>. Selected elastomer o-rings having reported fuel-resistance should conform to the following dimensions: 2.12 inch I.D. with 0.308 square inch cross sectional area.

4. Apparatus.

a. Scott Tester, 0 to 500 lbs. capacity, Model J-2, for determining tensile strength measurements.

b. Durometer Hardness Gauge, Type A, for determining "Shore Hardness" measurements.

c. Glass Jar, Clear, wide-mouth, screw-cap, 430 ml. capacity, metal lid fitted with VITON AHV gasket liner.

d. Glass Jar, Clear, wide-mouth, screw-cap, 235 ml. (8-ounce) capacity, metal lid fitted with VITON AHV gasket liner.

e. Stainless steel stretch bar, $4-1/2'' \perp x 1/2'' \forall x 1/8'' T$, with ends filed to give a slight concave curvature.

f. Ethyl alcohol, USI Absolute, Reagent Quality.

g. Diesel Fuel meeting VV-F-800a Fuel Oil, Diesel.

5. <u>Procedure</u>. Prior to any exposure testing, the selected o-ring specimens are initially evaluated for their tensile strength (ASTM D-4111 for ring samples) and durometer hardness (ASTM D-3021) to provide base line data. With respect to durometer hardness measurements, care should be taken to indent at the center of the o-ring to minimize erraneous readings resulting from insufficient sample thickness.

Standard Immersion Test. For a sample o-ring evaluation, two a. individual (identical) o-ring specimens are required. Initially, both o-rings are individually weighed in air and water prior to exposure under accelerated aging conditions. The weighed orring specimens are then placed in the 430 ml. glass jars. Two-hundred milliliters of diesel fuel are then added to the first jar which is then sealed with the VITON fitted screw-cap. One-hundred and ninety-four milliliters of diesel fuel and 6 ml. of ethyl alcohol (3% vol. ethyl alcohol in diesel fuel) are subsequently added to the second jar which is then sealed with the VITON fitted screw-cap. The two sealed sample jars are placed in a constant-temperature, forced-draft oven maintained at 70°C. (158°F.) for 16 hours. After removing the jars from the oven and allowing to cool for approximately 1/2 hour, the exposed o-ring specimens were removed from their test media and allowed to equilibrate at r om temperature for approximately one hour. Each o-ring was then wiped free of surface wetness with absorbant paper and immediately weighed in air and water for swell measurements. Following this, the hardness and tensile strength measurements were performed.

b. Standard Immersion Test - Stressed Condition. For a sample o-ring evaluation, two individual (identical) o-ring specimens are required. Initially, both o-rings are individually weighed in air and water prior to exposure under accelerated aging conditions. The weighed o-rings are then individually positioned under stress (28% elongation) on the 4-1/2" stretch bars and each assembly is positioned in the 235 ml. glass jar. Two-hundred and thirty milliliters of diesel fuel are then added to the first jar which is then sealed with the VITON fitted screw-cap. In the second jar, 223.1 ml. of diesel fuel and 6.9 ml. of ethyl alcohol (3% vol. ethyl alcohol in diesel fuel) are subsequently added which is then sealed with the VITON fitted screw-cap. The two sealed sample jars are placed in a constant-temperature, forceddraft oven maintained at 70°C. (158°F.) for 16 hours. After removing the jars from the oven and allowing to cool for approximately 1/2 hour, the exposed o-ring specimens were removed from the test media and stretch bars and then allowed to equilibrate at room temperature for approximately one hour. Each o-ring was then wiped free of surface wetness with absorbant paper and immediately weighed in air and water for swell measurements. Following this, the hardness and tensile strength measurements were performed.

6. Calculations.

a. The percent increase in volume (swell) is determined by the following:

% Volume Change = $\frac{(W_{23} - W_{2w}) - (W_{1a} - W_{1w})}{(W_{1a} - W_{1w})} \times 100$

Where W_{la} = weight o-ring in air before exposure

W_{lw} = weight o-ring in water before exposure

W_{2a} = weight o-ring in air after exposure

 W_{2w} = weight o-ring in water after exposure

b. The tensile strength measurement was determined by the following:

Scale Reading on Scott Apparatus Tensile strength (psi) = Cross Sectional Area of O-Ring

Security classification of title bady of above	T CONTROL DA	TA - R&D			
DRIGINATING ACTIVITY (Corporate author)	indexing annotation	must be entered whe	n the overall report is classified)		
US Army Coating & Chemical Labor	ratory	linel	linclassified		
Aberdeen Froving Ground, Maryland			26 GROUP		
REPORT TITLE					
INVESTIGATING FUEL-ALCOHOL EFFEC Injector systems	CTS ON ELASTO	MER COMPONEN	ITS OF DIESEL		
DESCRIPTIVE NOTES (Type of report and inclusive data	••)				
Final Report		· · · · · · · · · · · · · · · · · · ·			
LEPERA. M. E.					
VOGEL, C. A.					
	14				
January 1968	7. TOTAL	NO OF PAGES	75 NO OF REFS		
CONTRACT OF GRANT NO.		TOR'S REPORT IN	18		
AMCMS Code No. 5025.11.80000	CCL #244				
PROJECT NO					
1G024401A106	95. OTHER REPORT NO(S) (Any other method that any				
	95. OTHER REPORT NO(S) (Any other numbers that may be assign this report)				
Oualified requestors may obtain	conies of th	ic report for	D-f		
Documentation Center. Distribut	ion of this	document is	om verense unlimited.		
SUPPL EMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY				
	US Army Materiel Command Washington, D. C. 20310				
ABSTRACT					
An investigation was conduc effects on injector system "o-ri of freeze-point depressants to d was subsequently developed to de alcohol mixtures with a variety in use by equipment manufacturer percent additions of ethanol to losses in elastomer properties. stress mode of exposure enhanced fuel mixtures or the test "o-rim	ted to define ng" component iesel fuel. termine the of molded "or s. It was for diesel fuel In addition the degrada g" components	e possible d ts resulting An accelera compatibilit -ring" compo ound that as resulted in , the incorp tory effects 5.	eleterious from additions ted test method y of fuel- nents currently low as three significant orating of a of alcohol-		

Unclassified Security Classification

Security	Class	ficati	on	
----------	-------	--------	----	--

Decumy cia	ssification							
	KEY WORDS		LI	IK A		KA	1	
			ROLE	wT	ROLE	WT	ROLE	I wr
Petroleum Freeze-Po Elastomer Injector Swelling Shrinkage Accelerat Incompati	n Fuels int Depressants O-Rings Systems ed Tests bility						ROLE	w T
	INS	TRUCTION	s					
1. ORIGINATING ACTIV	/ITY: Enter the name and address	1	3					
 Inse activity or other or the report. 2a. REPORT SECURITY all security classificatio "Restricted Data" is inc ance with appropriate sec 2b. GROUP: Automatic rective 5200.10 and Arme the group number. Also, markings have been used ized. 3. REPORT TITLE: Eni capital letters. Titles in If a meaningful title cannu- tion, show title classifica- immediately following the 4. DESCRIPTIVE NOTES report, e.g., interim, progr Give the inclusive dates to covered. 5. AUTHOR(S): Enter the or in the report. Enter las If military, show rank and the principal author is an 6. REPORT DATE: Enter month, year; or month, year on the report, use date of 7s. TOTAL NUMBER OF Rhould follow normal pagin number of pages containing 7b. NUMBER OF REFERI references cited in the report 	ganization (corporate author) issuing CLASSIFICATION: Enter the over- n of the report. Indicate whether Iuded. Marking is to be in accord- curity regulations. downgrading is specified in DoD Di- d Forces Industrial Manual. Enter when applicable, show that optional for Group 3 and Group 4 as author- ter the complete report title in all all cases should be unclassified. ot be selected without classifica- title. S: If appropriate, enter the type of eas, summary, annual, or final. when a specific reporting period is the name(s) of author(s) as shown on the name, first name, middle initial. branch of service. The name of absolute minimum requirement. r the date of the report as day, r. If more than one date appears public ation. PAGES: The total page count mation in ation. ENCES: Enter the total number of port.	itations imposed such as: (1) (2) (3) (4) (5) If the Services, cate this 11, SUPI tory note: 12, SPOI the depar ing for) ti 13, ABSTI summary dis port. If a	on further d by security "Qualified report from "Foreign a report by D "U. S. Gov this report users shall "U. S. mili report direc shall reque "All distrik ified DDC u report has Departmen fact and en PLEMENTA S. NSORING M tmental proju- research RACT: Ente of the docur	issemina requeste DDC." nnouncen DC is no ernment a directly i request tary agen tly from st through oution of issers sha been furr t of Comr ther the p NRY NOT ILLITARY ject offic and deve er an absi nent india	thion of the cation, us rs may ob- nent and of t authoriz agencies from DDC. through cies may DDC. Oth h this report ll request this report this report the this report the construction the cons	ting stan tain cop dissemin ted." may obtain co obtain co ther quali tis conti- the Offic sale to toown. for addir TY: Ent atory sp Include the repoid dy of the continue	chier an other tha dard state ies of this ation of the in copies qualified opies of t fied users trolled. Q ce of Tech the public tional exp er the nam onsoring (address. f and fact t, even th technical	y lim- n those ements s of DDC '' his ual- .'' ual- c, indi- lana- ne of <i>pay</i> - ual ough re-
 5a. CONTRACT OR GRAN the applicable number of the the report was written. 8b, 8c, & 8d. PROJECT N military department identifi subproject number, system 9a. ORIGINATOR'S REPO cial report number by which and controlled by the origin be unique to this report. 9b. OTHER REPORT NUM assigned any other report nu or by the sponsor), also ent 	NT NUMBER: If appropriate, enter the contract or grant under which UMBER: Enter the appropriate cation, such as project number, numbers, task number, etc. RT NUMBER(S): Enter the offi- the document will be identified the d	It is h ports be u end with a of the info (C), or (U, There ever, the s 14. KEY w or short pl index entr selected s fiers, such tary projec	reached. ighly desiri nclassified in indicatio prmation in 1 is no limita suggested lo ORDS: Ke prases that ies for cata o that no so i as equipm t code nam-	able that Each p n of the r the parag tion on th ength is f y words a character loging th ecurity cl ent mode e, geogra followed	the abstri- aragraph nilitary si raph, repu- he length from 150 t are techni- tize a repu- e report. assificat: l designat phic loca by an inc	act of cl of the at ecurity c resented of the al o 225 we cally me cally me cally me tion, trac tion, ma dication	assified ro patract shi lassificat as (TS), (bottact. F bords. aningful t hay be used ds must b quired. Ic de name, m y be used of technic	e- all ion (S), łow- erms ed as ie ien- nili- as -al

Security Classification