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ABSTRACT 

1 p1 !!^!' : »lu IM! ' ' ¡Hlp ' 

It is shown that the Cosserat continuum and the theory of 

elasticity with micro-structure can be interpreted as analytical 

models describing the dynamic behavior of a composite material. 

The nonelassical material constants are simply functions of the 

geometry ani the classical constants of the two materials con¬ 

stituting the composite. The study of wave propagation in a 

laminated composite reveals that a more complex micro-structure 

needs to be introduced in a continuum in order to describe 

adequately the dispersive character of (essentially) longitudinal 

waves. 
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I. Introduction 

The 19th century idea that models oi physical bodies should consist 

not merely of an assemblage ot points, out should also include effects of 

directions associated with the ooints, (oriented hodies), as suggested by 

VOIGT and DUHEM, sprang from the desire to descrioe various phenomena on 

the microscale which ordinary continuum mechanics is not able to accommo¬ 

date. E. and F. COSSERAT constructed a theory of elasticity corresponding 

to this idea for a special case, namely, when orientation is specified at 

each point by a rigid triad, entaili.ig the introduction of the couple per 

unit area, acting across a surface within a material volume or on its 

boundary, in addition to the usual force per unit area. A modern derivation 

of a COSSERAT-type theory and a discussion of typical effects of couple 

stresses within the framework of a linearized form of the couple-stress 

theory for perfectly elastic, centrosymmetric-isotropic materislswere given 

by MINDLIN and TIERSTEF [l_. It was mentioned by these authors that in 

their theory the new material constant I, which has the dimension of length 

and which embodies all the difference between analogous equations or 

solutions with and without couple stresses, is presumaoly small in com¬ 

parison with bodily dimensions and wave lengths normally encountered, as 

there appears to be no conclusive experimental evidence of its existence. 

Various other aspects of COSSERAT-type continua and related theories were 

discussed by TOUPIN [2,3], KOITER [4;, SCHAEFER [5] and MINDLIN and ESHEL [bj. 

To incorporate in a continuum theory of mechanics further microscale 

phenomena occurring in a crystal lattice, MINDLIN [7] established a theory 

of linear elasticity with micro-structure (TEMS) by assuming, in effect, 

that each leg of the COSSERAT triad can stretch and rotate independently 
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of the other two. This model is equivalent to the inclusion, at each 

« 

point of the macro-medium, of a unit cell of a micro-medium which deforms 

• homogeneously. For a centrosymmetric-isotropic material there are six¬ 

teen additional independent material constants which describe the proper¬ 

ties of this continuum. If the cell is made rigid, but is allowed to 

rotate independently of the macro-rotation, one reverts to the COSSERAT 

theory (COST). With the further constraint of the cell having the same 

rotation as the macro-rotation (COSSERAT1s "triedre caché"), one is led 

to the special theory of elasticity with couple stresses (TECS). Alter¬ 

natively, the theory can be made more complex, for example, by placing 

into each cell several mass points, and by specifying interaction forces 

between mass points in the same cell and in neighboring cells, as was 

discussed by KUNIN [s]. 

It appears nov, as some recent work by the authors indicates, that 

the concepts and theories of a COSSERAT continuum and its generalizations 

have broad applicability in describing phenomena which occur on a macro- 

rather than a microscale. Indeed, if one wishes to describe the dynamic 

behavior of periodically macro-heterogeneous solids, such as, for example, 

fiber-reinforced or laminated composites, one can be led to similar mathe¬ 

matical relations. One approach explored by the authors [9,10] consists 

in using representative elastic moduli for the binder (soft layers) and 

combining the elastic and geometric properties of the fibers or the sheets 

(stiff layers) into "effective stiffnesses." Depending upon certain sup- 

» plementary kinematical assumptions, describing the deformation of rein¬ 

forcing elements, a continuum theory can be evolved which bears strong 
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resemblance to MINDLIN'S theory of elasticity with micro-structure or, 

in its simpler version, to the COSSERAT continuum. What is noteworthy, 

however, is that the nonclassical material constants are now simply 

functirns of the geometric layout and of the classical constants of the 

two constituent homogeneous materials. 

To render the indicated connection specific and precise, the most 

important concepts and relations of TEMS are set down in Section II. 

To make the point, it suffices to consider plane deformation and uni¬ 

directional structuring, and, for the sake of brevity, boundary con¬ 

ditions are not discussed. Section III presents the fundamental rela¬ 

tions of one version of the effective stiffness theory for laminated 

composites recently proposed by the authors [9,10] and identifies the 

material coefficients of TEMS in terms of the classical material con¬ 

stants and the geometric layout of the composite. This interpretation 

is followed by a reduction corresponding to COST and TECS. 

In Section IV, the viabi1 .tv of the proposed theories is discussed by 

a study of the dispersion characteristics of free plane harmonic waves 

in the direction of lamination. Comparisons with "exact" dispersion 

curves obtained by solving the appropriate classical elasticity problem 

[ii] reveal that the lowest (predominantly) transverse mode is rather well 

described in its strong dispersion, by contrast to the lowest (predominantly) 

longitudinal mode. The reason for strong dispersion in this mode, as re¬ 

vealed by examining the exact solution, is due primarily to the dispersive 

properties of the soft layers. Authors' more complicated versions of the 

effective stiffness theory for laminated media [l2] are briefly summarized. 
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II. Uni-Directtonal Micro-Structure in Linear Plane Elaiclcity 

Let us assume that In MINDLIN'S TEMS [7] the deformation is two- 

dimensional. With a CARTESIAN frame of reference x2 the components 

of displacement u^ are 

U1 “ u1(x1»x2,t); u2 - u2(x1,x2,t) (1) 

where t is this time. If micro-structure is introduced in one direction 

only, say x2> there will be only two nonvanishing components of micro¬ 

deformation ♦ jj» namely 

*21 * ^21 ^Xl,X2’’ ^22 ” ^22^Xl,X2,t^ 

The components of macro-strain are 

*11 ^ e22 * ^2^25 *12 ' (âu2/ôxi+aui^x2)/2 

and the components of macro-rotation are 

(«12 “ * ^21 “ (Su2^ôxi" ^ul/âx2^2 

The relative deformation has only two relevant components, namely 

Y2i * ôu^ôXj- t21; Y22 - ^2/0X2 *22 

(4) 

(5) 

The four nonvanishing components 

h121 " ô*21^âxl’ W122 

H221 ” 2l^x2’ K222 

of the micro-deformation gradient are 

- òtjJòx. 
A 

* ò*22/dx2 

(6) 

It is assumed, however, that the gradients in the direction of structuring 

do not contribute to the potential energy and thus will be ignored in 

the sequel, i.e. h221 = h222 s 0. The reason for this assumption will 

be discussed in Section III. 

The potential energy W is assumed to be a function of the seven 

variables e^2, e22* ^21’ ^22’ *121 an(* *122* 

The three nonvanishing components of CAUCHY stress are defined as 
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Tij “ ÔW/òeij ’ Tjl t.J a 1,2 (7) 

The two nonvanishing components of relative stress are defined as 

o21 =■ òW/òy21; o22 - ôW/âv22 (8) 

and the two nonvanishing components of double stress p, are defined as 
1 JK 

^121 ^W/òh^2j; ^ 122 * ÄW^K122 (9) 

The kinetic energy T is taken in the form 

T * J 0(^+ u22) + i D/d2(i212+ f222) (10) 

where o is the sum of the masses of macro-material and micro-material 

per unit macro-volume, p is the mass of the micro-material per unit 

macro-volume and 2d is the characteristic length of the (presently one¬ 

dimensional) micro-medium. The dot indicates differentiation with 

respect to time. 

HAMILTON'S principle for independent variations 6ui and 6$^ leads 

to the following four stress-equations of motion, in the absence of body 

forces and body double forces, 

ÒT11/âx1 + ô(t21+rr21)/òx2 * oü 

^12^1 + ^t22+ ct22^x2 = 0“2 

+°21 * 5 ^21 

^122/8x1 +a22 - 3 p'd2*22 

For an isotropic material and for the restricted deformations presently 

considered MINDLIN'S general potential energy density reduces to 

W “ 2 X^ell + 2ellR22+ ®22 ^ + ^^li + c22 + 2e122^ 

+ 1 blV222 + ï b2(V2r+ V222) + I b3V222 

+ 8l^Y22ell+ v22e22* + 82^Y21C12+ Y21c2l',’ 2v22e22^ 

(11) 

+ J (a4+ a10+ ai3> Hi222 + \ (a8+ al0+ al5) K 121 

(12) 
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The substitution of constitutive equations, after replacement of 

v and h . by u and * , into the stress-equations of motion results 
i j ij*^ f 

readily in displacement-equations of motion, which will not be displayed 

for the sake of brevity. The displacement-equations of motion can, alter¬ 

natively, be derived directly by appropriate reduction of MINDLIN'S dis¬ 

placement-equations of motion, [7j, Lqs. (b.l), (6.2). 

The equations of motion appropriate to TEMS can be reduced to those 

of COST and then to TECS in different ways as discussed in detail by 

HINDUN [7]. In the following we outline one possible procedure of sim¬ 

plification. 

To perform the first step of reduction we let ^22 ** permits 

to express v22 .n terms of and e^. The three first equations of 

motion (11) will thus involve only the unknown functions Uj, u2 and t2l 

and are those of COST. The fourth equation of motion of (11) is ignored. 

To carry out the next step of ref ' :cion the deformation associated 

with a21 i» made to vanish, i.e., 

. g2 *U2 ^ /, ,f2\ ZL 
*21 * b2 ^ V b2/ >1X2 

8-JV 
(13) 

The relative deformation v2^ contributing to t^2, on the other hand, is 

expressed in terms of *:21 and n21 resulting in 

g2 
T12 “ T21 “ b¡a21 + 

(2. - 2 ^.) t2I (14) 

Only two stress-equations of motion remain, namely 

ÃüT 
11 21 121 

^x. 3x^X2 
r 1 ' í^*2\a2 s "k- ln'A2zl 
L°- 30 l1+ b:)d ^iur 30 d b, 

A' 

^2 0x^2 

(15) 

and ÖT 

ÔX, 

12 
ÔT 

?)X, 

22 
pu. 
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where the third equation of motion of (11) has been employed. With 

21 
l121 dx. 

^2 
g2 a u, . gj a2u. 

(16) 

‘1 "2 òx." ' '2' 1’ 2 

the two displacement-equations of motion, with d4- « 0, are those of TECS 

and can be written down immediately. 

III. Interpretation of TEMS as a Continuum Theory for a Laminated Material 

In an earlier paper [9] the authors derived an expression for the 

potential energy density of a uniformly laminated composite according 

to what was termed the effective single-sti.'fness theory. In this approxi¬ 

mate theory it is assumed that the components of displacement (in plane 

strain) of the kth reinforcing sheet, whose midplane position is defined 

by x2 » ®*y b« expressed in the form 

Ulfk - u1k(x1,x2k,t) + x2,*21k(xl’X2k»t) 

u2fk - u2k(x1,x2k,t) + x2^22K(x1,x2k,t) 

(17) 

|Q 

where x2' is the coordinate in a local coordinate system, and u¿ are 

the displacements in the midplanes. The displacement distributions 

k 
(17) may be used to compute the potential energy V{ per unit surface 

of the kth reinforcing sheet. If there are n reinforcing sheets per 

unit length in x2 direction the potential energy stored in the rein- 

|Q 

forcing sheets is obtained as a summation of over the n discrete 

points x2k. The basic premise of the effective stiffness theory is that 

the sum may be approximatid by a weighted integral (smoothing operation) 

n 

V V k 

L f " K I Vx2 
(18) 

k-1 

where T1 is the density of the reinforcing sheets 

T\ - h/(h + H) (19) 
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In Eq. (19) h and H are the thicknesses of the reinforcing sheets and the 

matrix layers, respectively. By means of the smoothing operation the 

k 
field variables which were previously defined at discrete points x2 , 

now have become continuously varying functions of x2 and the superscript 

k is, henceforth, omitted. The resulting expression for the potential 

energy density is 

vf ■ i i Gf(*2i+ ^)2+ i ^ UJ + *22) 

r/*Ul\2 21 1 .3 /^22\2 
+ ^fh [kòTJ + ^22 J + 24 ^fh Ux ) 

r/ oui 

where Df is the bending stiffness 

Of *> p.fh3/6(l - vf) , 

and Gf is the shear stiffness, which is, as an approximation 

p,fh 

(20) 

(21) 

(22) 

In Eqs. (20)-(22) pf, Xf and vf are Lame's elastic constants and Poisson’s 

ratio of the reinforcing material, respectively. The first two terms 

in Eq. (20) represent the strain energy of bending and transverse shear 

of a single reinforcing sheet, respectively, and the remaining three 

terras represent the strain energy of extension. 

By applying a similar smoothing operation to the matrix layers the 

contribution to the total potential energy density is obtained as d-^V 

where for V we write (see [9] for greater detail), 
rn 

'» ■ i s (' 
2 2 

11 + 2elle22+ e22 :W( 
2 2 2 

ell + e22 + 2c12 
(23) 

In Eq. (23) X and i could be the elastic constants of the matrix, but 

more appropriate values can be assigned based on solutions for wave 

motion at long wave lengths. 
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The total potential energy density of the laminated medium may thus 

be written as 

V » Cn/h)Vf + (1 - ")Vm (24) 
t m 

where V, and V are defined by Eqs. (20) and (23), respectively. 
£ m 

In terras of the kinematic variables V22» Hi21 and *122 deiined 

by Eqs. (5) and (6) and the usual components of strain (3), the 

strain energy Vf may also be written as 

Vf 3 (2 Xf+ ^f) h (ell ' ^22 
2 2\ 
+ J + X,he,,e. 2 "f ^f/ " V'll ' ^22 / ' ”f "11 22 

+ 2p<fhe 12 - 2^fhe12v21- XfheilY22 

- (k£+ ^f)^€22v22+ 1 »¡'"Zl2* (l kf+ >‘f)hv22‘ 

(25) 

1 n 2 1 h 2 

2 DfH121 2 ^f 12 H122 

The micro-deformation gradients x.22j and h222 do not appear in the 

above expression because of the unde’-lying assumption that the differences 

in rotation <121 and scretch *22 tW0 nei8hboring reinforcing sheets for 

like x1 do not contribute to the potential energy of the laminated continuum. 

Comparing now the expression TlV^/h + (1-11)7,^ with that for W as 

given by Eq. (12), we recognize that they can be made identical provided 

the coefficients in one expression are related to the coefficients in the 

other by the following 

X - + (1- T1)X; H ■ TVf + (1 - T*) U- 

bl + b3 * 71 ^Xf + b2 * ^f’ g1 =■ - g2 3 - %£ (26) 

V a10+ a15 3 ^f^5 V a10+ a13 3 ^fh /iz 
Thus the elastic coefficients of the theory of elasticity with micro¬ 

structure, if interpreted as those of a laminated ccxnposite, are seen to 
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be determined in terms of the classical Lamé coefficients of the two con¬ 

stituent materials and the geometric lay-out as described by T) nnd h. 

A similar juxtaposition can also be carried out for the kinetic 

energy. For a laminated composite it was taker by the authors in [9] as 

T “ K If + (1 -71 )Tm (27) 

where 

, 1 , /. 2 . 2\ 1 h /• 2 . 2\ 
Tf “ 2 Dfh ^ui + u2 ) 2 °f 12 V 21 ^22 ) 

T = I P (ú.2+ Û2) 
m 2 m \ 1 2 / 

(28) 

(20) 

and Or and p are t^e mass densities of the laminate and the matrix 
i m 

material, respectively. Comparing the above with the expression (10) 

we find 

(30) P = ^Or + (1 - 
i m 

0 'd2 * Tip ,h^/4 (31) 

Since, from the definition of p#, o* * TIp^, it follows that h = 2d is 

the length characterizing micro-structure. 

The components of CAUCHY stress for a composite under consideration 

then are 

’n ■ 0<v*£>+<i-ii)<x«;>] ^ + * HV22 

12 
/Su2 \ - /âu2 òul\ 

t2i = ^fUr+ ’21)+ (dr+ 
2' 

du. 

(32) 

ÒU. 

T22 ■ ” [df^f)*22+ X£ + d-H)X 

and the components of relative stress 

,?iu„ 

a21 " ‘ ^f (òx1 + *2l) 

22 - Tl(Xf+2üf)t22 - TA 
àUj 

f òx. 

(33) 
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The substitution of these constitutive relations into the stress-equations 

of motion (11) results in displacement-equations of motion identical to 

Eqs. (38), (39), (40), (41) of ref. [9] and are not reproduced here. 

For a COSSERAT medium (COST) ct^ - 0, hence t22 = -[vf/(l-vf)]¾^^ 

and the three remaining displacement-equations of motion are the same as 

Eqs. (38), (39) and (40) in [9], except that the two terms (X^ + 2^) X 

2 2 
ô Uj/òx^ + ^22^X1 combine into a single term [E^/(1-v. )] X 

2 2 
9 Uj/dx^ with coefficient appropriate to compression oi a plate in plane 

strain. 

?or the restricted COSSERAT medium (TECS) Tl2 should be expressed in 

terms of CT2^> see Eq. (14). Next, &21 mat^e a "reactive stress" 

through the third equation of motion in (11) and the associated deformation 

has to vanish, i.e., = - \|r^. The two remaining equations of motior 

(15) become in terms of displacements 

(1-T1) 
- . d2“. d2“. . ä2u -, E S2u 
(X«,) — + , _i + (x+i) 

ox^ oxj 1 2 ^xi 
Pu, 

(34) 
i2 ..2 ..2 *4 2 

r--°u2-°u9 - ^ui~i T1 _ -ÒU- 
(,,)[(x+w _ +,_| . (x+i) - 2 Bf ^ - p,2 - i Pfh2 ^ 

These equations are those of TECS, as discussed in Section II, except for 

2 
the inertia term with h . The material constant X, of the dimension of 

length, discussed by MINDLIN and TIERSTEN [l], is here 

T Df 

(35) h (l-Tl)vi 1-n 6(l-vf) Ü 

and depends again, just as the material coefficients of TEMS, only on the 

classical material properties of the two constituent materials of tue 

composite and on its geometric properties. 

IV. Wave Motion and More Complex Theories 

The equations of motion (38) through (41) of ref. [9], which are now 



12 

referred to as those of the effective single stiffness theory, have been used 

to study the propagation of plane waves in the direction of the layering, 

focusing attention on the lowest (predominantly) transverse and the lowest 

(predominantly) longitudinal mode. For a laminated composite of periodic 

structure it is possible to calculate "exact" dispersion curves of those modes 

by solving an appropriate eigenvalue problem of the classical theory of elas¬ 

ticity, as was done in [ll]. The comparison revealed that the proposed approx¬ 

imate theory of the TEHS-type describes rather well the strong dispersion of 

the medium in the transverse mode for wave lengths which are large as compared 

to the lengths which characterize the lamination of the composite, as indicated 

in Fig. 1, which shows a plot of dimensionless frequency vs. dimensionless wave 

number. 

By contrast, the dispersion predicted by the single stiffness theory ad¬ 

vanced in [9] is not too satisfactory for the predominantly longitudinal mode. 

A detailed examination of the displacement distribution as determined by the 

"exact" analysis reveals that in this mode the dispersive behavior of the soft 

matrix is responsible for the discrepancy, which is not accounted for by the 

version of ref. [9] of the effective stiffness theory. The authors were thus 

induced to construct a continuum theory with more complex micro-structure [12], 

in which the effective stiffnesses of both the laminates and the matrix layers 

are introduced (effective double stitfness theory) and supplemented by approp¬ 

riate continuity conditions of perfect bond at the layer interfaces. A first- 

and a second order theory of this type were developed, where, in the latter, 

quadratic terms in the displacement expansions were retained. The effective 

double stiffness theory corresponds to a theory of elasticity with micro¬ 

structure in which the unit cell is allowed to undergo two different micro- 

deformations, whose weighted sum is proportional to the macro-displacement 
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gradient. Alternatively, the micro-kinematics of this theory can be in¬ 

terpreted as that of two deformable COSSERAT triads being defined at each 

point which are, however, suitably related to the macro-displacement gradient. 

* Fig. 2 gives a plot of dimensionless frequency vs. dimensionless wave 

number, and it is concluded that the second order approximation contributed 

to an improvement of the dispersion characteristics, particularly for large 

values of the ratio of the shear moduli of the two materials. 

Finally it may be remarked that Just as TEMS can be reduced to COST 

and then to TECS, similarly the effective double stiffness theory may thus 

be reduced by introducing corn ¿ponding constraints in the micro-structure. 
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