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ABSTRACT 

TM. »port U concerned with the adaptive e.timation oí joint probability 

deneitiee from a finite number of multt-dimeneional vectora of known claeel- 

fication. An eetimation procedure for the approximation of probability den- 

•itiee in the form of an n-dimenaional hietogram ia deecribed. The location 

and shape of the cells in the histogram are dependent on the data. The quality 

of the eetimation procedure and its dependence on the order in which eamplee 

of known classification are introduced are described. Two quality measures 

are studied, one that estimates the probability that the decision is optimum 

and the other that the decision is correct. Techniques for analysis of data of 

unknown origin prior to the application of the adaptive pattern recognition 

techniques are studied. The measurement selection problem of pattern recog¬ 

nition is investigated and the mathematical and engineering problems are 

separated. Figures of merit to evaluate the usefulness of parameter sets 

are developed, and mathematical formulations of the parameter selection 
problem are given. 
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1. INTRODUCTION 

Even untrained human being, are credited with the uncanny ability to 

recogni.e a per.on'. identity from hi. handwriting or from the .ound of hi. 

voice, to recogni.. an author or .ing.r from hi. .tyle. or the .ound of on. 

mu.ical instrument from another. Different word, written by the .am. per- 

.on have .ome common propertie., they follow the *ame pattern. Thi. 

pattern i. different from that followed by the handwriting of another per.on. 

Early work in pattern recognition .temmed from an admiration of the facility 

of human, to learn with ea.e the., common patterns, and from an admira¬ 

tion of their high degree of accuracy in recognising the pattern, in different 

handwriting and thereby to identify the authors. 

From the vague notion, of looking for the common pattern, and from 

attempt, to con.truct machine, that can recognise pattern. ,o approximate, 

in performance, the ability of humans to do the .ame grew the now .cientific 

field of automatic Pattern Recognition. The two major problem, "machine 

learning" (learning or di.covering the common pattern of a class of thing.) 

and "recognition" or cl...ific.tion were di.tingui.h.d early. One group of 

worker, wa. concerned only with machine, that did recognition automatically. 

• They employed human, to learn the common pattern and to de.ign the claa.ifier*. 

^ 16 *°rd voc*bttI»ry epoken word recogniser) developed at 
IBM is an example that illustrates this point. P 
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Member« of a second group derived motivation from the argument that if 

human« (or even simple biological systems) can do pattern recognition with 

ease, then one ought to model biological systems by a partial simulation of 

their internal structures and perhaps similar performance might result* 

The term Bionics is now applied to work based on this premise. 

In the eyes of those who will be grouped together in the third category 

of workers in this report, "learning" and "recognition" problems of pattern 

recognition can be formulated in mathematical terms as problems of recog¬ 

nition of membership in classes, and some solutions can be obtained through 

the application of one of the mathematical disciplines such as group theory, 

set theory , Boolean algebra , integral geometry*, communication theory, 

statistical decision theory and others. The common starting point of each of 

these methods is to represent an input by a set of measurements, variously 

called features, receptors, parameters, coordinate dimensions, clues, 

properties or attributes. Each input that belongs to a given class can be 

regarded asa vector in a vector space and is located at a point defined by the 

■et of measurements. A class is a collection of points scattered in some 

manner in the vector space (often referred to as observation or measurement 

space). Members of two different classes, A and B, are distributed, in 

general, in different manners in the space. Machine learning (or learning what 

the pattern is) is regarded by all of the above disciplines as the problem of 

determining the best shape and location of regions in the vector space so that 

A'8 »«d B's should become separated into regions called A and B. This is illus¬ 

trated in Figure 1. Pattern recognition or classification is the act of naming the 

region (A or B) in which the measurements made on a new input are contained**. 

* Early work on the Perceptron was based on such an argument. 

** A more detailed exposition of the idea of vector representation and of the geo- 
lnterPretation of "learning" and "recognition" can be found in many place 

in the literature. It will not be dealt with here. 
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Figure 1. Machine Learning - Partitioning of Vector Space into Region. 

The three part, of pattern recognition .y.tem. are illu.trated by the 

block diagram of Figure 2. Thi. .how. the ob.ervation .y.tem that repre¬ 

sent. the input by a .et of mea.urement.. The choice of the.e mea.ure- 

ment. i. an important problem that will be dealt with later in thi. report. 

The method, u.ed to proce., input, of known cla,.ification to di.cover 

their common pattern and thu. to develop a good partition of the vector 

•pace i. referred to a. "learning". The act of evaluating a new input to 

decide in which partition of the .pace it i. contained i. performed by the 

cla.aification or recognition .y.tem. It .hould be noted that in the final 

analyai. ,11 recognition .y.tem. can be regarded a. table look-up. for they 

all a..ociate a previou.ly .tored deci.ion with each po..ible input and for 

the .ame input they always render the same deci.ion. Of cour.e. there are 

major difference, in the manner in which different recognition .y.tem. „ore 

the deci.ion. that .hould be made at any one of an infinite number of point, 

m the vector .pace while they pos.e.. only a finite capacity of information 

storage. The important difference between different pattern recognition 

technique., however, i. not in the recognition .y.tem but in the learning 

.y.tem where the way in which partition, are obtained from the learning 

.ample, and where the re.triction. on the type of obtainable partition, are 
determined. 
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Figure 2. General Pattern Recognition System 

There are many ways of partitioning the vector space into regions. In the 

last few years statistical methods (in particular, statistical decision theory) have 

emerged as leading contenders for effecting good partitions of the vector space. 

The applicability of decision theory in the design of pattern recognition systems 

is readily appreciated by considering its basic characteristics. Once input 

stimuli are expressed in terms of a set of measurements, we want to design 

a classification system with the best performance; i. e., one that makes the 

least number of mistakes. In addition, we recognize that the classification 

system will have to render decisions on inputs that are not identical to those 

from which classification was learned (although they will be similar, in general). 

It was shown by Wald, Middleton, Van Meter and others that if we wish to mini¬ 

mize the risk, the probability of error, or the maximum error due to the 

decision we make, then we should base our decision on the comparison of 

likelihood ratios with fixed constants. That is to say, if we must choose 

between two classes A and B as giving rise to the stimulus which we observe 

through a set of measured parameters, then we should base our decision on 

the comparison of the ratio of conditional probability densities with an appro¬ 

priately chosen constant. In mathematical form this expresses the notion that 

if the set of measured parameter values is a more likely occurrence under the 
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assumption that the stimulus belongs to class A than under the assumption that 

it belongs to class B, then common sense (and statistical techniques) advise us 

to decide that probably A gave rise to our specific observations. Thus decision 

theory provides us with a design procedure that uses a figure of merit that re¬ 

flects ultimate system performance as the basis for system design, and it also 

agrees with intuition. 

There is a fundamental difference between the answers that are derivable 

from statistical techniques and the answers sought by pattern recognition. Deci- 

sion theory assumes a state of knowledge by requiring knowledge of the relative 

frequency of occurrence of every observable set of measurements from all classes 

of interest. In pattern recognition problems, this state of knowledge is missing 

and estimates of the required quantities must be made from a finite number of 

class samples. 

It is the purpose of this report to examine the major problems of pattern 

recognition from a statistically motivated point of view and to show the present 

solutions to these problems, where they are available, and to formulate problems 

so that they should be mathematically tractable in those cases where the present 

state-of-the-art has not yet given us solutions. 

First we will examine the nature of the statistical solutions in the context 

of often-voiced objections against the use of a statistical approach. Next, we will 

describe an automatic technique to estimate arbitrary probability densities (needed 

by a statistical classification system) from a finite number of learning observa¬ 

tions. Then the technique of efficiently storing an adequate approximation to these 

density functions will be described. Various properties of the technique will be 

discussed and some of the features of its hardware realization will be described. 

Some estimates of the quality of the approximation technique will be given. Meth¬ 

ods of performing analyses on data prior to application of the automatic joint prob- 

ability density estimating procedure will be discussed. 
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2. ON PARAMETER PROCESSING 

While it may not be necessary to think of inputs as represented by a 

set of descriptors or parameters, once inputs are represented by vectors, 

the method of partitioning a vector space into regions must be considered. 

Statistical methods have shown that it is possible to construct a decision 

procedure (a partition of the vector space) which assigns a class label to 

each point of the space in such a way that the probability of making an error 

is minimized. 

2- 1 The Nature of Statistical Techniques 

Many view with skepticism the statistical approach to decision making. 

They imply that an unreasonably large number of samples are needed to 

establish the required statistics, that decision making is not a statistical 

process for an object is definitely a member of one class or another, that 

there are foolproof clues of classification or decision making that (when 

present) must carry overwhelming weight, that "well-known" physical prop¬ 

erties of the input classes are not exploited by statistical techniques, that 

a given set of measurements, depending on the context in which it is observed, 

may have to be assigned to different classes at different times, that statistics 

does not get at the heart of the matter, it does not tell us how the measure¬ 

ments should be selected. 

It would be beyond the scope of this report to answer all these charges 

in detail. It is hoped, however, that the following brief discussion of the 

nature of statistical techniques will help to reduce some of the skepticism that 

may be based on an imperfect understanding of the nature of statistical techniques. 
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It U conceded at the out.et that .tati.tical technique, (or any mathemati- 

cal technique for that matter) are inherently incapable to generate new method, 

of representing input .timuli or to improve on the parametric repre.entation 

of the phy.ical world with which it i. confronted. The choice of .uitable para- 

meter, i. largely an engineering problem that require, our utmo.t inventive- 

ne., in every application to produce a u.eful method of repre.entation. There 

are some a.pect, of the parameter .election problem, however, that admit to 

mathematical treatment. The.e will be the .object of later di.cu..ion.. L., 

u. now turn our attention to cla.. ..parability by parameter proce..ing. The 

two or more different cla..e. into which we wi.h to divide all input .timuli 

either overlap in the vector .pace or they do not. If they do not (a ca.e often 

assumed tacitly by those who do not propo.e .tati.tical technique.), then 

identically the .ame combination of parameter value, cannot be ob.erved on 

both of two input, where one belong, to one cla.. while the other belong, to 

another. In this ca.e, the classes are perfectly .eparable and a deci.ion 

making system that never make, an error can be achieved. Let u. ,ee how 

statistical techniques behave in this situation. 

The probability that a deci.ion arrived at in this manner i. incorrect can 

be expressed in term, of the equation below (where equal a priori probabilitie. 

of A and B are assumed so that the explanation .hould remain .imple). 

Probability of decision being in er ror = 
1 +y (vr • • • V 

, . P(v.. . . . V /A) 
where J(y__ )= - 1 N .,/. . 

1 n' ^(Vj. .. . vN/B) Ify> 1 

(la) 

(lb) 
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We note that if a particular combination of parameter values Vj_vN 

was only observed on stimuli belonging to A and never on stimuli belonging 

to B, then the denominator of the likelihood ratio becomes zero and the prob¬ 

ability of error is l/l + «0 or zero. In other words, we are quite certain that 

we are correct in our decision and we have shown that statistical techniques 

lead to exactly the same decisions and with the same certainty as other tech¬ 

niques under tacit assumptions of perfect separability of the classes. 

If two or more classes overlap in the vector space, that is, if identically 

the same set of observations have been made on members of class A at one 

time and on members of class B at a different time, it is impossible to make 

completely error-free decisions all of the time. It would then seem logical 

to invoke a criterion that requires that the "optimum" decision procedure 

should minimize the number of wrong decisions or should minimize the prob¬ 

ability of error or the risk to the decision maker. Statistical decision-making 

systems provide us with a decision procedure with just such properties. 

Thus, statistical techniques give us foolproof decisions when perfectly 

error-free decisions are feasible and give us the pragmatically best decisions 

when error-free decisions cannot be guaranteed. 

Now let us examine the behavior of statistical techniques when so-called 

foolproof clues are present. A foolproof clue is an observation that is never 

encountered from any member of class B and is sometimes (but not necessarily 

always) observed on members of class A. When present (when it is observed), 

a foolproof clue is an observation that is a dead giveaway of the fact that we 

have encountered a member of class A and (in these cases) we can recognize 

the input as belonging to class A with certainty (with a probability of error equal 

to zero). 



The fact that a »pecific clue (tay parameter vN) never aeeumea the value 

X. wherea. member, of cl... A .ometime. do, render. vN * x a foolproof 

clue. By virtue of the .ame fact, the likelihood ratio (whenever v . x) will 

be infinity, .ince it. denominator i. zero regardle.. of the value. a..umed 

by the other parameter, whenever the foolproof clue actually occur.. Thu. 

not only will .tati.tical technique, decide correctly that the input belong, to 

cla,. A (when the foolproof clue occur.) but they will do .o without having to 

make a .pecial ca.e to take into account the occurrence of foolproof clue,. 

In connection with language tran.lation application, of pattern recognition, 

it i. often desirable to tran.late a .pecific word one way at one time and 

differently at other time, depending on context. Similarly i„ automatic .peech 

transcription (conver.ion of .peech into a phonetically .pelled text), a given 

instantaneous .pectrum repre.enting a .ound may have to be aligned different 

symbol, in tran.cription, depending on context. The recognition of many 

consonants, for example, depend, on the identity of the adjacent vowel.. 

Context i. merely a different way of referring to conditional joint prob- 

abilities. If the distinction between two .timuli .aid to be different (becau.e 

they are cau.ed by different source.) but actually identical by measurement. 

can only be made upon the condition that the context in which they appear ls 

known, then it would seem that decision, would have to be made on a more 

tended observation of stimuli. A good example illustrating the use of context 

decision theoretically correct manner is the improvement achieved in the 

performance of a faulty character recognizer through the utilization of letter 

digram or trigram frequencies. 

The number of .amples one must use in estimating probability densities 

for use in .tati.tical technique, is a difficult problem that is probably least 

understood, and the excessive number of sample, thought to be required is 

often cited a. an important shortcoming of .tati.tical technique.. Often thi. 
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charge ia baaed on the tacit aeeumption that a probability denaity muat be 

described (and ia approximated) by its moments and that a very large number 

of samples are needed to approximate higher momenta. While the latter ia 

true, it ia not true that hard to estimate moments muat be used to describe 

the distribution of a set of observations. In response to the question, how 

many samples does one need of each of the stimulus classes to learn to recog¬ 

nize stimuli correctly, it is impossible to give a pat answer. "We must have 

a representative set of stimuli" i. all that can be said without additional infor¬ 

mation about the classes in question. One sample per class may be all that 

is needed if it is known that classes are unimodal (such as Gaussian) and that 

the modes are well separated from one another and the different classes 

occupy largely non-overlapping regions of the vector space More samples 

are needed as the densities become more overlapping and complex. Few 

samples, in general, are needed in those regions of the vector space where 

members of only one class can occur, while a higher density of samples are 

desirable near the boundaries of the decision regions. One of the fallacies 

surrounding the adequacy of a sample set for decision making purposes is that 

a good approximation of the probability densities is essential. It is not essen¬ 

tial (although let us not refuse a good estimate if one can be obtained). It is 

more important that a good estimate of the decision region boundaries be 

obtained. This often can be obtained without a large sample size. The impor¬ 

tant point to note is that a good sample set is required for developing a good 

classification system and that the use of a statistically based "learning" system 

does not necessarily require a larger number of learning samples than a learn¬ 

ing system of a different kind. 
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Now let u. turn our .Mention to the utilization of known phy.ic.l propertiee 

of member, of the ..me cl.... For in.Unce, we might define . cl... .. .ny 

vi.u.1 image of a generic type (like .11 vertically incident aerial photograph, 

of airport, of all type.), and we wi.h to make the recognition of thi. cla.. of 

image, independent of the location, .ire, and orientation of the image in the 

vi.u.1 field. Therefore, the cl... i. really "airport, under all po..ible tran.- 

lation. magnification or rotation" and the phy.ical propertie. of in.en.itivity 

to translation, rotation or magnification .hould be utilized. There are .everal 

possible way. of dealing with a .ituation of thi. type. We may envoke .ome 

technique of "prenormalization", a many-to-one mapping of the input ..n.ory 

space which reduce, the unde.ired redundance, without de.troying informa¬ 

tion needed for cla..ification, Thi. method, u.ually preferred for .pecific 

application., yield, a parameter .pace from the input .en.or .pace. In the 

parameter .pace the input cla.. i. more .imply di.tributed. 

Another way of dealing with the .ituation i. to employ technique, that can 

accommodate the more complex partitioning requirement, impo.ed on the 

•en.ory .pace by the nature of the input cla...., U.ually a compromi.e mu.t 

be .truck between the.e approache.. It would be fallaciou. to believe that 

prenormalization technique, could alway, be invented to reduce the complexity 

of the input cla., di.tribution. to the point where extremely .imple-minded 

partitioning ichemes could be invoked. 

The need for complex partition, of the vector space ha. often been que.tioned 

and it is often .aid that .ucccful prenormalization eliminate, the need for 

complex partitioning .eherne». Nothing could be further from the truth. Let 

u. think of the target cla,. "indu.trial complexe.". We have ,teel mill, with 

their long and narrow parallel building., oil refinerie. with their tremendou. 

di.array of odd .tructure., pipe., and .torage tanks, and we have the light 

indu.trial plant complexe, with their almost re.idential .uburban characteri.tic. 



It IB difficult to imagine that all of these varieties of industrial complexes 

should have the same type of parametric representations no matter what 

type of prenormalisation may be employed. Thus, at least for the reason 

that members of a class will, in general, fall into many different subclasses, 

we must use techniques that can process input stimuli under much more 

general conditions than those afforded by the often invoked Gaussian assump¬ 

tion of class membership distribution in the parameter space. 

To make the need for the ability to process multimodal class distributions 

even clearer, we must remember that just because we (as humans) lump a set 

of stimuli in the same subclass, we cannot assure that the techniques we employ 

will also automatically consider these stimuli to be members of the same sub¬ 

class. In general, there are many more mathematical subclasses than can be 

explained physically. 

2,2 The Economical Storage and Evaluation of Probability Densities 

If the input observations, represented by the vector v are known to belong 

to one of K stimulus classes described by the set of probability density functions. 

(PkM) »«<* H»ve a priori probabilities of occurrence, { P^} , then according to 

•tatistical decision theory, the optimum decision procedure is to compute K 

functions of the form given in Equation (2) and to decide that the input stimulus 

belongs to the class yielding the largest numerical value. This decision pro¬ 

cedure minimizes the expected error. P(v, k) is the probability of the joint 

event that v and an input from class k are observed. 

p(v. k) . Pkpk(v) {l) 

Decision making consists of generating the value of the conditional joint prob¬ 

ability density function for any given input vector v, computing the functior*! 

forms P(v,k) for each of the K probability densities, and choosing the stimulus 
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cla.a which yield, the Lrge.t numeric»! value. Often thi. i. accompli.hed 

by comparing ratio, of probability den.itie. with con.tant.. The ratio. 

are called likelihood ratios. 

In practice, however, thi. theory cannot be applied directly to cla.,i. 

fication problem, becau.e (he conditional joint probability den.itie. are gen- 

Crally unknown- The »»ly data available on the .tati.tical characteri.tic. 

of the ob.ervation. from each cla.. con.i.t of a finite number of labeled 

•ample, from each of the K cla..e. or categorie,. Thu., the probability 

den.itie, can never be known preci.ely and. therefore, the preceding 

deci.ion rule will only approach optimality. Neverthele... one approach 

to the aolution of the cl»..ific»tion problem i. to e.timat. th... probability 

den.itie. u.ing the available data .ample, and then u.e th... ..«mated 

functions to evaluate the likelihood ratios. 

The proc... of e.timating the probability den.itie, from labeled .ample. 

of known clarification can be regarded a. "learning" while the evaluation of 

likelihood ratio, at point, in the vector .pace corre.ponding to an input .timulu. 
is called "recognition". 

Probability den.itie., a. any other function,, can be evaluated and approxi- 

mated by a number of different procedure.. In one of the... the function expre..- 

ed in an analytical form i. .tored in memory and the numerical value of the func 

tion i. çomüuted for th. .p.cific .., of ob.ervation. r.pre.ented by ,h. vector v. 

In another method of evaluating a function we „ore it. value, at a .ufficiently 

large number of point, of the vector .pace, determine th. .tored point near.., 

to the point v. look up the value of ,h. function a, the n.are.t point and, perhap,. 

interpolate among stored values of the function near v. 

An illu.trative example u.ing a function of a .ingle variable may clarify 

th*** tW° method* of imputing a function at point v. Suppo.e the function i. 
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2 
p(v) = V + Of V. The function p(v) can be evaluated from its argument v accord¬ 

ing to the first method described by instrumenting the operation of squaring, 

addition, and multiplication by a constant. These operations can be arranged 

in the appropriate sequence so that the function p(v) i. constructed as an opera¬ 

tion to be performed on v. In this case the computer is the operator and the 

coefficients of the equation must be stored in memory. 

By the second method of computing p(v), precomputed values of p(v) can 

be stored in a "look-up table" in a manner similar to tables of trigonometric 

functions. When p(v) for a specific value of v must be computed, we enter the 

table at the entries that straddle the specific value v, look up the stored value 

of p(v) at these points, and interpolate between them to obtain a sufficiently 

accurate estimate of the function. If stored values of p(v) are tabulated at 

sufficiently densely spaced values of v, interpolation is not necessary and one 

can look up the stored value of the function at the tabulated value "nearest" 

to the given argument, v. 

Because of the complicated nature of the conditional joint probability 

densities, computations by the first method described above are not economical*. 

Since the region of the vector space of interest in many decision making prob¬ 

lems is small in relation to the total volume of the vector space, the tabulation 

of values of a probability density at a relatively small number of stored points, 

judiciously selected for their representative nature, is a more economical method 

of approximation. Just as the one dimensional probability density p(v) shown 

in Figure 3 is approximated with a staircase approximation 0(v) by use of a look¬ 

up table, similarly an N-dimensional probability density involving the joint prob¬ 

ability of occurrence of N different numerical values can be approximated by the 

Methods of computing coefficients of polynomials in N-dimensions used in dis¬ 
criminating between different classes of data are described in Reference 5 
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N-dimenaional equivalent of a etaircaee approximation. Such an approxima- 

ti0” of a probability den.ity i. a hi.togram in N dimeneione. a generalization 

to which we will return later. 

Figure 3, Approximation of a Function of a Single Variable 

Since the function p(v) is approximated by a constant in each interval, it 

is obvious that only the boundaries of the quantiles and the values of the approxi- 

mation in each interval must be stored. A simple method of evaluating a histo- 

gram approximation at an arbitrary point v can be devised. The procedure hinges 

on the ability to determine simply the identity of the cell or interval, m, in which 

the input to be classified is contained and then retrieving pm the corresponding 

stored value of the approximation. 

By storing the location of the centers of the cells as a set of points, { s } , 

where Sm is the stored center of the mth cell, the interior of an arbitrary cTll, 

i. is readily defined as the locus of points "nearer" to s. than to any other stored 
point. 1 

The classification procedure implied by the above argument consists of: 

A. Determining the stored point 8i that is "nearer" to the input vector v 

than any other stored point s (m r i) 
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B. Retrieving the «tored probability den.ity p(s.) which is approxi- 

mately equal to p(v). 

C. Repeating this procedure for all classes and computing the necessary 

likelihood ratios, joint probabilities, etc. 

From the point of view of minimizing the storage requirements of the 

recognition device, it is advantageous to minimize the number of stored points, 

8m’ nece88ary the approximation of a given probability density. For instance, 

fewer points could be used to represent the function in a region where the func¬ 

tion does not vary much, and a higher density of stored points could be used where 

the function varies rapidly. The histogram in Figure 4 illustrates a more economi¬ 

cal manner of storing the probability density sketched in Figure 3. This procedure 

is equivalent to the construction of a histogram with unequal intervals (that is to 

say, the sizes of the histogram cells are tailored to better fit the distribution of 

One can place the construction of storage limited histograms with unequal 

cell sizes on an exact mathematical basis by asking (and solving) questions of 

the following type. "What is the optimum choice for the location, size, and 

height of M cells to minimize the expected error betv.een p(v) and its approxi¬ 

mation, and ô(v)?" The partial solution to a very similar method of stating the 

search for the optimum histogram of M cells is given in Appendix 1 of Reference 2. 
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Since in practice, p(v) i. unknown and mu.t be obtained from sample., 

it i. more fruitful to tackle the problem of how to obtain a "good" hi.togram 

directly from .ample.. It i. readily appreciated that cell, repre.enting the 

distribution of a set of known .amples of clas. k mu.t be located only in tho.e 

region, of the vector .pace where member, of cla.. k are ob.erved. In mo.t 

problems the volume of the region wherein member, of a cla.. are contain«! 

18 3 Very 8ma“ fracti0n oi the 'O'31 -o''™« of the vector space (truncated in 

accordance with the equipment-imposed limitation on the dynamic range of 

the variables); thu. a significant reduction in the .torage requirement, can 

be achieved by having member, of the dass create and determine the location. 

and dimensions of the hi.togram cells. Since the cell center, thu. obtained 

typify the di.tribution of clas. k, the stored point. { . ) are called "typical 

samples" of the class. m 

The interior of an arbitrary cell i in this new hi.togram can .till be defined 

as the locus of points "nearer" to s. than to any other .tored point . <m > i). 
It is merely necessary to modify the di.tance mea.ure. u.ed and toTtretch the 

unit length of our yardstick when we mea.ure "nearne.." ,o a .tored point s 

whose cell is wide, while we mu.t shrink the unit length of our yard.tick wh« 

we measure distance to the center of a narrow cell. A squared di.tance meas¬ 

ure exhibiting the property that the length of a unit di.tance i, dependent on the 

cell identity, m, and the specific dimension of the space under consideration, n, 

i. expressed by the quadratic form C>m(v) given in Equation 3. 

Q 
m (v) 

(3) 
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Thi. quadratic form expre.«» not only the notion that the approximated 

function varie, le., in one neighborhood than in another (the location of the 

neighborhood i. indicated by m). but „ also expresses differences .n the rate 

of variation of the function which depend on the coordinate direction. In 

mathematical terms, it „ an expression of not only the location but also the 

shape of the cells of an N-dimen.ional histogram. In intuitive terms, it 

expresses the notion that the process of evaluating the probability density 

can be likened to a process of determining whether or not there is anything 

in our past experience (a. represented by the set of "typical samples" 

* ‘m*’ that *■ "•‘mi,ar" <as measured by the quadratic form) to the present 

input that must be classified. Once we find something ,n storage that is 

similar to the input, we base the decision on the relative number of past 

Observation, of that type from all of the classes. The above quadratic form 

expresses the intuitive notion that cur measure of "similarity" must depend on 

What we measure similarity to (it must depend on where the input is located in 

the vector space). A certain difference between parameter values of the input 

and a stored sample may be judged more significant in one neighborhood of the 

vector space than in another*. 

To allow for the possibility that a new input vector v ,s not sufficiently 

near to any of the stored typical samples, we may make use of orior assump- 

fons about the local behavior of the probability densities that are approximated 

An often invoked assumption ,s that the probability density is "well behaved" 

While thi. is a qualitative expression, ,t is often a good assumption when dealing 

This is readily illustrated with an example in which we are interested in tarset 

irZZVlTV ’PT i‘ °ne °f the measured Parameters If knowledge 
whether or not the target is in motion is important for recognition and classi 

.cation, then targe, speed should be a far more sensitive indicator of cías^f.ca- 
ion near zero speed than at higher speeds where the question of whether the tar 

get is moving or not is no longer in doubt. wnetner the tar- 
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with practical problem.. Ju.t a. one often a..ume.. for computational 

reasons, that a function is locally linear (almost any function can be suffi¬ 

ciently well approximated locally by assuming that it is linear in a suffi¬ 

ciently small neighborhood), it i. similarly convenient to assume that a 

probability density i, locally Gaussian. It should be emphasised that the 

assumption is not made that the probability density is Gaussian; the only 

assumption made is that it is locally Gaussian in functional form 

Thus, the approximation of a probability density ha, been described 

above by a set of typical samples" which serve to identify the neighbor¬ 

hoods where data of known classification has been observed by an estimate 

Of the densities at these points, and by a locally Gaussian decay from those 

points, when the new input is not near enough to one of the typical samples. 

The manner of use of this assumption will be discussed later. 

2. 3 The Adaptive Approximation of Probability Densities from Limited Data 

In the method of storage and evaluation of probability densities described 

in the preceding section, the approximated density was described and stored 

by means of a set of typical samples and cell shapes determined by quadratic 

forms specified by means, { .J , and variances" { e2^) . In the folIowing, 

an algorithmic technique is described for generating cells from data in an 

adaptive manner by accepting input samples of known classification sequentially. 

This algorithmic technique consist, of three parts. First the data ,. analyzed 

to obtain an estimate of the minimum cel. size and shape that will be required. 

This coarse analysis of the data is called Preanalysis and will be discussed 

later in this report. The second part of the procedure is to accept data of 

known classification and to construct an N-dimensional histogram cell struc¬ 

ture where the locations and the shapes of the cell, are generated in an economi- 

cal fashion. The third part of the algorithmic procedure operate, on the cell 

-19- 



•tructure thu. created and attempt, to reduce the number of cell, by eliminating 

cells which contain too few input vector, and by enlarging other cells to contam 

cell, .o eliminated. In the de.cription that follow., it i, assumed that all of the 

sequentially introduced input, are member, of the same class and that the classi- 

fication of these "learning" samples is known. 

When the first learning sample is introduced, a cell of pre-chosen size and 

shape 1. created and is centered on the first learning sample. The chosen size 

and shape of the cell i. determined by prior analysis of the data from which an 

estimate of the minimum de.ired cell size .. obtained. The interior of the cell 

is defined by Equation (4a) (the equation of an ellipsoid in N dimens. .ns) wl.cre 

the squared radii of the ellipsoid are expressed by o2 (t) where o2 are 

the variance." of the quadratic form and ,s a control parameter to be dis- 

cussed presently In Equation (4a), the symbol t signifies the fact that the cell 

center and its shape are function, of the number of learning samples that have 

fallen into the m‘ cell up to the present time. T will denote the total number 

of inputs to the present. 

Q (v, t) 
m I mn 

(t) 

(t) 

(4a) 

The choice of the initial cell radii (their values for t = 0) is determined from 

a pre-analysis of the data in which the minimum desired cell size is estimated. 

Thus, the first input vector becomes the first "typical sample" In addition to the 

vector, the estimate of the density, given by Equation (4b), 1S also stored in 

memory. The density i. estimated by the fraction of the total number of input 

vectors that fall in a cell, divided by the volume of that cell Except for a con¬ 

stant. depending on the number of dimensions, the volume of the cell is expressed 

by the product of the "standard deviations" in the quadratic form used to define 

the boundaries of the cell. 
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(4b) 
P(s . t) 

m 
t 
T 

r N 
n o (t) 

n-1 11,1 

The second learn,ng vector ,s used to generate a second cell similar to the 

f.rst ,f „ falls sufficiently outside the f.rst cell If the second vector fa.ls inside 

the f.rst cell, the center of that cell is shifted to the center of gravity or mean 

of the two learning vectors, the shape and size of the cell „ adapted from a 

better knowledge of the local distribution of members of the class than that 

Which was obtained from a prior analysis of members of the entire class, and 

the local estimate of the probability density ,s updated accordingly If ,he 

second input vector falls sufficiently outside the firs, cell, ., creates a new 

cel. of size and shape obtained from prior estimates of the minimum desired 

coll size If the second vector fall, outside the first cell no, a very 

large amount, it is temporarily stored to be reused a, a later time according 

to a procedure to be described in subsequent paragraphs 

The third and subsequent learning vectors are processed similarly, either 

aerating new cells updating old cells, or stored temporarily for use later 

The cells so generated for each class are located onl* in ,he portion of the 

vector space where examples of the individual classes have been observed 

Certain properties of the cell structure so generated will be discussed later. 

As learning vector, are introduced sequentially, the cell ,n the immediate 

neighborhood of the input vector changes shape, location, and height. I, is, 

therefore important to examine the time dependent values of the cell's size, 

shape, and height If we denote by j the identity of the input vector that fell 

within a specific cell (say cell ml and was responsible for the j,h iteration of 

the cell Shape updating procedure, and if , denotes the total number of inputs 

falling in the m cell to the present, then the Variances",ha, determine the 

t ell shape are gjven by Equations (5) and (6) 

-21- 



(5) mn [' (t) = max I a2 JO), a2 (t) 
mn mn 

a2 (t) 
mn 

t 

* T ï - •„„O»)2 (6) 

Equation (5) expre..e. the manner in which the nth coordinate cell radius, 

^mn^’ g^OW, if the variance of the t vector in the cell, a2 (t), 

exceed, the initial "variance" o^JO). The cell radius is never allowed to 

shrink to less than the initial value, ^o (0). which is determined from a 

prior analyst of the data. The quantity a^Jt) is expressed in Equation (6) where 

Vmn(j) i# the n coordinate value of the jth input vector falling in the mth cell( 

mn(j) i* the nth coordinate value of the mth cell center after j contribution, to 

the cell, and t is the total number of input vectors that fell into the mth cell up 

to the present time. The reason for defining the cell in this way is to encourage 

the cell, to increase in size as more input, are received. ;hus keeping the total 

number of cells used in the approximation of the probability density small, while 

keeping the representation accuracy high. 

To insure that each cell has enough room to grow and to reduce the chance 

for an overlapping coverage of the same region of the vector space by more 

than one cell, an "outer" control parameter 6(¿ 1) i, introduced so that a vector 

V not falling within an existing cell (as defined by threshold rN) is used to gener- 

ate a new cell only if it is outside a larger concentric cell defined by Equation (7). 

Qm(v ‘» £ <9V (7) 
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It is seen that the quantity 9 expresses the ratio of the outer to the inner 

diameter of a "guard ring" within which input vectors neither create new 

cells nor update old ones 

The input vectors which neither create nor update cells are stored 

temporarily for later use. As the cells grow in size, these stored vectors 

can be forced into the existing cell structure without the need to create new 

cells. The temporary storage lasts until the number of input vectors intro¬ 

duced reaches a specified factor, w, times the number of cells generated up 

to this time. That is, if cells have been generated after samples have 

been received, and if the ratio of Cj to reaches u>, then the temporarily 

stored vectors that have fallen into "guard zones" are forced into the cell 

structure existing at time tj. The temporary storage process then starts 

again and continues between time ^ and time t2 are disposed of in the same 

way. This procedure is continued throughout the estimation phase, with 

Previous analytic and experimental studies6 of random cell behavior in regions 

of constant and varying probability densities have indicated that evolution of a 

satisfactory cell structure is most likely to occur when values of the control 

parameters tn and u are taken to be approximately 1 4' N + 2 and 4, respec¬ 

tively, with 0 > 1. This is further discussed in Section 2 5 below. 

After a cell structure has been obtained by the algorithmic 

S< r,bctl *,,nnv- w'> maV find that the number of cells so created 

number we would like to have in the N-dimensional generalized 

procedure de - 

is larger than the 

histogram. We 
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may force the reduction of the number of celia created by altering the cell 

growth controlling parameter, 6 and. to .orne extent, u. In moat caaea. 

however, a aignificant percentage of the cell, created conUin very few input 

vectora which generally aurround the more populoue celia. Thia happens 

because each cell, after Us initial creation, migrates in the vector apace 

and generally tenda toward the nearest mode of the probability density to 

be approximated. The fact that the typical sample, acting as ceil center, 

migrate toward the nearest mode (local peak of the probability density) is 

readily seen from the one-dimensional illustration shown in Figure 5. 

Probability that t + l*1 
vector will be to the 
right of s (t). 

Probability that it will 
be to its left. 

Figure 5. Mode Seeking Property of Cells 

This figure shows a small range of the variable v and the probability 

density p(v) in that interval. The point s (t) represents the cell center of 
. th m 

the m cell after t member, fell into the cell. The probability is greater 

that the next input that falls into cell m is to the right of the point s (t) than 

the probability that it will be to the left of that point. This implies That the 

cell center will move to the right after the t + 1st input falling within the mth 

cell has been introduced. It is thus seen that cell, migrate in the direction 

of the nearest modes. As cells move toward modes and later inputs create 

cells at places from which older cells have migrated, there will always be 

cell, which conUin few members. The third part of the algorithmic procedure 
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to estimate probability densities red tee. the number of such cell, by forcing 

these cell location, (weighted by the number of contributing vector.) into cell, 

who.e contributing member, exceed a predetermined number. 

Having achieved the fir.t .ub-goal of e.timating the probability den.itie. 

of the data .ample, repre.enting each cla.., the algorithm attempt, to mini- 

m.ze the number of typical .ample., .ubject to the con.traint. that the prob¬ 

ability Of error that re.ult. when the.e e.timated den.itie. are u.ed in deci¬ 

sion making should not be sub.tantially increa.ed. The underlying principle, of 

thi. part of the algorithm are contained in fact, that 1) the probability of error 

.. not changed »ub.tantially if ,h. den.ity of a cla.. ,. „o, well approximated in 

a region where den.itie. of all other cla..e. are very .mail, and 2) that a 

good approximation of the den.itie. .hould be maintained near the boundarie. 

of the decision regions which occur where probability den.itie. of two or more 

classei have similar magnitudes. 

Fir.t those typical sample, or cell, are identified which are al.o covered 

by cells generated by one or more of the other classes. The common coverage 

Of a region by two cell, is identified by the test given in Equation (9). 

N 7 
8 - SL > 
an bn 

n= 1 an !) = CTHR or 

N 2 
^ ^!an • 8bn\ 

(9) 

n= 1 

< CTHR 
bn 

where and sb are two different typical samples (usually from two different 

classes) and CTHR is the Coverage THRe.hold which serve, as a criterion of 

overlap between the two cells Note «ha, two comparison, must be made .ince 

the quadratic form u.ed in measuring distance to cell a is different from that 

used in measuring distance from cell b. 
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Tho«e cell« from a class that ^over regions already partially covered 

by cells of another class are identified and are not processed further. Those 

cells of a class, however, which participate in the common coverage of a 

region with only other cells of lie same class [by the criterion of common 

coverage given in Equation (9)] are lumped into a single larger cell combining 

the populations of cells of the same class which multiply cover the same 

region. This procedure is iterated with increasing values of CTHR until the 

total number of typical samples for all classes is within a previously chosen 

upper bound. The algorithm is so arranged that various features can be 

invoked on an optional basis during any analysis. 

2* 4 Haydwarc Realization of the Pattern Recognition Computer (PARECOMPUTER) 

In most practical applications of pattern recognition, the main require¬ 

ment is the development of a device which can classify input vectors according 

to the stimulus class to which they belong. The device is to do so in a time 

period which is "real-time". Learning how to recognize patterns can usually 

be performed in the laboratory on collected data by means of a general purpose 

computer. For this reason the essential equipment that must be constructed 

for the practical application of pattern recognition techniques must include: 

A. The "Observation System" (See Figure 2) which represents the input 

environment parametrically as a vector in N dimensions. 

B. The "Recognition System" which operates on the input to determine 

the probability densities of each of the stimulus classes at the point 

in the vector space represented by the input. 

C. Displays and controls necessary for the interpretation and control 

of the proper functioning of the equipment. 
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D A means for automatically collecting data, already represented as 

vector«, for use in an "off-li e" general purpose computer "Learning 

Machine " 

E In addition, provisions for entering the adaptively computer joint 

probability densities ' each of the stimulus classes into the 

"Recognition System" must be provided to facilitate the rapid up¬ 

dating of the "Recognition System" as new information becomes 

available through a continuing data collection program 

Since the engineering aspects of the vector representation can only be 

discussed in the context of a specific application, and since the "Lear ,■ 

Machine" can be constructed adequately by programming the adaptive tech¬ 

nique of approximating probability densities from limited data discussed 

earlier, only the practical implementation of the -nition System" needs 

to be discussed here 

Figure 6 illustrates a digital realisation of the recognition system that 

functions according to the pri 'es described in the preceding sections of 

this report The Pattern Recognition Computer, PARECOMPUTER, is a 

special purpose digital computer that is capable of evaluating in just a few 

milliseconds the joint probability densities of an arbitrary number of stimulus 

classes at any point of the vector space of arbitrary number of dimensions 

The only constraint on the machine s capabilities is that the product of the 

number of dimensions of the vector space and the number of "typical samples" 

should not exceed the machine s storage limitation, regardless of the distri¬ 

bution of "typical samples" among the various stimulus classes 

While a detailed discussion of the PAR COMPUTER is beyond the scope 

of this report, the discussion of certain of its design feature, is pertinent 

because it influence, the nature of the approximation of joint probability 

densities implemented by the machine 
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FIG. 6. The Pattern Recognition Computer ( PARECOMPUTER)
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It was stated before that the input vector is compared with each stored 

"typical sample" (by means of quadratic forms associated with each) in 

order to identify the "typical sample" nearest to the input vector and thus 

to identify the N-dimensional histogram cell which contains the input vector. 

After the identity of the histogram cell is established, the stored estimate 

of the probability density applicable in that cell for that stimulus class is 

retrieved from storage. If the quadratic form, Q.(v), (measuring the "dis¬ 

tance" between the input and the "nearest", ith, "typical sample") is too 

•arge, signaling the fact that the input is not near enough even to the nearest 

"typical sample" to permit the use of an estimate of the probability density 

corresponding to the i cell, the assumption that the density is locally 

ssian is invoked. To facilitate its implementation, a step-wise approxi¬ 

mation of the locally Gaussian behavior is employed in the PARECOMPUTER. 

This is illustrated in Figure 7. 

The locally Gaussian decay with "distance" from the nearest cell center, 

V iS iUu.trated in Figure 7a where ¢(.7 is the density estimate at the center 

of the i cell. By working with the natural logarithm, of probability densities 

in the PARECOMPUTER and by storing the logarithm, of the local estimates 

of probability densities, we obtain the linear relationship between the logarithm 

of the estimated probability density and the quadratic form, shown in Figure 7b. 

A step-wise approximation of this linear relationship readily lends itself to 

implementation by the exclusive employment of shift operations of binary 

numbers. If the log probability density is decremented by log 0 for every o 

change in the numerical value of the quadratic form, the step-wise approxima¬ 

tion of the locally Gaussian behavior illustrated in Figure 7c is obtained. With 

this method of approximation, the pre-computed estimate of the probability 

density is retrieved from memory whenever the input vector is within a of the 

cell center (if Q.(v) < <»), and this estimate is Gau.sianly decremented in a 

step-wise fashion for Q.(v) > a. 
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FIG. 7. Stepwise Approximation of Locally Gaussian 
Behavior in the PARECOMP'JTER 

a^y) 
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Operationally, from the value of the density at s the quantity log ß is 

subtracted as many times as a can be subtracted from Q.(v) without obtaining 

a negative number. 

This method of approximation of a joint probability density of N-variables 

(for a two dimensional case) would take the shape of a terraced surface similar 

in appearance to a rice paddy, shown in Figure 8. That is to say, in different 

regions of the two dimensional plane representing the combination of two param¬ 

eter values, the surface of the probability density approximation would be flat, 

but in each region the density would have a different value. .The locus of points 

where the approximated density has the same value is the region within which 

points are nearer to the "typical sample" contained within that region than to 

any of those samples located on the exterior of the region in question. The 

step-like decreases indicate the step-wise approximation of the locallyGaussian 

behavior of the approximated probability density at points distant from even 

the nearest typical sample. Of course, N-dimensional probability densities 

can no longer be pictured in the same way, but the n.athematical representa¬ 

tion of the approximation can be handled with equal ease 

The pattern recognition technique and its implementation, briefly described 

above, have been applied to numerous practical problems successfully Hard- 

ware operating according to these principles has been in use since 1963 

2- 5 Some Properties of the Learning and Recoyr tum Techniques 

A pattern recognition technique can be regarded as adaptive if, during the 

sequential introduction of learning samples, the Recognition System can be 

updated as a new sample is introduced without recourse to all preceding samples. 

One would expect that in an adaptive system'the Recognition System (or the 

estimated probability densities) would depend not only on the set of learning 
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FIG. 8. Approximation of a Function of Two Variable« by the 
PARECOMPUTER 
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«amples but also on the order in whch they were introduc ed. The order of 

their introducen can be expected to influence the pattern recogntt.on .y.tem's 

performance. Since the opt,mum .y„em would depend only on the learning 

•ample, on whtch ., .. based and no, on the order wh.ch they are introduced. 

a good technique should be a, .„,e„,.,ive to the order wh.ch learn,ng sam- 

pies are introduced as possible. 

It .» also des,rabie that a quality measure be calculated to s.gnal whether 

or no, the est.mat.on of the probab.lity dens,t,es from the learn.ng samples ,s 

re table. Such a quality measure ,s discussed in Section 2. 6 below 

Wh.le the initial cell sire in the estimation procedure ,s due largely to 

conjecture and to engineering judgment, the control parameters, r. e and w 

which govern the mechanism of Ce„ 8hape adaptatlon _ be from 

mathematical considerations. In the following paragraphs these three properties. 

cell growth control, estimation quality criteria i ^uauty criteria, and learning sample order 
dependence will be discussed briefly. 

The method of determining the cell growth controlling parameters, r 

and u is presented in Appendix II oi Reference 6. Here only the hey thoughts 

an the results will be recapitulated Desirable properties of the cel, growth 
mechanism are that. 

A If the cell is in a region of constant probability density. „ should 

expand rapidly ur.,,1 „ covers the region of constan, density 

» the cell „ in a region of non-constant probab.l.ty density. ,t 

should not expand rapidly. 

A cell's volume might be considered optimum if ., „ as large as 

possible and still estimates the probab.hty density in a consistent 

manner with other estimates using smaller cells 

B 

C. 
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If an ellipsoidal cell contained a uniform distribution of points, the density 

of the projections of these points onto any vector dimension (normalized with 

respect to the radius of the ellipsoid in that dimension) is illustrated in Figure 9. 

The normalized variable is w. It is seen that é s the number of dimensions 

increases, the probability densities of the coordinate values become more and 

more Gaussian in appearance, (they are not Gaussian, however). The cell 

size will grow in the nfc dimension from its initial value, determined by r a (0), 

if the inequality given in Equation (10) is satisfied; that is to say, if the cell 

sample variance exceeds the initial "variance". 

2 
a 

mn 
(t) > o2 

mn 
(0) 

(10) 

The probability that this should occur can be calculated with the result that cell 

growth will occur with probability 0. 5 if Equation (11) is satisfied. 

tn = sTtTTT di) 

The choice of also determines the average number of observations in a cell 

before cell growth can be expected to begin. Of course, if cell growth is to 

start after just a few inputs are contained in a given cell, then should be 

chosen larger than the value given in Equation (11). The larger rN the sooner 

cell growth will start. If we denote by 3* the factor by which should be 

chosen larger than the value given in Equation (11), we can calculate the value 

of 3* versus the number t* of vectors in a cell before cell gro vth can be 

expected to commence. This curve, shown in Figure 10, indicates that 3* 

should be chosen on the order of 1 4. Thus rN s 14 n/n + 2. It is readily 

appreciated that the number of vectors in a cell should exceed the number 

required for the initiation of cell growth before those input vectors that fell in 

"guard rings" during learning are forced into the existing cell structure. Since cells 
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near the modes of the probability density are cells with a larger than average 

number of members, they will begin to grow before the majority of the cell, 

have collected t* members. It is reasonable to expect that in many instances 

the cells located near the modes of the distribution will have grown to their 

maximum limit by the time an average of t* points have been processed for 

each of the cells in the entire cell structure. A reasonable choice of the 

control parameter u is therefore u = t*. 

In any automatic decision making device the user must concern himself 

with the question of how much to rely on the decisions rendered by the machine. 

While the user of the machine will doubtless form hi. own opinion, about the 

quality of the decisions rendered, it would be desirable for the machine to 

indicate the reliance the user should place on the quality of it. decisions. A 

Decision Quality Indicator would be a useful diagnostic measure with which 

the decision making procedure could be analysed so that improvement, could 

be made either by increasing the number of learning samples or by altering 

the choice, of minimum cell sise and cell growth control parameters. Two 

useful decision quality indicating measure, have been investigated. One of 

the quality indicators, 1,. is an indicator of the probability that the decision 

rendered is a correct one. The second indicator, i. a measure of whether 

or not the decision is optimum. There is a rather subtle difference between 

these two measures. If the probability, after the vector observation is made, 

is higher that v is a member of class A than that it is a member of class B. 

the optimum decision is that v is most likely a member of class A. If the true 

probability densities are unknown to u. and we use estimated densities to 

arrive at the «me decision, our decision is optimum; however, it is notneces- 

sarlly correct. The probability that the optimum decision is wrong may be high. 

For instance, if the probability that v is a member of A is 0. 6. and that it is a 

member of B is 0. 4, the optimum decision would be that v is a member of A. 
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but the probability that the optimum decision is wrong is 0. 4, a rather high 

figure. The quality indicator would state, in the above example, that 

the machine decision is correct with probabüity 0. 6. 

If the estimate of the density of A is larger than the estimate of B (so 

that we would decide in favor of class A), we may inquire, "What is the 

probability that the actual density of A is larger than the actual density of 

B?" In this way we could determine the probability that the decision we 

make i, an optimum one. The quality indicator, would state that the 

machine's decision is the "optimum" decision with probability (say) 0.9, but 

it would not say whether or not the decision is correct. A more detailed 

discussion of quality indicators is given later in this report. 

The algorithmic procedure for estimating probability densities is 

obviously dependent on the order in which pattern samples are introduced. 

Since in practical problems the data from which "machine learning" must be 

accomplished will be ordered, it is important to investigate the order 

dependence of the approximation technique. In a problem of sonar target 

classification, for instance, the data is order- 1 by the methods used in 

data collection. If a sonar target is tracked, for example, tne sequence of 

sample vectors will all be samples of a target seen at a given relative bearing, 

thus corresponding to only one of the conditions in which targets can be 

observed. In another instance the sequence of echoes may be due to a 

different target type or to a different target aspect. Thus a g-ven sequence 

of sample vectors will i.ot correspond to a landom selectiva from the total 

target class population; it will, instead, correspond to only one subclass of 

the target class of interast. 

The above data collection technique give, rise to the queetion of whether 

or not all observed samples should be mixed and randomized before applica- 

tion of the adaptive estimation technique. Alternately, the question arises 

-38- 



whether the order dependence of the technique is sufficiently weak to permit 

processing collected data as it is obtained. 

To determine the nature of its order dependence and of its mode seeking 

features, a series of computer experiments were conducted. The probability 

density estimation method was that described in preceding sections of this 

report without the use of cell growth. The method of using the estimate so 

obtained was somewhat different in implementation, but this difference does 

not invalidate the results obtained. The experiments and results are 

described in Appendix I 

As a result of a comparative experiment in which samples from a bi¬ 

modal distribution wer. introduced to the adaptive approximation technique 

completely randomized tn one case and one mode at a time in the second 

case, (by separating members of the two modes prior to their introduction 

to the approximation technique), the tentative conclusion was reached that 

the order dependence of the "machine learning" technique i, not a. severe 

as originally expected. The probability dens,tie. of the sample, and of the 

resulting approximation when the samples were mixed and when they were 

tahen in the order in which they were generated are shown in Appendix I. 

When the PARECOMPUTER ,s used to classify unknown observations, 

a meter on the console provide, an indication of the reliability of the decision, 

made. The quantity displayed is directly related to the estimated probability 

of a wrong decision conditioned on each observation. The topic of such 

reliability indicators is discussed further in Section 2. 6. 
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2 6 -“‘Urg‘ of the Qualitv °! Machin. L«arnine and Machine .. 

A. discussed previously, machine learning may usually be interpreted as 

automatic estimation of the probability density function, (pdf's) and the a priori 

probabilities for each class. It „ desirable while performing learning that one 

have some measure of the quality of the estimation job being done, if only to 

know when on. can afford to stop sampling. And, while using a machine to.make 

automatic classifications, it is desirable to have a measure of the quality of 

the decision, being made so that action, based on these decision, be taken with 

the proper degree of confidence. 

There are two primary types of measures of performance quality that have 

been considered here. The first of these is the "surenes." one ha. that the 

decisions made will be (witi present estimates in the case of learning) or are 

(in the case of operational classification) correct. The second type of quality 

measure is the "surenes." one ha. that the decision, made will be (learning) or 

are (classification) optimum. There are various quantities one may use as a 

measure of "surenes." .„ch a. probability, estimated probability, confidence 

level, etc. In this section a few such measures will be discussed and illustrated 

by examples. 

We note in passing that the viewpoint taken here is possible only because 

one of the earliest obstacle, to pattern recognition has largely been overcome, 

namely the problem of collecting large bodies of data on class members. Only 

recently somewhat analogous studies were conducted to devise criteria for judg¬ 

ing when enough data had been processed during learning such that 90% , say, 

of all the reference vector, (typical samples), that would be generated if learn¬ 

ing were continued indefinitely, had already been generated. For example. 

Van Meter developed an occupancy theory model to help explain the learning 

curve, encountered in certain speech processing. Similarly, an important part 
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Of te «ting the SPEAR technique wae the generation of euch learn.ng curve6 

showing the number Ogf typical sample, generated a. a function of the number 

of vector, processed . the infancy of the pattern recognition field, data 

collection was so expensive that one could not afford to do more than worry 

about how well the references generated represented the classes under con¬ 

féra,ion. This point is further brought out by Highleyman's consideration 

o partitioning a sample of fixed sire between design „earning, and test phases 

of a pattern recognition machine’, and by ,he small sample sixes used in some 

early pattern recognition experiments10 

■ The most obvious performance measures of the first type are error prob- 

a . .ties Although error probabilities are usually stated for average or long 

term performance they can also be conditioned on specific observation.“ For 

example, suppose an observation x ,s made on an object Known to oelong to one 

of K classes, ,. e. . the hth Cass has been selected with probability T 

AK k 
(2k=l Tk 1 and the (vector) observation x has been made according to a 

class probability density function p(x; k,. Then the optimum processing of the 

o servation x ,s the computation of the set of a posterior, probabilities for each 
class. 

_ . TiP(x;j) 
Pr i j ! x } ^ -J- 

^ TjPÍx; i) 

i 1 

J = 2. , K 
(12) 

and deeding in favor of the Cass with the larges, a posterior, probability. This 

decision will be in error if an x has been drawn which yields a decision in favor 

of class J. j f k where k is the class from which x was fact taken. The prob- 

ability of an error given the specific observation... ,hen 
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(13) 
Pr {error I x) = 1-max ÍPr{j|x>] 

2,...K 

An important fact may be deduced from Equation (13). This fact is that 

if the average error rate is to be small, there must be a (perhaps not simply 

connected) region in the observation space with a large probability measure 

such that at every point in the region one a posteriori probability dominates 

the sum of all other a posteriori probabilities Or, to state this fact another 

way, for a low average error rate a large fraction of the observation space 

must be associable point-by-point with specific classes in an almost unique way 

Furthermore, it is apparent from Equation (13) that in order to compute 

such conditioned error probabilities one must have the complete set of a priori 

class probabilities (^} and class pdfs {p(x;k)}. But it is intrinsic to the 

pattern recognition problem that som? or all of these quantities are unknown 

and are often the quantities being estimated during the machine learning phase. 

Therefore, in practice, one can give onlv an estimate of the conditioned error 

probability as an indication of •'sureness" that the decision made is correct 

Although one might devise a separate estimation procedure for the conditioned 

error probabilities, it is much easier to simply substitute the estimates {T } 

and { p(x; k)} into Equation (12) where ever the corresponding true quantity 

is unknown. * Special cases of this type of decision quality measure are included 

in the output of the ASSC III recognition program**, and in the display of the 

PARECOMPUTER. 

Throughout this section the pointed circumflex symbol "/s" over a quantity 
will mean an estimate of the true value of the quantity 

**ASSC III is a general purpose computer which incorporates the techniques 
described in previous sections. See 6 for descriptions of other programs 
useful in pattern recognition. 
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Of course, the precis.on of such an estimate will, in general, be high 

only for observation, x such that one a posterior, probab.lity dominate, the 

sum of all others, i. e. , for an x such that the conditioned error probability 

in fact, low. Therefore, the estimated value of the conditioned error 

probab.lity ,s also a measure of the confidence one may have m the estimate, 

with low values implying high confidence. 

Although in the class,fication phase (actual field operation) one is most 

interested ,n being sure that the decisions made are correct; while perform- 

ing learning one „ more interested developing a classification system 

which will be optimum. Implementation of the (usual) optimum decision rule 

require, a complete knowledge of the set of the class a prior, probabilities 

{TkJ and class pdf, {p(x;k)> and (ignoring varying costs of wrong decisions) 

consists of deciding in favor of the class j for which the a posteriori prob¬ 

ability ,. maximum or, equivalently, deciding in favor of the class with maxi¬ 

mum (weighted) likelihood L(k; x). L(k; x) ,. a function of the class index k 

and is numerically equal to Tkp(x: k) for a given observation x. Since it is 

fundamental to the pattern recognition problem that the true value of L(k; x) 

is unknown, decision, must be based on estimates of the set of likelihood 

values. (For the purpose, here, however, the term "optimum" will refer 

to the decision rule which assume, a knowledge of the true probabilities and 
pdf's). 

Now at a particular point xo in the observation space,the set of likeli¬ 

hood estimates {l(k, ^)) lead to the optimum decision ,f t(j; x^ - max 

i-1.2.K 
L(i; x ) when in fact L(i; x ) - max t . „ » t », 

° o '1’ x0)* that case, at the point >; , 

the set of estimates are of high quality. If the set of points at which the estimate, 

are of high quality has a sufficiently large probability measure, then the total 

estimation result can be judged to be of high quality. Note that one cannot expect 
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(or «ven hop«) for high quality «.tímate, at every point in the ob.ervation 

•pace eine« there will always be point., for .ome e.timat.on or learning 

.ample, of finite .ne, where the maximum e.timated likelihood will not 

correspond to the maximum true likelihood. In such a case the order of 

the estimate, will be .aid to be interchanged and. at every point x in the 

ob.ervation .pace, »ince { L(k; x)} are random variables taking on different 

value, for different randomly cho.en learmng or e.timat.on samples, the 

j value of the e.timated likelihood function will be the maximum value 

with a probability e.(x). Hence, an acceptable mea.ure of the quality of 

the estimation performed i, the probability that, for a randomly selected 

test obiervation, an optimum decision will be made*. 

To further develop a realistic criterion for judging the quality of 

machine learning by pdf estimation, let 

P and be selected numbers close to one 

Rk s *XI L(kl x) ^ max Mi|x)} 
1=1,2.K 

Nk = {xlx* Rk: Vx> = Pr{î.(k|x) = max t(i|x)}>e } 
1=1.2_K ° 

Pk = probability of an observation drawn from the kth clafiS falling 

in Nk = J P(x k) dx 

Nk 
K 

p(x) = pdf of a randomly selected observation x = ^ Tkp(x;k) 

(14a) 

(Mb) 

(14c) 

(14d) 

(14e) 

k=l 

* 

In the first presentation of these idea¿¿, an additional 
to allow for w> 1 observations from the same class, 
for simplicity. 

"generalization" was included 
Thitf has been dropped here 
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Now the regions N^ k ~ 1,2.K depend upon the particular learning or 

estimation sample size n used and. general, will increase a. „ increases. 

Hence, the sequence of sets of Pk will also be increasing with n. 

Now the probability that a randomly selected observation will be classified 

according to the optimum decision rule, when the class pdf. and/or a prior. 

probabilities have been estimated, may be expressed in terms of the sets and 

quantities defined in Equation (14). 

Hr Í opt. decision) - J Pr{opt. decision) x) p(x/ dx 

= ¿ j Pr(opt- decisionj x) p(x> dx 
k-1 R. 

K 

¿ j wk(x) p(x) dx (Ba) 
k”l 

Although Equation (15a, ,s exact and might be used a, a measure of estimation 

quality, ., usually requires some fairly involved computation. I. it much more 

useful to nave a simple tes, that the learning machine can apply i„ a very short 

ttme. In this way the learning procedure suffers little interruption and little 

instrumentation or programming ,s required. Therefore, it is desirable to use 

an accurate approximation or lower bound to (15a). If the integral, ,15a) are 

taken only over the region, NkC 1^. such a lower bound ,s obtained. This 

and the succeeding lower bounds below are Cose to (15a) if the classification 

error probabilities are low, i. e. . if 

[ P(x) - p(x,k)] dx << 1. 
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Thu», 

Pr {opt. decision) > 

k= 1 

J wk(x) p(x) dx 

K 

- I "o J P,x) dx 
k=l N, 

k 

K 

> y w puTu — ¿J o k k 
k~l 

(15b) 

Further, if learning is continued, i. e. , n is increased,until P > P for k=l 2 
k 99 

• . . K, the probability of an optimum decision may be bounded below by: 

K 

Pr{opt. decision) >wP)T=irP 
“ o k o I1 

k=l 

Of course, by use of the lower bound (15b) or requiring that Pk > P so that (15c) 

holds, a somewhat larger sample size is normally required in order that a 

sufficiently high probability of an optimum decision is assured. However, for 

an application with a low error rate, the increase ,n required learning sample 

size should be moderate. The use of Equation (15c) ha, the sometimes useful 

characteristic of being uniform for all classes and for an application with a low 

error rate the expression (15c) is not significantly less than (15b). 

Throughout the development of (15) a. with Equation (13). the fact has been 

ignored that many or all of the required quantities are intrinsically unknown. But, 

since estimates of these unknown quantities are available, these estimates may 
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be u.ed where necessary When estate, are so used, the resulting express.on 

.. only an est,mate of the probabihty of an op„mum deciston. If Equation (15a) 

were used as a measure of learmng quahty. with e.t.mate, u.ed ,n place of the 

true quantities, then the precision of the estimate thus obtained would be subject 

to severe question. This is because it is usually difficult to obtain an accurate 

estimate of all the necessary quantities over the entire observation space. 

For example. ,t is in general difficult to accurately estimate », (x) over 

the entire region Rk with practical sample sixes because near the boundaries 

of R, the relative magnitude of »k(x) can be quite small. And. in fact, the region 

Rk can only be estimated (for the goal of making decisions based on single ob.er- 

valions, a determination of the set ( R^ „ «ally the whole game) so that evalu- 

ation of (15a> using estimates is doubly subject to error. 

However, one can be much more confident that an inequality such a. (15b) 

or (15c) ,. in fact satisfied if ^(x) and F>k satisfy the necessary requirement, on 

w^(x) and P^. Specifically, i >t 

R. - {xi L k i-|L(1«jx)= max L(ijx)} 
i=l, 2 . . . K 

U6a) 

*k(x) = th^ estlmate oí wk(x) obtained by substituting the estimates (16b) 

( p(x;k)} in place of the true quantities {p(x;k)} in the ex¬ 
pression for ir (x) 

Jx 

” { XI X « ft ; W, lx) > k 1 ^ I Ä ' *'k \(x>> w } 

p. k) dx 
/V 

N 

(16c) 

(16d) 

A 

(P. i k 18 81multaneously an estimate of P ^ C p(X;k) dx and of 

k "k 

^ P(x;k) dx = the 
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probability that an ob.arvation from the kth da..*!!. i„ the region 1^). It muet 

be kept in mind that the regions and quantities defined in (16) depend on the 

particular sample used for learning and that in general the precisions of these 

estimates increase with the learning sample sise n. 

On* can compute an eatimat* of th* probability of an optimum deciaion by 

aimply aubatituting eatimatad quantitiea onto (15a) wherever neceaaary. thua. 

A 
Pr{opt. decision} * 

Thia eatimat* may be biaaed and for practical learning aample aiaea n may have 

an appreciable variance. But atill, if the range of integration ia reatricted to 

Nk ao that ftk(x)> *o for k » 1.2.K and if for k =1,2.K. then 

Pr{opt. deciaion) P end the lower bound will be rather looae ao that by a 

confidence interval type of argument one can be fairly cure that in fact. 

Pr Í opt. deciaion) > woP. Theae commenta will now be illuatrated with a aimple 
•xampls. 

Suppose that the output of a transducer lies in the range 0 to 6 volts and is 

quantized at 1 volt intervals and that for two equally probable classes the true 

probabilities of falling in the quantization intervals are as shown in Figure 11. -. 

This example has relevance because SPEAR i. a somewhat generalized histo- 

gram generator. (More generally, the quantization intervals in Figure 11 might 

just as well have been described as representing cell» in a general N-space. 

This is not too unrealistic since often only a few cells will have significant asso¬ 

ciated probabilities and clearly the dimensionality of the observation space is 

unimporUnt here. ) Data vine generated by taking numbers from a table of random 

digits and classifying by the following intervals: 

1st class - 0-39, 40-64, 65-67, 68-87, 88-97, 98-99 

2nd class - 0-2. 3-7, 8-16, 17-26, 27-69, 70-99 

XV 

ï I £(x) dx 

:*1 
(17) 
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p. d. f. of X for class 2 

FIG. 11. P. d. f. • s Used in Illustrating Measures of Estimation Quality 
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Th. C.11 probabilitiea war. eatimated for both eU««.« with iiv. diff.r.nt 

aampl. *U... Th... .itimataa aro giv.it ia Tabl. I along with th. tru. valu... 

Th. .atimat.. ar. unbiaa.d and multinominally diatributcd random variabl.a. 

Th. ..timat.. for an individual call ar. blnominally diatributed and ao 

CAn con'puted by: 

n jf-1 

V*» * I (?) ‘k <> * I (-! »" o - t.)n*m 
i«0 ma0 J 

Where Wx) iB **** probability of an observation from the kth class falling in 

the cell conUining the point x, k*l and j«2 or k=2 and j«l. Similarly, 0 (x) 

can be computed by using the estimated values of ^ and t^. However, it U much 

simpler to use an approximation which is adequate for this illustration and may, 

in fact, be used in the practical application of this test. If two random variables 

have pdf's such as are shown in Figure 12 with the uppermost • quantile of the 

lower distribution less than the lowest « quantile of the upper distribution, where 

« « 1, then the probability that the random variables will be in the "correct" 

order is approximately (I - «) . Hence, for each true and estimated cell probability 

in Table X. a simple and approximate test of wk<x) or fyx) being greater than w 

may be performed by consulting a table or graph of confidence intervals1.3’14 

Figure 12.pdf's with Low Probability of Order Interchange of Estimate. 
of 6 and 8. 

1 2 

I 
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TABLE 2.6-1 

lat class 

2nd class 

True and estimated cell probabilities for sample size n 
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Selecting ^ . 81 and coneulting the graph of 90% confidence beite 11 

•hown in Figure 1¾ Table II was conetructed to show the quantisation cells 

for which *k(x)> ^ or \(x) > i^. Theee are the cell., therefore, which ' 

make up the regions or Nk. It so happened that the random samples used in { 

this example displayed very average characteristics and only a very few esti- [ j 

mates deviated significantly from the true values. As a result, for this simple 

example, there were no insUnces of estimates being m reversed order and the 

regions Nk and Nk were in complete agreement except for the exclusion of the 

4 - 5 cell from ft2 for n * 30 (and this exclusion was marginal). Therefore, 

this example does not illustrate the need for a measure of pdf estimation quality. 

But, it is easy to see from an inspection of Figure!}that it is possible, with 

reasonably large probability, to have estimates with order reversals. This is 

especially true if the cell probabilities for both classes are small (which is 

more nearly the usual situation in practice). 

Th« lower bound (15b) to the probability oí an optimum decision can be I 

computed for the variou, .ample .iaee. Thia i. .hown in the next to Let column | ¡ 

in Table II and the maximum value of this lower bound is 0. 676. That is, the * 

probability of drawing samples from these tv o classes of size 250 or greater 

that yield estimates of the cell probabilities which will allow optimum decisions 
to be made is greater than 0. 676. 

For the particular random aamplee drawn and ueed here, when the eatimated 

cell probabilitiee are ueed in generating the corre.ponding estimated region., N , 

of high quality estimation, the corre.ponding "estimated lower bound." for the 

probability of an optimum decision are shown in the final column of Table II . I 

Note that if one were to pick a value for P of 0. 7 that P, and P¿ are greater than 

P for n = 50 and so,by Equation (15c), one would feel fairly safe in saying that the 

probability of an optimum decision is greater than ir P - 0. 81 x 0. 7 - 0. 567. 
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Observed Proportion, B 

FIG. 13. 90% Confidence Belts for Proportions* 

nots. ^^fr/o:f:::dnebey Cc¿p“drw." by e l c-* 
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Whcru«. if one applies the tame teat to the true probabilities Pt and P , one 

would not be able to satisfy the same lower bound (15c) until a sample siae oí 

n • 250 had been reached. Hence, there definitiefy is some danger in using 

the estimated cell probabilities in the computation of (15). However, this dan¬ 

ger is oí little practical importance since here one is not so much interested 

in making mathematically rigorous statements as one is in simply being reason 

ably eure that the machine learning job done is adequate for the application at 
hand. 

This example has required several pages to present. However, it should 

be pointed out that the procedure followed can be programmed and is a relatively 

simple algorithm. This procedure provides a means for testing whether or not 

one can be reasonably eure that the pdf eetimate. one ha. obtained, at a particular 

stage of the sampling or learning process, will lead to an optimum decision rule. 

Floyd ha. also performed studies on the topic of this section15'15 In par- 

ticular, he studied the case in which the two class pdf's are estimated by con¬ 

structing generalised histogram., t. e., the quantitie. being estimated are the 

probabilitie. of an obaervation from the k“1 class falling the the various cells of 

a fiäsi cell structure. Thi. i. a fir.t step toward etudying the type of pdf 

representation generated by the ASSC or SPEAR program, in which the cell .true 

ture varies in a random manner dependent on the data used for learning. Floyd's 

work will be summarised here for completeness. 

Suppose Nj independent random observations are made on class A and N 

independent random observation, are made on class B. These observation, are 

then classified into c cell, labeled by the number. 1 to c, and the probabilitie. 

associated with these cell, by each class are estimated by success counting. Then, 

m independent random observations are made on one of the classes and a decision 

is made as to which of the two classes the m observation, came from. Let fk ) = 

ikl.km' den°te the cell* into which the m observations fall. 
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m 

u th. tr». cil probabiliti*. PA(kl, and PB W.re h«,,», a,« m^m<lln 

• posteriori decision rule could be expressed es: 

decide in ikvor oí class A if L = -A- ff > i 

and 
PB i“l PB(ki» 

decide in favor of class B if L < 1 

08a) 

08b) 

Howevgr, it is assumed tljat are unknown, and are instead estimated 

^ A^i^ * *ÑJ an<* ^B^i^ ' M^ier® ajç and bk the number of observa 

tions that fell in the k.th cell from class A and class B respectively during learning 

Therefore, the decision rule that is used in place of (18) is 

decide in favor of class A if 

and 

decide in favor of class B if 

1 > 1 

A 
L < 1 

where 

PA ™ (>V 
^ l" W 

(19.) 

09b) 

(20) 

Th. first .pacific topic studied by Floyd w»« . comparison of the probability 

0T<Pr {(t.l)(L-l) > 0} (21. 

» probability that a learning sample will be drawn which will yield 

an L leading to the same decision as L, for a given test sample 

of sise m 

with the estimated probability 

Q 5 Êr{(fc-1)(L-1) > 0) 

a estimate of QÍ obtained by replacing 

PA(ki) and PB(ki) ^ PA(ki) and ^B(ki) 

(22) 

-56- 



Specifically, 

Vr/ 

(23) 

N. N. 

where r - r indicate 

Ni Ni N. n2 n2 N. 

il-l -11-1 
ri*0 r =0 r »0 

1 2 m 

respectively, 

and agn x ■ | ^ ^ if x f 0 and agn x a 0 if x a o, and wherever j. a r^a o in (23) 

the definition ~ . -j- S i i, uted. 

Two methode were need in compering O' end Q. The firet of theee wee to 

try to eveluete the rme differ«« between Q'end Q for . .ingle (m*!) te.t .«mple 

point in the k cell. Oeepite exteneive effort epplied toward thie end, the formid- 

.H. netur. of expr.e.ion. each .. (23) we. not overcome even though e.v.r.l 

feirly reeeonebl. epproximetion. were mede. However, Floyd did eucceed in 

ahowing that Q tend, to en unbieeed ..timet, of O' for large learning .ample 
sisee. 
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In View of the immenee difficulty in obteining theoretical reaulte, an 

experiment wae conducted which ehed aome light on the magnitude of the rme 

difference between O' ami Q,S. Specifically. 10 independent .ample, of .i.e 

40 (N, • N2 . N . 40) were drawn from each of the populations with the pdf. 
given below: 

V*1 * - - 1 if - 1 < X < 1 
JTT, 

8 0 if I X J > 1 

= IX** °f * randomly sampled sinewave (24a) 

qB<x) - } for - 1 < X < 1 

8 0 if I X I > 1 j 

= pdf of a randomly sampled saw tooth wave 

The data were classified into four equal sized cells (c * 4), and cell prob- 

abilities were «.«mated from each of the 10 pair, of .ample.. The e.«mated prob¬ 

ability Q was obtained for each cell for all 10 example, of learning. The result, 

of the experiment indicated that the rm. difference between O' and Q wa. quite large 

even for c/N«10. Furthermore, in each cell the .ample average value of Q 

wa. greater than O'. It would be dangerous to conclude, however, that Q ha. a 

significant bias for small learning sample sizes. 

Also, and of considerable value, Floyd studied the effect of varying c, the 

number of cells. Specifically, assuming the class pdfs of (¿4) and using the 

approximation 
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N/^yÇ| PA(k) ■ PB(k)| 

^ßWl1 - PB(k)j +N2PA(k) [T- PA(k)] ' 
(25) 

where * (x) it the normal cumulative diatribution function, he obtained the 

graphe reproduced in Figurea 14, 15, and 16. Theae graphe indicate (aa might 

alao be deduced from Figure 12) that the probability of an optimum deciaion 

remaina low aa N = Nj = increaaea.only in the celia near the pointa 

^2“) where qA<x) = qB<x). Furthermore, theae graphe indicate the 

enormoua learning aample aizea required if one inaiata on having a high orob- 

ability of an optimum deciaion for every poaaible teat obaervation, i. e., at 

every point in the obaervation apace or in every cell, and aimultaneoualy inaiat 

on a fine cell atructure. i. e.. large c. A fine cell atructure ia deaired in order 

to bring the probability of error down to what may be achieved if the claaa pdf'a 

are known inatead of only cell probabilitiea. 

The graphe obtained by Floyd may now be uaed in conjunction with Equation 

(15a) to compute an accurate approximation to the (true ) probability of an optimum 

deciaion for a randomly aelected obaervation. However, aince the claaa of pdfa 

given by Equation (24) are auch that the error probability in making deciaiona ia 

very high, the lower bound (15b) ia much lower than the true probability. Further¬ 

more, the value a of Pk are ao low that (15c) ia of no uae at all for the claaa *>df'a 

(24)l 

The approximation uaed here ia one that would be uaed whenever the pdfa 

are eatimated by generalized hiatograma, and conaiata of uaing the quantitiea 

obtained from the average valuea of the claaa pdfa in every cell. That ia, the 

"true histogram" of qA(x) ia uaed in place of p(x;l), etc. Thua, the approximation 
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(26) 
"J*) s 0? for X « R, 

K k 

can be made where 0' i. given by (21). Thi. approximation i. accurate if the 

number oí cells is reasonably large. 

Inserting the values from Figure 15 into Ejuation (15a), Table III is 

obtained. The fact that the probability of an optimum decision is greater than 

80 per cent for learning sample sizes of 100 or greater from each of the two 

distribution, in (24) indicate, that, under certain conditions, extremely large 

learning sample, are not required. That is, if the cell, used for pdf estima¬ 

tion are judiciously placed and the probability of observation, falling in each 

of these cell, „ not extremely small, high quality learning can be achieved 

with thoroughly practical learning sample sizes. Of course, it is not always 

easy to satisfy these two condition, on the cell structure when little or no 

a priori knowledge of the class pdf. is available. (Thi. .. particularly true 

when the dimensionality of the observation space is greater than three. ) 

TABLE III 

Size of learning sample 
from each class 

100 200 500 1000 

Pr { optimum decision} . 808 870 . 916 . 942 

Approximate evaluation of Equation (15a) for the class pdf. of Equation (241 

In conclusion, thi. section has presented simply, but useful method, of 

measuring the quality of machine learning by pdf estimation and the quality of 

machine decision, based on such learning. The usefulness of these measure. 

of quality ,. greatest int .oee application, of greatest interest, i. e.. those in 

which the error rate is low. 
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3. A COMPUTER PROGRAM FOR DATA PREANALYSIS 

The techniques used for machine learning have been described in 

Section 2 of this report and in previous reports [6]. In order to apply 

these techniques, it is necessary to select values for cerUin program 

parameters. Some of these act as control parameters, and methods for 

selecting appropriate values for these control parameters have been 

developed elsewhere*. The results are summarized in Section 2. 5 of 

this report. 

This section is concerned with one method of selecting values for the 

SPEAR learning program parameters which do not serve to control the 

learning process, but rather serve to specify the initial cell sizes. While 

inclusion of the cell-growth feature in SPEAR does reduce, to some extent, 

the precision required to specify the initial cell sizes (as well as making 

the final cell structure quite general), the need for judicious choices is 

not eliminated. For SPEAR to function at all well in its present form, 

the initial cell sizes must not be significantly greater or less than the "local 

spread" of the class probability density functions (pdf's) about the modes of 

the class distribution. 

It must first be emphasized that one initial cell size may not be a best 

choice everywhere in the observation space. This is due to the fact that 

there are usually different "local spreads" around different modes. However, 

at present, SPEAR employs only one initial cell size. This restriction to only 

one initial cell size has not presented severe difficulties in any of the applica¬ 

tions tried to date. 

* See Ref. 12 and Appendix II of Ref. 6 
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. i 

With no a priori knowledge of the claet "local epreade", the initUl 

cell eiaee for SPEAR mutt be cho.en by an examination of data. A computer 

program ha. been written* which perform, a .imple analy.i. of data to 

obtain .ome idea of the magnitude of the cla.. "local .pread.". The u.e of 

thi. program precede, the u.e of SPEAR and would take the place of the 

"trial run." now required in mo.t practical application.. The.e trial run. 

have been required in order to make adju.tment. in the initial cell ,Ue. 

if the.e proved to be un.ati.tactory, Thi. trail run method i. expen.ive and 

too much of a "black art"; hence, the pre.ent "preanaly.i." program wa. 

written to reduce the co.t of application, and to make the overall learning 

process more systematic. 

One of the .imple.t method, of obtaining a partial picture of the cla.. 

pdf. i. by making e.timate. of the coordinate marginal pdf,. That i.. the 

ob.ervation i. an N-dimen.ion.l vector * - (Í ,. Í 2.Í N> with a pdf for 

the k cla.., p(x;k), which i. a joint deneity function of the N coordinate.. 

A knowledge of the coordinate marginal deneitie. {p.U.;k); i = 1, 2.N) 

convey, partial knowledge of the cla.. pdf p(x:k). The fir.t part of the pre- 

analyai. program con.truct. e.timate. of the marginal den.itie. {p.(£ :k); 

1 " 2.N) for “ch k- Uri»S the.e pdf e.timate. alone,* a rea.on- 

•ble fir.t choice for the SPEAR initial cell diameter in the ith coordinate i. 

the width of the narrowe.t "local .pread" about a .ignificant mode of p (C ;k) 

for any k. A .ignificant mode i. one with a rea.onably large probability * 

that a random ob.ervation will tall „ear that mode. While .ome judgment .. 

nece..ary in applying .Uch a rule, it i. at lea.t a partial .y.tem.tizing of the 

job of choosing initial cell sizes. 

* CoMrói’rram de*!:r'bedth‘* •««o» w»» written for u.e on the Computer 

UboratotT COmPUt*r nOW “ Li,,0n,• Inform»,ion Science. 
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3. 1 THE BASIC PROCEDURE 

The procedure for conetructing estimate« of the coordinate marginal 

pdfs is to construct a type of histogram. Specifically, a sample of sise 

is taken from the class under investigation, say the kth class, and the ith 

coordinate values are arrayed in ascending order. The ordered coordinate 

sample values are denoted by .The lowest possible value 

*i(0) °f the coordinÄt« (»ssumed finite and determined by the measuring 

device) is taken as the lower limit of the first cell. The upper limit of 

the first cell, equal to the lower limit of the second cell is set equal to 

*i(k) ****** m * (n + k is the number of cells to be generated. The 

upper limit of the second cell, equal to the lower limit of the third cell, is 

set eq^ul to Ê.^k)* Thi* Proc«d^e is continued, with the upper limit of 

the m or final cell, + equal to the maximum possible coordinate 

value (again assumed finite and determined by the measuring device). Then 

the histogram value of the 1th cell is given by 

This value, h.( ;k), is an estimate of the average value of the class 

marginal coordinate density function over the cell. And, if k is large, the 

statement (as will be discussed presently) 

(28) 

i([i -l]k) 

i, ju.tified with high probability; h.(/;k) then provide, an acceptable picture 

of the marginal density. 
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The next etep in determining the width of the narrowest "local spread" 

about a significant mode of p.<£.;k) is to find the smallest cell width of 

H.(i;k). The "local spread" may be defined a. either this narrowest cell 

width, or in some similar suitable manner (which will depend on m). 

The present program, in it. simplest form. type, out the value, of 

h.(/,k) tor J* 1,2.. X = 1, 2.N, and k ranges over all classes, 

a. well a. the corresponding cell limits. A flow chart of the main program 

■s shown in FIG. 17. In addition to the histogram values, the program out- 

put. the minimum cell length and the number of "mode." in h C/;k). A "mode" 

is operationally defined here as a value of/such that h.(/- l^k) < h (¿ k) > 

h.(/+ 1; k). To be significant, a "mode" must have a significant probability 

measure and there must be a significant departure from uniformity in 

\U-. k> at the mode. In each case, however, the choice of what is significant 

is subject to the judgment of the experimenter and i, closely connected to 

the choice of the number of celle, m. 

3. 2 CONSIDERATIONS IN THE CHOICE OF CONTROL PARAMETERS 

The choice of m is affected primarily by the conflicting goal, of obtain- 

ing a high resolution, accurate estimate of p.^ k) and at the same time 

keeping the cost of preanalysis low. In view of this trade-off situation, the 

experimenter must attempt to specify the lowest resolution requirement, for 

the preanalysis which is consistent with the goal of selecting reasonable initial 

cell size, for the SPEAR automatic learnxng program. The average prob¬ 

ability content of an individual cell is l/m, so that the probability measure 

associated with a "mode" which jus. satisfies the operational definition used 

here may be reasonably defined a. l/m. However, if a "mode" exists such 

that h.U- 2; k) < h.(/.1, k) < „.</ k) > h.(A 1, k) > h. (A 2; k). then the 
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START 

C 
I 

Accept Control Parameters 
and Initialising Data 

:: * 
Type Headings, Control Pa- 

rameter Values, etc, 

: 1 
Initialise 

D 

NO« 1 
NOT = NCEL • MSVR - 1 

ND« 1 
MNMD« 1 

T 
Read and Test on LAST and JTRUE. If 
Tests Satisfied, Read Vector XI and 
Store X(NO, K) « XI(K), Set NO = NO +1. 
Repeat. If JTRUE / J, Go to Next Vec- 
tor. If LAST« 1, Stop. 

__: H" ---|ND = ND + 1 -- 
1 I = NO PC ( ND ) J 

Order the I-th Column Values of the Array 
X ( NO, K ) and Construct a Partition 

PRTN(I,K)»X(K*MSVR- 1,1) 
for K» 1,2, ... NCEL + 1 

Determine Mode Locations and Number by Generating 
the I-th Row of the Array KKPl(I.L). KKP1(I, L)«K 
Implies the L-th Mode of the I-th Estimated Marginal 
Density Lies Between PRTN(I,K) and PRTN(I,K + 1) 
i.e., in the K-th Cell. 

MODE(I) sNumber of Modes Deter• 
mined Above 

MNMD « MNMD MODE ( I ) 

FIG. 17. Flow Chart of the Basic PREANALYSIS Program 
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probability ...oci.fd with thi. "mod.'. raight r„.0Mbly b. defined 

». 3/m. Cleerly. ,. m i. incree.ed, more cell, will be generated near the 

mode. Of p.( {k) giving a better picture of the behavior of the marginal 

deneity in tha, neighborhood. However, more cell, are required ,o be 

aeeoctable with a .'mode- a. m i. incr.a.ed if the eignificance of ,h. ••„od... 
i» not to be diminished. 

The other program control parameter, which muet be .pecified in order 

to utilize the program a. de.cribed eo far i. k. the number of ob.ervation. 

in each cell. The choice of k determines the accuracy, for given m, of the 

Pdf estimate which i. generated by using sample quantiles to specify the 
histogram cells in the above manner. 

To demonstrate the role of k in determining the accuracy of such a ".ample- 
quantile histogram"» suppose that x < v * . ppo.e tnat x(()< x(2) ... < x i. ,n ordered sample 

rom a univariate population with probability density function f(x). Let w be 

the are, under fix) between x(r) and x(<) where r < .. That is. 

w 
r (•> 

f(x) dx 
(29) 

Obviously w is a random variable. The pdf of w is 

g(w) = ni 
(■ - r - 1); (n - s + r)J w s-r-1 

(1 - w) n-8+r 
. 0< w< 1 (30) 

which is of the beta form with dr = . - r - 1 and 3 * n - . + r». Therefore, 
the mean and variances of w are! 

* See, for example Ref. 17 

i 

-69- 



E(w) n-1 (■ - r) 1 
(n + 1)! (■ - r - 1)! 

» - r 
n + 1 (31) 

and 

Var (w) = ni (■ - r + I).1 
(n + 2)? (• - r - 1)! 

_(s-r-l)(»-r) 
(n + 2) (n + 1) 

[ n-' (» - r)i 
n + l)i (■ - r - 1)! 

■ - r \ 
n + 1 J 

_ «-r [(n+l) - (»-r) - 2 
n+1 L (n+1) (n+2) ] (32) 

Now, identifying (.-r) a. k and (n+l)/(.-r) a. m, the number of cell, i 

the histogram. Eq>. (31) and (32) may be rewritten a. 
in 

E(w) = — 
m 

and 

Var(w) mk• k - 2 
m ¡_(mk) (mk+1) 

Then, the squared mean-to-variance ratio (MSVR) is 

(33) 

(34) 

2 
E (w) __ mk + 1 
Var (w) mk - k - 2 

(35a) 

(35b) 

Thus, the approximation if (28) is valid with high probability if k is large. 

Of course, validity of (28) is not sufficient to assure that the results of this 

type of analysis will be useful. Obviously the approximation of (28) is always 

exact if m * 1. Furthermore, since the chief objective here is a determination 
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Of suitable initial cell sizes for use in the autotnat.c learning technique 

described in Section 2 (the SPEAR program), some idea should be had of 

the manner in which the cell wtdths approximate the "local spread." of 
the pdf. 

If m is very large and k > 1, then the nature of the pdf will be accurately 

portrayed and the experimenter need only look at the resultant histogram to 

determine the "local spreads". However, this is usually impractical since 

“ implie’ a Very Urge SamPle 8i“ n = mk - 1*. Often in practice with m 

small, the experimenter will face estimated "modes" which are one cell tn 

Width. In this case, the use of cell width as an estimate of "local spread" 

somewhat resembles the use of the difference between maximum and mini- 

tnum sample values as an estimate of the range of a uniform distribution. 

This rough analogy lead, one to suspect that the cell width of a single cell 

"mode" will usually be somewhat less than what one would like to call the 

"local spread". This, indeed, turns out to be true as ,s illustrated in 

Section 3. 3 

U appear, that adherence to the following rule of thumb will yield useful 

result, from this estimation technique; m and k should both be greater than 

10 with k as large as possible. 

n = mk - ! since the extreme limits of the d.stribution are assumed known 
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3. 3 A SIMPLE EXAMPLE 

To illustrate the use of this preanalysis program and to indicate the type of 

information that it provides, data were taken from two simple bivariate popula¬ 

tions. These populations or classes have p. d. f. • s which are constant over a 

set of rectangular areas in the plane shown in Figure 18. The probabilities of 

falling in each of the four rectangles for each class are equal. Two hundred 

sample vectors were generated with the aid of a table of random digits. The 

probability of an observation being made on class 1 was 0. 6 and the probability 

of observing class 2 was 0.4, i. e. , data from the two classes were mixed but 

labeled. 

The coordinate marginal p. d.f. 's were estimated automatically with con¬ 

trol parameter values m=6 and k=12. The sample-quantile histograms thus ob¬ 

tained are shown in Figure 19 along with the true coordinate marginal p.d.f.'s. 

It may be seen that in most of the cells generated, the approximation (28) is 

valid. Most of the estimated densities display the more important features of 

the true densities rather accurately considering the somewhat low values of m 

and k. As expected, the minimum cell widths are less than the "local spreads" 

in the neighborhoods of these smallest cells. 

This estimation technique was repeated with m-6 and k--6 using the same 

data. Although the approximation (28) was only moderately less true in most of 

the generated cells, the point by point representation of the densities suffered 

badly. In particular, the minimum cell widths were unacceptably small in com¬ 

parison to the "local spreads". 
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FIG. 19a. True and Estimated First Coordinate Marginal 
p.d.f.'s, for mr:6f k = 12 
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3. 4 HIGHER DIMENSIONAL ANALYSIS 

Even if the univariate e.t.matea generated by the techn.que de.cribed 

m Section 3. 1 are highly accurate descnptions of the coordinate marginal 

densities, the information provided about ideal initial cell sites is limited. 

What is desired is a rough idea of the "local spreads" in the N-dimens.onal 

observation space, and not just the individual coordinates. To obtain such 

information, the technique is extended to provide conditional marginal 

coordinate densities. 

At the option of the experimenter the dimen.ionability of the observation 

space may be reduced as follows. The first coordinate is processed as des- 

cribed before and a number, u , of "modes” are determined. Then, the program 

sort, through the data, collecting vectors whose first coordinates fall within 

the limits of the first "mode" determined above. These vectors are then 

analyzed on their second coordinate by the procedure in Section 3. 1, and a 

number « , , of modes are determined. The program then sorts through the 

(original) data collecting vectors whose first coordinates fall within the limit. 

of the second "mode". These vectors are analyzed and a number, « , of 

modes" are determined This procedure is continued until the second2 

coordinate marginal densities conditioned on the first coordinate falling in a 

"mode" have been determined. A total “ 2 ‘ , ,, i second coordinate 

mode, have thus been determined. The width of the smallest "mode" is 

recorded and may be used to determine the initial cell radius in the second 

coordinate. 

This procedure^, continued into the third and other coordinates with a 

total of «N = j «N., , modes determined. The tree structure shown 

in FIG. 20 illustrates the general procedure From each point labeled (i.j). 

and representing the j,h mode in the .th coordinate, a number u of lines 

lead to modes in the (i + l)th coordinate. J 
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Mode " Seeking Proceedure 
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Clearly, the order in which the coordinates are processed affects the 

results obtained. Therefore, this order may be changed to any permuta¬ 

tion desired by the experimenter. And, a limited number of the first few 

coordinates processed may be reproceesed subject to the conditions imposed 

by processing the latter coordinates. 

This technique seems to work rather well in providing reasonable values 

for the distribution "local spreads". However, it has a major shortcoming. 

A total of ai i4N>. nm data vectors must be available in order to per¬ 

form this analysis. This number can easily be excessive if either N or m is 

nontrivially large. No direct higher dimensional analog is known of the one 

dimensional procedure in which m cells each containing k observations are 

generated for each specified pair of numbers m and k. 
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4. ON THE MEASUREMENT SELECTION PROBLEM 

A. the etate-of-the-art of parameter processing ha, grown out of its 

infancy, a number of question, that have remained suppressed in the minds 

of researchers for want of answers to more pressing problems have come 

to the fore front. The chief problem among these is the problem of how to 

select the measurements or parameters that should be processed. There 

are several reasons why the method of selecting the measurement, is of 

great interest. The most important one is that a set of measurements must 

be found that contain, enough information about all of the classes (or about 

the differences between classes) to permit decision making with a sufficiently 

low probability of error. The measurements so selected may contain 

sufficient information to permit a discrimination between classes; yet, for 

reasons of economy, a smaller set of measurement, may be desired and 

these may be obtained by discarding the less useful ones and keeping the 

minimum number of those that prove most valuable in discriminating between 

the classes. Thus, one is led to consider the usefulness and economy of 

sets of measurements 

In other situations like those encountered in the recognition of shapes 

in two-dimensional visual patterns, it is desirable to obtain measurement, 

that are substantially invariant with respect to the translation, rotation, and 

magnification of the pictorial input pattern. Parameters exhibiting such invari¬ 

ance, may be processed by relatively simple recognition devices, such as simple 

correlators that can successfully compare input pattern, with stored reference 

patterns only if the combination of input parameter values is substantially 

invariant over the set of inputs that belong to the same class. 
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The parameter selection problem has different meanings to different 

researchers. To some it means the desire to reduce the number of para¬ 

meters that should be processed, to others it means the problem of select¬ 

ing parameters that are invariant over members of the same class, while 

to still others it means the hope to learn something about the physical 

process giving rise to the input patterns by an analysis of the usefulness 

of the chosen parameters or the usefulness of the set of parameters derived 

from those initially chosen. In the discussion that follows, we will describe 

the various facets of the measurement selection problem. We will distinguish 

between those facets that must be solved by engineering reasoning and expertise 

in the problem being solved and those facets that admit to mathematical formula 

tion and mathematical solution. Depending on the point of view of the system 

designer, the constraints he may place on the classification system or on the 

set of measurements, different mathematical formulations can be obtained. 

As in any mathematical approach to an engineering problem, mathematical 

models of the measurement selection problem can be set up, the system out¬ 

puts can be expressed, and the achievement of the goals of the system designer 

can be measured by means of a figure of merit. Solutions of the measurement 

selection probier can then be formulated by the optimization of the figure of 

merit by which system performance, in terms of the achievement of the goals 

of the system designer, is judged. In our pursuance of this traditional route 

we will be concerned with models for measurement selection, design goals to 

be achieved, figures of merit for measuring the achievement of design goals, 

and the feasibility of obtaining solutions to the problems we thus formulate. 

Only few solutions to the measurement selection problem are presented; for 

the most part only the problems to be solved are formulated. 

An electronic device perceives environment only through a set of measure 

ments and the numerical values of these measurements form a vector with 

which the device represents its environment. This is illustrated in the block 
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diagram of Figure 21 where the input ie tran.duced by the "Mea.urement 

Subsystem" and is represented by a set of numerical values. The second 

block, the "Measurement Transformation Subsystem", modifies or trans¬ 

forms the original measurements to devise a set of "better" parameters 

on which the "Decision Rule" or "Classification Subsystem" operate, to 

recognise the input pattern by distinguishing between member, of different 

Classes. We will be dealing with a design of the "Mea.urement Transforma- 

tion Subsystem". 

If an "optimum" Decision Rule or procedure were used on the original 

set of measurements, it would base decisions on the evaluation and compari- 

son of the joint probability densities of the measurement, computed for each 

of the classes of interest. These densities are either known or are "learned" 

from sets of sample, of known classification. Theoretically, decision, with 

a minimum probability of error can be made on any chosen set of mea.ure¬ 

ment. no matter how these are selected. Even in practice, the state-of-the- 

art is rapidly approaching the point where nearly optimum decision, on 

arbitrary set. of measurements can be made. Since even the optimum Decision 

Rule can render classification decision, only with a generally non-zero prob- 

ability of error, it follows that there is an inherent "irreducible error" associ¬ 

ated with a given set of measurements and classes to be recognized. This 

irreducible error stem, from the fact that the same mea.urement value com¬ 

bination. (vector.) are sometime, observed on members of several classes. 

Thu. Classes appear to overlap in the mea.urement space. Since any decision 

making system can associate only one decision (one classification) with a given 

input vector under condition, of overlap, any decision making system must at 

time, be in error. Since mathematical method, can only operate, transform, 

or otherwise manipulate the original vector space, no mathematical technique 

of an* kind can improve on the irreducible error inherent in the mea.urement 
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«et by creating new functions from old measurement«. Of course, the 

irreducible error associated with a different measurement ,et may be 

lower; however, this set cannot be derived from the original set by 

mathematical techniques. 

The implication of the above argument is that the design of the "Mea.ure- 

nt Subsystem is an engineering task and this task cannot be aided by 

mathematic, of any kind except inasmuch as it may be possible to draw 

inferences from mathematical results regarding the design of better set, 

of measurements. This limitation of mathematical method, is „o, necessarily 

a severe one in many instances. Often it is possible to choose an initial 

measurement set .ha, contain, all of the information about member, of the 

classes of interest and assures that no information has been lost and. in 

fact, assure, tha, the input can be reconstructed from the measurement, 

completely. If the input is a waveform of bandwidth W and duration T, for 

example, a number of different measurement sets, each composed of 2 TW 

measurements can be devised in such a way as to assure the "completeness., 

of the method of representation. Of course, such an exhaustive measurement 

set is usually „o, necessary to classify the input, and we are thus led to con¬ 

sider the design of the "Measurement Transformation Subsystem" tha, should 

«riu* 3 ,maller »“"’ber of better measurements, tha, are still sufficient 
for the classification of inputs. 

The design of the "Measurement Transformation Subsystem" cannot be 

divorced entirely from the design of the classification device. Since the figure 

of merit that serves as the design criterion for this subsystem is also in terms 

of system performance, and sys.em performance can only be measured a. the 

output of the decision device, the design of «.«"Measurement Transformation 

ystem must im lude specification of the decision device that will use the 

new measurements. Since the proof of the pudding is in the eating, 0„e may 
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use the probability of error as the figure of merit associated mth the new set 

of measurements as the design criterion which one should seek to minimize 

by proper choice of the "Measurement Transformation Subsystem". It should 

be noted that several other figures of merit can also be envisioned. These will 

be discussed later. While, it was argued, the design of the original set of 

measurements is not a problem in mathematics, there are still two meaningful 

types of questions that can be asked in which mathematical methods can aid to 

reach a solution. 

A. If there are N parameters with which to start and we insist on using 

only K (where K is less than N), which K measurements should be 

retained so that the probability of error should increase the least 

over the irreducible error probability associated with the N given 

measurements and classes to be recognized? 

There are two basically different ways of formulating even this question. 

In one way no constraints are applied to the recognition system; that is to say. 

the recognition system may be assumed to be an "optimum" Decision Rule. 

In an alternate way of formulating this question, and this is usually the 

more practical of the two, constraints are placed on the recognition system 

either by limiting the types of operations that it can perform or by limiting 

the associated storage implied by the recognition function. Different formula¬ 

tions of the parameter transformation problem falling within these two subclasses 

will be discussed later. 

B. If the permissible machine complexity is constrained to a degree such 

that the classification system is less general than that which would be 

required to achieve the theoretically irreducible error probability in¬ 

herent in the data and in the chosen set of parameters or measure¬ 

ments. what functions of the original vector space should be used to 
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derive a new vector .pace (we will call it the property .pace) from 

which the optimum machine of specified complexity .hould make 

decisiorg with the lowest probability of error? 

Tht. formulation of the mea.urement tran.formation problem place, limita- 

t.on. on the allowable cla..ification machine a. well a. on the allowable 

mea.urement tran.formation. and then a.k. what operation, on the original 

data will bring i, into the highe», degree of conformity with the machine limita- 

non. in order tha, the low,., probability of error .hould be achieved? I, i. 

important to recogn.ze that, in thi. formulation, con.traint. are placed on the 

decision making device a. well a. on the Mea.urement -Tkan.iormation Sub.y.tem, 

The fir., method of formulating the measurement tran.formation problem 

define, the problem a, one of .electing a .ub.e, of the original measurement, 

use as a new set of properties. In the second method of formulating the 

subsystem, we define the property .pace a. a .e, of tran.formation. on the 

original mea.urement .pace and permit given cla..es of function, and a given 

type of classification function only. 

Both of these method, of formulation can be expre..ed by Equation (36,. 

Where the N-dimen.ional vector x =^. x2.^ i. the mea.urement 

vector and y y2.the property vector ,n genera, each of 

«he coordinate, of the property vector i. some function of all N-mea.ur.ment 

vector coordinate.. In the equation, F i» the figure of merit a,.ocia,.d with 

a given cla„ of clarification function, operating on the property .pace y 

Such a figure of merit, of cour.e, include, a con.ideration of the functional 

form of the clarification function, lllu.trative example, will be given el.e- 
where: 

F= íÍYjíx). y2(x), ...yK(x)J 
(36) 
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Subsystem 

While in the preceding the probability of error was used to illustrate a 

pragmatic figure of merit which expresses the utility of measurement trans¬ 

formation. directly in terms of overall system performance, a number of 

other figures of merit can be envisioned. Generally, these fall into two 

group. - one in which no assumption regarding the Decision Rule has to be 

made (other than that it is optimum), and the second where limitations of 

the classification function form an integral part of the figure of merit. For 

mathematical convenience, the nature of the classification function can be 

taken into account indirectly by specifying the desirable properties of the 

property qpace instead. A number of candidates for figures of merit in 

evaluating Measurement Transformation Subsystems are given below. 

4. 1. 1 Risk and Average Probability of Error as Figures of Merit 

A Decision Rule is a procedure for assigning a decision (or label) to 

every observation that consists of a set of property values represented by 

the vector y. The rule may state, for example, that when a specific vector 

yQ is observed, it is most likely a member of class C.; hence it should be 

classified as a member of C.. But if yQ (in reality) is a member of C instead, 

the decision is in error and the decision maker should pay the penalty^y 

incurring a certain cost or loss, L. Since, once designed, the Decision Rule 

is fixed and it renders a specific classification decision upon observing each 

vector y, the penalty or loss, L, suffered by the decision maker upon making 

a decision depends on the observed vector (and thus the decision rendered) 

and on the actual class identity, C., of the input. The average loss (or "risk") 

of decision making is given in Equation (37), where loss has been averaged over 

all possible observations, y, and all classes. C.. The a priori probability 

of class C. is P(C ). 
i i 



(37) 
Ri.k = E[ L(y, C.] = ^ Ç P(C.) L (y. C.) p(y|C.) dy 

c. X 
i 

Ri.k measure, the discriminability of classes with a given property set and 

decision procedure. If we postulate an optimum decision procedure at all 

times . Risk measure, the discriminability between classes achievable with 

. given set of properties and thus serves as a figure of merit of the property 
set. 

Designing a Measurement Transformation Subsystem entail, the choice 

of a set of properties that minimize Ri.k either by a choice of a suitable 

subset of the N original measurement, or by the choice of the transformation 

of measurements to a set of properties. 

If the loss suffered by a wrong decision is one and that of a correct decision 

.S aero. theRisk becomes the Average Probability of Error, given in Equation 

(38) where R. is the region of the property space where inputs are classified 

as other than C.. 
i 

Expected Probability of error = £ J p(c.) p(y) C ) dy 
(38) 

C- F 
1 

This region is the complement of R. in which input, are classified a. members 

of C.. Thu, the Expected Probability of Correct Recognition. EPCR. is given 

in Equation (39) and is a useful figure of merit that increases monotonically 
with 

increasing performance. 

EPCR 
= Z Í P(Ci) p(yl Ci) d'/ 

Ci R 
(39) 
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Th«*« «quation» can be checked readily by recognizing that each of the 

integra)» over the R. region» i» unity if the probability densities are dis¬ 

jointed. causing EPCR to become unity, a fact consistent with our know¬ 

ledge that no errors will ever be made if the classes occupy non-overlapping 

regions in property space. This figure of merit (EPCR) is illustrated in 

Appendix II for the simple case where an optimum classification function 

operates as a single property y that may belong either to class C or C. 

with equal a priori probability. Each class is Gaussianly distributed with 

variance o and means *1. and respectively. It is shown that the figure 

of merit, ECPR, is a monotonically increasing function of the separation- 

to-spread ratio, (ii. - *0/o, a result that agrees with intuition. This result 

can be extended to the N-dimensional case and has been done so by Anderson. 

This apparently simple expression for Risk (or for ECPR) is, upon close 

examination, a very nasty expression indeed, and is one that does not lend 

itself readily to analytical or computational manipulations. Unfortunately, 

the regions of integration (the R.'s) can be determined only by evaluating the 

Decision Rule, a comparison of likelihood ratios with constants. Even if the 

conditional probability densities inside the integrals were known (they can be 

obtained by the adaptive approximation technique described previously), the 

search for better properties cannot be carried out analytically by application 

of this figure of merit except in certain special cases such as those where the 

different classes are Gaussian densities. This is the case treated in the 

scientific literature*. 

T. Ma rill and D. M. Green, "On the Effectiveness of Receptors in Recognition 
Systems", IEEE Tiansactions on Information Theory, January 1963. 

P. M. Lewis, "The Characteristic Selection Problem in Recognition Systems" 
IEEE Transactions on Information Theory, February 1962. 
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4.1.2 Information-Theoretic Figures of Merit 

Information theory deals with the quantitative measurement of changes in 

the state of knowledge of an observer that occur when an observation or meas¬ 

urement is made. In relation to the measurement transformation problem, 

information theory is applicable to the measurement or assessment of the amount 

of information contained in a set of properties about the classes (or about the 

differences between classes) we wt.h to recognise. We will discus, various 

quantu.es that can be used as figures of merit in the design of measurement 

transformation subsystems. 

A. Entropy 

Clusterability or "anticlu.terability" (spread) can be measured directly 

by entropy. Entropy of a class of things distributed according to the probability 

distribution p(x), where x is a vector measurement, ,. given by Equation (40). 

«0 

Entropy = H = -j p.(x) iog Pj(x) dx ^ 

-so 

Note that all entropy is aero if all members of the class C. have the same vector 

representations. For such perfect clustering, the spread and the entropy are 

aero. Note also that the entropy of a Gaussian distribution, given in Equation 

(41) is a monotonically increasing function of its variance. The more the spread, 

the higher the entropy. 

H - log (a J 2ire) for a Gaussian process 
(41) 

A typical way in which entropy as a figure of merit could be applied 

to the measurement transformation problem is given below. Suppose we are 

given a very h.gh-dimens.onal (N-dimens.onal) measurement space and samples 

of patterns distributed according to probability distributions p (x>, p (x)_ 
• 2 
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p.(x), where p.(x) is the distribution of members of class C. in the measure¬ 

ment space X. We wish to obtain a suitably small, K, number of transforma¬ 

tions of the measurements y^x), y^x), . , y^x), for the purpose of reduc¬ 

ing the number of variables on which the classification function must operate 

(K < N), and for the purpose of increasing the clustering of members of all 

classes in the K-dimensional property space. 

If we regard the smallness of the entropy of the class distributions in 

the K-dimensional property space, y. as a figure of merit that measures the 

fulfillment of the above stated desires, we could state the measurement trans¬ 

formation problem as follows. 

Find a set of transformations y^x) . . . yK(x) such that the sum of entropies 

of the densities Pjíy), P2(y), . . . p.(y) is minimum given Pjfx), . . . p.(x), the 

densities in the measurement space. The class of functions {y(x)} must be 

specified. 

The solution of the above stated problem for the case where the p.(x) 

distributions are multivariate normal with arbitrary and different covariance 

matrices from class to class is derived in Appendix III when the constraint on 

y(x) transformations is that they be linear. This means that each y(x) is a 

linear transformation (a resistive network or a correlator) and the above 

minimization problem is used to design the best K such networks. 

The solution presented in Appendix III states that we proceed in the follow¬ 

ing steps: 

1. First form the covariance matrix of each class distribution U. and 

form the matrix W by multiplying together all coveriance matrices 

in the x-space. 

2. Then solve for the K smallest eigenvalues and vectors of the matrix W. 
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3. The set of eigenvectors thus derived specify the K linear transforma- 

lions of the X-space that hield the best K-dimensional y-space in 

which the sum (or average) entropy of classes is minimised. 

Appendtx III contains a geometrical interpretation of this solution 

for a special case. 

B. Information Gain 

The Risk or Probability of Error, used as a figure of merit for evalu¬ 

ating the combined Measurement 'B-ansformation Subsystem and classification 

function, is a computationally difficult figure of merit to apply. For this reason 

a figure of merit operating on the interface between the classification functicn 

and the Measurement Transformation Subsystem was considered in the preceding 

subsection. Entropy (measured on the property space) is such a figure of merit 

and it is a measure of the degree of clustering of the classes. 

Another somewhat similar information theoretic measure with which 

a set of properties can be graded is the amount of information a property set 

provides about the classes. The more informative a property set is, the more 

useful it is to the decision maker (although this does not assure in any way that 

c lasses will be more discriminable from one another in the property space). 

The information gained about a class when the set of property values (given 

by the vector) y are observed, is the difference between the information we had 

about C. without the observation y and with the observation y. The information 

gained about C. due to the observation y is given in Equation (42). 

p(Ci ! y) 

Ic y= log “T/r t i p(C.) 
= log 

p(y I c.) 

p(y) 

p<c . y) 

log rtcl p(y) 
(42, 

The various equivalent forms of information gain (or information transfer) are 

presented above to facilitate subsequent manipulations. 
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The information gained about C. from the property set y, on the 

average, is given in Equation (43). 

r p(y|C.) 

'c. = 3 Io® -7i7r— dy («s 

The average information gained about classes, in general, from the 

parameter set y, on the average, is given in Equation (44). 

l-l «y (44) 
i = 1 

If we did not consider the information gain about discrete classes but 

rather about a continuous variable C, we would have the familiar expression 

given in Equation (45), 

y) log ¿fct'pfy) dy (45) 

where liberal use of (42) and the conventional manipulations on conditional and 

a pnori probabilities was made. 

Although obtained through different reasoning, P.M. Lewis in the above 

referenced article employs this Lgure of merit (measure of "goodness") to help 

to evaluate the relative utilities of different measurement subsets (for the case 

of Gaussian processes with independent variables). 

The evaluation of I in a practical case for given data is not nearly as 

foreboding as the apparent complexity of the above equations would indicate. 

C. Divergence 

The greater the information gained about classes from a parameter 

set y, the better we are able to characterize classes. The more complete the 

characterization of classes, the better the classification system can become 
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to distinguish members of classes from one another. If our sole objective is 

to discriminate classes from one another, however, we do not necessarily 

have to be able to describe the classes. It is sufficient if we can describe 

the differences between ciasses. A generalized measure of the distance or 

differences between classes (their probability densities in the property space) 

is the "divergence" given by Kullback and written in Equation (46). The diver¬ 

gence is a measure of "discnminability" between two classes C and C 
■ j 

J(cr cj) = I [pfrl'V - P(y|C.) 
p(y j c.) 

log T¥¡cT- dv 
J 

(46) 

It can be shown that if we have two property sets, A and B, such that the 

"irreducible" error due to set A is lower than due to set B, then it follows 

that the discnminability between classes due to set A is greater than that due 

to set B. Unfortunately, the converse of this statement doe. not hold, in general. 

If it did, our minimization problem, that attempt to maximize performance 

could be expressed by mean, of well-behaved quantities like those given in 

Equation (46) instead of the nasty expressions of probability of error. 

Nevertheless, divergence ,s a useful figure of merit that can measure 

something closely related to the error rate. 

Appendix IVillustrates (for two exponential probability densities) that 

in some instances a change in the property set ( a change in corresponding prob¬ 

ability densities) which increases the divergence also decreases the error prob¬ 

ability. This is shown by showing that the algebraic sign of the derivative of 

the divergence (with respect to a parameter that varies the probability densities) 

is opposite to the algebraic sign of the derivative of the error probability (with 

respect to the same parameter). 
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4' 2 -M*thodl °l Optimizing Measurement Tran«fnrma.,o.. 

In the following we will summarize the key statements made so far. 

A. There is an irreduciole error that is associated with the classes 

and with the choice of the m.asurement space. 

B. The ultimate figure of performance, the probability of error, cannot 

be reduced by any kind of measurement transformation from that which could 

be obtained on the measurement space with an optimum decision procedure. 

C. There are two legitimate types of problems that can be considered 

in deriving measurement trar.slormations One is to try to select the best 

subset of the given measurements as a set of properties with or without any 

restriction» being applied to the classification function that will utilize the 

properties. The second is to try to derive a set of transformations (with 

suitable restrictions on the classes of transformations) which, together with 

a classification function (on which there are also imposed some restrictions), 

will optimize the figure of merit we use as a measure of system performance. 

D. There are two classes of figures of merit that can be used in the 

above optimization procedures. One operates at the output of the classifica¬ 

tion function and measures the worth of a property set by measuring overall 

system performance obtained with the property set. The second operates on 

the property space and measures characteristics of class distributions in the 

property space with a view toward discriminability of classes or with a view 

toward clustering of classes but without applying the figure of merit to over¬ 

all system performance. From our point of view, the second type of f.gure 

of merit is the more convenient to utilize because it allows us to take into 

consideration the nature of the classification function in the characterization 

of the class distributions in property space without the computational difficulties 

that arise in calculating probability of error. 
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E- From a practical point of view, the behavior of the meí «urement 

transformation subsystem is of no relevence if the input classes are Gaussian. 

In fact, if the input classes are un,modal, then they are already clustered and 

it ,s no longer necessary to develop transformations that simplify the class 

distributions. Therefore, the situation where the densities in the measure- 

ment space are multimodal, a situation that can often be characterised by 

saying that an input class consists of subclasses, is of interest. If the input 

can be divided into subclasses then, usually, there are indeed several modes 

It does not follow, however, that subclasses correspond to a single mode of 

the class distribution. 

In the following, we will hst some of the optimization problems with 

Which the problem of deriving measurement transformations can be expressed 

—°blem ‘ ‘ Flnd the l,near transformation of the measurement space 

such that the average entropy of the class distributions in the property space 

.. minimized. This optimization problem, already discussed for a special 

case, assures that a property space ,s derived in which, on the average, 

classes are maximally clustered. In Appendix Illthis opt.m.zation was earned 

out for the case where classes are multivariate distributions, and the linear 

transformation ,s orthonormal and maps the N-dimens.onal measurement space 

into a K-dimensional property space. The most serious practical shortcoming 

of the results obtained in Appendix ,: comes from the Gaussian assumption of 

the class distributions. As was pointed out above. ,f classes are already 

Gaussianly distributed, there is little need to develop transformations, except 

for the purpose of reducing the dimensionality of the measurement space or to 

reduce the correlation between variables. 

Practical but more general , onstraints on the classes of transformations 

would include polynomial transformation, or piece-w.se linear transformations. 
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Polynomial transformation, (where y(x) i. the polynomial function of x) are 

relatively ea.ily handled analytically because the functions one obtains are 

all expressible in terms of the moments of the probability densities. In 

addition, it is easy to derive algorithmic methods of obtaining these poly¬ 

nomials from a finite number of samples of the pattern classes. Piece-wise 

linear transformations, on the other hand, are easily instrumented with 

linear (resistive) networks coupled with amplitude comparators (Schmitt- 

trigger circuits). 

Pfoblym 2 - Derive a set of non-linear transformations (like polynomials 

of degree R) which minimize, on the average, the mean square distance 

between members of the same class in property space while they hold the 

distance between the means of classes in the property space constant. This 

optimization problem expresses the notion of clustering as a mean square 

distance between members of the classes, and attempts to minimize the cluster 

diameter while keeping the distance between clusters constant. * 

Such a clustering transformation is given in Eq. (3 13) of the referai ce, 

and the solution for the coefficients of the polynomial transformation is derived 

in Eq. (3. 14) which is given here as Equation (47). 

,n* C [U-C1],“) Z"|ü’1,n,1 ,47' 
n ' n 

The polynomial transformation can be expressed in Equation (48) where 

yn is the n property and the Xfi is the nth measurement. Elements of the 

matrix U are defined by Equation (49) and zn is the vector whose components 

This type of optimination problem is described in Chapter 3 of Reference 1. 
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are power, oían arbitrary chosen point of the property space which >. 

chosen to serve as a scale factor of the property space. These quantities 

are defined in more detail on pages 57-61 of the above reference. The 

vector an defines one row of the transforming matrix. 

R 

vl 
P=1 

a xP 
np n (48) 

UrP(n) = xn xn ‘ ** xP for x«C rP n n n n i ( 4$ 

As can be seen from the nature of the above solution, practical application 

of these transformations ,s severely limited by their relat.ve complexity which 

.. manifested by the implied computation time necessary to carry out the indica, 

ed operations. Certain algorithmic technique, for obtaining transformation of 

like character can, however, be obtained. 

Problem 3 - Since a minimization of average entropy assure, clustering 

of classes in property space but does not assure the retention of separability 

of . lasses, a combination of concepts of entropy and divergence into a single 

optimization problem seems warranted. A useful method of expressing an 

optimization problem that combines these two fundamental notions is given below. 

Find a set of transformation, that minimize, on the average, the entropies 

of . lass distributions in property space while the keep constant the average 

divergence (discrim.nabil.ty between classes). This optimization problem, 

subject to suitable constraints to permit it. solution. „ as nearly an optimum 

expression of the desirable characteristic, of the measurement transformation 

problem as can be expected Minimization of entropies while holding probability 

of error constant, would be a better statement of our desired objectives. This 

statement, however, would involve computational steps for which an exact 

specification of the classification function must be used. 
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The above optimization problem i s expressed in Equations (50) through (52). 

^ ( E( H] } 
3yK(x) 

afE[J(i,j)I) 
dyK(x) 

= o (50) 

where 

E[HJ = i p<ci> Jpiy I c.> iog P(y I CJ dy = expected entropy 
of classes (51 ) 

and 

= ^ ^ J[p(y|c.) plylCj)] 
piy/c.i 

,og piyjcj) 
dy 

(52) 
average 
divergence 

This type of problem statement is analogous to the type sUted in Problem 2. 

4 3 Approximate Solutions and Computational Steps 

In the preceding sections, mathematical formulations and a few illustrative 

solutions of the measurement transformation problem were given. In many 

instances, however, it is not practical to strive for exact solutions of mathemati¬ 

cal optimization problems. It may be more advantageous to develop simple algo¬ 

rithmic procedures that attempt to achieve the desired objectives qualitatively. 

In this section, a single illustrative example is given to demonstrate the type of 

technique that is motivated by the desired mathematical objectives but one that 

keeps computability and real-time instrumentabihty in front of the designer at 

all times to assure that a practical solution of the measurement transformation 

problem be obtained. 

Suppose we are given three classes A, B. and C. shown in two dimensions 

in Figure 22. Here all three classes are bimodal and hence relatively complex. 
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FIG. 22 Three Multiply Connected Classes, A, B, C 

FIG. 2 3 Yj ( X » Shown as a Contour Map 
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We can develop a procedure for mapping the entire x .pace onto a line y (x) 

•o that .ample, of cla.. A are maximally clu.tered along y^x) and .ample. 

of not A (B and C) are al.o clu.tered along y^x). but A and not A are .eparated 

from one another. Thi. mapping i. achieved with a nonlinear tran.formation 

to be described. 

Similarly, member, of class B can be made to cluster along y (x) so 

that they are separated from members of not B. The transformation y (x). 

similarly derived, will cluster members of class C on y3<x) and separate them 

from not C. 

In the three-dimensional space formed from y^x). y^x), and y3(x) classes 

A. B. and C occupy disjointed and clustered (simply connected) regions. 

It can be shown* that the optimum transformation y^x) that clusters 

members of class A and separates them from not A is given by Equation (53) 

where A stands for "not A". ** 

y^x) = 
P(xI A) - p(xjÂ) 
p(x|A) ♦ p(x|A) " 

p(xlA) - p(xjA) 
P(x) (53) 

Yj(x) = i><x< A> 

P(x) 
P(x I A) 

P(x) M) 

We thu. need to know the probability den.ity of member, of A and of not A. 

A practical method of obtaining a good e.timate of a probability den.ity waa 

de sc ribed in Chapter 2 of this report. 

a It is shown in Section. 3.2 and 3. 3 of "Decision-Making Processes 
Recognition" (pp. 61 - 68) Macmillan, 1962. 

in Pattern 

♦♦Incidentally, note the similarity between y, (x), as written in (54) and the 
exPr®***on* for information gain given in Equation (42). 
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The nature of the function y^x) can be illu.trated graphically for the class 

distributions of Figure 22. The illustration, shown in Figure 2 \ shows y 

(X) as a contour map, with the two highest points indicated by the two points 

of Figure 23, and decreasing values of Yi (x) indicated by contour lines of 

increasing index Qualitively, it 18 seen that Yl (x) is large where members 

of class A occur in the measurement space and small where members of not A 

are observed. The transformations y^x) and y^x) can be interpreted similarly. 

he description of the classes in the three-dimensional y space is shown 

m Figure 21 It 18 seen that each class is ummodal (simply connected) in the 

Y «pace This is readily appreciated by noting that, on Yl <x). A is clustered 

and B union C, or not A, is clustered (but in a different interval of y (x) ). 

Similar argument holds for y2 and y^ 1 

The resulting transformation cannot be expressed analytically in a con¬ 

venient manner. Algorithmically, however, these are readily obtained by 

P extensions of the adaptive probability density approximation algorithm 

described earlier. 
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FIG. 24. A, B, and C are All Clustered in y Space 
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APPENDIX ¡ 

INVESTIGATION OF ORDER DEPENDENCE OF THE ADAPTIVE PROBABILITY 

DENSITY ESTIMATION TECHNIQUE 

An algorithmic procedure described in Section i of this report for estimat¬ 

ing the joint probability dens.t.es of pattern classes from a finite number of 

samples ,s obviously dependent on the order in which pattern samples are intro- 

duced. This Appendix contains a description of a set of experiments performed 

to determine the degree to which the technique ,s dependent on the order in which 

.ample, are introduced. Instead of the approximation technique desc r.bed in 

Section 2. these experiment, were conducted with the aid of the "Adaptive Sampie 

Set Construction" technique (ASSC) which is a predecessor of the technique 

described in this report. The difference, between the ASSC and the present tech 

nique are: 

A That in ASSC the cell ,,r.e is not updated (,t remains at us initial value) 

B That the probability densities are approximated bv a sum of Gaussian 

processes whose means ana variances are the typical sample vectors and the 

pre-determined cell shape, respectively 

In the technique described in this report, instead of the sum of Gaussian 

densities we employ only the density whose mean ,s nearest the .. -ut vector. 

The difference in the approximation technique is not too significant (ex, ept from 

Described in detail m "Pattern Recognition by an Adaptive Me,nod of Sample 
Set Construction", PGIT, Vol IT-8, No. S. September 1962 
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a computational point of view) for the contribution to the estimated probability 

density in ASSC is due mostly to a single term in the sum of Gaussian processes 

Four computer experiment* were conducted. In the first experiment, 

a random number generating program was used to generate samples of a 

Gaussian process wivh 0 mean and unit standard deviation. Control para¬ 

meters of the ASSC Learning Program were set at: THR = 1, o = 3/4 and 
e = 1. 

The means and variances of the typical samples created by the learning 

program are given below: 

Sample Number Mean 

1 -1.577 

2 0. 368 

3 -0. 652 

4 1. 385 

5 2.268 

TABLE I 

Variance 

0. 563 (0=3/4) 

0. 563 (o=3/4) 

0. 563 (o=3/4) 

0. 563 (o=3/4) 

0. 563 (o=3/4) 

No. of Occurrences 

23 

51 

44 

29 

Five "typical samples" from 150 input samples were created. The corres- 

onding Gaussian sub-populations are shown in Figure A-l (labeled through S ) 

and their sum (the result of approximating the probability density of the input 

variable) is compared with the known distribution of the input process (which is 

labeled G). The area between the two curves is 0. 2605 and the largest percentage 

area in the region -1. 5 to + 1. 5 is 27 per cent. 

It is interesting to note the order in which the typical samples are generated. 

The estimate of the mean is excellent while the standard deviation is somewhat 

Urge. It should be noted, however, that the initial choice of standard deviation 
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oí 3/4 proved to be too large „no- the .tandard dev.at.ons of the »jb-populat.ons 

remained at it* initial value * 

Identically, the .ame experiment wa. repeated with a different 150 .ample 

vedtor. of the 0 mean, unit standard deviation Gau...an procès. The re.ult. 

of thi. computer run are .hown in F.G A-2 from which it ,. seen that 7 typ.cal 

•ample vectors, given in Table 2, were created. 

TABLE 2 

Sample Number Mean Variance 

1 * 7636 o 563 

2 -1 704 o 563 

3 7311 o 563 

4 07689 0 563 

5 2 537 o 563 

6 1 524 0 56 3 

7 -2- 881 o 563 

No of Occurrences 

51 

12 

24 

45 

3 

1 3 

2 

The area between the approximation (the sum curve) and the curve labeled 

"G'\ is 0. 1968 and seen to be considerably less than the correspondmg error 

m th* iir,t comPut*r run The maximum percentage error between the actual 

and approximate probability density in the region -1 5 to t 1 5 is also 27 per 

cent but it occurs at the extreme of the interval Generally, the approximation 

is better than on Run No 1. The best estimate of the mean of the approximation 

is -0. 2 and the standard deviation is in better agreement with that of curve "G" 

a 
The program normally selects either the sample variances of 
population or the initial choice of the sub-population variance 
is greater. 

the sub- 
whichever 
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th*n in tht “'•* computer run. The approximation and the relative quahta- 

live independence between actual d.n.ity exceed, mit.al expectation., 

A third computer run for which the data wa. drawn from a bimodal 

distribution wa. aUo performed. The 300 .ample, of the input proce., 

were obtained from the .urn of two Gau..,an den.it.e.; one with a mean 

of -2 and unit .tandard deviation, the other with a mean of +2 and unit 

standard deviation. Sample, from the.e two di.tr.but.on. were mixed 

by taking .ample, from the two proce.ee. alternatingly. The re.ulting 

distribution is shown in 11G A-3 and i. labeled "G" The learning pro- 

gram created ten typical vectors, shown in Table 3, whose location, and 

relative frequencie. of occurrence are .hown by the po.ition. and magni¬ 

tude. of the vertical bar. of FIG A-4. The sum curve seem, to be in 

good agreement with the distribution of the input process. The overall 

approximation is quite good with the exception that the variance of the 

approximation i. somewhat high and the estimate of the .econd mode 

(the one located at +2 appears to be somewhat low). The area between 

the two curvee is 0. 1522. 

Sample Number Mean 

1 -1.286 

2 2 145 

3 - •1963 

* -2. 1 

5 -2.993 

6 1. 196 

7 2. 969 

8 4 706 

TABLE 3 

Va nance 

0. 563 

0 563 

0 563 

0. 563 

0. 563 

0. 563 

0. 563 

0. 563 

No. of Occurrences 

42 

47 

22 

60 

28 

55 

33 

4 
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The fourth experiment wee ident.c.1 to the one jutt de.cnbed vnth the 

exception th»t here membere of the two Cue.ian dene.Ue. were introduced 

eequentUlly with »mplee drawn from the dietribut.on of mean +2 introduced 

«rat. After 150 .amples of this di.tribut.on were introduced, member, of 

the second G.u..ian proce., were introduced In thi. manner, learning on 

bow submarine data followed by learmng on, .ay, .tern .ubmarine data wa. 

simulated (a. compared to mixing up the data before introduction to the pro - 

gram). No significant difference in performance wa. observed. 

It i. thus tenutively concluded that the order dependence of the learning 

program, is not a. severe as originally expected In fact, rather good 

agreement, more or less independent of the order in which samples were 

introduced was obUined throughout the four experiments. 



APPENDIX II 

THE RELATIONSHIP BETWEEN THE PROBABILITY OF CORRECT 

RECOGNITION AND CLASS CLUSTER TO SEPARATION 

ratio (IN A SPECIAL CASE) 

In this Appendix, we will show tnat the Expected Probabihty of Correct 

Recognition (EPCR) increases monotonically with the class separat.on to 

Uas. cluster diameter ratio. This illustrates the intuitive results a. leas, 

,n th‘* examp,e’ that ,h' o«*"’“"’ '■«“« -ent (from a performance point 

of view, expresses desirable properties of the class distribution, tne prop 
erty space. 

To illustrate this figure o men. (EPCR). consider a decis.on making 

system operating on a single variable y fha. may belong either to class C 

or to class Cj with equal a prior, probability ach having a Gauss.an den’s.ty 

With variance, o and means U _ and u respectively as shown ,n the figure 
below. J B 

p(vK) 



vZira 

*î 
1 exp 

{(/u^ + /u .) 
I J 

[•*&)] 
dy 

■•it 
v^2 

c 

• <«. 
"i» 

exp 
xa (•tí-) 

dy + 

i [*J 1 «p(-i^_)dy] 
1/2 wa 

- *0 

} + -^- Ç J 1 
VZ7Õ— X 

exp 
(-*-Sz-) 

dy (b-1) 

By a change of variables (y * ov), EPCR can be written as shown: 

}(A<. - U.)/o 
l /»J * 

EPCR = 4 + —i— l 
ñ~ J 

exp 
(• * -1) 

dv (b-2) 

Since the integral is a monotonically increasing function of its upper limit, 

the figure of merit is a monotonically increasing function of (¿i. - /u .)/0 between 

I and 1. ^ 
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Th* usefulness of the property y increases as the ratio of the distance 

between means versus the standard deviation is increasing. A similar 

result can be obtained for N-dimensional Gaussian processes also. For 

Gaussian densities, therefore, the separation-to-spread ratio is a sig- 
nificant figure of merit. 
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APPENDIX HI 

LINEAR TRANSFORMATIONS TO MINIMIZE 

ENTROPY IN PROPERTY SPACE 

If .ample, of pattern da.» C. of C-da.,e. >, multivariate norma! 

m the N-dimen.ional mea.urement .pace x, and ha. an arbitrary covariance 

matrix U., find the .et of K linear tran.formations (K i N) ,uch that the 

.urn of entropies of the C cla.s distribution, in the K-dimensional trans¬ 

formed y .pace is a minimum. This set of transformation, minimize, 

the average entropy (or spread) of classes in y space and thu, maximally 

clutters them (on the average). 

Since the entropy of a class is a function only of the manner in which 

its members are distributed, obviously no complete representation of the 

classe, in any different coordinate system (obtained by linear operation.) 

can change the entropy of the class distributions. The only way to reduce 

the entropy is to select a manifold of the x space in which the spread of 

the classes is smaller. We will now derive the K optimum orthogonal 

directions in x space to be used as the coordinates of the Property Space. 

We will first express the entropy of class C. in the transformed space 

and then we will minimize the sum of class entropies in Property Space by 

finding the best K linear functions of x as the y-properties. 

If x is an N-dimensional measurement vector (a column vector) and A 

is a K x N matrix expressing a linear transformation that expresses, as the 

coordinates of a vector y. the projections of x onto unit vectors pointing in 

the directions given by the rows of A, then the transformation y is given by 

Equation C- 1. 

C-l 



y ■ A X (C-l) 

If class Cj has a multivariate normal distribution with mean and covariance 

matrix Uj, the distribution of C. in the measurement space is given in Equation 

(€•2), and the distribution of y is given in Equation (C-3). 

P.(x) 

** I u, I 
•*p[-i(x - Uj)7 Ü.'1 (x - H.) 1 (C-2) 

1<y)*^7|Au>,,i (C-3) 

The entropy of the density p.(y) is given in Equations (C-4) and (C-5) (obtained 

by substituting Equation (C-3) into (C-4)). 

Hi<y> * - Jpjiy) log p.(y) dy (C-4) 

Hj(y) * i log I A U. AT I log 2tre (C-5) 

The quantity we want to minimize is the sum of entropies of the classes in the 

y-coordinate system. The sum of entropies H(y) is expressed in Equation (C-6). 

H 
(T) Z Hi(y) S ^ ¿ log I AU.ATj + £- log 2ire 

i log AU.AT|^ + log 2ve (C-6) 
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» 

But the product of determinant, i. the determinant of the product of the 

matrices. Using this relationship, we obtain Equation (C-7). 

Î ' I 

H(y) => i log I n <AU.At) .) + constant 

i log f AU.A AU2A AU3A • ■ ■ AUcAT j + constant 

Ifwe let A be an orthogonal transformation (it. K rows are orthonormal). 

A A = I, and H(y) can be written as in Equation (C-8). 

Hiy) - j log j AUjU^... U^A7f + constant 

= t log j AWATj -f constant 

where W is the product of covariance matrices of the different classes. 

A minimization of H(y) can now be carried out to find the unknown transforma¬ 

tion matrix A. It is known that the equality given in Equation (C-9) holds. * 

dlog j B j = tr** dB 
(C- 

Here B is a matrix and tr denotes the "trace” (sum of diagonal element.) of a 

matrix. Applying this to H(y), we get Equation (C-10) where we used the rela- 

tionship given in Equation (C-ll). 

= tr (AWAY1 W a r = 0 for j = 1. 2.K 
I J (C-10) 

d — T T 

dir aj baj = 2Ba 
j j (C-ll) 

* *Kuuln lnlC wV’ 207 in Informatlon Theory and Statistirs by Solomon Kullback (John Wiley and Sons. 1959). 
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In Equation (C-10), ^ i« the row of the matrix A. We now impoae the con- 

■traint on the minimiaation that a^7 - 1, and, by using the method of 

Lagrange multipliers with the multiplier V, we obtain Equation (C-12). Since 
, A w » T. • 1 , J 

tr (AWA ) is a scalar, we can lump it with V to obtain Equation (C-13). 

j tr (AWA ) W - \ I j * 0 for j * 1, 2, ... , K (C-12) 

j W - VIj X o for j * l, 2.K (C-13) 

It can now be shown that the K smallest eigenvalues of the matrix W will 

minimise the sum of entropies of the classes in the y-coordinate system, and 

that the K orthogonal directions (transformations of the measurement space) 

that will minimise the sum of entropies are given by the corresponding eigen¬ 

vectors of W. 

It is interesting to note that if the C covariance matrices are all equal, 

the W matrix is U and the eigenvectors of W are identical to the eigenvectors 

of U, while V is the jth eigenvalue of W (where V is that of the covariance 

matrix Ü). This special case is easily interpreted geometrically in the figure 

below, which shows 3 bivariate normal densities with equal covariance matrices. 

The optimum linear transformation with K = 1 i. the line y(along which the spread 

of all three classes is a minimum). 

Minimizing Average Entropy for K si, and U = U ^ U 
a 2 



APPENDIX IV 

IF DIVERGENCE INCREASES, EXPECTED ERROR PROBABILITY 

DECREASES (FOR A SPECIFIC CASE) 

(D-l) 

and the Expected Error Probability (EEP) is given by Equation (D-2). 

EEP s I J p2(x) dx + } J pj (x) dx (D-2) 

These two are now evaluated as follows: 

«0 

JO. 2) = ^[«je *1X -®2(e) * 1X] (logaj - - log a2 +«2x) dx 

0 
(D-3) 
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,) j>«'*lXwU+.2(,l . «j) J e’*2x xdx 

«2-«, «,-« 
--- + -■ 

1 2 

N -*2>4 
\J(1,2)» 1 2 

*1 *2 
(D-4) 

EEP » e'alx dx 

1 -log-1 or, <r , *or- 
2 2 

-i « 
-flf2x 

î 

(D-5) 

(D-6) 

D-2 



■Vf y 

W« thu* obtained J(l, 2) in Equation (D-4) and EEP in EquaUon 

Now differentiate J(l. 2) and EEP with r.epect to o, and .how that the eign 

of the derivative of J(i,2) and of EEP are oppo.it. in the earn, region, of « . 

Thi. prove, that if PjU) i. perturbed .o a. to increaae J(l, 2), the corre. ' 

•ponding EEP decrease«. 

a JO, 2) 
a« 

i 
2arla2(aPl*a2)-"2<«i-«2,4 

2 2 
“l a2 

a (D-7) 

which is positive if a j The exponent of the second exponential in EEP 

as a function of «j for > a2 is shown below. It decreases with increasing 

a T The exponent of the 1st exponential is just a ^ct 2 times that of the 2nd 

ponent. Hence, for * j > or^. the 1st term in the bracket gees toward 0 faster 

than the 2nd term. But since the 1st term is always smaller than the 2nd. the 

derivative of EEP it negative. We have thus shown that derivatives of J(l, 2) 

and EEP have opposite signs, and thus that increasing divergence (in this case) 

implies lower error probability. 
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