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FOREWORD 

Thi. report has been prepared in the Information Sciences Laboratory 

tlthin the Data Systeme Division of L'tton Systems, Inc., a division of Litton 

„du.tries. The work reported her. ha. been perfermed over a period of 12 

non-hs, under Contract Number AFJ0(602)-3043, entitled "Voice Identification 

rechniquee". This project ha. been completed under the direction of the In- 

lelligence and Information Processing Division within the Rome Air Develop- 

ment Center. 

Several individual, within the Information Sciences Laboratory have made 

contribution, to the development of speech processing technique, reported 

here. Experimental speech processing equipment ha. been constructed under 

the guidance of Mr. Arthur Crook.; computer program, have been prepared 

by Mr. Paul Connolly, Mr. Vito Maglioni. Mis. Sarah Foster, and Mis. Helen 

O'Shea. Mr. William Floyd ha. served a. Project Director and Dr. George 

Sebestyen has provided technical consultation. 

In addition to the other individual, in the Information Science. Laboratory 

who contributed to this work, thank, are due to Mr. Mark Weis, and the Federal 

Scientific Corporation for their courtesy in providing an IBM Card Source Deck 

for the formant tracking routine utilized in the .'«traction of spectral clues. 
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; 1 INTRODUCTION 

This report presents a summary oí work performed on Contract AF-30(602)- 

30 4 3 entitled "Voice Identification Techniques". The purpose of this project has 

been to execute certain steps toward the development of techniques for automati¬ 

cally processing speech signals to render an identification of the speaker. The 

basic ideas underlying the approach taken on this project were published in the 

final report on Contract AF-30(602)-2499. This earlier work demonstrated 

the potential of certain operations for rendering reliable speaker recognition 

decisions, but involved manual simulation of some_of these operations. Thus, 

one of the goals of the current project has been to automatise these operat.ons. 

A second goal has been to ascertain the effects of noise degradation and band¬ 

width truncation of speech signals on the recognition performance of a speaker 

identifier. 

Over the past few years several approaches to the problem of voice^identifi- 

cation have been investigated, and varying degrees of success attained. Most 

of the methods which are aimed at a minimum-relianc. on human judgment have 

been demonstrated or tested on a relatively small quantity of speech and pri¬ 

marily through the use of general purpose computers for simulating the recogni¬ 

tion processes. In spite of varying approaches to the problem, all of these 

methods may be regarded as particular methods of performing the operations 

indicated by the block diagram in Figure 1. The incoming speech is processed 

first by a Speech Clue Extractor, which performs measurements leading to 

the generation of clues*** which are designed to allow for convenient 

♦ References are de seated by numerical * “"V.plft“' “ ^ 

reference numbers in ^^"""„.‘‘0^ . Li'c^ Laboratory, * 

"parameters", "measurements", "attributes", "characteristics , 

and "properties" . - 1 - 
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identification of the speaker through their r.xeasurement. It is usually 

possible to regard each of the speech clues generated by the Clue Extractor 

as a voltage amplitude versus time waveform. Examples of such clues are 

the pitch of the speaker' s voice, formant frequency locations, and speech 
I . . 

envelope amplitude. - 

The next and linal major processing step involved in identifying a speaker 

is performed in the Speaker Recognizer. In this uni. the clue waveforms 

generated by the Clue Extractor are generally sampled, quantized and compared 

in some way with stored information obtained through earlier examinations of 

the speakers whom it is desired to recognize. On the basis of this comparison 

between incoming clue values (arising from an unknown speaker) and stored 

information on previously specified speakers, a decision is rendered and 

emitted by the speaker recognizer. — 

It is possible to utilize humans to perform one, both, or neither of the 

clue extraction and speaker recognition operations. For instance, today most 

of the working systems for speaker authentication simply employ a human to 

perform both tasks, without any attempt at conscious formulation of speech 

clues as an intermediate step. However, the use of humans for either task 

opens up possibilities for malfunctioning of a voice recognition system which 

an automatic device would preclude. For instance, in aff application involving 

a fixed set of speakers over a long period of time, a human' s a priori 

anticipation of one of the known speakers may prevail and cause him to miss 

a deceiver. Or, on the other hand, for applications requiring frequent 

changes in the speaker sets, a human' s ability to distinguish between 

speakers may not be very high, particularly in the presence of noxse. 

In considering automatic ways to solve the voice recognition problem, 

it is necessary that an explicit investigation of candidate speech clues be 

undertaken. The primary quality sought in a set of clues is'that the clue 

waveform patterns take on different values corresponding to intervals of 

- 3 - 



time during which different speakers are talking. Once a set of speech clues 

has been selected, the problem of recognizing the speaker becomes a 

standard problem of pattern recognition. 

Several anatomical explanations accounting for the uniqueness of a 

speaker' s voice have been given in the past. It has been anticipated that 

speaker identification capability is enhanced by the uniqueness of our vocal 

cavities and articulators. The vocal cavities (like resonant circuits) cause 

energy to be concentrated in specific regions of the spectrum dependent on 

the cavity sizes and their method of coupling. The major cavities affecting 

speech are the throat, the nasal and the two oral cavities formed in the 

mouth by the positioning of the tongue. The size and the manner in which the 

vocal cavities are coupled evidently can account to a great extent for the 

identifiability of a specific person' s voice. This is particularly true of the 

nasal cavity which is not controllable or manipulatable by the talker. These 

cavities correspond to the third and fourth formant frequencies. 

While these stationary properties of the vocal cavities are important in 

determining the speaker' s characteristics, evidently the manner in which 

the articulators are manipulated during the utterance of connected speech is 

of even greater significance. The articulators are the jaw muscles, the 

teeth, and the tcngue; and their systematic interplay results in speech. 

Thus, even though most persons can produce sounds whose formant frequencies 

ocassionally agree identically (within measurement errors) with formant 

frequency combinations occurring in another person' s voice, the relative 

frequency with which one person produces a specific formant combination 

differs from the relative frequency with which another person produces the 

same sound. The manner of transition from one sound to the next also 

differs for different speakers. ^ 

During an earlier study performed in the Information Sciences Laboratory , 

a set of thirteen speech clues exhibiting some of these dynamic and static 

attributes were examined and found useful in representing speech 

- 4 - 



at any given instant. These were the four formant frequency locations, 

their derivatives, speech signal amplitude and its derivative, pitch 

frequency and its derivative, and the binary clue designating whether or 
I 

xiut a s >vuid is voiced or unvoiced. The results obtained using these clues 

indicated that in a contro'.led environment speaker recognition can be 

performed automatically with very low error rates. In the current investi¬ 

gation, emphasis was therefore placed at the outset on the use of these same 

clues in a noisy, truncated bandwidth speech signal environment. This 

emphasis has entailed the replacement of the manual formant extraction 

simulation techniques with a completely automatic combination of special 

purpose equipment and a digital simulation program, design and construction 

of a noise-resistant pitch extractor, and the development of modified data 

collection and intermediate storage techniques. The resulting speech 

processing system has allowed for the investigation of additional speech 

clues which are expected to exhibit improved resistance to the effects of 

corrupting environmental conditions. 

i 

The experimentation performed with this speech processing system 

has produced indications of the effects of variations in signal-to-noise 

ratio, the duration of speech signals available for rendering decisions, the 

number of speakers to be recognized, the types of clues utilized, and 

bandwidth truncation of speech signals. Detailed descriptions of the special 

purpose equipment, computer programs, and data processing experiments 

and their results are presentid in Section 2 of this report. Also discussed 

are salient aspects of techniques for selecting and extracting the speech 

clues utilized, and the pattern recognition techniques utilized to perform 

the voice recognition unit functions. 

The major conclusions and recomfnendationß concerning further 

development and use of the voice identification techniques investigated on 

this project are presented in Section 3. Four Appendices and a Reference 

List complete the report. 

- 5 - 



2. TECHNICAL DISCUSSION 

The accuracy with which the voice identification problem can be solved 

with an automatic device is strongly dependent on several factory ten of 

which are listed in Table 1. During the course of this project, equipment has 

been constructed and experiments performed to ascertain the effects of 

variations in several of these factors on the performance attainable with a 

certain class of speaker identification devices. 

In particular, two types of recognition have been examined: (1) detection 

of a single pre-specified voice in the presence of other voices, and 

(2) identification of each of a pre-specified group of speakers. These have 

been designated the speaker detection and classification problems, respectively. 

No knowledge of uttered text has been presumed for these experiments, and 

no restrictions on the spoken text have been imposed. Further, it has not 

been presumed that any of the spoken text available for learning the peculiar 

characteristics of a speaker' s voice is contained in the spoken text on which 

the recognition is to be based. 

With the exception of these and the ninth factor (speaker emotional and 

physical states) listed in Table 1, variations in all of the remaining factors 

have been examined to some extent during the course of this project. The 

major steps involved in this investigation have been the following: 

Selection of speaker identification speech clues 

Implementation of clue extractors through either equipment con¬ 

struction or digital computer simulation 

Selection of Speaker Learning and Recognition Methods 

- 6 - 



. Preparation of speech recordings for different environmental 

conditions 

. Processing speech signals in experiments to ascertain recognition 

performance attainable with the selected.learning and recognition 

methods under the different environmental and decision-making 

conditions. 

Each of these phases of the project is discussed in the following four subsections. 

1. TYPE OF RECOGNITION DESIRED 
(Simple Detection or Specific Identification) 

2. KNOWLEDGE OF TEXT 
(Pre-specified or Unknown) — 

3. BANDWIDTH TRUNCATION OF SPEECH 

4. NOISE CORRUPTION OF SPEECH 

5. SIZE OF SPEAKER GROUP 

6. MAKE-UP OF SPEAKER GROUP 
(All male or mixed, common language or not, etc. ) 

\ ^ 

7. AMOUNT OF SPEECH PROCESSED JOR LEARNING 

8. AMOUNT OF SPEECH PROCESSED FOR RENDERING A DECISION 

9. VARIABILITY OF SPEAKER EMOTIONAL AND PHYSICAL STATES 

10. COMPLEXITY OF EQUIPMENT 
(Number of Clues Utilized, Clue Resolution Capability, Storage 
Capacity of Recognition Unit, etc. ) 

Table 1. Ten Factors Affecting Accuracy of a Voice Identification System 

- 7 - 



2. 1 SELECTION OF SPEECH CLUES FOR VOICE IDENTIFICATION 

As mentioned in the Introduction to this report, it has been anticipated 

that a voice identification capability may be based on the uniqueness of a 

speaker1 s vocal cavities and articulators, and the manrtfcr in which the 

articulators are manipulated during the utterance of speech. During an earlier 

study* performed in the Information Sciences Laboratory a set of thirteen 

speech clues exhibiting some of these static and dynamic characteristics were 

examined and found useful for representing speech at any given instant. These 

were the four formant frequency locations, the speaker' s pitch, the voice 

amplitude, derivatives of these six quantities, and a binary clue designating 

whether or not a speech sound is voiced or unvoiced. The results of experi¬ 

ments performed with these clues indicated that fairly high recognition per¬ 

formance could be obtained through their measurement, under ideal conditions 

(e. g. , in the absence of any noise). 

Thus at the outset of the current investigation, primary emphasis was 

placed on completely automatizing the extraction of these same clues, in a 

manner which would render their measurement insensitive to the effects of 

noise, bandwidth truncation, and a limited duration of s_peech signals available 

for the learning and recognition tasks. However, it^was anticipated that the 

formant-related clues would be more sensitive to the effects of noise than the 

pitch- and speaking cadence-related clues, and that therefore the original set 

of thirteen clues should be augmented. To tins end the question of clue 

selection for voice identification in a non-ideal environment has been 

re-examined. 

It is not fundamentally necessary that a candidate speech clue be aimed 

at the measurement of any particular, pre-identified speech characteristic, 
» 

such as first formant position, in order for the clue to be useful for voice 

identification. Rather, it is primarily only necessary that clue values take on 

different values during periods of speech uttered by different speakers. 

- 8 - 
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If a speaker is talking in a noisy environment, or the speech signals are 

limited to a 3 kc band, or no information is available on the spoken text, then 

the difficulty of selecting speech clues which will still provide a high degree 

of discriminability between speakers is much more severe than it would be 

under ideal conditions. Or if a set of speech clues generates multiply-con¬ 

nected regions* in the measurement space for each of the speakers involved, 

then fairly complex operations may be required to perform the recognition 

function with either an automatic device or a human. 

These additional considerations have dictated a systematic approach to 

the selection of speech clues for use in the voice identification task, rather 

than attempting a grand coup through the utilization of all potential clues 

within sight. — 

The number of potential candidates for voice identification clues which 

have been suggested over the years is quite large. Foremost among those 

which have not been listed previously are formant amplitudes and bandwidths, 

instantaneous spectral mean and variance, average pitch value and variation 

within each voicing interval, average (over a few seconds) voiced interval 

length, and relative spacing between successive speech êjement boundaries. 

As outlined above, the utility of these and other'speech clues for voice 

identification must be measured first in terms of the degree to which different 

speakers generate different clue values in the presence of whatever disturbance 

the speech signals may be subjected to. Secondarily, the way in which clue 

values are distributed in their associated measurement space must be evalu¬ 

ated to determine the complexity required of recognition routines to accomplish 

the discrimination between speakers. The major steps involved in determining 

the utility of speech clues in these terms are: 

*To be discussed in Section 2. 2 

- 10 - 



Preparation of speech recordings under prescribed environmental 

conditions, for each of a group of speakers. 

Processing these recordings to extract a quantity of samples of the 

speech clues for each of the conditions and speakers involved. 

Compilation of statistics descriptive of the behavior of these speech 1 

clues for each of the conditions and speakers. 

Recording and processing these statistics in a form which sheds 

light on the degree to which clues take on different values under 

different conditions and for different speakers, and which indicates 

the type of recognition operations required to distinguish between 

speake rs. 

ons ids rabie effort is required to perform the operation, indicated in the last 

,ree of these four steps. Specifically, in order to extract a statistically 

ignificant quantity of speech clue values within reasonable bounds on cost and 

Lme, automatic clue extractors must be available either in the form of special 

lurpose equipment, or through the use of a general purpose computer. If a 

omputer is utilised to perform the clue extraction operations, then a capability 

or essentially real-time input of speech data is highlyjiestraole. 

The sutistics referred to in the third step abive may also present severe 

processing requirements. On the one hand, it may be regarded as sufficient 

pnly to compile first order probability distribution, of each of the clues being 

studied, with a view toward selecting those clues which, when each is examined 

alone, take on different values during intervals of speech generated by d.fferent 

speakers. The data processing involved in this approach to speech clue selection 

is quite modest. On the other hand, it is quite clear from our experience that 

good speech clues will sometime, be discarded by this approach. Instead of 

examining each speech clue separately, it is necessary to examine clues jointly. 

- 11 



The illustration in Figure 2 serves to indicate how this necessity arises. 

When the two speech clues, and are measured simultaneously, the 

clue values resulting from two speakers occupy two completely non-over¬ 

lapping regions in the two-dimensional clue measurement space. 

If, however, either of the two clues is examined separately, then the 

clue values which lesult from the two speakers overlap considerably. Thus, 

on the basis of univariate examinations of each of these clues, neither would 

be regarded as useful for discriminating between speakers; yet, taken 

together these clues separate the two speakers perfectly. 

The need is therefore for estimates of the multivariate distributions of 

speech clue values for different speakers. Unfortunately, as the number of 

clues increases, the amount of data required to achieve statistical significance 

in such estimates also increases. This effect can generate a severe data 

processing requirement if a large number of speech clues are involved. 

Once a quantity of speech clue data has been processed to ascertain the 

distribution of clue values in measurement space for different speakers, not 

only the question of how well the clues separate speakers, but also how 

complex the recognition technique must be, can be answered. If, for, 

instance, in the problem of distinguishing between two_speakers, clue values 

for each speaker lie within non-overlapping, singly-connected regions as 

illustrated in Figure 2, then a simple linear discriminant function (see 

Section 2. 2) may be utilized; i. e. , a sample pair of clue values may be 

associated correctly with one of the speakers according to which side of a 

straight Une* the sample falls. This type of operation is quite simple to 

instrument. However, a more likely distribution of clue values for two 

speakers is illustrated in Figure 3, in which the clue values from one speaker 

lie in multiply-connected regions. A more complicated (nonlinear) method 

of partitioning the measurement space into regions corresponding to speakers 

♦In measurement spaces having a larger number of dimensions, a hyperplane. 
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Fig. 3. Multi-Modal Distributions of Clue Values for Two Speakers 
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The second group, which has been called the "rudimentary" speech 

clues, is characterized by the absence of spectrum envelope information, and 

the generation of a single sample for each interval of time within which a 

switch in the speech processing equipment has indicated that a speaker1 s 

vocal chords were vibrating: the average pitch, the average value of the 

derivative of pitch, the average value of the magnitudt of the pitch derivative, 

the maximum value of pitch, the minimum value of pitch, the pitch peak- 

minimum order, the average value of the derivative of the speech envelope, 

and the duration of the voiced interval. These clues have been extracted 

through a combination of equipment and digital simulation. 

Experiments with both spectral and rudimentary clues are reported in 

Section 2. 4. The equipment utilized in their extraction is described in 

Section 2. 3, and the class of pattern recognition technique^ utilized to 

process these clues to render automatic voice identifications are discussed 

in the following Section 2. 2. 



<î 

p — - -jy»- 

2. 2 Automatic Voice Récognition Techniques 

In the past four years research in the pattern recognition field has yielded 

a variety of techniques for automatically processing clues for rendering 

classification or detection decisions. Many of these recognition techniques have 

made dramatic entrances to the information processing arena, bearing a 

variety of mnemonic labels. The titles 'Perceptron, Cybertron. CHILD. 

SCEPTRON, Conflex. Cynthia, Cyclops and Adaline."all refer to techniques 

or devices associated with the problem of associating a pattern (of clue values) 

with one of a set of classes of events. 

In spite of the wide variety of names and sources of such techniques, 

essentially all of the pattern recognition methods proposed or developed to date 

can be described and analysed in a single, fairly simple way. Specifically, the 

diagram in Figure 4 show, the basic elements of the*classification problem of 

pattern recognition. Underlying the pattern classification problem is the pre- 

specification of a set of classes of events which it is desired that an automatic 

mean, be developed to distinguish between. In the voice identification problem, 

each speaker involved in the ensemble may be considered a class. In the speaker 

detection problem there are essentially two classes of interest (1) the desired 

speaker and (2) all other speakers. When individual identification of a prescribed 

group of M speakers is desired, there are M clisses. To perform the 

discrimination between classes as they occur, a pattern recognition system is 

composed of two basic units: an observation system and a recognition system. 

The observation system accepts whatever events as occur in the real world a. 

its inputs, and emits output, which may be called 'bbservations", or as we have 

been calling them, "clues", which represent a particular view of the real world. 

The function of the recognition system is to process the clues submitted to it, 

and emit at various times indications of estimated class membership of the 

real world events. In the current application, the.Wl world events" 

♦Including psychologists, mathematicians, and engineers. 
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available for processing by a pattern recognition system are speech signals. 

The observation system consists of the spectrum analyzers, pitch estimators, 

voicing detectors and other clue extractors which may be utilized as discussed 

in the preceding section of this report. The clue values emitted by the 

observation system may be viewed as points or patterns in an -bbservation". 

or 'Vneasurement’' space, in which each clue is associated with a coordinate 

direction. 

As outlined briefly in the beginning o£ this section, the function of the 

recognition system is to partition the measurement space into non-overlapping 

regions, associating each region with one of the pre-.pecified classes. To 

attain this capability, there are generally two phases of operation of a 

recognition system. During the first, learning phase, sample events are 

submitted to the recognition system for the purpose-of allowing the system to 

locate or'learn" the proper position, of the class boundaries in measurement 

space. In most systems, a human participates in this phase of operation at 

least to the extent of informing the recognition machine of the correct class 

membership of the 'learning" samples. This ha. been called 'learning with a 

teacher". The current stage of development of other systems which 'learn 

without a teacher" is such that they should not be considered for the votce 

identification application. 

Following the learning phase of operation, most pattern recognition systems 

maintain fixed class boundaries in measurement space, and operate auto- 

matically without human intervention. 

All pattern recognition systems differ from one another in two fundamental 

aspects: (1) the degree and nature of the human' s participation in the selection 

of class boundaries during the learning mode of operation, and (2) the geometrical 

constraints on the type, of class boundaries which can he selected. For most 

applications, the differences between the ways in which the human participates 

in class boundary selection are largely academic. In some systems a "reward 
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and punishment" routine is used to adapt the class boundaries to the learning 

samples, and in other systems the adaptation is performed automatically. 

But these differences may be regarded as a matter of personal taste. 
I 

With respect to the second characteristic in which recognition systems 

differ - the constraints on class boundaries which can-be selection - most 

applications require careful consideration. In particular, many pattern 

recognition systems proposed to date may be classed as linear discriminant 

techniques; that is, the class boundaries which can be adjusted in measure¬ 

ment space are hyperplanes, or linear combinations of the clue values. In 

two dimensions this means that the machines perform the recognition task by 

observing which side of a straight line a sample falls on. In Figure 2 , for 

instance, it is easily seen that all the patterns generated by speaker A lie on 

one side of the dotted straight line, and the patterns generated by Speaker B 

line on the other side of the same line. In this example, the task of a linear 

discriminant recognition machine vo uld be to locate the proper position of 

this straight line so that correct identification of subsequently observed clue 

patterns could be accomplished. 

While a linear discriminant suffices to partition the measurement space 

perfectly well in the example in Figure 2, it is easily seen in Figure 3 

that there exists no straight line which places all the clue patterns for 

speaker A on one side and those for speaker B on the other side. It is clear 

that if the clues generate such a multiply-connected region as illustrated for 

speaker A in Figure 3, then a more sophisticated method of partitioning the 

measurement space into regions corresponding to classes must be utilized. 

During the past three years several approaches to the selection of non¬ 

linear class boundaries have been investigated by personnel in the Information 

Sciences Laboratory. In the usual case in which very little is known in 

advance about the distribution of clue patterns, we hav¿ found that a good 
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approach to the selection of class boundaries is to utilize a machine learning 

method which involves estimation of the joint probability distribution of clue 

values over the measurement space. Once estimates of these statistics are 

available, the decision-theoretic optimum method of deciding class member¬ 

ship of new samples may be implemented. The decision procedure may be 

stated simply*: 

Given a sample pattern of clues, this pattern is classified as 

belonging to that class for which the conditional probability of occur¬ 

rence of the pattern is highest. 

The most important details of this approach to automatic pattern recognition 

are reviewed in Appendix II of this report. The important point to note here 

is that the boundaries between class regions in measurement space generated 

by this technique are basically unlimited. In the"example of Figure 3, for 

instance, the probability density function of points in the regions labeled A 

would be high fcr speaker A and low for speaker B, and the other way around 

for points in the region labeled B. Thus, by the above decision rule all of 

the points in the A regions would be associated with speaker A and similarly 

for speaker B. 

As stressed in the earlier discussion of de'sirable speech clue qualities, 

the distribution of clue values in the associated measurement space has a 

direct effect on the cost and complexity of a recognition device. Linear 

discriminants, for instance, are relatively easily instrumented. On the 

other hand, the decision-theoretic, or maximum likelihood method outlined 

above may be (but not necessarily) much more expensive to implement. The 

course which we recommend to balance the potential complexities of non¬ 

linear recognition techniques against the potential simplicity afforded by 

*This is the simplest form, which follows from the assumptions of equal 
a priori occurrence of classes, and equal cost associated with all mis- 
classification errors. 
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linear methods is to iirst ascertain the distribution of clue values in the 

measurement space for the different classes involved, and then choose the 

simplest method of fixing the class boundaries which will perform the 

recognition task adequately. The latter step may involve only linear operations 

or may demand other types of boundaries. In either caie, the collection of 

statistics dictated by the first step appears to be indispensable. 

During the course of this project, two different method, of estimating 

probability density functions of clues, corresponding to the two types of clue 

sets investigated ('•rudimentary" and "spectral"), have been utilised. W.th the 

rudimentary clues, histograms were constructed over a fixed cell structure, 

as the means of estimation. This method was dictated by the limited amount 

of data available for these clues. — 

A much more sophisticated estimation procedure has been utilised with 

the spectral clues. Specifically, the 'local reference representation"method 

described in Appendix II has been employed with gaussian functional forms 

with adaptive mean and variance parameters. A complete discussion of th.s 

method appears in Reference 10. Results obtained for selected subset, of 

clues are presented in Subsection 2. 4 below. 
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2. 3 DESCRIPTION OF SPEECH PROCESSING EQUIPMENT 

The special purpose speech processing equipment utilized to generate 

data and clue samples for voice identification experiments on this project is 

outlined ;.n the block diagram of Figure 5, and illustrated in Figure 6. The 

primary input sources are (a) recorded speech-signals and (b) noise gene¬ 

rators. Most of the experiments reported in the next section have been 

conducted for broadband noise conditions, as provided by the GR-1390B noise 

generator. To create the noisy, bandlimited speech signals utilized in these 

experiments, originally high-quality speech recordings were added to the 

noise in the combiner, and the resulting waveform passed through a tunable 

bandpass filter (allison 2ABR). By monitoring a YU meter, the signal-to- 

noise ratio* could be controlled through a step attenuator at the noise 

generator output. 

Primarily to allow for greater resolution in high-frequency spectral 

peaks, a 6 db per octave pre-emphasis circuit was incorporated at the input 

to the clue extraction equipment. The speech envelope (E), its derivative (E1 ) 

and the speaker's pitch (Fq) were obtained from the resulting waveform. To 

obtain a reliable, relatively smooth estimate of pitch from noisy, bandlimited 

speech a special extractor was constructed for this project. This unit is 

described in Appendix IV. For bandlimiting to 3 kc (300-3300 cps) this device 

produces a reliable pitch indication for signal-to-noise ratios above 4 db. As 

discussed in Appendix IV, a more sophisticated pre-filtering arrangement 

would allow for reliable operation at lower signal-to-noise ratios. 

As a preliminary to voicing detection and spectral analysis, the speech 

waveform is passed through short-term (20 msec) AGC circuit. Voicing has 

been detected with a conventional comparison of envelope-detected outputs of 

high- and low-pass filters. 

♦Signal-to-noise ratio (in db) has been defined as the difference between the 
average peak VU reading during an utterance in the absence of noise and the 
VU reading in the presence of noise alone, both measured after bandlimiting. 

- 23 - 



uiotJis U^!Q Äjouig |0!J»s 

in 

ob 
• H 

B
lo

c
k
 D

ia
g
ra

m
 
o

f 
S

p
e
e
c
h
 P

ro
c
e
s
s
in

g
 
O

p
e
ra

ti
o
n
s

 



I-
■sro/

.A

8 - 1 A
0>
aa
H

<D
C
DO

2

U
o
0-
CR
c
oJ

H

w;'': mm-^I*
DO
c

•r4

to
(0
4)
o
o
0.
Xo
0)o
a

CO

DO
c

•tM

TJ
U
o
u

cx:

a
6
o
u
o

Pi

c

I
3
o*
U
DO
C

•w
CD
Q

U
o
u

CU
j:
u
4)
Va

CO

DO
• r-<

-25-

L.



Spectrum analysis is performed through the use of a delay line time 

compressor (DELTIC), followed by a single scanning filter. Although this unit 

is capable of 50 cps resolution, the analyzing filter bandwidth was set to 

230 cps for this project, in order to allow for some smoothing of the spectral 

energy density envelope. Details of the major design considerations for this 

device are presented in Appendix III. 

To provide a smooth spectral input to a formant extraction routine, 

the analyzing filter in this device scanned the 3 he range from 300 cps to 

3300 cps in 40 steps, or channels, covering 7S cps per channel. The resulting 

40-character samples { c.) 4°, were combined with the other clues in a 

multiplexer and a/D converted. Sample outputs of the spectrum analyzer 

are shown in Figure 7. The clue samples and spectrum analyzer outputs 

were thus transformed into a serial digital data stream, Tuitable for 

recording on magnetic tape, or for direct input to a digital computer. 

Because of a delay in delivery of the digital computer originally 

planned for this project, the resulting digital data were recorded on magnetic 

tape for later use with other computers, including the Recomp II shown in 

Figure 6. Deuils of the operations performed on this data appear in the 

following subsection. 

- 26 - 



300cps

•o
3

a

E
<

300cps

Frequency

lal

Frequency

U1

3300cpe

3300cps

Fig. 7. Short Term Digitized Energy Density Spectra for 
the Vowel Sounds |a| and lil .

-27 -



2. 4 VOICE IDENTIFICATION EXPERIMENTS 

The equipment described above has been utilized along with general 

purpose digital computers to process a significant quantity of speech to 

ascertain the utility of the techniques described in Sections 2. 1 and 2. 2 for 

voice identification. In the following subsections the data processing goals and 

methods are discussed and illustrated, and the major results of experiments 

performed with noisy, bandlimited speech signals are reported. 

2. 4.1 Data Processing Program 

The speech processing originally planned for this project involved 

operating on the speech signals with special purpose equipment (primarily 

spectrum analysis and pitch extraction) to produce digitized data samples 

for real-time input to a Computer Control Corporation DDP-24 computer. 

However, a major change in the manner of execution of this project resulted 

from a delay in delivery of this computer. The change involved the addition 

of a series of data recording and format conversion steps, reprogramming, 

and the use of different computers. The candidate speech clues, and the 

learning and recognition processing steps have been modified to some 

extent to accommodate these changes. However, the results obtained serve 

to indicate the feasibility of completely automatically extracting clues and 

processing clue samples to render speaker identification decisions in the 

presence of noise, and using bandwidth truncated speech signals. 

The processing steps actually executed on the project are summarized 

in Figure 8 in terms of data recording and format conversion operations, 

and the use of three different digital computers: The Aut.onetics Recomp U, 

Digital Equipment Corporation PDP-1, and the IBM 709 J. The basic data 

samples were derived from 30 seconds of speech from each of ten speakers* 

♦The original, noise-free speech recordings were supplied by the agency. 

- 28 - 



Fig. 8. Data Processing Steps for Demonstrating Automatic Clue Extraction 

and Speaker Identification Capability -29- 



and for each of four (4) signal-to-noise ratios (a total of 20 minutes of speech). 

Approximately half of the data samples were assigned to the 'learn series" 

to be used in the automatic learning operations, and the remainde r were 

assigned to the 'Vecognition series". , Salient characteristics of the ten 

speakers are listed in Table 2. 

Each data sample generated by the Speech Processing Equipment 

consisted of 48 six-bit characters, as indicated in the diagram. Samples of 

this type are generated at a rate of 50 samples per second, for a data rate 

of 14, 400 bits per second. The first major step in processing this data is 

Character 
Position 

r- 

1 - 40 41 42 43 44 46 47 48 

Quantity 

[Spectrum 
Analyzer 

1 Outputs 

Synchro 
lization 

Voicing Pitch 

1 

Enve- 
1 lope 

1 1 1 

No canal 
ized 
Enve¬ 
lope 

Enve¬ 
lope 

Deriva¬ 
tive 

Synchro 
nization 

Data Sample Format 

conversion to a format suitable for input to the IBM 7090 computer. To do 

this, however, it was required that the data samples ts> be recorded on 

magnetic tape in their original format, and that these recordings be 

processed through the PDP-1 computer to produce an equivalent paper tape 

recording, which then served as input to an IBM-format conversion program 

using the same computer. As a result of being constrained to use two 

different magnetic tape decks, operating at different speeds, it became 

necessary to check the paper tapes prior to this conversion step. The 

checking was accomplished with the Recomp II computer. 
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Upon completion of this check-out, the data samples were converted to 

IBM format, and stored on magnetic tape. A total of approximately 30, 000 

data samples were obtained for four signal-to-noise ratios (40 db, 30 db, 

20 db, and 16 db), and ten speakers. All of these samples were generated 

within voiced intervals of speech. 

Speech Clue Extraction 

Simultaneous with the paper tape check-out with the Recomp,clue samples 

were generated by the Recomp II for a set of 8 rudimentary speech clues, 

to be discussed below. 

Following this check-out step as mentioned above, the data samples 

were recorded in IBM format on magnetic tape which served as input to a 

speech clue extraction program written for the IBM 7090. We refer to these 

latter clues as Spectral Clues in order to distinguish them from the Rudimentary 

Clues produced by the Recomp Computer. The 16 spectral clues generated 

by this step are as follows: 

= First Formant Position 

= Second Formant Position 

= Third Formant Position 

= First Formant Position Derivative 

= Second Formant Position Derivative 

= Third Formant Position Derivative - 

= First Formant Amplitude 

= Second Formant Amplitude 

= Third Formant Amplitude 

= Voicing Indication 

= Pitch 

= Pitch Derivative 

= Speech Envelope 

= Normalized Speech Envelope 

= Speech Envelope Derivative 

= Data Sample Power 
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A clue sample consisting cf these 16 component clues is generated in this 

step for each data sample generated within voiced intervals of speech. As 

indicated in Figure 8, these clue samples were stored on magnetic tape for 
I 

use in the 7090 learning routine. 

The eight rudimentary clues generated by the Recomp II are: 

F = average pitch 
o 

F-* = average pitch derivative 
o 

I F 1 I = average pitch derivative magnitude 

F (max) = maximum pitch 

F (min) = minimum pitch 

u = Pitch Max-Min order 

F = average speech envelope derivative 

S = voiced interval duration 

Each of these rudimentary clues is referenced to a single voiced interval. 

For example, Fjmax) is the maximum value of the speaker' s pitch observed 

during a single voiced interval. Thus, these clue values are generated at 

the end of voiced intervals only. As an indication of their rudimentary 

nature, note that for 6-bit clue quantizatioriTapproximately 18 bits per second 

are generated for each rudimentary clue, in comparison with approximately 

300 bits per second for each spectral clue. 

Learning and Testing Data Processing 

The processing of clue values for learning speaker decision boundaries 

in a clue space, was performed in different ways for the two types of clues. 

As indicated in Figure 8, the spectral clues were processed in the 7090 

using an automatic learning routine known as SPEAR (Statistical Property 

Estimation Regeneration). This routine is a sophisticated version of ASSC 

(Adaptive Sample Set Constructor) program utilized earlier on Contract No. 
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AF-aO^W. This progran, produces a set oi 'locai references" from 

a sequence of clue samples. Each local reference consists of a reference 

due sample, a 'Variance" sample Æ = <0, c,.»hose components 

correspond to the clues.- and a probability weighting for a single spea er. 

A set of local references is generated in this program. * _ 

Following this learning step, spectral clue values were processed 

through a testing routine* in the 7090 to ascertain the accuracy with which 

the local reference, for a given clue set can achieve separation of speakers. 

Since the 7090 routines being utilised were not as efficient as those 

originally planned for this project, only a few learning and recognition 

experiments have been conducted with the spectral clues. Specifically, a 

spectral clue subset consisting of 6 clue, has been investigated for four 

signal^to-noise ratios. Both classification tests and detection.test, 

been performed using four male speakers with similar pitch (Speakers 

number 1, 3. 5, and 6 in Table 2). The silt clues utilised are Fo, „ . 

F . F F . and E' . These six clues were selected because they 

represent the three (a priori) most useful formant-related cines, the two 

available pitch-related clues, and an elementary 'talking cadence" clue 

Although a larger.number of clues could have been processed (up to 16). 

the primary concern was to determine the utility of form*«- and pitch- 

related clues. 

With tile change from the DDP-24 computer, the original program for 

extracting formant information could not be utilised. A replacement ^ 

program was obtained through the courtesy of Federal Scientific Corp. 

Unfortunately, this program proved to be less than ideal in two important 

respects: (a) For the frequency resolution being utilised (75 cps channe 

- spacing, using a 230 cps filter,, the criteria for selecting formants from a 

set of candidate tracks did no, work very well, and (b) in processing 

»See Section 2. 2 and Appendix II for a discussion of this type of recognition 

routine. 
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continuous spoken text (as opposed to isolated words) no formant selection 

is made for very often a majority of the samples occurring within a voiced 

interval. The net effect of these limitations was that values of the formant- 

related clues were usually missing in the clue samples. Although the learning 

and testing routines have been devised to make Optimum use of clue values 

which are available, the processing performed with the spectral clues thus 

consisted of tests of performance attainable with the pitch-related clues. 

As a consequence, extensive testing with these clues was not warranted. 

To test the notion that relatively easily extracted non-formant-related 

clues offer significant potential for speaker identification, some of the 

eight rudimentary clues were processed through the learning and classifica¬ 

tion steps in a different manner, as indicated at the lower left in Figure 8. 

Specifically, two different subsets of clues were processed for each of ten 

speakers, and for the four signal-to-noise ratios. One clue set consisted 

of the clues (S,F^)and the other consisted of [Fornax), F^min), u ]. Both 

of these clue sets were limited by our being constrained to simulate the 

learning and recognition steps by manual processing. The learning routine 

was implemented by construction of a histogram estimate of the distribution 

of clue sample values for each speaker over the corresponding clue space. 

For the clue set (S, Fq) a uniform two-dimensional histogram cell structure 

was utilized with a resolution of 80 msec in S, and approximately 25 cps in 

~F~. With this coarse resolution, it was not anticipated that extremely good 

results could be obtained. However, an increased resolution was not 

warranted by the amount of available data (approximately 90 clue samples 

for each speaker and each signal-to-noise ratio). The same pitch resolution 

(25 cps) was employed for the clues Fornax) and F^min), and two 2-dimensional 

histograms were utilized for the second clue set, since u is a binary clue. 
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Since the learning and recognition tests for the rudimentary clues were 

confined to two-dimensional measurement spaces, the speaker decision bounda¬ 

ries in this space can be illustrated readily. Figure 9 shows the histogram 

probability density estimates generated for two of the ten speakers tested (a male 

and a female), using the rudimentary clues (S, These estimates were ob¬ 

tained by processing the'learn series" data indicated by the solid points in Figure 

10. By comparing the two probability density values in each histogram cell, the 

decision region boundary shown in Figure 9 is generated. 

Both detection and classification tests have been conducted with both of the 

rudimentary clue sets for all of the ten speakers, three signal-to-noise ratios, 

and three decision interval durations. 

2.4.2 Results of Experiments “ 

The curves in Figure 11 indicate the typical speaker classification per¬ 

formance attainable with a 2-dimensional rudimentary clue set (F^ S), as a 

function of the number of speakers in the group to be classified. The shading 

in these curves spans the variation in probability of correct identification corre¬ 

sponding to signal-to-noise ratios ranging from 40 db to 16 db. This slight varia¬ 

tion indicates that the pitch extractor works quite well ov^r this range, as was 

expected. In fact, from observations of the pitch extractor output (Appendix IV), 

it appears likely that with this same rudimentary clue set, essentially the same 

performance would be attained down to signal-to-noise ratios on the order of 

3 db. As indicated in Figure 11, significant improvement in performance results 

from processing a longer portion of a speech waveform before rendering an 

identification decision. 

While the classification performance indicated in Figure 11 is not high 

enough for most practical applications, it is nevertheless quite encouraging for 

the following reasons: 
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• Only two clues were utilized. 

. Each of these clues is a rudimentary measurement. 

. Each clue has heeucoarse!,,ua„Uea <ZS ops resown lor F, 

t 

. SUaightlorward hls.ogranr es.l^es ol rhe clue dlslrlhuUous have heeu 

. r^ech haudwldlh is rruucarel and doe, uo, Include Ihe pi,oh lunda- 

mental. 
, , rlue, the identilication performance will improve 

,ilh the utilisation of more clues the^ ^ ^ ^ for thc detection 

ignificantly, as discussed in ec ton essentially 2*dimen- 

ilassification da^r^^ogram on this project has 

““Toi examination of sets wi, higher dimensionales. 

•fv, same rudimentary clue set 
The detection performance attainable w„h the same _ 

_. ABain the variation in performance witn g 

1S indicated in g ^ average probability of correct decision is only auout 

noise ratio is slig • hi portends excellent performance 

-—rr :, more — 
with the Utilization of several ru 

nition routine. 

■ tion of the improvement afforded by the use of multiple clues. 
As an indication trF(max) F (min),u>] was evaluated 

performance is impr seconds for which the curves 
V o Inneer decision interval (than the 1.7 seconds 

- ^Figures 12 and 13 were generated) also produces an improvement. 

,, a interval on classification performance 
The effect of a restricted earning ^ colldition3 „ignal- 

tor 10 speakers is illustrated in Figure 
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to-noise ratio = 20 db, speech bandwidth = 3 Kc) the same 2-dimensional rudi¬ 

mentary clue set was used to classify both the learn series data and the test 

series data. Since only approximately 45 rudimentary clue samples are obtained 

from 15 seconds of speech, the histogram estimates on which the decisions are 

based cannot be regarded as very accurate, even with the coarse cell structure 

utilized. Thus, for these experiments to the test series data (which are not in¬ 

volved in the clue distribution estimates) can be expected to produce significant 

variations from the learning estimates. The estimated performance attainable 

with a longer learning interval (1 minute) has been based on a.i average of the 

learn series and test series classification results, as indicated in Figure 14. 

The data processing associated with the spectral clues has involved the 

use of three separate general purpose digital computers, to perform the clue 

extraction, learning, and recognition operations originally planned for a single 

computer (see Figure 8). The changes in data format and clue extraction rou¬ 

tines required by the late delivery of the latter computer have dictated a less 

intensive examination of the spectral clue distributions. In particular a sub¬ 

group of 4 speakers’1' have been tested for detection recognition. The typical 

average correct identification performance obtained with a group of six spectral 

clues [F , F ' , F ' , F , F , e' ] is reflected by the curves in Figure 15 for 

a signal-to-noise ratio of 30 db, and three decision interval's. For a decision 

interval of 3 seconds of speech, the average correct recognition probability 

is 78%. The value of processing long periods of speech prior to rendering a 

decision is indicated by the significantly poorer performance attainable with 

only 60 milliseconds of speech. The variation in performance with signal-to- 

noise ratio is indicated for this clue set in Figure 16, using 1. 5 seconds of 

speech per decision. 

The relatively greater susceptibility of the spectral clues to noise indicated 

«Speaker Numbers 1, 3, 5, and 6 in Table 2. 
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3. CONCLUSIONS AND RECOMMENDATIONS 

I 

The primary goal of demonstrating the automatic extraction of useful speech 

clues for voice identification in the presence of noise and speech bandwidth trun¬ 

cation has been attained through a combination of special purpose equipment and 

general purpose digital computers. Two types of speech clues have been investi¬ 

gated: (a) spectral clues, derived from characteristics of the envelope of short¬ 

term voiced speech energy density functions, and (b) so-called rudimentary clues, 

derived from the voicing fundamental and speaking cadence characteristics. 

The spectral clues alone had been expected to provide high detection per¬ 

formance at least in the absence of noise, but were found to exhibit two unde¬ 

sirable characteristics: formant frequency location errors are occasionally 

very large, and formant estimates were generated for only a small portion of 

each voiced interval of speech. The latter characteristic was an inherent pro¬ 

perty of the formant extraction routine used on this project, but could be changed. 

However, the former characteristic is a limitation on any automatic formant 

extraction routine, particularly in the presence of noise, and speech bandwidth 

truncation. 

With these limitations on utilization of spectral clues, automatic speaker 

identification routines exhibited lower performance than had been expected. 

Specifically, typical test results using a set of six clues indicate that a single 

speaker can be detected with false alarm and false dismissal error probabilities 

equal to approximately 25 percent, in the absence of noise, for 3 Kc bandlimited 

speech, and using a decision interval of approximately 1.5 seconds. At a signal- 

to-noise ratio of 16 db this figure is degraded to about J3 percent error. 

*Use of this particular formant extraction routine was dictated by a change in 

digital computers during the project. 
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With a 3 second decision interval the error probabilities for 40 db and 16 db 

signal-to-noise ratios become 22 percent and 29 percent respectively. 

Experiments performed with a few rudimentary speech clues have resulted 

in encouraging speaker classification performance figures for noisy and band¬ 

width truncated speech. While these figures are* lower than desired for a practi¬ 

cal application, the conditions under which the experiments were conducted indi¬ 

cate that much higher performance is readily attainable. Specifically, experi¬ 

ments with rudimentary clues: 

(1) Were generally restricted to the use of only 2 clues per experiment 

(2) Utilized coarse quantization of clues (25 cps for pitch, 80 msec for 

talking rate clues) 

(3) Involved a restricted amount of learning data 

(4) Utilized a crude approximation to the desired recognition procedure. 

All of these restrictions were imposed by a change in the data processing facili¬ 

ties utilized on this project. 

Typical results of experiments with rudimentary clues indicate that for a 

decision interval of approximately 3.3 seconds (10 voiced intervals), the proba¬ 

bility of correctly identifying one of a group of the*speakers (6 males, 4 females) 

varied between 0. 5 and 0.6 within the signal-to-noise ratio range (16 db - 40 db). 

For a group of six speakers (4 male, 2 female), these figures are 0.60 to 0.66. 

These probabilities compare with 0. 10 and 0. 17 for random selection in the 

10-speaker group and the 6-speaker group, respectively. The single speaker 

detection performed was approximately 25 percent error of both types. All of 

these figures are for a 2-dimensional rudimentary clue set, (average pitch and 

voiced interval duration). 

The net results of the data processing performed with both types of clue 

sets may be summarized as follows: 
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. . ,,nn _ní5 _ 3300 cps) does not prohibit 
(1) Bandwidth truncation to (300 cps aw V 

the extraction of useful speaker identification clues. 

,2) Completely automatic extraction of formant locatione. particularly 

in the presence of noise, still poses a problem, particularly for imple- 

mentation in a relatively simple device. 

(3) In lieu of formant locations, spectral peak location and amphtu 

patterns may be used to represent spectral analysis information. 

(4) Other clues not derived from spectrum envelope characteristics ex¬ 

hibit a high potential for performing the discrimination between speakers; 

these include pitch-derived clues and talking rate or cadence character- 

istics. 

,5) These latter clues are relatively insensitive to short-tlrm fluctuations 

in the speech signal due to the presence of noise. In particular, it 

appears that significant degradation in a short-term average pitch ex¬ 

tractor (70 msec in the device used on this project) does not occur 

until the signal-to-noise ratio of a bandlimited speech signal falls well 

below 10 db. 

(6, use of several of these clues simultaneously can.fee e’xpected to provide 

significant improvement in performance over the figures obta.ned 

through the use of coarsely quantized pairs of clues. 

,7, Significant improvement in speaker identification performance can 

also be obtained by allowing for longer decision intervals, t.e. for 

intervals of several seconds. 

,8) For these potentially useful clues, apparently a longer learning interval, 

say a full minute, may be required to realize their full potential. , 
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With the special purpose speech processing equipment utilised on this 

porject much more extensive speaker identification experiments may be con¬ 

ducted, upon completion of installation of a new digital computer. All of the 

cumbersome data processing compromises and intermediate storage problems 

encountered during the current project will be removed. With a capability for 

processing speech data in real time, a large variety of candidate speech clue 

sets may be evaluated with a large quantity of speakers and speech materials. 

The selection of appropriate clue sets for incorporation in device, to be used 

in special voice identification applications can therefore be accomplished on 

a sound basis. 
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APPENDIX I 

VOICE IDENTIFICATION LISTENING TESTS 

To ascertain a range of signal-to-noise ratios and frequency bands within 

which it would be reasonable to expect a machine to perform the task of identi¬ 

fying a voice whose utterances are immersed in noise, a series of small scale 

listening tests have been conducted to ascertain the human's ability to do the job. 

A cursory review of the literature prior to conducting these tests suggested 

that considerable work remains to be done before the human's ability to identify 

voices, particularly in a noisy environment, will be known on a quantitative 
* 

basis. In 1954, some experiments were conducted which resulted in the per¬ 

formance curves reproduced in our Figure I-1. Part (a) of this figure shows 

the capability of a panel of seven listeners to identify a speaker, as a function 

of the degree to which the speech signals have been limited in frequency. Re¬ 

sults are shown for both four and eight speakers. Performance is measured by 

an estimate of the probability of correct classification^ i.e. the percent of cor¬ 

rect identifications. Since our primary interest is in 3Kc communication chan¬ 

nels (300 cps to 3300 cps), we could anticipate from these curves that in the ab¬ 

sence of noise, less than 85 percent correct recognition of eight speakers would 

be achieved by a human, and no more than 90 percent correct recognition of four 

speakers . 

A very important parameter associated with these curves (Figure I-l(a))j 

is the duration of the utterance on which a decision is based. For these curves, 

each utterance consisted of a monosyllabic word. Presumably the average dura¬ 

tion of these utterances was a fraction of a second. The variation in performance 

’¡'Reference 7. 
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O 4 VOICES 
A 8 VOICES 

a) Probability of correct identification as a function of speech 

bandwidth truncation, for 4 and 8 voices 

a 

I 

(««condt) 

b) Variation in speaker identification performance with speech 

signal duration 

Fig. 1-1. Performance of a Human in a Voice Identification Task 
Utilizing Monosyllabic Words (from Reference 7) 
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as a function of speech sample duration is shown* in part (b) of Figure 1-1. The 

percent information transmitted is the performance indicator in this case, and 

it is clear from this curve that approximately one second of speech must be pro¬ 

vided to a human in order to achieve high speaker identification performance. 

Also in 1954. another project** was undertaken to asne'rtain the human's 

ability to identify a previously heard voice, when the speech signals are sub¬ 

jected to selective frequency filtering, altered sound pressure level, and two 

types of noise: broadband and "propeller-type aircraft noise". The tests con¬ 

ducted under this project involved a large number of listeners (at least twenty 

for each test), and were conducted for a wide variety of high and low pass filter- 

ing frequencies, as well as several signal-to-noise ratios. The duration of 

speech signals used to render a decision was approximately^ seconds (5 sylla- 

bles). 

For our purposes, the major results of this project, for the effects of band- 

limiting. were the indication of relatively little degradation in identification per¬ 

formance for high-pass filtering with cut-off below 150 cps and for low-pass 

filtering with cut-off above 2000 cps. The reported effects of broadband notse 

on speaker identification performance are shown in Figure 1-2. The 2, 3, and 

4- speaker results were obtained during an early phasejifthe project (as re¬ 

ported in Figure 5 of Reference 8), and the 5- speaker ‘results were obtained 

during a later phase (as indicated on Page 10 of Reference 9). The salient as¬ 

pects of these curves are (1) the poor performance (approximately 70 percent 

correct classification even in the absence of noise) for 3 and 4 speakers, and (2) 

the indication of almost pure guesswork on the part of a human attempting to 

recognize which of five speakers has spoken. 

The wide variation between the 5-speaker result and that for 3 and 4 speakers, 

may possibly be explained by the fact that the 5-speaker tyts were conducted very 

carefully, with the sound level adjusted for each speaker using matched earphones 

* From Reference 7. 
’¡'’¡‘From Reference 8. - 54 - 



Fig. 1-2. Speaker Identification Performance of a Panel of Human 
Listeners Using Five - Syllable Speech Samples ' 
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for presentation of speech to the listeners, whereas the 3 and 4-speaker tests 

utilized a single loudspeaker presentation to the listeners, with sound level 

measured only at selected points in a room. 

The capability of a human to recognize previously heard voices is not indi¬ 

cated by the results of these two projects to be extremely high. In fact, it 

would appear that a human can improve on guessing only slightly for signal- 

to-noise ratios less than 0 db, and for speaker compliments greater than 5, 

particularly if the speech sample on which a decision is based has a duration on 

the order of a second. 

Although the previous tests were conducted carefully and reported in detail, 

it appears that, particularly for the tests conducted in the presence of noise , 

some of the errois may have been introduced by mislabeling a speaker during 

the tests due to lack of familiarity with the group of speakers involved. To check 

this possibility, a series of six tests has been conducted to determine a human's 

ability to recognize which of 5 speakers (each of whose voices was very familiar 

to each listener) has uttered a monosyllabic word. Each speech sample in 5 of 

these tests was bandlimited to the range 300-3300 cps, and was corrupted by 

combining the original, noise-free utterances withnoise. Five of the six tests 

were conducted'for the five signal-to-noise ratios +40 db, + 20 db, +12 db, 

+ 8 db, and +4 db, and the 6-th test was for infinitely cftpped (unfiltered) speech. 

The listening panel was composed of five listeners. 

The six tests were conducted as follows. Each of the 5 speakers (numbered 

one through five) identified himself by uttering the following two sentences: 

"This is speaker number (correct number) speaking. 
You are very familiar with my speech". 

Following these familiarization utterances, one hundred words were 

* References 8 and 9. g 

## Signal-to-noise ratio is defined as 10 log N where S is the peak power of the 
bandlimited speech signal indicated by a VU meter, and N is the noise power 

within the band. 
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uttered (20 words by each speaker), with approximately three seconds of atiene, 

between words. Words from the different speakers were presented tn random 

order During each three second interval of silence following utterance of a 

„ord the 5 listeners (each of whom was very familiar with each speaker's ; 

voice). wrote on a Listening Test Sheet the number pf the speaker who he be- | 

lieved uttered the word. A total of five hundred different words were utthaed 

in the six tests. 

Results of these tests are summarised in Figure 1-3. The percentage cor¬ 

rect decisions rendered by the five listeners considered individually are shown 

in the light curves. The heavy curve st ows the average percentage correct dect- 

sions for the listening panel. Except for Listener Number 5. all curves ten o 

reflect a monotonie degradation in speaker identification capability as the s.gna - 

to-noise ratio (for broadband noise, is reduced. Atoo, the effects of cl ppmg on 

-> anpalter appears to be equivalent roughly to a 
a human's ability to recognize a speaker appea 

i to nnise ratio of 0 db. The actual recognition performance 
broadband noise signal-to-noise ratio oi u . 

exhibited by the listening panel indicates that even good listeners cannot achieve 

better than 90 percent correct decisions at signal-to-noise ratios below about 

+ 10 db. 

Of major interest to this project is the changa in recognition performance 

which would occur for larger groups of speakers. While a variety of (all inde- 

fensible) models can be postulated to provide an extrapolation to larger speaker 

groups, it is perhaps more realistic to resist the temptation to use these models 

and simply be content with the knowledge that recognition performance decrease 

as the number of speakers increases. 

j r tVtAco civ tpsts with those obtained. 
Comparison of the results obtained from these s.x tests w, . 

on the previously described projects suggests that familiarity with the speakers 

voices does help a human listener. However, it is doubtful that better than 9 

percent correct recognition of one set of thirty familiar speakers' voices con 
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be achieved by even a "good" listener when the bandiinri.ed speech sample 

duration is limited to approximately one second and is corrupted to the extent 

o£ a 20 db signal-to-noise ratio. For the automatic speaber recogmtron tests, 

therefore, it was deemed reasonable to conduct speaker recogmtton tests or 

signal-to-noise ratios greater than +10 db. 
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APPENDIX II 

CLASSIFICATION BY LIKELIHOOD FUNCTION ESTIMATION 

Consider the problem of deciding which of M classes has given rise to an 

observed event, x = (x,. x__), and suppose that the statistics of events and 

classes are known, i.e., the joint probability density function of x and m is 

known, where m denotes the class label: m = 1, 2, .,., M. The decision- 

theoretical optimum method of processing a measured event x to render the 

classification is well known. Specifically, x should be regarded as a member 

of the k-th class if the cost of deciding in favor of the k-th class is less than 

that of deciding in favor of any of the other classes. This is stated in Eq. (2.1). 

M 

^ ^Pm^ [Ck ] '° ÍOr a11 j ^ kl j=1- 2.M* (2' L) 

m=l 

where 

C a the cost (i.e. loss) associated with deciding that x belongs 
j , V , 

to the j-th class when in fact x belongs to the m-th class, 

P = the a priori probability that an event from class m will occur, 
m 

and p (x) s the conditional probability density function of x, given that x 
m ~ 

belongs to the m-th class. 

This method of decision-making minimizes the average risk associated with 

the classifications.* If, as is appropriate with many practical classification 

♦Evidently the basic form of the procedure is the same for other optimization 

criteria. 
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problems, the cost or loss is the same for all misclassifications, then Eq, (2. 1) 

reduces to the following decision rule: decide x is a member of the k-th class 

if 
r 

I 

P, p, (x) 2 P.p.(x) for all j / k, j = 1, -2. M (2. 2) 
krk ~ j j ~ 

Further, if the a priori probabilities are the same for all classes (Pm = l/M 

for all m), then Eq. (2. 2) becomes: decide x is a member of the k-th class if 

L (k) £ L (j) for all j / k, j = 1, 2. M, (2.3) 

where L (m) = p (x) is commonly called the likelihood function of m given 
x m ~ 

the evenrx. When class a priori probabilities ar«”the same, the likelihood 

function is equal to the a posteriori probability of class occurrence; i.e., 

L (m) = p (x) = p (m). 
X m ä 

Thus, we see that if the statistics of events and classes are known, than an 

optimum (from the standpoint of minimizing risk) method of establishing classi¬ 

fication decision boundaries in observation space is known, and the only hurdle 

which remains is implementation of this procedure. Unfortunately, however, 

this result can only be used as a guide to solving any practical classification 

problem, because the statistics of events and classes are usually not known 

precisely. 

In most practical problems, all the information available on the statistics 

of events is contained in the values of a finite number, N, of the sample events 

processed in the learning mode of operation of a recognition system. A reason¬ 

able way to proceed in this situation is to generate an estimate of the likelihood 

function (or equivalently, the probability density function) of the different classes« 

over the observation space, and render classification decisions in the manner 
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dictated by decision theory using the estimated quantity in lieu of the true 

function. This is the basis for most of the classification methods which have 

been investigated in the Information Sciences Laboratory. 

With this approach to establishing classification decision boundaries in 

observation space, the method of estimating probability density functions play, 

the key role. The degree to which the estimate corresponds to the true func¬ 

tion determines the similarity between the decision boundaries actually utilised 

and those which would minimise the misclassification probability. In addition, 

and perhaps equally important for advancing the development of automatic 

recognition systems, the form of the estimate should be selected to minimise 

the equipment complexity (primarily the storage requirements and operating 

speeds) associated with its implementation. _ 

Although there are many methods of estimating probability density func¬ 

tions, two approaches to the problem stand out as most suitable for considera¬ 

tion in a recognition system. The first consists of estimation through histogram 

construction by counting the number of occurrences of event, in pre-specified 

regions (cells) in the observation space. Such an estimate is illustrated in 

Figure II- 1(a) for a one-dimensional observation space, and N = 20 samples in 

the learning set of data. The area of each vertical bar,is an estimate of the 

probability that x will occur within the range of values defined by the boundaries 

of the (in this case, one dimensional) cell. This probability estimate for any 

cell is provided by the ratio of the number of learning samples which fall in the 

cell, to the total number of learning samples. In general, the probability densi¬ 

ty function p (X). of a multidimensional random variable, *. is assumed to be 

constant over The cell, and equal to the ratio of the estimated probability of 

obtaining a sample within the cell to the hypervolume of the cell. 
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a) Uniform Cell Structure 

b) Adopted Cell Structure 

Fig. II-1. Histogram Estimates of the Probability Density Function 
of a One - Dimensional Random Variable 
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In symbols, 

(2.4) 

where 

N = the number of learning samples which occur within the j-th cell, 
j 

and V. = the volume of the j-th cell. 
J 

The caret symbol indicates that an estimate, rather than a true probability densi¬ 

ty function is obtained. 

Straightforward application of this method of estimation requires a priori 

specification of the cell structure (size, shape and number in observation space) 

over which the histogram is to be constructed. To reduce storage requirements 

it would be desirable to keep the number of cells small. However, to represent 

the probability density function accurately in regions where this function is 

sensitive to small changes in x , the cells should be small, which would make 

the number of cells large. A third factor which must be considered in selecting 

a cell structure is that the accuracy of estimation of thê probability that x will 

occur in a given cell, is proportional to the number of learning samples which 

occur within the cell. Thus, the minimum resolution which should be attempted 

with a cell structure is limited not only by the (unknown) character of the true 

probability density function, but also by size of the learning set. 

Since the character of the (unknown) probability density function plays 

such an important role in determining the appropriateness of a given cell struc- 

ture, it is reasonable to utilize the only information available on this function 

(the learning set) to select the cell structure. This could be accomplished dur¬ 

ing the learning mode of operation of a recognition system by adjusting the cell 
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structure „ccording to a pre-established criterion) with each exposure of the 

system to a new learning sample. There are many ways of implementing this 

procedure. One would be to start with a coarse cell structure consisting of a 

few rectangular polytope. (e..g. hypercubes), and then increase the cell structure 

resolution by subdividing existing cells to avoid a violation of the constraint 

that no more than 4 (say) samples should be allowed in a single cell. This 

method of adjusting cell structure is illustrated in Figure II-1(b) for the same 

25 one-dimensional samples used to construct the (uniform cell structure) 

histogram in Figure U-l(a). Even though the modified cell structure involves 

two less cells than the uniform structure, considerable greater resolution is 

attained with the modified structure. If the range of possible values of the 

observation variable (*) is partitioned into segment, corresponding to unchang¬ 

ing value, of the probability density function, then Foth the uniform cell struc¬ 

ture and the adapted structure would require 9 quantities to represent their 

corresponding histograms, although the adapted structure attain, a higher 

Tf solution. 

Of course, the accuracy of an estimation based on rule, for adapting the 

histogram cell structure to the learning samples must be evaluated before the 

utility of such a procedure can be ascertained, The purpose of this histogram 

illustration is to point out the possibility of using an adajiti« procedure for 

estimating probability density function, (and therefore, decision boundaries). 

The significant difference between this approach to adaptation of decision 

boundaries in observation space and most of the other methods which have been 

proposed in the past few years is that this approach makes a conscious attempt 

approximate the class probability densities without any prior assumptions 

about the distribution of events in the observation space. Having estimated 

the densities, the procedure known to be "optimum" is used to construct the 

decision boundaries. While constraints on the number and type of boundaries 

- 65 - 



which can thus be generated do exist with this approach, these constraints 

impose no serious limitations on the distribution of events in observation space 

for a successful separation of classes. 

The second important approach to estimation of probability density func¬ 

tions called local reference representation, takes the adaptation procedure 

oulined above for histogram estimates as a point of departure, bu, implements 

this approach in a somewhat different manner. As before, the observation 

space is partitioned adaptively into regions called cells; however, the role of 

the estimation process and the geometrical disposition of these cells are not 

necessarily the same as for histogram construction. First of all, cells are 

created only in those portions of the observation space where learning sample, 

have been observed. Since it is expected that in most practical problem, a 

very high percentage of the volume of the observation .pace is empty, tht. 

serve, to reduce significantly the storage requirements. Secondly, the stae. 

shape and height of a cell is determined from » examination of the local 

behavior of the learning sample, in the neighborhood of the cell in questmn. 

From the local behavior of the learning samples a component function ts 

generated which represents the learning samples in the immediate netghbor- 

hood of the cell. 

The entire process of local reference representation can be regarded 

as an adaptive method of approximating the probability density by expanding 

it in a set of non- a priori specified component functions. The component 

functions represent and typify each of the different significant manifestations 

of members of the class by creating a cell corresponding to each of the dif¬ 

ferent manifestations. The component functions also describe the local 

characteristics of each "typical" concentration of learning samples and they 

shape the cells. . 
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Figure II-2 illustrates the behavior of these component functions for a one¬ 

dimensional random variable. The process by which such an estimate of the 

probability density function is constructed encompasses three basic steps: 

Fig. U-2. Local References of a Probability Density 

• A cell structure consisting of c cells is generated by the learning data. 

• Corresponding to each cell, one of a class of functions, {f(x)} , is 

selected according to values of learning data samples occunng within 

that cell. 

• The probability density function is estimated by some sort of combination 

of the selected functions{ f .(x)} , j = 1. 2.c, corresponding to the 

c cells. 
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Thus, the probability density function is represented by a set of "local references", 

where each local reference consists of a reference point, a component function, 

and a cell boundary. 

The cell structure is established by adaptive adjustments controlled by the 

sequence of samples contained in the learning set. Of the many ways in which 

rules for the adaptation can be established, the following has been studied most 

extensively. The first learning data sample is established as the "reference 

point" for the first cell. The second sample is then compared with this reference 

point according to a criterion which indicates whether this sample should be used 

to modify the first cell (by adjusting its reference point), or be established as a 

new reference point for a second cell. If used to modify the first cell, then the 

criterion by which future learning samples will be compared with the reference 

point for that cell may also be modified. If the second sample is established as 

the initial reference point for the second cell, then a second criterion is also 

assigned to that cell. The third and succeeding learning data samples are com¬ 

pared with each of the established cell reference points (according to their respec¬ 

tive criteria) and used to either modify one of these cells, or establish a new one. 

The criterion by which new learning data samples are compared with an 

established cell is constrained to reflect a notion of similarity between the cell 

reference point and a new sample. The provision for adjustment of the criterion 

according to the value of a new sample, allows for development of different meas¬ 

ures of similarity between events in observation space, according to location of 

the events in that space, as well as class membership. The criterion associated 

with a given cell may be regarded as a maximum allowable distance between its 

reference point and any other point in observation space to be associated with that 

cell, where "distance" is measured in an adjustable way. Thus, modification of 

the criterion for a ceil changes the cell boundary which consists of all points in 

observation space equi-distant (at a specified value) from the cell reference point 
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Either during or at the end oí the procese oí cell formulation, the samples 

occurring in. say. the v-th cell are used to select the component function 

f (X), from a pre-established class of functions,{«*) }. This set of funct.ons 

may'or may not allow for non-zero values of fy (x) outside of the v-th cell. 

In practice, it is convenient to relate the class-of component functions 

to the way in which distances are measured between points in the observation 

space and cell reference points. In particular, if the component function for 

a cell decreases monotonically as the distance between x and the cell reference 

point increases, then the process of computing probability density function 

values at x may be reduced to the calculation of distances between x and the 

cell reference points. An illustration of this relationship is the used of quad¬ 

ratic forms for measuring distances, and Gaussian forms for the component 

functions. 

The last step in the process of estimating probability density functions 

with typical samples consist, of combining the component functions over the 

entire observation space. One way is to consider the probability density fane- 

tion to be the sum of the component functions: 

P( *>= Ï fv 
(?) 

(2.5) 

For uncorrelated Gaussian component functions, this method allow, for 

venient processing of recognition data sample, in which some parameter value, 

are missing. Another method of combining component functions is to use the 

function whose cell reference point is closest to the point at which the prob- 

ability density function is to be estimaved. 

- 69 - 



APPENDIX UI 

DESIGN OF A REAL TIME, DELAY LINE TIME COMPRESSOR 

(DELTIC) SPECTRUM ANALYZER 

Some of the basic design considerations for a Delay Line Time Compressor 

(DELTIC) spectrum analyzer are presented in this appendix. As with mo 

spectrum analyzers, the idea behind a DELTIC device is the storage and repeti- 

tive input of a finite segment of the signal to be analyzed into a frequency¬ 

scanning filter. The resulting output of the scanning filter is a succession of 

short-term energy density spectra of the input signal. . Witha DELTIC device, 

each segment of input signal is time-compressed, and the analyzing filter com- 

mensurately broadened, to allow for the completion of many repetitions in a 

short period of time. Thus, the total time required to generate each energy 

density spectrum may be made extremely short, and essentially "real-time- 

analysis is possible. 

The major operations involved in the analyzer are depicted in Figu 

The input waveiorm i. sampledpariodically at a rata, Í.-, which i. high in com¬ 

parison with the rate at which energy density spectra are to be generated. 

Time Compression Unit 

I 

Input 
Output 

Fig. UI-1. A DELTIC Spectrum Analyzer 
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and the samples are fed to the time-compression unit. The latter unit may be 

regarded as a delay line of length, r = j— - which is slightly smaller than the 
s 

spacing between samples, and a switch which serves to control the number of 

samples to be employed in the analysis. The time-compressed sequence of 

samples (or staircase approximation) emitted by the time compression unit are 

passed to the scanning filter, whose output represents an energy density spectrum. 

Although we have examined and established the feasibility of a version of 

this system in which each repetition of the time compressed waveform is the 

same, it is possible for the analyzer to be designed to replace the oldest samples 

with new samples during the time that the scanning filter is sweeping across the 

frequency band to be analyzed, W. The resulting "skewing" introduced in the 

energy density spectra will be insignificant, provided spectra are generated at 

a reasonably high rate. 

1. DESCRIPTION OF A DIGITAL DELTIC ANALYZER 

For reasons of economy, flexibility and reliability, a digital time com¬ 

pression unit is required. A block diagram of a spectrum analyzer employing 

such a unit is shown in Figure III-2, and its operation described as follows. The 

time compression unit is included within the dotted line. The input signal is 

sampled by the A/D converter at a rate, fa, samples per second, with N^ bit 

quantization. The A/D output is stored temporarily in N^, (I-l)-bit registers, 

where I is the number of samples taken for each cycle of the delay lines. After 

I conversions, the samples are shifted into N , 1 me. delay lines. Timing is 
Ç 

controlled bv a 1 me. clock and a counter which counts up to N , the number of 
’ s 

of input signal samples used in the analysis. The delay lines are N^-I/j s long 

so that the data in the delay line precesses by I bits for each recirculation of 

the delay line. Thus data entering the line during the 1st I counts will pass 
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through the delay lines and have re-entered the lines as the counter resets to 

zero, and the next I sanóles will be entered immediately following the first I 

samples. The output of the delay lines is connected to a D/A converter to 

produce a speeded up repetitive version of a segment of the input signal. The 

speeded up signal is then analyzed by a high frequency spectrum analyzer whose 

output can then be A/D converted for entry to a computer. The 6 bit counter is 

used to generate the control voltage required to sweep the spectrum analyzer. 

The counter output therefore is fed to the computer as an indication of the 

analysis frequency. The timing unit is a set of combinatorial circuits used to 

decode the output of the counter to generate the necessary timing signals to 

control the delay lines, A/D converters and spectrum analyzer control counter. 

The detailed design of a DELTIC unit involves compromises between the 

minimum resolution attainable, analysis time required, maximum input signal 

bandwidth, flexibility in resolution and analyzing filter characteristics, and 

cost of instrumentation. For the unit developed for use in speech projects in 

the Information Sciences Laboratory, the trade-off between these factors has 

been viewed from the standpoint of producing an analyzer which can provide a 

resolution of 60 cps over at least a 3 kc band. Some of the equations which re¬ 

flect the different trade-offs involved are derived in the remainder of this 

appendix. 

2. DELTIC DESIGN EQUATIONS 

Th« minimum, real time length. Td. o£ the segment o£ data which muet 

be stored in the delay lines is: 

Td = k/F 
(1) 

where F ie the analyzer resolution (efiective filter bandwidth) and k is a factor 

which depends on the type of analyzing filter usèd and the accuracy required. 
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Curves of the step response of N pole Butterworth filters are given in Figure 

IU-3*. Equations for the response of 1- and 3-pole filters to step inputs at 

frequencies different from the filter center frequencies are derived in Section 

3 of this appendix. Curves showing these responses are plotted in Figures 

m-4 and III-5. As the data is recirculated in the delay line-, the first sample 

of the segment comes out immediately following the last sample. Since the 

tail end of the data segment may be either in phase (e. g., a sine wave for 

which an integral number of wave lengths are contained in the delay line) or 

out of phase (e. g.. a sine wave for which an odd number of half wavelengths 

are contained in the delay line) with the beginning of the segment, the worst 

case error due to the transient of the -seam- is equal to twice the difference 

between the filter steady state response and its transient response, as shown 

in Figures IH-3, m-4, and III-5. The value of k in Equation (1) can be deter 

mined from these curves. Reasonable values would be about 1 for a single 

pole filter and 10% accuracy, to about 2 for a three-pole filter and about4 or 

accuracy. 

The number of samples, N . stored in the delay lines is: 
S 

where f is the sampling frequency, 
s 

The delay line length, r. is determined by the sampling frequency and 

the number of samples taken, I, for each recirculation of the delay line: 

I 

♦From Reference 6, p. 283. 



Figure III- 3* 

♦ Reference 6, p.283. 
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En,u) = 
-U IXU 

e e 
+ - 

-rí- . . 

lim E (u) = 
u—*oo n r 6 

V 1 + X 

lX (1. +ix) (1 +ix2) nTT 

1 

2 e Z'^sin --- + ix sin 

1 + ix - X 

)r«o 1.03$ 

Fig. III-5. Envelope of Sine Wave Step Response for Detuned Three-Pole 
Butterworth Filter 



The delay line bit rate required is determined by its length. T. and the 

number oi samples. N,. that must be stored (parallel storage of samples ts 

assumed in one delay line per bit of quantization): 
/ 

N ' 
3 

B -- 
T 

Equations 1 through 4 may b* solved to determine the resolution of the 

analyzer: 

(4) 

F = 
k(fa) 

IB 

(5) 

Equation 5 indicates that, for maximum resolution (i.e. , min F) we 

should use minimum values of k and 1,. and maximum values of I and B. ^ 

TO mow for use of 1 me logic and delay lines, we should use 10 . 

For greater system flexibility kmin should be 

! of f is derived in Section 4 of this appendix, and may 
The minimum value of fg is denveu in 

be expressed as: 

f > 2f + 6F 
s o 

(6) 

where fo is highest signal frequency in the analysis band, W. For a 3 kc 

channel speech processing project. fo = 3.3 keps. and the resolution desired 

will not be less than F - 73 cps. Therefore the sampling frequency should be 

no less than about 7 kc. The above constraints determine the attainable reso- 

ation of the analyzer: 

~ 100 (7) 

min 



The upper limit on I is determined by the allowable skew, or analysis time: 

T = N T 
a f (8) 

where Nf is the number of analysis frequencies (equivalent to the number of 

filters in a parallel filter bank analyzer). If the spacing between analysis 

frequencies is equal to the filter bandwidth, then 

N. 
W 
F (9) 

Where ^m iS the minimum frequency in the analysis band, W. For the voice 

identification project, W = 3 kc. The analysis tinae, T , can be determined 
a 

from Equations 3, 7, 8, and 9: 

T 
a 

W 
100 f 100 (10) 

For simplicity of logic design I shall be an integer. If analysis time is limited 

to 20 ms (50 spectra per second), 

or I = 2 or 1, for maximum resolution, and the analysis time is 5 ms. or 20 ms. 

The maximum resolution can now be obtained from Equation 7: 

Fmin = 100 cp8 for 1 = 1 and T^ = 4.2 ms. (12) 

F 
min = 50 cps for I = 2 and T& = 16.8 ms. (13) 
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where we have specified: 

k= 2 

B= 102 

f = 3.3 kc 
o 

f = 7 kc 
s 

f -f = 3 kc 
o m 

T £ 20 ms 
s 
I is an integer 

B the maximum resolution is not required, or if we can limit the analysis to 

a single pole filter and lower accuracy, we can reduce the analysis time an^ 

crease the sampling rate fg by decreasing k to 1.5 or increa«ng . 

the possible compromises more apparent. Equation 5 may be solved for <, and 

Equations 3, 5, and 8 solved for T^. 

(14) 

(15) 

The DELTIC unit is essentially specified by Equation i4 or 15, and, since I 

is an integer and B = 106. there are only a few solutions for each chotee of F 

, , . Table ! for F = 50, 75 and 100 cps. As indicated in 
some of which are listed in Table 1 tor 

Equation 13 there is only one solution for F = 50 cps for which Ta " 2> ^ 

(i e I = 2). Also, for I = 1, the max. resolution of 100 cps (an s - 

verified by .be value of f, * 6 kc given for F = 75 cps and 1=1. 

) 
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TABLE III-1. Possible Choices (or a DELTIC Spectrum Analyzer 

R F(cps) 
3 (k=2) 

140 50 

160 75 

120 75 

100 75 

80 75 

140 100 

100 100 

80 100 

70 100 

1 f (kc) 
s 

2 7.07 

1 6. 1 

2 8.5 

3 10.6 

4 12. 2 

1 7.07 

2 10 

3 12. 2 

4 14 

282 60 

163 40 

228 40 

282 40 

330 40 

141 30 

192 30 

250 30 

282 30 

16. 8 

6. 25 

9. 12 

11.25 

13. 3 

4.2 

5. 7 

7. 5 

8.4 

F (k = 1.5) 

35 

50 

50 

50 

50 

70 

70 

70 

70 

The number, I, of samples taken per recirculation of the delay line 

should be small for the following reasons: 

1) to minimize the flip flop storage requirements - N (1-1) flip flops 
9 

are required for intermediate storage of samples, where N is 
9 

the number of delay lines. 

2) The delay T increases with \l I, 
a •- 

3) The sampling frequency, and therefore speed required of the A/D 

converter also increases with \l I. 

On the other hand it is desirable to have a high sampling frequency, f , ' 
s 

to allow for analysis of wider bandwidth signals, and a larger value of, I, for 

increased flexibility once the delay line length is fixed. 

The speed up ratio, Rg, of the audio waveform accomplished by the 

DELTIC unit is determined by the delay line bit rate (assumed to be 1 me.) 

and the sampling frequency, f : 
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where f is in kc. The sweep width required of the spectrum analyzer is equal 
s 

to the signal bandwidth times Rg. , 

Actually the compromise selected for implementation on this voice identi¬ 

fication project involved the following quantities: 

R = 64 
s 

I = 2 

f = 7900 cps 
s 

T = 127 /j sec 

Nf = 40 - 

T =5.1 
a 

N = 6 bits 
q 

The attainable resolution with this device is approximately 50 cps for a single¬ 

pole filter, but to allow for smoothing the analyzer output before locating spectral 

peaks, an analyzing filter bandwidth of 250 cycles has been incorporated. 

3. DERIVATION OF MINIMUM SAMPLING RATE, f * 
s 

Earlier in Section 2 of this appendix, an expression was given relating 

the minimum sampling rate, fg, to the maximum frequency, iQ, in the analysis 

* 
band, and the analyzing filter bandwidth, F. The remainder of this appendix 

is devoted to a derivation of this expression. 

♦ From Reference 6. 



Given a aine wave of amplitude A. frequency f,. phaee 6 (at t = 0). and of 

duration T. Sample it every A seconds. What is the resulting spectrum? 

The finite impulse train can be expressed as 

Äi^t-tQ) Pjtt) cos(27Tf1 t + 6) 

where i (t) is an infinite train of impulses, 
A 

A a 

-JA --2A 0 

(17) 

UNITY 

__ t 
2A ¿A 

and pT(t) is a finite pulse of duration T. 

PT(t) 

1 - 

-T/Z T'A 
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There is no loss of generality in the definition of zero time (t = 0), because we 

have allowed an arbitrary 9 and tQ. 

F>Jt the spectrum of 

ApT(t)cos(27r f^ + 0) 

is the convolution of T smc Tf and 

fL j'ei06(f-f1) +e'i06(f + f1) ] 

which is 

^L^el6sinc T(f-fL) + e"l0sinc T(f + f^ j (1 
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JT«*» ¿Tf* 

N«», the deeired spectrum is the convolution oí this spectrum with the 

spectrum of the infinite impulse train, which is 

■r 
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the factor of 3 being allowed for the "tails" of the spectrum. That is 

A - 

; 

(20) 

is required for unambiguous determination of frequency content. 

For a given desired frequency resolution of F cps, and filter of same band- 

width, there is no point in making T much larger than l/F, because the spec¬ 

trum components would be too narrow to resolve by this filter. Therefore, we 

may choose T = l/F. 

If we are interested in analyzing input frequencies up to fo cps, say, 

the tightest bound on A becomes — 

A - 
2f 

o 

_1_ 
+ 6 F 

A : or, 
o 

f > 2f + 6F 
s o 

(21) 

This is the same expression as given in Equation 6. 

For very small the "tails" o£ the negative frequency component over¬ 

lap the positive'component, thereby corrupting the valueSJjf the spectrum, the 

exact amount depending on 8. In order for this not to Se a significant effect, 

we require that 

or 

f1 2 3F. 

Thus spectrum scanning starting above 3F is no, affected.by the relative phase 

of the sine wave. 
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Thus for frequencies f^ such that 

3F s fl s fo • 
t 

I 

samples taken oftener than fgo samples per second, where 

f = 2f + 6F, 
so. o 

guarantee no corrupting influence on the value of the spectrum estimation 

obtained. 

To see how an actual narrow band filter of bandwidth F cps would respond 

to such an impulsive signal, consider the filterjvith impulse response and 

spectrum as follows: 
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Now suppose fQ is jumped in steps of F cps. Then samples of the filter 

output envelope at time l/F after excitation would appear as below: 

The solid dots correspond to the case where fQ jumps exactly ^ on one 

trial, whereas the hollow dots correspond to an intermediate jump. The ap¬ 

parent frequency extent in the two cases is F and 2 F, respectively. Thus, 

there is a random "smearing", depending on the relative values of fQ and f^.. 

This has been eliminated in the analyzer by jumping in approximately — cps 

each time. 
s • 

If the impulsive waveform is passed through a b»xcar circuit of duration 

A, the spectrum depicted above is changed by the factor 

sine = sine 
2f + 6F 

o 

= sine - 

2 
7T 
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as indicated in the diagram. 

In general, this is a known factor for any frequency, namely sine — , and can 

be compensated for. 
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APPENDIX IV. PITCH EXTRACTION IN THE PRESENCE OF NOISE 

AND SPEECH BANDWIDTH TRUNCATION 

The operational goal of a pitch extractor is to derive an indication of the 

fundamental frequency of the speech waveform, through an examination of 

whatever portion of this signal is available. This indication is required during 

voiced speech intervals, within which the speech waveform exhibits quasi- 

periodicity. 

A rudimentary conventional frequency domain pitch extractor performs 

this operation by first low pass filtering the speecn waveform and converting 

the zero crossings of the resulting waveform to an amplitude indication in a 

frequency measuring circuit (Figure IV-1(a)), Under certain conditions this 

method can yield a reliable pitch indication. However, for practical applica¬ 

tion this rudimentary method has several drawbacks. First it is clear that 

if the pitch fundamental is not present in the speech signal available for pro¬ 

cessing (as a result of bandpass filtering in a microphone, for instance), then 

a high pitch indication will result. A basic approach to the removal of this 

limitation is to pass the available speech signal through a nonlinear, no¬ 

memory device (such as a rectifier), which produces an output with funda¬ 

mental periodicity determined by the minimum spacing between spectral lines 

in the spectrum of the input. For voiced speech signals this spacing is the 

pitch fundamental, F^. Thus, as indicated in Figure 1(b) an amplitude indica¬ 

tion of pitch may be obtained by low pass filtering the nonlinear device output 

and utilizing a frequency measuring circuit. While this improved method re¬ 

stores a missing pitch fundamental, it is critically dependent on the presence 

of at least two adjacent harmonics in the input speech signal. Moreover, 

even when this condition is satisfied there remain the problema of (a) determin¬ 

ing the proper low pass filter cutoff and (b) distinguishing between the doubled 
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(a) Rudimentary Frequency Domain Extractor 

Amplitude 

(b) Improved Frequency Domain Extractor 

Fig. IV-1. Rudimentary and Improved Frequency Domain Pitch 
Extractors. 



fundamental frequency and the probably smaller amplitude F cöinponent when 
o 

the pitch fundamental happens to be present at the input. Both of these problems 

can only be solved for the methods depicted in Figure 1 through acquisition of 

"a priori" information concerning pitch, i.e. through adjustment of the low pass 
i 

filter cutoff frequency for each speaker. This debilitating feature of the basic 

frequency domain extractors, coupled with their susceptibility to the presence 

of noise in the input speech signal, indicate that a more sophisticated approach 

to the problem is required. 

Several investigations of methods of improving the performance of pitch 

extractors have been conducted in the past few years. There are apparently 

two guiding philosophies behind the majority of improved approaches which have 

been suggested: (1) utilize only that portion of the frequency spectrum which 

provides useful and relatively noise-free signals for processing, and (2) uti¬ 

lize several pitch extractors, each of which is designed to work well for a small 

range of pitch values, or under certain conditions, and switch between the out¬ 

puts of these several devices to utilize the best estimate. 

Methods embodying these philosophies have been examined by several in¬ 

vestigators, both by construction of special purpose devices and by computer 

simulation. In the remainder of this appendix, two somewhat different methods 

are described, and a means of combining them outlined. The combination has 

been implemented with an extractor designed and constructed during the course 

of this project. 

FORMANT CHANNEL FILTERING 

Consider first the characteristics of voiced speech signals which might indi¬ 

cate that certain portions of their spectra would be more useful chan others, 

particularly when noise is present. It is clear that the spectral lines located 

near formant positions offer greater potential for estimatio.ñ of spacing between 

spectral lines, than do the lower amplitude portions of the spectrum. 

- 92 - 



Further, if a nonlinear operation is employed to generate difference fre¬ 

quencies, then it is necessary that any spectrum selection operations must in¬ 

volve filtering with resolution less than the highest pitch frequency to be en¬ 

countered. These considerations suggest that a potentially worthwhile approach 

to pitch extraction when noise is present but the pitch fundamental is absent, is 

to pass the input speech signals into several extraction channels, each of which 

involves bandpass filtering the signal at a region in the frequency spectrum 

corresponds to high amplitude spectral content. Ideally, one of these pitch ex¬ 

traction channels might be created for each of the formants, or spectral con¬ 

centrations of energy generated in voiced sounds. Thus, we may regard these 

as -'formant channels". As indicated in Figure IV-2, one way of utilizing the 

signals generated by the bandpass filters is to extract a pitch estimate within 

each channel, and through logical operations select one of these estimates for 

the pitch indication. One approach to the logical operations is to select that 

estimate which corresponds to the lowest pitch, with certain reservations. 

The minimum selection is based on the presumption that the minimum spacing 

between spectral lines in any formant channel is the pitch frequency. The basic 

reservation to this minimum selection is that spurious estimates resulting from 

low input signal levels be rejected. Th* rejection can be performed by inhibit¬ 

ing the output of any formant channel for whi^i evidence is available that the 

input signals are in doubt. A straightforward* method of implementing this 

inhibition is to envelope detect the output of the formant filter, and inhibit the 

output if this detected signal level falls below a threshold value. 

In order to realize the potential improvement afforded by formant filter¬ 

ing, it is necessary that some means be available for tuning the bandpass fil¬ 

ters to spectral regions encompassing concentrations of signal energy. There 

are several levels of sophistication with which this filtering control can oe 

exercised. The simplest method is to use a single channel, with a fixed band¬ 

pass filter encompassing a frequency range within which formants generally 
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occur. This frequency range would be determined primarily by the available 

bandwidth of input speech signals. For speech confined to the 3 Kc channel 

between 300 cps and 3300 cps, for instance, we have found that a 2 Kc filter 

between 300 cps and 2300 cps usually provides sufficient information for 

reliable pitch extraction under a wide range of broadband noise conditions. 

The next level of sophistication which could be incorporated in the band¬ 

pass filtering approach is the utilization of several (no more than 3) fixed- 

frequency filters, each of which is tuned to a formant range. Although we have 

not yet performed extensive tests with this arrangement, it appears that this 

method will afford improved noise immunity. 

Perhaps the most sophisticated means of controlling the formant filters 

would be to tune them to current estimates of formant positions. These esti¬ 

mates could be provided directly by a formant extractor, based for example on 

spectral peak locations. Although comprehensive tests have not yet been per¬ 

formed, a peak picker has been designed and constructed for use with an 18- 

channel filter bank to obtain estimates of formant positions. The output of the 

peak-picking unit may be used to drive a voltage controlled oscillator to change 

the center frequencies of the formant filters, through the use of a pulse spacing- 

to-amplitude conversion device. 

A PITCH FREQUENCY RESOLVING METHOD 

As pointed out earlier, one of the problems associated with a frequency 

domain pitch extractor is that the appropriate frequency range over which the 

initial low pass filtering should be performed is either not known in advance, or 

may require manual adjustment if other steps are not taken. If. for instance, 

the pitch fundamental is present at the input, but the second harmonic is sup¬ 

pressed (by falling outside the first formant range in the sound | i| , say), then 

the pitch extractor may produce an output corresponding to twice the pitch funda 

mental. Or, more directly, the problem of distinguishing between the second 
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harmonie of a low pitch fundamental and a high pitch fundamental still remains 

for each of the parallel pitch extractors involved in, for instance the method 

illustrated in Figure IV-2. 

Fant11 has suggested an approach to this problem which is similar to the 

logic involved in the output of the parallel formant channel extractors of Figure 

IV-2, and in fact carries this idea one step further. Specifically, for each 

pitch extractor, i:he output of the nonlinear device is passed to three parallel 

"resolving" filters, each of which spans somewhat less than one octave, and 

which together span the entire i-ange of permissable pitch frequencies (taken 

here as 75-350 cps). As indicated in Figure IV-3. the output of each resolving 

filter is then passed to a frequency measuring device. The outputs of these 

three resolving channels may then be examined and processed to produce a 

single estimate of pitch. 

Since each of the resolving filters spans less than an octave, in no case 

will the pitch fundamental and a harmonic lie within the pass band of any single 

filter. Further, if a waveform exhibiting the pitch fundamental is present at 

the input to the resolving channels, then it will lie within the passband of one 

of the filters. Thus, if the processing, which precedes the resolving filters 

has accomplished its appointed task of converting the input speech to a wave¬ 

form with fundamental frequency equal to the pitch frequency, then at least 

one of the resolving channels should produce the proper pitch indication. 

Selection of the proper channel output can be accomplished in the same way 

as suggested before, namely minimum selection with reservations. 

To extract pitch on this project, the pitch frequency resolving method has 

been implemented. This technique was found to produce a high immunity to 

broadband noise at speech signal-to-noise ratios above 4 db, even when the 

most crude "formant filtering" is employed (namely, bandpass filtering be¬ 

tween 300 cps and 2000 cps). Sample outputs of the three resolving filters are 
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shown in Figure IV-4 for three signal-to-noise ratios. The pitch extractor in¬ 

put for these curves was a slowly ascending pitch synthetically generated wave¬ 

form corresponding to the utterance ; | a | . The pitch varied between 75 cps and 

300 cps. These curves indicate that with appropriate switching between channels 

a reliable pitch indication can be obtained. 

Most of the implementation problems associated with this type of extractor 

arise from this switching task. Direct inhibition of a resolving channel output 

through comparison of the input envelope amplitude with a threshold generates 

spurious outputs at the ends of voicing intervals. These transient problems have 

have been overcome through the introduction of appropriate delays in the inhibit¬ 

ing circuits. These delays introduce a 60 msec lag between onset of voicing and 

registration of a pitch indication, but this lag is commensiwrate with the time it 

takes for the frequency meter to respond . 

The curves in Figure IV-5 indicate the final output of the extractor for the 

same input as used for generating the curves in Figure IV-4. 

This pitch extractor can easily accomodate any method of improving rejec¬ 

tion of other types of noise at its front end. In particular, it is contemplated 

that the effects of constant frequency interference wiirbe" investigated next with 

this device. 

* For the purpose of clue measurement, this rather long averaging interval pro¬ 
vides some smoothing at the expense of losing the pitch indication for the 

first one or two samples in a voiced interval. 
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Fig IV-5 Pitch Extractor Output for a Slowly Ascending Pitch, Synthetic 
Speech Sample for Three Signal-to-Noise Ratios, with No 
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