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TRACT 

A solid-state, low-voltage regulator accurate to 0.1 percent with 

temperature stability has been developed. Employing thermistor com¬ 

pensation, forward-biased diodes, and matched silicon transistors, it 

represents a significant advance in the state-of-the-art. The circuit 

discussed herein yields 1.500 ± 0.001 v at 1 to 15 ma with input 

voltages of 8 to 12 v over the temperature range -10y to +4Q^C 

Circuit design and derivations for temperature compensation 

using thermistors and silicon resistors are covered in detail along 

with general design criteria for iow-voltage regulators. ^ 

1. INTRODUCTION 

When at the request of NASA,HDL undertook to develop a durable 

solid-state voltage regulator of 0.1-percent accuracy over the temper¬ 

ature range -10° to +40°C with an output of 1.5 v, it was apparent 

that several innovations were necessary. Regulation to 1 percent is 

generally considered sufficient. Zener diodes, standard cells, and 

constant-current sources are the usual reference elements for the 
regulator designer. 

The lower limit of breakdown voltage for zener diodes is 3.3 v. 
Unless use is made of a difference voltage between two zener diodes 

(involving ft floating ground), the zener diode is not suitable for 

low-voltage 1.5 v) regulation. With the further restriction of 

durability, standard cells and constant-current sources are eliminated 
also. 

The need for a new voltage reference bucame increasingly apparent. 

The stabistor (i.e., forward-biased silicon reference diode) with a 

voltage range of 0.2 to 1.4 v was selected. The selection involved a 

serious compromise in performance. The stabistor exhibits a higher 

3 to 6X) dynamic impedance than that of the zener diode; and con¬ 

sequently, its voltage varies more with equal current fluctuations. 

In addition, the stabistor has a relatively high negative temperature 

coefficient of voltage. These problems were solved by the use of 

sufficient amplification in the regulator feedback loop and by temper¬ 

ature compensation via a thermistor in the sampling stage. 

2. THE SOLID-STATE VOLTAGE REGULATOR 

The solid-state voltage regulator can be of two general types, 

series or parallel. The parallel type is highly inefficient because 

it relies upon a shunting current paMi (in parallel with load) to 

increase the IR drop in the voltage source and hence to effect voltage 

regulation. For this reason, the series type was used in the circuit 
described herein. 
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In the series regulator (iig. 1), a variable resistance is placed 

in series with the load. This series resistance is then varied accord¬ 

ing to the variations of load current and voltage input. A transistor 

is used as the series resistance and its control (resistance) is based 

upon the output voltage level. The serles transistor must be able to 

dissipate power equal to the difference in voltage of the input and out¬ 

put voltage times the maximum load current i.e. 

[EjU “ ®0UT^ ^max^ 3 power dissipated (1) 

The series transistor is controlled by feedback from the sensing 

stage of the regulator, where a comparison is made between a known 

portion E_ of the output voltage E and the reference voltage E 
° O ° ref 

E 
) (2) 

If, for example, the output voltage tends to Increase, me base-emitter 

bias EBE °f the serles transistor Qj is made to decrease, thereby 

raising the resistance (collector-emitter) of Q and lowering the out¬ 
put voltage. 1 

3. OBTAINING ACCURATE LOW-VOLTAGE OUTPUT 

3*1 Differential Amplifier (ref 1) and Sampling Circuit 

In the circuit of figure 1, Q begins to turn on when E > E 
J S REP 

and regulation of the output voltage occurs. The output voltage is 
related directly to E by the equation 

Í R10 + *' 

so = Es • 
_1Ü!\ 

Rio ) 
( cf eq 2) (3) 

It is desirable to have the output voltage depend on the follow¬ 

ing manner 

E„ = E 
0 REF 

R10 * R9 

r rio 

However, it is apparent from figure 1 that 

(4) 

Es = eref + ebe (Q ) 
«J 

(5) 

« 
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where ^ ^ is the base-emitter voltage of transistor Q^. If 

(Qg)* EREF * ES (6) 

If equation 6 is applicable^ equation 4 holds as a result of equation 

3. In low-voltage regulators — EBE ^ 0.5 v necessarily. In this 

case it is evident that equation 6 cannot hold because the restriction 

®BE (Q )<<: EREF cfnnot be maintained. The output voltage for figure 1 
3 

L « function of E^. (Q ^nd E^; 1..., 

3 

E0 ” [EREF + ^BE («,)] [-"°R10 9 ] (7) 

Thus, any variation of EßE ^ ^ due to current variation or temperature 

3 

change (ref 2) will alter the output voltage. If equation 5 is modi¬ 

fied as a consequence of changes in the sampling circuit to a dif¬ 

ferential amplifier scheme as shown in figure 2, then 

ES ’ ebe (Q ) = EREF " ebe (Q ) <8> 
4 5 

and if, at balance Eßß ^ j = (Q )' e<luatlon 8 reduces to equation 

6 and equation 4 holds with no EßE dependence. The circuit described 

by equation 8 (fig. 2) solves the above difficulty. 

Since it is necessary that E„„ v » R . the choice 
BE (Q4> BE (Qg) cnoice 

of transistors Q4 and Q,. is critical. A matched pair of silicon planar 

transistors (2N1613) was selected; these transistors possess leakage 

currents (ICB()) in the nanoampere range and E tracking an order of 

magnitude better than do mesa units. The use of a differential ampli¬ 

fier with matched transistors is extremely important for highly stable 
low-voltage regulators. 

3.2 Feedback and Amplification 

As prevously mentioned, sufficient amplification is required 

to offset the high (relative) dynamic Impedance of the stabistor. The 

amplification is accomplished in two stages from point A (fig. 3) to 

the base of the series transistor Qj. One stage consists of transistor 

Q2 cascaded with the series transistor; the other stage is a simple 



Figure 4. Preregulator circuit with series transistor. 

9 



?«fTifler;i cascaded transistor, conunonly termed a 0 multiplier 
(ref 3), greatly increases the effective ß (amplification) of Q , the 

effect being a large change in the resistance (collector-emitter) of 

Q with small voltage changes at point B. The d-c amplifier is a 

direct-coupled transistor that operates into a relatively high load 

impedance (Rj) as a result of the presence of Q2, which provides the 

bulk of the E__ to 

3*3 Control Element with Preregulator 

In the circuit of figure 4, it can be seen that the bias 

voltage applied to Q2 and is related to the voltage drop across Q 

(collector-emitter) that corresponds to E - E_. Hence, since E 1 
iw uuT OUT 

remains constant (or very nearly so), the E^ of increases with an 

increase in E^. This tends to lower the resistance of instead of 

raising it as would be desired with larger E^. By placing a stabistor 

in parallel with the Q2 and ^ base-emitter cascade, the E of Q and 

Qj remains nearly constant with respect to E^ - E0. Howevfr, of 

Q1 and Q2 18 stl11 variable depending upon the feedback voltage at 

point B. The diode (stabistor) (fig. 4) then tends to regulate 

the bias applied to Q ; this diode configuration is referred to as a 
preregulator. x a 

4. TEMPERATURE COMPENSATION 

^•1 Compensation Technique 

The stabistor obeys the diode equation (ref 4) to a «rood 
approximation; hence, for kT 1 

VD S r = 4Õ v at 25°C 
V„ = AkT In 1 

where 

I. 

A = constant 

k = Boltzmann constant 

T = absolute temperature 

-q = charge of electron 

I = diode current 

*S= current 

VD= voltage drop across diode 



Assuming that all terms remain constant except VD and T, it is readily 

apparent that VD is linearly dependent on T. The dependence is about 

0,28 percent/°C for the stabistor at room temperature. Actually, I 

will change slightly with temperature. (A,k,q, and I remain constant 
with temperature change.) However, after the logarithmic operation 
is performed on Ig, its effect is negligible or nearly so with temper¬ 

ature variation. 

From equation 4, E„ = E 10 + R, 

REF 
10 

it is evident that 

the negative temperature coefficient of E will lower the output 

voltage with increasing temperature. It is equally apparent that a 
lowering of R1() will increase the output voltage. If R^ is temper¬ 

ature dependent with a negative coefficient, it is possible for the 
temperature effects of and E^ to exactly cancel, or provided 

the devices possess similar temperature dependence; 

E = constant = E„_ 
0 rep 

/ *10 + *9 

10 = eref <1“at) 
*9 * *10 (1 ‘ ßt)l 

R10 O - 0t) 

where R10 = resistance of R10 at 25°C. 

-Oí = temperature coefficient of voltage for E =--0.28 
percent/oc for stabistor ^ 

(10) 

= temperature coefficient oí resistance for R 

Eref = reference voltage at 25°C 

10 

t = temperature change from 25°C 

Oí is given and ß must be determined for equation 10 to be 
consistent. Cancelling terms and expandir^ we have: 

*10 + *9 = 

*10 + *9 " 0t*io‘ at *9 R10 + at ß + R 10 

1 - ßt 

multiplying through by (1 - ßt) and cancelling 

-ßt r9 -ßt r10 = -ßt r10 -at Rin + at ßt R 
10 10 

then. 

-ßt r9 = -at rq - at r10 + at ßt r 
10 
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and 

-ßt (Rg + at R10) = -at (Rlrt + Rn) 
10 9' 

.V ß = a(R10 ^ R9> 

at R10 + R9 
(ID 

if at R10 « r9 

ß 
R10 + R9 

(a) (12) 

4.2 Using Thermistors 

. ^116 thnrmistors (ref 5) do have a negative temperature 
the thermistor resistance varies as exp 

Eg/kT (ref 6) where Eg is a constant. This exponential dependence upon 

l HnL^wllnear1Zed if a thermi8tor 1« to be used to compensate for 
a linearly varying reference. The combining of a thermistor with a 
temperature-stable resistor (metallic film) in a parallel configuration 
as shown in figure 5B tends to linearize the temperature dependence of 

wLrrZ hre8lStance- 71118 18 illustrated graphically in figure 5 
V precision resistor has been added in parallel with a 

100-ohm (2JO C) thermistor. The deviation from a straight line in the 

In"thi°* 'T *? +4° C 18 Very t»»" JO percent 
In this particular case, the net linear temperature coefficient is 
3 08 percent/« C (Y) at 250C. In order to use this parallel combina¬ 
tion for temperature compensation where a precise value of ß is required 
the temperature coefficient y must undergo a "dilution” of effective- ’ 

"üü’«.».™8 may be accomPlisheJ by the addition of a series resistor 
with the temperature sensitive parallel combination (fig. 5C) The 

Innüî ^es«stanct (V have an effective temperature coefficient 
form ° ® as 8iven 1° equation 11, which demands an equation of the 

where 

(1 - Y t) Hj, + Rp = Rio (1 . 6t) 

ftp = diluting resistance 

(13) 

= resistance of parallel combination 

R, 10 

then -Y t R,, ♦ Up ♦ IL . R - S t R 
10 
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Since 
R10 = "d + Rt 

vRt " ■e rio = • P<rt + rd> 

-9 
"t + % 

= 1 + 

SO 
0 

- 1 or R. = H? (| - i) (14) 

Thus, the diluting resistance is defined in terms of the known 
quantities R^, y, and 0. 

For a typical situation, R^ will be 10 times R? hence, the 

variation of the temperature coefficient of from a straight line 

is less than 1 percent maximum. If the reference diode is strictly 

linear with temperature, the deviation of R from a straight line will 
induce a change in the output voltage of the°same order of magnitude 
as the deviation. In actual tests the deviation was found to be 

~ 0 1 percent for the output voltage. This better-than-expected sta- 
bility may be attributed to the use of a stabistor that exhibited a 
si ghtly nonlinear temperature coefficient; resulting in a fortuitous 
coincidence of effects yielding the excellent temperature stability 
shown in figure 8 of section 5. * 

4.3 Using Silicon Resistors 

A second order coincidence in temperature dependence is not 

resist oraran h^T ^CUrate comI*nsation 0.1 percent). The silicon 
resistor can be made (by appropriate doping, etc.) to possess a positive 
linear coefficient of temperature dependence. It may be used directly 

e upper portion of the sampling circuit (Rg in fig. 6) without 

the addition of a parallel linearizing resistor. The silicon resistor 
inserted in the position of Rg instead of (as for thermistor 

compensation) because of its positive rather than negative temperature 
coefficient. The derivation for positive temperature coefficient 
device compensation is similar to that used in equation 11. The result 

1' 

ó = 

where 

|Eo- "ref 

a 
1 - a (15) 

6 = temperature coefficient of R 
9 

Of = stabistor temperature coefficient (absolute value) 
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by adding a alS° ^ dllut®d 
(iif. 5C). Analogous to equation 14 1?**? ÍOr ther,nl8tor dilution 
resistor compensation is Xn at ' 0 ^ «^icon 

where 

RD = RS ^ " l) (16) 

r9 = rd + Rg at 25 C 

Tl = silicon resistor temperature coefficient 

RS * silicon resistor resistance at 25°C 

In using silicon resistor compensation, it is necessary to 

have a linearly varying reference diode (with temperature). Stabistors 

may be obtained that exhibit linear characteristics with temperature 

variation. By using linear devices in both the reference diode and the 

compensating portions of the circuit, it would be expected that even 

greater accuracy and stability than that Illustrated In figures 7 and 
8 would be achieved. 

4,4 Further Considerations 

In addition to extensive concern over the temperature sta¬ 

bility in the sampling-comparator stage of the voltage regulator, some 

attention was necessarily directed to the remainder of the circuit. In 

general, small variations due to temperature changes could be ignored 

completely since the regulator would compensate fully, provided the 

comparator portion of the circuit was stable with temperature. However, 

when very gross changes occurred, the circuit was unable to compensate, 

e.g. in initial testing, it was found that the output voltage Increased 

by 2.5 V (166 %) when the regulator was operated with a 60°C ambient 

temperature. It was readily apparent that the series transistor (Q ) 

was the source of the anomalous behavior, it being a germanium tran¬ 

sistor with high leakage UCB0) at temperatures significantly higher 

than room temperature. Upon substituting a silicon transistor for Q 

the output voltage returned to the expected 1.5-v level. Since the 

effects of Q2 and (see fig. 6 of sec 5) were less pronounced than 

that of Qj, they were retained as germanium transistors with no dele¬ 

terious effect; this is a noteworthy example of the circuit's ability 

to compensate for lesser fluctuations due to temperature change. 

Since the series transistor dissipates some power it is 

aovisable that it be mounted on a sufficient heat sink. Also, the 

entire comparator-sampling portion of the circuit should be on a 

common heat sink, so that Qj and track each other closely and R 
9, 
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R10' and Eref at identical temperatures. If the circuit were 

to be potted, it would be desirable to maintain close proximity of 
samp]ing components and as much isolation of the series transistor as 
possible. 

5. COMPLETE CIRCUIT 

Figure 6 represents a combination of figures 2, 3, and 4, with 
some additions. Zener diode CR was added to improve the overall re¬ 
gulation and bring the input voltage to a level (~ 6 v) desirable for 

optimum circuit performance. This addition was necessary because of the 
special requirement of an input voltage of 8 to 12 v. As can be seen 

AE 
in figure 7, the regulation of the complete circuit is less than 

ü OUT 
200 parts per million. Diode (stabistor) CR2 was added to raise the 

level of the emitter of Q3, so that it would operate in a linear region. 

The double-diode configuration of CR1 and E^ was adopted to provide a 

voltage level more appropriate to the particular requirements. Addition 
of a diode doubles the voltage level of a single diode, but retains the 
other diode characteristics as if the combination were a single unit. 
The thermistors added to the comparator-sampling portion of the re¬ 
gulator provide the temperature compensaticn fcr the temperature- 
sensitive, reference diode. The thermistors are in a double configura¬ 
tion to obtain the proper level of resistance. Since the output volt¬ 
age is nearly eq; al to the reference voltage, the addition of a series¬ 
diluting resistor was unnecessary to attain satisfactory results (see 
ii«. 8). A small variable resistance was placed in the upper leg of 
the output voltage divider, which makes possible a final adjustment of 
the output voltage level which had very little dependence (~0.1mv) 
upon load currents of 1 to 15 ma. 

6. CONCLUDING REMARKS 

It has been demonstrated that highly accurate, low-voltage regu¬ 
lation is possible with a completely solid-state desigi. Temperature- 
compensating circuitry is necessarily involved—the price to be paid 
for highly specialized requirements. It should be noted that the 

temperature stability of the regulator described herein is of the same 
order of magnitude as that of a standard cell for the temperature range 
under consideration. It is reco^nded that further attempts at temper 
ture-stable low-voltage regulators make use of silicon resistors and 

linear voltage references to eliminate the necessary coincidence of 
second-order effects. The design criteria given herein will serve to 
direct design of a regulator utilizing linear devices. 

Efficiency is obvously low, but where a highly precise voltage 
is required as a reference level with power output (for example in 

19 



telemetry systems) the inefficiency can easily be overlooked, since 

the load current may vary typically from 1 to 15 ma. Thus, the over¬ 

all power requirements are less than 1/2 w. 

The circuit techniques discussed in this report offer the de¬ 

signer several new additions to the state-of-the-art. Included in 

these are: thermistor and silicon resistor linearization and dilution; 

use of forward-biased reference diodes for highly accurate, low-volt- 

age regulation; design equations and considerations for utilization 

of temperature-dependent resistors for device compensation. 
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