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ABSTRACT 

The results of model studies and experiments related to response of truncated 

conical shells to impulsive loading are presented. Theory of modeling is dis¬ 

cussed in some detail, with particular emphasis on scaling of elastic and plastic 

response of shell structures when these structures are made of material different 

from those in a prototype structure (dissimilar materials). Work on development 

of dissimilar model materials and techniques for fabrication of conical shell 

models is then presented. Next, the experimental phase of the program, including 

test arrangement and instrumentation for both shock-tube and sprayed-explosive 

loadings, and results for maximum transient and residual displacements of the 

conical shells are discussed. The report is completed with conclusions on the 

study, and recommendations for further work to corroborate the concept of model¬ 

ing of dynamic structural response using dissimilar materials. The report also 

includes supporting theoretical analyses as appendices. 
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SECTION I 

INTRODUCTION 

Scaled models have been used extensively as a tool for analysis of 
structures Examples of modeling investigations can be found in Langhaar's 
book I 2] and in the ASME publication | 3] on "Use of Models and Scaling in 
Shock and Vibration". The latter also contains numerous references to recent 
literature on modeling. The class of structural problems towhich the theory 
of modeling has been applied has been restricted largely to determination 
of static or steady-amplitude vibrational forces and displacements in elastic 

As the science of mechanics progresses to include more complicated 
material effects, the possibility of modeling these effects arises. Recently 
the plastic and viscous regimes of solid material behavior have received 
widespread attention [ 4-11] . The eventual generalization from modeling 

gj-a-tlc resP°nse of structures due to static loads is modeling elastic, plastic, 
viscous, and inertial response of structures due to transient loads. Baker [ 4] 
presented a modeling investigation of large deformations of structures sub¬ 
jected to transient loads; this investigation was similar to the present investi¬ 
gation but differed in that the same materials were used in the models and 
prototypes, and strain-rate (viscous) effects were neglected. 

f • The Modeling Approach 

This report describes a novel approach to the problem of predicting 
permanent deformations of full-scale structures (hereafter called prototypes) 
subjected to transient pressure loadings. The method involves building 
small-scale (geometrically similar) models of the prototypes, and testing 
these models using pressure loadings that are scaled from the corresponding 
full-scale pressure loadings, according to a certain model law. The model 
law also provides the means of predicting the deformations of the prototypes 
from the observed deformations of the models. 

The novel feature of the approach presented in this report is the use 
of dissimilar materials for constructing the models. (The word dissimilar 
as used throughout this report conveys the meaning "different but similar", 
and may be properly considered as a contraction of this phrase. ) The model 
materials are specifically tailored so that the mass densities and the deforma¬ 
tion properties are scaled from the corresponding properties of the prototype 
materials. As with the geometric and loading variables, the material 
properties must be scaled according to the model law. 

The basic principle of modeling is similarity: a model is made to 
function with length, force, and time scales which are linearly related to 
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(but not identical with) the length, force, and time scales in which the proto¬ 
type functions. 

Many of the model and prototype variables are field quantities, which 
means that the quantities are distributed continuously throughout certain 
legions of s\.ace and time. A field variable in a model is said to be similar 
(or homologous) to the corresponding prototype variable if the model variable 
bears a constant ratio to the prototype variable for all corresponding points 
of space and time. For instance, the distributed transient pressure loadings 
on the prototype and the model are required to be similar in the above sense. 
If the model is properly constructed and tested, then the resulting transient 
displacements will also be similar. 

The present investigation is restricted to prototypes and models which 
are classical mechanical systems of macroscopic size, for which the funda¬ 
mental concepts of force (or mass), length, and time have independent 
dimensions. Appendix A presents a brief review of classical continuum 
mechanics. Thermodynamic and electromagnetic phenomena and chemical 
reactions are assumed to have negligible effect on the response of the proto¬ 
type and the model. Furthermore, gravitational forces are not important 
for the application of modeling considered in this report, and are therefore 
omitted. 

2. The Model Law 

The model law referred to above is a set of relationships between the 
model variables and the corresponding prototype variables. Although the 
model law’ derives its validity from the equations of mechanics, it is usually 
studied under the separate disciplines of dimensional analysis and the theory 
of models. 

Dimensional analysis is the method of deducing information about a 
phenomenon by considering solely relationships between the dimensions of 
the relevant physical quantities. The theory of models is the application of 
dimensional analysis to a prototype and a model. The fundamental result of 
dimensional analysis is the Buckingham (Pi) theorem, which establishes 
necessary and sufficient conditions for similarity between two or more 
systems. The result of the theory of models is the model law. Langhaar I 2] 
provides an excellent introduction to dimensional analysis and the theory of 
models. Appendices B and C of this report present abstract treatments of 
dimensional analysis and the theory of models, respectively, which illustrate 
the logical structure of these two subjects. 

The following properties of the model law are results derived from 
dimensional analysis and the theory of models: 
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(2) 

(3) 

(4) 

(5) 

(1> V!Tble8 Ín eÍther the Prototype or the model which 
affect the response (in this case, deformation) are sig¬ 
nificant and must be included in the model law; 

for every significant variable in the prototype there is a 
corresponding significant variable in the model, and vice 
versa; 

all corresponding model and prototype variables must 
have the same physical dimensions (length, mass, time, 
etc* y9 

all model variables which have the same dimension must 
bear the same constant ratio (called the scale factor) 
to the corresponding prototype variables; and 

all scale factors will be fixed and can be determined once 
he scale factors of three dimensionally independent 

quantities have been fixed.^ 

These five properties completely determine the model law except for 
choosing the throe dimensionally independent scale factors and calcula«ng 
the remaining scale factors. The usual dimensionally independent scale 

or “me ^The r8“* °r Pressure- “<* <3> mass, mass density. 
!f thr.h' a e<,ua“°ns for emulating the various scale factors in terms 
of the three dimensionally independent scale factors are given in Appendix C 

fhe mond 1 1 ;S rePO,rt illustrates the modeling procedure by determining 
the model aw for a class of structural prototypes subjected to distributed 
impulsive loadings. 

3‘ Advantages of Modeling with Dissimilar Materials 

If the same materials are used in the model as in the prototype, then 
he Pressure (stress) scales and the mass-density scales will be the same 

tor both the prototype and the model. For dynamic structural modeling, the 
choice of only one scale factor - usually the length scale factor - is permittee 
nd the time scale is found to vary directly with the length scale. Thus, all 

natural times of the model will be reduced from the prototype in the same 
ratio as all lengths. If the duration of the transient pressure loading for the 

smlulTth8 f?í.rly Sh0rt (an impulsive loading, 3ay) and if the model is much 
smaller than the prototype, then the duration of the loading for the model 
must be very short. Experimental difficulties may arise either in applying the high 

pressure, short-durationloading or in measuringthe rapid responsLf the modeÍ 

More than three dimensionally independent quantities would be required if th 
prototype were governed by thermodynamic or electromagnetic phenomena it 
addition to purely mechanical effects. 
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that eachhof Tha îhadVaHUeC ^ USÍn8 —-imiUr "'‘“'■•¡ais ior the modele ie 
-epead^ 

ra—r^^^r “can be made 

The experimental difficulties encountered in modeling with the sam* 

the same duration as the prototype lo^Vp^ 

'SÄr=r=-ri"£ri„. i“’“ —.ia. b, „i“. “ ' 
SS rapid than the response of a model made from the same materials as the 

prototype, for convenience in measurements. materials as the 

strain./atf^fheectsadTta®e 0f™delinS with ^similar materials concerns 
^-r^e effects. Strain-rate (or viscosity) effects cannot be modeled if the 

the seame andlheT ^ ^ pr0t0tyPe and th* ™del, since the strains are 
the same and the time scales are necessarily different. This deficiency can be 
vercome using dissimilar materials, since the time scale factor can be made 

HcnveverPrOPerly f¡jUStÍng the len8th* pressure, and mass-density scales. 
However, new problems arise if the strain-rate properties of the model 

C mártir aS'gnif‘C“,l'r fr“m the ^■•responding properties of the proto- 
ype materials, as explained in Sections 1.4 and IV. 3. 

4. Disadvantages of Modeling with Dissimilar Material« 

as advamanelÍngTWhith mat"ia1» has certain disadvantages as well 
a. advantages. The mam disadvantage of using dissimilar materials is the 
difficulty of finding (or creating) model materials which accurately model the 

wL'::; trmati°t P-P«*«- «he prototype materiT. 
U8e ° 8ame materiala for the prototype and the model auto¬ 

matically assures accurate modeling of the elastic and plastic response 

ofdise TtlCS lthefastic> plastic, and viscous response characteristics 
of dissimilar materials have to be specifically tailored to model the corres¬ 
ponding properties in the prototype materials. 

* Viscous response characteristics cannot be modeled using the same 
materials for the prototype and the model, as explained previo^^T 
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In general, it is no simple task even to determine the stress-deformé;« 

properties of the prototype and model materials, and it is still more diff n " 
to find mUerials in which these properties matc’h 4pe„d!x cTescHbe.“!’ 

ress - deformation characteristics of a typical solid material The Hi. 

bneh^ÕídÍXInDfartOVtdheS “ indication of the of solid material " 
Hefrt f1, there does not yet exist a sati8Iactory theory of stress- 

rma ion characteristics of solid materials which includes elastic nlasf 
viscous, and inertial effert. mciuoes elastic, plastic, 
th« ra™ u- » eliects. Such a theory is necessary in order to define 
the properties which are to be measured in a material test. 

th Th,f °nly recourse in the absence of a satisfactory theory -which is 
the one taken in this report - is to define certain pseudo-properties based on 
a simple material test. The use of p.eudo-properties does noTnecessarÍv 

r/msTTr“ m0delin*- “ the material test has been designed so that 
e major deformation effects are included, then the pseudo-properties will 

sometimes provide a sound basis for modeling. The compression test used 
IV determlmnS mat<;rial properties in the present investigation (see Section 
IV. 2) was considered adequate in this respect. 

j f :he ™airl faults with usine such pseudo-properties are that: (1 ) they 

facto sSasíhey. CLeHZe ^ ma'erÍal- 8ÍnCa ,h^ depend on such " i actors as the size, shape, orientation, and mechanical history of the test 
specimens and the rates at which the particular tests were performed; "d 
( ) they do not completely describe the stress-deformation properties of the 

to th" model Uw" 'th0“811 theSe P8eudo"proPerties might be matched according 
¿tuilv model Th t ~S an unc'r,ai”t’' as ,0 htw*e11 «'S model matfrials 
actually model the prototype materials. This uncertainty results in loss of 
confidence in the model test results. Section III deals with the problem of 
estimating errors in model tests. 

In summary, modeling of deformation properties using dissimilar 
ma enals is a complicated science, which has not yet reached a satisfactory 
state o development. Until a satisfactory theory of solid material behavior 
is developed and until material constants appearing in these theories have 
been evaluated for common materials, modeling with dissimilar materials can 
on y give approximate results in predicting inelastic deformations. Once a 
satisfactory theory has been developed, the use of pseudo-properties and 
various correction factors could be abandoned, and the model test results 
would undoubtedly be more nearly accurate. 

It should be mentioned that the inertial (mass) characteristics of 
dissimilar materials are not nearly as difficult to model as the stress- 
deformation characteristics. This is true because mass density is simply 
a scalar quantity — in contrast with the tensor quantities that are involved 
in specifying the deformation properties. Mass density is easily measured 
(by weighing and measuring volume) and easily controlled for model materials, 
n the present investigation, mass density was controlled simply by varying 

the percentage of lead powder in the composition of the model materials. 
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SECTION II 

**. 

MODELING ANALYSIS 

This section presents an analysis for modeling inelastic deformations 
of a structural prototype subjected to a distributed impulsive load. For 
independent geometric variables we use characteristic lengths and angles. 
For independent material variables we use the constants appearing in the 
general constitutive equation for solids presented in Appendix A; these constants 
may be interpreted alternatively as the elastic and plastic moduli defined in 
Section IV. 2. For loading variables we use the duration and the spatial 
distribution of the total impulse. For dependent variables we consider total 
weight, natural period (reciprocal of natural frequency), and the maximum 
transient and residual displacements at a finite number of points on the 
external surface of the prototype. 

This analysis follows the derivations of dimensional analysis and 
modeling theory presented in Appendices B and C. The analysis could be 
readily extended, of course, to include more general transient loadings and 
more complete descriptions of the resulting transient response. The model 
law derived in this analysis will be usedinSections IV and V. 

^• Specification of Independent and Dependent Variables 

Consider a structural prototype S consisting of N distinct material 
regions Rn connected at a finite number of contact surfaces by perfect bonds. 
Let each region consist of an initially uniform, deformable solid material. 
The structural prototype described above must satisfy Equations (A. 4) - (A. 9) 
of Appendix A, generalized to N solid bodies. 

Let the stresses and strains at all points in S be initially zero (at 
time t = t0), and let the initial geometry of S be completely described by a 
finite number of lengths f j and angles 0j. As expressed by Equations (A. 7) 
and (A. 8) of Appendix A, any solid material (occupying a region Rn of S) can 
be completely specified by the mass density pn; three constitutive constants 
Hn*^n»Tnwith dimensions of stress, length, and time, respectively; and a 
finite number of dimensionless constitutive constants cmn, m = 1, 2,.., M. 
Since we have no occasion to use characteristic length Xn as a material 
property, we hereby omit it from the analysis. The materials are assumed 
to be initially uniform (or homogeneous), so that spatial distributions of the 
material constants need not be considered. 

Specification of geometric and material variables gives rise to certain 
gross properties of the structural prototype. For instance, the prototype will 
have a certain weight W in a gravitational field with constant acceleration g. 
The mass and elastic properties will combine with the geometry and the 
boundary conditions to determine a series of natural frequencies fj, f2,. .. 
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for the prototype. Let = (4f1)-‘ denote the quarter neriod car.a- 

Ïhe we l'w "ndTh1 dependen, variable, such ae"8 
the weight W and the natural period Ti can be used for checking how well 

given prototype has been modeled, as discussed in Section IV. 3. 

nrnt„f Consider a pressure loading applied to the external surface of the 
p ype, let its distribution in space and time be given by 

P(X, t) = { 4 < ‘o and t > t0 + T0 1 
~ IP'(X.t), t0<t<to + T0/ (2.1.1) 

where X are coordinates of points on the surface of S, t is time and T i„ th. 
uration of the pressure pulse. The resulting transient impulse is give°n by 

I(X,t) = < 

O.tcto 

to dt»^o < 1 < to + T0 

^^(X), t > t0 + T0 

(2. 1.2) 

over thVc the t0íal in?PUlae ^ is ,he impulse distribution over the external surface of the prototype. 

the „V Assum' í“ ,he pulse P' (X, t) is sufficiently regular that 
modes T T *he. Proto‘yPe to thia Pul»u consists primarily of the first few 

two conditions —8 O"8 or the other of ,1 

TV, « Tl or T0 I Ti 
(2.1.3) 

on the load duration is valid. The consequence of these assumptions is to 
reduce the number of load distribution variables to three: 
Io» *(X), and T0. 

thP T° V T1’ then the resP°n8e of S wil1 be essentially independent of 
I tv dl8tr^Utl°"* and Wl11 dePend only on the total impulse distributio. 
o ' -!• Thls result follows from the observation that the majority of the 

deformation will occur after the loading pulse has been applied, so that the 
overall loading is equivalent to specifying an initial velocity distribution. If 

o - ], t en the response of S will depend primarily on I0 'i'(X) and T0 
The eirtent to which the response of S is independent of the form of the pressure 
distribution when T0 - Ti is critically dependent on the regularity of the 
pressure distribution.* 

* Chapter 4 of Jacobsen and Ayre [12] gives a detailed discussion of the 
effect of pulse shape on the response of a simple oscillator. 
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Assume that the prototype S is rigidly attached (clamped) to an 
inertial frame over a part of its external surface. This boundary condition 
can be expressed mathematically as 

= ° (2.1.4) 

where U is the displacement (vector) of a point Xa on the clamped surface of 
S. Let the transient displacements of points on the remadning external 
surface of S: 

U(X, t), t > t0 (2# 1.5) 

represent the response of S to the transient pressure loading described 
above. For dependent variables we consider the maximum transient 
displacements UT and the maximum residual (permanent) displacements 
UR at a finite nuAiber of points Xj on the external surface of S. 

Dimensional Analysis 

The dimensional analysis developed in Appendix B will now be specialized 
to the class of impulsively loaded, structural prototypes described in Section 
II. 1. The physical dimensions of the mechanical variables are enclosed in 
brackets. 

Suppose there exist deterministic relationships between the dependent 
variables 

ir; = W/g(M], TjlT), UT(L), BRIL] 
J J J 

and the complete set of independent variables 

*i l L] , ejl - ] 

pn[ML ^],pn(ML T “),Tu[T],Cmn 
T0 l T) , I0 [ ML“1 T"M , ^(X)! - ] 

(2.2.1) 

(2.2.2) 

for the class of mechanical systems considered in Section II. 1. In analogy with 
Equations (B.5) these relationships can be written as 

W/g.Ti.uj.U^ = irj(fi,Öi,pn,jln,rn,cmn,T0,I0,'I'(X)) (2.2.3) 

Our purpose in what follows is to select a .let of primary independent 
variables, and then to reduce the deterministic relationship (2.2.3) to a 
relationship between dimensionless products based on these primary 
independent variables. 
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Select as primary independent variables the three quantities 

*3 = 1 = M L) » "s = 2 = PI I ML-3], it8 = 3 = ML-1'!’-1] (2.2.4) 

where fj is a convenient characteristic length, and pj and p, are the density 
and the stress constant for the material which contributes the greatest strength 
to the prototype. These quantities are dimensionally independent, since the 
exponents 

Pi = °> qi = 1, rj = 0 

P2 = 1> ^2 = r2 = 0 
P3 = ^ q3 = -1. T3 = -2 

obey the necessary Equations (B.7). The quantities (2.2.4) are not unique; 
other sets of independent variables might also serve as the primary independent 
variables. However, the set of tts selected above are the most convenient, 
since these quantities are the least likely to be changed during tests involving 
parametric variations of the independent variables. The secondary independent 
variables 

"k =ii+l* ei’ Pn+l* Pn+l* V cmn' To« T0« (2.2.6) 

are the quantities which remain after the primary independent variables have 
been deleted from the complete set of independent variables. 

The dependent variables irj and the secondary independent variables 
iTjç can be transformed into dimensionless products based on the primary 
independent variables tts according to Equations (B. 9) and (B. 10). These 
dimensionless products are 

W/gPl*?. T1/f1(p1/p1)1/2,u]’/f1 (2.2.7) 

and 

*i+l /*1 * ®i 

Pn+l/ Pi* Mn+I/Pl»^/1! <P 1 Vl )1 /?cmn > 

To/^ l(pl/pi)1/2, IJt l(pipi)1/2, *(X) 

(2.2.8) 

According to the Buckingham theorem Equation (B.ll) there exists a 
set of relationships: 



among the dimensionless products (2. 2. 7, 2.2.8) which is equivalent to the 
original set of deterministic Equations (2. 2. 3). These functional relation¬ 
ships are valid for all values of the dimensionless products permitted by 
physical considerations, and so generate a class of mechanical systems. 

Without knowing the functional form of Equation (2. 2.9), if the 
dimensionless independent variables (2.2.8) have exactly the same values 
for each of two mechanical systems, then the dimensionless dependent 
variables (2.2,7) will also have the same values. The equality of the 
dimensionless independent variables provides a set of similarity conditions 
between my two mechanical systems, and equality of the dimensionless 
dependent variables provides similarity relations by which the response 
of one mechanical system can be predicted from the response of the other. 

3. Derivation of the Model Law 

The modeling theory developed in Appendix C will now be specialized 
to the class of prototypes described in the two preceding sections. Consider 
a second mechanical system governed by the dependent and independent 
variables in.Equations (2.2.1, 2.2.2). We call this mechanicaTsystem a 
model, and we seek relationships which will insure that the model is similar 
to the prototype. Variables referred to the prototype and the model will be 
distinguished by the subscripts p and m, respectively. 

We seek relationships between the corresponding prototype and model 
variables 11^, and 1^, which depend on the scale factors 

^ ^Im^lp’ ^ Plm^lp’^ — ^lir/^lp (2.3.1) 

of length, density, and stress. The desired relationships are presented in 
Appendix C; thus. Equations (C.7) of Appendix C can be written as 

"km/"kp = (X)dkl (Y)dk2 (p,)dk3 

"jp/^jm = (X)“Cjl (7)"Cj2 (p)"Cj3 

10 



Here Cjß and dj<s are the exponents of / j, p!, and pj in Equations (2.2.7) 
and (2.2.8) respectively. Written out, Equations (2.3.2) become 

and 

t £) 
i+l.m ^ i,m , 

■.i — = ~ ~~ i + l,p i,p 
f : 

Pn+1, m Pn+l,m 
= •* 

Pn+1, 

o, m 

To, p 

P'n+l, p 

n, m 

n, p 
= T, 

cmn, m 

cmn, o 

I 
= T, 

o, m 
I o, p 

= >ip (X I 

w 
_£ = 
w m Y\ Tl m 

, U-T uR , I, -J£_ = _JE_ = I 
t uT uR \ jm u jm 

where t = X(7/p)^^ is the time scale factor. 

(2.3.3) 

(2.3.4) 

(2.3.5) 

Equations (2. 3.3) are modeling conditions, which together with 
appropriately chosen scale factors (2. 3. 1) can be used to determine (ideal) 

i model independent variables from the given prototype independent variables. 
; Scale models of the prototype can be built and tested in accordance with these 

model independent variables. Equations (2.3.4) are modeling relations by 
which the response of the given prototype can be predicted from the measured 
response of the models. When considered together, Equations (2.3. 1), 
(2. 3. 3), and (2. 3.4) are known as the model law. 

4. Implications of the Model Law 

The implications of the model law developed in Section II. 3 will now 
be examined. We first remark that, in general, the three scale factors 

^ ~ ^Im^lp' ^ = Plm^lp» P = PTm^lp (2.4.1) 

are independent; that is, the length, density, and stress scales in the model 
can be selected arbitrarily within the limits imposed by available materials 
and fabrication techniques. Selecting values for these three scale factors 
automatically fixes the ratios of all corresponding variables in the prototype 
and the model, by Equations (2. 3. 3) and (2. 3. 4). 
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The modeling conditions 

x 0i. m , = x> Z = 1. i = 1,2,...,1 
i. P 'M.p (2.4.2) 

imply gcQmetnc similarity between the prototype and the model. That is 

l?,Ke"g h’ in * constant ratio and »U angle, remain the same, 
then the model will be a scale replica of the prototype. 

The modeling conditions 

pn, m _ 7 Hn, m 

p ^n, p 
P 

T n, m 
T n, p 

T 
cmn, m 

cmn, p 
1 

► n = 1,2, ...,N (2.4.3) 

imply scaled material properties between the prototype and the model. If the 
ensities, stress constants, and time constants of all materials comprising a 

prototype are scaled in the constant ratios 7, and T, respectively, and if 
the corresponding dimensionless material constants are equal, then the model 
materials will be similar to the prototype materials. Note that the time 
constants must be scaled in a ratio which depends on the scale factors of 
length, density, and stress. 

We mention here that the ideal program of matching exact material 
constants cannot be attained in practice, since as yet there does not exist a 
completely satisfactory theory of stress-deformation relations for solids 
materials which undergo large deformations. Therefore, it becomes 
necessary to use certain engineering properties to describe the approximate 
behavior of the solids, as discussed Section 1.4. Such approximation does 
not extend to mass density, since density can be easily obtained for any 
material. 

The material properties En, Yn, and used in this investigation, 
as defined in Section IV. 2, have the dimensions of stress. To model these 
properties, it is necessary simply to replace the characteristic stress 
constant p,n with En, and to define the dimensionless constants as c¡n =En/Yn 
and ccn = EJE^. No time constant was included in this set of properties " 
because "dynamic" values were used; that is, the values of En, Y E1 were 
corrected" to eliminate the effects of strain rate, as described in Section IV. 3. 

The modeling conditions 

T I o, m _ t lo, m 

T°,p p 
Myh)1^ *m<xm> = tp(Xp) 

12 

(2.4.4) 



imply similarity of the impulsive loadings applied to the prototype and the 

model. If the load duration, peak impulse, and impulse distribution are 

scaled according to Equation (-.4.4), then the impulsive load applied to the 

model will be similar to that applied to the prototype. The stipulation that 
< 

To « Ti or T0 ï T] (2.4.5) 

stated in Section II. 1, must hold for both the prototype and the model if .he 
impulsive loading is to be accurately modeled. 

A model and a prototype which belong to the class of mechanical 
systems considered in this section will be mechanically similar only if they 
possess geometric similarity, similarity of material properties, and 

similarity of impulsive loading. For a prototype and a model which are 
mechanically similar, the following scaling laws apply 

WP _ 1 t T1P _ 1 
wm 7X3 Tlm t 

uT uR 
J£_ . Jp _ 

UT 
jm 

UR \ ’ j - 1 • 2’ 

jm 

(2.4.6) 

The ratios of weight, quarter period, and transient and residual displacements 
depend only on the length, density, and stress scale factors. 

Two types of modeling involving inelastic deformations are possible. 
For the first type, the same materials are used for both the prototype and 
the model. Thus, the density and stress scale factors are simply unity, and 
the time scale varies directly as the length scale [ because t = X(7/p)^2J. 

Elastic and plastic characteristics of material behavior are automatically 
satisfied fornchis type of modeling, provided the materials are not very rate- 
sensitive.s|s This type of modeling is ideally suited for a material such as 
aluminum which is very insensitive to strain rate. For materials in which 

the characteristic constants %f stress and time both have a significant effect 

on the response, then the-'use of the same materials for the prototype and the 
model will result in inaccurate modeling. 

The second type of modeling, which was used in the experimental 
portion of this investigation, involves the use of different materials in the 

* An exception to this statement can be made when the model scale is so small 

that critical parts of the structure have thicknesses of the order of the grain 
size of the material. 



prototype and the model. The density and stress scale factors, as well as the 
length scale factor, can be varied arbitrarily for this type of modeling. This 
makes possible modeling the density, stress, and time constants of the 
prototype materials. It is doubtful however, whether a given prototype 
material can ever be modeled completely using a different material; this 
would require equating simultaneously all the dimensionless material con¬ 
stants. 

For economic reasons the length scale factor \ is usually made less 
than unity (between one-tenth and one-half is typical). It is often desirable 
that the time scales remain about the same. These conditions can be, met 
by using a density scale factor 7 greater than unity, and a stress scale 
factor (i much less than unity. (Advantages and disadvantages of modeling 
with "dissimilar" materials are discussed in Sections 1.3 and 1.4.) 

5. Subjective Aspects of Modeling 

The modeling procedure outlined above is not nearly so rigidly specified 
as it first appears; rather it entails many choices which can only be settled 
through the judgment and experience of the model engineer. The first problem 
confronting the engineer is that of choosing a finite set of dependent variables 
which will adequately describe the behavior of the model and the prototype. 
This choice is often relatively easy to make, but it is certainly not trivial. 

« 

The second problem is that of choosing the important independent 
variables - those quantities which significantly affect the behavior of the 
model and the prototype. This choice is much more difficult to make than the 
first. It depends on the particular class of mechanical systems to which the 
model and prototype belong, the type of behavior which the model is expected 
to simulate, and the accuracy with which the model is supposed to simulate 
the prototype behavior. Moreover, in making this choice the engineer is 
required to know, in general, how changes in certain quantities affect certain 
other quantities in a mechanical system. In particular, the engineer should 
recognize effects which are not present in the prototype, can seriously 
affect the behavior of the model, and vice versa. 

In so far as geometric and loading variables are concerned, experience 
is usually a fair guide in helping to decide upon the detail and accuracy of the 
variables necessary to determine a given mechanical system. For many 
mechanical systems there exists a sufficiently accurate underlying mathemati¬ 
cal theory, such as the Navier-Stokes equations for problems involving fluid 
flow, that a complete set of material variables, likewise, can readily be 
obtained. However, in certain cases, such as those in which large plastic 
deformations of solids are involved, the problem of specifying material 
properties is greatly complicated by the lack of a satisfactory theoretical 
foundation. The modeling program associated with this report involved 
large transient deformations of solids, and w'as hampered considerably by 
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this lack of a satisfactory theory from which to derive material constants. 
A preliminary analysis of the problem of specifying properly invariant con¬ 
stants for determining solid material behavior is given in Appendix D. 

The third problem facing the model engineer is that of choosing scale 
factors between the model and the prototype; appropriate ratios must be 
selected for the three, dimensionally independent variables which most 
directly affect the behavior of the model and the prototype. This choice 
usually involves a compromise between the desired accuracy of modeling 
and the cost of the model, and it depends largely on the facilities available 
for building and testing the model, and the materials available for constructing 
the models. Personal preferences of the engineer can again enter into 
making this decision; he may prefer some particular size of model, or favor 
some particular range of the time or load scales. In general, however, 
the model should be made as small and otherwise as cheaply as possible, with¬ 
out impairing the accuracy of modeling. 

Finally, it is often necessary todeliberately "distort" the model, i. e., 
abandon some of the dimensionless independent variables. Choice of appropriate 
scale factors and transformation of the variables into dimensionles s form will show 
those variables for which it is either impossible or prohibitively expensive to main¬ 

tain exact similarity between the model and the prototype. Examples of such 
variables are: (1) those which determine interactions with auxiliary equipment, 
such as the flexibility of a test stand; (2) details in constructing the model 
which would be extremely difficult to fabricate, such as very thin sections of 
material, or tiny welds, rivets, and other fasteners; and (3) material constants 
for which model materials do not exist. 

Although these dimensionless variables are known to have a significant 
effect on the model and prototype behavior, they are deliberately given different 
values for the model, and an attempt is then made to correct the dependent 
variables accordingly. Obviously this process is one which must rely heavily 
on the experience of the engineer. To accurately account for the effects of 
deliberately distorting a model oi a given prototype would require the results 
of many simple experiments on models -n which each of these independent 
variables are varied separately. An analysis of this subject is presented 
in Section III. 3. 
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SECTION III 

ERRORS IN MODELING 

Parts 2 through 4 of Section II dealt with exact simulation between 
mechanical systems. That is, the independent variables of a model were 
assumed to satisfy exactly a set of modeling conditions based on the independent 
variables of a prototype; and, consequently, the response of the model was 
assumed to be exactly similar to the response of the prototype. In this section 
we consider the case, which invariably occurs in practice, in which certain 
of the independent variables fail to satisfy the modeling conditions, and the 
responses of the model and the prototype are not exactly similar. The differ¬ 
ence between the measured response of the model and actual response of the 
prototype, as compared on a common scale (such as, in terms of dimension¬ 
less variables), is called the modeling error. 

1. Classification of Modeling Investigations 

Before embarking on a detailed account of errors in modeling, we 
should review briefly the specific goals of modeling. Engineers are frequently 
concerned with predicting the behavior of a proposed structure or other 
mechanical system, commonly referred to as a prototype. In some cases, 
basic information is required before a hypothetical prototype can be designed. 
In other cases, prior information is desired to insure that a proposed prototype 
will operate properly once built. In still other cases, additional information 
about an existing prototype is desired in order to improve its operation in a 
subsequent design. 

A modeling investigation is undertaken to supply the desired information 
because a model test can usually be performed for a fraction of the cost of a 
prototype test. Model tests are feasible in many cases where testing one or 
more prototypes would be prohibitively expensive or otherwise unfeasible. A 
modeling investigation usually consists of several model tests and perhaps a 
few prototype tests. Because cost considerations enter into the decision of 
how many prototype tests can be performed, it is convenient to classify 
modeling investigations by the number of prototype tests compared with the 
number of model tests. 

For example, a modeling investigation undertaken simply to verify the 
possibility of modeling a certain phenomenon might consist of one prototype 
test for each model test. In this case the modeling errors are directly 
accessible, consisting simply of comparisons between the response of the 
corresponding prototypes and models. However, for an investigation in which 
the ratio of model tests to prototype tests is unity, the model tests are 
entirely redundant; they provide no new information about the response of the 
prototypes. 
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A more useful type of modeling investigation consists of making several 
model tests for each prototype test. A few typical prototype tests are made, 
which provide standards for checking the model tests; the majority of the tests 
are model tests. A few of the model tests are specifically designed to predict 
the results of the prototype tests. The modeling errors observed from these 
few tests are then used as indications of the modeling errors which probably 
occur for the remaining model tests. The modeling errors for this type of 
analysis can be described either by "most probable" errors or by "error 
bounds." The concept of error bounds is developed in part 4 of this section. 

This type of modeling investigation is very practical, in that control 
over the independent variables can be relaxed to a large extent without loss 
of confidence in the test results. For example, pseudo-properties such as 
described in Section 1.4 and II. 4 can be used to specify the material properties 
instead of more exact properties. Also, dimensional tolerances, methods of 
loading, and methods of measuring response need net be as strict as for pure 
modeling. The modeling conditions can be relaxed for this type of modeling 
because the specific comparisons of prototype and model test results prevent 
the error estimates from becoming totally uncertain. Naturally, the more 
prototype tests, and the better correlation between the model and prototype 
test results, the more confidence can be placed in the remaining model tests. 

A third type of modeling investigation, which we shall call "pure 
modeling, " involves testing models without testing any prototypes. This type 
of modeling investigation is conducted when a prototype is, for some reason, 
inaccessible. Since there are no prototype tests by which to compare the 
model test results, pure modeling must be performed with meticulous care 
using methods well proven by past experience. Pure modeling is very useful 
for supplying information in cases where the modeling techniques are known to 
be accurate. Modeling of elastic vibrations is an example where pure modeling 
can be used with virtual impunity. 

For modeling techniques in which "modeling accuracy" (modeling errors 
invariably small) has not yet been verified, the use of pure modeling requires 
that strict control be maintained over the model variables. Even with strict 
control over the model variables, the accuracy of the model test results 
often remains uncertain, since modeling errors can arise from any of several 
sources, as described in the next section. It is for pure modeling that error 
prediction techniques, as described in Section III. 3, can be used with advantage. 

When prototype tests results are not available for a modeling investi¬ 
gation, it is often desirable to build and test an intermediate structure which 
has the same general characteristics as the prototype. Comparison of the 
test results of this structure with results from a corresponding model test 
establishes confidence in the modeling technique. The technique of using an 
intermediate structure is not feasible in modeling large structures such as dams 
or tall buildings, since scale models are already expensive items. For suchcases 
the results of pure modeling must be relied upon, perhaps with the aid of auxiliary 
analyses and calculations. 
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One further situation may occur. Consider the case where a prototype 
exists, but where the desired test on the prototype is somehow prohibitive. 
In this case certain intermediate dependent variables may be used (instead of 
the desired dependent variables) to provide corrections leading to more 
accurate test results. Two examples come to mind. First, suppose the 
length scale factor and the weights of the prototype and model are known. 
These quantities can be combined to provide a check on the density scale 
factor. Second, suppose the length and density scale factors are known, and 
suppose, in addition, that the fundamental natural frequency of the prototype 
and the model has been measured. A "dynamic" stress scale factor can be 
calculated from this information. The latter method was employed in 
Section IV. 3. 

2. Sources of Modeling Errors 

The problem of predicting the errors associated with a model test is 
complicated because errors ran arise from any of several sources. Among 
these sources are: 

(1) The modeling analysis may be based on an inexact or 
inappropriate theory, in which case certain controlling 
variables may be overlooked or misinterpreted. 

(2) The accuracy of measuring the controlling variables or 
the response of the model may be poor. 

(3) It may be impossible or unfeasible within the scope of a 
modeling investigation to satisfy all the modeling conditions. 
This is usually the most drastic source of modeling errors. 

The f'rst source of modeling errors listed above is dependent on the 
experience of the modeling practitioner and the existing theories which can 
be used to describe a phenomenon, and '8 outside the realm of error pre¬ 
diction techniques. Likewise, the second source of errors is outside the 
realm of error predictions, except when a large number of observations 
are made, in which case the theory of probability can sometimes be brought 
to bear.* The usual result of the first two sources of error is simply 
uncertainty as to the accuracy of model test results. The first source of 
error mentioned above was significant in the present investigation. 

The third source of modeling errors is the one most frequently 
encountered, and it is usually the source of the largest errors, as suggested 
above. Error prediction techniques can sometimes be used with this source 

* Chapter 1 of Murphy [ 13] provides a good introduction to use of probability 
methods for interpreting experimental observations. 
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of errors, if modeling errors from other sources are negligible 
of this section is concerned primarily with the third source of m 

The remainder 
odeling errors. 

variahl f ?0ntr01 Can never be maintained ovar the independent 
riables of a model, the response of the model will never exactly predict 

^ response of the prototype. For most engineering applications an exact 

Tresult 7 neCeS8a/{: there USually exi8t« a finite tolerance on the accuracy 
results from a modeling investigation which will be acceptable. 

The problem of controlling the independent variables of a model 

whenT8 Pr?tlCally/igniiiCant When’ 38 °ften haPPens. a conflict arises 
when trying to satisfy two or more variables which significantly affect the 
response of ,he model. In this case a "distorted" model mus, be considered » 
Comprormses of th.s kind occur in virtually every modeling investigation. In 
each case, an engineer must judge from his experience, using whatever 
experimental or theoretical results are available, in deciding the best way to 
perform a model test. y 

The most fundamental principle to be observed in conducting a model 
est is that important variables - i.e., variables which most directly affect 

the response of the model -must be controlled more carefully than less 
important variables. Because this principle is of fundamental importance 
in modeling, it warrants further elaboration. 

Let the independent variables of the model be divided into three classes: 
e most important variables, the intermediate variables, and the unimportant 

variabies The most important variables, such as the characteristic lengths 
and the characteristic density and stress constants, must be modeled exactly. 
The scale factors are always based on the most important variables. If it is 
impossible to model exactly one of the variables considered to be most 
important, then this variable must be considered as an intermediate variable, 
and given special attention. 

The intermediate variables usually constitute the majority of 
the independent variables. They are the variables which affect the 
response of the model, but cannot necessarily be made to satisfy the 
modeling conditions. It is the intermediate variables for which error pre¬ 
dictions or corrections must be made. The unimportant variables, such as 
material constants which have very little effect on the response of the model, 
and insignificant geometric variables, can be ignored. No attempt should be 
made to model the unimportant variables until the more important variables 
have first been modeled. 

A model test is called "distorted" if one or more of the independent variables 
are deliberately made to deviate from the modeling conditions required for 
exact simulation. 
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3. Error Predictions and Corrections 

One of the most serious problems in modeling occurs when no prototype 
results are available; thus all results, including error estimates, etc., must 
be established from model test results alone. To analyze this problem we must 
first assume that all sources ox modeling errors are negligible except one, 
namely errors caused by differences between certain of the model independent 
variables and the modeling conditions. 

We shall use the following notation: Let 

"rp = f Kp> and "rm = f (¾) (3. 3. 1 ) 

represent unique dimensionless functional relationships between the response 
of the prototype Txrp and the prototype independent variables irip, and between 
the response of the model xrrm and the model independent variables irjm. If the 
same physical laws govern the behavior of the model and the prototype and if 
the same independent variables are significant, then the function f in both of 
Equations (3.3. 1 ) will be identical. 

II ^im are equal to the corresponding TTjp, then exact simulation will 
have been achieved, and iTrp will exactly equal 'rxrm. In practice this situation 
is rarely achieved. Consider the more common situation in which 

^im = ^ip + 6i (3.3.2) 

that is, where the model independent variables deviate from the modeling 
conditions by a known amount 6-. When this situation occurs 

■^rm = I ("ip + 6j) (3.3.3) 

and the modeling error is given by 

6r - "rm " "rp ~ I ("ip ^ 6i) ~ f ("ip) (3.3.4) 

The problem of interest is to determine 6r in terms of 6j. 

In the past, techniques utilizing auxiliary mathematical analysis and 
comparison of model test results with selected prototype results have been 
successfully used to develop correction factors.* Here, however, we shall 
treat the situation in which no useful analyses can be performed and no 
prototype results are available. We consider those situations in which only 
model test information is available. 

If the function f (xrjp + 6j) has continuous partial derivatives through 
order n, then it may be expanded in a finite Taylor series as: 

* Refer to Chapters 6 and 7 of Murphy I 13] , and the paper in the ASME 
Symposium ( 3] by Ezra. 
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f (^ip + 66i), O < 0 < 1 

«V 

(3.3.5) 

where Dj is the operator — etna u.u. 

i J 9-rr^ 9TTm 
J 

approach is to experimentally determine from model tests alone the values of 
the necessary partial derivatives occurring in Equation (3.3.5), and then to 
use this relation to establish bounds on the errors and to make corrections. 

In view of the difficulty of experimentally determining higher derivatives, 
we consider establishing a first order correction as follows. Keeping only 
the first order terms in (3. 4. 5) results in 

6r = f<"ip + 6¡> - Mirip) =Xi6in. f <’iP +96i> 

Thus, bounds on the maximum error can be written as 

(3. 3.6) 

6+ = Z f&i I max Djíjíirip + OSj)] 
6r =1^1 min Djfj (ir.p + Oßj)] » 0 < 0 < 1 (3.3.7) 

and corrections for the model test results are given approximately by 

"rp - *rm " £ ’ 6i Í avg Di*i ("ip + 06^) (3.3.8) 

We conclude from Equations (3.3.7) and (3.3.8) that prediction of 
error bounds and error corrections can be obtained from knowledge of the 
various first partial derivatives of the response variables iTr with respect to 
the independent variables irj. These partial derivatives presumably can be 
obtained from the results of an extensive model test program. In those cases 
where it is impossible to cover the entire range 0 < 0 < 1 for each of the it., 

sufficient results are required to allow meaningful extrapolation over this ' 
range. 

The error bounds expressed by Equation (3.3.7) require knowledge of 
first derivatives only. A closer bound may be obtained if second derivative 
information is available, since 

6r =p6iDif(irip)+i (£i 6^)21(^ +06i) (3.3.9) 

* See Pipes [ 14] , p. 25. 
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provides the next level of sophistication over Equation (3. 3.6). However, it 
seems unlikely that second order corrections based on Equation (3. 3. 9) would 
ever be used, since a model test program required to evaluate the first partial 
derivatives may in itself be a prohibitive undertaking. 

The method of error prediction described above would be of use primarily 
for model tests in which only one (or at most two) of the model independent 
variables is "distorted," and a correction for this distorted variable is sought. 
The method is most promising for the case of one or two "distorted" variables, 
since the number of model tests needed to evaluate the partial derivatives in 
this method increases rapidly with the number of distorted variables,* 

* The analysis cannot be applied to the model test results presented later in 
this report because, within the framework of the assumption of our model 
analysis, we had no distorted variables. 
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SECTION IV 

MATERIALS DEVELOPMENT AND MODEL FABRICATION 

A large part of the effort expended in this program was directed 
toward development of suitable "dissimilar" model materials. The model 
materials finally used were epoxy resins and polyurethane foams combined 
with lead powder, all of which were much weaker and considerably more 
dense than the corresponding prototype materials. These model materials 
were tailored specifically to model certain materials used in the construction 
of re-entry vehicles (hereafter referredto as RVs). This section describes 
the development of the model materials, and the techniques used to fabricate 
small-scale models from these materials. Included in this section are 
descriptions of the mechanical properties of the model materials and the 
tests used to obtain the material properties. 

* • Chronological Summary of Developments 

At the beginning of this program, the dissimilar materials technique 
had been advanced to the point where a reasonably good, weak, dense model 
material simulating the properties of 6061 -T6 aluminum alloy, designated 
as AL, had been developed using epoxy plastics and lead powder ( l]. This 
material, however, had several drawbacks. The most serious of these was 
the necessity for testing the material before it had completely aged and, 
therefore, before the properties had ceased changing significantly with time. 
A second serious problem was the relatively large strain rate sensitivity 
of the material. In addition, there was the generad, need for improved fabri¬ 
cation techniques to be used with the unusual materiads being developed. 

The first stage in the materials development program was therefore 
directed to eliminating the ageing problem by the development of material 
formulations having constant, predictable properties when fully cured. This 
goal was satisfactorily accomplished by use of a combination of flexible epoxy 
resin with the more rigid resins which had been used. In particular, the 
original formulation of Epon 828 plus Thiokol LP3 plus curing agent D was 
replaced by the combination of Epon 828, Epon 871, and curing agent CL. 
Appropriate quantities of unoxidized lead powder were included in each mix¬ 
ture. The problem of strain rate sensitivity was not eliminated by this 
change, however, and an attempt was made to partially account for this effect 
by testing the materials at each of two strain rates. 

The second stage of this program involved devising a better technique 
for fabricating the models. In view of the settlement problems which had 
been encountered with attempts to mould lead-plastics mixtures, an attempt 
was made to develop a spray technique for application of the model materials. 
Since the materials of greatest interest contain on the order of 10 to 1, by 
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weight, of lead to plastic, they could hardly be called liquids and would not .* 
even pour satisfactorily. It was necessary, therefore, to add a solvent to 
these mixtures in order that they be sprayable. After some experimentation, 
methylene chloride was selected as a satisfactory solvent. This development 
plus the invention of a continuous mixing cup and an investigation of different 
types of spray nozzles, made it possible to apply the model material to a 
mandrel or other form by spraying. 

With the basic spray application technique thus developed, the next 
stage of the program was concerned with developing material formulations 
having sets of properties which properly simulate the prototype material 
properties. Included in this exploratory stage of the program was the use 
of various metal powders such as pure aluminum and lead-tin alloys in place of 
pure lead. Since none of these powders seemed to offer any advantage over 
lead, they were not investigated in detail. However, should models be desired 
with significantly less mass density than the lead-plastic materials, use of 
aluminum or other light metal powders in conjunction with the plastic might 
be desirable. 

Once an accurate model material, designated MAL, for 6061-T6 
aluminum had been developed, work was begun on the feasibility of modeling 
typical RV heat shield materials. Since new heat shield materials are being 
developed continually, and since their properties vary rather widely, it was 
not considered possible to cover the range of properties of current interest 
for heat shield materials. The approach taken was to recognize that heat 
shield materials are characterized by low strength and medium density, and 
to select a typical material for use as prototype heat shield. The prototype 
ablator selected was castable C-124 epoxy, designated HS. This stage of the 
materials development program was concentrated on developing a material 
to simulate C-124. The resulting material was designated MHS. 

In view of the prevalence of the use of very lightweight core or filler 
materials, such as honeycomb and foams, a final stage of materials develop¬ 
ment, namely development 01 materials to model weak and very lightweight 
prototype materials, was initiated. Here again, the wide variety of materials 
and the associated wide range of properties which might be used for stiffening 
or as fillers, led to simplification of the problem by selecting a single 
material. Keeping in mind the modeling requirements, a standard urethane 
foam (Emerson and Cummings FPH - 10H), designated PF, was selected 
as the prototype material to be modeled. The problem remaining was to 
develop a relatively dense, extremely weak foam with small cell shse for use 
as the model material. This problem was solved by the addition of moderate 
amounts of lead powder plus very small quantities of water to a weak foam 
resin (FPH - 4H), the resulting material being designated MPF. 

2. Material Tests and Properties 

In arriving at the finad selection of model materials, batches of more 
than fifty combinations of epoxy resin and urethauie foam with leaui powder 

24 



were made and tested. In addition, numerous specimens of the prototype 
materials were tested to insure that the material properties were properly 
matched. This section describes the material tests and material properties 
used in this investigation. 

ij 

Cylindrical specimens of each material were machined to one of three 
standard sizes. The specimens of AL and HS and the candidates for MAL 
model material were 0.25-in. diameter by 0.50-in. long; the candidates for 
the MHS model material were 0.50-in. diameter by 0.50-in. long; and 
specimens of PF and MPF were 1.00-in. diameter by 1.00-in. long. Figure 1 
shows a representative sampling of the material specimens tested in this 
investigation. An average (weight} density pg was obtained by weighing each 
test specimen, and then comparing the weight of the specimen to its original 
volume. 

The basic test for determining stress-deformation properties of the 
materials was a compression test. The cylindrical specimens were lubricated 
at each end with a special grease, to prevent generation of shear stresses. 
The specimens were then tested in compression on an Instron machine at strain 
rates of approximately 0. 1 to 2.0 min"l. The Instron machine was instrumented 
with a load cell of proper capacity placed in series with the specimen, and a 
strain-gage extensometer placed in parallel v/ith the specimen. For some of 
the material tests, a device for measuring transverse strains was attached 
to the test specimen. 

For tests in which only axial load p and axial extension 6| were 
measured, the output was recorded on the Instron chart recorder, which plots 
data directly as load versus extension. For the tests in which transverse 
extension 6*. as well as axial load and axial extension, were measured, the 
results were recorded on a Sandborn three-chauinel pen recorder, as plots 
of the three quantities measured versus time. 

The data from all the material tests were reduced to plots of stress 
(based cn the original cross-sectional area) versus strain (based on the original 
length and diameter), as shown in Figure 2. The following "pseudoproperties" 
were estimated from the axial-stress versus axial-strain curve; the initial 
(elastic) slope E; the eventual (plastic) slope E'; and the point Y at which the 
asymptote to the plastic portion of the stress strain curve intersects the 
stress axis. Each of these pseudoproperties has the dimension of stress. 
Attempts to measure transverse strain v/ith sufficient accuracy to evaluate 
the pseudoproperties v, v', and Y', defined in Figure 2, were not successful; 
consequently, these properties were not used in specifying material behavior. 

3. Corrections for Strain-Rate Effects 

The results of compression tests of the fined MAL material and the 
AL prototype material showed that the elastic and plastic properties of the 
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prototype material were modeled quite accurately at the so-called "static" 
loading rates (on the order of minutes). However, the model material was 
found to be much more sensitive to variations in strain rate than the prototype 
materials. Although exact modeling of transient deformations is not possible 
when model materials exhibit strain-rate effects to a different extent than the 
corresponding prototype materials, inexact modeling can be justified if the 
strain-rate effects do not predominantly control the response of the models. 
All that is needed in some method of correction. 

One method of obtaining more accurate test results in this case involves 
testing the model materials at one strain rate: an average of all strain rates 
which occur during a model test. The "pseudoproperties" obtained at this 
strain rate represent average properties for the model test, and are thus 
improvements over the "static" values. Because of the lack of high-speed 
testing facilities at SwRI, the material tests were limited to the "static" 
range —much slower than the average strain rate during a model test. It was 
necessary, therefore, to consider some other method of compensating for 
the strain-rate sensitivity of the model materials. 

A simple correction for strain-rate effects can be made by comparing 
the natural frequencies of corresponding prototypes and models. This 
correction can be used to transform the "static" properties into "dynamic" 
properties. The natural frequencies of a structure which deforms primarily 
by stretching and one which deforms primarily by bending are given, 
respectively, by the formulas* 

(4.3.1) 

where X is a dimensionless mode number, and F is a shape factor with the 
dimension of length squared. 

For a geometrically similar model and prototype, the ratio of 
frequencies for either stretching or bending deformations is given by the 
single expression 

(4.3.2) 

Inverting this expression, we get 

(4.3.3) 

* See pages 467 and 484 of Reference [ 12] . 
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Thus, a "dynamic" modulus E™ for thp moH«i ■ i 

«he modulus Ep ol the pro.o.ypTm«.^ fr°m 
and natural frequency of the corresponding prototypes and models! ^ 

to ''dvn^c"laStiC Pr°pertie8 Y “ä E’ assumed to change from "static” 

E/Y lêd E/V" Same rat‘° aS the el“Slic Ei that is. the ratiò^ 

'ÍL™\ll\bZ u'se'dm^dTttrrn,;" "d“0" --ng 
model materials in this investigation Thn K lrnamlc properties of the 

of this method, the use òf C«Ón (4 3 3) ca„^ 'ZT’t T“' 'r"” U’e 
dynamic modulus since frequency is detèrm^êd Í f v evaluating the 
properties. 4 V determined mainly by inertial and elastic 

4' Selection of the Model Materials 

erties of MAL C°n8idered was th' MAE model material; the prop- 
material AL sZ. mT, to 8imula‘e ‘he properties of the prototype 
marnr s , ' ‘ MAL was the atrongest end most basic construction 
marnw îh three model materials, much more effort was devoted to 
m tching the properties of MAL than with MHS or MPF. The principal 

E/Y »d E/E. r M h"8 3 r;able m0del material “AEwereP,h« ,Ph, ratios /Y and E/E should be equal for the two materials MAL and AL. Two 
secondary criteria required that the scale factors of stress and density be 
approximately 1/20 and 3, respectively. y 

The properties of the prototype materials are listed in Table I Thus 
the properties of the prototype material AL are ’ ’ 

(4.4.1) E = 1.0 X 10? psi, Y = 4 X 104 psi, E' = 3 X 10* psi 

and the ratios E/Y and E/E' for AL are 

E/Y = 250, E/E' = 33 ... ,. 
(4. 4.2) 

E/Y anHTFe/ÍÍ0del, m4atJerÍual MALwas req^red to have the same values of 
E/Y and E/E as listed above for AL. Various combinations of Epon 828, 

PA 7,’ /lÍring ag,ent CL’ and lead Powder were tried until a satisfactory 
match of E/Y and E/E* was obtained. The "static" properties of the model 
material finally selected for MAL are 

E = 5.5Xl05psi, Y = 2 X 103 psi, E' = 1.4Xlo4psi (4.4.3) 

In addition to differences of strain-rate effects, noted in Section IV. 3, the 
MAL material did not have as sharp an initial yield point as the prototype 

mnnT21 ’ V an effort was made to 8harpen the yield point of the MAL 
Effect. * VarioU8 additives were tried, but none produced the desired 
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Once the model material MAL had been developed to simulate aluminum 
reasonably well, development of the materials MHS and MPF was begun. The 
scale factors of stress and density were fixed by the properties of AL and MAL: 

Hstatic) = eMAL/Eal = .055 

7 = pmal^pal = 2*85 
> (4.4.4) 

Thus, it was necessary to match the ratios 

/ / "»or \***s^f 

PMHS' PHS = PMPF' Ppp = 2*85 

and to consider the ratios E/Y and E/E1 as secondary quantities, to be 
matched only after the Equations (4.4. 5) had been satisfied. This procedure 
was justified since the influence of MHS and MPF on the response of the 
models was expected to occur mainly through inertial and elastic effects. 

Table II lists the properties of the final model materials, including 
MHS and MPF. We see that, in general, the scaling between the "static" 
properties of the prototype and model materials is good. The occasional 
mismatch of properties was considered to be of minor importance. Table IV 
g ves the final compositions used for the model and prototype materials. 
Space limitations prohibit listing the compositions and properties of all the 
material combinations tested in this program. 

The "static" properties listed in Table II were transformed into 
"dynamic" properties on the basis of measured natural frequencies of the 
prototypes and the models, c.s discussed in part 3 of this section. The ratios 
of length, density, and natural frequency between the prototypes were 
approximately 

Zm /*p = 0.20, pm/ pp = 2.85, fm/fp ~ 0.94 (4.4.5) 

Equation (4.2.3) provides the dynamic modulus of MAL 

(4.4.6) 

The "dynamic" stress scale factor is, therefore 

^(dynamic) = EMAL/EAL = °*10 
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The remaining properties of the model materials were 
transformed in the ratio assumed to be 

EMAL(dynamic) : EMAL(static) = ^82 = 1 (4.4.7) 

Table III lists the "dynamic" properties of the model materials. 

5* Production of the Model Materials 

+ ,^he following Procedure was used to produce the model material MAL- 
F.rst, 60 8rame Epon 828 and 10 grams curing agent CL were mixed ,h« 
thoroughly blended a. lOO'C. Then, 40 grams Epon 871 and 50^1” methylene 

.he0sprayer cup Xth“0,"“ mÍXtUre: mÍX‘Ure WaS then P°ured in‘0 

[hen then ready to be sprayed onto a mandrel or other model form. 

j- AS Part °[ this Prograrn» two aluminum mandrels were made with 

mandrel?8 matChl"g the internal configurations of the model shells. The 

1 7T f m 8UCh a Way that they could be collapsed and removed 
the 6i 6 m0del shells once the models were completed. Before spraying 

oreh^at ^ tefl°n m°ld releas« a8ent. aad then 
solvent6 Theamar0dXlniately ^ aÍd evaporation of the methylene chloride 
solvent. The mandrels were rotated at 18 revolutions per minute while the 

18°inchTsafrom ^m^ndreVlurflcé?76^ ^ 8PraY ^ aPProximate^ 

for two hours at 60 C, followed by four hours at 125°C. After curing, the 

LLr aferltm^med t0 uÍnal dimen8ions in a lathe; then, unless an additional 
Zllu matetri;al WaS aPPlied' the ^°ld was collapsed and removed. The 
Amb^ntWtere b®" 8 * m a refri8erator at approximately 5«C until testing, 

ent temperature during the tests was generally about 25°C to 28°C. 

The material MHS developed for modeling the C-124 ablator material 
was produced a. follows: Firs,, 4.5 grams Epon 828 and 2.0 grams curing 
agent CL were mixed, then thoroughly blended at 100‘C. Then, 15.5 grams 

mP£>M8i71^0,4 ?.rain’ Cab-°-Sl1 8ilicon fibres, and 80 grams unoxidized (200 
mesh) lead powder were added to the mixture. The material was then set 
aside for a few minutes to allow escape of entrapped air bubbles, and then 

PiaCe* Mter CUrÍng f0r h0UrS at 60#C' flowed by four hours 
at leb L, the material was machined to size, and then stored at 5°C until 
testing. 

FPH 10Hhe ^0t0tyPr w*”1 U8ed in thi8 inve8tigation was Emerson and Cummings 
FPH-10H. The model foam was a combination of 20 grams Emerson and 
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Cummings FPH-4H foam resin, 13 grams catalyst, 150 grams unoxidized 
lead powder, and 2.5 grams distilled water. When mixed at approximately 
25°C, this combination grows rapidly in volume. The majority of growth 
is completed in 20 to 30 seconds and maximum volume is reached in two or 
three minutes. This material was applied directly to the shells before 
starting to grow. Once set, the foam was machined and the completed model 
was stored at 5°C until ready for testing. This material was used both 
as sandwich core for the models M3 and as filler for the models M4. 

6. Fabrication of the Models 

This section describes the technique of making the various models. 
The models were cylindrical and conical shells with the general configuration 
shown in Figure 3. A total of nine different models with varying geometry 
and shell compositions were considered. The properties of these models, 
designated M1-M9, are listed in Table VI. Because of their simplicity, the 
"plain" models Ml and M5-M9 were made first. The composite models were 
made last. Several samples of a model were made and tested in cases where 
more^iata waa desired or where different methods of loading the models were 

employed. 

All models were begun by spraying the basic MAL model material onto 
a preheated aluminum mandrel, as described in the last section. This spray 
process was continued until a layer in excess of the final desired thickness 
had been deposited on the mandrel. The mandrel, with the layer of MAL, 
was then put into an oven. After the MAL had properly cured, the mandrel was 
mounted in a lathe and the layer of MAL was machined to the desired thickness. 
The above procedure was sufficient to fabricate the plain models Ml and 
M5-M9. All that remained to be done was to collapse and remove the mandrel 
from the model, and to place the model under refrigeration until testing. 

The composite models M2-M4 were each begun according to the above 
procedure, but they required additional operations before they were finished. 
The heat shield model M2 was made according to the following procedure: A 
layer of MAL was applied to the mandrel, then cured and machined. A sheet 
of mylar was then wrapped around the mandrel to form a mold, and the MHS 
model heat shield material was cast in the annular space between the MAL 
and the mylar. This layer of MHS was then cured and machined to final 
thickness. The finished model was then removed from the mandrel and 

placed under refrigeration. 

For the sandwich model M3, a layer of MPF model foam was spread 
onto the surface of the original MAL shell, and allowed to grow and become 
set. This layer of MPF was then machined to the proper thickness, and a 
second layer of MAL was sprayed onto the MPF. The outside layer of MAL 
was then cured and machined to the desired thickness. The finished sandwich 
model was then removed from the mandrel and placed under refrigeration. 
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äbficatiön of the foam-filled model M4 followed the same procedure used to 

díe een P T m0del8: Wlth the excePti°n that after the mandrelwas removed 

the f * V! Ume 1 C the m0del WaS filled With MPF model foam. After ' 
and tt f k3! ’ eXCe8S f0am WaS CUt °ff flu8h with the edge °f the model nd the finished model M4 was placed under refrigeration. 

After fabrication, the models invariably showed good dimensional 

ñn^hT8 COmpared 7ith the epecified geometric variables. The beautiful 
shed appearance of these models attested to the care which Mr. F O Hoese 

devoted in making them. Figures 12 through 15 are photographs of the model 
showing various stages of deformation. The materials, after fabricaUoT 
were considered to be homogeneous and isotropic. In order to prevent effects 

T? trCm enter*n8 the data, testa were made on only those 
e models which had slight previous histories of deformation. 
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SECTION V 

EXPE RIN.. ■'NTS 

This section describes an experimental investigation undertaken to 
demonstrate the technique of modeling inelastic deformations using dissimilar 
materials. A second purpose of this investigation, as stated in the Foreword, 
was to generate information about the impulse-deformation characteristics of 
conical shells. Thus, the structures selected to be modeled were truncated 
conical shells clamped around the small edge; and the loading selected was 
an impulse distributed uniformly over a quadrant of the shell. The quantities 
to be modeled were maximum transient and residual displacements versus 
impulse. 

A series of nine distinct models was tested. Three of these were 
composite shell models; a heat-shield covered shell model, a sandwich shell 
model, and a foam-filled model. Six of these were plain shell models: which 
included various permutations of length, thickness and cone angle. The models 
were tested in a shock tube and with a recently developed sprayed-explosives 
loading technique. Each of the models was tested using at least two load 
durations, in order to test the effect of this parameter on the magnitude of 
the deformations. In addition to the model tests, a series of four prototype 
tests was conducted using sheet explosives to provide the load. Unfortunately, 
the prototype tests were poorly designed and could not be used to verify the 
model test results. 

1. Definitions of the Variables 

The prototypes and models in this investigation belong to a class of 
mechanical systems which can be described by the finite set of mechanical 
variables listed in Table V. These variables fall naturally into four categories, 
which are discussed separately in the following paragraphs. 

a. Geometry. The prototypes and models were constructed in the 
form of conic al frustrum shells, as illustrated in Figure 3. The geometry of 
such a shell is completely described by the cone angle a, the mean inner 
radius a, the axial length b, and the uniform shell thickness h. For a com¬ 
posite shell, consisting of several layers of different materials, the thickness 
hn of each layer was considered in addition to the overall thickness h. A 
cylindrical extension at the small end of the conical shell, referred to as 
"base" in Figure 3, was built into each of the model shells for the purpose 
of clamping the models to a rigid frame. Each model and prototype shell was 
required to conform with this geometry before each test; in particular, initial 
eccentricities were required to be small. 
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. ' . Material properties. The principal phenomena governing the 
reaponee of the prototypes and models were dynamics and inelastic deforma- 

matlrUl materialsi hence the necessity of modeling inertial and constitutive 
material properties. The material properties used in this investigation were 
mass density p ana the "pseudoproperties" E, Y, and E', as defined in Section 
IV.2 for a simple compression test. For a composite shell, the properties 

Pn’l n’ n’ n - »N. which correspondió each of the N layers of 
material were considered. The properties E, Y, E' were converted to 
dynamic properties by the method described in Section IV. 3. Tables I - HI 

list the properties of the prototype and model materials. 

s ., We emPha3ize that the properties E, Y, and E' do not completely 
describe the constitutive behavior of solid materials, but merely reflect gross 
average properties between axial stress and axial strain. Nevertheless 
physical intuition prompts us to rely on these properties, especially in lieu of 

er ones. It is felt that if, in addition to geometric and loading variables 
these properties (for corresponding strain rates) satisfy appropriate modeling 
conditions then the mechanical response of the prototype and model should 
be reasonably similar. 

_ J c- Impulsive load distribution. The present problem is concerned 
with determining the response of the prototypes and models to impulsive loads. 
It is necessary, therefore, to specify the distribution and magnitude of these 
loads Assume that all surfaces of the shell are free of stress except the base, 
which is assumed rigidly clamped to an inertial frame, and the portion of the 
external surface exposed to a distributed pressure pulse P (0, z, t). Figure 4 
shows an initially undeformed shell with a distributed load applied to its outer 
surface, and a typical deformed shape which results from such a load. 

We assume this pressure pulse to be distributed uniformly over 
a quadrant of the shell, and to be uncoupled from the motion of the shell A 
typical pressure pulse reaches an instahtaneous peak P0, and then decays to 
zero in a finite time T0, called the impulse duration, as shown in Figure 4. 
We may express the idealized impulse mathematically, in cylindrical 
coordinates, as 

fo T0 
1(0, z) = J P (0, z, t) dt = i0 Me.z) (5.1.1) 

where I0 a P0TQ/4 is the peak impulse, and where 

r/n * fl. -ir/4 < 0 < ir/4 
*(0.z) = 

|J), it/4 < 0 < 7tt/4 
; 0 < z < b } (5.1.2) 

is the normalized impulse distribution. 
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The load distribution defined by Equation (5. 1.2) is considered to 
be sufficiently regular to excite mainly the fiist few natural vibration modes 
of the shells. As stated in Section II. 1, if either one of the two conditions 
T0 « Tj or T0 =• Tj is valid, where Ti is the fundamental quarter period 
of the shell, and providing the load distribution is sufficiently regular, then 
the load can be described simply by the variables T0, I0 and ^(0, z). 

d. Response variables. A conical frustrum shellwill deform 
approximately as shown in Figure 4 (the dashed lines) when subjected to an 
impulsive load such as described above. The initial transient deformation 
will then disperse rapidly over the entire shell, and the resulting complex shell 
vibrations will eventually decay, leaving a field of residual displacements. 
For a given shell, and a given load duration and distribution, the amount 
of deformation —both transient and residual —increases with the total 
impulse. 

In order to express the impulse-deformation characteristics of 
a shell quantitatively, it is necessary to define suitable measures of the 
deformation. Let the radiad displacements of the inner surface of a shell be 
represented by the function u (0, z, t), t > t0. Define the quantities 

UT - max u (0,b, t), 0 < t - t0 < ZTj 

UR - lim u(0,b,t), t - t0— co 

to be the maximum transient displacement and the maiximum residual 
displacement of the point 0 = 0, z = b on the inner surface of the shell. In 
general, the largest transient and residuad displacements will be associated 
with this point, so that UT and UR satisfactorily characterize the extremes of 
shell deformation for a single test. Therefore, the scalar functions 

UT = UT (I0,T0), UR=UR(I0,T0) (5.1.4) 

suffice to describe the impulse-deformation characteristics of a given shell 
with a given normalized load distribution. 

It is of interest to determine which shells have the highest 
resistance to deformation amd the lowest weight; thus, we shall determine 
the total weight W of each shell. Likewise, since the resistance to deformation 
by impulsive loads is intrinsically related to the fundamentad natural 
frequency fi of a given shell, we shall also determine the fundaunental quarter 
period Tj = l/4fi as a dependent variable for each shell. 

2. The Prototype Variables 

After consulting with the project sponsors, an aluminum adioy (type 
6061-T6) was chosen as the primary material to be used in constructing the 
prototype shells, and the following values were selected for geometric variables: 

(5.1.3) 
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cone angle, Op = 12.5° 

mean inner radius, ap = 15 in. ► (5 2 1) 
axial length, bp = 30 in. J 

The diameters corresponding to these values are 

upper diameter = 36. 65 in. 1 
lower diameter = 24.35 in. J (5.2.2) 

which are typical dimensions of an RV tail section. In addition it was decided 
to load the shells with sheet explosives obtained from and administered by 
tanford Research Institute. The total number of prototypes was limited to 

four because of costs of building and testing. 

Selection of the shell compositions involved a compromise of several 
factors. The shells were required to be as simple, and to have as many 
common features, as possible, in order to provide meaningful results. The 
she Is were required to be of fairly light construction in order that manageable 
explosives would produce deformations of about ten percent, as desired Yet 
the shells were required to be thick enough that reduced scale models of the 
shells could be fabricated without difficulty. Also, the project sponsor 
requested that the shells be strong enough to reasonably typify RV tail 
section construction; and that special composite shells be considered having, 
alternately, a layer of ablative heat shield material; sandwich construction; 
and some light, shock absorbent material to completely fill the shell. 

The final selections of shell compositions are described below The 
prototype materials, designated AL, HS, and PF, were described in Section IV. 
The geometric properties of the prototype shells are also listed in Table VII. 

Prototype Pi. A plain shell hp = 0. 125-in, thick of aluminum alloy 

Prototype P2. A composite shell, consisting of a layer h2p = 0.250-in. 
'.hick of heat shield material (HS) bonded to a layer hip = 0.125-in. thick of 
aluminum alloy (AL); total shell thickness hp = 0. 375-in. 

Prototype F3. A composite shell, of sandwich type construction, 
consisting of two layers hlp, hyp = 0. 075-in. thick of aluminum alloy (AL) 
separated by a layer h2p = 1.00-in. thick of plastic foam (PF); total shell 
thickness hp = 1.15 in. 

Prototype P4. A plain shell hip - 0. 125-in. thick of aluminum alloy 
(AL) completely filled with plastic foam (PF). 
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We conclude this discussion of prototype variables with a discussion of 
loading and response variables. The prototype shells were to be rigidly clamped 
around their bases (small diameter edge) during the prototype tests, and were 
to be loaded uniformly over a quadrant by means of sheet explosives. The load 
distribution of the sheet explosives was considered to be sufficiently regular 
to excite mainly the first few vibration modes. Also, the durations of the 
impulses (Top * 0, 1 -0.2 ms) from the sheet explosives were considerably 
shorter than the fundamental quarter periods of the shells 'T-s 1-3 ms). 
From arguments given in Section II. 1, we conclude that the lesponse of the 
prototype shells was dependent only on peak impulse I0p. 

Each prototype shell was loaded by a series of three or four sheet 
explosives of increasing impulse level, starting with a load that produced little 
deformation and ending with one that completely destroyed the shell. The 
maximum residual deformation was measured for each test; in addition, 
high speed motion pictures provided measurements of maximum transient 
deformations. Since the levels of impulse applied to the prototype shells were 
dependent on the loads which each shell could sustain, these loads were 
estimated from the model teet results. 

3. Scale Factors 

The scale factors were chosen largely on the basis of available 
materials and available facilities for testing the models. As stated earlier, 
the present investigation was intended to demonstrate the technique of modeling 
with dissimilar materials. The development of model materials was discussed 
in Section IV. Tables I - IV list the properties of the prototype and model 
materials. The density and stress scale factors 

7 = PMAL = 28 = 
Pal °*100 Pci 

2.85 

. eMAL 106psi 
^( dynamic) = F = ? 

EAL 10'psi 

> 

0.10 

(5.3.1) 

are based on the "dynamic" properties of the primary model and prototype 
materials, designated MAL and AL, respectively. 

The following conditions were recognized as desirable with regard to 
size of the models. Models should be as large as possible in order to reduce 
the possibility of geometric distortion, yet models should be small enough to 
allow inexpensive fabrication. It was expedient to test models in the existing 
two-foot diameter shock tube. It was considered desirable that prototypes and 
models be of significantly different size in order to demonstrate the range of 
the modeling technique. 
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The diameter of the shock tube limited the largest model dimension 
to about one foot. For convenience, a mean inner diameter of six inches 
was finally selected for the models. This choice resulted in a length scale 
factor of 

= -2- = 3.0 in. 

^ 15.0 in. 
0.20 (5.3.2) 

From Equation (2. 3. 5) and 
the time scale factor 

Equations (5.3.1) and (5.3.2), we can calculate 

1/2 1/2 
1.07 (5.3.3) 

The conical frustrum shells considered in this Section are special cases 
of the mechanical systems considered in Section II. Each of the variables 
defined in Section V. 1, and listed in Table V, has a counterpart in Section II, 
as shown by the following comparison. 

Section II 

I il ©i 

Pn> Hni Tn 

cmn 

ToîIoî^X) 

uJîUjSwjTj 

Section V 

a, b, h, hn;a 

Pn! En; - 

En/YnîEn/E^ 

T0;l0;*(e.z) 

uTjURjWjTj 

Therefore, the modeling analysis of Section II can be used to provide modeling 
relationships for the prototypes described in Section V. 2. These relationships, 
which can be calculated from Equations (2. 3. 3) and (2. 3. 4) of Section II. 3, 
are listed in Table 6. 

4. The Model Variables 

As mentioned earlier, a total of nine distinct models were tested. The 
basic dimensions of the models were 

cone angle, = 12.5* ^ 

mean inner radius, am = 3.0 in. „ (541) 

axial length, bm = 6. 0 in. 
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Four of the nine models were direct models of the prototypes described in 
Section V. 2. These models were intended to verify the modeling technique 
and to provide information about the impulse-deformation characteristics of 
composite shells. The independent variables for there models were 
determined by substituting values of the prototype independent variables, as 
given in Table VII (and in Section V. 2), into the modeling relationships listed 
in Table VI. 

* 

The resulting model (geometric) variables are listed below and in 
Table VIII. The model materials, designated MAL, MHS, and MPF, and 
the methods of fabricating the models, were discussed in Section IV. 

Standard cone model Ml. A plain shell hm = 0. 025-in. thick made of 
the basic model material (MAL). 

Heat shield cone model M2. A composite shell, consisting of a layer 
h2m = 0.050-in. thick of model heat shield material (MHS) bonded to a 
layer him = 0.025-in. thick of the basic mode1, material (MAL); total shell 
thickness hm = 0.075 in. 

Sandwich cone model M3. A composite shell consisting of two layers 
^1 m* ^3m = 0,015-in. thick of the basic model material (MAL) separated by 
a layer h2m = 0.20-in. thick of model plastic foam (MPF); total shell thick¬ 
ness hm = 0. 23 in. 

Foam-filled cone model M4. A plain shell him = 0.025-in. thick made 
of the basic model material (MAL) and completely filled with model plastic 
foam (MPF). 

Because of the relatively small cost of building and testing models 
compared with the overall cost of the modeling program, it was deemed 
expedient to perform tests on additional models in order to generate a wider 
variety of data. The correlations intended with these additional models were 
mainly between geometric variables. It was decided to consider only plain 
shells for these tests, made of the basic model material (MAL); and to 
consider separate variations of ths axial length, shell thickness, and cone 
angle, using the geometric variables of the standard cone model (Ml) as 
the median values. 

The five additional models are listed below, and in Table VIII, together 
with their distinguishing features. 

Short cone model M5. A plain shell bm = 4.0-in. long, hm = 0.025-in. 
thick, and with a cone angle of am = 12. 5°. 

Thick cone model Mfr. A plain shell bm = 6.0-in. long, hm = 0. 075-in. 
thick, and with a cone an^ie of am = 12. 5*. 
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Standard cylinder model M7. A plain shell bm = 6.0-in. lone, h = 
0. 025-in. thick, and with a cone angle am = 0®. m 

Short cylinder model M8. A plain shell bm = 4. 0-in. long, hm = 
0. 025-in. thick, and with a cone angle of am = C*. 

Thick cylinder model M9. A plain shell bm = 6. 0-in. long, h = 
0. 075-in. thick, and with a cone angle am = 0°. m 

The short cone model M5 was excluded from Table VIII and from the 
model test results because insufficient data were obtained for this model 
during the model tests. 

We conclude this discussion of model variables with a discussion of 
loading and response variables. In Section V. 2, it was stated that the proto¬ 
type shells were to be clamped at their bases, and were to be loaded by 
impulses uniformly distributed over a quadrant of each shell. The impulse 
durations were stated to be considerably shorter than the natural quarter 
periods of the prototype shells. For correct modeling, these conditions 
were required to prevail during tests of the model shells. 

Two methods were used for loading the models. The majority of 
model tests were made using a two-foot diameter shock tube, as illustrated 
in Figures 5-7, to provide the impulsive loadings. For each test a model 
was clamped to a rigid framework located at the mouth of the shock tube. The 
model was then covered by a blast shield which exposed only a quadrant of the 
model to the shock wave. The shock wave was generated in the shock tube by 
the sudden release of compressed air caused by the bursting of a mylar 
diaphragm. Section V. 5 gives a more complete description of the shock tube 
model test facility. 

The other method of loading models was by use of a sprayed-explosives 
technique recently developed at SwRI. This technique consisted of spraying 
an explosive coating directly ento the model, and subsequently detonating 
the coating by means of an electrical spark. Figure 8 shows a model with 
an explosive coating which is ready to be detonated. The sprayed explosives 
loading technique will be described in detail in Section V.8. 

Both the above loading techniques provided impulses which were 
uniformly distributed over a quadrant of each model. The shock tube provided 
two separate impulse durations (Tom a 1 ms and Tom s 4 ms) which were of 
the same order as the natural quarter periods of the models (Tlm z 1 - 3 
ms). Therefore, from Section II. 1, we conclude that the response of the 
models to loading in the shock tube was dependent on peak impulse Iom and 
impulse duration Tom. The sprayed explosives technique provided impulse 
durations (Tom 0. 1 -0.2 ms) which were considerably shorter than the 
natural quarter periods. Therefore, the response of the models to the 
sprayed explosive was dependent only on Iom* 
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The maximum transient displacement u£ and the maximum residual 
displacement Um, as defined in Section V. 1, together with the peak impulse 
Jom &nd the impulse duration T0m. were recorded for each model test. 

5. The Shock Tube Model Test Facility 

The majority of model tests were performed using the existing 
compressed-air shock tube facility depicted in Figures 5-7. Figure 5 is a 
schematic diagram which shows the shock tube, the compressed air lines, 
the test stand and associated apparatus, and the instrumentation for recording 
transient pressure, impulse, and displacements during the model tests. 
Figure 6 is a photograph which shows the entire shock tube; the framework at 
eft is the test stand. Figure 7a shows the test stand in detail, and Figure 7b 

is a closeup view of the model mounted on the test stand. 

The shock tube proper is a two-foot diameter steel pipe, twenty feet 
long, flanged at one end, and mounted on rollers. Beyond the flanged end 
of the shock tube is another short section of two-foot diameter pipe, called 
the air reservoir, which is closed at one end and flanged at the other to 
match the flange on the shock tube. The air reservoir is fastened to a 
massive block of concrete which absorbs the recoil from the shock tube. 
For each model test a mylar diaphragm was fitted between the flanges, and 
twenty-four, one-inch diameter bolts held the diaphragm securely between 
the shock tube and the air reservoir. An "O-ring" mounted in one of the 
flanges prevented leakage of air past the diaphragm. 

The shock tube was operated by simply increasing the pressure in the 
air reservoir until the mylar diaphragm ruptured. Pressure in the reservoir 
at rupture was read from a Bourdon gauge. The burst pressure was con¬ 
trolled by the thickness of the diaphragm. Mylar was selected as the 
diaphragm material because of its property of bursting abruptly without 
fragmenting. 

Prior to testing models, a series of measurements was made to 
determine the general characteristics of the pressure waves generated by 
the shock tube. The pressure transducers used were Kistler piezoelectric- 
type, connected through low-capacitance cables and special Kistler charge 
amplifiers to an oscilloscope. Each pressure transducer was mounted 
flush with the surface in a lead block, and the lead block was shock isolated 
with foam rubber. These assemblies were found to provide reliable transient 
(stagnation) pressure records. One of these assemblies was attached to the 
mounting plate and used to record transient pressures throughout the model 
tests. 

The shock waves were found to be sufficiently plane near the center 
of the mouth of the shock tube for the purpose of model testing. Throughout 
the model tests the exposed surfaces of the models were aligned with the 
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mouth of the shock tube. It was found that peak pressure at the mouth of the 
shock tube depends on both the burst pressure and the volume of the air 
reservoir, whereas the duration of the pressure pulse depends primarily on 
the volume of the air reservoir. Thus by using various thicknesses of mylar 
diaphragms in conjunction with each of two air reservoirs of different 
volumes, it was possible to obtain two families of pulses of varying peak 
pressures but of virtually constant durations. The loading characteristics of 
the shock tube averaged over a large number of pressure measurements are 
shown in Table IX. 

The large air reservoir utilized the entire volume (- 8 cubic feet) 
inside the section of two-foot-diameter pipe behind the shock tube, and 
provided pulse durations of about Tom = 4 ms. The small air reservoir 
was obtained by fitting a slightly concave aluminum disk between the diaphragm 
aud the large air reservoir. This disk can be seen in Figure 6, leaning against 
the concrete recoil block. The volume inside the small air reservoir( * 1 
cubic foot) provided pulse durations at the mouth of the shock tube of about 
T0m = 1 m». These values of load duration were of the order of the natural 
quarter periods of the model shells. 

The model shells were extended one-half inch beyond their nominal 
lengths. This extension (called "base" in Figure 3) was clamped securely 
to a heavy aluminum mounting plate, which in turn was bolted to the test 
stand. Figure 7b shows a model shell clamped to the mounting plate. The 
mouth of the shock tube can be seen at the left. 

In order to restrict the loading of the shock waves to the forward 
quadrant of each model, a blast shield was constructed in the form of a sheet 
metal box, which completely enclosed each model except for a cutout 
circumscribing the forward quadrant. Clearances of 1/8-inch were main¬ 
tained between the models and the blast shield as a compromise between 
excessive leakage of the shock wave into the blast shield and having the blast 
shield obstruct the model. Two blast shields were constructed; one for the 
cylinder models and one for the cone models. Figure 7a shows a model 
mounted on the test stand and shrouded by the blast shield. In this condition 
the model is ready to be tested. 

The nature of the experimental program made it desirable to obtain 
records of the transient as well as residual displacements of the model 
shells. It was found that Bentley displacement transducers, which operate 
on a principle of generating and detecting eddy currents, could be used 
satisfactorily with the composite model materials. Unfortunately, the trans¬ 
ducers were required to operate over distances ranging up to one-half inch, 
in order to prevent interference with the motion of the model shells. Over 
such large distances the output of a Bentley transducer is extremely non¬ 
linear. This fact necessitated frequent and careful calibrations of the 
displacement transducers. 



A special adjustable fixture was devised which permitted up to three 
Bentley transducers to be positioned into proximity with the model shells. 
The device consisted of an L-shaped arm hinged at the corner to a yoke, 
which was fitted with a positioning dowel as shown in Figure 5. The long 
arm of the L contained three uniformly spaced holes, tapped to accept 
the external threads of the displacement transducers, which were fixed in 
place by lock nuts. The angle between the short arm of the L and the yoke 
was controlled by a machine screw acting against a spring, which provided 
the necessary range of adjustments. The dowel fit snugly into a hole drilled 
through the mounting plate, concentric with the model shells. Figure 7b 
shows the adjustable fixture, fitted with two Bentley transducers, and positioned 
to detect displacements in line with the oncoming shock waves. 

The instrumentation used in conjunction with each of the Bentley 
transducers included a Bentley distance detector (D-152), a 22-1/2-volt 
dry cell battery, and appropriate cables connecting the detectors to a 
Tektronix oscilloscope, as shown in Figure 5. The box at the top of the test 
stand in Figure 7a housed the battery for powering the displacement trans¬ 
ducers. The devices shown suspended midway between the power supply box 
and the blast shield are the Bentley detectors. 

One oscilloscope was used to display the transient displacement 
signals (up to three traces simultaneously) and one oscilloscope was used to 
display the transient pressure signals. The latter was a dual-beam oscil¬ 
loscope with a built-in integrator circuit, so that for all shock tube tests 
records were obtained of transient pressure and transient impulse. Both 
oscilloscopes were fitted with Polaroid cameras which allowed permanent 
records to be made of the oscilloscope traces. 

The oscilloscopes were triggered by a device which consisted of a 
battery connected in series with a light bulb and a pair of alligator clips 
mounted inside the mouth of the shock tube. The circuit was completed by 
fitting two short strips of aluminum foil, which had been twisted together, 
between the alligator clips. The light bulb was connected across the external 
trigger inputs of the oscilloscopes through a blocking capacitor. As a shock 
wave passed down the tube and encountered the aluminum foil, the two strips 
of foil were untwisted, thus opening the circuit. The abrupt change in voltage 
across the light bulb caused the oscilloscopes to trigger. This triggering 
circuit was found to be reliable, and was used throughout the shock tube 

tests. 

6, Model Test Procedure 

The models were refrigerated after curing and overnight between tests 
to prevent changes in the material properties. A large supply of mylar film 
of various thicknesses was obtained prior to the model tests, and individual 
diaphragms were cut from the mylar film with holes punched to match those in 
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shock tube flanges. All the necessary apparatus including piping and electronic 
equipment were obtained and put into operating condition. 

The Kistler pressure transducers are piezoelectric devices, which 
cannot measure "static" response. Therefore, it was necessary to resort 
to a dynamic calibration technique. The calibration technique involved fitting 
the transducer to a dead-weight tester, and dropping a known weight onto the 
platform of the tester. Special care was taken to exhaust the air from the 
tester in order to increase its response rate. The transducer was connected 
to an oscilloscope, which was set to trigger internally off the pressure signal. 
The first picture in Figure 9 shows two calibration tests; the upper signal 
is transient pressure, the lower signal is transient impulse. Knowing the 
sweep rate and the pressure difference represented by the dropped weight, 
calibrations of the pressure and impulse scales were easily calculated. 

The results of numerous calibration tests during the test series 
indicated that the sensitivity of the pressure transducers was essentially 
constant in the range of interest ( ~ 100 cps). However, variations in sen¬ 
sitivity of 20%-30% were noted from time to time. These variations were 
attributed mainly to the transducer and connecting cables picking up moisture 
and thus changing capacitance (piezoeletric transducers are sensitive to 
capacitance changes). The occurrence of this discrepancy during model tests 
led to adoption of a single set of average loading characteristics for the shock 
tube,, as described below. 

Comparison of burst pressures with the thickness of the mylar 
diaphragms showed good correlation tl roughout the test series. Comparison 
of peak pressure and impulse at the mouth of the shock tube with diaphragm 
burst pressures provided good correlation between tests on any one day. 
However, the correlation between tests on different days was not good, which 
indicated the pressure transducer was at fault. Therefore, we felt that the 
best correlation of test results would be obtained by using average values of 
peak pressure and impulse, averaged over many vests, rather than using 
the specific values recorded for each test. Table iX presents the loading 
characteristics of the shock tube, which were used in plotting the model 
test results. 

Weights and natural frequencies of the models were recorded because 
of their interest as results in the modeling investigation, and because com¬ 
parisons of prototype and model natural frequencies afforded a means of 
obtaining "dynamic" material properties. The natural frequencies of the 
models were obtained as follows: The model was clamped to the mounting 
plate, and two of the Bentley transducers were positioned inside the model. 
The transducers were connected to an oscilloscope, which was set to trigger 
internally off one of the displacement signals. The model was then rapped 
lightly with a knuckle or fingertip. The third picture in Figure 9 shows 
oscilloscope traces from two such tests. The signals are seen to be 
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of the form of decaying elastic vibrations. Knowing the oscilloscope sweep 
rate, the predominant natural frequency was easily calculated. 

The last preliminary before a model test was calibration of the dis¬ 
placement transducers. Because of the nonlinearity of their signals and the 
tendency of the signals to drift, the Bentley transducers were recalibrated 
after every two or three model tests. The Bentley transducers are capable 
of measuring "static" as well as rapidly varying displacements; thus, a 
quasi-static calibration technique was used. The transducers were mounted 
in the L-shaped adjustable fixture (shown in Figure 8), which was positioned 
inside the model. The adjustment screw was ti rned until the top of the 
adjustable fixture was a convenient distance from the top edge of the model, 
as measured with a graduated rule. (Before each model test, the adjustable 
fixture was reset to this same distance from the top edge of the model, so that 
the transient displacement records and the calibration records could be 
compared directly. ) 

The transducers were connected to an oscilloscope, which was set to 
sweep at its slowest rate (~ 5 sec/cm). With the sensitivities set to convenient 
values, the oscilloscope was triggered manually. Then the distance between 
the top of the adjustable fixture and the top edge of the model was decreased 
by steps of » .05 in. until the transducers just touched the inside surface of 
the model. The second picture in Figure 9 shows oscilloscope traces for two 
such tests. By comparing these calibration records with transient displacement 
records, the desired maximum transient and residual displacements were 
obtained. 

The procedure of testing a model using the shock tube facility was 
essentially as follows. The model was clamped to the mounting plate and 
located plaiie with the mouth of the shock tube. The Bentley transducers 
were calibrated and positioned to measure displacements in the direction of 
the shock tube axis. The blast shield was then clamped in place over the 
model. A mylar diaphragm was inserted between the flanges of the shock 
tube, in conjunction with either the large or small air reservoir, as 
described in the last section. Two strips of aluminum foil were twisted 
together and inserted between the alligator clips inside the mouth of the 
shock tube, thus activating the oscilloscope trigger circuit. The oscilloscopes 
were then set to single sweep, and the valve for admitting compressed air into 
the air reservoir was opened. 

The diaphragm then burst and the oscilloscopes triggered by separation 
of the strips of aluminum foil. The third and fourth pictures of Figure 9 
show oscilloscope traces for four model tests. In each case, the picture at 
left contains the transient pressure and impulse traces, and the picture at 
right contains the transient displacement traces. As explained earlier, the 
transient and residual displacements were correlated with average values of 
peak impulse, as given in Table IX rather than with values of peak impulse 
obtained for each individual test. 
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7. Model Test Results 

At least one of each of the models M1-M9, as specified in Table VIII 
was tested in the shock tube according to the above procedure. Since the 
model Ml was^chosen as the standard model shell against which the majority 
of correlation's were to be made, it was desirable to accumulate a large 
quantity of data for this model. Thus a total of four samples of the model 

1 jWf wnmade and tested* Two samples were made of the standard cylinder 
model M7. After sufficient data had been obtained from these two models, 

^ J/“ V? {TOm eaCh end’ thuS forming two samples of the short cylinder 
Model M9. The same technique was tried with only marginal success in con¬ 
verting the model Ml into the short cone model M5, 

One sample of the thick cone model M6 and two samples of the thick 
cylinder model M8 were next made and tested. All samples of the plain 
model shells were tested in the shock tube. Finally, two samples were made 
of each of the composite shells M2, M3, and M4. One sample of each of 
these model shells was tested in the shock tube. The other sample of each of 
these models was tested using the sprayed-explosives technique, as described 
in Section V. 8. 

From five to ten tests, of successively increasing peak impulse, were 
performed on each model. In each of these tests loads were restricted to the 
quadrant of the shell which had the least previous deformation history. Since 
it was discovered early in the tests that the results were quite sensitive to 
initial eccentricities of the shells and to any slippage that occurred at the 
clamped edge, special efforts were made to ensure that the cross sections of 
the shells were circular before each test and that the bases of the shells were 
clamped securely. 

Figures 10 and 11 show the impulse-deformation data for each of the 
models (except M5, for which insufficient data were obtained). Plotted for 
each model are maximum transient displacements UT and residual displace¬ 
ments U versus peak impulse I0 for each of the two impulse durations 
provided by the large and small air reaervoirs. The solid lines are averages 
drawn through the residual deformation data, and the dashed lines are 
averages drawn through the maximum transient deformation data. 

For each model and for a given impulse duration, UT and UR are 
increasing functions of peak impulse. However, UR is zero until a finite 
value - the threshold of permanent deformation - is reached; for an impulse 
less than this value the deformations of the shell are purely elastic. Tor 
each model and for a given impulse, UT and UR increase as the impulse 
duration decreases. The values of and UR can be expected to approach 
limits as the impulse duration tends to cero: UT and URwill be maximum 
for a perfect impulse. 

45 



K U"Ctl0'l, U (,o' “d UR IW ‘0' » given impul.e durMion are 
b' n°n,hnea1r ,uch * »*y «>« «>e impulse approachoe a conatant 

the rUrg' de,ormation»- si"ce fracture wa. not included in 
tr;: lrOP"l:e: ^ P««* inve.tig.tion, the model 

However i, !. feUth«,h ^ lar8' deformation., rtowever, it is felt that the curves presented in Figures 10 and 11 provide 
l r y a.CCU'afe lndlca‘i°n. of impul.e-deformation character!.tic/of .hell, 

for moderately large deformation.. 

evlinrt. Th' !C,atwY °f data for the •tandard c°ne model Ml ánd the .tMdard 
modêtr Tt. ar' 8ee" t0 be con,iderably greater than for the other 

/ 8 m!"" ,°1 data Can be exPlainad by «te fact that the mode of 
deformed*0” Í ? WaS parUy buckling- "he re a, the other model, 
deformed atmply m the eo-called "collap.e" mode. Therefore, Ml and M6 
were particularly .en.itive to initial eccentricitie. of the -hell and inhomo- 
ry “f the ma"Hid preperties. For the particular buckling moof th... 

.hell, the maximum deformation, occurred at point, on either side of 8 = 0. 

frih t H f ^8, 3 at WhlCh U and UR were mea8ured. This fact also con¬ tributed to the scatter in data for the models Ml and M6. 

the atanHl8,ire8i12/nd 13Jare PhotoSraPh8 °i the standard cone model Ml and 
deformen 7 " m°del M6' ^«P^tively, in undeformed, slightly 
deformed, and moderately deformed conditions. These photographs show the 
“8 4m0de °f defoKrmation for the mod«l8 Ml and M6, as mentioned above. 
Figure i4 shows the heatshield cone model and the thick cone model M6 in 
undeformed and slightly deformed conditions. These models deformed 

i*n datTfly Whe ,'COllap8e" m0de, WhÍCh Partially ««Plains the small scatter 
in data for these two models. A significant fact to note is that all of the 
models failed by splitting around the front, just above the clamped base. 
Evidently for shells loaded transversely, as in the present investigation, 
the largest stresses in the shells are tensile stresses tending to pull the 
shell loose from the clamp in front. 

Figure 15 shows the sandwich cone model M3 and the foam-filled 
cone model M4 in undeformed and deformed conditions. The sandwich model 
was the most resilient of all the models; that is, for a given amount of 
permanent deformation the sandwich model sustained far greater transient 
deformations than any of the other models. The foam-filled model was 
peculiar in that hardly any residual deformations were observed up to the 
point at which the model sheared off completely at its base. 

As stated in the Foreword, one of the primary objectives of the present 
investigation was to generate information about the impulse-deformation 
characteristics of conical frustrumshells. The model tests were intended to 
provide correletions between the resistance to deformation by impulsive loads 
m .1,, rin? parameters; (1) three special composite shell structure 
(2) shells of various length, thickness, and cone angle; and (3) load durations. 
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In order to make these correlations a discrete measure of "resistance-to- 
deformation-by-impulsive-loads" was required. Suitable measures of this 
quantity are defined below. 

Let the symbol represent the peak impulse necessary to produce a 
maximum transient displacement of U? = 0.60 in. (ten percent of the mean 
shell diameter); and let the symbol iR represent the peak impulse necessary 
to produce a residual displacement of UR = 0. 30 inch. For a given model, 
1 o and lo are functions only of impulse duration. Thus, two values of iT and 
two values of (corresponding to the two impulse durations T0 ~ 4 ms and 
T° ~ 1 ms) can be obtained from Figures 10 and 11 for each of the models. 

These values of ijand if are tabulated in Table X, along with the 
weights W and the natural frequencies fj of the models. The larger values 
° 0 and I0 are associated with the models which are more resistant to 
deformation by impulse. Note that corresponding values of iT and iR are 
nearly equal: the maximum transient displacements are nearly twice the 
residual displacements for almost every model. The following correlations 
are based on the tabulated values of ij and iR given in Table X. The results 
for each model will be compared with the results of the standard model Ml; 
each of the other models is considered to be a simple variation from Ml. 

We first compare and correlate the results of the three composite 
shells (M2-M4). The independent variables for these shells are identical 
except for the shell compositions, which are listed in Table VIII. From 
Table X we observe tha: the heat shield model (M2) is about twice as resistant 
to deformations as the standard Model (Ml); that the sandwich model is about 
four times as resistant to deformations as the standard model; and that the 
foam-filled model (M4) is about five or six times as resistant to deformations 
as the standard model. Thus, of the composite shells, the foam-filled shell 
is the most resistant to deformations. However, the sandwich shell has the 
highest strength-to-weight ratio, since it is the lightest of the composite shells, 
weighing about half as much as the foam-filled shell. 

We next compare and correlate the effects of various geometric 
variables on the impulse-deformation characteristics of the models. The 
independent variables of the corresponding cylinder models M7 and M9, 
except for the cone angle a, which is 12.5* for the cone models and 0# for 
the cylinder models. From Table X we compute the following ratios: 
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(5.7.1) 

We observe from (5. 7. 1) that the standard cylinder (M7) is about 1.4 times as 
resistant to deformation as the standard cone (Ml); and that the thick cylinder 
(M9) iE about 1.6 times as resistant to deformations as the thick cone (M6). 
These results indicate that, in general, cylindrical shells are approximately 
1.5 times as strong as corresponding 12.5® conical shells. 

The independent variables of the standard cylinder model M7 are 
identical with those of the short cylinder model M8, except that the axial 
length b = 6 in. for M7 compared with b = 4 in. for M8. From Table X we 
compute the following ratios: 

Because resistance-to-deformation should increase very rapidly if the length 
of the shell were to be decreased further, we conclude that the strength of a 
clamped shell varies approximately as the reciprocal of its length. 

The independent variables of the models Ml and M7 are identical with 
those of M6 and M9, respectively, except that M6 is three times as thick as 
Ml, and M9 is three times as thick as M7. From Table X we compute the 
ratios: 
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(5.7.3) 

resistant to deforiwiin a. the 8 ' d d “ ibOU‘ 3'^ tim«* » 
cylinder modeuStu abou« 4 3 (MI>; "d th« >»' ‘»ick 
standard cyiindt“!rodeMM7l w *» deW.tion a. the 

varies approximately as 4/3 times' 11™«^«^ S,rength a COnical *he: 

results ^hotdd'betai^Iy'accurate8 's“'" °t CrPÍrÍ,°n8 ““ ■»«>“ *«• 

IIPÄMf 
riven tn rtÚr? 8 d »« •»« presented the test results, a. given in Table X, in dimensionless form in Table XI. 

8. The Sprayed Explosive Ts.e.^^1ir 

;sii=ss=2~s 
:^£rHFJ :L h ch small quantities can be produced from common stable chemicals V Thi« 

mo^rtr.tttr'T'L'ti^-r'1,^ red; 
was ' le It P,t lmp e <P" U“i‘ are,, tr0m ,hia ®Prayed explosive s found to be directly proportional to the thickness or surface densitv of 
«he deposited layer in the range 1-50 psi-ms. The impulse dtratilt. « l 
point were found consistently to be less than 5 microseconds. 

rnm„l.,W,h'n *uap'nd'd in water or acetone, silver acetylide-silver nitrate is 
ompletely safe and can be sprayed using a hand-held gun. It was found that 
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l\r™:r.r»dd:t;”t„:t"nc:rlet‘iy dry- » •»“ ^^... 
wa. uaed a. th, liquid ag'„. bacau.t „ * ,praying pr0ce•,• 
in a matter of minute, ('„der ideal cond'ilm0?"V™” “ Uy"' °f e*Plo*lve 
which was suspended in water reouirea a i I]vherea, a laY®r explosive 
the explosive i, ready to detonate or ifT .. Ur' t0 dry' Mt'r drVing, 
deactivated u.ing dilute hydrochloric acid“ot'hé H ??,** comPle"ly 

•< *•" .S»,» ÄKÄ,., 
technique. The test”roce'du^d^ffer'd*fro"^U*ing ■priyed «aploaiv 
in the application and^etonat^n o/tL'^r.i« rt ‘“T Pr0C'dUM m*in^ 
directly onto the model, with all but a quadrant õf thï moTei"'^Wa’ ‘"''“’'‘d 
off. The explosive thickne«« u,a<, 4 «»rant 01 the model surface masked 

gauge (of the type used ,o meal e pam,T ^ a Penetration 
layer of explo.ive had been aooÜ.d Th V ) * '“«ieiently thick 

off and deactivated, and the explo.i’ve coatingd‘ "’'""“'''d 
explosive coating appeal, .„ow white and haf 77..^:^°, 

«eating/lB^nL’^LLre: mÓr,P.ddir,hhee.T0Unt¿n8 Pla,:r “d «*dy lor 
used to measure transient displacements The e^i adjUBtable flxtur« was 

r tsv, r: “': '"“ - - ™“» * 
are shewn In Figure 10 for each of'.he'’mod eh 

eiz: icntrh.;: d:;;:::;:0.:,r,l0y tr11 rth tha 'hock tuba d«*-prcnt 

peak impulse, which were obtained by corre'ut“‘"“'“'“a ValUe* * 
coating thickness with previous calibration.. ' ,Ur«d 'xPlo,lv' 

9e The Prototype Testn 

test, of prototype structures anÍtMlí"*/^«!* models1’'11 d0r^eUtlo,1 b"w'en 
technique of modeling with "dissimilar “ma,7i7. T„ Z7r.VOV*rl,yt1“ 

o?.;väv -’Ä"ire 
contact with the Ler su^ce oíTach sh.'lT’F? ^"ear or in 
prototype shell, ready for testing ^ F'gUr' 16 ,h<~’ <“ «he 

r; ~ rrr;r»ri”! zzr- 
h gh-speed motion pictures were made of the prototype tests Th^. 
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Unfortunately, very little useful information was obtained from these 
tests. The prototype shells failed in either one or both of two modes: 

(1) slippage from the clamping device, and 

(2) tension failure of the welds. 

These failures occurred for all prototype shells for scaled loadings con¬ 
siderably less severe than those required to cause significant damage to the 
corresponding model shells. Atypical failure of the first type can be seen 
in Figure 17, while one of the second type can be seen in Figure 18. Attempts 
were made to rectify these deficiencies by rewelding and reinforcing the seams, 
and modifying the clamping device. We eliminated seam failure in this manner, 
but were not able to eliminate slippage at the clamped edge. 

Pretest measurements did yield values of the weights and natural 
frequencies of the prototype shells, which were used for comparisons with 
the model characteristics. Also, the general character of the permanent 
deformations of several shells whose seams remained intact could be observed 
and compared with the character of deformation of the model shells. Such 
qualitative comparisons generally showed good agreement. 
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SECTION VI 

CONCLUSIONS AND RECOMMENDATIONS 

1. Conclmiona 

A dynamic modeling analysis for response of RV-type vehicle« due to 
impulsive loads was developed in detail in this report. The analysli included 
the possibility of constructing models from "dissimilar" materials; that is. 
model materials which are different but similar to the prototype materials. The 
report also includes a discussion of errors in modeling, and a program of 
developing dissimilar materials to model typical RV materials was described. 
Modeling experiments, involving impulsively loaded conical frustrum shells, 
undertaken to illustrate the modeling theory, were also described. In addition, 
the several appendices provide a useful supplement to the text of this report. 

The investigation was successful in several respects. The detailed 
modeling analysis, including the discussion of modeling errors, can be used 
as a guide for performing similar studies in the future. The program of 
developing dissimilar materials, first investigated under a previous contract, 
was refined and expanded to include several prototype materials in the present 
investigation. Satisfactory model materials were obtained for lightweight core 
materials and heat shield materials, as well as for the primary structural 
material (aluminum). A spray technique was developed for fabricating shell- 
type model structures from these model materials; this spray technique was 
found to be successful for fabricating composite shells composed of two or 
more layers of different materials. 

The shock tube facility was found to be a reliable —though somewhat 
clumsy - method of loading models, with load durations on the order of the 
natural quarter periods of the model shells. Under a concurrent SwRI internal 
research project, a technique was developed whereby an explosive compound 
(silver acetylide) could be sprayed directly onto a model, and subsequently 
ignited by an electrical spark or an intense light pulse. This sprayed-explosive 
technique was found to be a sîie, simple, and reliable method of applying 
short-duration impulsive loads to models. 

The results of testing a series of one-fifth scale model conical frustrum 
shells made from dissimilar materials provided the following observations. The 
models were clamped rigidly at the small end and were impulsively loaded over 
a quadrant using the shock tube facility and the sprayed-explosive technique. 

1. To compensate for the effects of strain-rate sensitivity, the 
"static" properties of the model materials were "corrected" on the basis of 
measured natural frequencies of the models and the prototypes. Use of the 
corrected "dynamic" properties instead of the "static" properties resulted in a 
decrease in the predicted impulse resistance of the models of about 30 percent. 
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2. Of the three compoeite model •hells tested, the foam-iilled 
shell provided the highest absolute resistance to impulsive loads, while the 
sandwich cone provided the highest resistance on the basis of ratio of strength- 
to-weight. 

3. From correlations of geometric variables with the impulse- 
deformation properties of the plain models, it was observed that the cylindrical 
shells (cone angle a = 0*) are about 1,5 times stronger than corresponding 
conical shells (cone angle a = 12.5#). It was also observed that the strength 
of cylindrical and conical shells vaxies approximately as the reciprocal of 
the axial length, and approximately as 4/3 times the shell thickness, for the 
range of shell variables considered in the present investigation. Note that 
tnese observations hold only for shells with clamped-free boundary conditions. 

4. From correlai.ions of impulse-deformation properties of the 
model shells w>th the duration of the applied impulse, it was observed that 
less peak impulse was required to deform a model by a given amount for 
shorter pulse durations. This effect can be expected to approach a constant 
value of deformation/impulse for very short pulse durations. The ratio of 
the deformations obtained for very short duration impulses to the deformations 
obtained for impulse durations on the order of the natural quarter periods of 
the model shells was never greater than about 2:1. 

5. Two distinct modes of deformation were observed in the model 
tests. In the first mode, the very thin shells deformed partly by stretching 
and partly by buckling circumferentially; this mode of deformation was found 
to greatly reduce the strength of the shells, and provided erratic data. The 
other mode of deformation was the so-called "collapse" mode, consisting 
mainly of bending, which was characteristic of the thicker models, and 
provided much more reliable data. 

6. Initial eccentricities and slippage at the clamped edge significantly 
reduced the strength of the shells — particularly of the thin shells. All 
models failed by splitting around the clamped edge. This fact indicated that 
the highest stresses occurred at the base of the shells. 

A series of prototype shells was tested using sheet explosives to 
provide the impulsive loads. These tests produced inconclusive results because 
of slippage in the clamping device. Consequently, the impulse-deformation 
characteristics of the prototypes and models could not be compared, and the 
prototype test results were not used to verify the modeling technique. 

2. Recommendations 

In retrospect, it is clear that our choice of the type of structure and 
method of comparing model and prototype results (and thereby either validating 
or disproving the modeling philosophy) was unfortunate. The full-scale 
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experiment* were very limited in number and were planned and executed late 
in the program. They proved to be to expensive that deficiencies in the test 
arrangement, which only became apparent after testing commenced, could not he 
be corrected within the fund limitations of the program. The choice of conical 
shells as the structural geometry not only dictated high cost for prototype 
fabrication and test; it also obviated an accurate analysis of the response of the 
structure to impulsive loading, 

A much more appropriate plan for validation of the model laws would 
have involved testii g much simpler structures than truncated cones. Tests 
of flat plates, or beams, or simple rings would have had a number of advantages 
over testing of cones. First, for all'of the simple shapes, there are 
available analytical predictions of plastic response to impulsive loading. 
References 5 through 11 present such treatments. Second, alarge number of 
experiments have been performed in which transient and permanent large 
deformations have been measured. See, for example, References 5,6, 8, and 
15. Third, suitable experiments, on both prototype and model scale, are 
much simpler and less expensive to conduct than tests of cones. By an 
appropriate program of testing of the simpler structures, one could therefore 
either model existing test results, or conduct a complete modeUprototype 
comparison. One could also compare predicted response for materials 
exhibiting strain-rate sensitivity f 3) with measured response for our some¬ 
what exotic model materials. Problems of proper mounting of the test 
structures would be lessened, and the costs of prototype tests so reduced that, 
if necessary, many such tests could be conducted for comparison with model 
data. • 

The lack of success in validating the model law during the test program 
reported here should not lead to the inference that this model law is invalid. 
The Institute has just completed an extensive test program on response of 
structural models of a very complex structure (the Apollo command module) 
to water impact, which required construction using materials having markedly 
different properties from the prototype. We were able to compare our results 
with results of full-scale water impact tests, and showed very good correla¬ 
tion! 161. Furthermore, the results of limited tests on beam structures con¬ 
ducted under a previous AFWL program indicated the validity of the law for 
relatively small permanent deformations. 

We feel very strongly that more extensive experiments on simple 
structures should be conducted to determine the limits of usefulness of the 
technique of dynamic modeling with dissimilar materials. Also recommended 
are more detailed investigations into the properties of the model materials 
developed in this program. Such an investigation could be made using the 
dynamic biaxial testing machine recently built at Southwest Research 
Institute [ 18]. 
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APPENDIX A 

A BRIEF REVIEW OF CONTINUUM MECHANICS* 

Continuum mechanics ie the study of motion of continuou* bodies in 
Euclidean space, and is primarily concerned with the mathematical expressions, 
or laws, which govern such motion. Euclidean space is the three-dimensional 
space of ordinary experience, in which the notions of straightness, flatness, 
aid parallelism have precise meanings, and for which time is a scalar 
parameter independent of position. Existence of Euclidean space implies 
existence of "inertial" Cartesian coordinate systems for use as reference 
frames. 

A continuous body is any finite portion of extended matter whose 
boundary and interior can be located by (spatial) points in a continuous region 
of Euclidean space at a particular instant of time, and for which a positive 
mass density exists as a measure at each (material) interior point. Motion 
consists of the continuous variations with time of the spatial coordinates of 
material points in a continuous body with respect to a "fixed" reference 
frame. Any motion at a material point can be decomposed into translation 
along an arc, and simultaneous rotation and stretching along three orthogonal 
axes. 

The fundamental concepts of mechanics are density (mass per unit 
volume) and stress (force per unit area), and the fundamental problems of 
mechanics involve relating the scalar field of density and the tensor field 
of stress at material points in a continuous body to kinematical quantities 
such as deformation, deformation rates, acceleration, and distance from 
gravitating bodies. The fundamental field equations of mechanics are 
expressions of balance of mass and momentum, which can be stated as 
follows. 

1. Balance of mass. The mass contained in a material volume V, 
which is any volume whose boundary consists of a constant set of material 
points, is constant. Thus, an expression of balance of mass is 

(A. 1) 

where p is the mass density. Equivalently 

p + div(px) = 0, I pU) = 0 (A. 2) 

* Most of the material contained in this appendix has been condensed from 
References ( 19) and [ 20). 
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where x is the velocity vector, and where the bracket denote* the amount of 
jump at a singular surface propagating through the material with speed U. 

2* Balance of momentum. The rate change of linear and angular 
momentum of any material volume V is equal to the total force and total 
moment, respectively, acting on V. Thus expressions for balance of momen¬ 
tum are 

and 

d V S V dt / p*dv= / -W8 + / 
v s 

£/ ï*Pïdv = f rxt(n)d* 

pfdv 

•N 

► (A.3) 

where t(n* = T • n is the stress vector acting on an element ds of the surface 
S of V with unit normal n, where pf is an extraneous body force such as 
provided by gravitational attraction, aur where £ is a position vector with 
respect to a fixed origin. Equations (A.3) may be written equivalently as 

px - div T + pf, ^T*n+pxul=0 

and ► 

The stress tensor T is symmetric in the absence of body torques. 

(A. 4) 

3. Initial and boundary conditions. In addition to the expressions 
( A. 1 ) or ( A. 2) for béilance of mass and the expressions (A. 3) or (A. 4) for 
balance of momentum, there are required initial and boundary condition 
equations, and a set of material constitutive equations, in order for a 
problem involving motion of a continuous body to be well set. Initial and 
boundary conditions equations can be stated in the form 

ïo * Îo r ï(i^»to)* Po = PÍX^to) (A. 5) 

and 

ï* 5 = Í<a)<X^t), x(X^t) ^xc(t), t¿tQ (A. 6) 

where x are spatial coordinates and X®, XA are material coordinates of a 
body B with surface A and unit normal a. Here t0 is the initial time, ?.nd 
xc are rigid constraints which may limit the motion of B. 



The following equations, expressed in terms of the coordinates x, XB, 
are equivalent to the balance of mass equations (A. 1) or (A. 2): 

P = PoJ'‘<xBt), J = (g/G)1/2detF, F = grad x(xB) (A. 7) 

Here g, G are determinants of the metric tensors associated with the 
coordinates x, X®, respectively, and F is the deformation gradient. 

4# Constitutive Equation». Constitutive equations are relationships 
between stress and deformation, independent of acceleration, and thus 
distinguish particular materials. A general constitutive equation for deformable 

solid materials can be written f.s 

C(xBt) = 3 [t (X^s), p,\,T ,cm] (A. 8) 
~ L a ~ J 

S=t0 

where 3 is a functional relationship between the history of stress at the 
material point XB and the Cauchy-Green deformation tensor 

C = CT = FT * F (A* 9) 

Here p,\,T, ar d cm, m = 1,2,..., M are material constants with dimensions 
of stress, length, time, and unity, respectively.* Let tQ be the initial time; 
before t0 the material is in its uniform reference condition: 

C (xBto) = 1, T(XB,t0) = 0 (A. 10) 

If the material is initially isotropic, then the functional ^ is subject to 

the restriction 

3 ^A'TfsJ'ATj = A* 3 [t(s)]-^T (A. 11) 

s=t0 8=to 

where A is an arbitrary orthogonal transformation 

A* AT = AT • A = 1 (A. 12) 

* The constitutive constant with the dimension of length is included because 
most materials have structure, whether metallic crystals or large orgain'; 
molecules, etc. It is not clear how this characteristic length parameter 
would enter into the constitutive equation. 
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The constitutive Equation (A. 8) actually represents a general class of 
constitutive equations, and as such has little particular information content. 
The elements of a particular constitutive equation applicable for describing 
elastic, plastic, and viscous solid material behavior are presented in 

Appendix D. 

Equations (A. 4) through (A. 9) comprise a system of equations which 
is sufficient to determine the mass density p(X^,t), the stresses T(Xb, t), 
the deformations Ç(XB, t), and the motion x (XB, t) of the body B for all time 
t ^.tQ. A deformable solid body whose motion is determined by Equations 
(A. 4) - (A. 9) is called a mechanical wystem. The general formulation 
presented above can easily be generalized to include a mechanical system 
consisting of several bodies, either in contact with or moving freely about 
each other. Only with difficulty, however, can the general equations be made 
to include cleavage of a body, penetration or mixing of two bodies, or 
rolling of one body on another. 



APPENDIX B 

DIMENSIONAL ANALYSIS (ABSTRACT TREATMENT) 

Dimension^ analysis is the method of deducing information about a 
phenomenon by considering solely relationships between the dimensions of 

h! P y81 variable8‘ The «oal of dimensional analysis is to derive 
the conditions necessary to insure that certain variables in two or more 
systems will be similar, that is, exactly proportional for corresponding pointi 
of space and time. The following presentation is restricted to mechanical 
systems, as defined in Appendix A. 

« ♦ i analy8i8 can be developed from the following fundamental 
postulates and definitions of mechanics: 

(nm» f & ^ ^ fundamental mechanical entities: 

InHH . ' ma8S 1 I'- length ( LI ’ and timC 1 71 ‘ Each of th*8a fundamental 
entities possesses a dimension: F, M, L, and T, respectively; three of 
which are defined to be independent. Thus 

[ F) ■ ( MLT-2] 
(B.l) 

2. Any variable which bears an effect on any mechanical system 
can be expressed as a product of powers of the unit fundamental concepts, 
and will possess corresponding dimensions. For example, a loading variable 
which might produce an effect on a given mechanical system is impulse per 
unit area; its dimensions are given by 

l I) * ( FL-2T) = [ ML"1 T”1] (B.2) 

3. All mechanical variables can be related by a set of field 
equations expressing balance of mass and momentum, a set of material 
constitutive equations, and a set of initial and boundary conditions equations, 
in such a way as to render determinate the response of any (closed) 
mechanical system. Equations (A. 4)-( A. 9) of Appendix A represent a set 
of equations which (theoretically) can be used to determine the behavior of a 
wide class of deformable solid bodies. In practice these equations are 
insoluble for all but the simplest cases.* 

* The technique of modeling can be used most advantageously for problems 
in which the techniques of mathematical analysis are inadequate. 

62 



all variable, in term, of the fundamental dimewi™. * d,m'n,ion8 oí 

finite .e?o7^e:::irtr:.h:;:!.al*y't'ms,-hich •• >v > ¡asurable independent mechanical variables 

îTil MPi L^ÍTri) ; i = l|2.! 
(B. 3) 

Äm ™:Slri^Ïe adequately de-ib'd bV a finite .e, of 

Wj[ MPj LS) Trj J ; j = 1,2.J 
(B. 4) 

7.7- •• ■ “ “ 

”j = Vj (Vj); j = 1, 2.J;i = l,2.I (B 5) 

The simpleat .et of dimen.ionally independent (.calar! variable. 

n8[MP.l>Tra]; , = l(2>3 
(B. 6) 

are selected from among the independent variables n- A „v- • 

::VuhcV.c.bhee“ry ind— - - -- n^r 

Z3 _ 3 j 

8 2 csPs* cscÎ8» X82 Csr8 0 for any cs) (B. 7) 

(r^,8“ee:^;hL" 

variable. Pr'mary inde'>ende''t variable.. The remaining independent 

irk( MPkLqkTrkj 
^s* ^ = 1.2,. , . , I (B. 8) 

are called secondary independent variables. 

of rT ThC P|rimary independent variables tt8 may be used to form two sets 

the lTconnda Vr0drt8 ^ ^ ^ am°ng thc dePendent variables *• and 
the secondary independent variables trk, respectively. J 
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Thus 

"j = (^=2)Cj2 (^s=3)Cj3 

"k = V(^8 = l)dkl (*8=2)dk2 <ffs=3)dk3 

where Cjg and dks are integers or rational fractions which must satisfy the 
following equations 

By the requirement of dimensional homogeneity (postulate 4) the set 
of functional relationships (B.5) can be reduced to a set of functional relation¬ 
ships among the fewer number of dimensionless variables (B.9). Thus 

"j = wj j = ^ 2» •. » J; k = 1, 2.1-3 (B. 11) 

This important result, known as the Buckingham (Pi) theorem*, can be itated 
as follows: If the response of a mechanical system is determined by a set of 
dimensionally homogeneous Equations (B. 5), then these equations can be reduced 
to Equations (B. 11) among the dimensionless variables. 

(B. 9) 

Mechanical similitude is based on the following interpretation of this 
theorem. Given a mechanical system S, the variables of which satisfy 
Equations (B. 11). For every mechanical system which is determined by 
the same independent variables ttj as S, and for which the dimensionless 
products have the same values as S, the dimensionless response 
variables wj' will likewise have the same values of £, regardless of the form 
of the functional relationships governing the wj'. Mechanical systems for 
which the dimensionless response variables nj' are equal are said to be 
mechanically similar. 

* For a simple, rigorous proof of this theorem, see Brand ( 21). 
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APPENDIX C 

THEORY OF MODELING (ABSTRACT TREATMENT) 

The dfimen810nal analyBi» developed in Appendix B will now be applied 
to the case of two systems, a prototype and a. model. The objectives of the 
theory of modeling are to determine the conditions under which a model will be 
similar to a given prototype, and to derive equations for predicting the prototype 
response from the observed response of the model. As in Appendix B the 

¡FrT6 A °V8 f e8tr[Cted to mechanical systems. The only change in notation 
from Appendix B is that variables associated with a prototype and a model are 
denoted by the subscripts p and m, respectively. 

Consider a prototype and a model which are determined by the same 
independent variables, as 

JP ^jp 

"jm " "jm^im^ 

j ” 2,.., J; i = 1*2,.,,1 (C.l) 

in analogy with Equation (B. 5). If the independent variables ir- are 
divided into primary and secondary independent variables accordinTto 
Equations (B. 6)-(B. 8), 

"sp* wkp = 

Trsm» ^km 

wip _ ^sp 1 

= ifim - TT8m J 
1,2,3; k = 1,2,..,1-3 (C. 2) 

then by Equations (B. 11) there exists a set of functional relationshipi 

"j? " "jp^kp)' njm _ ^jm ^wkm^ 

among the dimensionless relationships 

i 3 3 
*jp = ’jpn ; (">p rcj* "¿p = ’kpn • (%p)-di<. 

it: = it. 
jm jm 

1 km ^ ’ sm' 

(C. 3) 

(C. 4) 

where the exponents cjs and dkg satisfy Equations (B.10). 

If the dimensionless independent variables of the prototype and the 
model are equal, 
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(C. 5) "km = Kp> k = -3 

then by Equations (C. 3) the dimensionless dependent variables must also 
oe equal. 

"jp = ^jm’ J = 2< (C.6) 

Equation (C. 6) is the statement that the model and the prototype are similar 
and Equation (C. 5) is the condition necessary to insure similarity between 
the model and the prototype. 

Equations (C. 5) and (C. 6) may be expressed in terms of the scale 
factors between the corresponding prototype and model variables. Substitutin* 
Equations (C. 4) into Equations (C.5) and (C.6), we find the following equations 
which imply similarity between the prototype and the model. 

« wkm/irkp = <M>dkl(*2>dk2(M>dk3 (C. 7) 

\j B "jp^jm = (M>’Cjl(*2>‘Cj2(*3rCJ3 (C.8) 

Here « "sm^spî 8 = (C. 9) 

are defined as the scale factors between the primary independent variables 
of the prototype and the model. 

The scale factors \8 are independent in the sense that values may be 
assigned arbitrarily to each of them without affecting the values of the other 
two. Selection of a specific set of \s automatically fixes the scale factors 
Xj and Xfc between all corresponding variables of a prototype and a model, 
by Equations (C. 7), (C.8). 

In a typical modeling investigation we are given the prototype 
independent variables irip and we seek values of the prototype response 
variables Wjp. By constructing a model which depends on the same 
variables Trim _ irj as the prototype, and by requiring that the model be 
mechanically similar to the prototype, we are led to Equations (C. 7)-(0.9), 
m which irgm. irsp and irkm . tr- are appropriately chosen primary and 
secondary independent variables, respectively. Equations (C.8) express 
the (ideal) model independent variables in terms of the given prototype 
independent variables, and so govern construction of the model. Equations 
(C.9) express the (ideal) prototype dependent variables in terms of the 
measured model response variables, and thus represent the desired 
prediction equations. 
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APPENDIX D 

SOLID MATERIAL BEHAVIOR AND CONSTITUTIVE EQUATIONS 

Th,s appendix de.cribe» the mo.t common .tre..-deformation 

Wh,ch occur in ,olid materials, and include, a di.cn..ion of 

Umê th !quat‘0n' ÍOr predictinS ’Olid material behavior. At the pre.ent 
onTthát nr'.dI’ n0t e>I¡8t a ’’‘‘.factory theory of .olid material behavior . 
one that predict, a majority of the predominant material effect, and that Í. 
consistent with the concept, of three-dimen.ional .pace, 

element, for constructing .uch a theory are pre.enfed ii thi. apTenÏix. 

Thu« aM.atieIÍalS Can be cla88ified bV thcir Btress-deformation behavior 
Thus, a solid is a material which retains some memory of its initial state 

tha a :0178, K I0“ Can be di’Iiogui.hed from a fluid by the pmpe y 
that a .olid can be brought into equilibrium, wherea. a fluid continue, to 
deform, under a .mall externally applied .hear .tr.... 

Solid material, cncompa«. the range from relatively rigid material. 

«ml ry 1: 1? T COn,ide'ln* th' ‘m'-1 ’<«’ a. invar!», for 7 
time, to rubber or jelly-like .ub.tance«, which can elongate .everal 
hundred percent before rupturing. Between these two extreme, lies the 

C::rtyela.,80c Du7rill8¿ The m08, typical •‘»■-d.iormMion ^m.„a 
de.cri Jrf i a, V“COU' '>,'0Perti'’- Th«” propertie. have been 
described in numerou, references, of which we mention only two: Chapter 2 
of Jaeger [ 22) and Chapter. 8-12 of Shanley [ 23). The fouLing discus.ion 
summarizes these stress-deformation properties. 

Consider a cylinder of solid material subjected to a history of 
uniaxial stress (either tension or compression) along the cylinder axis. 
Suppose that the axial force and the axial and transverse displacements of 
k cylinder s exterior have been measured and recorded versus time These 
quantities can be converted to stress and strain, and plotted as shown'in 

igure 2, provided the deformation is uniform throughout the cylinder. Below 
a certain stress a0 the cylinder tends to return to its original length. This is 
the property of elasticity. Within the elastic range, for most materials, stres 
s nearly proportional to strain. The ratio of axial stress to axial strain in 

the elastic range is called Young's modulus E, and the ratio of transverse 
strain to axial strain is called Poisson's ratio v. 

If the material is stressed beyond the yield stress <r0 and then 
unloaded, the cylinder will not return to its original length, but will sustain 
a permanent deformation. This is the property of plasticity. The yield stress 
is the stress at which curvature of the axial stress-axial strain curve first 
becomes apparent. As the cylinder is stressed further, the strain continues 
to increase and, for a typical stress-strain curve, asymptotically approaches 
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a straight line of slope E' for large strains, as shov'n in Figure 2, The 
quantity E1 might well be called the plastic modulus. Meanwhile, a typical 
transverse strain-axial strain curve asymptotically approaches a 
straight line of slope v1 ~ 1/2 for large strains. The quantities Y and Y* 
shown in Figure 2 are also characteristic of the plastic deformation. 

Not all materials exhibit smooth stress-strain curves such as shown 
in Figure 2. For example, some ductile materials exhibit a sharp yield point, 
followed by a brief interval of strain in which stress remains constant or even 
decreases slightly before beginning again to increase with strain. Other 
materials exhibit a smooth stress-strain curve with two or more distinct 
yield points. The characteristic feature of a brittle material is that it can 
sustain very little plastic deformation before rupturing. 

We return to our discussion of a typical ductile solid material. If 
the yielded material is unloaded from a stress <r\ greater than<ro, and 
reloaded in the same sense (tension or compression), then the stress-strain 
curve follows the initial slope E until the stress returns too-j, at which 
time the stress-strain curve resumes its post-yield slope E1. A similar 
phenomenon occurs for the curve of transverse strain versus axial strain. 
This property whereby the yield stress increases with plastic deformation is 
called workhardening. If the unloaded material is reloaded in the opposite 
sense, then the material remains elastic until a stress of approximately 
Z*0 (compression or tension) is reached, at which time the material 
yields in the opposite sense as before. This property whereby the yield 
stress decreases with plastic deformation for loading in the opposite sense 
is called the Bauschinger effect. 

The elastic and plastic properties described above occur regardless of 
loading rate. However, there are certain material properties, called 
viscous properties, which are dependent on loading rate. "It is found that 
when a load is applied suddenly, the resulting strain is not taken up 
instantaneously, but is approached asymptotically, and also that the work¬ 
hardening portion of the stress-strain curve is raised as the rate of strain 
increases"! 22). Other viscous phenomena include creep, which is a slow, 
steady deformation under a constant load, and relaxation, by which stress 
gradually decreases under constant strain. We mention here that temperature 
usually has a pronounced effect on the viscous properties of a material. For 
the remainder of this appendix we assume that temperature and all material 
properties are constant. 

The foregoing discussion of solid material behavior dealt strictly with 
the response of a cylinder to uniaxial stress. Obviously, more complicated 
tests could be performed with the material subjected to more complicated 
states of stress. However, the discussion of uniaxial stress brought out the 
essential features of the stress-deformation behavior of typical solid 
materials. Any theory which predicts the elastic, plastic (including 
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workhardening and the Bauachinger effect), and viacou* properties - as 
described above - for a history of uniaxial stress, and which predicts 
similar properties for a general history of stress, should be a good theory, 
worthy of careful consideration as a general constitutive equation for 
solids. 

We next develop a mechanical model which can be used to relate stress 
and strain magnitudes in such a way as to predict the elastic, plastic, and 
viscous properties described above. Two advantages of developing a 
mechanical model to predict the desired properties are: (1) mechanical 
models provide definite material constants which can be evaluated from 
single material tests, and (2) mechanical models provide an economical 
means of visualizing rather complicated material behavior. The mechanical 
model will be considered as an element to be used in constructing a general 
constitutive equation. 

We first introduce the mechanical elements from which the mechanical 
model can be developed. A spring is an idealization for the mechanical con¬ 
cept of elasticity. The relationship between a stress magnitude a and a 
itrain magnitude ee for a linear spring is 

^e = ♦ACeee 

e = (pce)"1<re 

where ^ is a representative stress constant and ce is the dimensionless 
elasticity constant of the spring. A dashpot is an idealization for the concept 
of viscosity. The relationship between a stress magnitude (rv and a strain 
magnitude ev for a linear dashpot is 

} (D. 1) 

r~~v e--i 

6—WV—ó 
I I 
I « 
1-€e-' 

<rv = pTCyCy, cv«dcv/dt 

€v = / Cydt = (pTCy)“1 f <Tvdt 
to to 

(D.2) 

where t is a representative time constant and cv is the viscosity constant 
of the dashpot. A yield element is an idealization for the concept of plasticity. 
Tne relationship between a stress magnitude <r and a strain magnitude 
for a yield element is: 
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•V ! ap-1 
! 
O- 

'-p I 

e-4 
L-fp—i 

ap = t*CpU(T€p), €p «d€p/dt 

cpdt = €pn + 0 Cpdt 
(D.3) 

where cp is the plasticity constant and U(x) is the yield function defined by 

U(x) = 1 for X > 0 

I U(x) I < 1 for X = 0 

U(x) = -1 for X < 0 

We assume that the yield element is initially unstrained, 

€po = 0 at time t = t0 

(D.4) 

(D.5) 

and that subsequent yielding o:curs in N finite time intervals 

Cp = 0 from t0 to tj, t{ to t2.to tN 

I Cp I > 0 from tj to tj, t¿ to t^(..., tN to t'N 

Thus the strain at the end of the time interval from to t'j^ is 

where to < t„ < -K $ t}< < t (t being the current time). 

(D.6) 

(D.7) 

Consider the mechanical model composed of a yield element Cp in 
parellel with a dashpot cv, this combination connected in series with a spring 
c2, and this combination connected in parallel with another spring cj. The 
symbolic representation, and the equations expressing balance of stress and 
compatibility of strains are given as: 
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-<r(t)- 

c2 r^° 
r-^Wv— 

C1 
M/W 

-c(t)-J 

Balance of stress 

”■ ''I +(,r2 =‘rp+'ry' 

Compatibility of strain 
€ = ei = c2 + (ep = cv) 

(D.8) 

Define the following constants 

cd = C1 + c2* eN*^c2^cd^pN 

* <r^tN+l^ CN B = C^N+1^ 

(D.9) 

The gross behavior of this mechanical model can be obtained by substituting 
Equations (D. 1)- (D.7) into Equations (D.8). Thus 

For < t < tN+1: ap I < ^cp« ^p = «V = €p =€v = 'TpN 

(D. 10) 

<r/p = cd€ - c2epN = cd(e - eN), cd€ = <r/p + cdeN 

For t = t^ or t^! : <rp =±pcp, cp = év = 0, ep = ev = €pn 

<rN/^ = clepN± cpcd/c2 = c2^clcNi: cp^ CI€ N* cp 

eN =€pN±cp/c2 = ^cd€N±cpî/c2 = ^N/>1,:cp^cl (D. 11) P 

rtN 
For tN+1<t<t'N+i: <rp = ±»tcp* ep = ev = t'pN+J cvdt> 

tN+1 
ev > 0 

p'^Cyff +c2T'1Jí<rdt) = cvcd(c -eN) + cic2T_iy 

lN+] 

€ dt 

tN+l 

or (c^ +TCy)ï ) = cic2e + Tcvcdé ¿ c2cp 

► (D. 12) 
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Equations (D. 10) - (D. 12) can be used to determine the complete history of 
strain e (t) for the mechanical model when the history of stress <r(t) is known, 
or vice versa. These equations predict the effects of initial elasticity, yield, 
plastic flow inch ding workhardening and the Bauschinger effect, and post-yield 
dependence of stress on the strain rate. Because this mechanical model 
qualitatively predicts all of the predominant stress-deformation properties 
discussed earlier, it should have value for describing the constitutive 
behavior of solid materials. 

We remark that the simple linear dashpot is probably the most drastic 
source of discrepancies between predictions with this mechanical model and the 
behavior of actual materials. The dependence of stress on strain rate is 
usually much less for actual materials than that predicted by a simple dashpot. 
Therefore, in devising a more realistic mechanical model, we should replace 
the simple dashpot with a more sophisticated linear dashpot or with an 
appropriate nonlinear dashpot. 

We next present a complete and consistent set of variables for describing 
the states of stress and strain at a point, which can be used in constructing a 
general constitutive equation for solid materials. We recognize that it is 
merely an algebraic exercise to translate a constitutive equation, once postu¬ 
lated in terms of given "state variables," into equivalent "state variables." 
Equation (A. 8) of Appendix A represents a very general constitutive equation, 
which is written in terms of the stress tensor and the Cauchy deformation 
tensor. However, Equation (A. 8) has little information content, and the 
general stress and deformation tensors are not well suited for the purpose at 
hand. We consider a simpler and more explicit representation of stress 
and strain. 

The stress tensor o- is symmetric in the absence of body torques, and 
the strain tensor | is symmetric by definition. Any symmetric second-order 
tensor £ is completely described by three orthogonal vectors Aj, called 
principal vectors, whose magnitudes Ai are roots of the determinantal 
equation 

det (A - Ajl) = 0, i= 1,2,3 (D. 13) 

and whose directions can be determined by solving for the unit vectors A^ 
in the algebraic equations 

(A - A. 1 ) • Ã. = 0, i =1,2,3 (D. 14) 

Therefore, instead of the stress and strain tensors we consider simply the 
orthogonal principal stress and strain vectors 

co 

= if jî £k = Ik^k. ek= ynßn(6k)n (D. 15) 
*-• 1 
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where 5-j and gk are unit vectors in the direction of 5. and €k, respectively. 
The principal strains ek are defined by a power series in terms of the principal 
extensions 6j , so as to permit "fitting" of the theory to stress-strain data. 

The single deficiency of the principal stress and strain vectors (in the 
spatial description) for use as "state variables" is the failure of these variables 
to include any information about the orientation of the material. This deficiency 
can be corrected by introducing an arbitrary rectangular triad of unit vectors 
in the material description, and by referring the principal stress and strain 
vectors to the material description. 

A constitutive equation is then required to depend on only twelve 
independent scalar variables: the magnitudes <r. and ek of the principal stress 
and strain vectors, and the components of two orthogonal unit "rotation 
tensors" £ and B which specify the directions of the principal stress and strain 
vectors with respect to the unit triad. Only three of the components of £ or 
B are independent because A and B are each restricted by six orthogonality 
conditions. In addition to the above variables, a constitutive equation may be 
dependent upon certain "preferred directions, " indicating anisotropy of the 
material. One form of a general constitutive equation would involve relating 
the variables <r. , ek, A, B by the mechanical model discussed earlier. 

We conclude this discussion of constitutive equations by deriving a 
specific constitutive equation for the case of uniaxial stress - for which the 
directions of the principal stress and principal strain vectors coincide and 
remain constant with respect to the material. In this case the "rotation 
tensors" A and Ç are constant, and can be equated to the unit tensor 1 by 
a proper choice of the unit triad. In the general case, the directions^of the 
principal stress and strain vectors neither coincide nor remain constant with 
respect to the material. 

We consider a unique transformation from the principal stress and 
strain vectors to an orthogonal set of mean and deviatoric stress and strain 
vectors, defined by the following formulae 

5m = (íTl +52 +53 )^/^3, °m =^1 + ^2 +^3)/^ 

5d=5l + 52 + 53 " 5m » 5d'=° (D. 16) 

^=(2/3)^2(0-2 +°2 +^3 -^1^2 -^2^3 -°¾^) 
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For uniaxial stress 

<T| = -P/ira2, <rm = 0¾ /nTI, <rd = 0¾ \/ 2/3 (D. 17) 

where P is a compressive force on a cylinder of radius a, as shown in 
Figure 2. For small strains 

em = + €d ~ k t " ctW 2/3 (D. 18) 

The mean and deviatoric stress and strain vectors for the case of uniaxial 
stress are shown in Figure 19. 

As a specific constitutive equation, we consider mean stress and 
strain to be related elastically 

and we consider the deviatoric stress and strain to be related by the mechanical 
model considered earlier. As a specific material test we assume the 
cylindrical specimen to be mounted in a testing machine of resilience k, with 
an overall testing machine motion given by 

d-p/b = 6p = 6p(t - t^) (D. 20) 

where b is the length of the specimen. tj¡j is the instant the test begins, and 
b6j is the constant speed of the testing machine. 

The initial elastic response of the specimen is given by 

C|/jl = 6p/ß,=6p(t“ tjyj)/ß' 

el - c| N = ^2^cd + 1^cmW<rf 

et " etN= " (1/cd - - 

(D. 21 ) 

where 

At the yield point (t = ^+1^ we ^ave: 
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(D. 22) 

«Tin = '¡Tfz ± cpcd/c2) 

tN+l -tN = (ß76T)(o|'N/H) 

eIN ‘ elN = (2/cd + 1/cmW°i N/3»l) 

etN - etN = - 0/cd - 1/cm)(oj/ N / 3ji) 

After yielding the response of the cylindrical specimen is 

i/t* = + (7rr),,+(¿0 [‘ - e*p(-^-)] 

, = ';N+(a'- Ïï0)''-(l^) [‘ ► (D. 23) 

Cf = c' 

where 

a' = 1 + _J_ + ¿ 

C1C2 ^ 3Cm 3cl 

The above expressions provide remarkably good predictions for the response 
of a cylindrical specimen to a uniaxial compression test. In particular, all 
the material properties discussed at the beginning of this appendix are pre¬ 
dicted by these expressions. 

We can relate the properties E, E', Y, Y', v, and v', as defined i" 
Figure 2 for a uniaxial compression test, to the material constants p, t, c , 
cl» c2> cp* and cv, which appear in the inelastic constitutive equation. 
Substituting Equation (D.21) into the definitions of Young's modulus and 
Poisson's ratio results in 

/doj\ small 

V del ^ elastic ^^tli<t<tN+1 
3p(— +—)_1 

'cd cm/ 

► (D. 24) 

V £ 

small 

elastic 
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which can be solved for ficm and jic^ as 

Hcm = E/(l -2v), jxCjj = E/( 1 + v) (D. 25) 

Likewise, substituting Equation (D.23) into the definitions of the plastic 
moduli results in 

E'-fïiV”8' -lim /£íA = 3h (_£. + _LV* 
^C1 Aplastic ‘'-“Vil/ ‘‘Ui cj 

V' .(Hl)Ur6e = Um (M .(j_L)(-i.+ _L) 
\de|/pia8tic f-ooVci / \cj cm''cl cm' 

which can be solved for pcm, pc^, and pc^ as 

-1 

pc m 1 - 2 V* 1 - 2 v 

- ■ * -(f) - ‘-ffi] 

-1 

(D. 26) 

. (D. 27) 

The stress-strain curves asymptotically approach straight lines with 
slopes E1 and v1 for large plastic deformations. These asymptotes can be 
expressed as 

<T| = Y + E' (c| - f|N) 

et - ctN = - v' - «I N> 

(D. 28) 

where Y is the intercept of the asymptote to the curve ) with the <Tj -axis, 
and Y' is the intercept of the asymptote to the curve ¡) with the €j -axis. 
Substituting Equations (D.23) into Equations (D.28) yields 

(D. 29) 
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Results of tests at two distinct loading rates can be used to solve for the 
remaining material constants, by the following formulae: 

*,c- = /T^c1\/Y2«T1-Yi8tZ\ (I.CJHMC2) /*p1‘T2 -^Tl \ 

M1 Tc V = 
3(nci)2 / 1 

Ziß'j'j - 

(D. 30) 
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TABLES AND ILLUSTRATIONS 
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TABLE I 

MEASURED PROPERTIES OF THE PROTOTYPE MATERIALS 

Material designation 

Weight 
density 

(pci) 

Uniaxial compress 

€ & 0. 2 min“ * 
ion test data 

€ sx 2. 0 min" * 

E 
(kpsi) 

Y 
(kpsi) 

E' 
(kpsi) 

E 
(kpsi) 

Y 
(kpsi) 

E' 
(kpsi) 

AL. 6061-T6 aluminum 

HS. C-124 ablator 

PF. FPH- 10H foam 

. 100 

.042 

.005 

104 

320 

8. 7 

40 

10 

. 27 

300 

0 

0 

104 40 300 

TABLE II 

"STATIC" PROPERTIES OF THE MODEL MATERIALS 

Material designation 

Weight 
density 

Pi 

(pci) 

Uniaxial cómprese 
€ &* 0. 2 min" ^ 

lion test data 
€ at 2.0 min" * 

E 
(kpsi) 

Y 
(kpsi) 

E' 
(kpsi) 

E 
(kpsi) 

Y 
(kpsi) 

E* 
(kpsi) 

MAL. Model of AL 

MHS. Model of HS 

MPF. Model of PF 

. 285 

. 132 

.006 

550 

8.2 

. 55 

2.0 

. 10 

.012 

14 

5.2 

.020 

16 

.65 

. 19 

.012 

5.6 

.020 

TABLE III 

"DYNAMIC" PROPERTIES OF THE MODEL MATERIALS 

Material designation 

Weight 
density 

Pi 
(pci) 

Uniaxial compress 
€ ot 20 min~* 

ion test data ^ 
€ Si 200 min 

E 
(kpsi) 

Y 
(kpsi) 

E' 
(kpsi) 

E 
(kpsi) 

Y 
(kpsi) 

E' 
(kpsi) 

MAL. Model of AL 

MHS. Model of HS 

MPF. Model of PF 

.285 

. 132 

.006 

1000 

15 

1.0 

3.64 

. 18 

.022 

25. 5 

9.5 

.036 

29 

1. 18 

.35 

.022 

1.02 

.036 
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TABLE IV 

COMPOSITIONS or PROTOTYPE AND MODEL MATERIALS 
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TABLE V 

PERTINENT SHELL VARIABLES 

Independent Variables 

Geometrie Variables Symbol Physical Dimension 

cone angle 

mean inner radius 
axial length 
shell thickness 

L 
L 
L 

Material Variables 

mass density 
elastic modulus 
yield stress 
plastic modulus 

/°n 
En 
Yn 
E' 

ML 
ML-1T-2 
ML_1T-2 
ML" ^‘2 

Impulse Load Variables 

impulse duration 
peak impulse 
norm alized 

impulse distribution 

° 11 
lo ML" 1T" 1 

Ÿ(e, z) 

Dependent Variables 

Dependeni Variables Symbol Physical Dimension 

total weight 
fundamental 

quarter period 
peak transient 

displacement 
residual displacement 

W MLT"2 
T 

L 

L 

Variables with a subscript n refer to the nth layer of a 
composite shell. 
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TABLE VI 

SCALE FACTORS AND MODE LJNG RELATIONSHIPS 

Scale Factors 

A 

r 

Cm , 

Of * 

3.0 in 
IS. 0 in 
O.ZtS pc* 
0.100 pc> 

10* p«i 
iot p.r 

T 

0.20 

= 2.85 

= 0.10 

= 1.07 

(length scale) 

(mass density scale) 

("dynamic" pressure scale) 

(time scale) 

Similarity of Space and Time Coordinates 

= — = A = 0.20 , |i= T = 1.07 
ÖP Zp tf 

Geometric Similarity 

<Xm Am 
«P ’ af 

bm _ h* 

17* h7 
ilÄfi = A r 0.20 
Hm 

Similarity of Material Properties 

= ï = 2.85 , 
P"p 

Eww _ Yww _ Ewm _ j. _ Q JQ 

Enp Ywp E«p • 

Similarity of Impulsive Loads 

I®£ = T= 1.07 , = A(Yli)*r 0. II , 
Top r 

V^w (6«nt 7m) _ 
yp(eP,zr) 

Similarity of Dependent Variables 

Wp 
Wi*i 

Ü 

Y A* 

u; 
Ul 

= 44 JÍL 
Tien 

•f >m 
= hr 

= — Z 0.94 
r 

i = 50’ 
iL 
n. -1?= 4 om 

I 

MYfi) 
= 9.4 
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TABLE VU 

PROTOTYPE SPECIFICATIONS 

TABLE VIII 

MODEL SPECIFICATIONS 
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TABLE IX 

SHOCK TUBE LOADING CHARACTERISTICS 

Small Reservoir 
( — 1 cubic foot ) 
Duration a: 1 ms 

Large Reservoir 
( ^ 8 cubic feet ) 
Duration a: 4 ms 

diaphragm burst 
thickness pressure 

(mils) (psi) 

peak peak 
pressure impulse 

(Psi) (psi-ms) 

peak peak 
pressure impulse 

(psi) (psi-ms) 

2 6. 5 
3 9 
5 14 
7. 5 20 

10 25 
15 35 
20 45 
30 65 

3.0 1.2 
5.0 1.8 
7.5 3.0 

10 4.5 
12.5 6.0 
17.5 9.0 
22 12 
30 18 

5.0 3.0 
7.5 5.0 

11.5 9.0 
16 15 
20 20 
28 32 
35 44 
50 70 
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TABLE X 

MODEL TEST RESULTS 

Model designation 
W 

(lb) 

*1 
(cps) 

o 
(ms) (psi-ms) 

lo 
(psi-ms) 

Ml. Standard cone 

M2. Heat shield cone 

M3. Sandwich cone 

M4. Foam-filled cone 

M6. Thick cone 

M7. Standard cylinder 

.83 

1. 50 

1. 20 

2. 10 

2. 48 

.81 

100 

120 

146 

200 

130 

.05 
1 
4 

.05 
1 
4 

.05 
1 
4 

.05 
1 
4 

1 
4 

1 
4 

5.8 
7. 2 

12 
17 

10 
12 

19.5 

21. 5 
27 

7. 5 
9.0 

5. 3 
8. 2 

10 
12.7 
17. 5 

18 
23. 5 
28. 5 

35 
30 

23. 5 
26. 5 

9. 5 
11 

M8. Short cylinder . 54 200 1 
4 

15.5 
18 

15 
19 

M9. Thick cylinder 2.42 270 
1 
4 

30. 5 
43 

37 
50 

T * The quantity I is defined to be the impulse necessary to 

T 
produce a maximum transient displacement of U = 0.60-in; 

I0 is the impulse necessary to produce a maximum residual 

R 
displacement of U = 0. 30-in. 
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TABLE XI 

model test results in dimensionless form 

* Value, Of impulse ij/aji^ and l*UjÊ£ correspond 

to maximum transient displacements of UT/a = 0. 20, and 

maximum residual displacements of U*/a = 0. 10, respectively 
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TYPICAL STRESS-STRAIN DIAGRAM 

DEFINITION OF MATERIAL PROPERTIES 

- (¾ « P / ira* 

%X = b / b0- I 

8 a/a0-I 

FIGURE 2. INTERPRETATION OF UNIAXIAL 
COMPRESSION TEST DATA 

189 
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FIGURE 3. SHELL GEOMETRY 

90 



91 

F
IG

U
R

E
 4

. 
ID

E
A

L
IZ

E
D
 I

M
P

U
L

S
IV

E
 L

O
A

D
 D

IS
T

R
IB

U
T

IO
N
 A

N
D
 T

R
A

N
S

IE
N

T
 

D
IS

P
L

A
C

E
M

E
N

T
S
 O

F
 A

 C
O

N
IC

A
L 

F
R

U
S

T
U

M
 S

H
E

L
L

 



0
0

 

92 

F
IG

U
R

E
 

5
. 

S
C

H
E

M
A

T
IC
 

D
IA

G
R

A
M
 

O
F
 

M
O

D
E

L
 

T
E

S
T
 
F

A
C

IL
IT

IE
S

 



KEY TO NUMBERED ITEMS IN FIGURE 5 

Shock Tube 

1. Recoil Blr ¿k 

2. Large Volume Air Reservoir ( ^ 8 ft^) 
3. Partition for Small Volume Air Reservoir (-- 1 ft3) 
4. Mylar Burst-Diaphragm 
5. Shock Tube Barrel 
6. Oscilloscope Triggering Mechanism 

Test Stand 

7. Kistler Pressure Transducer Mounted in Rubber- 
Supported Lead Block 

8. Motor for Rotating Displrcement-Probe Fixture 
9. Model Mounting Plate 

10. Model Conical Shell 

11. Three Bentley Displacement Transducers Mounted 
in Adjustable Fixture 

12. Switch for Controlling Motor (8) 
1 3. Blast Shield 
14. Bentley Distance Detectors 
15. Test Stand 
16. Power Supply Box 

Compressed Air Supply 

17. Pipe to Air Compressor 
18. Reservoir Feed Pipe 
19. Reservoir Gauge Pipe 
20. Pressure Gauges 
21. Exhaust Valve 
22. Pressurization Valve 

Instrumentation 

23. Electrical Cables 
24. Dry-Cell Battery for Triggering Oscilloscope 
25. Oscilloscope for Recording Displacements of Model Shells 
26. Oscilloscope for Recording Transient Pressure and Impulse 
27. Kistler Amplifier 
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CALIBRATION OF 
PRESSURE AND 

IMPULSE SIGNALS 

kr* 100 ms /cm 
Sp “ 4 psi 

CALIBRATION OF 
DISPLACEMENT 
TRANSDUCERS 

Cr * 5 sec/cm 

8X * .05 in 

RECORDS FOR 
DETERMINING THE 

NATURAL FREQUENCY 

CT * 10 ms/cm 

C X a£ .01 in / cm 

* 
RECORDS OF TRANSIENT PRESSURE, IMPULSE, AND DISPLACEMENTS 

LEFT . UPPER SIGNAL IS TRANSIENT PRESSURE, LOWER SIGNAL I 
RIGHT . SIGNALS CORRESPOND TO UPPER AND LOWER DISPLACEMEN 

kTs lms/cm,kp*5 psi/cm, k, » 5psi-ms/cm, CT *IOms/c 

IMPULSE 
PROBES 

\ 

FIGURE 9. CALIBRATION AND TEST RECORDS 
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IMPULSE, Io( PSI MS) IMPULSE, I0( PSI MS) 
MODEL M3-SANDWICH CONE MODEL M 4 - FOAM-FILLED CONE 

FIGURE 10. IMPULSE-DEFORMATION 
CHARACTERISTICS OF THE MODELS, I 
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FIGURE II. IMPULSE-DEFORMATION 
CHARACTERISTICS OF THE MODELS, D 
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FIGURE 12. STANDARD CONE MODEL Ml 

BEFORE AND AFTER TESTING 



FIGURE 13. STANDARD CYLINDER MODEL M7 

BEFORE AND AFTER TESTING 
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FIGURE 16. PROTOTYPE TEST FACILITY 
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xa 

a. STRESS VECTORS ASSOCIATED WITH UNIAXIAL STRESS 

b. STRAIN VECTORS ASSOCIATED WITH UNIAXIAL STRESS 

FIGURE 19 
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