UNCLASSIFIED

A	AD NUMBER:	AD0479391	
	LIMITATION	I CHANGES	
TO:			
Approved for public	release; distributio	on is unlimited.	
FROM:			
Distribution authoriz	ed to US Governm	ent Agencies and	their Contractors;
Export Control; 1 Jan	1966. Other requ	ests shall be refer	red to Air Force

Systems Command, Air Force Materials Laboratory, Wright-Patterson AFB, OH 45433.

AUTHORITY

AFSC ltr dtd 2 Mar 1972

PROPERTIES OF THE RARE EARTH METALS AND COMPOUNDS

JOHN A. GIBSON GIFFORD S. HARVEY

BATTELLE MEMORIAL INSTITUTE

TECHNICAL REPORT AFML-TR-65-430

JANUARY 1966

This document is subject to special export controls and each transmittal to foreign nationals may be made only with prior approval of the Application Division (MAA), Air Force Materials Laboratory, Wright-Patterson AFB, Ohic.

> AIR FORCE MATERIALS LABORATORY RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

300 - February 1966 - 773-31-617

PROPERTIES OF THE RARE EARTH METALS AND COMPOUNDS

JOHN A. GIBSON GIFFORD S. HARVEY

BATTELLE MEMORIAL INSTITUTE

This document is subject to special export controls and each transmittal to foreign nationals may be made only with prior approval of the Application Division (MAA), Air Force Materials Laboratory, Wright-Patterson AFB, Ohio.

CUREWORD

This report was prepared by Battelle Memorial Institute under USAF Contract AF33(657)-8741 from March to December, 1965. The contract was initiated under Project No. 7381, "Materials Application", Task No. 738103, "Materials Information Processing and Retrieval". This contract was administered under the direction of Mr. George Young, Air Force Materials Laboratory, Research and Technology Division, Wright-Patterson AFB, Ohio.

The authors, John A. Gibson and Gifford S. Harvey, were principal investigators on the program. Assistance was provided by other members of the staff of Battelle Memorial Institute including Inez Wheldon and Henry Rawles of the Battelle library staff.

A survey of the literature has been made, and the best available data on the properties of yttrium and the 15 lanthanide rare-earth metals and compounds have been compiled.

This compilation of properties is presented in four sactions. Section l contains the tabulated properties of the elements and compounds plus graphic representations of corrosion data. Section 2 contains phase diagrams. Section 3 lists the properties of the elements and their compounds by element, with reference to the source of information, and Section 4 is a list of references.

Unless otherwise indicated, the data represent the room-temperature values of a given property. Figures in parentheses following a property value indicate the temperature of measurement or the applicable temperature range. Property values in parentheses indicate estimated value.

Acknowledgment is given to the publishing houses and scientific societies that granted permission to reproduce the graphs and phase diagrams contained in this report: the American Physical Society, the National Association of Corrosion Engineers, the Metallurgical Society of the American Institute of Mining, Metallurgical & Petroleum Engineers, the American Ceramic Society, the American Chemical Society, U. S. Atomic Energy Commission, Elsevier Publishing Co. (Amsterdam), and Gordon and Breach, Science Publishers, Inc. (New York).

This report has been reviewed and approved.

2 alimi

D. A. SHINN Chief, Materials Information Branch Materials Applications Division AF Materials Laboratory

11

ABSTRACT

The unclassified literature, both U. S. and foreign, relating to yttrium and the lanthanide rare-earth elements Numbers 57 through 71 has been reviewed. The best available data on properties have been compiled and are presented in tabular form by property and by element. Included are the physical, chemical, magnetic, electrical, mechanical, and nuclear properties of the elements and their compounds. Over 200 phase diagrams are presented. A supplemental list of publications containing data on optical properties has been included.

iii

TABLE OF CONTENTS

00

SECTION 1

COLLECTED PROPERTIES OF RARE-EARTH ELEMENTS AND COMPOUNDS

							4 64						1
Properties of Rare-Earth Elements				•				•			•	•	1
Corrosion Data and Oxidation Resistance					•	•		•				•	6
Properties of Rare-Earth Compounds .	•	•	•	•	•	•	•	•	•	•	•	•	8

SECTION 2

PHASE DIAGRAMS OF RARE-EARTH ELEMENTS

Yttrium .								•		•						•		•	•	31
Lanthanum							•		•					•						42
Cerium .																				52
Praseodymi	ım							•		•				•	•	•	•	•	•	62
Neodyn ium							•	•			•		•	•	•	•	•	•	•	65
Samarium.															•	•	•	•	•	68
Europium.																				71
Gadolinium				•	•			e	•		•	•	•	•	•	•	•	•	•	72
Dysprosium			•		•	•	•		•		•	•	•	•	•	•	•	•	•	77
Holmium .			•			•		•	•	•	•	•	•	•	•	•	•	•	•	78
Erbium .					•	•	•		•	•	•	•	•	•	•	•	•	•	•	79
Ytterbium.									•	•	•		•	•	•	•	•	•	•	83

SECTION 3

PROPERTIES OF EACH RARE-EARTH ELEMENT AND ITS COMPOUNDS

Yttrium													•		•					85
Yttrium Compounds																				91
Lanthanum		•								•				•	•	•	•	•	•	103
Lanthanum Compounde																				111
Cerium																				
Cerium Compounds	•	•		•	•	•	•		•	•	٠	•	•	•		•	•	•	•	130
Praseodymium																				141
Praseodymiam Compo	un	ds		•		•		•	•	•	•	•	•	•	•	•	•	٠	٠	148
Neodymium																				159
Neodymium Compound	18				•			•	•			•	•		•	•	٠	•	٠	167

TABLE OF CONTENTS (Continued)

																				Page
Promethium		-									_									181
Promethium Compounds		۰.										•	•	•	•	•	•	•	•	183
Samarium											·		•	•	•	•		•	•	185
Samarium Compounds.									•	•		•	:	•				-	•	192
Europium,									•		•	•		•		:		•	•	203
Europium Compounds.							•		•		•		-	-	•	·	•	•	•	203
Gadolinium									•			:	•	•	•	•	•	•	•	208
C . 1. 11			•								•	•	•	•	•	•	•	•	•	215
Terbium											•	•	•	•			-	•	•	
Terbium Compounds .	•	·	•	•	•	•	•	•	•	•	•		•			•	•	•	•	233
Dysprosium	•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	239
Dysprosium Compounds	·		•								•	•	•	•	•	•	•	•	•	247
Holmium		•	•	•	•	•	•	•			*	•	•	•		-	•	•		253
													٠				-	•	•	263
-			•						•				•		•	•	•	•	•	268
Erbium	•												•	•	•	•	•		•	277
	•		•								·	•	•	•	•	•	•	•	•	283
The line Carl												•	•	۰	•	•	•	•	•	293
									•			•	•		•	•	•	•	•	298
	•	•	•						٠	•	•	•	•	·	•	•	•	•	•	305
Ytterbium Compounds.	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	313
	•		•	-	•	•	•	•	•	•	•	•	•	•	•	•	•			323
Lutetium Compounds .	•	•	•	•	•	•	•	•	•	•	•	•	•	•						328

SECTION 4

REFERENC	ES									
		•	•	•	•	•	•	•	•	335
Supplemental References - Optical Properties					•					354

v

PROPERTIES OF THE RARE EARTH ELEMENTS (Room Temperature)

Symbol	Atomic No.	Weight	Estimated Abundance, ppm	Density, g/cm ³	Atomic Volume, cm ³ /mole	Melting Point,	Heat of Fusion, kcal/mole	Boiling Point, C	
Y	39	88, 92	28- 70	4.472	19.886	1509	4,1	2927	YTTRIUM
La	57	138,92	5-18	6.162	22, 50	920	2.75	3469	LANTHANUM
Ce	58	140, 13	20-46	6,678	20, 695	795	2, 20	3468	CERIUM
Pr	59	140, 92	8, 5-5, 5	6, 769	20,778	935	1, 650	3127	PRASEODYMIUM
Nd	60	144,27	12-24	7.016	20,60	1024	1, 705	3027	NLOD YMIUM
Pm	61	145		* *		1080	3,00	(2727)	PROMETHIUM
Sm	62	150,35	4.5-7	7. 536	19.0	1072	2,061	1804	SAMARIUM
Eu	63	152.0	0, 14-1, 1	5, 245	28,91	826	2.0	1439	EUROPIUM
Gd	64	157.26	4.5-6.4	7, 886	19.88	1312	2.1	3000	GADOLINIUM
Tb	65	158,93	0.7-1	8,253	19 . 24 5	1356	2,2	28 0J	TERBIUM
Dy	66	162.51	4, 5-7, 5	8, 559	19.032	1407	3, 8	2600	DYSPROSIUM
Но	67	16 4, 94	0.7-1.2	8, 799	18, 742	1461	4.1	2600	HOLMIUM
Er	68	167,27	2, 5-6, 5	9,062	18.473	1497	4.1	29 00	ERBIUM
Tm	69	168,94	0.2-1	9, 318	18, 151	1545	4.3	1727	THULIUM
ть	70	173,04	2,7-8	6, 959	24.80	824	1,8	1427	YTTERBIUM
Lu	71	174,99	0.8-1.7	9, 849	17.779	1652	4.5	3327	LUTETIUM

(Continued)

1

ELEMENTS

	Ref. State Heat of Vaporization (25 C), kcal/mole	Specific Heat at 25 C, cal/(mole)(C)	Coefficient of Linear Thermal Expansion, 10 ⁻⁶ /C	Thermal Conductivity, 28 C, cal/(secXcmXC)	Crystal Structure(a)	Lattice	Constants	Metallic Radius, A	
YTTRIUM	93	6,01	10.8	0,035	Нср Всс	3.6474 4.11	5, 7306	1,801 1,83	
LANTHANUM	96	6.05	4.9	0.033	Нср Fcc	3,770 5,304	12,159	1.877 1.875	
CERIUM	95	6 .44	8, 5	0.026	Fec Bec	5.1612 4.11		1, 825 1, 83	
PRASEODYMIUM	79	6.48	4.8	0,028	Нср Всс	3.6725 4.13	11,8354 	1,828 1,84	
NEODYMIUM	69	6.57	6.7	0.031	Нср Всс	3.6579 4.13	11.7992 	1,821 1,84	
PROMETHIUM	(60)	(6. 50)	-		Fcc			(1.810)	
SAMARIUM	46	6,76			Rhombohedral Bec	8.966 4.07	a =23"13'	1,802 1,81	
EUROPIUM	42	6.4	32.0		Bcc	4. 5820		2,042	
GADOLINIUM	72	8,80	8,6	0,021	Hcp Bcc	3.6360 4.06	5, 7826	1.802	
TERBIUM	70	6.92	7.0	0,13	Нср	3,6010	5, 6936	1,782	
DYSPROSIUM	67	63	8.6	0 , C24	Нср	3, 5903	5,6475	1.773	
HOLMIUM	67	6.49	9.5		Нср	3, 5773	5,6158	1,766	
ERBIUM	67	6.72	9.2	0,023	Нср	3, 5588	5, 5874	1,757	
THULIUM	69	6.45	11.6		Нср	3 , 53 75	5, 5546	1, 746	
YTTERBIUM	38	(6,0)	25.0		Fec Bec	5 , 4862 4, 45		1.940 1.99	
LUTETIUM	90	(6.45)	12, 5		Нср	3, 5031	5, 5509	1,734	

....

(a) Hcp, hexagonal close packed; Fcc, face-centered cubic; Bcc, body-centered cubic,

2

.....

Structure Transition Temperature, C	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Magnetic Moment, Bohr magnetons	Curie Temperature, K	Néel Temperature, K	Debye Temperature, K	Cross S	-Neutron Section m Cm ² /G	
1460	191	0.67	None	None			7 0,0094	YTTRIUM
310,868	101	0.49	None	None	142	8.9	0.039	LANTHANUM
-150, -10, 730	2,43 0	2,51		••	147	0.70	0,0030	CERIUM
798	5 , 32 0	3, 56	None	None	152	11.2	0.048	PRASEODYMIUM
868	5 , 650	3,3	••	7.6	157	46	0, 19	NEODYMIUM
				, 	162			PROMETHIUM
917	1,275	1.74		15	166	5, 500	22	SAMARIUM
	33,100	7.12	108	91	70-120	4,600	18	EUROPIUM
1262	356,000	7.95	290		176	46,000	177	GADOLINIUM
1317	193,000	9,7	237	230	181	44	0,166	TERBIUM
	99,800	10.64	85	178.5	186	1, 100	4,1	DYSPROSIUM
	70,200	10,89	<20	133	191	64	0,23	HOLMIUM
	44, 100	9.5	20	84	195	166	0.60	ERBIUM
	26,200	7.62	22	60	200	118	0, 42	THULIUM
798	71	0.41	None	None	118	36	0, 125	YTTERBIUM
	17.9	0.21	None	None	210	108	0,37	LUTETIUM

(Continued)

ELEMENTS

	Trivalent-Ion _ Radius, A	Stable Oxidation States (Positive)	Trivalent-Ion Oxidation Potential (Positive), volts	Young's Modulus, 10 ¹¹ dynes/cm ²	Shear Modulus, 10 ¹¹ dynes/cm ²	Poísson's Ratio	Sonic Compressibility, _10 ⁶ cm ² /kg
YTTRIUM	0,88	3		6,63	2.62	0.265	2.09
LANTHANUM	1.061	3	2,4	3,84	1,49	0,228	3, 24
CERIUM	1,034	2,3,4	2,335	3,00	1,20	0,248	4,95
PRASEODYMIUM	1.013	3,4	2.2	3, 52	1,35	0.305	3,28
NEODYMIUM	0,995	3	2,24	3.79	1,45	0,306	3, 02
PROMETHIUM	0,979	3				**	3.06
SAMARIUM	0,964	2, 3	2.2	3, 41	1,26	0,352	2, 56
EUROPIUM	0 .9 50	2,3	2, 2				
GADOLINIUM	·	З	2,2	5,62	2, 23	0,259	2, 52
TERBIUM	0, 923	3,4	2,2	5,75	2, 28	0,261	2,45
DYSPROSIUM	0,908	3	2, 2	6.31	2, 54	0,243	2, 39
HOLMIUM	0, 894	3	2,1	6.71	2,67	0,266	2, 14
ERBIUM	0,881	3	2.1	7.33	2,96	0,238	2, 11
THULIUM	0.869	3	2.1		••	••	2, 0
YTTERBIUM	0.858	2, 3	2, 1	1.78	0.70	0,284	7,12
LUTETIUM	0, 848	3	2, 1	••			2. 3

4

Tensile Strength 1000 ps	Strength,	Elongation, per cent	Izod Impact Strength, ft-lb	Resistivity, microhm-cm	Temperature Coefficient of Resistivity, 10 ⁻³ /C	
22,0	9.7	25	1, 50	64. 9	2, 71	YTTRIUM
18, 9	18.2	8	4, 5	56, 8	2, 18	LANTHANUM
15.0	13, 2	24	2, 2	75, 3	0, 87	CERIUM
15,9	14, 5	10	4,75	68. 0	1, 71	PRASEODYMUM
24.7	23.9	11	8, 3	64, 3	1, 64	NEODYMIUM
••					**	PROMETHIUM
18,0	16.2	3	0, 53	88	1, 48	SAMARIUM
••	ak da	••		81, 3	4, 80	EUROPIUM
27.6	25, 1	8	1,3	104, 5	1, 76	GADOLINIUM
••		**	3, 2	138	0,91	TERBIUM
35, 7	32,6	6	1,6	56	1, 19	DYSPROSIUM
37.5	32.1	5	7.0	81	1, 71	HOLMIUM
42,4	38, 7	4	1,2	107	2,01	ERBIUM
**		* (p-	**	79	1, 95	THULIUM
10,4	9.5	6	5, 3	27	1, 30	YTTERBIUM
**	••	0- 10	**	79	1, 40	LUTETIUM
(Corr	ceion and oxidation dat	a are given on pag	es 6 and 7.)			

CORROSION DATA AND OXIDATION RESISTANCE(109)

			Element Corro	ding at Indicat	ed Corrosion Rates,	mils/year	
Medium	1 - 9 x 10 ⁶	1 - 9 x 10 ⁴	1 - 9 x 10 ³	1 - 9 x 10 ²	10-100	1-10	4
Distilled Water 30C	Eu					La, Ce	Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y
100C		**	Ce	La, Pr, Nd	**	**	Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y
1N H _U PO ₄ 30C	Eu	6.0	••	• •	La, Ce, Nd, Gd, Dy, Tm, Yb, Y	Pr, Ho, Er	Sm, Tb
Boiling	••	Ce	La, Pr	Nd	**	••	Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y
SN HgPO4 30C	Eu		Sm, Gd, Tb, Dy, Ho, Tm, Y	Pr, Nd, Er, Yb	La, Ce	••	**
IN CiO3. 30C	**	Eu	La, Tm	Tb, Nd, Ha, Er	Ce	Pr, Sm, Gd, Dy, Yb	¥
Boiling	La	Ho, Er	Cs. Pr. Tb	Nd, Sm, Tm, Yb	G4, Dy, Y	**	**
IN HgCg74 30C	Eu-	•*			Ce, Hd	La, Er, Tm, Yb	Pr, Sm, Gd, Tb, Dy, Ho, Y
Boiling	**	**	La, Ce, Pt, Nd, Sm, Ez, Y	Dy, Ho	••	Th, Tm, Yb	64
1:1 Hr-HNO3. 25C	**	\$m	H	La, Ce, Pr	Eu	Tb, Ho, Tb	Gd. Dy. Er. Tm. Y

CORROSION "ATES OF RARE EARTHS AND YTTRIUM IN DISTILLED WATER AND ACIDS

EXPLORATORY CORROSION TESTS OF GADOLINUM, DYSPROSIUM, HOLMUM, ENSUM AND YTTRJUM AT 25 C

OXIDATION OF BARE EARTHS AND YTTRUM

Weight Gain, milligrams per square decimeter per day

	Correrten Rate,			Alt		Water-Saturated	Air in Equilibrium with 30% H ₂ O ₂
Medium	mile/year	Menal	25C	1000	2000	Ale at 40C	at 400
99% Hg804	Dimolved(A)	La	2	48	P	3.6	
37% HCI	Dissolved ⁽⁴⁾	Ce '	4	2020	870	37	25
70% HNO3	Dissolved 1	Pt	4	11	4	13	25
70% HCIO4	Dimotred(4)	144		3	a		11
IN HaSOA	Over 20 ⁶	Sm	. 0	0	0		20
ли нёл	Over 10 ⁶	Eu	1550	230	540	3370	4560
IN HNO	1 - 9 x 10 ⁵	64		0	0	4	
IH HCIO	1 - 9 x 10 ⁶	Tb	0	. 0	0	d.	2
IN HCOOH	1 - 9 x 10 ⁸	Dy	0	0		a	•
0, 1N H2504	2 - 9 x 10 ⁴	Ho	0	2	-	.4	0
0, IN HCI	1 - 9 x 10 ⁴	tr.	0	0	0	4	1
IN KCI	1 - 9 x 10 ⁶	Tm		0	0	Þ	<3
IN CuCly	1 - 9 H 10 ⁶	¥2.	0	0	0	P	<
3. 8% Peg (SO4)3	1 - 9 x 10 ⁴	т	0	4	0	0	0
99. 9% CHJCOOH	3 - 9 x 10 ³						
85% HaPO4	1 - 9 x 10 ³						
40% 38	1 - 10						

(a) Specimens had surface areas of approximately 3 sq cm and ware completely displiced within 10 minutes.

6

-

PROPERTIES OF RARE EARTH COMPOUNDS

ANTIMONIDES

Compound	Structure	Lattice Type	a ₀₁ A	Melting Point, C	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
YSb	Cubic	NaCl	6.16	1925	65		
LaSb	Cubic	NaCl	6,49	1540	120		
CeSb	Cubic	NaCl	6.412				
PrSb	Cubic	NaCl	6.366				3, 63
NdSb	Cubic	NaCl	6.322		76		
Sm Sb	Cubic	NaCl	6,271		-	1,000	**
GdSb	Cubic	NaCl	6,217			25, 575	7.87
Gd4Sb3	Bec	Th ₃ P ₄	9,224		220		
TbSb	Cubic	NaCl	6,180		·· @	36,232	9.57
DySb	Cubic	NaCl	6.160		-	45, 558	10, 62
HoSb	Cubic	NaCl	6,130			44,743	10.35
ErSb	Cubic	NaCl	6,107	1900	47	36,232	9.36
TmSb	Cubic	NaCl	6,091			26,667	8,14
YbSb	Cubic	NaCL	6.079			5,450	3,74
LuSb	Cubic	NaCL	6.0555				

ARSENIDES

Compound	Structure	Lattice Type	80. A	Resistivity, microhm~cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Botz magnetons
YAs	Cubic	MaCL	5.808	**		
LaAs	Cubic	NaCl	6, 137	-		
CeAs	Cubic	NaCl	6.072	•*	**	
PrAs	Cubic	NaCl	8.009	**		3,80
NdAs	Cubic	NaCl	5,970	150		
SmA	Cubic	NaCl	5,921	160	1,006	
GdAs	Cubic	NaC	5, 862		27, 546	8, 18
TbAs	Cubic	NaCl	5, 827		39,033	9,65
Dy As	Cubic	NaCl	5, 603		46, 946	10.51
HoAs	Cubic	NaCl	5, 771		46,080	10.47
ErAs	Cubic	NaCl	5. 745	ala.	37, 453	9, 34
TmAs	Cubic	NaCl	5, 721		24, 390	7,77
YbAs	Cubic	NaCl	5, 702	# •	7,825	4, 61

BERYLLIDES

Compound	a ₀ , A	Compound	*0, A
YBe13	10,238	GdBe ₁₃	10.27
LaBe 13	10.450	TbBe13	10,251
CeBe ₁₃	10.378	DyBe13	10,240
PrBe ₁₃	10.367	HoBe13	10,220
NdBe13	10,356	ErBe13	10.215
PmBe13	10.33	TmBe13	10.192
SmBe13	10.28	YbBe13	10,19
EuBe ₁₃	10,288	LuBe ₁₃	10.177

BISMUTHIDES

Compound	Structure	Lattice Type	8 ₀ , A	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
YBI	Cubic	NaCl	6.23	196		
LaBi	Cubic	NaCl	6. 58			
CeBi	Cubic	NaCl	6.500			
PrBl	Cubic	NaCl	6, 461			3, 52
NdBi	Cubic	NICI	6, 424			**
SmBi	Cubic	NaCI	6, 362		1,169	
GdBl	Cubic	NaCl	6.316		24,038	8,20
			9, 383	190		••
Gd Bl 3	Cubic	NaCl	6.280		38,086	9.64
	Cubic	NaCl	6,251		44,053	10.97
DyBi	Cubic	NaCl	6,228		44, 543	10.32
HoBI	Cubic	NaCl	6,202		15,714	9.32
ErBi TmBi	Cubic	NaCl	6,192		25,000	7.63

BORIDES

			Lattice Cons	tanti, A	Density,	Melting Point,
(Compound	Structure	40	co	g/cm ^a	C
1			MB2			
	YB2	Hexagonal	3.298	3.643	2,91	2100
	Gdby	Hexagonal	3.31	3,94		
	Tbbg	Hexagonal	3.28	3, 86	**	
	Dye	Hexagonal	3,285	3, 835		
	Holly	Hexagonal	3,17	3.81	**	**
	ErBy	Hexagonal	3.28	3,79		
	Lally	Hexagonal	3,246	3,704	9,76	

BORIDES (Continued)

		Lattice Co	Density,	
Compound	Structure	*0	co	g/cm ³
		MB3		
YB3	Tetragonal	3.78	3, 55	3.97
LaB3	Tetragonal	3.82	3.96	4, 92
PrB3	Pseudocubic	3.81		5.20
GdB3	Tetragonal	3.79	3.63	6.03
YbB3	Tetragonal	3.77	3.562	6.74

		Lattice Co	nstants, A	Density,	Melting Point,	
Compound	Structure	40	co	g/cm ³	С	Color
		6	MB4			
YB4	Tetragonal	7.111	4,017	4,36	2,800	••
LaB	Tetragonal	7.30	4.17	5,44		**
CeB4	Tetragonal	7.205	4.090	5.74		Gray brown
PrB4	Tetragonal	7.20	4.11	5,74		Gray brown
NdB4+	Tetragonal	7.217	4,1020	5, 83	-	••
Sm B4	Tetragonal	7.114	4.070	6,19		Gray brown
GdB4	Tetragonal	7.14	4.047	6,446		Gray brown
Tb8.	Tetragonal	7.118	4, 0286	6, 679	••	Gray brown
Dy B4	Tetragonal	7.101	4.0174	6.74		Gray beown
HoB	Tetragonal	7.064	4.000	6.88		Gray brown
ErB4	Tetragonal	7.071	3.9972	7.261		Gray brown
TmB	Tetragonal	7.06	3.99	7.09	**	Gray brown
Yb84	Tetragonal	7.01	4.00	7.31		Gray brown
Lug	Tetragonal	6. 997	3.938	7.52	**	Gray brown
			1			

BORIDES (Continued)

Compound	Structure	a ₀₁ A	Density, g/cm ²	Melting Point, C	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons	Work Function, ev	Emissivity, $\lambda = 0.655$
					MB6			
YB6	Cubic	4,113	3.76	2,300	••	0.0	2.22	0.7
LaBg	Cubic	4,154	4, 721	2,100	**	9.0	2,66	0.7
CeB6	Cubic	4,137	4.80	2,190	2,260	2,60	2, 59	U. 68
Pr86	Cubic	4,130	4,851		4,800	3.37	3.12	0.67
NdB6	Cubic	4.125	4.948	2,540	2,420	3,82	3.97	0.64
SmB ₆	Cubic	4.131	5.08	1,810	1,810	2, 52	4.4	0.66
EuB6	Cubic	4.178	4.938	2,200			4.9	0.83
GdB ₆	Cubic	4,112	5.30	>2,100	21,000	7.68	2.05	0.65
TbBg	Cubic	4.1020	5.385	-		**	2.99	0.74
DyBg	Cubic	4.0976	5,49				3, 53	0.7
HoBg	Cubic	4,096	5, 53	**		**	3, 42	0.7
ErB6	Cubic	4,110	5, 58		••		3.37	0.7
TmBg	Cubic	4.11	5. 59				1, 34	
YbBg	Cubic	4,144	5. 556		8,740	4, 58	8.13	0.7
LuBg	Cubic	4.11	5.74	-		**	3.0	0.7

Compound	Structure	40. A	g/cm ³
	MB		
Y812	Cubic	7,500	3, 44
Tb812	Cubic	7.504	
Dy812	Cubic	7,501	4,60
HoB12	Cubic	7,492	4, 655
Er812	Cubic	7,484	4, 706
TOBIC	Cubic	7.476	4,756
Ybe12	Cubic	7.476	
LuB ₁₂	Cubic	7,464	4, 868

		Lattice Cr	MARADIN, A	Melting Point,
Compound	Structure	*0	co_	С
		MP70		
¥#70	Totragonal	11, 75	12,02	(2,000)

CARBIDES

Compound	Melting Point, C	Resistivity, microhm-cm
	МС	
YC	1,950	4.54 x 10^4

Compound	Structure	Lattice		ttice	Density,	Melting Point,	Resistivity,	Magnetic Susceptibility,	Effective Magnetic Moment,
	oructure	Тур	40	c0	g/cm ³	С	microhm -cm	n 10 ⁻⁶ emu/mole	Bohr magnetons
					MC2				
YC2	Body-centered tetragonal	CaC2	3. 664	6.169	4. 528	2300	88.7		
a-LeC2	Body-centered tetragonal	CaC ₂	3.92	6. 56	5.35	-	68		
A-Lacz	Cubic	FeS2	6.0	-	5.0	2438		••	**
CeC2	Body-centered tetragonal	CaC2	3. 86	6.49	5, 56	2540	58.8		**
PrC2	Body-centered tetragonal	CAC2	3, 85	6. 42	5,73	2535	25.7	1,640	2.19
NdC2	Body-centered tetragonal	CaC ₂	3, 82	6. 37	6.00	>2000	40, 1	4,500	(3, 15)
SmC2	Body-centered tetragonal	CaC2	3.76	6.29	6. 50	>2200		••	3, 53
GOC2	Body-centered tetragonal	CaC2		6.275	6, 939	>2200		~ 2,300	2.85
TbC2	Body-centered tetragonal	-		6.217	7,176	-4200			7.92
DyC2	Body-centered tetragonal	-		6.176	7.450		**	~2,850	9.57
HoC2	Body-centered tetragonal			6.139			**	~ 38, 500	10.53
ErC2	Body-centered tetragenal				7.701	**	**	~ 43, 500	10.57
TmC	Body-centered tetragonal	-		6.094	7.954	••	**	~ 33, 300	8.75
YbC2	Body-centered tetragonal	-	3.000		8, 175	**	**		
LuC2	Body-centered tetragonal			6,109	8. 097		-	~2,500	3.65
-		CaC2	3, 563	5.964	8. 728				

Compound	Structure	Lattice Type	40. A	Density. g/cm ³	Melting Point, C	Resistivity, microhm-cm
			M2C3			
Y2Ca	* *		**	••	1,800	
Y2C3 LA2C3	Rec	Pug Cg	8. 8185	8. 079	2,020	350
CegCg	Bec	Pug Ca	8.448	6, 969		202
PraCa	Rec	PugCa	4.7072	6, 621		
NAC	Bec	hyC.	8. 6478	6, 901		
SimgCy	Rec	Pup Ca	8. 4257	7.477		
GdgCg	Rec	PugOp	8. 3407	8.024	-	
TbgCg	Pec	PugCa	8. 2617	8, 305	**	

CARBIDES (Continued)

Component	Structure		4 ₀ , A	Density, g/cm ³	Melting Point, C	Resistivity, microhm-cm
		M	C3 (Con	tinued)		
Dy2C3	Bcc	PugCa	6, 198			
HogC3	Bcc	PugCa	8,176	8, 892		**
Er2C3		Y2C3				
Tm2C3		Y2C3				

Compound	Structure	Type	A., A	g/cm ³
		MgC		
Y3C	Cubic	Fe4N	5, 102	5, 41
Sm ₃ C	Cubic	Fe4N	5, 172	8, 139
Gd ₃ C	Cubic	Fe4N	5, 126	8,701
TbgC	Cubic	Fe N	5,107	8, 882
Dy3C	Cubic	Fe4N	5,079	9,211
HogC	Cubic	Fe4N	5, 061	9, 434
Er3C	Cubic	Fe4N	5, 034	4,708
Tm ₃ C	Cubic	Fe4N	5,016	9,901
YbaC	Cubic	Fe ₄ N	4.993	10,26
LagC	Cubic	Fe4N	4, 965	10, 54

GERMANIDES

		Lattice	Lattice Constants, A			
Compound	Structure	Type	*0	bo.	c.	
		MGe				
GdGe	Orthorhombic	CrB	4, 175	3, 960	10,61	
DyGe	Orthorhombic	CrB	4,112	3, 924	10, 83	

GERMANIDES (Continued)

		Lattice	Lattice	Density,		
Compound	Structure	Туре	80	bo	Co	g/cm ³
		MGe	2			
YGe2	Imperfect		3.96		4.14	
a-LaGe2	•	a-ThSi2	4.321		14.209	
B-LaGe	-12 -00	a-GdSi2	4.41	4.30	14.190	7.059
a-CeG2		a-ThSi2	4.27		14.08	
B-CeGy		a-GdSig	4.36	4.26	14.07	
HTGe2	~-	a-ThSi2	4.26		13,98	
NdGe2		a-ThSi	4,230		13.920	
SmGe,		a-ThSi	4,193		13.835	
EuGe2		AlB2 defect	4.09		4.99	
GdGe2		a-ThSi2	4.12		13.72	**

	Lattice	Lattice Co	instants, A	
Compound	Туре	a	^C o	
	M2Ge3			
Tb ₂ Ge ₃	AlB ₂ defect	3.95	4,16	
Dy2Ge3	AlB _p defect	3,92	4.13	
HogGez	AlB ₂ defect	3,90	4,11	
Er2Ge3	AlB2 defect	3, 89	4.09	
Tm2Ge3	AlB ₂ defect	3.88	4.07	
Yb2Ge3	AlB ₂ defect	3, 96	4.18	
Lu2Ge3	AlB2 defect	3.83	4.05	

		Lattice Co	Density.	
Compound	Structure	a ₀	C _O	g/cm ³
		M5Ge3		
La Ge.	Нср	8.958	6, 795	3.72
LasGe3 CesGe3	Нср	1. 875	6. 670	3.92

HALIDES

		Lettice (nts, A	Melting Point,	Boiling Point,
Compound	Structure	ao	bo	co	<u> </u>	c
		M	Br ₃			
YBr3	Hexagonal	4,102		6.399	904	1,463
LaBra	Hexagonal				788	1,580
CeBr	Hexagonal				732	1,560
PrBr3	**				693	1,550
NdBr3					684	1,540
Pm Br3					677	1,530
SmBr ₃					664	Decomposes
EuBr ₃	Orthorhombic	12.712	4.019	9.128	707	Decomposes
GdBra	Hexagonal	4.172		6.441	785	1,490
TbBr3	Hexagonal	4.129		6.391	827	1,490
DyBr ₃	Hexagonal	4,114		6.400	881	1,480
HoBra	Hexagonal	4.088		6.391	914	1,470
ErBr3	Hexagonal	4.070		6.388	950	1,460
TmBra	Hexagonal	4.042		6.367	955	1,440
YbBra	Hexagonal	4. 032		6,382	940	Decomposes
LuBr ₃	Hexagonal	4.015		6.371	957	1,410

		Lattice Co	onstants, A	Melting Point,	Boiling Point,
Compound	Structure	a _o i	0° 0	C	C
		MCI	2		
SmCl ₂	Orthorhombic	8.973.7.	532 4.497	740	2,030
EuCl2	Orthorhombic	8.914 7.	499 4.493	727	2,030
YbCI2	Orthorhombic	6.53 6.	68 6.91	727	1,930

15

.

, i

4.,

ì

HALIDES (Continued)

Compound	Structure	Lattie ^a o	ce Consta bo	nts, A	β, degrees	Melting Point, C	Boiling Point, C
			MCL	3			
YCI3	Monoclinic	11.94		•-	111.0	700	1 500
LaCl ₃	Hexagonal					852	1,507
CeCl ₃	Hexagonal	7.450		4.315		802	1,750
PrCl ₃	Hexagonal	7.422		4.275	• =	786	1,730
NdCl	Hexagonal					759	1,710
PmCl ₃	Hexagonal	7.397		4.211		737	1,690
SmCl ₃	Hexagonal	7.378		4.171		678	1,670
EuCl ₃	Liexagonal	7.369		4.133		623	Decomposes
GdCl ₃	Hexagonal	7.363	••	4.105		602	Decomposes
TbCl ₃	Monoclinic	6.163	3, 848	8.357	107.6		1,580
DyCl ₃	Monoclinic	6.91	11.97	6.40	111.2	588	1,550
HoCl	Monoclinic	6,85	11.85	6.39	111.2	654	1,530
ErCla	Monoclinic	6. 80	11.79	6.39		720	1,510
TmCl3	Monoclinic	6,75	11.73	6.39	110.7	776	1,500
YbCl3	Monoclinic	6.73	11.65		110.6	821	1,490
LuCl ₃	Monoclinic	6.72		6.38	110.4	854	Decomposes
3		V. 14	11.60	6.39		892	1,480

Compound	5 mm	Lattice Constants, A		Density,	Melting Point,	Boiling Point,	
compound	Structure	a ₀	bo	co	g/cm ³	C	С
			MF ₃ and 1	MF4			
YF3	Orthorhombic	6.353	6,850	4.393	5.069	1,148	(2, 227)
YF3	Cubic	5.644					(2,227)
LaF3	Нср	7.186		7.352	5.94	1,490	(2, 327)
CeF3	Hexagonal	7.114		7.273	5,99	1,437	(2, 327)
PrF3	Hexagonal	7.061		7.218	6.18	1,395	(2, 327)
NdF3	Hexagonal	7.030		7.200	6.37	1,374	(2, 327)
PmP ₃	Hexagonal	6.96		7.14		1,407	(2, 327)
SmF3	Orthorhombic	6.669	7.059	4.405	6.643	1,306	(2, 327)
SmF3	Hexagonal	6.956		7.120	6.925		(2,021)
EuF3	Orthorhombic	6.622	7.019	4.396	6.793	1,276	(2, 277)
EuF3	Hexagonal	6.916		7.091	7.088		
GdF3	Orthorhombic	6.570	6.894	4.393	7.047	1,228	(2,277)
TbF3	Orthorhombic	6.513	6.949	4.384	7.236	1,172	(2,277)
TbP4	Monoclinic ^(a)	12.1	10.3	7.9			
DyF3	Orthorhombic	6.460	6.906	4.376	7.456	1,154	2,230
HoF3	Orthorhombic	6.404	6.875	4.379	7.644	1,143	2,230
HoF3	Hexagonal	6.833		6.984	7.829		
ErF3	Orthorhombic	6.354	6.846	4.380	7.814	1,140	2,230
TmF ₃	Orthorhombic	6.283	6.811	4.408	7.971		
TmF ₃	Hexagonal	6.763		6.927	8.220	1,158	2,230
YbF3	Orthorhombic	6.216	6.786	4,434	8,168	1,157	2,230
LuF ₃	Orthorhombic	6.151	6.758	4.467	8.332	1,182	2,225

(s) $\beta = 126$ deg.

HALIDES (Continued)

		Lattic	e Consta	ints, A	Melting Point,	Boiling Point, C	
Compound	Structure	a _o	bo	co	С		
		1	мI ₃				
YI3	Hexagonal	4.340		6.960	1,000	1,307	
LaI3	••				761	1,405	
Cel3	Orthorhombic	14.0	4.4	10.1	752	1,400	
PrI3	Orthorhombic	13.9	4.3	10.0	738	1,380	
Ndla	Orthorhombic	13.988	4.316	9.977	787	1,370	
PmI ₃	••		••		797	1,370	
SmI ₃	Hexagonal	4.415		6.976	820	Decomposes	
EuI3				••	(877)	Decomposes	
GdI3	Hexagonal	4.383	••	6.968	926	1,340	
Tbl3	Hexagonal	4.357	•-	6.954	(952)	(1, 330)	
Dy13	Hexagonal	4.335	•-	6,958	955	1,320	
Hola	Hexagonal	4.319	•-	6.946	1,010	1,300	
Erla					1,020	1,280	
Tml	Hexagonal	4.288	-	6,934	1,015	1,260	
Yblg	Hexagonal	4,285		6,931	(1,027)	Decomposes	
Lula	Hexagonal	4.271		6.930	1,045	1,210	

		Lattice Co	onstants, A
Compound	Structure	40	co
	MOB		
LaOBr	Tetragonal	4.149	7.359

				Heat of
		Lattice Co	nstants, A	Formation,
Compound	Structure	a	°0	kcal/mole
		MOCI		
YOCI	Tetragonal	3.903	6.597	
LaOCI	Tetragonal	4.149	7.359	242.6
CeOC1	Tetragonal	4.080	6.831	
PrOC1	Tetragonal	4.051	6.810	242.8
NdOC1	Tetragonal	4.018	6.782	237.1
SmOC1	Tetragonal	3. 982	6.721	(238)
EuOC1	Tetragonal	3,965	6.695	
GdOC1	Tetragonal	3.950	6.672	234.8
TbOC1	Tetragonal	3.927	6.645	
DyOC1	Tetragonal	3,911	6.620	
HoOC1	Tetragonal	3.893	6,602	
ErOC1	Tetragonal	3.88	6.58	

HALIDES (Continued)

· · · ·			Constants, A	ß,	Density,
Compound	Structure	a	°0	degrees	g/cm ³
		MOF			
YOF		••	6 6		5.13
LaOF	Cubic	7.132	60-40	**	6.00
CeOF	Fcc	5.703			
PrOF	Rhombohedral	7.016		33.03	6.39
NdOF	Rhombohedral	6,953		33.04	6.65
a-PmOF	Fcc	5,56	f 		
β-PmOF	Tetragonal	3.95	5, 58	**	
SmOF	Rhombohedral	6.857	-	33, 07	7.19
EuOF	Rhombohedral	6.827		33.05	
GdOF	Rhombohedral	6.800		33, 05	7.51
THOF	Rhombohedral	6.758	• -	33.02	
DyOF	Rhombohedral	••	••		**
		I.e	ttice I	attice Con	stants A
Compound	Structure		ype	antice com	co CO
		MOI			
LaOl	Tetragonal	PI	of a 4	. 144	9,126
SmOI	Tetragonal	PI	FCI 4	. 008	9.192
TmOI	Tetragonal	PI	FCI 3	. 887	9.166
YbOI	Tetragonal	PI	FCI 3	. 870	9,161

HYDRIDES

Co	ompound	Structure	Lattice	e Constan	nts, A	Density. g/cm ³	Heat of Formation, kcal/mole H ₂	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
						MH2-MD2			
	үн ₂		5.205					••	• •
	LaH2		5.667			5,14	49.7		
	CeH ₂	Fluorite	5, 581		w.#	5.43	33.9		
	PrH2	Fluorite	5.517			5,65	47.8		
	NdH ₂	Fluorite	5,464	••		5.94	44.8	**	
	SmH ₂	luorite	5,374	••		6. 52			
	EuD ₂	Orthorhombic	6.21	3.77	7.16				
	GdH ₂	Fluorite	5,303			7.08	46.9	••	
	TbH ₂	Cubic	5,246					**	
	DyH ₂	Cubic	5,201			10 10		46,700	10.8
	HoH2	Cubic	5.165	-					••
	ErH2	Cubic	5.123	**				36,200	9.75
	TmH2	Cubic	5.090					21,870	7.60
	YbH2	Orthorhombic					-		
	YbD ₂	Orthorhombic	5,871	3, 561	6.763	3			
	LuH2	Cubic	5.033				* *	**	

HYDRIDES (Continued)

1

		Lattice	Consi	tants, A	Density,	Heat of Formation,	Magnetic Susceptibility,	Effective Magnetic Moment,
Compound	Structure	a ₀	bo	co	g/cm ³	kcal/mole H2	10 ⁻⁶ emu/mole	Bohr magnetons
					MH3-M	D ₃		
YH3	Нср	3.672		6.625	••		* •	
YD3	Нор	3.659		6.586	**			
LaH3	Amo.phcui				5.26	40,09		
CeHa	Fluorite			••	5.55	42.26		
PrH3	Fluorite			••	5.56	39.52		
NdH3	Fluorite			**				
SenHa	Hexagonal	3, 782		6.779				
GdHa	Hexagonal	3.73		6.71				
TbH3	Hexagonal	3.700		6.658			••	
Dy Ha	Hexagonal	3.671		6.615		**	38,900 '	9.5
HoH3	Hexagonal	3.642	••	6.560		••		
ErH3	Hexagonal	3, 621	••	6, 526			34, 900	9, 54
TmHa	Hexagonal	3.599		6. 489			21, 140	7.47
LuH3	Hexagonal	3.558		6.443	••	** • *	**	••

NITRIDES

Compound	Structure	Lattice Type	a ₀ , A	rsity, g/m ³	Heat of Formation, kcal/ mole	Resistivity, microhm - cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
YN	Fcc	NaCI	4.877	5.60	71.5	93		
LaN	Fcc	NaCl	5.286	6.73	72	100		
CeN	Fcc	NaCl	5.02	1.89	78		433	
PrN	Fcc	NaC1	5.16	7.467		110	4,460	3.66
NdN	Fcc	NaCl	5,151	7.691		75	5,850	3.71
SmN	Fcc	NaCl	5.046	8.495	**		1,125	
EuN	Fcc	NaC1	5.014	8.767				
GdN	Fcc	N#Cl	4. 999	9.105			35,600	8,2
TbN	Fcc	NaCl	4, 933	9.567			42,900	8,6
DyN	Fcc	NaCl	4.905	9.507	* *	100	48,900	10.6
HoN	Fcc	NaCl	4.87	10.26	**	110	47,800	10.3
ErN	Fcc	NaCl	4,831	10,26		79	36,300	9.2
TmN	Fcc	NaCl	4.809	10.84			23,600	7.5
YbN	Fcc	NaCl	4.78	11.33		-	7,250	4.8
LuN	Fcc	NaCl	4.766	11.59				**

OXIDES

Compound	Structure	Lattice Type	A., A	Density.	Heat rf Formation, heal/mole metal
			MO		
SmO	Fec	NaCl	4, 988		159
EuO	Fee		5, 142	8.26	145.2
YNO	8-0	* *	* *	N	158

Compound	Struct.	4 ₀₁ A	Density, g/cm ³	Melting Point, C	Magnetic Susceptibility, 10 ⁻⁶ emu/mole
			MO		
CeO2 PrO2	Fee	5, 42	7,2	1,950	1,910

		Lattic	e Consta	ints, A	β.	Density,	Melting Point,	Heat of Formation, Ical/mole	Magnetic Succeptibility,	Effective Magnetic Moment.
Compound	Structure	40	bo	¢0	degrees	g/cm5	С	of metal	10-6 emu/mole	Bohr magnetons
										Busices
						M203				
Y203	Bcc	10.60	••	**		5.03	2,410	227, 73		
La2O3	Нер	3, 94		6.16		6.51	2,300	214, 29		
Ce2O3	Нер	3, 880		6.057		**	~1,690	217, 46		0.0
Pr2O3	Cubic	10,9		-	++	7.0	2,200	218.4		2.6
Pr2Og	Hexagonal				**			217.9	4,410	3, 6
Nd2O3	Hexagonal	3, 831		5, 999		7.24	2.270	216.08		••
Pm2O3(A)	Hexagonal	3, 806		5.954					**	3, 7
(8)	Monoclinic	14.15	3.69	8. 78	98.5			(216, 5)		2, 8
· (C)	Cubic	10,99			1970-y 49	**		••	**	Ф. (I
a-Sm2Ug	Monoclinic						••	5. W	10 m	**
B-5m203	Cubic	10,90				7,43	**		(h) (h)	1.6
a-EugOg	Bec	10,009				7.62	2,350	••	**	
B-Eu203	Monoclinic	14,082		**		7,28		194.8	**	3, 4
a-Gd203	Cubic		3.640	8.788	100	7.99	2,050	196.5	**	**
R-Cd O		10,79			***	7,41	-	216, 97		7.9
β-Gd203	Monoclinic		**			**	2,350	-	**	
Tb203	Bec	10.69			**	7.61	2,390	218.4	35, 800	9.7
Dy203	Bee	10,63		-		7.81	2,340	222, 92	-	10.6
HogOg	Bec	10, 58	**	**		8,36		224, 78		10.6
Er2O3	Bec	10.51				8,640		226.80	**	9.6
Tm ₂ O ₃	Bec	10, 52		-		8.6		225. 7		7,6
Yb203	Bec	10.41	**			9.2	2, 350	216.84		4,5
Lu2O3	Bcc	10.38		-		-	**	224, 5	ar 46	0.0

OXIDES (Continued)

		Lattice Constants, A			Density,	Heat of Formation, lical/mole	Magnetic Susceptibility,
Composind	Structure	4 ₀	bo	¢o	E/cm3	of metal	10 ⁻⁶ emu/mole
			9	Other On	ides.		
P16011 Eug04	Cubic	5.4095			**		2, 540
Eu _n O _a	Ortherhombic	10.085	12, 054	3.502	8. 07	10 m	a. 40
Ortho 1 (EujgOg)	Orthorhombic	9.75	49, 5	5, 63	6, 74	**	10 (P
TheOy	Cubic	10.70		-		224, 0	30,100

PHOSPHIDES

Comprised	Structure	Lattice Type	a _p , A	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Pohr magnetom
YP	Pee	NaCl	5, 662	**	
LaP	Fee	NaCL	6, 016	••	
CeP	Fee	NaCl	5, 909	**	
PtP	Pec	NaCl	5, 872		3. 77
240P	Fee	HaC	5, 838	10.00	
SmP	Fee	NaCl	5, 760	1,112	
GdP	Fee	NaCl	5, 723	28, 450	7.,95
ThP	Fee	NaCl	5, 686	39,506	9.56
DyP	Fee	NaCl	5, 654	46,729	10,34
HoP	Fee	NaCl	5, 626	46, 083	10,34
ErP	Fee	NaCl	5, 606	37, 593	9.32
TmP	Fee	NaCl	5, 573	25, 316	7.93
YbP	Fec	NaCl	6, 554	7, 813	4.5
				-	

SELENIDES

Compound	Structure	Lattice Type	40- A	Density.	Melting Point, C	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetoes
					MSe			
YSe	Fec	NeCl	5,703					
LaSe	Pec	NaCl	6.048	6, 34				**
Celle	Fee	NaCl	5,992	6. 55		50	7.08	0,46
PrSe	fee	NaCI	5.940	6.80	1820	100	2,186	2.3
NdSe	Fee	NeCl	5, 879	6, 93	**		4,611	3, 3
Sm Se	Fee	NaCl	6,159	6.42		50	4,780	3, 4
EuSe	Fee	NaCl	6,178	6, 42	2100	1.38 x 109	4,440	3, 3
GdSe	Fee	NeCl	5.758	8.2	22.86		••	7,65
TbSe	Fee	NaC1	5, 740		1800	72	22,090	8.20
DySe	Fee	NaCl	6, 711			••	33,755	9.82
HoSe	Pec	NaCl	5.680				40,984	10.37
ErSe	Pec	NaCl	5, 662				43, 478	10,62
TmSe	Pec	NaCl	5,640		(1800)	170	35, 635	9.56
YbSe	Fee	NaCl	5, 94		1945	1.0 x 10 ⁸	18,180	6.89

Compound	Structure	Lattic Ao	R Const	co	Density.	Resistivity, microhm-cm	Magnetic Susceptibility,	Magnetic Moment,
		_	_	and the second second		macroson -cm	10 ⁻⁶ emu/mole	Bohr magnetona
					MS			
LaSeg	Tetragonal	8.47		8, 53	6, 33	1.46 x 10 ⁶		
CeSeg	Tetragonal	8,43		8.49	6,45	2.92 × 10 ⁸	32	0
PrSeg	Tetragonal	8.37		8. 44	6, 68		2,220	2,2
NdSeg	Tetragonal	6, 33	••	8, 41	6.83	**	4,630	3.3
SmSe ₂	Tetragonal	8, 16	••	8.36	6, 94		1,200	3.4
GdSeg	Orthorhombic	7. 17	4.03	8,30				1.6

Compound	Structure	Latrice Type	Lattice Ao	Constan	co	Density, g/cm ³	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
					Mg	Se3			
Y2Se3 La2Se3 Ce2Se3 Pr2Se3 Nd2Se3	Pee Bee Bee Bee Bee	NaCl Th ₃ P ₄ Th ₃ P ₄ Th ₃ P ₄ Th ₃ P ₄	5.75 9.037 8.960 8.909 8.841			4, 81 6, 15 6, 33 	2.4 x 10 ⁴ 3.3 x 10 ³	69.77 2,068 4,465 4,685	0.0 2.2 3.38 3.58

SELENIDES (Continued)

		Lattice	Lattic	e Consta	nts, A	Density,	kesistivity,	Magnetic Susceptibility,	Effective Magnetic Moment,
Cumpoand	Structure	Туре	*o	bo	¢ ₀	g/cm ³	en berahencen	10 ^{-d} emu/mole	Bohr magnezons
				3	ulysing (Continued)			
Sen, Sea	Boc	Th ₂ P ₄	8, 76	10 II	***	6, 93	1.7 x 10 ³	1,049	1.4
GdgSeg	Bec	ThaPA	8, 72		***	7, 36	1.3 x 10 ³	21, 994	ai 10
DygSe3	Orthorhombic		3.09	10.85	11.0	7,21	**	43,250	10,40
Br., Se.	Fee	NaCl	5, 71			6. 59	7, 9 x 10 ⁵	38,600	9, 63
ErgSeg YbgSeg	Fee	NaCl	5, 66		-	7,33	**	7,890	4, 75
LugSeg	Fee	NaCl	5, 62	**	**	101.105		er. ep	

Compound	Structure	Lattice Type	4 ₀ , A	Density,	Resistivity, microhm+cm	Susceptibility, 10 ⁻⁶ emu/mole
			M	3Se4		
LagSea	Boc	ThaP4	9.087	6, 47		10,84
Ce3Se4	Bog	ThePa	8.973	6, 76	8.0 x 10 ³	10 M
PraSe4	Boe	Th ₂ P	8,927	6, 89		49 - 40
Nd Se.	Bee	That	8, 859	7.15		**
Sm ₃ Se ₄	Bec	Th ₂ P	8.84	7, 33	**	**
Gd3Se4	Bcc	Th ₃ P ₄	8,718		1.1 x 10 ³	***

		Lattice Co	metants, A	Density.	
Compound	Structure	<u>*o</u>	co_	g/cm ³	Color
		M2	0 ₂ 5e		
LagOgSe	Нер	4,09	7,14		Beige
CegO25e	Hop	4,04	7.06	6, 51	Marcon
Pr2O2Se	Hep	4, 01	7.04	6,65	Beige
NdgO2Se	Hep	3.97	6.97	6,99	Nuc-white
SmgO2Se	Hcp	3.93	6, 93	7.40	Gray
GdgO25e	Hep	3.20	6, 87	7,80	Beige
DygO2Se	Hep	3, 83	6.79	8, 39	Light gray
Er2O2Se	Нер	3, 81	7. 58	8, 68	Pink
YbgOgSe	Нер	3.76	6, 69	9.26	Beige

Mana of

SILICIDES

1		Lattice	Lattic	e Consta	A ite	Density.	Porniation,	Point,	
Compound	Structure	Туре	40	bo	¢0	g/cm ³	kcal/mole	C	
				MSI					
YSI	Orthorhombic	CaSi	4.25	10, 52	3, 62	4, 528	32,2	1,870	
LaSt	Orthorhombic	FeB	8.48	4,02	6.04		(64)		
CeSt	Orthorhombic	FeB	**		••	**	**		

		Lattice	Later	ce Cons	tants, A	Density,	Melting Point,	Resistivity,	$\alpha - \beta$ Transition
Compound	Structure	Туре	A _0	bo	c _o	g/cm ³	С	microhm-cm	Temperature, C
				M	12-MSI2.	-n			
a-YSi2	Orthorhomb.c	a-YSig	4, 04	3, 95	13, 23	4.5		**	
B-YSL	Tetragonal	4-ThSi2	4,04		13, 14	4.39	1.520		540
LaSiz	Tetragonal	-ThSig	4, 31		13, 80	5.0	1,520	236	040
Cest	Tetragonal	a-ThSi2	4,175		13, 848	5, 45	**	408	
a-PrSL2	Orthorhombic	a-YSL	4.23	4, 40	13, 68	5, 38			
A-Prsi2	Tetragonal	a-ThSL	4.140		13.65	5, 64		202	-120
a-NdSig	Ortnorhombic	a-YS12	4.18	4.15	13, 56	5, 62		349	-120
B-NdSL	Tetragonal	a-ThSig	4.103		13.53	5.84	1, 525	349	20-150
a-SmSL2	Orthorhombic	a-YSIa	4.105	4.035	13.46	6.13			20-150
B-SmSL2	Tetragonal	a-ThSi2	4.041		13, 33	6.26			
B-EuSi2	Tetragonal	a-ThSig	4.29		13.66	5, 50	1,500		380
a-GdSL	Or horhombic	a-YSLa	4.09	4. 01	13.44	6. 43	1,540	263	-150
B-Gasi	Tetragonal	a-ThSig	4.10		13. 61	6.19	2,100	203	••
TbSL2	Orthorhorabic	a-YSI2	4.045	3.96	13.38		2,100		400
TbSi2-n	Hexagonal	Defect AlB			4.146				
e-Dy Sig	Orthorhombic	a-YSia	4.04	3.95	13. 34	6.8			
A-Dysi2	Tetragonal	e-ThSL	4.03		13.38	6.68		3,020	**
DySi2-n	Hexagonal	Defect AlB2			4.11	0,08	1,550		540
HoSig	Orthorhombic	a-YSL	4,03	3.97	13.40				
HoSL2-n	Hexagonal	Defect AlB ₂							**
ErSi2	Hexagonal	Delect Alba	3. 78		4,107	••	•-		
TmSin	Hexagonal				4.09				
YbSL	Hexagonal		3.76	**	4.07	••			• •
Lubia	0	••	3.77	**	4.10		••		**
10012	Hexagonal	••	3.74		4,04				

		Lattice C	Melting	
Compound	Structure	A0	co	Point, C
		Masis		
Y3SI5	Hexagonal	3, 842	4.104	1,635
GdaSi5	Hexagonal	3.877	4.172	

SILICIDES (Continued)

		Lattice	Lattice Co	nstants, A	Density,	Melting
Compound	Structure	Туре	ao	co	g/cm ³	Point, C
			M ₅ Si ₃			
Y ₅ Si ₃	Hexagonal	Mn5Si3	8.403	6, 303	4. 556	1,850

SULFIDES

Compound	Structure	Lattice Type	a ₀ , A	Density, g/cm ³	Melting Point, C <u>MS</u>	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
YS	Cubic	-	5,466	4,92	2,060		100	••
LaS	Cubic		5,854	5,66	1,970	92	281	-
CeS	Cubic		5.778	5.94	2,450	170	2,125	
PrS	Cubic		5.747	6.07	2,230	240	4,730	
NdS	Cubic		5.690	6.36	2,200	242	4,370	
SmS	Fcc	NaCl	5.967	5.67	1,500	8.5 x 104	5,070	4.34
EuS	Fcc	NaCl	5.970	5.745		:.	22,600	
GdS	Cubic		5.574	7.26			30,300	8.01
TbS	Fcc	NaCl	5, 517			1'	35,088	9.63
Dys	Fcc	NaC.	5.490			-2.	40,000	10.39
HoS	Fcc	NaCl	5.465				41, 464	10.50
ErS	Cubic		5.424		••		35,088	9.50
ErS _{1.18}	Cubic		5.452	6.75				
TmS	Fcc	NaCl	5.412				21, 505	7.42
YbS	Cubic		5.673	6.75			1,450	

		Lattice Co	onstants, A	Density,	Melting Point,	Magnetic Susceptibility,
Compound	Structure	a	c _o	g/cm ³	С	10 ⁻⁶ emu/mole
			MS2			
YS2	Tetragonal	7.71	7.89	4.33	1,630	125
LaS ₂	Cubic	8.20		4.90	1,650	36.3
CeS ₂	Cubic	8,12		5.07	1,700	2,286
PrS ₂	Cubic	8.08		4.90	1,780	4,800
NdS2	Cubic	8.04		5.34	1,760	5,082
Sm S ₂	Cubic	7.87		5,66	1,730	1,238
GdS2	Tetragonal	7.85	7.96	5.98		21, 510
Dy S2	Tetragonal	7.69	7.85	6.11		

25

-1

SULFIDES (Continued)

١

Compound	Structure	Lattice a _o	e Cons	tants, A	β, degrees	Density, g/cm ³	Melting Point, C	Magnetic Susceptibility, 10 ⁻⁶ emu/mole
				M	2 ^S 3			
$\begin{array}{c} \delta - Y_2 S_3 \\ \gamma - La_2 S_3 \\ \gamma - Ce_2 S_3 \\ \gamma - Pr_2 S_3 \\ \gamma - Nd_2 S_3 \\ \gamma - Nd_2 S_3 \\ \varepsilon u_2 S_3 \\ Eu_2 S_3 \\ Eu_2 S_3 \\ Eu_2 S_3 \\ eu_2 S_3 \\ \varepsilon u_2 $	Monoclinic Cubic Cubic Cubic Cubic Cubic - Tetragonal Cubic Bcc Monoclinic	10.71 8.723 8.635 8.611 8.527 8.448 8.415 7.86 8.387 8.292 10.17			81. 17	3.87 4.99 5.19 5.27 5.50 5.87 5.70 6.15 6.54 5.75	1,600 2,150 1,890 1,795 2,200 1,780 1,885 1,480	83.4 27.1 2,520 4,640 4,924 1,020 5,800 27,800 47,700
δ-Er ₂ S ₃ Yb ₂ S ₃	Monoclinic Hexagonal	10.07 6.784	4.00	17.33 18.29	••	6.07 6.04	1,730	38,600 7,130

Compound	Structure	Lattice Ao	e Consta b _o	Co	Density. g/cm ³	Melting Point, C	Magnetic Susceptibility, 10 ⁻⁶ emu/mole
La ₃ S ₄ Ce ₃ S ₄ ^{Pr} 3 ^S 4	Cubic Cubic Cubic	8, 748 8, 623		M ₃ S ₄	5, 44 5, 675	2,100	27.2 2,160
Nd ₃ S ₄ Sm ₃ S ₄ Eu ₃ S ₄	Cubic Cubic	8,611 8,524 8,556	 	 	5,77 6,02 6,14	2,100 2,040 1,800	4,849
Yb ₃ S ₄	Cubic Orthorhombic	8.537 12.81	12.97	 3. 84	6.27 6.71	••	11,500

Compound		Lattice	Const	ants, A	8.	Density.	Point.	Magnetic
Compound	Structure	A 0	bo	co	degrees			Susceptibility, 10 ⁻⁶ emu/mole
				м	5 S 7			
Y ₅ S7 Dy ₅ S7		12.67 12.84			74	4.18	1,630	39,3
	Monoclinic	12.69	9.01	11.61	74	6.14	1,540	
			3.11	11.47	74	6.39	1,620	

....

SULFIDES (Continued)

		Lattice Co	onstants, A	Density,	Melting Point,	Magnetic
Compound	Structure	a	<u>co</u> g/cm ³		<u> </u>	Susceptibility, 10 ⁻⁶ emu/mole
			M ₂ O ₂ S			
Y2O2S	Hexagonal	3.78	6.56	4.95	2,120	0
La202S	Hexagonal	4.051	6.943	5.73	1.940	0
Ce202S	Hexagonal	4.00	6.82	5.99	1,950	2,139
Pr2O2S	Hexagonal	3,974	6.800	6.16		
Nd ₂ O ₂ S	Hexagonal	3,946	6,790	6.47	1,990	••
Sm2O2S	Hexagonal	3,893	6.717	6.90	1,980	1,020
Eu2O2S	Hexagonal	3.87	6, 68	7.04		1,020
Gd2O2S-	Hexagonal	3.851	6.687	7.34		
Tb ₂ O ₂ S	Hexagonal	3.825	6.626	7,56		
Dy202S	Hexagonal	3.803	6,603	7.84		
Er2O2S	Hexagonal	3.760	6. 552	7.92		
Tm2025	Hexagonal	3.747	6. 538	8, 59		
Yb202S	Hexagonal	3, 723	6, 503	8.72		
Lu202S	Hexagonal	3.709	6.486	8.69		••

TELLURIDES

MTe	Resistivity, microhm-cm	Magnetic Susceptibility, 10 ⁻⁶ emu/mole	Effective Magnetic Moment, Bohr magnetons
Te Fcc NaCl 6.080			
LaTe Fcc NaCl 6.422 6.682 1,725	1.5 x 10 ¹¹	**	
CeTe Fcc NaCl 6.359	200		
PrTe Fcc NaCl 6.322			
NdTe Fcc NaCl 6.249	40		
SmTe Fcc NaCl 6.58 1.920	1.64 x 10 ⁹	4,292	4, 33
EuTe Fcc NaCl 6.585			4.00
GdTe Fcc NaCl 6,139 1,870	700	26,042	7.63
TbTe Fcc NaCl 6,101		38,760	9. 57
DyTe Fcc NaCl 6.075		45,977	10,47
HoTe Fcc NaCl 6,049		48,780	
ErTe Fcc NaCl 6.021	140	34,965	10, 50
TmTe		25, 641	9,30
YbTe Fcc NaCl 6.39 1,740	7 x 10 ⁹		7, 63

1

. [;

¥.

١

TELLURIDES (Continued)

Compound	Structure	Lattice Type	Lattice ^a o	<u>Constants, A</u>	Density, g/cm ³	Melting Point, C	Resistivity, microhm-cm
				MTe ₂			
LaTe ₂	Tetragonal	Fe ₂ As	4.53	9,22	6.97	1,535	6.6 x 10 ⁶
CeTe ₂	Tetragonal	Fe ₂ As	4.51	9.10	7.06		0.0 X 10
PrTe ₂	Tetragonal	Fe ₂ As	4.46	9,05			
NdTe ₂	Tetragonal	Fe ₂ As	4.41	9.04			
GdTe ₂	Tetragonal	Fe ₂ As	9.10	9.30	6.8		5.5×10^4
DyTe _{2-n}	Tetragonal	Fe2As	4.29	8.91			0.0 / 10

Compound	Structure	Lattice	Consta bo	<u>cts.</u> A	Density, g/cm ³	Melting Point, C	Resistivity, microhm-cm	
	/		M2	Te3				
Y ₂ Te ₃	••	•-				1,525	10 ⁷	
Ce2Te3		9.535			6.6		1.1×10^4	
Pr2Te3	•-	9.482			6.6		1.1 × 10	
Nd ₂ Te ₃	Orthorhombic	12,12	11.93	4.37	6,65	1,650	1.1×10^{3}	
Sm ₂ Te ₃	Bcc	9.480			7.11	(1, 475)		
Gd2Te3	Tetragonal					1,505	1.5×10^4	
Er2 Te3							1.1×10^3	
Yb ₂ Te ₃	.					• •	107	

Compound	Structure	Lattice Type	4 ₀ , Α M ₃ Te ₄	Density, g/cm ³	Melting Point, C	Resistivity, microhm-cm
La ₃ Te ₄	Bcc	Ce ₂ S ₃	9.619	6.65	1, 595	
Ce3Te4	Bcc	Th ₃ P ₄	9. 528	6.7	1,090	1.8×10^{3}
Nd3Te4	Bcc	Th ₃ P ₄	9.438	6.8	1,685	350
Gd3Te4					1,410	460
Dy3Te4		••				3.1 x 10 ³
Er3 Te4						280
Properties

TELLURIDES (Continued)

Compound	Structure	Lattice C	Constants, A	Density, g/cm ³	Color
		M ₂ O	2 ^{Te}	·	
$La_{2}O_{2}Te$ $Ce_{2}O_{2}Te$ $Pr_{2}O_{2}Te$ $Nd_{2}O_{2}Te$ $Sm_{2}O_{2}Te$ $Eu_{2}O_{2}Te$ $Gd_{2}O_{2}Te$ $Dy_{2}O_{2}Te$	Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal Hexagonal	4.12 4.09 4.06 4.03 4.00 3.98 3.96 3.92	13.10 12.92 12.83 12.77 12.61 12.57 12.54 12.38	6.36 6.64 7.18 7.58 7.74 8.0 8.46	Dark green Maroon Light green Green Dark green Maroon Brown Maroon

Other Tellurides

	. .	1	Lattice Constants, A			a,	Density,	Point,
Compound	Structure	-0	bo	°0	degrees	g/cm ³	C	
	LaTe ₃	Tetragonal Orthorhombic	4.407		26.14		6.92	835
	La4 Te7		4.607	4, 483				
GdTe4	Rhombohedral			9.142			-	
		13.0	**		25.5			

Malain

Copper (1) (Permission of U. S. AEC)

(Permission of U. S. AEC)

34

Magnesium (1) (Permission of U. S. AEC)

Nickel (1) (Permission of U. S. AEC)

Silicon (1) (Permission of U. S. AEC)

1.

Titanium (1) (Permission of U. S. AEC)

Vanadium (1) (Permission of U. S. AEC)

Wolfram (1) (Permission of U. S. AEC)

Yttrium

Zirconium (1) (Permission of U. S. AEC)

Y2O3-Al2O3 (Permission of American Ceramic Society)

Yttrium-Sulfur-Calcium (12)

Yttrium-Uranium-Carbon at 1500 C (2)

Yttrium-Iron-Chromium (4)

LANTHANUM

Boron (178) (Reprinted from J Amal of Physical Chemistry)

Lanthanum

Iron (1) (Permission of U. S. AEC)

1

Magnesium (1) (Permission of U. S. AEC)

Manganese (1) (Permission of U. S. AEC)

Neodymium (4)

L. + L.

Plutonium (17)

Silver (1) (Permission of U. S. AEC)

Lanthanum

Thallium (1) (Permission of U. S. AEC)

Titanium (1) (Permission of U. S. AEC)

La2O3-Al2O3 (19)

La203-BeO (20)

La₂O₃-TiO₂ (25) (Permission of American Ceramic Society)

COMPOSITION, MOLE %

La2O3 - Rare-Earth Oxides (26)

Lanthanum

Lanthanum-Vanadium-Titanium at 600 C (4)

AI

α >

3

2

Lanthanum-Cerlum-Silver (4)

51

Lo

Gold (1) (Permission of U. S. AEC)

Indium (1) (Permission of U. S. AEC)

Iron (1) (Permission of U. S. AEC)

Lead (1) (Permission of U. S. AEC)

Manganese

Magnesium (1) (Permission of U. S. AEC)

Nickel (1) (Permission of U. S. AEC)

Ruthenium (31)

Scandium (32)

20 Weight Per Cent S 40

°

Thallium (1) (Permission of U. S. AEC)

: •

ŝ,

Uranium (4)

CeO2-ZrO2 (37)

CeO2-BeO-ZrO2 (37)

Zinc (1) (Permission of U. S. AEC)

Cerium-Aluminum-Copper (34) Isothermal Section at 500°C

Cerium-Aluminum-Titanium (4)

Cerium-Vanadium-Titanium (4)

Cerium-Magnesium-Aluminum (4)

Cerium-Cobalt-Iron (4)

ş

Cerium-Magnesium-Manganese (4)

Cerium-Magnesium-Zinc (4)

À

PRASEODYMIUM

Galliu:n (1) (Permission of U. S. AEC)

1.0

Praseodymium

r

NEODYMIUM

Iron (38)

Magnesium (39)

Scandium (5)
1.10

I

1

100

80

COMPOSITION, MOLE %

Nd₂O₃ - Rare-Earth Oxides (26)

1072

SAMARIUM

Samarium

Vanadium (214)

COMPOSITION, MOLE %

Sm2O3 - Rare-Earth Oxides (26)

Europium

4

COMPOSITION, MOLE % Eu₂O₃ - Rare-Earth Oxídes (26)

71

GADOLINIUM

Gadolinium

Magnesium (29)

PHASE DIAGRAMS

LIQUID

Nickel (45)

1800

Terbium (44)

Gadolinium

0

20

40

Gd202510,

80 6d20325102

100

60

2Gd₂O₃3SiO₂ Mole Per Cent SiO₂

Gd2O3-SiO2 (46)

COMPOSITION, MOLE %

Gd₂O₃ - Rare-Earth Oxides (26)

LIQUID TEMPERATURE (.C) (<02 wt.%) Aluminum (214) Ce2Dy3 CoDY3 Cosov Co20y CogDy Temperature (°C) 40 60 WEIGHT PERCENT Co

Temperature (°C)

DYSPROSIUM

PHASE DIAGRAMS

HOLMIUM

Holmium/Erbium

PHASE DIAGRAMS

Niobium (53)

Oxygen (50)

PHASE DIAGRAMS

Zirconium (1) (Permission of U. S. AEC)

Ytterbium

Antimony (273)

1.11 84

Gold (272)

Symbol Y

ŧ,

YTTRIUM

Atomic Number 39

Atomic Weight 88,92

Authority

PHYSICAL PROPERTIES

Surface Tension

Abundance	28-70 ppm (approx. 28)	51
Density	4.472 g/cm ³	67
Melting Point	1509 C	66
Heat of Fusion	4. l kcal/mole	52
Boiling Point	2927 C	57
Heat of Vaporization (25 C)	93 kcal/mole	57
Vapor Pressure (1780-2185 K)	Log P _(mm Hg) = 8.836 - $\frac{20685}{T}$	60
Specific Heat (25 C)	o.01 cal/(mole)(C)	53
Heat of Combustion	227.72 kcal/g-atom	134
Coefficient of Linear Thermal Expansion (20-897 C)	$10.8 \times 10^{-6}/C$	61
Thermal Conductivity (28 C)	$0.035 \text{ cal/(cm^2)(sec)(C/cm)}$	54
Heat of Sublimation	84.71 kcal/mole	59
Cohesive Energy	103 kcal/mole	89
Work Function	3.3 ev	75
Debye Temperature		ı
Expansion on Melting		

:

YTTRIUM

CRYSTAL PROPERTIES

Authority

Structure	HCP	BCC	61
Lattice Constants	$a_0 = 3.6474$ $c_0 = 5.7306$	$a_0 = 4.11 A$	61
Density	4. 472	4.25 g/cm ³	4-
Metallic Radius	1.801	1.83 A	67
Atomic Volume	19.886	cm ³ /mole	67 65
Transition Temperature	1460	C	
Heat of Transition	1.18	kcal/mole	66
Ionic Radius (Trivalent Ion			61
Closest Approach of Atoms			55
Allotropic Modifications	3.59	A	56
CHEMICAL PROPERTIES			
Stable Oxidation State	+3		
Electrode Potential			58
Ionization Potential	lst = 6.377, 2nd	= 12.333, 3rd = 20.4 volts	82
Metallographic Polishing		to corrosion and may be	
and Etching	sectioned, moun	hied and polished by hniques. Recommended 5% HNO2 90%	62
Corrosion Rates	<1 mil/man	200	
(In Air)	<1 mil/year up t 13 mil/year at 4 600 mil/year at 6	00 C	68
Corrosion Data			
۶	alloys up to 1260	on resistance of Fe-Cr C.	65
ELECTRICAL PROPERTIES			
Resistivity (25 C)	64.0	,	
A SALAN AND AND AND AND AND AND AND AND AND A	64.9 microhm-cr	n	61
Temperature Coefficient of Resistivity (25 C)	$2.71 \times 10^{-3}/C$		63
			1

86

87

Authority

MAGNETIC PROPERTIES

	Susceptibility (25 C)	$191 \times 10^{-6} \text{ emu/mole}$	61
	Effective Magnetic Moment	Theoretical - 0.00 Bohr Magnetons Measured - 0.67 Bohn Magnetons	61
	Curie Temperature	None	61
	Néel Temperature	None	61
MECH	ANICAL PROPERTIES		
	Young's Modulus	$6.63 \times 10^{11} \text{ dynes/cm}^2$	64
	Shear Modulus	2.62 x 0^{11} dynes/cm ²	64
	Poisson's Ratio	0.265	64
	Compressibility	2.09 x 10^{-6} cm ² /kg	64
	Hardness	38 DPH	57
	Tensile Strength (70 F)	22.0 x 10^3 psi	72
	Yield Strength (70 F)	9.7 x 10 ³ psi	72
	Elongation (70 F)	25 per cent	72
	Ultimate Compressive Strength	113.8 x 10 ³ psi	65
	Impact Strength (Izod)	1.50 ft-lb	71
	Workability	Good	88
	General Fabrication	See references	70,72,113

Note: Room-temperature mechanical properties depend on oxygen content,

Authority

58

NUCLEAR PROPERTIES

Isotopes

Whole Number Mass	Relative Abundance, per cent	Half ife	Decay Mode
87	~ ~	80 hr	К
		14 hr	γ _. e ⁻
88	ana 400	2 hr	β+
		104 days	β+ , γ
89	100	Stable	
90	a a	60-72 hr	β-
91		57 days 51 min	β- γ, e-
92		3.5 hr	β-,γ
93		10 hr	β-,γ
94		20 min	β¯, γ
95		<3 hr	β-
97		Short	β-

Thermal-Neutron Cross Section

 1.38 ± 0.14 barns/atom, or 0.0094 cm²/g

SAFETY

Toxicity: Not classed as an industrial poison; sparse physiological data.

Fire hazard: Fine turnings and powders should be handled with care as they ignite easily and burn with intense heat; should be gathered and stored under an oil having a high flash point.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point
Entropy	S ₂₉₈ = 11.0	$S_{1773} = 22.66 \text{ eu}$
Heat Capacity	$C_{p298} = 6.01$	$C_{p1773} = 7.49 \text{ cal/(mole)(C)}$

65

76,77

T,K	c _p	so	$(H^{0}-H_{0}^{0})/T$	$(-F^{0}-H_{0}^{0})/T$
5	0.06	0,064	0.026	0,038
10	0.23	0.150	0,081	0.069
15	0.79	0.322	0,197	0.125
20	1.89	0,693	0.476	0.217
30	5,29	2,063	1.479	0.584
40	8,95	4,121	2,892	1,229
50	12, 19	6.478	4.439	2.039
60	14,80	8,953	5,965	2,988
70	16,84	11.398	7.379	4,019
80	18.43	13,757	8,664	5.093
90	19,71	16,006	9.822	6.184
100	20,71	18,136	10,862	7.274
120	22,14	22,054	12,631	9.423
140	23,17	25, 541	14.065	11,476
160	23,98	28,686	15,255	13,431
180	24,63	31, 547	16,259	15,288
200	25,10	34, 169	17,122	17.057
220	25,46	36.577	17,862	18,715
240	25, 78	38,805	18,508	20,297
260	26.05	40,880	19,079	21.801
273, 15	26.24	42, 169	19.422	22.747
280	26,31	42.820	19,587	23,233
298, 15	26, 52	44,476	20.005	24,471
300	26.54	44.643	20,043	24,640
320	26.74	46, 362	20.455	25,907
340	26.92	47.989	20,830	27,159

Thermodynamic Functions of Yttr.um, joules/(g-atom)(K)

41

Heat Content and Entropy of Solid and Liquid Yttrium (Base: crystals at 298.15 K)

Т, К	H _T -H _{298,15} , cal/mole	S _T -S _{298.15} , cal/(K)(mole)	Т, К	H _T -H298, 15, cal/mole	ST-S298, 15, cal/(KXmole)
400	615	1.78	1600	8,680	10,90
500	1,235	3.15	1700	9,420	11.35
600	1,860	4,29	1773(s)	9,960	11.66
700	2,495	5,27	1773(1)	14,060	13.97
800	3, 140	6.14	1800	14,280	14, 10
900	3,800	6,91	1900	15,080	14, 53
1000	4,465	7.61	2000	15,880	14,94
1100	5, 140	8.26	2200	17,480	15, 70
1200	5,830	8,86	2400	19,080	16.40
1300	6, 525	9,41	2600	20,680	17.04
1400	7,235	9.94	2800	22,280	17.63
1500	7,955	10,43	3000	23,880	18, 18
For sol	id yttrium:		For liquid	yttrium:	
(0,	2 percent; 298° -	0.50 x 10 ⁻³ T ² - 1,750 1,773°K.)	1,77	8.15 ⁼ 8.00T - 12 3 [•] - 3.000 [•] K.);	0 (0.1 percent;
	$5,72 + 1,00 \times 10^{-1}$ 73 (fusion) = 4,10		C p = 8.0	00.	

77

Authority

YTTRIUM

Heat Content and Entropy of Gaseous Yttrium (Base: ideal gas at 298.15 K)

<u>т, к</u>	HT-H298, 15. cal/mole	ST-S298.15. cal/(K)(mole)	Т, К	HT-H298, 15. cal/mole	ST-S298, 15, cal/(K)(mole)
400	625	1.80	1,900	8, 595	10.26
500	1,220	3,13	2,000	9,115	10.52
600	1,790	4,17	2,200	10,175	11.03
700	2,350	5,03	2,400	11,270	11, 50
800	2,890	5.76	2,600	12,415	11,96
900	3,425	6.39	2,800	13,620	12, 41
1,000	3,955	6,94	3,000	14,895	12,85
1,100	4,475	7.44	3, 500	18,475	13,95
1,200	4,995	7.89	4,000	22,655	15.06
1,300	5, 510	8,31	4, 500	27, 390	16,18
1,400	6,025	8,69	5,000	32, 560	17.27
1,500	6, 535	9.04	6,000	43,665	19,27
1,600	7,050	9.37	7,000	54,665	20,98
1,700	7,560	9.68	8,000	65,370	22,42
1,800	8,075	9.98			

For gaseous yttrium:

 $H_T - H_{298, 15} = 2.77T + 0.74 \times 10^{-3}T^2 - 2.64 \times 10^{5}T^{-1} - 6 (0.7 \text{ percent}; 3.000^{\circ} - 6.000^{\circ}K.);$ $C_p = 2.77 + 1.48 \times 10^{-3}T + 2.64 \times 10^{5}T^{-2}.$

YTTRIUM COMPOUNDS

A		Authority
Antimonides		162,168
	YSb	
Structure	Cubic	
Lattice Type	N.Cl	
a ₀ , A	6.16	
Melting Point, C	1925	- 4
Resistivity, microhm-cm	65	
Arsenides		169
	YAs	
Lattice Type	NaCl	
a ₀ , A	5.805	
Beryllides		146,161
	YBe13	
Structure	Cubic	
Lattice Type	NaZn ₁₃	
^a o, A	10.238	
Heat of Vaporization, kcal/mole	75.0	
Dissociatic Rate, g/(cm ²)(sec)	3.63 x 10^{-7} at 1040 C 3.01 x 10^{-5} at 1290 C	

Authority

162,168

;	Struc	ture		

Lattice Type	Na Cl
a _o , A	6.23
Resistivity, microhm-cm	196

Borides

153,154, 155,171

	YB2	YB3	YB4	YB6	YB ₁₂	YB70
Molecular Weight	110.56	121.28	132.20	153.84	218.56	846.32
Structure	Hexag- ơnal	Tetrag onal	- Tetraj onal	g- Cubic	Cubic	Tetrag- onal
a _o , A	3.298	3.78	7.111	4.113	7.500	11.75
c _o , A	3.843	3.55	4.017			12.62
Density, g/cm^3	2.91	3.97	4.36	3.76	3.44	
Heat of Formation kcal/mole				24	w =	
Melting Point, C	2100		2800	2300	(2200)	(2000)
Resistivity, microhm-cm	39		28.5	40.0	94.8	
Temperature Coefficient of Resistivity, 10 ⁻⁶ /C				1.24		
Coefficient of Thermal Expan- sion, 10 ⁻⁶ /C				6.24		
Thermal Conduc- tivity, cal/ (cm)(sec)(C)				0.070		

YBi

Cubic

(Continued)

Bismuthides

Authority

Borides (Continued)

	YB2	YB3	YB4	YB6	<u>YB12</u>	YB70
Effective Magnetic Moment, Bohr magnetons			an an	0.0		
Work Function, c				2.22		
Microhardness, kg/mm ²	aa aa		400 990	3264		
Colur			Gray brown	Blue violet		
Emissivity at 1500 C (λ = 0.655 μ), C				0.7	-	
Metallic Radius, A				2.18		** **

Carbides

148,153

	YC	YC2	Y2C3	Y3C
Molecular Weight	100.92	112.92	213.84	278.76
Structure		Tetragonal		Cubic
Lattice Type		CaC2		Fe ₄ N
a _o , A		3.664		5.102
c _o , A		6.169		
Density, g/cm ³		4. 528		5.41
Melting Point, C	1950	2300	1800	
Resistivity, microhm-cm	4.54 x 10^4	88.7	3.5×10^2	
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	1.36			
Microhardness, kg/mm ²	120	700	900	
Emissivity (λ = 0.655 μ) 1100 C 1800 C	0.81 0.81	0.87 0.73	0.78 0.91	

è

Authority

170

	YGe2
Structure	Imperfect
a _o , A	3.96
c _o , A	4.14

Halides

Germanides

58,108,147, 157,158,159, 207,208,209, 211,210

	YBr3	YCl3	YF3	YI3	YOCI	YOF
Structure	Hexag- onal	Mono- clinic	Ortho- rhombic Cubic	Hexag- onal	Tetrag- onal	
a _o , A	4.102	11.94	6.353 (orth.) 5.644 (cubic)	4.340	3.903	
b _o , A			6.850			
c _o , A	6.399		4.393	6.960	6.597	
β, deg		111.0				
Density, g/cm ³			5.069			5.13
Heat of Forma- tion, kcal/ mole		239.16	,	148		
Entropy of Formation, eu		(59)		4		
Melting Point, C	904	700	1148	1000		
Heat of Fusion, kcal/mole	9	9	13	12		
Entropy of Fusicn, eu	8	9	8	9		

(Continued)

Authority

212

Halides (Continued)

oiling Point, C	1463	1507	2227	1307	
eat of Vapori- zation, kcal/mole	44	45	60	41	
ntropy of Vaporization, eu	25	25	24	26	
efractive Index		40 ST	1	میں میں	 1.7

Glasner has supplied in ANL-5750 the following equations for calculating thermodynamic quantities. The reactions concerned and the constants for use in these equations are tabulated.

 $\Delta C_{p} = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^{2} + \frac{\Delta d \times 10^{5}}{T^{2}}$ $\Delta H - \Delta H_{P298} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^{2} + \frac{1}{3} (\Delta c \times 10^{-6})T^{3} - \frac{1/2(\Delta d \times 10^{5})}{T} + \Delta A$

 $\Delta S = (2.303 \Delta a) \log T + (\Delta b \times 10^{-3}) T + \frac{1}{2} (\Delta c \times 10^{-6}) T^2 - \frac{1/2(\Delta d \times 10^5)}{T^2} - \Delta B$

 $\Delta F - \Delta H_{P298} = -(2.303 \Delta a) T \log T - \frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6}) T^3 - \frac{1/2(\Delta d \times 10^5)}{T} - T \Delta (B - a) - \Delta A .$

$\frac{\text{Reaction}}{Y(s) + \frac{3}{2}F_2(g) = YF_3(s)}$	Temper- ature <u>Range, K</u> 298-1660	-ΔHF298, kcal/mole 397	-ΔF298, kcal/mole 380	<u>Aa</u> 1.4	<u>Ab</u> 8.3	<u>Δc</u>	<u>Ad</u> 1.2	Δ A , <u>kcal/mole</u> -0.375	-ΔB, eu 65.4	$\frac{-\Delta(B-a)}{66.8}$
$Y(s) + \frac{3}{2}F_2(g) = YF_3(l)$	1660-1750	••		14.0	-2.9		1.2	7.141	132.4	146.4
$Y(l) + \frac{3}{2}F_2(g) = YF_3(l)$	1750-2300			12.1	-0.7		1,2	3.097	124.4	136.5
$Y(1) + \frac{3}{2}F_2(g) = YF_3(g)$	2300-2500			0.1	-0.7		1,2	84, 90	7.6	7,7
$Y(a) + \frac{3}{2}Cl_2(g) = YCl_3(a)$	298-973	235	219	1.5	11.6		1.0	-0.619	64.1	65.6
$Y(s) + \frac{3}{2}Cl_2(g) = YCl_3(f)$	973-1725		**	14,3	-2.6		1.0	2,650	129.1	143.4
$Y(s) + \frac{3}{2} Cl_2(g) = YCl_3(g)$	1725-2500			1,3	-2.6		1.0	70.08	6.1	7.4

YTTRIUM COMPOUNDS

Authority

, 163,164,165

	YH2	YDZ	YH3	YD3
Structure			Hcp	Hcp
a ₀ , A	5.205		3.672	3.659
c _o , A		~~~~	6.625	6.586
Heat Capacity at 298 K, cal/ (mole)(C)	8.243	10.773	10.363	13.727
Enthalpy at 298 K, kcal/mole	1.403	1.659	1,613	2.025
Entropy at 298 K, eu	9.175	10.294	10.019	12.028

....

Nitrides

149,153,167

	YN
Molecular Weight	102.93
Structure	Fcc
Lattice Type	Na Cl
a ₀ , A	4.877
Density, g/cm ³	5.60
Heat of Formation, kcal/mole	71.5
Entropy of Forma- tion, eu	25
Resistivity, microhm-cm	93
Temperature Coeffi- cient of Resistivity (-193 to 827 C), 10 ⁻³ /C	1.9

96

Hydrides

Oxides

97

÷.

Authority

156,172,173, 176,177

	Y2O3
Molecular Weight	225.81
Structure	Bcc
a ₀ , A	10.60
Density, g/cm ³	5.03
Heat of Formation, kcal/g-atom	227.73
Entropy of Forma- tion, eu/g-atom	35.54
Melting Point, C	2410
Coefficient of Ther- mal Expansion, 10-6/C	
0-1400 C	8.2
500-1400 C	8.9
Color	White

Thermodynamic Data

.

212

The equations given on page 95 may be used in calculating thermodynamic quantities for the following reactions: Temper-

Reaction	ature Range, K	- AHF 298, kcal/mole	- AF 298, kcal/mole	Δa	۵b	Δc	۵đ	۵A, kcal/mole	- ΔB ,	-0(8-2)
$2Y(s) + \frac{3}{2}O_2(g) = Y_2O_3(s)$	298-1750	420	400.5					-0. 802		
$2Y(4) + \frac{3}{2}O_2(g) = Y_2O_3(a)$	1750-2500			-1.4	7.8		0.6	-8.890	64.2	62.8

(Continued)

YTTRIUM COMPOUNDS

Authority

Oxides (Continued)

Thermodynamic Functions for Y_2O_3

<u>T, K</u>	C _p , cal/(mole)(K)	S _o , cal/(mole) (K)	H ^o -H ^o , cal/mole	(-F ⁰ -H ⁰)/T, cal/(mole)(K)
16	0,323	0.1120	1.342	0.02812
20 .	. 405	. 1928	2,796	.05300
30	.777	.4120	8,320	.1347
40	1,717	.7575	20.56	. 2436
50	2,796	1,255	43,06	, 3941
60	3,966	1,867	76.77	. 5873
70	5,236	2, 572	122,71	,8194
80	6,545	3,357	181, 61	1.0867
90	7.854	4,204	252,88	1,3937
100	9,152	5,098	338.66	1,7117
120	11,66	6,991	547.07	2,4324
140	13,96	8,965	803.70	3,2240
160	16.03	10,966	1103.9	4,0666
180	17,86	12,963	1443.3	4,9443
200	19,37	14,925	1816.1	5,8447
220	20,64	16,833	2216,6	6.7573
240	21,75	18,677	2640.6	7.6742
260	22, 77	20,459	3086.1	8, 5895
280	23,70	22, 181	3550,9	9,4992
298.16	24.50	23,693	3989.3	10,313
300	24, 58	23, 846	4033,7	10,400

Heat Content and Entropy Increments for Y_2O_3 (smooth values)

T , K	HT-H298.15. cal/mole	ST-S298.15 cal/(K)(mole)
400	2,640	7,60
500	5,390	13,73
600	8,250	18,94
700	11,190	23,47
800	14,180	27.46
900	17,200	31.02
1000	20,240	34,22
1100	23,280	37.12
1200	26, 320	39, 77
1300	29,380	42.22
1330	30, 310(a)	42,92(a)
1330	30, 620 (B)	43, 16(B)
1400	32,820	44,77
1500	35,970	46.94
1600	39, 120	48.97
1700	42,270	50.88
1800	45, 420	52,68
1900	48, 570	54,39
2000	51,720	56,00

174

and the second second		Authority
Phosphides		169
	YP	
Structure	Fcc	
Lattice Type	NaCl	
a ₀ , A	5.662	
Selenides		166-168

Y₂Se₃

Fcc

5.75

4.81

>1800

Gray black

YSe

Na Cl

5.703

--

-

166,168, 169,213

IVIC:	ung
Col	or
Silicides	•

Structure

Density, g/cm³

Melting Point, C

a₀, A

152,153, 160

	YSi	a-YSi2	β-YSi2	¥3Si5	Y ₅ Si ₃
Molecular Weight	117.01	145.10	145.10	407.06	528.87
Structure	Ortho- rhombic	Ortho- rhombic	Tetrag- onal	Hexag- onal	Hexag- onal
Lattice Type	CaSi	a-YSiz	a-ThSi2		Mn ₅ Si ₃
a _o , A	4.25	4.04	4.04	3.842	8.403
5 ₀ , A	10.52	3.95			
c _o , A	3.82	13.23	13.42	4.140	6.303
Density, g/cm ³	4.528	4.5	4.39		4.556
Heat of Formation, kcal/mole	32.2				u e
Melting Point, C	1870		1520	1635	1850

(Continued)

YTTRIUM COMPOUNDS

Authority

Sil.cides (Continued)

	YSi	a-YSi2	β-YSi2	Y3Si5	Y5Si3
Curie Tempera- ture, K		Para- magnetic			-mai este
Transformation Temperature, C		$a \neq \beta$ at 540	~ ~	• •	1097 400

....

Sulfides

153

	YS	YS2	8-Y2 S3	¥5\$7	Y2O2S
Molecular Weight	120.99	153.05	274.04	669.06	241.91
Structure	Cubic	Tetrag- onal	Mono- clinic	Mono- clinic	Hexag- onal
a ₀ , A	5.466	7.71	10.71	12.67	3.78
b _o , A			4.02	3.81	
с _о , А		7.89	17.47	11.45	6. 56
β , deg			81.17	74	
Density, g/cm ³	4.92	4.33	3.87	4.18	4.95
Melting Point, C	2060	1630	1600	1630	2120
Magnetic Suscepti- bility at 20 C, 10 ⁶ emu/mole	100	125	83.4	39.3	>0
Color	Ruby red	Brown violet	Yellow		Gray white

Tellurides

Authority

168,169

	YTe	Y2Te3
Structure	Fcc	
Lattice Type	Na Cl	
a ₀ , A	6.080	
Melting Point, C		1525
Resistivity at 20 C, microhm-cm		107

Miscellaneous

150,151

		Lattice Co	onstants, A	Superconducting Transition
	Structure	ao	<u>_G</u>	Temperature, K
YIr ₂	Cubic	7.500		2.18
YOs2	Hexagonal	5.307	8.786	4.7
YPd3	Cu ₃ Au	4.074		
YPt ₃	Cu ₃ Au	4.075		
YRez	Hexagonal	5.396	8.819	1.83
YRh2	Cubic	7.459		
YRu2	Hexagonal	5.256	8.792	1.52
YPt ₂	Cabic	7.590		1.57
YA12	Cubic	7.860		÷ ~

1

LANTHANUM

Symbol La

Atomic Number 57

Atomic Weight 138.92

PHYSICAL PROPERTIES		Authority
Abundance	5-18 ppm (approx. 18)	51
Density	6.162 g/cm ³	67
Melting Point	920 C	66
Heat of Fusion	2.75 kcal/mole	77
Boiling Point	3469 C	57
Heat of Vaporization (25 C)	96 kcal/mole	57
Vapor Pressure (1874- 2182 K)	$LogP_{mm Hg} = 8.876 - \frac{22019}{T}$	60
Specific Heat (25 C)	6.65 cal/(mole)(C)	53
Heat of Combustion	214.28 kcal/g-atom	134
Coefficient of Linear Thermal Expansion	4. 9 x 10^{-6} /C (-173 - 310 C)	61

Thermal Conductivity

Heat of Sublimation

0.033 cal/(cm²)(sec)(C/cm)

54

90
LANTHANUM

87

		Authority
Cohesive Energy	88 kcal/mole	89
Work Function	3.3 ev	75
Debye Temperature	142 K	97
Expansion on Melting		
Surface Tension (950 C)	719 dynes/cm	85

CRYSTAL PROPERTIES

Structure	<u>(α)</u> ΗCP	(β) FCC	(γ) BCC	
Lattice Constants	$a_0 = 3.770$ $c_0 = 12.159$	a ₀ = 5.304	$a_0 = 4.26 A$	61
Density	6. 162	6.190	5.97 g/cm ³	67
Metallic Radius	1.877	1.875	1.90 A	67
Atomic Volume	22.50	22.46	23.2 cm ³ /mole	66

Atomic Volume Versus Temperature (Permission of Elsevier Publishing Co.)

Transition Temperature	Hcp/Fcc at 310 C, Fcc/Bcc at 868 C	66
Heat of Transition	Hcp/Fcc = 0.095, Fcc/Bcc = 0.76 kcal/mole	61
Ionic Radius (Trivalent Ion)	1.061 A	55

		Authority
Closest Approach of Atoms	3.73 A	56
Allotropic Modifications	A Fcc structure with $a_0 = 5.17$ A occurs at 20 C when metal is subjected to a static pressure of 23 kilobars.	84
CHEMICAL PROPERTIES		
Stable Oxidation State	+3	81
Electrode Potential	[La = La ⁺³ + 3e ⁻] + 2.4 volts (standard hydrogen electrode)	81
Ionization Potential	lst = 5.6, 2nd = 11.4, 3rd = (20.4) volts	82
Metallographic Polishi and Etching	ing	62

Samples of lanthanum may be sectioned in an inert atmosphere or in air by using liberal quantities of oil to protect the surface. Conventional techniques for mounting in bakelite or lucite may be employed. Standard motorized, wet-belt, rough grinding equipment may be used with a kerosene lubricant. Both the rough and fine polishing may be done on conventional equipment using kerosene as a carrier for the abrasive. It is extremely important that the polished surface be kept covered with a layer of kerosene at all times.

After final polishing, the sample may be rinsed with mineral oil and <u>immediately</u> immersed in an oil bath in the stage aperture plate of a metallograph. The unetched surface may be photographed through the bottom of this cup. The cup is constructed of a recessed stage aperture plate by cementing a microscope cover glass to the bottom.

Lanthanum may be etched by exposure to air after the mineral oil has been removed by ether or other solvents. Phosphoric and nitric acid etchants have also been used with some success.

Corrosion Rates (In Air)	7 mil/year at 200 C	
	745 mil/year at 400 C	
	3300 mil/year at 600 C	

Oxidation rate increases drastically with increasing relative humidity.

.

LANTHANUM

Authority

91

Corrosion Data

Corrosive attack on crucible materials:

Material	Onset of Attack		
BeO	None < 1150 C		
CaO	Mild at 1250 C		
La ₂ O ₃	590 C		
Та	None < 1200 C		

ELECTRICAL PROPERTIES

Resistivity	Hcp (α , 25 C) - 56.8 microhm-cm Fcc (β , 560 C) - 96 microhm-cm Bcc (γ , 890 C) - 126 microhm-cm	61
Temperature Coefficient of Resistivity (25 C)	2.18 x $10^{-3}/C$	61

Temperature Versus Resistivity

(Permission of the American Physical Society)

MAGNETIC PROPERTIES

Susceptibility (25 C)	$101 \times 10^{-6} \text{ emu/mole}$	61
Effective Magnetic Moment	Theoretical – 0.00 Bohr magnetons Measured – 0.49 Bohr magnetons	61

53,86

		Authority
Curie Temperature	None	61
Néel Temperature	None	61
MECHANICAL PROPERTIES		
Young's Modulus	$3.84 \times 10^{11} \text{ dynes/cm}^2$	57
Shear Modulus	$1.49 \times 10^{11} \text{ dynes/cm}^2$	57
Poisson's Ratio	0.228	61
Compressibility	$3.24 \times 10^{-6} \text{ cm}^2/\text{kg}$	57
Hardness (DPH)	37	57
	70 F 400 F 800 F	
Tensile Strength	$\frac{70 \text{ F}}{18.9} \frac{400 \text{ F}}{15.3} \qquad \frac{800 \text{ F}}{6.7} 10^3 \text{ psi}$	88
Yield Strength	18.2 12.4 3.75 10 ³ psi	88
Elongation	8 9.4 21 per cent	88
Ultimate Compres- sive Strength	41.2 x 10^3 psi	61
Impact Strength (Izod)	4.5 ft-lb	71
Workability	Fair	88
General Fabrication	See references)	70, 113

LANTHANUM

Authority

NUCLEAR PROPERTIES

,'

Isotopes

Whole- Number <u>Mass</u> J35	Relative Abundance, per cent	Half <u>Life</u> 19 5 hr	$\frac{\text{Decay}}{\text{Mode}}$
136		2.1 l r	β +
137		>400 yr	
138	0.089	Stable	
139	99. 911	Stable	40 ap
140		40 hr	β¯,γ
141		3.7 hr	β-,γ
142		75 min	β-,γ
143		19 min	β-
l 44		Short	β-
145		Short	β-
Thermal Neutron Cross Section	8.9 \pm 0.3 ba 0.039 cm ² /g	rns/atom or	r

SAFETY

Lanthanum

Toxicity - Acute local: unknown. Acute systematic: slight. Chronic local: unknown. Chronic systematic: unknown.

Radiation hazard - See National Bureau of Standards Handbook No. 42.

- Fire hazard Dangerous in the form of dust when exposed to flame; can react vigorously with oxidizers.
- Explosion hazard Moderate in form of dust when exposed to flame.

94, 58, 145

Lanthanum Boride

Fire hazard - Moderate, on contact with moisture or acids boron hydride is evolved.

Lanthanum Bromate

Toxicity – Acute systematic: ingestion, moderate. inhalation, moderate.

Lanthanum Hexaantipyrine Perchlorate

> Toxicity - Moderate. Fire hazard - Dangerous. Explosion hazard - Moderate. Disaster control - Dangerous.

Lanthanum Oxide

Toxicity - Acute systematic: inhalation, moderate.

Lanthanum Sulfate

Toxicity – Acute local: irritant, moderate. ingestion, moderate. inhalation, moderate.

CAUTION: $La_2(SO_4)_3 + 3H_2O = 2La + 3H_2SO_4 + 3/2O_2$

THERMODYNAMIC PROPERTIES

Room TemperatureMelting PointEntropy $S_{298} = 13.6$ $S_{1193} = 23.6 eu$ Heat $C_{p298} = 6.65$ $C_{p1193} = 8.08 cal/(mole)(C)$

Specific Heat

53, 76, 77

53

109

Authority

LANTHANUM

Authority

77

Heat Content and Entropy of Solid and Liquid Lanthanum (Base: Crystals at 298.15 K)

1, K	HT-H298.15. cal/mole	ST-S298.15. cal/(K) (mole)	<u>T, K</u>	HT-H298, 15, cal/mole	ST-S298, 15. cal/(K) (mole)
400	685	1.98	1400	11,000	13, 57
500	1,370	3.51	1500	11,800	14,13
600	2,080	4,80	1600	12,600	14,64
700	2,800	5,91	1700	13,400	15,13
800	3,540	6.90	1800	14,200	15.58
900	4,290	7.78	1900	15,000	16.02
1000	5,060	8, 59	2000	15,800	16.43
1100	5, 840-	9.33	2200	17,400	17,19
1193(5)	6, 590	9,99	2400	19,000	17.88
1193(1)	9,340	12.29	2600	20,600	18.52
1200	9,400	12.34	2800	22,200	19.12
1300	10,200	12.98	3000	23,800	19.67

For liquid lanthanum:

 $C_{p} = 8.00.$

 $H_T - H_{298, 15} = 8.00T - 200$ (0.1 percent; 1193-3000 K)

For solid lanthanum:

 $H_T - H_{298,15} = 6.17T + 0.80 \times 10^{-3}T^2 - 1.911$ (0.1 percent; 298-1193 K) $C_p = 6.17 + 1.60 \times 10^{-3} T$ $\Delta H_{1193}(fusion) = 2,750$

Heat Content and Entropy of Gaseous Lanthanum (Base: ideal gas at 298.15 K)

<u>T, K</u>	HT-H298,15, cal/mole	ST-S298, 15, cal/(K) (mole)	<u>T, K</u>	HT-H298.15. cal/mole	S _T -S _{298,15} , cal/(K) (mole)
400	580	1,66	1900	11, 385	12.51
500	1, 185	3,02	2000	12,150	12,91
600	1,820	4,17	2200	13,680	13.64
700	2,475	5, 18	2400	15,210	14.30
800	3, 155	6.09	2600	16,740	14,91
900	3,850	6.91	2800	18,270	15,48
1000	4, 565	7.66	3000	19,810	16.01
1100	5, 300	8,36	3500	23,705	17.21
1200	6,045	9,01	4000	27,690	18.28
1300	6,800	9.61	4500	31,785	19.24
1400	7,560	10.18	5000	35,995	20, 13
1500	8, 320	10,70	6000	44,710	21,72
1600	9,085	11.20	7000	53,620	23.09
1700	9,855	11, 66	8000	62, 500	24,28
1800	10,620	12,10			

For gaseous lanthanum:

HT-H298.15 = 6.19T + 0.48 x 10-3T² + 0.92 x 10⁵T-1 - 2,197 (0.8 percent; 298-2000 K) $C_{p} = 6.19 + 0.96 \times 10^{-3}T - 0.92 \times 10^{5}T^{-2},$ H_T·H298.15 = 7.20T + 0.10 × 10⁻³T² + 1.60 × 10⁵T⁻¹ - 2,730 (0, 2 percent; 2000-5000 K) $C_p = 7.20 + 0.20 \times 10^{-3}T - 1.60 \times 10^{5}T^{-2}.$

110

LANTHANUM COMPOUNDS

						Authority
Antimonides						162, 168
		La	Sb			
	Structure	Na	.C1			
	a ₀ , A	6.	49			
	Melting Point, C	15	40			
	Resistivity, microhm-cm	12	0			
Arsenides		T -				169
			As			
	Structure	Na	aCl			
	a _o , A	6.	137			
Beryllides						161,179
			aBel			
	a ₀ , A	10). 450	0		
	Heat of Vaporizatio (kcal/mole)	on 75	5.8			
	Dissociation Rate		1082			
			70 3 1267	(10 ⁻⁵ g/(cm C	2)(sec) at	
Bismuthides						162
		L	aBi			
	Structure	N	aC1			
	a ₀ , A	6.	. 58			
Borides		LaB3		LaB4	LaB6	153, 171
Molecula	ar Weight	171.38	-	182.20	203.84	
				-	C. his	
Structur	e	Tetragon	nal	Tetragonal	Cubic	
a ₀ , A		3.82		7.30	4.154	
. c _o , A		3.96		4.17		
						(Continued)

LANTHANUM COMPOUNDS

Borides (Continued)

A	u	th	0	r	i	t	v
diam'r.			_	-	۰		v

	LaB ₃		
Density, g/cm ³	4. 92	LaB	4 LaB6
Heat of Formation,	7. 92	5. 44	4.721
kcal/mole			
Melting Point, C			112
			2100
Heat of Vaporization, kcal/mole			2100
			169
Heat Capacity,			
cal/(g)(C)			137.0
Resistivity,			
microhm-cm	~ ~		17.4
Temperature			* * * 2
Temperature Coefficient of Resistivity, 10 ⁻³ /C			
			2.68
Coefficient of Thermal			
Expansion, 10-6/C	449 es.		F /
	1		5.6
Thermal Conductivity, cal/(cm)(sec)(C)			
			0.114
Effective Magnetic			
Woment, Bohr	** **		
magnetons			9.0
Work Fund			
Work Function at 1427 C	-		
			2.66
Microhardness,			
kg/mm ²		~ ~	
Cal			2770
Color			
Emissivity at 1500 C			Violet
$(\lambda = 0.655 \ \mu)$			
			0.7
Metallic Radius, A			
	***		2.20

153 Carbides β -LaC₂ a-LaC2 La₂C₃ 162.94 162.94 313.84 Molecular Weight Cubic Bcc Structure Tetragonal FeSz Pu₂C₃ CaC₂ Lattice Type 6.0 8.8185 3.92 a₀, A 6.56 -co, A 6.079 5.0 Density, g/cm³ 5.35 2020 2438 Melting Point, C 2438 144 68 ----Resistivity, microhm-cm 9.9 Coefficient of Thermal 12.1 --Expansion, $10^{-6}/C$ 170,180,183 Germanides α-LaGe₂ β-LaGe₂ La5Ge₃

			an aller fin aller an fan anter an fan anter anter til sen anter
Structure			Hexagonal
Lattice Type	ThSi ₂	GdSi2	
a _c , A	4. 321	4.41	8,958
b _o , A		4.30	
c ₀ , A	14.209	14.190	6.795
Density, g/cm ³		7.059	3. 72
Volume of Unit Cell, A ³	266.8	269. 1	

LANTHANUM COMPOUNDS

Authority

93,108,157, 159,181, 182,184, 185,186, 211,215,

216,217, 218,222,

235, 236, 269, 279

	LaBr3	LaCl ₃	LaF3	Lalg	LaOBr	LaOCI	LAOF	LaOI
Molecular Weight	**		195.92			* =	* *	***
Structure	Hexagonal	Hexagonal	Hep	* *	Tetragonal	Tetragonal	Cubic	Tetragonal
Lattice Type	UCI3	UCI3		••	••	**	••	PEFCI
*o, A	••	++	7.186	16 O	4.149	4.149	7.132	4.144
c _{ot} A	**	**	7.352	••	7.359	7.359	••	9.126
Densuy, g/cm3	**	* *	5.94		••	* *	6.00	
Heat of Formation, kcal/mole	•=	255. 91	** *	160	••	242. 6	**	* *
Entropy of Formation au		(59)	••	(4)	••	(41)	**	
Melting Point, C	768	852	1490	761				**
Heat of Fusion, kcal/mole	13.0	13, 0			64 B		••	*•
Entropy of Fusion, eu	12, 3	11.5	5	8		••	*=	* *
Boiling Point, C	1580	1750	2327	1405	• •	• •		**
Heat of Vaporisation, kcal/mole	48.2	53, 3	62	40	• •		* *	
Entropy of Vaporization, eu	24	22	24	24	••		- +	
(T in K), ^{10gP} mm Hg	12, 568 15446 T	11,828 - <u>15796</u>	**	12.845 - <u>15397</u> T	••	01 W	48 e	* *
Heat of Sublimation, kcal/mole	71.0	71.3	••	· · · ·	-1	**		••
Entropy of Sublimation, eu	40	40		* *	••	••		
Heat Capacity (to mp), cal/(mole)(C)	33, 0	34, 7	••	••	-	**	**	••
Coefficient of Thermal Expansion 10-6/C	60 p.	•=	15.0	**	0 m	**	40 AK	
Thermal Conductivity, cal/(cm}(eec)(C)	10 m	**	0, 025	**	* 10 5	6- M		
ΔHmp -ΔH298, kcal/mole	26, 3	22.8	***		ф Ш		**	6 10
Refractive Index	\$P (B)	••	* *	10 M	99 GI	1,09	• •	- +
Color	**	••	White	in in	dia m	• *	**	• •
Young's Modulus, 107 pei	**	••	1,8				••	÷ 14
Comprassive Strength, 103 psi	en 19		100	**	**	••	** **	- *

Halides

114

1.1

212

Halides (Continued)

Thermodynamic Data

Glasner has supplied in ANL-5750 the following equations for calculating thermodynamic quantities. The reactions concerned and the constants for use in these equations are tabulated,

 $\Delta C_{p} = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^{2} + \frac{\Delta d \times 10^{5}}{T^{2}}$ $\Delta H - \Delta H_{P298} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^{2} + \frac{1}{3} (\Delta c \times 10^{-6})T^{3} - \frac{1/2(\Delta d \times 10^{5})}{T} + \Delta A$ $\Delta S = (2.303 \Delta a)LogT + (\Delta b \times 10^{-3})\Gamma + \frac{1}{2} (\Delta c \times 10^{-6})T^{2} - \frac{1/2(\Delta d \times 10^{5})}{T^{2}} - \Delta B$

 $\Delta F - \Delta H_{P298} = -(2.303 \Delta a) T \log T - \frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6}) T^3 - \frac{1/2(\Delta d \times 10^{-5})}{T} - T \Delta (B - a) - \Delta A .$

Reaction	i emper- ature Range, K	-AHF298, kcal/mole	- AF 298, kcal/mole	4.	20	Ac	۵d	۵A, kcal/mole	- \(B , eu	
$La(a) + \frac{3}{2}F_2(g) = LaF_3(a)$	298-1153	421	406	1.6	6.7	••	1. 2	-0. 372	70.0	71.6
$\operatorname{La}(l) + \frac{3}{2} \operatorname{F}_2(g) = \operatorname{LaF}_3(s)$	1153-1800	**	••	0.5	8, 3		1. 2	-2.433	65.9	66. 4
$La(l) + \frac{3}{2}F_2(g) = LaF_3(l)$	1800-2500		••	11.8	-0,7		1, 2	2. 807	128,8	140.6
$La(s) + \frac{3}{2}Cl_2(g) = LaCl_3(s)$	298-1125	255, 68	238.8	3, 1	7.4		1.0	-0, 918	75.9	79.0
$La(l) + \frac{3}{2}Cl_2(g) = LaCl_3(a)$	1125-1153			12.7	-2.0		1.0	3, 230	124.7	137.4
$\operatorname{La}(l) + \frac{3}{2}\operatorname{Cl}_2(g) = \operatorname{LaCl}_3(l)$	1153-2020	••	••	11.6	-0,4	••	1.0	1.169	120.6	132. 2
$\operatorname{La}(l) + \frac{3}{2}\operatorname{Cl}_2(g) = \operatorname{LaCl}_3(g)$	20 20 - 2500			-0,4	-0,4		1.0	69.41	7.5	7.1

Hydrides

91,186, 187

	LaH2	LaH3
Structure		Amorphous
a ₀ , A	5.667	
Density, g/cm ³	5.14	5.26
Heat of Formation, kcal/mole of H2	49.7	40.09
Entropy of Formation, eu/mole of H ₂	49	

(Continued)

LANTHANUM COMPOUNDS

Authority

Hydrides (Continued)	LaH2	LaH3	
Heat Capacity, cal/(mole)(C)		12.3	
Color		Blue black	
Nitrides			149,153, 167
	Lalv		
Molecular Weight	152.93		
Structure	Fcc		
Lattice Type	NaCl		
a ₀ , A	5.286		
Density, g/cm ³	6.73		
Heat of Formation, kcal/mole	72		
Entropy of Formation, eu/mole	25		
Heat Capacity, cal/(mole)(C)	11.0		
Resistivity, microhm-cm	100		
Coefficient of Thermal Expansion, 10-6/(C) (-173 - 427 C)	9.0		

Oxides

	La203
Molecular Weight	325.82
Structure	Hcp
a _o , A	3.94
c _o , A	6.15
Density, g/cm ³	6. 51
Heat of Formation, kcal/mole metal	214.29
Entropy of Formation, eu/mole metal	35. 18
Melting Point, C	2300
Heat Capacity at 25 C, cal/(mole)(C)	12.7
Effective Magnetic Moment, Bohr magnetons	0
Work Function at 1700 K, ev	4.18
Color	White
Cation Radius, A	1.14

Authority	
156, 172,	

,-	
173,	174,
176,	186,
199	212,
218,	219,
220	

Thermodynamic Data

The equations given on page 115 may be used in calculating thermodynamic quantities for the following reactions:

Reaction	Temper- ature Range, K	-AHr 298, kcal/mole	-AF296, kcal/mole	<u> </u>	46	Ac	<u>Δ4</u>	۵A, <u>kcal/mole</u>	-ΔB,	- <u>A(B-a)</u>
$2La(s) + \frac{3}{2}O_2(g) = Lo_2O_3(s)$	298-1153	428.6	409.5	4, 12	-0, 51	••	-0.5	-1, 508	88,0	92, 1
$2La(l) + \frac{3}{2}O_2(g) = La_2O_3(a)$	1153-2500	••		1. 9	2.7	••	-0,5	-5, 630	79.8	01,7

LANTHANUM COMPOUNDS

Authority

174

Т, К	C _p , cal/(mole)(K)	S [•] cal/(mole) (K)	H ^e -H ^e _o , cal/mole	-(F [•] -H [•] ₀ /T, cal/(mole)(K)
16	0.526	0,1535	1,838	0,03862
20	0,860	0,3049	4.578	0.07610
30	2,094	0.8713	18,600	0,2513
40	3.742	1,6920	47.525	0,5039
50	5,480	2.7143	93,662	0.8411
60	7,135	3,8612	156.82	1,2475
, 0	8.697	5,0794	236.05	1.7073
80	10,18	6,3390	330, 54	2,2072
90	11,60	7.6209	439.51	2,7375
100	12,94	8,9131	562.28	3,2903
120	15,35	11,491	845,79	4, 4427
140	17.39	14.016	1173.9	5,6310
160	19.08	16,451	1539.0	6, 8322
180	20.57	18,787	1935.9	8,0320
200	21.86	21,022	2360.6	9,2190
220	22.91	23, 157	2808.7	10.390
240	23,83	25, 191	3276.3	11.540
260	24,61	27,130	3761.0	12, 665
280	25,27	28,979	4260.0	13,765
298.16	25,79	30, 580	4724,2	14,735
300	25,84	30,742	4771.2	14,838
500	* *	45,02		24, 39
1000	* *	66.08		40.49
1500	* *	79.22	* *	51, 33
2000	• •	89.04	,° araa	59.58
2500		97.01	**	66,28

Phosphides

	LaP
Structure	Fcc
Lattice Type	NaC1
a ₀ , A	6.016
Density, g/cm ³	5.18
Microhardness, kg/mm ²	158
	:

ł,

118

Thermodynamic Functions for La₂O₃

Selenides

Aut	hority
100	100

189, 190, 191,192, 193,194

		LaSe	LaSe ₂	La2Se3	LagSea	La2O2Se
Struc	ture	Fcc	Tetragonal	Bcc	Bcc	Нср
Latti	се Туре	NaC1		Th ₃ P ₄	Th3P4	40 Ga
a ₀		6.048 kX	8.47 kX	9.037 KX	9.037 KX	4.09 A
c _o			8.53 kX			7.14 A
Dens	ity, g/cm ³	6,34	6.33	6.15	6.47	* *
	tivity, crohm-cm	50	1.46 x 10 ⁶	2.4 x 10 ⁴	•=	••
fici Resi	perature Coef- ent of istivity at 27 C, 3/C	1.7	••			
	mal Conductivity, /(cm)(sec)(C)	0.058		••		
	etic Susceptibility, ⁶ emu/mole	7.08	32	69.77	10,84	* =
Mor	tive Magnetic ment, Bohr gnetons	0,46	0.0	0.0		
Color		Gold	Black	Bright red	Blue black	Beige

Silicides

152,195, 196,197

	LaSi	LaSi ₂
Structure	Orthorhombic	Tetragonal
Lattice Type	FeB	a-ThSi2
a ₀ , A	8.48	4. 31
b _o , A	4. 02	
c _o , A	6.04	13.80
Density, g/cm ³		5.0
Heat of Formation, kcal/mole	≈64	≈52

(Continued)

LANTHANUM COMPOUNDS

~ .

Authority

Silicides (Continued)

	LaSi	LaSi2
Melting Point, C		1520
Resistivity, microhm-cin		236
Coefficient of Thermal Expansion 10 ⁻⁶ /C (20 - 750 C)		7.67
Microhardness, kg/mm ²		324
Transverse Rupture Strength, 10 ³ psi		37.3

Sulfides

1.

153, 193, 198, 199, 239, 200, 186

	LaS	LaS2	7-La283	La3S4	La2O2S
Molecular Weight	170.99	203.05	374.04	545,04	341, 91
Structure	Cubic	Cubic	Cubic	Cubic	Hexagonal
a ₀ , A	5,854	8.20	8.723	8, 748	4.051
c _o , A	••	••	••	••	6.943
Density, g/cm ³	5, 66	4,90	4,99	5, 44	5,73
Heat of Formation, kcal/mole	180	147	284	* #	••
Entropy of Formation, eu/mole		(10)	(9)	a a	**
Melting Point, C	1970	16 50	2150	2100	1940
Heat Capacity, cal/(moleXC)	12, 11		29.89		••
Resistivity, microhm-cm	92		2 x 10 ¹²	2.4 x 10 ⁴	* =
Temperature Coefficient of Resistivity at 27 C, $10^{-3}/C$	1,63			• •	
Coefficient of Thermal Expansion (20 - 1020 C) 10 ⁻⁶ /C ⁻¹	11.62	••	9,90	••	••

.+

(Continued)

Sulfides (Continued)

	LaS	LaS2	y-La253	La354	La2025
Thermal Conductivity, cal/(cm)(sec)(C)	0,054		0.0061		
Magnetic Susceptibility, 10 ⁻⁶ (emu/mole)	281	+36.3	+27,1	27.2	>0
Work Function at 1700 K, ev	4,15	**	4.16	• •	
Debye Temperature, K	66 9	* =	913		
Emissivity ($\lambda = 0.655\mu$)	0.45	* 5		••	••
Color	Gold		Yellow	••	* =

1.0000

Tel	lurides	LaTe	LaTe2	LaTe3	La3Te4	La4Te7	La ₂ O ₂ Te	169,201, 202,203, 20 4 ,205
	Structure	Fcc	Tetragonal	Tetragonal	Bcc	Orthorhombic	Hexagonal	
	Lattice Type	NaCl	FezAs	• •	ငစ္စေနဒ		**	
	a ₀ , A	A. 422	4, 53	4.407	9.619	4.607	4,12	
	b _o , A		••	**	* #	4, 483		
	с _о , А	••	0,92	26.14		9, 142	13,10	
	Density, g/cm ³	6.682	6.97	6,92	6.65		6.36	
	Melting Point, C	1725	1595	835	1595	* *	••	
	Resistivity, microhm-cm	1.5 x 1011	6. d x 106			• =	••	
	Thermal Conductivity, cal/(cm(sec)(C)	••			0,008			
	Color	Blue purple	Black	Gold	Silver gray		Dark green	•
	Hardness	Brittle hard	Very brittle	Very soft	Brittle hard	da 10		4

121

Authority

LANTHANUM COMPOUNDS

Asthority

150,206

Miscellaneous

	Structure	a ₀ , A	Melting Point, C	Superconducting Transition Temperature, K
Lair	Cubic	7.686		
LaOs ₂	Cubic	7.737	••	6,5
LaPt ₂	Cubic	7.774		
LaRh2	Cubic	7.746		
LaRu2	Cubic	7.702	1431	1,63

CERIUM

Symbol Ce

Atomic Number 58

Atomic Weight 140, 13

Authority

PHYSICAL PROPERTIES

Abundance	20-46 ppm (approx. 46)	51	
Density	6.678 g/cm ³	67	
Melting Point	795 C	66	
Heat of Fasion	2.20 kcal/inole	77	
Boiling Point	3468 C	57	
Heat of Vaporization (25 C)	95 kcal/mole	57	
Vapor Pressure (1861-2292 K)	$Log P_{mm Hg} = 9.396 - \frac{22990}{T}$	60	
Specific Heat (25 C)	6.44 cal/(mole)(C)	95	
Heat of Combustion	213.50 kcal/g-atom	134	
Coefficient of Linear Thermal Expansion	8.5 x 10^{-6} /C (25-725 C)	61	

(Permission of American Physical Society)

CERIUM

, i

		Authority
Thermal Conductivity (28 C)	$0.026 \text{ cal/(cm}^2)(\text{sec})(C/cm)$	52
Heat of Sublimation		٠
Cohesive Energy	94 kcal/mole	89
Work Function	2.6 ev	82
Debye Temperature	147 K	97
Expansion on Melting	0.3 per cent	91
Surface Tension (1000 C)	708 dynes/cm	85

CRYSTAL PROPERTIES

Structure	(a) FCC	(β) HCP	(Y) FCC	(δ) BCC	61
Lattice Constants	a ₀ = 4.85	$a_0 = 3.68$ $c_0 = 11.92$		$a_0 = 4.11 A$	62
Density	8.23	6.66	6.768	6.70 g/cm ³	67
Metallic Radius	1.71	1.82	1.825	1.83 A	67
Atomic Volume			20.695	21.0 cm ³ / mole	66
Transition Temperature	-	at -150 C, at 730 C	hcp/fcc at	-10 C	66
Heat of Transition	Hcp/fcc	= 0.065 kc	al/mole		61
Ionic Radius	+2 = 1.2	, +3 = 1.03	4, +4 = 1.0	l A	92,93
Closest Approach of Atoms	3.46 A				56
Allotropic Modifications	at 20 C		al is subject	.82 A occurs ed to a static	84

CHEMICAL PROPERTIES

Stable Oxidation State	+3, +4		81
Electrode Potential	$[Ce = Ce^{+3} + 3e^{-}]$	+2.335 volts (standard hydrogen electrode)	81

Ionization Potential	lst = 6.54, 2nd = 14.8, 4th = (36.5)volts	Authority
	0.54, 2.04 = 14.8, 4 th = (36.5)volts	82
Metallographic Polishing		
and Etching		62

or in air by using liberal quantities of oil to protect the metal surface. The sample may then be mounted and polished in a manner like that used for lanthanum. Metallographic examination reveals that intergranular corrosion appears on the surface within 30 seconds after the protective organic solvent has been removed. Intergranular corrosion becomes apparent after exposure to air for several minutes. The time factors here depend on the previous treatment of the cerium metal surface.

Corrosion Rates	35,000 mil/year at 400 C
(In Air)	objout millyear at 400 C

Corrosion Data

Corrosive attack on crucible materials:

Material	Onset of Attack
BeO	None < 1090 C
CaO	None < 1150 C
MgO	None < 1200 C
Ta	None < 1700 C
Mo	None < 1400 C

ELECTRICAL PROPERTIES

(a) FCC (-249 C) ()) FCC (25 (C) (δ) BCC (770 C)	
34	75.3		61
0.87 x 10 ⁻³ /	с		61
0100 cerium 00 00 cerium 00 00 240 32	Realistivity 0 00 0 00 0 0 00 0 00 0 0 0 0 0 0 0 0 0 0 0 0	Cerium	53
	34 0.87 x 10 ⁻³ /	$\frac{34}{0.87 \times 10^{-3}/C}$ 75.3 0.87 × 10^{-3}/C	$0.87 \times 10^{-3}/C$

91

CERIUM

Authority

96

Resistance Versus Pressure

MAGNETIC PROPERTIES

~

Susceptibility (25 C)	$2,430 \times 10^{-6}$	$2,430 \times 10^{-6} \text{ emu/mole}$		
Effective Magnetic	Theoretical	2.56	Bohr magnetons	61
Moment	Measured	2.51	Bohr magnetons	

Curie Temperature

Néel Temperature

MECHANICAL PROPERTIES

Young's Modulus	3.00	x 10 ¹¹ .d	ynes/cm ²	
Shear Modulus	1.20	x 10 ¹¹ d	ynes/cm ²	57
Poisson's Ratio	0.248		/	57
Compressibility	4,95	x 10 ⁻⁶ ci	2 /1	61
Hardness (DPH)				57
		ot anneal		57
Tensile Strength	$\frac{70 F}{15.0}$	400 F 5.7	10 ³ psi	
Yield Strength	13.2	4.7		88
Elongation	24	21.4	per cent	88
Ultimate Compressive	42.3			88
Strength	76.5		10 ³ psi	61

1	2	7	

		Authority
Impact Strength (Izod)	2.2 ft-1	71
Workability	Good	88
General Fabrication	(See references)	70,72,113

NUCLEAR PROPERTIES

Isotopes

Whole- Number Mass	Relative Abundance, per cent	Half Life	Decay Mode
135		16 hr	β+
136	0.193	Stable	
137		36 hr	K,γ,e ⁻
138	0.250	Stable	
139		140 days	Κ,γ,e ⁻
140	88.48	Stable	
141		30 days	β-,γ
142	11.07	Stable	
143	* =	33 hr	β-,γ
144		275 days	β-
145		1.8 hr	B
146		15 min	β-

Thermal Neutron Cross Section $0.70 \pm 0.08 \text{ barns/atom}$ or 0.0030 cm²/g

SAFETY

Cerium

Toxicology - Cerium resembles aluminum in its pharmacological action as well as in its chemical properties. The insoluble salts such as the oxalate are stated to be nontoxic even in large doses. It is used to prevent vomiting in pregnancy. The average dose is from 0.05 to 0.5 g. Cerium tartrate has been found to produce a direct injurious action on the hearts of small animals. The effect on the nervous system of the rare-earth metals following inhalation may preclude welding operations with these materials to any large extent. Cerium is stated to produce polycythemia but is useless in the treatment of anemia owing to its toxic effects. The salts of cerium increase the blood coagulation rate.

Authority

Toxicity - Acute local: none. Acute systematic: ingestion, slight. Chronic local: none. Chronic systematic: ingestion, slight. inhalation, slight.

Radiation hazard - See National Bureau of Standards Handbook No. 42.

Fire hazard - Moderate, ignites spontaneously in air at 150 to 180 C.

Explosion hazard - Moderate in the form of dust when exposed to flame.

Cerium Compounds

Toxicity - The toxicity of cerium compounds may be taken as that of cerium except where the anion has a toxicity of its own.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	95
Entropy	$S_{298} = 18.12$	S ₁₀₇₇ = 28.48 eu	
Heat Capacity	$Cp_{298} = 6.44$	$Cp_{1077} = 9.05 (cal)(mole)(C)$	

Thermodynamic Functions of Cerium

Т. К	Cp, cal/(K)(mole)	S ⁰ -S ⁰ ₀ , cal/(K)(mole)	H ^o -H ² 98.15 ^a , cal/(K)(mole)	$-\left(\frac{F^{\circ}-H_{298,15}}{T}\right),$ cal/(K)(mole)
208,15	6.44	18,12	0.0	18,12
300	6,45	18,16	0.040	18, 12
350	6,60	19,16	0.966	18,19
400	6,76	20.06	1.680	18,38
450	6.92	20,86	2,253	18,61
500	7.10	21,60	2,729	18,87
550	7.27	22,29	3, 134	19,16
600	7.46	22,93	3, 487	19.44
650	7.65	23, 53	3, 799	19.73
700	7.84	24, 10	4,081	-
750	8.04	24.65	4.338	20.02
800	8,25	25,18	4. 576	20,31
850	8.46	25.68	4, 798	20,60
900	8,68	26,17	5,008	20.88
950	8,90	26,65	5,207	21, 16
1000	9,14	27.11		21,44
1003, 15	9.15	27,14	5,398	21,71
1003.15	9.05	27,84	5,409 6,107	21,73 21,73

(Continued)

95

. 48

Authority

¹ Thermodynamic Functions of Cerium (Continued)

<u>т, к</u>	Cp, cal/(K)(mole)	s ^o -s ^o , cal/(K)(mcle)	H ⁰ -H ⁰ (a) cal/(K)(mole)	$-\frac{F^{\circ}-I_{298,15}}{T},$ cal/(K)(mole)
1050	9.05	28,25	6.238	22.01
1077,15	9.05	28,43	6,309	22,17
1077.15	9.35	29,63	7,458	22, 17
1100	9.35	29,83	7.497	22,33
1150	9.35	30,24	7. 577	22,66
1200	9.35	30,64	7,651	22,99
1250	9.35	31. 02	7,719	23.30
1300	9.35	31,39	7,781	23,61
1350	9.35	31.74	7,839	23.90
1373,15	9.35	31,90	7.865	24.03

(a) (H⁰_{298,15} -H⁰₀)/T = 7.63 cal. degree⁻¹ mole⁻¹ based on a private communication from Jennings.

Specific Heat

Cerium Cerium Cerium Temperature 0 to 200 K

O-62% of α-cerium; •-39% of α-cerium; +-3% of α-cerium (Permission of Gordon and Breach, Science Publishers, Inc.)

53,97

CERIUM COMPOUNDS

Authority

95

CERIUM COMPOUNDS

			140
	CeSb	• ³⁰	169
Structure	Cubic		
Lattice Type	NaCl		
a _o , A	6.412		
Arsenides			
	CeAs		169
Structure	Cubic		
Lattice Type	Na Cl		
a ₀ , A	6.072		

130

-

Antimonides

 ${}^{i}\eta$

	Authority
CeBe ₁₃	179
10.378	
CeBi	169
Cubic	
NaCl	
6.500	
CeB4 CeB6	153
	10.378 <u>CeBi</u> Cubic NaCl 6.500

		Ce B ₆	
Molecular Weight	182.86	205.05	
Structure	Tetragonal		
^a o, A	7.205	Cubic	
^c _o , A		4.137	
Density / 3	4.090		
Density, g/cm ³	5.74	4.80	
Heat of Formation, kcal/mole	84	81	
Melting Point, C		2190	
Resistivity, microhm-cm		43.3	
Temperature Coefficient of Resistivity, 10-3/C		1.0	
Coefficient of Thermal Expansion, 10 ⁻⁶ /C		6.2	
Thermal Conductivity, cal/(cm)(sec)(C)		0.081	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole		2260	
Effective Magnetic Moment, Bohr magnetons		2.60	

(Continued)

CERIUM COMPOUNDS

Authority

Boride	(Conti	nued)
--------	--------	-------

	Ce B4	Ce B ₆
Work Function, ev	~ ~	2.59
Microhardness, kg/mm ²		3140
Color	Gray brown	Blue violet
Emissivity at 1500 C ($\lambda = 0.655 \mu$)		0.68

Carbides

	CeC2	Ce2C3
Molecular Weight	164.15	316.24
Structure	Body-centered tetragonal	Bcc
Lattice Type	CaC2	Pu ₂ C ₃
a _o , A	3.88	8.448
c _o , A	6.49	
Density, g/cm ³	5.56	6.969
Melting Point, C	2540	
Resistivity, microhm-cm	58.8	202
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	10.1	10.4
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	1640	ne 19
Effective Magnetic Moment, Bohr magnetons	2.19	
•		

Germanides

Authority

170,183, 221

	a-CeGe2	β-CeGe ₂	Ce5Ge3	
Structure		**	Hcp	
Lattice Type	a-ThSi2	a-GdSi2		
a _o , A	4.27	4.36	8.875	
b _o , A		4.26		
c _o , A	14.08	14.07	6 570	
Density, g/cm ³			3.92	
Volume of Unit Cell, A ³	256.7	262.5		

Halides

ides	CeBr ₃	CeCl ₃	CeF ₃	Cel ₃	6-061		55,93,108,158,
Structure	Hexago nal				CeOCi Tetragonal	Fcc	159,181,184, 185,186,211, 215,218,235, 236,237,279
Lattice Type	UC13	UCI3		PuBra			250,251,219
A _O A	••	7.450	7,114	14,0	4,080	5,703	
b ₀₀ A				4,4			
с ₀ , А		4. 315	7.273	10.1	6,831		
Density, g/cm ³			5, 99	* *			
Heat of Formation, kcal/mole		252.98		158			
Entropy of Formation, eu/mole		(62)	••	(7)		••	
Melting Point, C	732	802	1437	752			
Heat of Fusion, kcal/mole				12,4	••		
Entropy of Fusion, eu/mole	8	8	5	12.0	••		
Boiiing Point, C	1560	1730	2327	(1400)	••	an ga	
Heat of Vaporization, kcal/mole	47.5		62			•	
Entropy of Vaporization, eu/mole	24	23 2	24	24		er •	

(Continued)

CERIUM COMPOUNDS

Halides (Continued)

Au	tho	rity

Vapor Pressure (T in K),	CeBr3	CeCl ₃	CeF3	Cel ₃	CeOCI	CeOF
lop Pmm Hg	12.334 . <u>14990</u> T	12.035 - <u>15544</u> T				
Heat of Sublimation, kcal/mole	68.3	70.7			**	
Entropy of Sublimation, eu/mole	43	41.5				
Heat Capacity (25-300 C), cal/(mole)(C)	••	15.4 + 0.175 T	;	36.5		
$\Delta H_{mp} - \Delta H_{298},$ kcal/mole			# P2	20.8		
Color	**		F. 41 .			
Cation Radius, A	1		White			
	1.034	1.034				
Thermodynamic Data	L					

Glasse: has supplied in ANL-5750 the following equations for calculating thermodynamic quantities, The reactions concerned and the constants for use in these equations are tabulated.

 $\Delta C_p = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^2 + \frac{\Delta d \times 10^5}{T^2}$

 $\Delta H - \Delta H_{P298} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^2 + \frac{1}{3} (\Delta c \times 10^{-6})T^3 - \frac{1/2(\Delta d \times 10^{-6})}{T} + \Delta A$

 $\Delta S = (2.303 \Delta a) \log T + (\Delta b \times 10^{-3}) T + \frac{1}{2} (\Delta c \times 10^{-6}) T^2 - \frac{1/2(\Delta d \times 10^{6})}{T^2} - \Delta B$

$$\Delta r - \Delta H_{P298} = -(2.303 \Delta a) T \log T - \frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6}) T^3 - \frac{1/2(\Delta d \times 10^5)}{T} - T \Delta (B - a) - \Delta A$$

Reaction	Tempera- ture Range, K	-AHF 298, kcal/mole	-AF 298, kcal/mole	۵.	A L			ΔΑ,	- ΔB ,	
$Ce(e) + \frac{3}{2}F_2(e) = CeF_3(e)$	298-1048	416	398	3.5	<u>Δb</u>	Δc	Δd	kcal/mole	eu	-4(B-a)
$Co(l) + \frac{3}{2}F_{2}(g) = CoF_{3}(a)$	1048-1733			3.9	1, 1	* *	1.2	-0, 680	78.5	82.0
$Ce(t) + \frac{3}{2}F_2(s) = CeF_3(t)$	1733-2500		**	••	7.1		1.2	-2.407	62.5	62.5
$C_{0}(a) + 2F_{2}(g) = C_{0}F_{4}(a)$		**		11.7	-0.7	••	1.2	-1.970	131.0	142.7
	298-1048	442	420	4.0	2, 1		1.6	-0.755		
$Co(L) + 2F_2(g) = CoF_4(o)$	1048-1250			0.5					96.5	190.5
$Ce(L) + 2F_2(g) = CeF_4(L)$	1250-2000				8, 1	**	1.6	-2, 482	80.5	81.0
$Ce(t) + 2F_2(g) = CeF_4(g)$	2000-2500		**	13,5	-0.9		1.6	-0.701	153.2	166.7
$C_{e(e)} + \frac{3}{2} Cl_{2}(g) = C_{e}Cl_{3}(g)$				-4.5	4,1		1.6	73, 30	2, 3	-2, 2
2 - 2(g) - Cec(3(g)	298-1048	252. 84	235.1	4.5	2,4		1.0	-1, 104		
$Ce(L) + \frac{3}{2}Cl_2(g) = CeCl_3(a)$	1048-1085			1.0	8.4				84.8	89.3
$Ce(L) + \frac{3}{2}Cl_2(g) = CeCl_3(t)$	1085-2000				191		1.0	-2, 831	68.8	69.8
$C_{e}(t) + \frac{3}{2} C_{12}(g) = C_{e}C_{13}(g)$	2000-2500		~*	11.0	-0.4		1.0	0. 189	121.1	132.1
				-1.0	-0.4		1.0	70, 19	6.9	5,9

134

Hydrides

Structure

a_o, A

Lattice Type

Density, g/cm³

kcal/mole

eu/mole

Color

Heat Capacity,

cal/(mole)(C)

Heat of Formation,

Entropy of Formation,

Coefficient of Thermal Expansion, 10⁻⁶/C

Magnetic Susceptibility, 10⁻⁶ emu/mole

Authority

91,187

	CeH2	CeH3	
Structure	Fluorite 4	Fluorite	
a _o , A	5.581		
Density, g/cm ³	5.43	5.55	
Heat of Formation, kcal/mole H ₂	33.9	42.26	
Color		Dark blue	
Nitrides			153,167,
	CeN		258
Molecular Weight	154.14		

Fcc

Na Cl

5.02

7.89

78.0

25

11.1

30.0

433

Bronze

Authority

Ох	ides		
		CeO2	Ce ₂ O ₃
	Structure	Fcc	Hexagonal
	a _o , A	5.41	3.880
	c _o , A		6.057
	Density, g/cm ³	7.2	
	Heat of Formation, kcal/mole		217.46
	Entropy of Formation, eu/mole		35.2
	Melting Point, C	1950	~1690
	Coefficient of Thermal Expansion, 10-6/C	10.7	
	Effective Magnetic Moment, Bohr magnetons		2.6
	Color	White	

156,172,176, 177,212,218, 219,220,224, 245,259

Thermodynamic Data

The equations given on page 134 may be used in calculating thermodynamic quantities for the following

reactions:

.

136

(Continued)

Oxides (Continued)

Thermodynamic Properties of CeO_2 and Ce_2O_3

CeO2			Ce ₂ O ₃					
т, к	H _T -H _{298.15} cal/mole	S _T -S ₂₉₈ , 15 [,] cal/(K)(mole)	<u>т, к</u>	H _T -H _{298,15} , cal/mole	S _T -S _{298,15} , cal/(K)(mole)			
400	1, 580	4,55	400	3,000	8,63			
500	3,220	8,21	500	6,150	15.66			
600	4,940	11.34	600	9,410	21.60			
700	6,720	14.08	700	12,740	26.73			
800	8,540	16.51	800	16, 140	31.27			
900	10,380	18.68	900	19,620	35,37			
1000	12,250	20.65	1000	23, 180	39,12			
1100	14,140	22.45						
1200	16,050	24.11						
1300	17,980	25.66						
1400	19,930	27.10						
1500	21,900	28.46						
1600	23,890	29.74						
1700	25,910	30.97						
1800	27,960	32.14						

Phosp	hides
-------	-------

	CeP
Structure	Fcc
Lattice Type	Na Cl
a ₀ , A	5.909

Selenides

Нср
1 04
7.06
6,51

169

169,189,191, 192,193,194, 225,226,227, 228,229

(Continued)

224,245

Authority

CERIUM COMPOUNDS

Autnority

Selenides (Continued)

	CeSe	CeSe ₂	Ce ₂ Se ₃	Ce ₃ Se ₄	Ce ₂ O ₂ Se		
Resistivity, microhm-cm	100	2.92 x 10 ⁸	3.3×10^3	8.0 x 10 ³			
Thermal Conductivity, cal/(cmXsecXC)	0.03						
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	218 6	2220	2068				
Effective Magnetic Moment, Bohr magnetons	2.3	2.2	2.2				
Color			Violet		Maroon		
Silicides							153
		Ce	eSi	CeS	iz		155
Molecular Weight		168.22		196.31			
Structure		Orthorhombic		Tetragonal			
Lattice Type		FeB	FeB		a-ThSi2		
a ₀ , A				4.175			
c _o , A		- a.		13.848			
Heat of Formation, kcal/mole				50			
Density, g/cm^3	Density, g/cm ³				5.45		
Resistivity, microhm-cm		** •*		408			
Microhardness, kg/mm ²				540			

CERIUM COMPOUNDS

Authority

CeSe₂ CeSe Ce₂Se₃ Ce₃Se₄ Ce2O2Se 2.92 x 10⁸ 3.3 x 10³ 8.0 x 10³ Resistivity, microhm-cm 100 ---Thermal Conductivity, 0.03 - -- -- -- cal/(cm)(sec)(C) Magnetic Susceptibility, 2186 2220 2068 - -10⁻⁶ emu/mole - -Effective Magnetic Moment, 2,3 2,2 2.2 - -----Bohr magnetons Color - ---Violet - -Maroon Silicides CeSi CeSi2 Molecular Weight 168.22 196.31 Struciure Orthorhombic Tetragonal Lattice Type FeB a-ThSi2 ao, A - -4.175 c_o, A - -13.848 Heat of Formation, -----5U kcal/mole Density, g/cm³ - -5.45 Resistivity, ----408 microhm-cm Microhardness, --540 kg/mm²

Selenides (Continued)

.1
Sulfides

.

	CeS	CeS2	y.Ce2S3	Ce ₃ S ₄	Ce ₂ O ₂ S
Molecular Weight	172,20	204.26	376,46	548, 65	344, 33
Structure	Cubic	Cubic	Cubic	Cubic	Hexagonal
a ₀ , A	5,778	8, 12	8.635	8.623	4.00
c _o , A					6,82
Density, g/cm ³	5,94	5.07	5.19	5.675	5,99
Heat of Formation, kcal/mole	117.9		300.5	421, 5	430
Entropy of Formation, eu/mole	(5)	(13)	(12)	(10)	
Melting Point, C	2450	1700	1890	2080	1950
Heat Capacity, cal/(mole)(C)	12.24		30, 15		
Resistivity, microhm-cm	170		1.19 x 10 ¹²	400	
Temperature Coefficient of Resistivity, 10 ⁻³ /C	0,67				
Coefficient of Thermal Expansion, (20-1000 C), 10-6/C	12, 37		10.45		
Thermal Conductivity, cal/(cm)(sec)(C)	0, 039		0,0093		
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	2125	2286	2520	2160	2139
Work Function at 1700 K, ev	3,95		3.95		
Debye Temperature, C	677		928		
Color	Gold	Dark ' brown	Red	Black	Dark brown
Emissivity ($\lambda = 0.655 \mu$)	0.56				
Temperature of Transition to Semiconductor, C			670		

139

Authority

153,186, 193,198, 200,230, 231,239

CERIUM COMPOUNDS

Tellurides

Authority

169,193, 202,205, 233

150,206

	СеТе	CeTe2	Ce2Te3	Ce3Te4	Ce ₂ O ₂ Te
Structure	Fcc	Tetragonal		Bcc	Hexagonal
Lattice Type	NaC1	Fe ₂ As		Th ₃ P ₄	
a _o , A	6,359	4.51	9,535	9.528	4.09
с _{о,} А	all an	9,10	••	~ ~	12,92
Density, g/cm ³		7.06	6.6	6.7	6,64
Resistivity, microhm-cm	200		1.1 x 10 ⁴	1.8 x 10 ³	
Temperature Coefficient of Resistivity, 10 ⁻³ /C	1.2		••		
Thermal Conductivity, cal/(cmXsecXC)	0.027		0,0029	0.005	
Color			••		Maroon

Miscellaneous

Melting Superconducting Transition Point, C Temperature, K Structure ao. A Point, C CeIr₂ Cubic 7.571 -----CeOs₂ Cubic 7.593 - -- -CeRh₂ Cubic 7.538 - ---CeRu2 Cubic 7.5364 1539 4.9

į,

PHYSICAL PROPERTIES

PR ASEODYMIUM

Symbol Pr

Atomic Number 59

Atomic Weight 140, 92

Authority

Abundance	3.5-5.5 ppm (approx. 5.5)	51
Density	6.769 g/cm ³	67
Melting Point	935 C	66
Heat of Fusion	1.650 kcal/mole	66
Boiling Point	3127 C	57
Heat of Vaporization (25 C)	79 kcal/mole	57
Vapor Pressure (1644- 2120 K)	$Log P_{mm Hg} = 8.069 - \frac{18083}{T}$	60
Specific Heat (25 C)	6.48 cal/(mole) (C)	53
Heat of Combustion (25 C)	218.4 kcal/g-atom	57
Coefficient of Linear Thermal Expansion	$4.8 \times 10^{-6}/C (-173 - 800 C)$	61

(Permission of the American Physical Society)

90

PRASEODYMIUM

			Authority
Thermal Conductivity (28 C)	0.028 cal	/(cm ²)(sec)(C/cm)	54
Heat of Sublimation			
Cohesive Energy	85 kcal/m	nole	89
Work Function	2.7 ev		75
Debye Temperature	152 K		97
Expansion on Melting			
Surface Tension			
CRYSTAL PROPERTIES			
Structure	HCP	BCC	61
Lattice Constants	a _o = 3.6725 c _o = 11.8354	$a_0 = 4.13 A$	61
Density	6.769	6.64 g/cm ³	67
Metallic Radius	1.828	1.84 A	67
Atomic Volume	20.778	21.2 cm ³ /mole	66
Transition Temperature	798 C		66
Heat of Transition	0. 760 kca	l/mole	61
Ionic Radius	+3 = 1,013	3, +4 = 0.99 A	55,93
Closest Approach of Atoms	3.633 A		56
Allotropic Modifications	occurs a	structure with a ₀ = 4.88 A t 20 C when metal is sub- a static pressure of ars	84
CHEMICAL PROPERTIES			
Stable Oxidation State	+3, +4 ,	(standard hydroge	81 en electrode)
Electrode Potential	$[Pr = Pr^+$	$(3 + 3\bar{e}] + 2.2$ volts	81
Ionization Potential	$1^{st} = 5.8$	volts	82

143

Autho	rity
-------	------

Metallographic Polishing and Etching	mounted and similar to th Praseodymin and reacts w	n may be sectioned, polished in a manner hat used for lanthanum. um etches readily in air with various inorganic s is does lanthanum.	62
Corrosion Rates	17 mil/year a		68
(In Air)	8,100 mil/yea		
	27,600 mil/ye	ar at 600 C	
	Oxidation rate	increases rapidly with	
	increasing r	elative humidity.	
Corrosion Data	Corrosive atta materials:	ack on crucible	91
	Material	Onset of Attack	
	MgO	None <1150 C	
	Ta	None <1200 C	

ELECTRICAL PROPERTIES

Resistivity

Temperature Coefficient	$1.71 \times 10^{-3}/C$	61
of Resistivity		

(a) HC	P (25 C)	(β) BCC (820 C)	61
	68	132 microhm-cm	

Resistivity Versus Temperature

53,86

PRASEODYMIUM

96

Resistance Versus Pressure (Permission of the American Physical Society)

MAGNETIC PROPERTIES

Susceptibility (25 C)	5,320 x 10^{-6} emu/mole	61
Effective Magnetic Moment	Theoretical 3.62 Bohr Measured 3.56 Bohr	magnetons 61 magnetons
Curie Temperature	None	61
Néel Temperature	None	61

96

.

Authority

MECHANICAL PROPERTIES

Young's Modulus	3.52 x 10^{11} dynes/cm ²	57
Shear Modulus	$1.32 \times 10^{11} \text{ dynes/cm}^2$	57
Poisson's Ratio	0.305	61
Compressibility	$3.28 \times 10^{-6} \text{ cm}^2/\text{kg}$	57
Hardness (DPH)	37 (not annealed)	57
Tensile Strength	$\frac{70 \text{ F}}{15.9} \frac{400 \text{ F}}{20.1} \frac{800 \text{ F}}{6.7} 10^3 \text{ psi}$	88
Yield Strength	14.5 14.7 5.8 10 ³ psi	88
Elongation	10 15.8 30 per cent	88
Ultimate Compressive Strength	41.2 10 ³ psi	61
Impact Strength (Izod)	4. 75 ft-1b	71
Workability	Poor	88
General Fabrication	(See references)	70,113

NUCLEAR PROPERTIES

Isotopes

Whole Number Mass	Relative Abundance, percent	Half Life	Decay, Mode
140		3.5 min	ß+
141	100	Stable	
142		19.3 hr	β-
143		14 days	β-
144		17.5 min	β-, e-, γ
145		4.5 hr	β-
146		25 min	β-,γ
Thermal Neutron	11.	2 ± 0.6 barn	s/atom

Cross Section

11.2 \pm 0.6 barns/ator or 0.048 cm²/g 73

58,98

PRASEODYMIUM

Authority

83

SAFETY

Praseodymium

Toxicity - Unknown. Radiation hazard - See National Bureau of Standards <u>Handbook No. 42</u>. Fire hazard - Moderate in the form of dust; when exposed to heat or flame fine dust ignites readily.

Praseodymium Oxalate

Toxicity - Highly toxic.

Praseodymium Selenate

Toxicity - Highly toxic.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	76,77
Entropy	$S_{298} = 17.6$	$S_{1208} = 28.37 \text{ eu}$	
Heat Capacity	$C_{p298} = 6.48$	$C_{pl208} = 8.00 \text{ cal/(mole)(C)}$	

Heat Capacities of Praseodymium

	Ca1/(1	Deg)(Mol	e at Indic	ated Tem	perature)	
10 K	25 K	50 K	100 K	150 K	200 K	298.15 K
(.99)	4.36	6.03	6.36	6.42	6.45	6.48

Heat Content and Entropy of Solid and Liquid Praseodymium (Base: a-crystals at 298, 15 K)

4006701.931208(1)10,16013.085001,3703.49130010,90013.67	, e)
500 1.370 3.49 1300 10.900 13.67	
600 2,690 4.80 1400 11,700 14.26	
700 2,850 5.97 1600 13,300 15.33	
800 3,640 7.03 1800 14,900 16.27	
900 4,460 7.99 2000 16,500 17.12	
1000 5,320 8.90 2200 18,100 17.88	
1071(a) 5,950 9.51 2400 19,700 18.58	
$1071(\beta)$ 6,270 9.81 2600 21,300 19.22	
1100 6,500 10.02 2800 22,900 19.81	
1200 7,300 10.72 3000 24,500 20.36	
1208(β) 7,360 10.77	

(Continued)

146

Specific Heat

 $C_{p} = 8.00$.

1. 12 2.75 #

Below 2 K the specific heat of praseodymium can be written with 1 per cent accuracy,

 $C_p = 4.53T^3 + 24.4T + 20.9T^{-2}$

(Permission of Gordon and Breach, Science Publishers, Inc.)

147

76

53,97

PRASEODYMIUM

PRASEODYMIUM COMPOUNDS

				Authority
Antimonides	PrSb			169,270
Structure	Cubic			
Lattice Type	NaCl			
a ₀ , A	6. 366			
Effective Magnetic Moment, Bohr magnetons	3.63			
Arsenides	PrAs		•	169,270
Structure	Cubic			
Lattice Type	NaCl			
a _o , A	6.009		4	
Effective Magnetic Moment, Bohr magnetons	3.80			
Beryllides	PrBe ₁₃		,	179
a _o , A	10, 367			
Bismuthides	PrBi			169, 270
Structure	Cubic			
Lattice Type	NaC1			
a _o , A	6. 461			
Effective Magnetic Moment, Bohr magnetons	3. 52			
Borides	PrB ₃	PrB4	PrB ₆	153,155,
Molecular Weight	173.38	184. 20	205. 84	171
Structure	Pseudo- cubic	Tetrag- onal	Cubic	
a _o , A c _o , A	3. 81	7.20 4.11	4. 130	(Continued)

Density, g/cm³

1

149

				Authority
Borides (Continued)	PrB ₃	PrB4	PrB ₆	
Density, g/cm ³	5.20	5.74	4. 851	
Resistivity, microhm-cm			20	
Temperature Coefficient of Resistivity, 10 ⁻³ /C			1.92	
Coefficient of Thermal Expansion, 10 ⁻⁶ /C			7.55	
Thermal Conductivity, cal/(cm)(sec)(C)			0.98	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole			4800	
Effective Magnetic Moment, Bohr magnetons			3. 37	
Work Function, ev			3.12	
Debye Temperature, K			737	
Color		Gray brown		
Metallic Radius, A			2.19	•
Emissivity ($\lambda = 0.655 \mu$)			0.67	
Carbides	PrC2		Pr ₂ C ₃	153
Molecular Weight	164.94		317.84	
Structure	Body-cen tetragor		Bcc	
Lattice Type	CaC ₂		Pu2C3	•
a _o , A c _c , A	3.85 6.42		8.7072	

5.73

6.621

PRASEODYMIUM COMPOUNDS

Authority

Carbides (Continued)	PrC2	Pr2C3	
Melting Point, C	2535		
Resistivity, microhm- cm	25.7		
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	11,4		
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	4500		
Effective Magnetic Moment, Bohr magnetons	(3.15)		
Curie Temperature, K	5.2		
Germanides	PrGe ₂		183
Lattice Type	a-ThSi2		
a _o , A c _o , A	4.26 13.98		
Volume of Unit Cell, A ³	253.7		
TT-lidee			55,93,

Halides	PrBr3	PrCl ₃	PrF3	PrI3	PrOCl	PrOF	108,157, 158,181,
Structure		Hex- agonal	Hex- agonal	Ortho- rhombic	Tetra- gonal	Rhombo- hedral	182, 184, 185, 186, 212, 215,
Lattice Type	'	UC13		PuBr3			218, 235, 236, 211,
a _o , A b _o , A c _o , A B, deg Density, g/cm	 3	7. 422 4. 275 	7.061 7.218 	13.9 4.3 10.0	4.051	7.016 33.03 6.39	279
Heat of Formation, kcal/mole		252.09		157	242.8		

Halides (Continued)

	PrBr3	PrCl ₃	PrF3	PrI3	PrOCl	PrOF
Entropy of Formation, eu/mole	••	63		8	45	
Melting Point, C	693	786	1395	738		
Heat of Fusion kcal/mole	, 11.3	12.1	8	12.7		
Entropy of Fusion, eu/mole	11.7	11.4	5	12.6		
Boiling Point, C	1550	1710	2327	1380		
Heat of Vaporization, l/nole	45	52, 3	62	41		
Entropy of Vaporization, eu/mole	2	23	24	25		
Vapor Pressure (T in K) log P _{mm} Hg	[12. 508 -14916	/T][<u>-1</u>	5439 T	$\begin{bmatrix} 12.70\\ -1464\\ T \end{bmatrix}$	3 0	
Heat Capacity, cal/(mole)(C)	31, 5	32, 3	••	31.3		
Color	99 4p		Green		** **	
$\Delta H_{mp} = \Delta H_{298},$ kcal/mole	18.0	21.5		19.5		
Refractive Index		-				1.82

Authority

PRASEODYMIUM COMPOUNDS

Authority

Halides (Continued)

Thermodynamic Data

Glasner has supplied in ANL-5750 the following equations for calculating thermodynamic quantities. The reactions concerned and the constants for use in these equations are tabulated.

 $\Delta C_{p} = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^{2} + \frac{\Delta d \times 10^{5}}{T^{2}}$ $\Delta H - \Delta H_{P298} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^{2} + \frac{1}{3} (\Delta c \times 10^{-6})T^{3} - \frac{1/2(\Delta d \times 10^{5})}{T} + \Delta A$ $\Delta S = (2.303 \Delta a) \log T + (\Delta b \times 10^{-3})T + \frac{1}{2} (\Delta c \times 10^{-6})T^{2} - \frac{1/2(\Delta d \times 10^{5})}{T^{2}} - \Delta B$

 $\Delta F - \Delta H_{P296} = -(2.303 \Delta a) T \log T - \frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6}) T^3 - \frac{1/2(\Delta d \times 10^{-6})}{T} - T \Delta (B - a) - \Delta A .$

Reaction	Temperature Range, K	-AHF798, kcal/mole	-&F298, kcal/mole	_ <u>_</u>	46	Δc	Δd	ΔA, kcal/mole	-ΔB, ev	- <u>(B-a)</u>
$Pr(s) + \frac{3}{2}F_2(g) = PrF_3(s)$	298-1205	413	395	2.4	4.3	••	1.2	-0.485	73.4	75.8
$Pr(l) + \frac{3}{2}F_2(g) = PrF_3(s)$	1205-1643			-0.6	8.9		1.2	-2.709	59.8	59.2
$Pr(l) + \frac{3}{2}F_2(g) = PrF_3(l)$	164 3-2500			11, 1	-0.7	••	1.2	-0, 975	125.8	176.9
$Pr(s) + \frac{3}{3}Cl_2(g) = PrCl_3(s)$	298-1049	253.02	235.4	3, 7	3,4		1.0	-0, 900	80, 2	83, 9
$Pr(a) + \frac{3}{3} Cl_2(g) = PrCl_3(f)$	1049-1205			13.9	-5, 0		1.0	0.22	139, 7	148.5
$Pr(l) + \frac{3}{2}Cl_2(z) = PrCl_3(l)$	1205-1980	••		10.9	-0,4	••	1.0	-1, 202	121, 1	1 32. 0
$Pr(L) + \frac{3}{2}Cl_2(g) = PrCl_3(g)$	1980-2500		••	-1, 1	-0.4	••	1.0	68, 56	6,8	5.7

H	yd	r	ic	le	8
---	----	---	----	----	---

	PrH2	PrH ₃
Structure	Fluorite	Fluorite
a _o , A	5.517	• •
Density, g/cm ³	5.65	5.56
Heat of Formation, kcal/mole H ₂	47.8	39, 52

(Continued)

186,187

152

Authority Nitrides 149, 153, PrN169,223 Molecular Weight 154.93 Structure Cubic Lattice Type NaC1 a_o, A 5.16 Density, g/cm³ 7.467 Resistivity, 110 microhm-cm Temperature Coefficient 1.9 of Resistivity (80-500 K), $10^{-3}/C$ Coefficient of Thermal 13.0 Expansion (60-500 K), 10⁻⁶/C Magnetic Susceptibility, 4460 10-6 emu/mole Effective Magnetic 3 66 Moment, Bohr magnetons Curie Temperature, K 0.0 Oxides

156, 172, 177, 238

	PrO2	Pr2O3	Pr6011
Structure		Cubic; Hexagon	al Cubic
a ₀ , A		10.9	5. 4695
Density, g/cm ³		7.0	
Heat of Formation, kcal/mole		218.4 217.9	
Entropy of Formation, eu/mole		35.4 35.4	

(Continued)

PRASEODYMIUM COMPOUNDS

Authority

212

169,270

Oxides (Continued)

PrO₂ Pr203 Pr6011 Melting Point, C -2200 -----Magnetic Susceptibility, 1910 4410 2540 10⁻⁶ emu/mole Effective Magnetic - -3.6 - -Moment, Bohr magnetons

Thermodynamic Data

The equations given on page 152 may be used in calculating thermodynamic quantities for the following reactions:

Reaction	Temperature Range, K	-AHF298- kcal/mole	-AF298- kcal/mole	4.	46	4e	44	åA, kcal/mole	-48,	
$2Pr(a) + \frac{3}{2}O_2(a) = Pr_2O_3(a)$	298-1205	433.8	414.5	6.6				aces/mole	41	-4(B-a)
$2\Pr(t) + \frac{3}{2}O_2(g) = \Pr_2O_3(g)$	1205-2200				-5, 6	••	-1,2	-2.246	101.5	108.1
•	1543-5500	••	**	0, 6	3, 6		-1.2	-6. 694	74.3	74.9
$2\Pr(k) + \frac{3}{2}O_2(g) = \Pr_2O_3(k)$	2200-2500	**	••	7.6	-0, 4	••	-2.8	-9, 770	109.4	117.0
$Pr(a) + O_{j}(g) + PrO_{j}(a)$	278-700	2 30	226.5	4. 3	-1, 5	••	-0.9	-1.626	70.2	74.6
hoenhides										

Phosphides

	PrP
Structure	Fcc
Lattice Type	NaCl
a _o , A	5.872
Effective Magnetic Moment, Bohr magnetons	3. 77

Selenides

	FrSe	PrSe2	Pr2Se3	Pr3Se4	Pr ₂ O ₂ Se	189, 191, 192, 193,
Structure	Fcc	Tetrag- onal	Bcc	Bcc	Нср	194,225, 226,227
Lattice Type			Th ₃ P ₄	Th ₃ P ₄		
a ₀ , A c ₀ , A	5.940	8.37 8.44	8.909	8. 927	4.01	

Authority

Selenides (Continued)

	PrSe	PrSez	Pr2Se3	Pr3Se4	Pr ₂ O ₂ Se	
Density,						
g/cm ³	6.80	6.68		6.89	6.65	
Temperature Coefficient of Resistivity, 10 ⁻³ /C	0.9					
Thermal Con- ductivity, cal/(cm) (sec)(C)	0.022					
Magnetic Sus- ceptibility, 10 ⁻⁶ emu/ mole	4611	4631	4465			
Magnetic Moment, Bohr magnetons	3.3	3.3	3. 38			
Color		Dark gray	Green		Beige	
Silicides						153,160
		a-:	PrSiz	<u> </u>	PrSiz	
Molecular Weig	ght	1	97.0		197.0	
Structure		Or	thorhom	pic 7	fetragonal	
Lattice Type		a-	YSi2	a	-ThSi2	
ao, A		4.	23	4	. 140	
bo, A		4.				
c _o , A		13	. 68	1	3, 65	
Density, g/cm	3	5,	38	5	64	
Resistivity, microhm-cm		40	-	2	202	
Curie Tempera	ture, K	10	. 5			
Transformation ature, K	a Temper	•	a - B	at 153		

PRASEODYMIUM COMPOUNDS

Sulfides

ţ

Authority

Molecular	PrS 172.99	PrS ₂	γPr ₂ S ₃		Pr2O2S	153,198, 230,239
Weight	-12.77	205.04	378.05	551.02	345.91	
Structure	Cubic	Cubic	Cubic	Cubic	Hexagonal	
a _o , A c _o , A	5.747	8.08	8.611	8.611	3.974 6.825	
Density, g/cm ³	6.07	4.90	5.,27	5.77	6.16	
Melting Point, C	2230	1780	1795	2100		
Heat Capacity, cal/(mole) (C)	12.37		30.4			
Resistivity, microhm- cm	240		^{1.1} x 10 ¹²			
Temperature Coefficient of Resis- tivity (20- 1000C), 10 ⁻³ /C	0.54					Ţ
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	14.3	1	2.09			
Thermal Conduc- tivity, 10-2 cal(cm) (sec)(C)	3.3	0.	. 716			
Magnetic Suscepti- bility, 10-6 emu/mole	4730 48	00 46	40 _			,

(Continued)

A

156

4 1 1

157

Authority

Sulfides (Continued)

	PrS	PrS2	γPr_2S_3	Pr ₃ S ₄	Pr2O2S	
Work Function, ev	3.90		3.84			
Debye Tem- perature, K	638		855		, 	
Emissivity $(\lambda = 0.655 \mu)$	0.73					
Color	Gold					
Tellurides						
	PrTe		PrTe ₂	Pr2Te3	Pr ₂ O ₂ Te	169,202, 205,240, 242
Structure	Fcc		Tetragonal		Hexagonal	
Lattice Type	NaCl		Fe ₂ As			
a _o , A	6.322		4.46	9. 482	4.06	
с _о , А			9.05		12.83	
Density, g/cm ³				6.6		
Thermal Conductivity, cal/(cm)(sec)(C)	0.019					
Color					Light green	
					0	

Miscellaneous

150,206

						• •	
	Structure	Lattice Type	a ₀ , A	c _o A	Melting Point, C	Curie Temperature, K	Superconducting Transition Temperature, K
PrIr2			7, 521			18,5	
PrMg ₁₂	Body-centered tetragonal	ThMn ₁₂	10.34	5,98			
PrOs ₂			7.663	••		>35	••
PrPt 2	••		7.709			7.9	
PrRh2	**		7.575	••		8.6	
PrRu2			7,6203		1681	40	21

Symbol Nd

į

NEODYMIUM

Atomic Number 60

Atomic Weight 144.27

PHYSICAL PROPERTIES		Authority
Abundance	12-24 ppm (approx. 24)	51
Density	7.016 g/cm ³	67
Melting Point	1024 C	66
Heat of Fusion	1.705 kcal/mole	66
Boiling Point	3027 C	57
Heat of Vaporization (25 C)	69 kcal/mole	57
Vapor Pressure (1528-1923 K)	$Log P_{mm} Hg = 8.102 - \frac{16320}{T}$	60
Specific Heat (25 C)	6.57 cal/mole C	53
Heat of Combustion	216.08 kcal/g-atom	134
Coefficient of Linear Thermal Expansion	6.7 x 10^{-6} /C (-173 - 850 C)	61

(Permission of American Physical Society)

90

1

NE	OD	YM	IL	M

97

101

		Authority
Thermal Conductivity (28 C)	0.031 cal/(cm ²)(seg)(C/cm)	54
Heat of Sublimation		
Cohesive Energy	77 kcal/mole	89
Work Function	3.3 ev	75

Debye Temperature 157 K

Expansion on Melting

Surface Tension as a Function of Temperature

e., 1

<u>T, C</u>	σ, dyne/cm
1030	688
1054	685
1072	684
1094	681
1110	682
1154	680
1167	681
1186	674

CRYSTAL PROPERTIES

Structure	HCP	BCC	61
Lattice Constants	a _o = 3.6579 c _o = 11.7992	a _o = 4.13 A A	61
Density	7.016	6.80 g/cm^3	67
Metallic Radius	1.821	1.84 A	67
Atomic Volume	20.60	21.2 cm ³ /mole	66
Transition Temperature	868 C		66
Heat of Transition	0.713 kcal	/mole	61
Ionic Radius (Trivalent Ion)	0.995 A		55
Closest Approach of Atoms	3.62 A		56

				Authority
	Allotropic Modification	occurs at	cture with a ₀ = 4.80 A 20 C when metal is to a static pressure bars	84
CHEMI			2 1	
	Stable Oxidation State	+3		81
	Electrode Potential	$[Nd = Nd^{+3} + 3]$ (standard hyd	e] + 2.24 volts rogen electrode)	81
	Ionization Potential	lst = 6.3 volts		82
ι	Metallographic Polishing and Etching	sectioned in air is considerably lanthanum with spheric corros polished in a si unetched surfac	samples may be c. Although the metal more stable than respect to atmo- ion, it must be milar manner. The se after polishing mined through a	62
	Corrosion Rates (h. Air)	14 mil/year at 78 mil/year at 983 mil/year at	68	
			ncreases rapidly g relative humidity.	
	Corrosion Data			
		Corrosive attac	k on crucible materials:	91
		Material	Onset of Attack	
		CaO MgO Ta	Mild > 900 C None < 1200 C None < 1100 C	
ELECT	RICAL PROPERTIES			
		<u>(α) HCP (25 C)</u>	(β) BCC (890 C)	
	Resistivity	64.3	137 microhm-cm	61
	Temperature Coefficient of Resisitivity	$1.64 \times 10^{-3}/C$		61

NEODYMIUM

Authority

53,86

Resistivity Versus Temperature

⁽Permission of the American Physical Society)

Resistance Versus Pressure (Permission of the American Physical Society)

96

MAGNETIC PROPERTIES			Authority
Susceptibility (25 C)	5,650 x 1	0 ⁻⁶ cmu/mole	61
Effective Magnetic Moment	Theoretic Measured		61
Curie Temperature			
Néel Temperature	7.7 K		61
MECHANICAL PROPERTIES			
Young's Modulus	3.79×10^{1}	¹¹ dynes/cm ²	57
Shear Modulus	1.45×10^{1}	l dynes/cm ²	57
Poisson's Ratio	0.306	61	
Compressibility	3.02 x 10-	57	
Hardness (DPH)	35		57
	70 F	800 F	
Tensile Strength	24.7	6.0 10 ³ psi	88
Yield Strength	23.9	5.7 10 ³ psi	88
Elongation	11	13 per cent	88
Ultimate Compressive Strength	35.5 10 ³ I	ові	61
Impact Strength (Izod)	8.3 ft-1b		71
Workability	Good		88
General Fabrication	(See refere	nces)	70,113

NEODYMIUM

NUCLEAR PROPERTIES

Isotopes

Relative Abundance,	Half Life	Decay Mode
per cem		
	2.5 hr	β+
27.13	Stable	
12,20	Stable	
23,87	Stable	as as
8.30	Stable	an an
17,18	Stable	ger stir-
	11 hr	Χ,β ⁻ ,e ⁻ ,γ
5.72	Stable	e* 44
	1.7 days	β [*] ,γ or X
5,60	Stabla	
	Short	β-
or 0, 19 cm ²	/cm	
	Abundance, per cent 27.13 12.20 23.87 8.30 17.18 5.72 5.60 46 ± 2 ba	Abundance, per centHalf Life2.5 hr27.13Stable12.20Stable23.87Stable8.30Stable17.18Stable11 hr5.72Stable1.7 days5.60Stable

SAFETY

Neodymium

Toxicity - Unknown.

Neodymium Bromate

Toxicity - Unknown.

Disaster control - Moderately dangerous because it emits highly toxic bromine fumes when heated; it reacts vigorously with reducing materials.

Neodymium Bromide

Toxicity - Unknown.

Disaster control - Slightly dangerous because it emits highly toxic bromine fumes when heated.

Neodymium Compounds

Toxicities - Unknown.

Fire hazard and disaster control depend on the nature of the anion present.

Authority

58,98

THERMODYNAMIC PROPERTIES

MODYNAMIC	PROPERTIES		Authority
	Room Temperature	Melting Point	
Entropy	S298 = 17.5	S1297 = 39.21 eu	95
Heat Capacity	$C_{p296} = 6.57$	Cp1297 " 10.65 cai/(mole)(C)	

Thermodynamic Functions of Neodymium

		s°-s0	H ⁰ -H ⁰ 298, 15 ⁽⁴⁾	P0 - 10 998, 15
Т. К	Cp	cal/(KXmole)	cal/(KXmole)	cal/(KXmole)
296,15	6. 57	17.50	0.0	10.00
300	6.58	17, 54	0.041	17.50
350	6.72	18.56	0,964	17,50
400	6. 87	29,47	1.710	17,58
450	7.05	20,29	2,204	17.76
500	7.24	21, 04	2.770	16.00
550	7.44	21.74	3,193	18.26
600	7.67	22.40	3,555	18,85
650	7,90	23,02	3,882	18, 86
700	8.16	23, 62	4.178	19, 14
750	8,43	24,15	4.482	19,44
800	8,72	24,74	4.720	19,74
850	9, 02	25, 28	4.954	20, 03
900	9, 34	25, 81	A, 186	20, 33
950	9. 68	26.32	5.416	20,42
1000	10, 03	26, 82	5,636	20,90
2060	10, 40	27.32	5.856	21, 18
1100	10.78	27.61	6,071	21.46
1135.15	11,06	28,16	6, 221	21, 74
1135, 15	10,65	28,79	C. 854	21.94
1150	10, 65	28,90	6, 905	21, 94
1200	10,65	29.38		22,02
1250	10, 65	29.82	7.061	22. 32
1297.15	10,65	30.21	7. 205	22.61
1297.15	11, 86	31.52	7, 530	22.60
1300	11.66	31.55	8.644	22.86
1350	11.66	31.99	8,651	22, 90
1973, 15	11.66	32, 18	8,763 8,812	23, 20 23, 37

(4) (Hgos, 15 - Hg)/T = 6.01 cal. degree "1 mole 1

165

NEODYMIUM

Authority

53,97

Specific Heat

0 to 150 K

a - 1st experiment: a - 2nd experiment. The inset shows results below 1 K on a larger scale. Only about 50 per cent of the points below 1 K have been plotted on the main graph.

Between 0,4 and 1 K the specific heat may be written with 1 per cent accuracy.

 $C_p = 125, 7T^3 + 22, 5T + 6.4T^{-2}$. (Permission of Gordon and Breach Science Publishers, Inc.)

NEODYMIUM COMPOUNDS

A	11	th	0	r	i	t	v
2.7	-		-			-	z

Antimonides		169,229
	NdSb	
Structure	Cubic	
Lattice Type	NaCl	
ao, A	6.322	
Resistivity, microhm-cm	76	
Arsenides		169, 229
	NdAs	
Structure	Cubic	
Latilice Type	NaCl	
a ₀ , A	5.970	
Resistivity, microhm-cm	150	
Beryllides		179
	NdBe ₁₃	
a ₀ , A	10,356	
Bismuthides		169
	NdBi	
Structure	Cubic	
Lattice Type	NaCl	
a ₀ , A	6.424	

NEODYMIUM COMPOUNDS

Authority

153, 171

5

		NdB4	NdB ₆
М	lolecular Weight	187,55	209.19
S	tructure	Tetragonal	Cubic
	o, A o, A	7.219 4.1020	4.125
D	ensity, g/cm ³	5.83	4.948
М	elting Point, C		2540
	eat Capacity, cal/(mole)(C)	··	23.69
	esistivity, microhm-cm		28.0
	emperature Coefficient of Resistivity, 10 ⁻³ /C		1,93
	oefficient of Thermal Expansion, 10-6/C		7.26
	hermal Conductivity, cal/(cm)(sec)(C)		0.113
	agnetic Susceptibility, 10-6 emu/mole		2420
	ffective Magnetic Moment, Bohr magnetons		3.82
W	ork Function, ev		3.97
	licrohardness, kg/mm ²		2530
С	olor		Dark blue
	missivity, $(\lambda = 0.655 \mu)$		0.64
	ffective Metallic Radius, A		2.18

Borides

1 × .

Authority

		153
NdC2	Nd ₂ C ₃	
168.29	324.54	
Body- centered tetragonal	Bcc	
CaC2	Pu ₂ C ₃	
3 82	8,5478	,
6.37		
6.00	6.902	" 1
>2000		·
3.53		5
40		
		170, 1
NdGe2		
a-ThSiz		
4,230		
13.920		
249.9		
	168. 29 Body-centered tetragonal CaC2 3. 82 6. 37 6. 00 >2000 3. 53 40 NdGe2 a-ThSi2 4. 230 13. 920	168.29 324.54 Body- centered tetragonal Bcc centered tetragonal CaC2 Pu2C3 3.82 8.5478 6.37 6.00 6.902 >2000 3.53 40 NdGez α-ThSiz 4.230 13.920

r r

Carb

NEODYMIUM COMPOUNDS

Authority

93, 108, 157, 158, 181, 182, 184, 185, 186, 212, 215, 217, 235, 236, 211, 279

	NdBr3	NdCl3	NdF3	NdI3	NdOC1	NdOF
Molecular Weight			201.27			
Structure		Hexagonal	Hexagonal	Orthorhombic	Tetragonal	Rhombohedral
Lattice Type	PuBrg	UC13		PuBrg		
			7.030	13,988	4.018	6.953
a _o , A b _c A				4.316		
υ _C Α			7.200	9,977	6.782	
β, deg					••	33.04
Denzity, g/cm ³			6.37			6.65
Heat of Formation, kcal/mole		245.71		152	237.1	67
Entropy of Formation, eu/mole		(63)		(8)	(45)	
Melting Point, C	684	759	1374	787		
Heat of Fusion, kcal/mole	10.8	12.0	(8)	9.7		
Entropy of Fusion, eu/mole	11.3	11.6	(5)	9.2		
Boiling Point, C	1540	1690	2327	1370		
Heat of Vaporization, kcal/mole	46.8	51.8	62	41		
Entropy of Vaporization, eu/mole	25	24	24	25		
Vapor Pressure, log Pmm Hg	12.555 -14829/T	12.014 -15145/	T	12.475 -14495/T		
Heat of Sublimation, kcal/mole	67	68.8				
Entropy of Sublimation, eu/mole	44	41,3				

(Continued)

170

Halides

Authority

212

Halides (Continued)

	Nd Br3	NdC13	NdF3	NdI3	NdOC1	NdOF
Heat Capacity, cal/(mole)(C)	31.0	35.4		27.6		
$\Delta H_{mp} - \Delta H_{298},$ kcal/mole	17.6	20.3		24.3		
Color			Violet	••		••
Refractive Index	- *					1.82

Thermodynamic Data

Glasner has supplied in ANL-5750 the following equations for calculating thermodynamic quantities. The reactions concerned and the constants for use in these equations are tabulated.

 $\Delta C_{p} = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^{2} + \frac{\Delta d \times 10^{5}}{T^{2}}$ $\Delta H - \Delta H_{P298} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^{2} + \frac{1}{3} (\Delta c \times 10^{-6})T^{3} - \frac{1/2(\Delta d \times 10^{5})}{T} + \Delta A$ $\Delta S = (2,303 \Delta a)LogT + (\Delta b \times 10^{-3})T + \frac{1}{2} (\Delta c \times 10^{-6})T^{2} - \frac{1/2(\Delta d \times 10^{5})}{T^{2}} - \Delta B$

 $\Delta F - \Delta H_{P298} = -(2.303 \Delta a) T \log T - \frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6}) T^3 - \frac{1/2(\Delta d \times 10^5)}{T} - T \Delta (B - a) - \Delta A$

Reaction	Temperature Range, K	-AHF298, kcal/mole	- ΔF_{298} , kcal/mole	<u> </u>	Δb	Δc	Δd	۵۸, kcal/mole	-48, eu	-4(B-a)
$Nd(s) + 3/2 F_2(g) = NdF_3(s)$	298 - 1297	410	392	2.6	2.4		1.2	-0.465	74.3	76.9
$Nd(l) + 3/2 F_2(g) = NdF_3(s)$	1297 - 1683			-0.9	7.7		1.2	-2. 981	58.2	57.3
$Nd(l) + 3/2 F_2(g) = NdF_3(l)$	1683 - 2500			9.5	-0.7		1.2	-0. 588	116.6	126.1
Nd(s) + 3/2 Cl ₂ (g) = NdCl ₃ (s)	298 1033	245.62	227.9	4.1	1.7		1.0	-0. 949	82. 2	86. 2
$Nd(s) + 3/2 Cl_2(g) = NdCl_3(l)$	1033 1297			12.2	-5.7		1.0	2. 528	123.7	135.9
$Nd(\hat{z}) + 3/3 Cl_2(g) = NdCl_3(\hat{z})$	1297 1960			8. 8	-0.4		1.0	0.012	107.6	116.4
$Nd(l) + 3/2 Cl_2(g) = NdCl_3(g)$	1960 2500	• 7		-2.2	-0.4		1.0	67.57	0. 8	-1.4

NEODYMIUM COMPOUNDS

Authority

91,165, 186,187

	NdH ₂	NdH3
Structure	Fluorite	Fluorite
a ₀ , A	5.464	
Density, g/cm ³	5.94	
Heat of Formation, kcal/mole H ₂	44.8	
Entropy of Formation, eu/mole H ₂	43	
Color	••	Indigo blue
Dissociation Rate (log P)	9.370 -9796/T	

Nitrides

NdN Molecular Weight 158,28 Structure Cubic Lattice Type NaC1 a_o, A 5,151 Density, g/cm³ 7.691 Resistivity, 75 microhm-cm **Temperature** Coefficient 0.70 of Resistivity (80-500 K), 10-3/C Magnetic Susceptibility, 10-6 emu/mole 5850 Effective Magnetic 3.71 Moment, Bohr magnetons

149, 153, 223

(Continued)

172

Hydrides

Authority

173

Nitrides (Continued)
------------	------------

	NdN
Color	Black
Curic Temperature, K	19

Oxides

156, 172, 173, 176, 177

	Nd ₂ O ₃
Molecular Weight	336.48
Structure	Hexagonal
a ₀ , A	3.831
c _o , A	5.999
Density, g/cm ³	7.24
Heat of Formation, kcal/mole of metal	216.08
Entropy of Formation, eu/mole of metal	(35.3)
Melting Point, C	2270
Effective Magnetic Moment, Bohr	3.7

Thermodynamic Data

magnetons

The equations given on page 171 may be used in calculating thermodynamic quantities for the following reactions:

Reaction	Temperature Range, K			4.	<u> </u>	۵c	Δd	۵۸, kcal/mole	-48, eu	-4(B-a)
$2Nd(s) + 3/2O_2(g) = Nd_2O_3(s)$	298 - 1297	428.6	409.5	4.12	-0.51	-	-1.3	-1.964	95.6	101.0
$2Nd(l) + 3/2O_2(g) = Nd_2O_3(s)$	1297 - 2500			1.9	2.7		-1.3	-6.997	63. 4	61.8

NEODYMIUM COMPOUNDS

Authority

174

-(+T-H16)/T. ST-S16. HT-H16. Cp. cal/(mole)(K) cal/mole cal/(mole)(K) cal/(mole)(K) <u>T, K</u> 1.938 16 0.04890 0.4863 8.748 2.394 20 0.3931 1.6785 38.563 3.619 30 0.8680 82.024 2.9186 40 5.105 140.95 1.4081 6.680 4,2271 50 1.9902 215.42 5,5805 8.202 60 2.6010 6.9556 304.82 9.666 70 3,2318 408.51 8.3382 11.07 80 3.8762 526.09 12.44 9.7216 90 4.5294 657.06 11.100 100 13.74 5.8524 955.99 13.819 16,10 120 7.1801 1298.9 16.458 18,14 140 8.4995 1679.6 18.997 19,88 160 9.8016 2092.4 21.426 180 21.37 11.081 2533.0 23.746 22.65 200 12.334 2997.0 25,957 23.72 220 13,557 . 28,058 3480.3 24.58 240 3979.4 14,751 30.056 25.32 260 15.912 4492.8 31,958 26.01 280 16.935 4970.9 33.607 26,53 298.16 17.043 5019.4 33.774 26.65 300

<u>T, K</u>	Cp. cal/(K)(1/2 mole)
298.15	13.0
400	14.3
500	15.1
600	15.6
700	16.1
800	16.5
900	16.8
1000	17.2
1100	17.5
1200	17.8

Thermodynamic Functions for Neodymium Oxide

186

Authority

Heat Content and Entropy Increments (Hexagonal) (Smooth Values) Neodymium Oxide			175
	HT-H298, 15.	ST-S298. 15.	

<u>т, к</u>	cal/mole	cal/(mole)(K)		
400	2,840	8, 18		
500	5,770	14.71		
600	8,820	20.27		
700	11,980	25, 14		
800	15,240	29.49		
900	18,580	33.42		
1000	22,000	37.03		
1100	25,500	40.36		
1200	29,070	43.47		
1300	32,700	46.37		
1395	36, 210(a)	48.98(a)		
1395	36, 350(8)	49.08(B)		
1400	36, 540	49.22		
1500	40,260	51.78		
1600	43,980	54.18		
1700	47,700	56.44		
1800	51,420	58.56		
1900	55, 140	60.57		
2000	58,860	62.48		

F	Phosphides		169
		NdP	
	Structure	Fcc	
	Lattice Type	NaCl	
	a _o , A	5.838	

Selenides

189, 191, 192, 193, 194, 225, 226, 227, 232

	NdSe	NdSe2	Nd2Se3	Nd3Se4	Nd2O2Se	
Structure	Fcc	Tetragonal	Bcc	Bcc	Нср	
Lattice Type	NaCl		Th3F4	Th3P4		
a _o , A	5.879	8,33	8,841	8.859	3.97	
c _o , A		8,41			6.97	
				((Continued)	
Selenides (Continued)						
---	-------	-------------------	---------------------------------	--------	-----------------------------------	
	NdSe	NdSe ₂	Nd ₂ Se ₃	Nd3Se4	Nd ₂ O ₂ Se	
Density, g/cm ³	6.93	6.83	6.69	7.15	6.99	
Res is tivity, microhm-cm	50					
Temperature Coefficient of Resistivity, 10 ⁻³ /C	0.8					
Thermal Conductivity, cal/(cm)(sec)(C)	0.013					
Magnetic Susceptibility, 10-6 emu/mole	4780	4763	4685			
Effective Magnetic Moment, Bohr magnetons	3.4	3.4	3, 58			
Color			Violet		Bluish white	
Silicides					152, 153,	
	a-1	NdSi2	β-NdSi2		160	
Molecular Weight	200	. 45	200,45			
Structure		ho- hombic	Tetrag- onal			
Lattice Type	α- γ	Si.2	a-ThSi2			
a ₀ , A	4,1	8	4.103			
b _o , A	4, 1	5				
c _o , A	13.	56	13,53			
Density, g/cm ³	5.6	2	5.84			
Melting Point, C	-	-	1525			

Authority

(Continued)

177

Authority

Silicides (Continued)

	a-NdSi2	β-NdSi2
Resistivity, microhm-cm	349	
Transition Temperature, C	a → βa	at 20 vo 150
Transverse Rupture Strength, 10 ³ psi	8.5	

Sulfides

153,186, 193,198, 200,230, 241

	NdS	NdS2	YNd2S3	Nd3S4	Nd2O2S
Molecular Weight	176.34	208.39	384.74	561.07	352.61
Structure	Cubic	Cubic	Cubic	Cubic	Hexagonal
a ₀ , A	5.690	8.04	8.527	8.524	3.946
c _o , A					6.790
Density, g/cm ³	6.36	5.34	5,50	6.02	6.47
Heat of Formation, kcal/mole		•	138		
Entropy of Formation, cu/mole			13		
Melting Point, C	2200	1760	2200	2040	1990
Heat Capacity, cal/(mole)(C)	12.87		31,41		
Resistivity, microhm-cm	242		7 x 1013	1.2x106	
Temperature Coefficient of	1.4				
Resistivity, 10 ⁻³ /C					(Continued)

NEODYMIUM COMPOUNDS

Authority

Sulfides (Continued)					Autho
	NdS	NdSa	yNd2S3	Nd ₃ S ₄	Nd2O2S
Coefficient of Thermal Expansion (20-1000 C), 10-6/C	15,35		12.90		
Thermal Conductivity, cal/(cm)(sec)(C)	0.046		0.0092		
Magnetic Susceptibility, 10-6 emu/mole	4370	5082	4924	4849	
Work Function, ev	3.39		3.93		
Debye Temperature, K	633	\'	840		
Color	Gold		Yellow brown	Black	Blue
Emissivity, $(\lambda = 0.655 \mu)$	0.80				
Fellurides					202,20

Te

02, 205, 228, 229, 232, 246

					232, 24
	NdTe	NdTe2	Nd2Te3	Nd3Te4	Nd ₂ O ₂ Te
Structure	Fcc	Tetrag- onal	Ortho- rhombi	Bcc	Hexagonal
Lattice Type	NaCl	Fe2As		Th3P4	
a ₀ , A	6.249	4.41	12.12	9.438	4.03
bo, A			11.93		
c _o , A		9.04	4.37		12.77
Density, g/cm ³			6.65	6.8	7.18
				(Con	tinued)

Authority

179

Tellurides (Continued)

	NdTe	NdTez	Nd2Te3	Nd3Te4	Nd2O2Te
Melting Point, C			1650	1685	
Resistivity, microhm-cm	40		1.7×10^{3}	350	
Color		** =			Green

Miscellaneous

150

		Structure	<u>ao, A</u>	c ₀ , A	Curie Temperature, K
NdIr2		Cubic	7.605		11.8
NdOs ₂		Hexagonal	5,368	8.945	27.5
NdPt2		Cubic	7.694		6.7
Nd Rh ₂) <u>-</u>	Cubic	7.564		8.1
NdRu2	•	Cubic	7.614		35

- 5

1

i

PROMETHIUM

Symbol Pm

Atomic Number 61

Atomic Weight 145

Promethium has no stable isotopes in nature; the few data found are presented below.

		Authority
PHYSICAL PROPERTIES		
Abundance	0.0	51
Melting Point	1080 C	102
Heat of Fusion	(3.0) kcal/mole	77
Boiling Point	(2727 C)	57
Heat of Vaporization (25 C)	(60) kcal/mole	57
Specific Heat (25 C)	(6.50) cal/(mole)(C)	76
Debye Temperature	162 K	97
ALL OTHER PROPERTIES		
Metallic Radius	(1.810) A	67
Stable Oxidation State	+3	67
Ionic Radius (Trivalent Ion)	0. 979 A	55
Compressibility	3.06 x 10^{-6} cm ² /kg	89
Crystal Structure	Fcc	91
Preparation of Metallic Pm	(See reference)	102

Authority

58

Whole Number Mass	Relative Abundance per cent	Half Life	Decay Mode
144	0.0	200 days	Κ, γ
147	0. 0	3.7 yr	β
148	0.0	5.3 days	β,γ
149	0.0	47 hr	β, γ
151	0.0	12 min	β-
153	0.0	<5 min	β-
156	0.0	<5 min	β"

	Room Temperature	Melting Point	76, 77
Entropy	S ₂₉₈ = (17. 2)	S ₁₃₀₀ = (28. 17) eu	
Heat Capacity	C _{p298} = (6.50)	$C_{p1300} = (8.98) cal/(mole)(C)$	

Heat Content and Entropy of Solid and Liquid Promethium (Base: crystals at 298, 15 K)

<u>T. F</u>	HT-H298.15 cal/mole	ST ^{-S} 298.15 [,] cal/(K) (mole)	<u>T, K</u>	HT-H298, 15. cal/mole	^S T ^{-S} 298.15 [,] cal/(K) (mole)
400	670	1.94	1300(1)	10, 760	13.28
500	1, 360	3.48	1400	11, 580	13, 87
600	2,070	4.77	1600	13, 160	14.94
700	2, 810	5, 91	1800	14, 760	15.88
800	3, 570	6.93	2000	16, 360	16, 73
900	4, 360	7.86	2200	17.960	17.49
1000	5, 170	8.71	2400	19, 560	18, 19
1100	6,010	9.51	2600	21, 160	18. 83
1200	6, 870	10,26	2800	22, 760	19.42
1300(s)	7, 760	10,97	3000	24, 360	19,99

For solid prome-hium:

 $H_{T}-H_{29P, 15} = J. 76T + 1.24 \times 10^{-3}T^{2}-1,828$ (0.2 per cent; 298-1,300 K; C_p = 5.76 + 2.48 × 10^{-3}T; $\Delta H_{1300}(fusion) = 3,000.$

For liquid promethium:

H_T-H_{298, 15} = 8.00T + 360 (0.1 per cent; 1, 300-3, 000 K.); $C_p = 8.00.$

Isotopes

PROMETHIUM COMPOUNDS

		Authority
Antimonides		
Arsenides		
Beryllides	PmBe ₁₃	179
a _o , A	10.33	
Bismuthides		

Borides

Carbides

Germanides

Halides

93, 236, 276

	•			

	PmBr3	PmCl ₃	PmF3	Pm13	a-PmOF	β-PmOF	
Structure	••	Hexagonal	Hexagonal		Fcc	Tetragonal	
a ₀ , A		7. 397	6.96		5.56	3,95	
c _o , A		4,211	7.14		-	5.58	
Melting Point, C	677	737	1407	797			
Heat of Fusion, kcal/mole	(8)	(8)	(8)	(8)			
Entropy of Fusion, eu/mole	(8)	(8)	(5)	(8)			
Boiling Point, C	1530	1670	(2327)	1370		••	
Heat of Vaporization, kcal/mole	(45)	(46)	(62)	(41)			
Entropy of Vaporization, eu/mole	(25)	(24)	(24)	(25)			
Color		Blue purple	Pink		Pink	Pink	
rides							
	 a_o, A c_o, A Melting Point, C Heat of Fusion, kcal/mole Entropy of Fusion, eu/mole Boiling Point, C Heat of Vaporization, kcal/mole Entropy of Vaporization, eu/mole 	Structure a_0 , A c_0 , A C_0 , AMelting Point, C677Heat of Fusion, kcal/mole(8)Entropy of Fusion, eu/mole(8)Boiling Point, C1530Heat of Vaporization, kcal/mole(45)Entropy of Vaporization, eu/mole(25)Color	StructureHexagonal a_0 , A7,397 c_0 , A4,211Melting Point, C677737Heat of Fusion, kcal/mole(3)(6)Entropy of Fusion, eu/mole(8)(6)Boiling Point, C15301670Heat of Vaporization, kcal/mole(45)(46)Entropy of Vaporization, eu/mole(25)(24)ColorBlue purple	Structure Hexagonal Hexagonal a ₀ , A 7.397 6.96 c ₀ , A 4.211 7.14 Melting Point, C 677 737 1407 Heat of Fusion, kcal/mole (8) (5) (6) Entropy of Fusion, eu/mole (8) (9) (5) Boiling Point, C 1530 1670 (2327) Heat of Vaporization, kcal/mole (45) (46) (62) Entropy of Vaporization, kcal/mole (25) (24) (24) Color Blue purple Pink	Structure Hexagonal Hexagonal a_0 , A 7.397 6.96 c_0 , A 4.211 7.14 Go, A 4.211 7.14 Melting Point, C 677 737 1407 797 Heat of Fusion, kcal/mole (8) (9) (9) (9) (9) Entropy of Fusion, eu/mole (8) (9) (5) (9) (9) Boiling Point, C 1530 1670 (2327) 1370 Heat of Vaporization, kcal/mole (45) (46) (62) (41) Entropy of Vaporization, eu/mole (25) (24) (24) (25) Color Blue purple Pink	Structure Hexagonal Hexagonal Fcc a_0 , A 7.397 6.96 5.56 c_0 , A 4.211 7.14 Melting Point, C 677 737 1407 797 Melting Point, C 677 737 1407 797 Heat of Fusion, kcal/mole (8) (8) (8) (8) Boiling Point, C 1530 1670 (2327) 1370 Heat of Vaporization, eu/mole (45) (46) (62) (41) Boiling Point, C 1530 1670 (2327) 1370 Heat of Vaporization, eu/mole (25) (24) (24) (25) Color Blue purple Pink Pink	Structure Hexagonal Hexagonal Fcc Tetragonal a ₀ , A 7,397 6,96 5,56 3,95 C ₀ , A 4,211 7,14 5,58 Melting Point, C 677 737 1407 797 Heat of Fusion, kcal/mole (8) (9) (6) (9) Entropy of Fusion, eu/mole (8) (9) (5) (9) Boiling Point, C 1530 1670 (2327) 1370 Heat of Vaporization, kcal/mole (45) (46) (62) (41) Boiling Point, C 1530 1670 (24) (25) Heat of Vaporization, kcal/mole (25) (24) (24) (25) Entropy of Vaporization, eu/mole Blue purple Pink Pink Pink

Nitrides

Oxides

Ţ

Authority

156, 172, 276

		Pm ₂ O ₃	
Туре	A	В	C
Structure	Hexagonal	Monoclinic	Cubic
a ₀ , A	3.806	14.15	10. 99
b _o , A		3.69	
c _o , A	5.954	8.78	
β, deg		98.5	
Heat of Formation, kcal/mole	(216. 9	5) Type not speci	ified
Entropy of Formation, eu/mole	(35.4	 Type not speci 	fied
Color	Blue purple	Pink purple	Coral red
Effective Magnetic Moment, Bohr magnetons	2,8	3 Type not specif	lied
Transition Temperature, C	в -	C at 950	
Phosphides			
Selenides			
Silicides			
Sulfides			
Tellurides			

SAMARIUM

Symbol Sm

Atomic Number 62

Atomic Weight 150.35

Authority

PHYS	CAL PROPERTIES		
	Abundance	4.5-7.0 ppm (approx. 6.5)	51
	Density	7.536 g/cm ³	67
	Melting Point	1072 C	66
	Heat of Fusion	2.061 kcal/mole	66
	Boiling Point	1804 C	104
	Heat of Vaporization (25 C)	46 kcal/mole	57
	Vapor Pressure (885-1222 K)	$Log P_{mmHg} = 8.781 - \frac{10784}{T}$	60
	Specific Heat (25 C)	6.76 cal/(mole)(C)	53
	Heat of Combustion	216.94 kcal/g-atom	134
	Coefficient of Linear Thermal Expansion		
	Thermal Conductivity		
	Heat of Sublimation (25 C)	49. 3 kcal/mole	104
	Cohesive Energy	50 kcal/mole	39
	Work Function	3.2 ev	82
	Debye Temperature	166 K	97
	Expansion on Melting		
	Surface Tension		

SAMARIUM

186

Authority

CRYSTAL PROPERTIES

	Structure	Rhombohedral	BCC		61
	Lattice Constants	$a_0 = 8.966$ $\alpha = 23^{\circ} 13^{\circ}$	a _o = 4.07	A	61
	Density	7.536		g/cm ³	66
	Metallic Radius	1.802	1.81 A		67
	Atomic Volume	19.0		cm ³ /mole	56
	Transition Temperature	917 C			66
	Heat of Transition	0.744 kcal/mol	e		61
	Ionic Radius	+2 = 1.16, +3 =	0.964 A		53, 93
	Closest Approach of Atoms				
	Allotropic Modifications	(1) a durable ho 300 C when met static pressure	al is subject	cted to a	106
CH	EMICAL PROPERTIES				
	Stable Oxidation State	+2, +3			81
	Electrode Potential	[Sm = Sm ⁺³ + 3 (standard hydr			81
	Ionization Potential	1st = 6.6, 2nd =	= 11.4 volts		82
	Metallographic Polishing and Etching				
	Corrosion Rates (In Air)	2.9 mil/year at 3.2 mil/year at 6.7 mil/year at Oxidation rate i with 75 per ce	400 C 600 C is, 20 mil/y		68

Corrosion Data

ELECTRICAL PROPERTIES		
Resistivity (25 C)	88 microhm-cm	61

Temperature Coefficient of Resistivity

 $1.48 \times 10^{-3}/C$

Resistivity Versus Temperature (Permission of the American Physical Society)

Resistance Versus Pressure (Permission of the American Physical Society)

96

Authority

86

- 61

SAMARIUM

188

Authority

MAGNETIC PROPERTIES		
Susceptibility (25 C)	1275 x 10 ⁻⁶ emu/mole	61
Effective Magnetic Moment	Theoretical 1.6 Bohr magnetons Measured 1.74 Bohr magnetons	61
Curie Temperature		
Néel Temperature	15 K 27 K (double hcp structure)	61 106
MECHANICAL PROPERTIES		
Ycung's Modulus	3.41 x 10^{11} dynes/cm ²	57
Shear Modulus	$1.26 \times 10^{11} \text{ dynes/cm}^2$	57
Poisson's Ratio	0. 352	61
Compressibility	2.56 x 10^{-6} cm ² /kg	57
Hardness (DPH)	45	57
	70 F 400 F 800 F	
Tensile Strength	18.0 21.0 12.0 10 ³ psi	88
Yield Strength	16.2 17.9 11.0 10 ³ psi	88
Elongation	3 10.4 5.6 per cent	88
Ultimate Compressive Strength	47.6 x 10 ³ psi	61
Impact Strength (Izod)	0.53 ft-1b	71
Workability		
General Fabrication	(See references)	70, 113

NUCLEAR PROPERTIES

Isotopes

Whole Number Mass	Relative Abundance, per cent	Half Life	Decay Mode
144	3.16	Stable	
145		70 days	K, γ, e-
147	15.07	Stable	65 %
148	11.27	Stable	
149	13.84	Stable	40 10
150	7.47	Stable	
151		20 yr	β-
152	26.63	$2.5 \times 10^{11} \text{ yr}$	¢
153		47 hr	β-, γ, ε-
154	22. 53	Stable	
155		25 min	β-,γ
156		10 hr	β-

Thermal Neutron Cross Section 5500 ± 200 barns/atom or $22 \text{ cm}^2/\text{g}$

73

SAFETY

Samarium

Toxicity - Unknown.

Samarium Compounds

Details of toxicity unknown; the relative fire hazards, explosion hazards, and disaster controls depend on the nature of the anion.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	95
Entropy	$S_{298} = 16.64$	$S_{1345} = 31.67 eu$	
Heat Capacity	$C_{p298} = 6.76$	$C_{p1345} = 11.22 \text{ cal/(mole)(C)}$	

189

Authority

58,105

ſ

Authority

58,105

NUCLEAR PROPERTIES

Isotopes

Whole Number Mass	Relative Abundance, per cent	Half Life	Decay Mode
144	3.16	Stable	
145		70 days	K, γ, e-
147	15.07	Stable	
148	11.27	Stable	
149	13.84	Stable	
150	7.47	Stable	
151		20 yr	β-
152	26.63	2.5 x 10 ¹¹ yr	œ
153		47 hr	β-, γ, e-
154	22. 53	Stable	
155		25 min	β-,γ
156		10 hr	β-

Thermal Neutron	5500 ± 200 barns/atom or
Cross Section	$22 \text{ cm}^2/g$

SAFETY

Samarium

Toxicity - Unknown.

Samarium Compounds

Details of toxicity unknown; the relative fire hazards, explosion hazards, and disaster controls depend on the nature of the anion.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	
Entropy	$S_{298} = 16.64$	$S_{1345} = 31.67 \text{ eu}$	
Heat Capacity	$C_{p298} = 6.76$	Cp1345 = 11.22 cal/(mole)(C)	

73

95

Authority

122

Thermodynamic Functions

			н ^о -но	F ^o -H _o				Ho-Ho	F ^O -H ^O
	C _p ,	s°,	T,	T		Cp,	s°,	Т	Т
	joules/	joules/	joules/	joules/	-	joules/	joules/	joules/	joules/
т, к	mole-K	mole-K	mole-K	mole-K	Т. К	mole-K	mole-K	mole-K	mole-K
20.0	7.23	5.495	3,731	1.764	107.5	27.97	41.900	21.859	20,041
25.0	10.05	7.410	4.710	2.699	108.0	27.66	42,029	21.887	20, 142
30.0	13.00	9.506	5, 848	3.657	110.0	27.12	42, 531	21.986	20. 545
35.0	15.77	11,724	7.071	4.653	115.0	26.61	43.723	22, 196	21. 527
40.0	18.28	13,999	8,318	5.680	120.0	26.37	44.850	22.374	22.475
45.0	20, 55	16.289	9,554	6.735	130.0	26.23	46.955	22.677	24.278
50.0	22, 57	18, 561	10.756	7.804	140.0	26.22	48.898	22,930	25.968
55.0	24.45	20.802	11,917	8.885	150.0	26, 29	50, 708	23,152	27.556
60.0	26.20	23.006	13.035	9.970	160.0	26.42	52,409	23, 352	29.056
65.0	27. 79	25, 167	14, 110	11.056	170.0	26.57	54.016	23.537	30,478
70.0	29.32	27.283	15.143	12, 140	180.0	26.71	55. 538	23,710	31, 828
75.0	30, 75	29.355	16.136	13,219	190.0	26.86	56,986	23.872	33, 114
80.0	32, 21	31, 386	17.095	14,291	200.0	27.07	58.3"	24.027	34.342
85.0	33.68	33,384	18.028	15.355	210.0	27.27	59.695	24.177	35.518
90.0	35.09	35,350	18, 938	16.412	220.0	27.48	60.969	24.322	36.646
95.0	36.42	37.281	19,821	17.459	230.0	27.71	62, 195	24,464	37.730
100.0	37.98	39,189	20, 690	18,498	240.0	27.93	63.379	24.604	38.774
102.0	38.86	39,949	21.038	18.911	250.0	28, 22	64. 525	24.743	39.781
104.0	40.33	40.715	21.391	19.323	260.0	28.49	65,638	24. 883	40,755
104.2	40.57	40, 792	21, 428	19.364	270.0	28.70	66.717	25, 020	41.698
104.4	40. 82	40.870	21.465	19.405	273.15	28.78	67.050	25.063	41.987
104.6	41, 16	40,949	21.502	19.448	280.0	28.98	67.765	25.156	42.608
104.8	41.68	41,028	21.540	19.487	290.0	29.28	68.788	25.293	43.494
105.0	42.04	41,108	21.579	19.528	298,15	29.53	69,603	25,406	44, 196
105.2	42, 17	41.188	21.618	19.570	300,0	29.58	69.786	25.432	44.354
105.4	41.74	41.268	21.657	19.611	310.0	29, 88	70. 761	25.570	45, 190
105.6	39.98	41.346	21,694	19.652	320.0	30, 17	71.714	25.710	46.004
105.8	37.45	41,419		19.693	330.0	30,45	72.647	25.849	46.797
106.0	34, 14	41, 486			340.0	30, 73	73.560		47.571
106.5	29.51	41.633		19.837	350.0	31.00			48, 326
107.0	28, 43	41. 769			360.0	31.27	75,331	26, 267	49.064

190

(Continued)

<u>T, K</u>	Cp. cal/(Kymole)	$S^{0}-S^{0}_{O}$, <u>cal/(K)(mole)</u>	H ^o -H ^o 298. 15(a) T 	F ^o -H ^o 298. 15 T
298.15	6.76	16.64		cal/(K)(mole)
300	6.80		0, 0	16.64
350	7.56	16.68	0.042	16.64
400	8.15	17.79	1.064	16,73
450	8.62	18.84	1,914	16.93
500	9.00	19.83	2.634	17.20
550	9.32	20, 76	3,252	17.51
600	9,60	21,63	3. 790	17.84
650	9.84	22.45	4.263	18.19
700	10.05	23.23	4. 683	18, 55
750	10,25	23.97	5.059	18.91
800		24.67	5.399	19.27
850	10.42	25,34	5.707	19.63
900	10.58	25.97	5, 989	19.98
950	10.73	26.58	6.248	20.33
1000	10.86	27.16	6.487	20.67
1050	10,99	27.72	6.709	
1100	11.11	28.26	6.916	21.01
1150	11.22	28.78	7.109	21, 34
	11.33	29.28	7. 290	21.67
1190, 15 1190, 15	11.41	29.67	7.428	21.99
1200	11.22	30, 30	8.055	22, 24
	11.22	30.39	8.079	22,24
1250	11.22	30, 85	8.204	22.31
1300	11, 22	31,29	8. 320	22.65
345, 15(s)	11.22	31.67	8.417	22, 97
1945. 15(1)	14.04	33,20		- 23, 25
350	14.04	33.25	9.950	23.25
398.15	14.04	33, 74	9.964	23,29
			10, 105	23,63

Thermodynamic Functions (Continued)

(a) (H⁰_{298,15} - H₀⁰)/T = 6.07 cal degree⁻¹ mole⁻¹ _npublished value according to Jennings, Hill and Spedding.

Specific Heat

(Permission of the American Physical Society)

Authority

191

95

107

SAMARIUM COMPOUNDS

SAMARIUM COMPOUNDS

Antimonides

Authority

169 .

169,229

179

	SmSb
Structure	Cubic
Lattice Type	NaCl
a _o , A	6. 271
Magnetic Susceptibility, 10-6 emu/mole	1000
rsenides	
	SmAs
Structure	Cubic
Lattice Type	NaCl
a _o , A	5. 921
Resistivity, microhm-cm	160
Magnetic Susceptibility, 10-6 emu/mole	1086
eryllides	
• · · · · · · · · · · · · · · · · · · ·	SmBe ₁₃
a ₀ , A	10.28
ismuthides	
	SmBi
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	6. 362
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	1169

Borides

Authority

	SmB4	SmB6
Molecular Weight	193. 71	215.35
Structure	Tetragonal	Cubic
a ₀ , A	7.174	4. 131
c _o , A	4.070	
Density, g/cm ³	6.19	5.08
Melting Point, C		1810
Resistivity, microhm-cm		200
Temperature Coefficient of Resistivity, 10 ⁻³ /C		-4. 2
Coefficient of Thermal Expansion, 10-6/C		6. 5
Thermal Conductivity, cal/(cm)(sec)(C)		0. 033
Magnetic Susceptibility, 10-6 emu/mole		1810
Effective Magnetic Moment, Bohr magnetons		2. 52
Work Function, ev		4. 4
Microhardness, kg/mm ²		2500
Color	Gray brown	Dark blue
Emissivity ($\lambda = 0.655 \mu$)		0. 68
Effective Metallic Radius, A		2.19

SAMARIUM COMPOUNDS

Authority

153

	SmC2	Sm2C3	Sm 3C	
Molecular Weight	174.45	366.86	463.29	
Structure	Body-centered tetragonal	Bcc	Cubic	
Lattice Type	CaC ₂	Pu ₂ C ₃	Fe4N	
a ₀ , A	3. 76	8.4257	5, 172	
c ₀ , A	6. 29		000 VIII-	
Density, g/cm ³	6.50	7.477	8.139	
Melting Point, C	>2200		** **	
Magnetic Suscep- tibility, 10-6 emu/ mole	~2300	••	••	
Effective Magnetic Moment, Bohr magnetons	2, 85		••	

Germanides

170, 183

	SmGez
Lattice Type	a-ThSi2
a _o , A	4. 193
co, A	13.835
Volume of Unit Cell, A ³	241. 4

194

Carbides

Halides

i.

Authority

58,93,158, 181,186, 210,212, 215,235, 236,250

	SmBr2	SmCl ₂	SmF ₂	Sml ₂	SmBr3	\$mCl ₃	SmF3	SmI ₃
Molecular Weight		••		••			207.35	
Structure	••	Ortho- rhombic	••	••	••	Hexago na l	Hexagonal, Orthorhombic	Hexagonal
a ₀ , A	••	8.973	••	** **	••	7.378	Hex. 6,956 Ortho, 6,669	4. 415
b _o , A	* •	7.532	••	**	••		Ortho. 7,059	** **
c _o , A	••	4.497	••	••		4, 171	Hex. 7.120 Ortho. 4.405	6.976
Density, g/cm ³	••		••		••	••	Hex. 6.925 Ortho. 6.643	
Heat of Formation, kcal/mole	••	196.5	••	•••	••	245	••	(149)
Entropy of Formation, eu/mole	••	39		••	••	61	••	(7)
Melting Point, C	700	740	(1377)	(527)	664	678	1306	820
Heat of Fusion, kcal/mole	(6)	(8)	(5)	(5)	(8)	(8)	(8)	(9)
Entropy of Fusion, eu/mole	(6)	(6)	(3)	(6)	(8)	(8)	(5)	(8)
Boiling Point, C	1880	2030	(2427)	1580	Decomposes	Decomposes	(2327)	Decomposes
Heat of Vaporization, kcal/mole	(50)	56.5	(78)	(40)	• •	••	(62)	
Entropy of Vaporization, eu/mole	(23)	25.4	(29)	(22)	••	••	(24)	••
Color	••		••			••	White	
Volume of Unit Cell, A ³	••	••	• •				Hex. 298.3 Onho. 207.4	

(Continued)

SAMARIUM COMPOUNDS

Authority

Halides (Continued)

	SmOC1	6 05	
C	011001	SmOF	SmOI
Structure	Tetragonal	Rhombohedral	Tetragonal
Lattice Type			PbFC1
a ₀ , A	3. 982	6.857	4.008
c _o , A	6.721		9.192
β, deg		33,07	** **
Density, g/cm ³	60 m	7,19	-
Heat of Formation, kcal/mole	(238)		
Entropy of Formation, eu/mole	(43)		Alan maa
Refractive Index		1.84	

Thermodynamic Data

Glasner has supplied in ANL-5750 the following equations for calculating thermodynamic quantities. The reactions concerned and the constants for use in these equations are tabulated.

 $\Delta C_p = \Delta a + (\Delta b \times 10^{-3})T + (\Delta c \times 10^{-6})T^2 + \frac{\Delta d \times 10^5}{T^2}$

 $\Delta H - \Delta H_{F296} = (\Delta a)T + \frac{1}{2} (\Delta b \times 10^{-3})T^2 + \frac{1}{3} (\Delta c \times 10^{-6})T^3 - \frac{1/2(\Delta d \times 10^{-6})}{T} + \Delta A$

 $\Delta S = (2.303 \,\Delta a) \log T + (\Delta b \times 10^{-3}) T + \frac{1}{2} (\Delta c \times 10^{-6}) T^2 - \frac{1/2(\Delta d \times 10^{5})}{T^2} - \Delta B$

Δ# - ΔHp298 = - (2.303 Δa)TlogT	$\frac{1}{2} (\Delta b \times 10^{-3}) T^2 - \frac{1}{6} (\Delta c \times 10^{-6});$	$T^{3} = \frac{1/2(\Delta d \times 10^{5})}{T} = T\Delta(B - a) - \Delta A$
---------------------------------	--	---

Reaction	Temper- ature Range, K	-AHT296, hcal/mele	-47 248		A b	Åe		AA,	-48,	
Sm(s) + Fg(g) = SmFg(s)	298-1621	237	-	-	-	-	_			-4(3-a)
	********	431	225	0.7	3,8		0.8	-0.110	44.3	45.0
Sm(2) + Fg(g) + SmFg(a)	1423-1650	••	**	-1.6	7.2	••		-4. 555	35.1	\$3.5
$\delta m(\delta) + \Gamma_2(g) + \delta m \Gamma_2(\delta)$	1 150-2500	••	**	6,2	-9.4			-3.080	17.9	84.1
$\delta m(s) + \frac{3}{2} F_2(g) + \delta m F_3(s)$	494-1623	405	387	61	5.3		1.2	-0.152	66.3	67.4
Sm(1) + 3 F2(g) + SmF3(0)	1623-1.570									•••,•
			**	-1.2	6.7	**	1.2	-4. 597	57. X	55.9
$Sm(S) + \frac{3}{2}T_2(g) + SmT_3(S)$	1670-258.	••	**	9.6	-0.7	* *	1.2	-1.425	117, 3	126.9
Sm(s) + Cl2(g) + SmCl2(s)	296-1013	195.6	107.1	0.8	5.1	••	0.6	-0.257	42.7	43.6
Sm(+) + Clg(g) + SmClg(3)	1013-1623		••	9, 5	-1,7	••	0.6	1.446	88.1	97.7
Sm(3) + Cl2(g) + SmCl2(3)	1623-1708	an 1	••	7.2	-0.3		0.6	-2.999	78.9	46.2
$lm(l) + Cl_2(g) = fimCl_2(g)$	1700-2500	*=	**	-2.8	-0.3	••	0.6	\$5.00	-19.5	-22.2
$Im(a) + \frac{3}{2} Cl_2(g) + SmCl_2(g)$	298-951	248	132	2.5	6.6	••	1.0	-0.694		
Sm(a) + 3 Cl2(g) + SmiCl3(J)								-0.974	69.4	71.9
		••		11.7	=3.8		1.0	3. 260	114.2	125.9
$\operatorname{Sm}(I) + \frac{3}{2}\operatorname{Cl}_2(g) + \operatorname{Sm}\operatorname{Cl}_2(I)$		••	**	9.4	-9.4		1.0	-1, 185	105.0	119.4
$\operatorname{Bm}(d) + \frac{3}{2}\operatorname{Cl}_2(g) + \operatorname{Bm}\operatorname{Cl}_2(g)$	1830-2500	•-	••	-2.1	-0.4	-	1.0	66.86	-7.1	-9.2

Hydrides			Authori
Structure	SmH2 Fluorite	SmH3 Hexagonal	165, 187
a ₀ , A	5. 374	3. 782	
c _o , A		6. 779	
Density, g/cm ³	6. 52		
Nitrides			
			153, 223
Molecular Weight	SmN		
eight	164.44		

Cubic
NaC1
5.046
8.495
1125

Oxides

172,176, 177,186, 247,271

	SmO	a-Sm2O3	β-Sm2O3
Molecular Weight		348.70	348.70
Structure	Cubic	Monoclinic	Cubic
Lattice Type	NaC1		, •••
a _o , A	4. 988		10, 90
b _o , A			
c _o , A	-		
β, deg			

(Continued)

1

197

Authority

Authority

Oxides (Continued)

SmO	a-Sm2O3	β -Sm2O3
	7.43	7.62
159		
17.1		
		2350
	9.9 (100-1000 C)	8.6 (100-950 C)
	1.6	
	159	7.43 159 17.1 9.9 (100-1000 C)

Thermodynamic Data

٩,

212

The equations given on page 196 may be used in calculating thermodynamic quantities for the following reactions:

Reaction	Temper- sture Range, K	- AH y 298, kcal/mole	-∆F298, kcsl/mole	۵.	Ab	Δc	64	۵ ۸ , kcal/mole	- ΔB , eu	- <u>6(</u> B-a)
$25m(a) + \frac{3}{2}O_2(g) = 5m_2O_3(a)$	298-1623	430	410	0.1	-0.2		2.8	0.775	65.9	66.0
$2Sm(l) + \frac{3}{2}O_2(g) = Sm_2O_3(g)$				- 4.5	6.6		2.8	-8.115	47.5	43.0
$2Sm(1) + \frac{3}{2}O_2(g) = Sm_2O_3(1)$				5.6	-0,4		2.8	6. 349	100.6	106.2

Oxides (Continued)

Heat Content and Entropy Increments for Samarium Oxide (Smooth Values)

	Monoclinic	Form (Sm2O3)	Cubic Form (Sm ₂ O ₃)			
<u>T. K</u>	HT-H298, 15, csl/mole	ST -S298, 15, cal/(K)(mole)	HT-H298.15, cal/mole	ST-S298.15. cal/(K)(mole)		
400	2, 930	8.44	2, 950	8.49		
500	5, 980	15.24	6,030	15,36		
600	9, 160	21,03	9,250	21, 23		
700	12, 450	26.10	12,570	28.34		
800	15, 820	30,60	15, 970	30, 88		
900	19, 250	34,64	19, 430	34,96		
1000	22, 730	38.31	22, 930	38.65		
1100	26, 240	41.65	26, 450	42,00		
1150	••		28, 210	43.57		
1195	29,600	44.58	29,850	44.79		
1200			30,030	44.94		
1300		••	33, 720	47.90		
1400	••	••	37,410	50.63		
1500			41,100	53.18		
1600	••	**	44,790	\$5.56		
1700		••	48,480	57.19		
1800			52,170	59.90		
1900			55,860	61.90		
2000	**		59, 550	63.79		

ć

Phosphides

	SmP
Structure	Fcc
Lattice Type	NaCl
a ₀ , A	5.760
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	1112

Authority

SAMARIUM COMPOUNDS

Selenides

Authority 168,189,

168,189, 191,192, 194,225, 226,227, 228

		SmSe	SmSe2	Sm2Se3	Sm3Se4	Sm2O2Se
Structu:	re	Fcc	Tetragonal	Bcc	Bcc	Нср
Lattice	Туре	NaC1		Th ₃ P ₄	Th ₃ P ₄	
a ₀ , A		6.159	8.16	8.76	8.84	3.93
c ₀ , A			8.36			6.93
Density	$, g/cm^3$	6.42	6.94	6.93	7.33	7.40
Melting	Point, C	(2100)		(1540)		40 ga
Resistiv microi	/ity, hm-cm	1.38 x 109		1.7 x 103	-	
	c Suscep- , 10-6 nole	4440	1200	1049		
	e Magnetic nt, Bohr tons	3.3	1.6	1.6		
Color				Dark gray		Gray
cides						153, 160
						199, 100

Silicides

	a-SmSi2	β-SmSi2
Molecular Weight	206. 61	206.61
Structure	Orthorhombic	Tetragonal
Lattice Type	a-YSi2	a-ThSi ₂
a ₀ , A	4.105	4.041
b _o , A	4.035	
c _o , A	13.46	13.33
Density, g/cm ³	6.13	6.26
Transition Temperature, C	$\alpha \rightarrow \beta$ at 380	

Sulfides

Authority

153,169, 240,248

	SmS	SmiS2	γSm2S3	Sm 354	Sm2O2S
Molecular Weight	182.50	214.55	397.06	579.55	364.93
Structure	Fcc	Cu c	Cubic	Cubic	Hexagonal
Lattice Type	NaC1	Unknown	Th3P4	Th3P4	
a ₀ , A	5.967	7.87	8.448	8.556	3.893
c _o , A		÷ =	-		6. 717
Density, g/cm^3	5.67	5.66	5.87	6.14	6.90
Heat of Formation, kcal/mole					
Melting Point, C	1500	1730	1780	1800	1980
Resistivity, microhm-cm	8.5 x 10^4	7.1 x 10^{11}	8.2 x 1013	5.9 x 106	
Thermal Conduc- tivity, 10 ⁻³ cal/ (cm)(sec)(C)	7.0				
Magnetic Suscep- tibility, 10-6 emu/mole	5070	1238	1020	2350	1020
Effective Magnetic Moment, Bohr magnetons	4.34				
Color	Black	Brown	Yellow	Black	Gray brown

SAMARIUM COMPOUNDS

Authority

169,202, 205,228

	SmTe	Sm2Te3	Sm2O2Te
Structure	Fcc	Bcc	Hexagonal
Lattice Type	NaCl	Th ₃ P ₄	
a ₀ , A	6.58	9.480	4.00
c _o , A		au an	12.61
Density, g/cm ³		7.11	7. 58
Melting Point, C	1920	(1475)	
Resistivity, microhm-cm	1.64 x 109		
Magnetic Suscep- tibility, 10-6 emu/mole	4292		
Effective Magnetic Moment, Bohr magnetons	4.33		
Color			Dark green
Aiscellaneous			
	Structure	ao, A co	, A
5 O			

Hexagonal 5.336 8.879

202

Tellurides

SmOs₂

EUROPIUM

Symbol Eu

Atomic Number 63

Atomic Weight 152.0

Authority

PHYSI	CAL PROPERTIES		
	Abundance	0.14-1.1 ppm (approx. 0.5)	51
	Density	5.245 g/cm ³	67
	Melting Point	826 C	66
	Heat of Fusion	2.0 kcal/mole	61
	Boiling Point	1439 C	57
	Heat of Vaporization (25 C)	42 kcal/mole	57
	Vapor Pressure (733-903 K)	$Log P_{mm Hg} = 8.160 - \frac{8982}{T}$	60
	Specific Heat (25 C)	6.4 cal/(mole)(C)	76
	Heat of Combustion (25 C)	217.0 kcal/g-atom	156
	Coefficient of Linear Thermal Expansion (-200 - 780 C)	$32 \times 10^{-6}/C$	61
	Thermal Conductivity		
	Heat of Sublimation (25 C)	43.11 kcal/mole	130
	Cohesion Energy	43.4 kcal/mole	130
	Work Function		
	Debye Temperature	70-120 K	112
	Expansion on Melting	4.8 per cent	108
	Surface Tension		

EUROPIUM

TAL PROPERTIES		Authority
Structure	Bcc	
Lattice Constants	$a_0 = 4.5820 A$	61
Density	5. 245 g/cm ³	61
Metallic Radius	2. 042 A	67
Atomic Volume	28.91 $cm^3/mole$	67
Transition Temperature	None	66
Heat of Transition	None	66
Ionic Radius	0.950 A	66
(Trivalent Ion)	0. 950 A	55
Closest Approach of Atoms	3.960 A	56

Allotropic Modifications

CHEMICAL PROPERTIES

Stable Oxidation State	+2, +3	01
Electrode Potential		81
	[Eu = Eu ⁺³ + 3e ⁻] + 2.2 volts (standard hydrogen electrode)	81
Ionization Potential	1st = 5.64, $2nd = 11.4$ volts	82
Metallographic Polishing and Etching		UL
Corrosion Rates	Extremely rapid at all temperatures in air and acidic or basic media.	109
Corrosion Data		

ELECTRICAL PROPERTIES

Destation tension		•
Resistivity (25 C)	81.3 microhm-cm	61
Temperature Coefficient	4.00	01
of Resistivity (25 C)	$4.80 \times 10^{-3}/C$	61

Authority

96

1

Resistance Versus Pressure (Permission of the American Physical Society)

MAGNETIC PROPERTIES

the second se		
Susceptibility (25 C)	$33,100 \times 10^{-6} \text{ emu/mole}$	61
Effective Magnetic Moment	Theoretical 3.45 Bohr magnetons Measured 7.12 Bohr magnetons	61
Curie Temperature	108 K	61
Néel Temperature	91 K	112
MECHANICAL PROPERTIES		116
Youngs' Modulus	1	
Shear Modulus		
Poisson's Ratio		
Compressibility		
Hardness (DPH)	17 (not annealed)	57
Tensile Strength		51
Yield Strength		
Elongation		
Ultimate Compressive Strength		

EUROPIUM

Impact Strength

Workability

General Fabrication (See references)

NUCLEAR PROPERTIES

Isotopes

Whole- Number Mass	Relative Abundance, per cent	Half Life	Decay Mode
147		53 days	β+
149		24 days	β +
150		17 hr	β +
151	47.77	Stable	
152		5 yr	β -, e -
153	52.23	Stable	
154		5.4 yr	β, ε, γ
155		2 yr	β-, γ
156		154 days	β ⁻ , γ
157		15.4 hr	β¯, γ
158		60 min	β-
ron	4600 ± 2	200 barns/a	tom

Thermal Neutron Cross Section

or $18 \text{ cm}^2/\text{g}$

SAFETY

Details unknown.

206

110, 111

70, 113

73

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	76,
Entropy	$S_{298} = 17.0$	$S_{1100} = 26.18 \text{ eu}$	
Heat Capacity	$C_{p_{298}} = 6.40$	$C_{p1100} = 8.99 \text{ cal/(mole)(C)}$	

Heat Content and Entropy of Solid and Liquid Europium (Base: crystals at 298.15 K)

<u>Т, к</u>	H _T -H _{298.15} cal/mole	^S T ^{-S} 298. 15, cal/(deg) (mole)	<u>Т. К</u>	HT-H298.15, cal/mole	^S T ^{-S} 298, 15 [,] cal/(deg) (mole)
400	660	1.91	1100(1)	8, 270	11.45
500	1,330	3.40	1200	9,070	12.15
600	2,020	4.66	1300	9,870	12,79
700	2,730	5.76	1400	10,670	13, 38
800	3,460	6.73	1500	11, 470	13,93
900	4,210	7.62	1600	12, 270	14.45
1000	4,980	8.43	1700	13,070	14.94
1100(s)	5,770	9.18			

For solid europium:

 $H_{T} - H_{298, 15} = 5.81T + 0.99 \times 10^{-3}T^{2} - 1,820$ (0.2 per cent; 298-1100 K) Cp = 5.81 + 1.98 × 10^{-3}T; H_{1100}(fusion) = 2,500. For liquid europium: H_T -H_{298, 15} = 8.00T - 530 (0.1 per cent; 1100-1700 K); C_p = 8,00.

Specific Heat

(Permission of Gordon and Breach, Science Publishers, Inc.)

Authority

76, 77

EUROPIUM COMPOUNDS

		Authority
Antimonides		
Arsenides		
Beryllides	EuBe ₁₃	179
a ₀ , A	10.288	
Bismuthides		
Borides	EuB ₆	153, 171, 249
Molecular Weight	216.92	
Structure	Cubic	
a ₀ , A	4. 178	
Density, g/cm ³	4. 938	
Melting Point, C	2200	
Resistivity, microhm-cm	84. 7	
Temperature Coefficient of Resistivity, 10 ⁻⁴ /C	9.0	
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	6.86	
Thermal Conductivity cal/(cm)(sec)(C)	0.055	
Work Function, ev	4.9	
Color	Blue black	
Emissivity ($\lambda = 0.655 \mu$)	0.83	
Effective Metallic Radius, A	2. 21	

Carbides

Germanides	EuGe ₂	
Lattice Type	AlB ₂ defect	183
a ₀ , A	4.09	
с _о , А	4.99	
Volume of Unit Cell, A^3	72.79	

Halides

55, 58, 93, 158, 210, 235, 236, 250, 277

	EuBr ₂	EuCl ₂						-,,
Structure			EuF2	Eul ₂	EuBrg	EuCl3	EuF3	Eulg
	••	Orthombic	Cubic	••	Orthorhombic	Hexagonal	Hex. Ortho.	~
* ₀ , A	~ ~	8,914	5.796		12,712	7, 369	Hex, 6, 916 Ortho 6, 622	
b _o , A		7,499	**	**	4,019	4. 133	7.019	
с _о , А	.	4, 493		**	9,128		Hex. 7.091	••
Density, cm ³	••				••		Ortho 4, 396 Hex, 7, 088	
Melting Point, C	(677)	(727)	(1377)	(527)	(702)	623	Ortho, 3, 793	
Heat of Fusion, kcal/mole	(6)	(6)	(5)	(5)	(8)	(7)	(5)	(877) (9)
Entropy of Fusion, eu/mole	(6)	(6)	(3)	(6)	(8)	(8)	(5)	(8)
boiling Point, C	1880	2030	(2427)	1580	Decomposes	Decomposes	2277	Decama
leat of Vaporization, kcal/mole	(50)	55, 3	(60)	(40)			(60)	Decomposes
ntropy of Vaporization, eu/mole	(23)	22, 5	(29)	(22)			(24)	
olor				••			brb / .	
olume of Unit Cell, λ^3		••					White lex. 293, 7	••

Hex. 293,7 --

Ortho, 204,3

(Continued)

209

Authority

EUROPIUM COMPOUNDS

Authority

211, 279 EuOC1 EuOF Structure Tetragonal Rhombohedral a₀, A 3.965 6.827 c₀, A 6.695 β , deg -----33.05 Volume of Unit Cell, A^3 105.25 Hydrides EuD₂ 251 Structure Orthorhombic a., A 6.21 b_o, A 3.77 c., A 7.16 Nitrides EuN 153, 169 Structure Cubic Lattice Type NaC1 ao, A 5.014 Density, g/cm³ 8.767 Color Black

210

Halides (Continued)

١

Oxides

Authority	
W CALLY	r -

172, 177, 252, 253, 271

	EuO	a-Eu2O	β-Eu ₂ O ₃	Eu304	Ortho I
Molecular Weight		382, 52	382. 52		(Eu ₁₆ O ₂₁)
Structure	Fcc	Bcc	Monoclinic	Ortherhombic	Orthorhombic
a ₀ , A	5, 142	10,869	14.082	10.085	9,75
b _o , A	* -		3. 640	12.054	49.5
с _о , А	••		8. 788	3.502	5.63
β , deg		••	100,0	••	
Density, g/cm ³	8,16	7.28	7, 99	8.07	6.74
Heat of Formation, kcal/mole	145,2	194, 8	196, 5	••	
Entropy of Formation, eu/mole		••	(36)		••
Melting Point, C	••	••	2050	••	
Coefficient of Thermal Expansion (25-1000 C), 10 ⁻⁶ /C		7.0	10.3		
Effective Magnetic Moment, Bohr magnetons		3.4			
Color	Dark brown	White	White	Black	Orange
Refractive Index	Opaque	1.92	2.09 at 20 C	2, 12	1.91 at 25 C

(Continued)
EUROPIUM COMPOUNDS

Authority

Oxides (Continued)

Heat Content and Entropy Increments for Europium Oxide (Eu₂O₃) (Smooth Values)

	Monoclinic Form		Cubic Form	
<u>т, к</u>	HT-H298.15, cal/mole	S _T -S _{298.15} , cal/(K)(mole)	HT-H298.15, cal/mole	ST-S298. 15, cal/(K)(mole)
400	3,070	8.85	3,150	9.07
500	6,210	15.85	6,370	16.25
600	9,460	21.77	9,690	22.30
700	12,800	26.92	13,100	27.56
800	16,210	31.47	16,580	32.21
895	19,510(a)	35. 37(a)		
895	19,640(B)	35.51(B)		
900	19,810	35.70	20,110	36.36
1000	23,300	39.38	23, 590	40.13
1100	26,840	42,75	27,320	43.59
1200	30,430	45.88	30,990	46.79
1300	34,070	48.79	34,690	49.75
1350			36,550	51.15
1400	37,750	51.52		
1500	41,470	54.08		
1600	45,220	56.50		
1700	48,990	58.79		
1800	52,780	60.96		
1900	56,590	63.02		
2000	60,410	64. 98		

Phosphides

4

Authority

Selenides	EuSe	189, 194, 254
Structure	Fcc	
Lattice Type	NaC1	
a ₀ , A	6. 178	
Density, g/cm^3	6. 42	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	2286	
Effective Magnetic Moment, Bohr magnetons	, 7.65	
Color	Dark brown	
Curie Temperature, K	6	
Silicides	β-EuSi ₂	153, 160
Molecular Weight	208. 18	,
Structure	Tetragonal	
Lattice Type	a-ThSiz	
a ₀ , A	4. 29	
с _о , А	13.66	
Density, g/cm ³	5. 50	
Melting Point, C	1500	
Transition Tempera- ture, C	$\alpha \rightarrow \beta$ at - 150	

EUROPIUM COMPOUNDS

Authority

254, 255

	EuS	Eu2S3	Eu2S3.81	Eu ₃ S ₄	Eu2O2S	
Structure	Fcc		Tetragonal	Cubic	Hexagonal	
Lattice Type	NaCl			Th3P4		
a _o , A	5.970	8.415	7.86	8.537	3.87	
с _о , А			8.03		6.68	
Density, g/cm ³	5.745		5.70	6.27	7.04	
Magnetic Susceptibility, 10 ⁻⁶ (emu/mole)	22600		5800	11500		
Color	Black			Black	Pink	
Curie Tempera- ture, K	16					
rides	Eul	<u>l'e</u>	Eu2O2Te	-		169, 202, 254, 280
Structure	Fcc		Hexagonal			
Lattice Type	NaC	21				
a _o , A	6.5	85	3. 98			2.
с _о , А	-	-	12.57			1
Density, g/cm ³	-	-	7.74			L.
Color	Bla	ck	Maroon			
Néel Temperature, K	6					1
	Lattice Type a _o , A c _o , A Density, g/cm ³ Magnetic Susceptibility, 10 ⁻⁶ (emu/mole) Color Curie Tempera- ture, K rides Structure Lattice Type a _o , A c _o , A Density, g/cm ³ Color	StructureFccLattice TypeNaCl a_0, A 5.970 c_0, A Density, g/cm ³ 5.745Magnetic Susceptibility, 10^{-6} (emu/mole)22600ColorBlackCurie Tempera- ture, K16StructureFccLattice TypeNaCl a_0, A 6.5 c_0, A Density, g/cm ³	StructureFccLattice TypeNaCl a_0 , A5.970 a_0 , A5.970 a_0 , A c_0 , ADensity, g/cm ³ 5.745Magnetic Susceptibility, 10^{-6} (emu/mole)22600ColorBlackColorBlackridesEuTeStructureFccLattice TypeNaCl a_0 , A6.585 c_0 , ADensity, g/cm ³ ColorBlack	StructureFccTetragonalLattice TypeNaCl a_0 , A5. 9708. 4157. 86 c_0 , A8. 03Density, g/cm ³ 5. 7455. 70Magnetic Susceptibility, 10 ⁻⁶ (emu/mole)226005800ColorBlackCurie Tempera- ture, K16StructureFccHexagonalLattice TypeNaCl a_0 , A6. 5853. 98 c_0 , A12. 57Density, g/cm ³ 7. 74ColorBlackMaroon	Lattice Type Fcc Tetragonal Cubic a_0 , A 5. 970 8. 415 7. 86 8. 537 c_0 , A 8. 03 Density, g/cm ³ 5. 745 5. 70 6. 27 Magnetic Susceptibility, 10 ⁻⁶ (emu/mole) 22600 5800 11500 Color Black Black Structure Fcc Hexagonal Latk Black Structure Fcc Hexagonal <	I_{2}

Sulfides

GADOLINIUM

Symbol	Gd		
--------	----	--	--

Atomic Number 64

PHYSICAL PROPERTIES

Abundance	4.5-6.4 ppm (approx. 6.4)	51
Density	7.886 g/cm ³	67
Melting Point	1312 C	66
Heat of Fusion	2. l kcal/mole	61
Boiling Point	3000 C	57
Heat of Vaporization	72 kcal/mole	57

rization (25 C)

Vapor Pressure (1620-2097 K)

Specific Heat (25 C)

Heat of Combustion

Coefficient of Linear Thermal Expansion

8.80 cal/mole C 76

216.97 kcal/g-atom 134

8.6 x
$$10^{-6}$$
/C (25-950 C) 61

. .

Thermal Conductivity (28 C)

0.021 cal/(cm²)(sec)(C/cm)

7.1

115

53

Heat of Sublimation (25 C) 81.22 kcal/mole

Cohesive Energy Work Function	81.9 kcal/mol	e	Authority
Debye Temperature Expansion on Melting Surface Tension CRYSTAL PROPERTIES	176 K		97
Structure Lattice Constants Density Metallic Radius Atomic Volume Transition Temperature Heat of Transition Ionic Radius Closest Approach of Atoms Allotropic Modifications	<u>HCP</u> $a_0 = 3.6360$ $c_0 = 5.7826$ 7.886 1.802 19.88 1262 C 1.03 kcal/mole 3.554 A	$\frac{BCC}{a_0 = 4.06 A}$ A g/cm ³ A 20.2 cm ³ /mole	61 61 67 66 66 61 56
CHEMICAL PROPERTIES Stable Oxidation State	+3		
Electrode Potential Ionization Potential	$[Gd = Gd^{+3} + 3\bar{e}] +$	(standard hydrogen 2.2 volts	81 1.electrode) 81
Metallographic Polishing and Etching	1 st = 6.7 volts	۰ ۰	82 62
Gadolinium may be cut to that for any metal, tinue to carry out the tions in kerosene T	, mounted and prepar As a matter of prac preliminary grinding he final policy	ed in a manner similar tice the authors con- and polishing open	

tions in kerosene. The final polish may be done using water and the structure is revealed after etching with 5% nital.

			Authority
Corrosion Rates (In Air)	38 mil/	ear at 200 C year at 400 C il/year at 600 C	68
Corrosion Data	Corrosive attacl	k on crucible materials:	91
	Material	Onset of Attack	
	MgO Ta	None < 1300 C None < 1300 C	
LECTRICAL PROPERTIES			
Resistivity (25 C)	140.5 m	nicrohm-cm	61
Temperature Coeffi of Resistivity	cient 1.76 x 1	0 ⁻³ /C	61
Resistance Versus Temperature			118
Resistance Versus (Permission of the Americ Physical Society)		23 24 23 24 23 24 23 24 20 20 20 20 20 20 20 20 20 20 20 20 20	y ▲ 96

PRESSURE (MANES)

۰,

i R 1

Properties

· 217

GADOLINIUM

Authority

87,117

Resistivity Versus Temperature

2. ..

(Permission of the American Physical Society)

MAGNETIC PROPERTIES

Susceptibility (25 C)	356,00	0 x 10 ⁻⁶ emu/	mole	61
Effective Magnetic Moment	Theore Measur	tical 7.94 Bol ed 7.95 Bol	ar magnetons ar magnetons	61
Curie Temperature	290 K			61
Néel Temperature				
MECHANICAL PROPERTIES	۰.			ı
Young's Modulus	5.62 x	1011 dynes/cn	2	57
Shear Modulus	2.23 x	10 ¹¹ dynes/cm	2	57
Poisson's Ratio	0. 259 -			61
Compressibility	2.52 x	10^{-6} cm ² /kg		57
Hardness (DPH)	57			57
Tensile Strength	70 F 27.6	400 F 18.0	$\frac{800 \text{ F}}{14.1}$ 10 ³ psi	88
Yield Strength	25.1	15.6	13.0 10 ³ psi	88

88
71
88
70,113

NUCLEAR PROPERTIES

Isotopes

58,110, 116

Whole Number	Relative Abundance,		Decay
Mass	percent	Half Life	Mode
152	0.20	Stable	
153		72 days	e ⁻ ,γ
154	2.15	Stable	
155	14.73	Scaple	
156	20.47	Stable	
157	15.68	Stable	
158	24.87	Stable	~ ~
160	21.90	Stable	

Thermal	Neutron
Cross :	Section

46,000 ± 2000 barns/atom or 1.77 cm²/g

SAFETY

Gadolinium

Toxicity - Unknown.

Gadolinium Compounds

Details unknown; the relative fire hazards, explosion hazards and disaster control depend on the nature of the anion present.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point
Entropy	$S_{298} = 16.2$	$S_{1600} = 29.23$ eu
Heat Capacity	$Cp_{298} = 8.80$	Cp ₁₆₀₀ = 8.90 cal/(mole)(C)

Authority

76,77

73

GADOLINIUM

Authority

77

Heat Content and Entropy of Solid and Liquid Gadolinium

<u>т.к</u>	H _T -H _{298,15} cal/mole	ST-S298.15 cal/(deg)(mole)	<u>T. K</u>	H _T -H298.15 cal/mole	S _T -S _{298,15} cal/(deg)(mole)
400	780	2,29	1500	9,480	12.46
500	1,480	3,83	1600(:)	10,370	13.03
600	2,200	5,15	1600(1)	14,070	15.34
700	2,940	6.30	1800	15,670	16.29
800	3,700	7,31	2000	17.270	17,13
900	4,480	8,22	2200	18,870	17,89
1000	5,270	9,06	2400	20,470	18,59
1100	6,080	9,83	2600	22,070	19,23
1200	6, 900	10,54	2800	23,670	19.82
1300	7, 140	11,22	3000	25,270	20.37
1400	8,600	11,85		• - • -	

For solid gadolinium: $H_T - H_{298, 15} = 6.60 T + 0.72 \times 10^{-3} T^2 - 2.032$ (1.0 percent: 298° - 1.600° K): $C_p = 6.60 + 1.44 \times 10^{-3} T$: ΔH_{1600} (fusion) = 3,700.

For liquid gadolinium: $H_T = H_{298, 15} = 8,00 \text{ T} + 1,270$ (0, 1 percent: 1,600° - 3,000° K): $C_p = 8,00$,

Specific Heat

⁰ to 350 K

(Permission of the American Physical Society)

53,119

GADOLINIUM COMPOUNDS

Antimonides			169, 256
	GdSb	Gd4Sb3	
Structure	Cubic	Bcc	
Lattice Type	NaCl	Th ₃ P ₄	
a ₀ , A	6. 217	9. 224	
Density, g/cm ³			
Resistivity, microhm-cm		220	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	25,575		
Effective Magnetic Moment, Bohr magnetons	7.87		
Arsenides			168,169
	GdAs		
Structure	Cubic		
Lattice Type	NaC1		
a ₀ , A	5.862		
Melting Point, C	>2270		
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	27, 548	· ,	
Effective Magnetic Moment, Bohr magnetons	8.18	4	
Beryllides			179
	GdBe ₁₃		
a ₀ , A	10.27		

B	i s	m	ut	hi	de	8	
---	-----	---	----	----	----	---	--

Authority

169,256

	GdBi	Gd ₄ Bi ₃
Structure	Cubic	
Lattice Type	NaC1	
^a o, A	6.316	9.383
Density, g/cm ³		10.09
Resistivity, microhm-cm		190
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	24,038	
Effective Magnetic Moment, Bohr magnetons	8. 20	
Curie Temperature, K		340

...

_ _ _

Borides

 $s_{\mathbf{k}}^{\dagger}$

153,155, 171

	GdB ₂	GdB3	GdB4	GdB ₆
Molecular Weight		189.36	200. 18	221.82
Structure	Hexagonal	Tetragonal	Tetragonal	Cubic
a ₀ , A	3.31	3.79	7.114	4.112
c _o , A	3.94	3.63	4.047	4.112
Density, g/cm ³		6.03	6.446	5.30
Melting Point, C				>2100
Resistivity, microhm-cm				94.0
Temperature Coefficient				1.40
of Resistivity 10 ⁻³ /C	,	- •		

ік. ((Continued)

Borides (Continued)

Authority

	GdB2	GdB3	GdB ₄	GdB ₆
Coefficient of Thermal Expansion, 10 ⁻⁶ /C				8.68
Thermal Conductivity, cal/(cm)(sec) (C)				0.049
Magnetic Susceptibility, 10 ⁻⁶ emu/ mole				21000
Effective Magnetic Moment, Bohr magnetons				7.68
Work Function, ev		'		2.05
Microhard- ness, kg/mm ²				2340
Emissivity $(\lambda = 0.655 \mu)$				0.65
Color			Gray brown	Blue
Effective Metallic Radius, A				2.18
Transverse Rupture Strength, 10 ³ psi				30

GADOLINIUM COMPOUNDS

Carbides

Auth	ority
1	53

1	GdC2	Gd ₂ C ₃	Gd ₃ C
Molecular Weight	180.9	349.8	482.7
Structure	Body- centered tetragonal	Bcc	Cubic
Lattice Type	CaC ₂	Pv2C3	Fe ₄ N
a _o , A c _o , A	3.718 6.275	8. 3407	5.126
Density, g/cm ³	6.939	8.024	8. 701
Melting Point, C	>2200		
Effective Magnetic Moment, Bohr magnetons	7.92		
Curie Temperature, K	41.3		

Germanides

183, 262

	GdGe	GdGe ₂
Structure	Orthorhombic	
Lattice Type	CrE	a-ThSiz
a _o , A b _o , A c _o , A	4. 175 3. 960	4.12
c ₀ , A	10.61	13.72
Volume of Unit Cell, A ³	175.4	232. 9

Halides

55, 58, 93, 108, 157, 158, 159,

1

Authority

	GdBr ₃	BdCl ₃	Gdl`3	GdI3	GdOC1	GdOF	108,157, 158,159,	
Structure	Hexag- onal	Hexag- onal	Ortho- rlombic	-	Tetrag- onal	Rhombo- hedral	182,186, 210,235, 236	
b _o , A	4.172	7.363 4.105	6.570 6.894 4.393	4. 383 6. 968	3.950 6.672	6.80J 33.05		
Density, g/cm ³			7.047			7.51		
Heat of Formation, kcal/mole		240.09		(142)	234.8			
Entropy of Formation, eu/mole	 	(61)		(6)	(43)			
Melting Point, C		602	1228	- 926				
Heat of Fusion kcal/mole	, 8.7	9.6	(8)	(10)				
Entropy of Fusion, eu/mole	8.2	11.0	(5)	(8)		 ,		
Boiling Point, C	1490	1580	(2277)	1340				
Heat of Vaporization kcal/mole	(44) ,	(45)	(60)	(40)			₽°-4	
Entropy of Vaporization eu/mole	(25) ,	(24)	(24)	(25)				
Heat Capacity, cal/(mole) (C)	32.1	29. 1						
Color			White					
Volume of Uni Cell, A ³	t		201.6		104.10	-		

GADOLINIUM COMPOUNDS

Hydrides

Authority

186,187, 251

153, 223

	GdH2	GdH3
Structure	Fluorite	Hexagonal
a _o , A c _o , A	5.303	3. 73 6. 71
Density, g/cm ³	7.08	
Heat of Formation, kcal/mole H ₂	46.9 ·	
Entropy of Formation, eu/mole H ₂	40	

Nitrides

	GdN
Molecular Weight	171.27
Structure	Cubic
Lattice Type	NaCl
a _o , A	4.999
Density, g/cm ³	9.105
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	35,600
Effective Magnetic Moment, Bohr magnetons	8. 2
Curie Temperature, K	60

.

Oxides

	a-Gd2O3	β-Gd ₂ O ₃	156, 172, 173, 175,
Molecular Weight	362.50	362, 50	176, 177, 247
Structure	Cubic		
a _o , A		Monoclinic	
0,	10,79		

(Continued)

Authority

Oxides (Continued)

	a-Gd ₂ O ₃	β-Gd ₂ O ₃	
Density, g/cm ³	7.41		
Melting Point, C		2350	
Heat of Formation, kcal/mole	216.97		
Entropy of Formation, eu/mole	(34.4)		
Heat Capacity, cal/(mole)(C)	25.3	25.5	
Coefficient of Thermal Expansion (100-1000 C), 10 ⁻⁶ /C	8.2	10.5	
Effective Magnetic Moment, Bohr magnetons	7.9		
Color	White		
Transition Temperature, C		$\alpha \rightarrow \beta$ at 1280	

Heat Content and Entropy Increments for Gd₂O₃ (Smooth Values)

	Monoc	linic Form	Cubi	Cubic Form		
<u>T, K</u>	HT"H298, 15" cal/mole	ST-S298.15 cal/(deg)(mole)	HT-H298.15. cal/mole	S _T =S298, 15, cal/(ceg)(mole)		
400	2,680	7.72	2, 700	7.77		
500	5, 440	13,88	5, 490	13,99		
600	8,290	19.07	8, 380	19,26		
700	11,200	23, 55	11, 340	23,82		
800	14, 150	27.49	14, 360	27.85		
900	17, 140	31,01	17, 430	31,47		
1000	20, 170	34,21	20, 540	34,75		
1100	23, 240	57.13	23, 690	37.75		
1200	26, 350	39.84	26, 870	40, 52		
1300	29, 500	42, 50	, 30, 080	43,09		
1400	32, 690	44.72	33, 310	45.48		
1500	35, 920	46,95	36, 550	47.71		
1550			38, 170	48.78		
1600	39, 190	49,06				
1700	42, 500	51,07				
1800	45, 850	52,98				
1900	49,230	54, 81				
2000	52, 640	56,56				

175

GADOLINIUM COMPOUNDS

Authority

169

Phosphides

	GdP
Structure	Fcc
Lattice Type	NaCl
a ₀ , A	5.723
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	28,450
Effective Magnetic Moment, Bohr magnetons	7.95

Selenides

1

169, 189, 192, 227, 228, 260

GdSe	GdSe2	Gd ₂ Se ₃	Gd ₃ Se ₄	Gd ₂ O ₂ Se
Cubic	Ortho- rhombic	Bcc	Bcc	Нср
NaCl	ThSe2	Th3P4	Th ₃ P ₄	
5.758	7.27 4.03	8.72	8.718	3.90
	8.30			6, 87
8.2		7.36		7.80
1865	Decom- poses at >300 C	1750	(1500)	
72		1.3 x 10 ³	³ 1.1 x 10 ³	
22,090		21,994		
8. 20				
	Cubic NaCl 5.758 8.2 1865 72 22,090	Cubic Ortho-rhombic NaCl ThSe2 5.758 7.27 4.03 8.30 8.2 1865 Decom-poses at >300 C 72 22,090	$$ $$ $$ $$ CubicOrtho- rhombicBcc rhombicNaClThSe2Th3P45.7587.27 4.038.72 4.03 8.27.361865Decom- poses at >300 C1750 poses at >300 C721.3 x 10^2 22,09021,994	2 -2203 -3043024 CubicOrtho- rhombicBccBccNaClThSe2Th3P4Th ₃ P45.7587.278.728.7184.038.308.27.361865Decom- poses at $> 300 C$ 1750(1500)

(Continued)

 $\mathbf{u}|_{L}^{2}$

Authority

Selenides (Continued)

	G	dSe	GdSe2	Gd ₂ Se ₃	Gd3Se4	Gd ₂ O ₂ Se	
	Color .					Beige	
	Volume of 1 Unit Cell, A ³	90.0		664. 2			
Sili	icides						152, 153,
			a-GdSi2		β-GdSi ₂	Gd ₃ Si ₅	160, 261
	Molecular We	ight	213.08		213.08		
	Structure		Orthorhom	mbic	Tetrago	nal Hexagonal	
	Lattice Type		a-YSi2		a-ThSiz		
	a _o , A b A		4.09		4.10	3.877	
	b _o , A c _o , A		4.01 13.44		13.61	4.172	
	Density, g/cn	n ³	6.43		6.19	- 10	
	Melting Point,	, C	1540		2100		•
	Resistivity, microhm-cm	ı	263				
	Transition Tex perature, C	m-		a -	- 🔒 at 40	0	
	Transverse R Strength, 10	upture ³ psi	6.1				
Sulf	ides						153, 169
			GdS	GdS2	r	-Gd ₂ S ₃ Gd ₂ O ₂ S	
	Molecular Wei	ght	189.33	221, 39	-	10 72 379 50	

Molecular Weight	189.33	221.39	410.72	378.59
Structure	Cubic	Tetragonal	Cubic	Hexagonal
a _o , A c _o , A	5. 574	7.85 7.96	8.387	3.851 6.667

(Continued)

GADOLINIUM COMPOUNDS

Sulfides (Continued)

₹

-

	GdS	GdS2	γ -Gd ₂ S ₃	Gd ₂ O ₂ S
Density, g/cm ³	7.26	5.98	6.15	7.34
Melting Point, C			1885	
Magnetic Suscepti- bility, 10 ⁻⁶ emu/mole	30,300	21,510	27,800	
Effective Magnetic Moment, Bohr magnetons	8.01			

Tellurides

lurides							168, 169, 202, 228,
	GdTe	GdTe2	GdTe4	Gd2Te3	Gd ₃ Te ₄	Gd ₂ O ₂ Te	229, 232
Structure	Fcc	Tetrag- onal	Rhombo hedral			Hexagonal	
Lattice Type	NaCl						
a _o , A c _o , A a, deg	6.139 	9.10 9.30	13.0 25.5			3.96 12.54	
Density, g/cm ³		6.8	25.5			8.0	
Melting Point, C	1870			1505	1410		
Resistivity, microhm-cm	700	5.5 x 10 ⁴		1.5×10^4	460		
Magnetic Sus- ceptibility, 10 ⁻⁶ emu/mole	26, 942						
Effective Magneti Moment, Bohr magnetons	c 7.63						
Color						Brown	

.

Authority

Miscellaneous

Authority

150,256, Curie 262 emper-

	Structure	Lattice Type		b _o , A	c _o , A	Volume of Unit Cell, A ³	
GdAg		CsCl	3.6478			48.53	
GdAg ₂	Tetragonal	MoSi ₂	3.728		9.296	129.2	
GdAu ₂	Tetragonal	MoSi ₂	3.7320		9.014	125.5	
GdGa	Ortho- rhombic	CrB	4, 314	4.006	11.02	194.5	
GdGa2	Hexagonal	AlB ₂	4.22.		4.141	63.89	- 2
GdIn		CsCl	3.830			56.18	
GdIn ₃		AuCu ₃	4.6103			97.99	
GdIr ₂	Cubic		7.550				88
GdMn		MgCu ₂	7.732			462.2	
GdOs ₂	Hexagonal		5.319		8.838		>77
GdPt	Ortho- rhombic	FeB	5, 574	4.458	7.164	178.0	- =
GdPt ₂		MgCu2	7.6349			445.05	>77
GdRh ₂	Cubic		7.514				>77
GdRu ₂	Hexagonal	60	5. 271		8.904		>77
GdTl		CsC1	3. 7797			54.00	
GdT13		AuCu3	4.696			103.6	

Symbol Tb

Atomic Number 65

Atomic Weight 158.93

Authority

PHYSICAL PROPERTIES Abundance 0.7-1.0 ppm (approx. 0.9) 51 8.253 g/cm^3 Density 67 Melting Point 1356 C 66 Heat of Fusion 2.2 kcal/mole 61 **Boiling Point** 2800 C 57 Heat of Vaporization 70 kcal/mole 57 (25 C) Log $P_{mm Hg} = 8.657 - \frac{19,147}{T}$ Vapor Pressure 60 (1625-2043 K) Specific Heat (25 C) 6.92 cal/(mole)(C) 53 Heat of Combustion 218.4 kcal/g-atom 57 (25 C) $7.0 \times 10^{-6}/C$ (25-950 C) Coefficient of Linear 61 Thermal Expansion

(Permission of the American Physical Society)

TERBIUM

Thermal Conductivity

 $0.031 \text{ cal/(cm}^2)(\text{sec})(C/cm)$

Thermal Conductivity and Electrical Resistivity Versus Temperature

(Perm	ission of the American Physical Society)	
Heat of Sublimation		
Cohesive Energy		
Work Function		
Debye Temperature	181 K	97
Expansion on Melting		
Surface Tension		
RYSTAL PROPERTIES		
Structure	Нср	67
Lattice Constants	$a_0 = 3.6010 A$	67
	c _o = 5.6936 A	
Density	$8.253 \mathrm{g/cm^3}$	67
Metallic Radius	1.782 A	67
Atomic Volume	19.245 cm ³ /mole	66
Transition Temperature	1317 C	66
Heat of Transition	1.06 kcal/mole	61
Ionic Radius	(+3) = 0.923 A, (+4) = 0.91 A	55,93

234

121

Authority

		Authority
Closest Approach of Atoms	3.508 A	56
Allotropic Modifications		
CHEMICAL PROPERTIES		
Stable Oxidation State	+3, +4	81
Electrode Potential	<pre>[Tb = Tb⁺³ + 3e⁻] +2.2 volts (standard hydrogen electrode)</pre>	81
Ionization Potential	lst = 6.7 volts	82
Metaliographic Polishing and Etching		62

Terbium, like gadolinium, requires no special precautions to prevent oxidation during sample preparation; however, a hydrofluoric acid etch is needed to show the grain structure.

Corrosion Rates	0 mil/year at 200 C	68
(In Air)	110 mil/year at 400 C	
	6,960 mil/year at 600 C	

Corrosion Data

ELECTRICAL PROPERTIES

Resistivity (18 C)	135.5 microhm-cm (18 C)	61	
Temperature Coefficient	$0.91 \times 10^{-3} \text{ C}^{-1}$	61	

of Resistivity

(Permission of the American Physical Society)

87,121

TERBIUM

Authority

96

Resistance Versus Pressure

MAGNETIC PROPERTIES

-1	Susceptibility (25 C)	193,000 x 1	0 ⁻⁶ em	u/mole	61
	Effective Magnetic Moment		9.72	Bohr magnetons Bohr magnetons	61
	Curie Temperature	237 K			
	Néel Temperature	230 K			61
MI	CHANICAL PROPERTIES				61
	Young's Modulus	5.75 x 10^{11}	dynes/c	cm ²	57
	Shear Modulus	2.28 x 1011	lynes/c	m ²	
	Poisson's Ratio	0.261	:		57
	Compressibility	2.45 x 10^{-6} c	m ² /kg		61
	Hardness (DPH)	46			57
	Tensile Strength				57
	Yield Strength				
	Elongation				
	Ultimate Compressive Strength	101 x 10 ³ psi			61
	Impact Strength (Izod)	3.2 ft-lb			71

P	r	0	p		rt	io	5
---	---	---	---	--	----	----	---

Workability

General Fabrication (See references)

NUCLEAR PROPERTIES

Isotopes

	Number Mass	Abundance, percent	Half Life	Decay Mode	
	152		4.5 hr	K,X,e ⁻	
	153	+=	5.1 days		
	154		17.5 hr	K,X,e ⁻ ,γ,B ⁺	
	155		l yr	K,X,e-	
	159	100	Stable	,,	
	160		77 days	e ⁻ ,γ,Β ⁻	
Thermal Neutron	44 ±	4 barns/ator	n		
Cross Section	or 0.10	$66 \text{ cm}^2/\text{g}$			

Relative

SAFETY

Terbium

Toxicity - Unknown.

Fire hazard - Moderate in powder form.

Whole-

Terbium Compounds

Details unknown. In general precautions should be taken appropriate to the anion present.

THERMODYNAMIC PROPERTIES

7	6	7	7	

76

	Room Temperature	Melting Point	
Entropy	$S_{298} = 17.5$	$S_{1700} = 30.47 eu$	
Heat Capacity	$C_{p298} = 6.92$	$C_{p1700} = 8.88 \text{ cal/(mole)(C)}$	
Heat Capacities,	cal/(K)(mole)		
<u>10 K</u> 2	5 K 50 K 100 K 150 K	200 K 208.15 K	

(.12) 1.82 5.10 7.56 8.90 11.20 6.92

237

Authority

70,113

58,110

73

TERBIUM

Authority

77

120

Heat Content and Entropy of Solid and Liquid Terbium (Base: crystals at 298.15 K)

<u>T, K</u>	H _T -H _{298,15} , cal/mole	^S T ^{-S} 298.15, cal/(K)(mole)	<u>T, K</u>	HT-H298.15 cal/mole	ST-S298, 15. cal/(K)(mole)
400	675	1.95	1500	9,160	11.86
500	1,360	3.46	1600	10,040	12.42
600	2,055	4.74	1700(5)	10,930	12,97
700	2,770	5.84	1700(1)	14,830	15,26
800	3, 510	6.82	1800	15,630	15.71
900	4,260	7.71	1900	16,430	16.15
1000	5,030	8, 52	2000	17,230	16.56
1100	5,820	9.28	2200	18,830	17.32
1200	6,630	9.98	2400	20,430	18.02
1300	7,450	10.64	2600	22,030	18.06
1400	8,300	11.26	2800	23,630	19.25

For solid terbium:

 $H_{T}-H_{298,15} = 6.00T + 0.90 \times 10^{-3}T^{2} - 1.869$ (0.1 percent; 298°-1.700°K); Cp = 6.00 + 1.80 × 10^{-3}T; ΔH_{1700} (fusion) = 3.900.

For liquid terbium:

 $H_T-H_{298, 15} = 8.00T + 1.230$ (0.1 percent; 1.700°-2.800°K); $C_p = 8.00.$

Solid curve: Cp = 0.58T3 + 9.05T + 238T-2 - 11.9T-3 - 4.5T-4 + 9.38T-2 - 0.06T-6

TERBIUM COMPOUNDS

TbAs

Antimonides

	TbSb
Structure	Cubic
Lattice Type	NaCl
a _o , A	6.180
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	36232
Effective Magnetic Moment, Bohr magnetons	9.57

Arsenides

Structure	Cubic
Lattice Type	NaCl
a _o , A	5.827
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	39033
Effective Magnetic Moment, Bohr magnetons	9.65
200200000	

Beryllides

a_o, A

TbBe13
10.251

239

TERBIUM COMPOUNDS

2

240

Au	tho	rity	

169

Bismuth	nides
---------	-------

	TbBi
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	6.280
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	38086
Effective Magnetic Moment, Bohr magnetons	9.64

Borides

机制制制

	TbB2	Tb B4	TbB6	TbB12
Molecular Weight		202.48	224.12	289.04
Structure	Hexago- nal	Tetrago- nal	Cubic	Cubic
a ₀ , A	3.28	7.118	4. 1020	7.504
c _o , A	3.86	4.0286		
Density, g/cm ³		6.579	5.385	
Resistivity, microhm-cm			88.0	** **
Temperature Coefficient of Resistivity, 10 ⁻³ /C			1.31	
Thermal Conductivity, cal/(cm)(sec)(C)			0.048	
Work Function, ev		88 88 8	2.99	
Microhardness, kg/mm ²			3500	au es
Color		Gray brown	Blue	800 en:
Emissivity ($\lambda = 0.655 \mu$)			0.74	
Effective Metallic Radius, A			2.18	

153,155

Carbides

Authority

153

	TbC2	Tb ₂ C ₃	Tb ₃ C	
Molecular Weight	182.93	355.86	489.6	
Structure	Body- centered tetrago- nal	Bcc	Cubic	
Lattice Type	CaC2	Pu ₂ C ₃	Fe ₄ N	
a _o , A	3.690	8.2617	5.107	
с _о , А	6.217			
Density, g/cm ³	7.176	8.335	8.882	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	~28500			
Effective Magnetic Moment, Bohr magnetons	9. 57			

Germanides

while the

•

	Tb2Ge3
Lattice Type	AlB ₂ defect
a ₀ , A	3.95
c _o , A	4.16
Volume of Unit Cell, A ³	56.21

TERBIUM COMPOUNDS

Halides

Authority

158,211, 235,236, 279,281

	TbBr3	TbCl3	TbFg	TbI3	TbF4	TbOC1	THOF
Structure	Hexago- nal	Mono- clinic	Ortho- thombic	Hexago- nal	Mono- clinic	Tetrago- nal	Rhombo- hedric
a ₀ , A	4, 129	6, 163	6,513	4.357	12.1	3.927	6,758
b _o , A		3, 848	6,949		10.3		
c _{o•} A	6.391	8,357	4, 384	6.954	7.9	6,645	
β , deg	**	107.59			126		33,02
Density, g/cm ³			7,236				
Melting Point	(827)	588	1172	(952)		••	
Heat of Fusion, kcal/mole	(9)	(7)	(8)	(10)			
Entropy of Fusion, eu/mole	(8)	(8)	(5)	(8)		••	
Boiling Point, C	1490	1550	(2277)	1330			••
Heat of Vaporization, kcal/mole	(44)	(45)	(60)	(40)	••		•-
Entropy of Vaporization, eu/mole	(25)	(25)	(24)	(25)	••		• •
Color			White				
Volume of Unit Cell, A ³			198.4			102.47	

Hydrides

	TbH2	TbH3
Structure	Cubic	Hexagonal
a _o , A	5.246	3.700
c _o , A		6.658

Nitrides

243

Authority

1	5	3	,	2	2	3	
---	---	---	---	---	---	---	--

	TbN
Molecular Weight	172.94
Structure	Cubic
Lattice Type	Na Cl
a _o , A	4.933
Density, g/cm ³	9. 567
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	42900
Effective Magnetic Moment, Bohr magnetons	9.5
Curie Temperature, K	38

Oxides

	TbO2	Tb2O3	Tb407
Structure		Bcc	Cubic
a _o , A		10.69	10.70
Density, g/cm ³		7.81	
Heat of Formation, kcal/mole metal	(231)	218.4	224.8
Entropy of Formation, eu/mole metal	(50)	(35.8)	(45)
Melting Point, C		2390	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole		35800	30100
Effective Magnetic Moment, Bohr magnetons		9.7	
Color			Dark brown

172,	176,
	,218,
238	

TERBIUM COMPOUNDS

263,264

		Authority
Phosphides		169
	ТЪР	
Structure	Fcc	
Lattice Type	Na Cl	
a _o , A	5.686	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	39526	
Effective Magnetic Moment, Bohr magnetone	9.56	
Selenides		169
	TbSe	10/
Structure	Cubic	
Lattice Type	Na Cl	
a ₀ , A	5.740	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	33755	
Effective Magnetic Moment, Bohr magnetons	9.82	
(

Silicides

.

	TbSi2	TbSi _{2-n}
Structure	Ortho- rhombic	Hexagonal
Lattice Type	a-YSi2	AlB ₂ defect
a _o , A	4.045	3.847
b _o , A	3.96	
с _о , А	13.38	4.146
Volume of Unit Cell, A ³		53.1

Sulfides

Authority

245

153,169

	TbS	Tb2O2S
Molecular Weight		381.93
Structure	Fcc	Hexagonal
Lattice Type	Na Cl	
a _o , A	5.517	3.825
c _o , A		6.626
Density, g/cm ³		7.56
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	35088	
Effective Magnetic Moment, Bohr magnetons	9.63	
Tellurides		
	TbTe	
Structure	Fcc	
Lattice Type	Na Cl	
a ₀ , A	6.101	÷.

Magnetic Susceptibility, 38760 10⁻⁶ emu/mole

Effective Magnetic 9.57 Moment, Bohr magnetons

DYSPROSIUM

Symbol Dy

Atomic Number 66

Atomic Weight 162, 51

Authority

PHYSICAL PROPERTIES

Abundance	4.5-7.5 ppm (approx. 5)	51
Density	8.559 g/cm ³	67
Melting Point	1407 C	66
Heat of Fusion	3.8 kcal/mole	61
Boiling Point	2600 C	57
Heat of Vaporization (25 C)	67 kcal/mole	57
Vapor Pressure (1257-1690 K)	$Log P_{mm Hg} = 8.882 - \frac{15,090}{T}$	60
Specific Heat (25 C)	6.73 cal/(mole)(C)	76
Heat of Combustion	222.92 kcal/g-atom	134
Coefficient of Linear Thermal Expansion	8.6 x 10-6/C	61

Thermal Conductivity (28 C) 0.024 cal/(cm²)(sec)(C/cm)

115

DYSPROSIUM

Authority

128

Heat of Sublimation

Cohesive Energy	72 kcal/mole	89
Work Function		
Debye Temperature	186 K	97
Expansion on Melting		,,
Surface Tension		

CRYSTAL PROPERTIES

Structure	Нср	61
Lattice Constants	$a_0 = 3.5903 A$ $c_0 = 5.6475 A$	61 61
Density	8.559 g/cm ³	67
Metallic Radius	1.773 A	67
Atomic Volume	19.032 cm ³ /mole	66
Transition Temperature	e	

Heat of Transition

Pro	per	ties
-----	-----	------

Ionic Radius (Trivalent Ion	b) 0.908 A	Authority
Closest Approach of Atoms		55
Allotropic Modifications		56
	 Resistivity measurements indicate a structural change at high temperature Hcp transforms to orthorhombic when temperature 	66 e
	when temperature is lowered to 86 K . $b/a = 1.732$	124
CHEMICAL PROPERTIES		
Stable Oxidation State	+3	
Electrode Potential		81
entitie rotential	$[Dy = Dy^{+3} + 3e^{-}] + 2.2$ volts (standard hydrogen electrode)	81
Ionization Potential	1st = 6.8 volts	
Metallographic Polishing	D	82
and Etching	Dysprosium exhibits considerable resistance to oxidation and to etching. The most satisfactory etch is based on hydrofluoric acid.	62
Corrosion Rates (In Air)		
	59 mil/year at 400 C 1110 mil/year at 600 C	68
Corrosion Data		
Corrosive atta	ack on crucible materials:	91
Material	Onset of Attack	
Та	None <1400 C	
ELECTRICAL PROPERTIES		
Resistivity (25 C) 5	6 microhra-cm	
Temperature C. M.		61

Temperature Coefficient	$1.19 \pm 10^{-3}/C$	61
of Resistivity		61
DYSPROSIUM

Authority

117, 127

Resistivity Versus Temperature

Resistance Versus Pressure

· Heat

(Permission of Elsevier Publishing Co.)

Q.0

(Permission of the American Physical Society)

MAGNETIC PROPERTIES

Susceptibility (25 C)	99,800 x 10^{-6} emu/mole	61
Effective Magnetic Moment	Theoretical 10.6 Bohr magnetons Measured 10.64 Bohr magnetons	61
Curie Temperature	85 K	61
Néel Temperature	178. 5 _. K	61

_] ∳

Authority

MECHANICAL PROPERTIES

	Young's Modulus	6.31 x 10^{11} dynes/cm ²	57
	Shear Modulus	2.54 x 10^{11} dynes/cm ²	57
	Poisson's Ratio	0.243	61
	Compressibility	2.39 x 10^{-6} cm ² /kg	57
	Hardness (DPH)	42	57
		70 F 400 F	
	Tensile Strength	35.7 30.8 10 ³ psi	88
	Yield Strength	32.6 20.8 10 ³ psi	88
1	Elongation	6 8.3 per cent	88
	Ultimate Compressive Strength	73.8 10 ³ psi	61
-	Impact Strength (Izod)	1.6 ft-1b	71.
	Workability	Fair	88
	General Fabrication	(See references)	70, 113

NUCLEAR PROPERTIES

Isotopes

58, 123

	Whole- Number Mass	Relative Abundance, percent	Half Life	Decay Mode
	156	0.0524	Stable	
	158	0.0902	Stable	
	160	2.294	Stable	
	161	18.88	Stable	
	162	25.53	Stable	
	163	24.97	Stable	
	164	28.18	Stable	
	165		2.4 hr	β - , e - , γ
Thermal Neutron $1100 \pm 150 \text{ barns/atom of}$ Cross Section $4.1 \text{ cm}^2/\text{g}$			m or	

DYSPROSIUM

Authority

SAFETY

Dysprosium and its compounds - Toxicity unknown. The hazards are unknown except where precautions are required because of the anion present.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	76, 77
Entropy	$S_{298} = 17.9$	$S_{1773} = 31.1 \text{ eu}$	
Heat Capacity	$C_{p298} = 6.73$	$C_{pl173} = 9.02 \text{ cal/mole C}$	
Heat Capacities, ca	al/(K.)(mole)		76

<u>10 K</u>	<u>25 K</u>	50 K	100 K	<u>150 K</u>	200 K	298.15 K
(0.18)	2.20	5, 52	8, 32	10.88	6.97	6.73

Heat Content and Entropy of Solid and Liquid Dysprosium (Base: crystals at 298.15 K)

<u>т, к</u>	HT-H298,15- cal/mole	ST-S298.15, cal/(K)(mole)	<u>T, K</u>	H _T -H _{298,15} , cal/mole	ST-S298, 15, cal/(K)(mole)
400	670	1.93	1500	9,050	11.74
500	1,350	3.45	1600	9,910	12,29
600	2,040	4.70	1700	10,790	12,82
700	2,750	5.80	1773(s)	11,440	13,20
890	3,480	6.77	1773(1)	15, 540	15, 51
900	4,220	7.65	1800	15,760	15,63
1000	4,980	8.45	1900	16, 560	16.07
1100	5,760	9.19	2000	17,350	16,48
1200	6,560	9.88	2200	18, 960	17,24
1300	7,370	10, 53	2400	20, 560	17.93
1400	8,200	11.15	2600	21,160	18.57

 $H_T-H_{298, 15} = 6.00T + 0.85 \times 10^{-3}T^2 - 1.864$ (0.1 percent; 298-1773 K); $C_p = 6.00 + 1.70 \times 10^{-3}$ T; H₁₇₇₃(fusion) = 4,100.

HT-H298, 15 = 8. 00T + 1,360 (0,1 percent; 1773-2600 K); Cp = 8.00.

252

Specific Heat

253

Authority

53, 125

0 - 300 K

(Permission of the American Physical Society; results of several investigators are reported.)

DYSPROSIUM COMPOUNDS

Antimonides

	DySb
Structure	Cubic
Lattice Type	NaC1
a., A	6.160
Magnetic Susceptibility 10-6 emu/mole	45558
Magnetic Moment, Bohr magnetons	10.62

DYSPROSIUM COMPOUNDS

00,

senides	
	DyAs
Structure	Cubic
Lattice Type	NaCl
a _o , A	5.803
Magnetic Susceptibility, 10-6 emu/mole	46948
Magnetic Moment, Bohr magnetons	10.51
eryllides	
	DyBe13
a _o , A	10.240
ismuthides	
	DyBi
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	6. 251
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	44,053
Magnetic Moment, Bohr magnetons	10.97

179

Authority

169

Borides

1	53,154,
	155,171

	DyB ₂	DyB4	DyB6	DyB ₁₂
Molecular Weight	184.10	205.74	227. 38	292.30
Structure	Hexagonal	Tetragonal	Cubic	Cubic
a ₀ , A	3.285	7.101	4.0976	7.501
c _o , A	3.835	4.0174		
Density, g/cm ³		6.74	5.49	4.60
Work Function, ev	* *		3.53	
Color		Gray brown	Blue	
Emissivity ($\lambda = 0.655 \mu$)			0.7	-
Effective Metallic Radius, A			2.18	

Carbides

	Dy 3C	Dy2C3	DyC2
Molecular Weight	499.38	360. 92	186.46
Structure	Cubic	Bcc	Body-centered tetragonal
Lattice Type	Fe4N	Pu ₂ C ₃	CaC ₂
a ₀ , A	5.079	8.198	3.669
c _o , A			6. 176
Density, g/cm ³	9.211		7.450
Magnetic Suscep- tibility, 10-6 emu/mole			~38500
Magnetic Moment, Bohr magnetons			10. 53

DYSPROSIUM COMPOUNDS

Authority

183,262

	DyGe	Dy2Ge3
Structure	Orthorhombic	
Lattice Type	CrB	Defective AlB ₂
a ₀ , A	4.112	3.92
b _o , A	3.924	
с _о , А	10.81	4.13
Volume of Unit Cell, A ³	174.4	54.96

Halides

93,108, 157,158, 209,210, 211,235, 236

	DyBr3	DyCl ₃	DyF3	Dy13	DyOC1	DyOF
Structure	Hexagonal	Monoclinic	Orthorhombic	Hexagonal	Tetragonal	Rhombohedral
a ₀ , A	4, 114	6,91	6.460	4.335	3, 911	
b _o , A		11,97	6.906			
c _o , A	6.400	6.40	4.376	6, 958	6.620	
β, deg		111.2				
Density, g/cm ³			7.456			
Melting Point, C	881	654	1154	955		••
Heat of Fusion,	9	7	8	10		
Boiling Point, C	1480	1530	2230	1320		
Heat of Vaporization, kcal/mole	44	45	60	41		
Entropy of Fusion, eu/mole	8	8	5	8	••	••
Entropy of Vaporization, eu/mole	25	25	24	25	· • •	
Color			Light green			
Volume of Unit Cell, A ³		••	195,2		101.26	••

Germanides

257

Hydrides

Authority

165, 265

	DyH ₂	DyH3	
Structure	Cubic	Hexagonal	
a _o , A	5.201	3. 671	
с _о , А		6. 615	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	46, 700	38,900	
Magnetic Moment, Bohr magnetons	10.8	9. 5	
Néel Temperature, K	8		

- -

Nitrides

	DyN
Molecular Weight	176. 52
Structure	Cubic
Lattice Type	NaC1
a ₀ , A	4. 905
Density, g/cm ³	9. 567
Resistivity, microhm-cm	100
Temperature Coefficient of Resistivity (300-750 K), 10-3/C	0.75 x 10-3
Magnetic Susceptibility, 10-6 emu/mole	48,900
Magnetic Moment, Bohr magnetons	10.6
Curie Tempsrature, K	22

149,153, 223

DYSPROSIUM COMPOUNDS

245

Authority

156,172 173,176, 177,245

	Dy2O3
Molecular Weight	373.0
Structure	Bcc
a _o , A	10.63
Density, g/cm ³	7.81
Melting Point, C	2340
Heat of Formation, kcal/mole metal	222.92
Entropy of Formation, eu/mole metal	(35. 7)
Heat Capacity, cal/(mole)(C)	28,05 (300 K) 3450 (2300 C)
Coefficient of Thermal Expansion (20-1300 C), 10-6/C	7.7
Magnetic Moment, Bohr magnetons	10.6
Color	White

White

Heat-Content and Entropy Values for Dysprosium Oxide

...

*.

<u>т. к</u>	HT-H298.15. 	ST-S298.15 cal/(K)(mole)	Т. К	HT-H298.15. 	
400	2,920	8. 42			cal/(K)(mole)
500	5,900	15.06	1400	34,720	47.77
600	8,960	20.64	1500	38, 120	50,11
700	12,070	25, 43	1590(a)	41,220	52,12
800	15,210	29.63	1590(B)	41,440	52,26
900	18,380	33, 36	1600	41,780	52.47
1000	21, 580	36,73	1700	45,230	54. 57
1100	24, 810		1800	48,680	56.54
1200	28,070	39.81	1900	52,130	58.40
1300	31,370	42.65 45,29	2000	55, 580	60,17

258

Oxides

Phosphides	

Authority	
169	

	DyP
Structure	Cubic
Lattice Type	NaC1
a ₀ , A	5.654
Magnetic Susceptibility 10 ⁻⁶ emu/mole	46729
Magnetic Moment, Bohr magnetons	10. 34

Selenides

166, 168,
169,192,
194.213

	DySe	Dy2Se3	Dy2O2Se
Structure	Cubic	Orthorhombic	Нср
Lattice Type	NaC1		
a _o , A	5. 711	3. 69	3. 83
b _o , A		10.85	
с _о , А		11.0	6. 79
Density, g/cm ³		7.21	8.39
Magnetic Susceptibility 10-6 emu/mole	40984	43250	
Magnetic Moment, Bohr Magnetons	10. 37	10.40	
Color		Blue black	Light gray

DYSPROSIUM COMPOUNDS

Silicides

Authority

152,153, 160,264

	a-DySi2	β-DySi ₂	D. CI
Molecular Weight	218.62	218.62	DySi2-n
Structure	Orthorhombic	Tetragonal	Hexagonal
Lattice Type	a-YSi2	a-ThSi2	AlB ₂ defect
a ₀ , A	4.04	4.03	3.83
b _o , A	3. 95		3.05
c _o , A	13.34	13.38	4.11
Density, g/cm ³	6.8	6. 68	
Melting Point, C		1550	
Transition Temperature, C	$\alpha \rightarrow \beta \rightarrow 540$		
Resistivity, microhm-cm	3020		
Superficial Hardness, Rockwell A	80		
Transverse Rupture Strength, 103 psi	9.5		
Volume of Unit Cell, A^3			52.2

Sulfides

	Dys	Dy5\$7	Y-Dy2S3	S. D		22
Malaanlas Madala			7 09253	δ-Dy ₂ S ₃	DyS ₂	Dy2O2S
Molecular Weight	194.51	1037.01	421.22	421,22	226. 64	389.09
Structure	Fcc	Monoclinic	Bcc	Monoclinic	Tetragonal	Hexagonal
Lattice Type	NaC1		Th3P4			
4 ₀ , A	5,490	12.84	8, 292	10.17	7.69	3,803
b _o , A		3.81		4. Cl		
c _o , A		11, 61		17.57	7.85	6.603
β. deg	••	74				
Density, g/cm ³		6.14	6.54	5.75	6.11	7.84
Melting Point, C		1540	1480	• •	••	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	40000		47700	••	••	
Magnetic Moment,	10.39					

Bohr magnetons

Tellurides

.

	DyTe	DyTe2-n	Dy3Te4	Dy2O2Te
Structure	Fcc			Hexagonal
Lattice Type	NaCl			
a ₀ , A	6.075	4.29		3. 92
с _о , А		8. 91		12.38
Density, g/cm ³				8.46
Resistivity, microhm-cm			3.1 x 10 ³	
Magnetic Suscep- tibility, 10-6 emu/ mole	45977		[*]	
Magnetic Moment, Bohr magnetons	10.47			·
Color		· ·		Maroon

.

Authority

DYSPROSIUM COMPOUNDS

Authority

262

Misc	ellan	eous
------	-------	------

Compound	Structure	Lattice Type	a ₀ , A	bo, A	c. A	Volume of Unit Cell, A ³	
DyAg ₂	Tetragonal	MoSi2	3. 6957		9.213	125.8	
DyAu2	Tetragonal	MoSi ₂	3.6940		8.956	122.2	
DyGa	Orthorhombic	СтВ	4.300	4.067	10.89	190.4	
DyGa2	Hexagonal	A1B2	4.2011	••	4.0655	62.14	
DyIn		CsC1	3.7866			54.29	
DyIn ₃		AuCu3	4.5762			95, 83	
Dygin	Tetragonal	CuTi ₃	4.602		4.495	104.7	
DyMn ₂		MgCu ₂	7.5731			434.33	
DyPt	Orthorhombic	FeB	5,466	4.453	7.118	173.3	
DyPt2		MgCu ₂	7.5966			438.39	
DyPt3		AuCu ₃	4.072		••	67.52	
DyTI	••	CICI	3.7866			54.29	
DyT13		AuCu3	4.6720		••	101.98	

263

HOLMIUM

Symbol Ho	Atomic Number 67	Atomic Weight 164, 94
PHYSICAL PROPERTIES		Authority
Abundance	0.7-1.2 ppm	51
Density	8.799 g/cm ³	67
Melting Point	1461 C	66
Heat of Fusion	4.1 kcal/mole	61
Boiling Point	2600 C	57
Heat of Vaporization (25 C)	67 kcal/mole	57
Vapor Pressure		
Specific Heat (25 C)	6.49 cal/(mole)(C)	76
Heat of Combustion	224. 78 kcal/g-atom	134
Coefficient of Linear Thermal Expansion (20-708 C)	9.5 x 10-6/C	61
Thermal Conductivity		
Heat of Sublimation (25 C)	75.04 kcal/mole	130
Cohesive Energy	75.5 kcal/mole	130
Work Function		
Debye Temperature	191 K	97
Expansion on Melting		
Surface Tension		

HOLMIUM

STAL PROPERTIES		Authorit
Structure	Нср	61
Lattice Constants	$a_0 = 3.5773 A$ $c_0 = 5.6158 A$	61
Density	8.799 g/cm ³	67
Metallic Radius	1.766 A	67
Atomic Volume	18.742 cm ³ /mole	66
Transition Temperature		
Heat of Transition		
Ionic Radius (Trivalent Ion)	0.894 A	55
Closest Approach of Atoms	3.480 A	56
Allotropic Modifications	(1) Resistivity measurements indicate a structural change at high temperature.	
CAL PROPERTIES		
Stable Oxidation State	+3	81
Electrode Potential	[Ho = Ho ⁺³ + 3e ⁻] + 2.1 volts (standard hydrogen electrode)	81
Ionization Potential		
Metallographic Polishing and Etching	Holmium exhibits considerable resistance to oxidation and to etching. The most satisfactory etch is based on hydrofluoric acid.	62
Corrosion Rates (In Air)	2 mil/year up to 200 C 18 mil/year at 400 C 880 mil/year at 600 C	68
Corrosion Data		

CONTRACTOR OF THE OWNER

ELECTRICAL	PROP	ERTIES	
ELECTRICAL	PROP	ERTIES	

		Authority
Resistivity (25 C)	87 microhm-cm	61
Temperature Coefficient of Resistivity	$1.71 \times 10^{-3}/C$	61

Resistivity Versus Temperature

55 W. A cu (Permission of the American Physical Society) (Permission of Elsevier Publi hing

Resistance Versus Pressure (Permission of the American Physical Society)

96

•c

Company)

117,127

HOLMIUM

MAGNETIC PROPERTIES

		Authority
Susceptibility (25 C)	$70,200 \times 10^{-6} \text{ emu/mole}$	61
Effective Magnetic Moment	Theoretical 10.6 Bohr magnetons Measured 10.89 Bohr magnetons	61
Curie Temperature	<20 K	61
Néel Temperature	133 K	4
MECHANICAL PROPERTIES		61
Young's Modulus (Y)	6.71 dynes/cm^2	57
Shear Modulus	2.67 dynes/cm ²	57
Poisson's Ratio (ν)	0. 266	57
Compressibility (β)	2. 14 x 10 ⁻⁶ cm ² /kg (calculated from $\beta = \frac{3(1-2\nu)}{\nu}$)	57
Hardness (DPH)	42 42	57
Tensile Strength	$\frac{70 \text{ F}}{37.5} \qquad \frac{400 \text{ F}}{30.8} 10^3 \text{ psi}$	88
Yield Strength	32.1 24.6 10 ³ psi	
Elongation	5 6 per cent	88
Ultimate Compressive Strength	72.4 10 ³ psi	88 61
Impact Strength (Izod)	7 ft-1b	71
Workability		11
General Fabrication	(See references)	70,113

NUCLEAR PROPERTIES

Authority

73

83

77

Isotopes

Whole-Relative Abundance, Half Decay Number Life Mode Mass percent 20 min K, X 160 - -60 days K, X, γ , e[•] 161 - -K, X, γ , e⁻, β^+ 4.5 hr 162 163 - -7 days K, X, γ , e⁻ 35 min β^{-} 164 --Stable 165 100 ----27. ^c hr β^-, γ 166 - -

Thermal	Neutron
Cross S	Section

 $64 \pm 3 \text{ barns/atom}$ or 0, 23 cm²/g

SAFETY

Details unknown.

THERMODYNAMIC PROPERTIES

	Ro	om Te	mper	ature	1	Melting	Point	76,77
Entropy		S ₂₉₈	= 18.0)	S	773 =	31.2 eu	
Heat Capacity		C _{p298}	3 = 6.4	49	C ₁	p1773 =	9, 02 cal/(mo	ole)(C)
Heat Capacities,	al/(K)	(mole)						76
	10 K	25 K	50 K	100 K	150 K	200 K	298.15 K	

Heat Content and Entropy of Solid and Liquid Holmium

3.03

(. 52)

(Base: crystals at 298, 15 K)

5,86 9,36

T.K	H _T -H _{298,15} cal/mole	S _T -S298, 15° cal/(K)(mole)	T, K	H _T •H _{298,15} • cal/mole	ST=S208, 15- cal/(K)(mole)
400	670	1,94	1500	9,050	11,74
500	1,350	3.44	1690	9,910	12,29
600	2.040	4,71	1700	10,790	12,83
700	2,750	5,80	1773(1)	11,440	13,20
800	3.480	6.77	1773(1)	15,540	15, 52
900	4. 420	7,65	1800	15,760	15,64
1000	4. 985	8.45	2000	17, 360	16,49
1100	5,760	9, 19	2200	18,960	17,25
1200	6,560	9.89	2400	20, 560	17.94
1300	7,370	10.54	2600	22, 160	18,58
1400	8,200	11, 15			

6,35

6,33

6,49

(Continued)

HOLMIUM COMPOUNDS

Authority

77

53,129

Heat Content and Entropy of Solid and Liquid Holmium (Continued)

For solid holmium: $H_{T} \cdot H_{298, 15} = 6.00 T + 0.85 \times 10^{-3} T^{2} \cdot 1.864$ (0, 1 percent: 298-1773 K); $C_{p} = 6.00 + 1.70 \times 10^{-3} T;$ $H_{1773}(iusion) = 4.100.$ For liquid holmium: $H_{T} \cdot H_{298, 15} = 8.00 T + 1.360$ (0, 1 percent: 1773-2600 K); $C_{p} = 8.00.$

Specific Heat

HOLMIUM COMPOUNDS

Antimonides

	HoSb
Structure	Cubic
Lattice Type	NaC1
a _o , A	6.130
Magnetic Susceptibility, 10-6 emu/mole	44,743
Magnetic Moment, Bohr magnetons	10.35

169

Arsenides

	HoAs
Structure	Cubic
Lattice Type	NaC1
a _o , A	5.771
Magnetic Susceptibility, 10 ⁻⁶ emu/mcle	46,080
Magnetic Moment, Bohr magnetons	10.47

Beryllides

	HoBe ₁₃		
^a ₀ , A	10, 220		

Bismuthides

		HoBi	
Structure		Cubic	
Lattice Type		NaC1	
a _o , A		6. 228	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	>	44, 543	
Magnetic Moment, Bohr magnetons		10.32	
	Lattice Type a ₀ , A Magnetic Susceptibility, 10 ⁻⁶ emu/mole Magnetic Moment,	Lattice Type a ₀ , A Magnetic Susceptibility, 10 ⁻⁶ emu/mole Magnetic Moment,	StructureCubicLattice TypeNaCl a_0, A 6.228Magnetic Susceptibility, 10^{-6} emu/mole44,543Magnetic Moment,10.32

Borides

	HoB2	HoB4	HoB6	HoB12	
Molecular Weight	175.26	206.78	228.42	294.78	
Structure	Hexag- onal	Tetrag- onal	Cubic	Cubic	
a _o , A c _o , A	3.17 3.81	7.064 4.000	4 . 096	7.492	
Density, g/cm ³		6.88	5, 53	4.655	
Coefficient of Thermal Expansion, 10 ⁻⁶ /C			3.0		(Continued)

269

Authority

169

179

169

153,155

HOLMIUM COMPOUNDS

Authority

Borides (Continued)	
	HoB2
Work Function, ev	

WO	rk Function, ct			
Col	or	 Gray brown	Blue	***
Em	issivity ($\lambda = C, 665 \mu$)	 		0.7
	ective Metallic adius, ^A	 	2,17	

HoB6

3.42

HoB12

--

HoB4

- -

Carbides

	HoC2	Ho2C3	Ho3C
Molecular Weight	188.94	365, 88	506.82
Structure	Body-centered	Bcc	Cubic
Lattice Type	tetragonal CaC ₂	Pu ₂ C ₃	Fe4N
a . A	3.643	8.176	5,061
a _o , A c _o , A	6.139		
Density, g/cm ³	7.701	8.892	9.434
Magnetic Susceptibili 10 ⁻⁶ emu/mole	ty, ~43,500		
Magnetic Moment, Bohr magnetons	10.57		

Germanides

	Ho2Ge3		
Lattice Type	Defective A1B2		
a A	3,90		
a _o , A c _o , A	4, 11		
Volume of Unit Cell, A^3	54, 14		

Halides

Authority

li	des							93, 108, 158,
		HoBr ₃	HoCl3	Hol	F3	Holz	HoOC1	182, 209, 210, 235,
	Structure	Hexagonal	Mono- clinic		Hexag- onal	Hexag- onal	Tetragonal	221
	a ₀ , A	4,088	6.85	6.404	6.833	4.319	3.893	
	bo, A		11,85	6.875				
	c ₀ , A	6.391	6.39		6.984	6.946	6.602	
	β , deg		110.8					
	Density, g/cm ³		~-	7.644	7.829			
	Melting Point, C	914	720	114	43	1010		
	Heat of Fusion, kcal/mole	10	7.0		8	10		
	Boiling Point, C	1470	1510	223	30	1300		
	Heat of Vaporization kcal/mole	43 ,	44	6	0	41		
	Entropy of Fusion, eu/mole	8	7.1		5	8	* =	
	Entropy of Vaporization eu/mole	25	25	2	4	26		
	Heat Capacity, cal/(mole)(C)		29.0	-	-			
	Volume of Unit Cell, A ³		485	192, 8	282.4		100.06	
	Color			Brown pink				

HOLMIUM COMPOUNDS

Hydrides

Authority

165

			165
	HoH2	HoH3	
Structure	Cubic	Hexagonal	
a _o , A c _o , A	5.165	3.642 6.560	
Nitrides			149,153,
	HoN		223
Molecular Weight	178.95		
Structure	Cubic		
Lattice Type	NaC1		
a ₀ , A	4.87		
Density, g/cm ³	10.26		
Resistivity, microhm-cm	110		
Temperature Coefficient of Resistivity (300-1500 K) 10 ⁻³ /C	1		
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	47, 800		
Magnetic Moment, Bohr magnetons	10.3		
Curie Temperature, K	19		
Oxides			156 172
	Ho2O3		156,172, 177,259,
Structure	Bcc		266
a ₀ , A	10, 58		
Density, g/cm ³	8.36		
Heat of Formation, kcal/mole	224, 78		
Entropy of Formation, eu/mole	(35.7)		

(Continued)

272

· X

Authority

Oxides (Continued)

	Ho2O3
Heat Capacity at 300 K, cal/(mole)(C)	27.05
Coefficient of Thermal Expansion, 10 ⁻⁶ /C	7.9
Magnetic Moment, Bohr magnetons	10.6
Color	Light yel

Light yellow

Heat Content and Entropy Increments for Holmium Oxide (Smooth Values)

T, K	HT-H298, 15° cal/mole	ST-S298, 15- cal/(K)(mole)	<u>T, K</u>	HT-H298, 15° cal/mole	ST-S298, 15- cal/(K)(mole)
400	2,820	8, 13	1300	30, 420	43,90
500	5,710	14,57	1400	33, 640	46,29
600	8, 680	19,98	1500	36, 900	48, 54
700	11,700	24,64	1600	40, 200	50,67
800	14, 760	28,72	1700	43, 540	52,69
900	17,840	32,35	1800	46, 920	54, 53
1000	20, 940	35,62	1900	50, 330	56,47
1100	24,070	38,60	2000	53, 770	58,23
1200	27,230	41,35			

Phosphides

	HoP
Structure	Cubic
Lattice Type	NaCl
a _o , A	5,626
Magnetic Susceptibility, 10-6 emu/mole	46,083
Magnetic Moment, Bohr magnetons	10, 34

HOLMIUM COMPOUNDS

HoSe Cubic Structure NaCl Lattice Type 5.680

43,478

Magnetic Susceptibility, 10⁻⁶ emu/mole 10.62 Magnetic Moment, Bohr magnetons

Silicides

a₀, A

	HoSiz	HoSi2-n
Structure	Orthorhombic	Hexagonal
Lattice Type	a-YSiz	Defect AlB ₂
a _o , A b _o , A c _o , A	4.03 3.97 13.40	3.816 4.107
Volume of Unit Cell, A ³		51.5

Sulfides

	HoS
Structure	Fcc
Lattice Type	NaCl
a ₀ , A	5. 465
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	41,464
Magnetic Moment, Bohr magnetons	10, 50

263, 264

Authority

169

169

274

Selenides

Authority

169

Tellurides

	Hole
	HOTE
Structure	Fcc
Lattice Type	NaCl
a _o , A	6.049
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	48,780
Magnetic Moment, Bohr magnetons	10.50

Miscellaneous

Compound	Lattice Type	1 at ann	$- a_0, A$	
HoGa ₃	AuCu ₃		4.226	

267

ŝ

ERBIUM

Symbol Er Atomic Number 68 Atomic Weight 167,27
Authority
PHYSICAL PROPERTIES

	2.5-6.5 ppm	51
	9.062 g/cm ³	67
t	1550 C	257
on	4. l kcal/mole	61
t	2650 C	257
rization	64.75 kcal/mole	257

$$Log P_{mm Hg} = 9.222 - \frac{17,324}{T}$$

226.80 kcal/g-atom 1.34

 $9.2 \times 10^{-6}/C (-178 - 950 C)$ 61

(Permission of the American Physical Society)

90

60

Abundance

Density

Melting Point

Heat of Fusion

Boiling Point

Heat of Vaporization (25 C)

Vapor Pressure (1392-1780 K)

Specific Heat (25 C)

Heat of Combustion

Coefficient of Linear Thermal Expansion

278

ERBIUM

		uthority
Thermal Conductivity (28 C)	$0.023 cal/(cm^2)(sec)(C/cm)$	115
Heat of Sublimation (25 C)	75.39 kcal/mole	130
Cohesive Energy	75.7 kcal/mole	130
Work Function		
Debye Temperature	195 K	97
Expansion on Melting		
Surface Tension		
CRYSTAL PROPERTIES		
Structure	Нср	61
Lattice Constants	$a_0 = 3.5588 A$	61
	c _o = 5.5874 A	
Density	9.062 g/cm ³	67
Metallic Radius	1.757 A	67
Atomic Volume	18.473 cm ³ /mole	66
Transition Temperature		
Heat of Transition		
Ionic Radius (Trivalent Ions)	0.881	55
Closest Approach of Atoms	3.459 A	56
Allotropic Modifications		
CHEMICAL PROPERTIES		
Stable Oxidation State	+3	81
Electrode Potential	[Er = Er ⁺³ + 3e ⁻] + 2.1 volts (standard hydrogen electrode)	81
Invigation Potential		

Ionization Potential

ţ

			Authority
Metallographic Polishing and Etching			62
	and to etching	siderable resistance The most satisfactory oric acid.	
Corrosion Rates (In Air)	14 mil/yea	r up to 200 C r at 400 C ar at 600 C	68
Corrosion Data			91
Corros	ive attack on	crucible materials:	
	Material	Onset of Attack	
	Ta	None < 1400 C	
ELECTRICAL PROPERTIES			
Resistivity (25 C)	107 microh	m-cm	61
Temperature Coefficient of Resistivity	2.01 x 10 ⁻³	³ /C	61
Resistivity Versus Tempera	iture		117,127

Resistivity versus temperature

(Permission of the American Physical Society)

(Permission of Elsevier Publishing Co.)

ERBIUM

Authority

131

96

61

Resistivity Versus Temperature

MAGNETIC PROPERTIES

Susceptibility (25 C)	44,100 x 10 ⁻	6 emu	n/mole	
Effective Magnetic Moment	Theoretical Measured	9.6 9.5	Bohr magnetons Bohr magnetons	61
Curie Temperature	20 K			61
Néel Temperature	84 K			

	,	Authority
MECHANICAL PROPERTIES		
Young's Modulus	$7.33 \times 10^{11} \text{ dynes/cm}^2$	57
Shear Modulus	2.96 x 10^{11} dynes/cm ²	57
Poisson's Ratio	0.238	61
Compressibility	2.11 x 10^{-6} cm ² /kg	57
Hardness (DPH)	44	57
	70 F 400 F 800 F	
Tensile Strength	42.4 34.7 25.1 10 ³ ps1	88
Yield Strength	38.7 29.6 21.8 10 ³ psi	88
Elongation	4 5.5 6.8 per cent	88
Ultimate Compressive Strength	110.1 10 ³ psi	61
Impact Strength (Izod)	1.2 ft-1b	71
Workability	Poor	88
General Fabrication	(See references)	70,113

NUCLEAR FROPERTIES

Isotopes

Whole- Number Mass	Relative Abundance, percent	Half Life	Decay Mode
162	0.136	Stable	
164	1.56	Stable	
165		1.1 min	β+
166	33.41	Stable	
167	22.94	Stable	
168	27.07	Stable	
169		9.4 days	β-
170	14.88	Stable	
171		7.5(?)	β-,γ

Ther.mal Neutron Cross Section

, Tradicio de China : Referant internet

 $166 \pm 16 \text{ barns/atom}$ or 0.60 cm²/g

73

58,133

Authority

SAFETY

Details unknown.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	76,77
Entropy	S ₂₉₈ = 17.5	$S_{1800} = 31.03$ eu	
Heat Capacity	$C_{p298} = 6.72$	$C_{p1800} = 8.95 \text{ cal/} (mole)(C)$	
Heat Capacities, cal((K)(mole)			76
cargan	<u>10 K</u> <u>25 K</u> <u>50 K</u> (.47) 3.73 6.78	<u>100 K</u> <u>150 K</u> <u>200 K</u> 5.88 6.21 6.46	298.15 K 6.72

Heat Content and Entropy of Solid and Liquid Erbium

(Base: crystals at 298.15 K)

н	¹ T ^{-H} 298.15 [,]	S _T -S _{298.15}	H _T -H298.15.	⁵ T ⁻⁵ 298.15 ^o
Т.К	cal/mole	cal/(K)(mole)	T, KCal/mole	cal/(K)(mole)
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	690 1,390 2,095 2,820 3,560 4,310 5,050 5,870 6,670 7,480 8,310 9,160	1.99 3.54 4.84 5.95 6.94 7.83 8.64 9.39 10.08 10.73 11.35 11.93	1600 10,020 1700 10,890 1800(s) 11,780 1800(1) 15,880 1900 16,680 2000 17,480 2200 19,080 2400 20,680 2600 23,880 2900 24,680	12.49 13.02 13.53 15.81 16.24 16.65 17.41 18.11 18.75 19.34 19.62

For solid erbium:

 $H_{T}-H_{298,15} = 6.29T + 0.74 \times 10^{-3}T^{2} - 1.941$ (0.2 percent; 298 - 1.600 K); $C_{p} = 6.29 + 1.48 \times 10^{-3} T;$ $\Delta H_{1800}(fus(2n)) = 4,100.$

Antimonides

Specific Heat

0 to 300 K

ERBIUM COMPOUNDS

١

N

ErSb Structure Cubic Lattice Type NaCl a0, A 6.107 Melting Point, C <1900 Resistivity, microhm-cm 47 Magnetic Susceptibility, 36,232 10-6 emu/mole Magnetic Moment, 9.36 Bohr magnetons

168,169

Authority

53

ERBIUM COMPOUNDS

		Authority
Arsenides		169
	ErAs	
Structure	Cubic	
Lattice Type	NaCl	
a ₀ , A	5.745	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	37,453	
Magnetic Moment, Bohr magnetons	9.34	
Beryllides		179
	Er Be ₁₃	
a ₀ , A	10.215	
Bismuthides		169
	ErBi	
Structure	Cubic	
Lattice Type	NaCl	
a _o , A	6.202	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	35,714	
Magnetic Moment, Bohr magnetons	9.32	

Borides

	ErB2	ErB ₄	ErB ₆	ErB ₁₂
Molecular Weight	188.91	210.48	232.12	297.04
Structure	Hexago- nal	Tetrago- nal	Cubic	Cubic
a ₀ , A	3.28	7.071	4.110	7.484
c _o , A	3.79	3.9972		
Density, g/cm ³	~ ~	7.261	5.58	4.706
Coefficient of Thermal Expan- sion, 10-6, C				3.0
Work Function, ev			3.37	
Emissivity ($\lambda = 0.655 \mu$)			0.7	
Color		Gray brown	Blue	
Effective Metallic Radius, A			2.18	

Carbides

	ErC2	Er2C3	Er ₃ C
Molecular Weight	191.2	370.4	513.6
Structure	Body- centered tetragona		Cubic
Lattice Type	CaC2	Y2C3	Fe ₄ N
a _o , A	3.620		5.034
c _o , A	6.094	-	
Density, g/cm^3	7.954		4.708
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	~33,300		
Magnetic Moment, Bohr magnetons	8,		
Curie Temperature, K	14.7		

153

285

Authority

153,155, 171

Authority

183

93,108,158, 182,186, 209,210, 235,236

C-		nide	47
Ge	LIUS	iniae	10

	Er2Ge3			
Lattice Type	Defective AlB2			
a _o , A	3.89			
c _o , A	4.09			
Volume of Unit Cell, A^3	53.60			

Halides

	ErBr3	ErCl3	ErF3	Erl ₃	ErOCI
Structure	Hexagonal	Monoclinic	Orthorhombic		Tetragonal
a ₀ , A	4.070	6.80	6.354		3.88
b _o , A		11,79	6.846		
c ₀ , A	6,388	6.39	4.380	••	6.58
β , deg		110.7			
Density, g/cm ³	<u>ه</u> ۲		7.814		
Heat of Formation, scal/mole	. •	229.07		137	
Entropy of Formation, eu/mole		(62)		(7)	
Melting Point, C	950	776	1140	1020	**
Heat of Fusion, kcal/mole	10	7.8	8	10	-
Boiling Point, C	1460	1500	2230	1280	
Heat of Vaporization, kcal/mole	43	44	60	40	
Entropy of Fusion, eu/mole	8	7.4	5	8	**
Entropy of Vaporization, eu/mole	25	25	24	26	
Heat Capacity, cal/(mole)(C)		32.0	••		
Volume of Unit Cell, Λ^3		479	190.5		99.1
Color			Pink	••	
Hydrides

Authority

165,265

		ErH ₂	ErH3
Sta	ructure	Cubic	Hexagonal
ao	, A	5.123	3.621
°0	, A		6. 526
Ma 1	gnetic Susceptibility, 0 ⁻⁶ emu/mole	36,200	34,900
Ma B	gnetic Moment, ohr magnetons	9.75	9.54

Nitrides

	ErN
Molecular Weight	181.28
Structure	Cubic
Lattice Type	Na Cl
a ₀ , A	4.831
Density, g/cm ³	10.26
Resistivity, microhm-cm	79
Temperature Coefficient of Resistivity (80-800 K), $10^{-3}/C$	1.3
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	36,300
Magnetic Moment, Bohr magnetons	9.2
Curie Temperature, K	5

1**49,153,** 223

ERBIUM COMPOUNDS

Authority

156,172, 173,177, 266

Oxides Er203 Molecular Weight 328.52 Structure Bcc 10.51 a., A Density, g/cm³ 8.640 Heat of Formation, 226.80 kcal/mole (35.5) Entropy of Formation, eu/mole 7.3 **Coefficient of Thermal** Expansion (20-1300 C), 10-6/C Heat Capacity at 300 K, 25.26 cal/(mole)(C) 9.6 Magnetic Moment, Bohr magnetons

Color

Pink

Heat Content and Entropy Increments for Erbium Oxide (Smooth Values)

<u>T, K</u>	H _T -H _{298,15} , cal/mole	ST-S298.15. cal/(K)mole	<u>T, K</u>	^H T ^{-H} 298.15, cal/mole	⁸ T ⁻⁸ 298.15 cal/(K)mole
400	2,710	7.80	1300	30,140	43.27
500	5, 540	14, 11	1400	33,360	45,66
600	8,470	19.45	1500	36,600	47, 89
700	11,460	24,06	1600	39, 860	50,00
800	14,490	28.11	1700	43,140	51.99
900	17, 560	31, 72	1800	46, 440	53, 87
1000	20,660	34.99	1900	49,750	55,66
1100	23, 790	37.97	2000	53,070	57.36
1200	26,950	40.72			

Authority

169

Phosphides

ErP Structure Cubic Lattice Type Na Cl 5.606 a₀, A Magnetic Susceptibility, 10⁻⁶ emu/mole 37,523 Magnetic Moment, 9.32 Bohr magnetons

Selenides

Selenides				166,169,
	ErSe	Er ₂ Se ₃	Er2O2Se	192,194, 213
Structure	Cubic	Frc	Нср	
Lattice Type •	NaCl	NaCl		
a ₀ , A	5.662	5.71	3.81	
c _o , A			7.68	
Density, g/cm ³		6.59	8.68	
Melting Point, C	(1800)	1520		*
Resistivity, microhm-cm	170	7.9 x 106		
Magnetic Susceptibility, 10-6 emu/mole	35,635	38,600		
Magnetic Moment, Bohr magnetons	9.56	9.63		
Color		Yellow brown	Pink	
Silicides		٩		263,264
	ErSiz			
Structure	Hexagor	nal		
a _o , A	3.78			
c _o , A	4.09			
Volume of Unit Cell, A ³	51.1			

ERBIUM COMPOUNDS

Authority

153,169

168,169, 194,229,

232

9.63

9.30

ErS _{1.18}	Er ₅ S ₇	ô-Er ₂ S ₃	Er2O2S

Molecular Weight	199.27	204.8	1060.80	430.74	398.61
Structure	Cubic	Cubic	Mono- clinic	Mono- clinic	Hexago- nal
a _o , A	5.424	5.452	12.63	10.07	3.760
b _o , A			3.77	4.00	
с _о , А			11.47	17.33	6.552
β, deg			74		100 400
Density, g/cm ³		6.75	6.39	6.07	7.92
Melting Point, C			1620	1730	**
Magnetic Suscepti- bility, 10 ⁻⁶ emu/ mole	35,088			38,600	
Magnetic Moment, Bohr magnetons	9.50				
Color				Bright ochre	
Tellurides		ErTe	ErzTez	Er 3 Te4	
		Erie	Erzies		
Structure		Fcc			
Lattice Type		Na Cl			
a ₀ , A		6.021			
Resistivity, microl	hm-cm	140	1.1×10^3	280	
Magnetic Susceptib 10 ⁻⁶ emu/mole	oility,	34965			

ErS

Magnetic Moment,

Bohr magnetons

Sulfides

Authority

Miscellaneous

150,267

Compound	Structure	Lattice Type		c _o , A	Curie Temperature, <u>K</u>
ErGa ₃		AuCu'3	4.206		
ErRu2	Hexagonal		5.227	8.780	13

THULIUM

Symbol Tm	Atomic Number 69	Atomic Weight 168, 94
PHYSICAL PROPERTIES		Authority
Abundance	0. 2-1. 0 ppm	51
Density	9.318 g/cm ³	67
Melting Point	1545 C	66
Heat of Fusion	4.2 kcal/mole	61
Boiling Point	1727 C	57
Heat of Vaporization (25 C)	59 kcal/mole	57
Vapor Pressure	$Log P_{mm Hg} = \frac{1.2552(10^4)}{T} - 9.1761$	135
Specific Heat (25 C)	6.45 cal/(mole)(C)	137
Heat of Combustion	225.7 kcal/g-atom	136
Coefficient of Linear Thermal Expansion (20-923 C)	11.6 x $10^{-6}/C$	61
Thermal Conductivity		
Heat of Sublimation		
Cohesive Energy	58 kcal/mole	89
Work Function		0,
Debye Temperature	200 K	97
Expansion on Melting		,,
Surface Tension		
CRYSTAL PROPERTIES		
Structure	Нср	61
Lattice Constants	$a_0 = 3.5375 A$ $c_0 = 5.5546 A$	61
Density	9.318 g/cm ³	67

294

THULIUM

			Authority
	Metallic Radius	1.746 A	67
	Atomic Volume	18.151 cm ³ /mole	66
	Transition Temperature		
	Heat of Transition		
	Ionic Radius (Trivalent Ion)	0.869 A	55
	Closest Appreach of Atoms	3.446 A	56
	Allotropic Modifier tions		
СН	EMICAL PROPERTIES		
	Stable Oxidation State	+3	81
	Electrode Potential	[Tm = Tm ⁺³ + 3e ⁻] + 2.1 volts (standard hydrogen electrode)	81
	Ionization Potential		
	Metallographic Polishing and Etching		
	Corrosion Rates (In Air)	<1 mil/year up to 200 C	109
	Corrosion Data		
ELE	CTRICAL PROPERTIES		
	Resistivity (25 C)	79 microhm-cm	61
	Temperature Coefficient of Resistivity	$1.95 \times 10^{-3}/C$	61
	••••		

295

Authority

117

Resistivity Versus Temperature

(Permission of the American Physical Society)

⁽Permission of the Elsevier Publishing Co.)

THULIUM

Authority

131

Magnetoresistivity

(Permission of the Elsevier Publishing Co.)

MAGNETIC PROPERTIES

Susceptibility (25 C)	$26,200 \times 10^{-6}$		61
	Theoretical 7.	6 Bohr magnetons 62 Bohr magnetons	0.
Effective Magnetic Moment	Measured 7.	62 Boint magaz	138
Curie Temperature	22 K		138
Néel Temperature	60 K		

96

Properties		297
MECHANICAL PROPERTIES		Authority
Young's Modulus		and the second s
Shear Modulus		
Poisson's Ratio		
Compressibility	$2.6 \times 10^{-6} \text{ cm}^2/\text{kg}$	64
Hardness (DPH)	48	57
Tensile Strength		
Yield Strength		
Elongation		
Ultimate Compressive Strength	78.1 x 10 ³ psi	61
Impact Strength (Izod)		
Workability		
General Fabrication	(See references)	70,113
NUCLEAR PROPERTIES		

4

NUCLEAR PROPERTIES

Isotopes

58,139

•	Whole- Number Mass	Relative Abundance, percent	Half Life	Decay Mode
	166		7.7 hr	$K, X, \gamma, \beta^{\dagger}, e^{-}$
	167		9 days	Κ , Χ , γ, β ⁻
	168		100 days	K, X, e
	169	100	Stable	,,-
	170		127 days	β
	171		2 yr	β-
on		118 ± 6 barns	/atom or	
		$0.42 \text{ cm}^2/\text{g}$		

Thermal	Neutron
Cross S	Section

73

SAFETY

Details unknown.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point	76,77
Entropy	$S_{298} = 17.1$	$S_{1900} = 30.62 \text{ eu}$	
Heat Capacity	$C_{p298} = 6.45$	C _{p1900} = 8.85 cal/ (mole)(C)	

(Base: crystals at 298.15 K)

Heat Content and Entropy of Solid and Liquid Thulium

<u>т, к</u>	H _T -H _{298.15} , cal/mole	S _T -S298.15, cal/(K)(mole)	<u>T, K</u>	H _T -H298.15. cal/mole	ST-S298.15. cal/(K)(mole)
400	660	1,91	1400	8,010	10.93
500	1,330	3,40	1500	8,830	11,50
600	2,010	4,65	1600	9,660	12.03
700	2,710	5.72	1700	10,510	12.55
800	3,420	6.67	1800	11,370	13.04
900	4, 150	7,53	1900(1)	12,250	13, 52
1000	4, 890	8.31	1900(1)	16,650	15.83
1100	5,650	9.03	2000	17,450	16.24
1200	6, 420	9.71	2200	19,050	17.01
1300	7,210	10.34	2400	20,650	17.71
H _T (0 Cp H For liq H _T (0	id thulium: -H298.15 = 6.00 .1 percent; 298 - = 6.00 + 1.50 x 1 1900(fusion) = 4,4 uid thulium: -H298.15 = 8.00 .1 percent; 1900 = 8.00.	.0 ⁻³ T; 100. T + 1,450	1,856		

THULIUM COMPOUNDS

Antimonides	
	TmSb
Structure	Cubic
Lattice Type	NaC1
a _o , A	6.091
Magnetic Susceptibility,	26,667
Effective Magnetic	8.14

Moment, Bohr magnetons

169

*

298

Authority

Arsenides

Authority 169

179

169

TmAs
Cubic
NaC1
5. 721
24, 390
7.77

Beryllides

	TmBe ₁₃	
a ₀ , A	10.192	
Bismuthides		

	TmBi
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	6. 192
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	25,000

Effective Magnetic Moment, Bohr magnetons • 7.63

Borides

	TmB ₄	TmB ₆	TmB ₁₂
Molecular Weight	212.22	233.86	299.24
Structure	Tetragonal	Cubic	Cubic
a _o , A c _o , A	7.06 3.99	4.11 	7. 476

153, 171

(Continued)

THULIUM COMPOUNDS

Authority

Borides (Continued)

	TmB ₄	TmB ₆	TmB ₁₂
Density, g/cm^3	7.09	5. 59	4.756
Work Function, ev		3, 34	
Color	Gray brown	Blue	
Effective Metallic Radius, A	* *	2.19	ca ee

Carbides

	TmC ₂	Tm ₂ C ₃	Tm ₃ C
Molecular Weight	192.94	374.8	520,2
Structure	Body-centered tetragonal		Cubic
Lattice Type	CaC ₂	Y ₂ C ₃	Fe ₄ N
a _o , A c _o , A	3.600 6.047	- 4	5.016
Density, g/cm ³	8.175		9. 901

Germanides

	Tm2Ge3
Lattice Type	Defective AlB ₂
a ₀ , A	3.88
a _o , A c _o , A	4.07
Volume of Unit Cell, A^3	53.06

Halides

93, 108, 158, 209, 210, 222, 235, 236

. k ₂	TmBr3	TmCl3	I3 TmF	TmF3 TmI3 TmOI		TmOI
Structure	Hexag- onal	Monoclinic	Ortho- rhorabic	Hexag- onal	Hexag- onal	Tetrag- onal
Lattice Type						PbFC1
a _o , A	4.042	6.75	6.283	6.763	4. 288	3.887
b _o , A	-	11.73	6.811			
c, A	6.357	6.39	4.408	6.927	6.934	9.166
a _o , Α b _o , Α c _o , Α β, deg		110.6				(Continued)

153

Authority

Halides (Continued)

	TmBr3	TmCl3	T	mF 3	TmI3	TmOI
Density,						
g/cm ³			7.971	8.220	** **	
Melting Point, C	955	821		1158	1015	
Transition Temperature	e, C		1043	Ortho. → Hex.	,	
Heat of Fusion kcal/mole	n, 10	9		8	10	-a -a
Boiling Point, C (est.)	1440	1490	2:	230	1 260	
Heat of Vaporization kcal/mole	43 1,	44		60	40	
Entropy of Fusion, eu/n	8 mole	8		5	. 8	
Entropy of Vaporization eu/mole	25 1,	25		24	26	
Color			White			
Volume of Unit Cell, A	3	474	188,6	274.4		

Hydrides

165, 265

STREET, ALCOHOL STREET

ł,

	TmH ₂	TmH ₃
Structure	Cubic	Hexagonal
a ₀ , A	5.090	3. 599
a _o , A c _o , A		6.489
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	21,870	21,140
Effective Magnetic	7.60	7.47
Moment, Bohr magnetons		

THULIUM COMPOUNDS

Or	itv
	OL

Nitrides		153
	TmN	
Molecular Weight	182. 95	
Structure	Cubic	
Lattice Type	NaCl	
a _o , A	4.809	
Density, g/cm ³	10.84	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	23,600	
Magnetic Moment, Bonr magnetons	7.5	
Curie Temperature, K	0	
Oxides		172, 173,
	Tm ₂ O ₃	177,251, 259, 26 6
Molecular Weight	385.87	
Structure	Bcc	
a _o , A	10. 52	
Density, g/cm ³	8.6	
Heat of Formation, kcal/mole	225.7	
Entropy of Formation, eu/mole	35.7	
Heat Capacity, cal/(K)(mole)	27.43 (300 K) 32.0 (1700 K)	
Coefficient of Thermal Expansion (20-1300 C), 10 ⁻⁶ /C	7.7	
Color	Light green	
Effective Magnetic Moment, Bohr magnetons	7.6	(Continued)

Oxides (Continued)

ł.,

HT-H298, 15° cal/mole	^S T -S298.15, cal/(K)(mole)	Т. К	HT-H298.15, cal/mole	ST-S298.15, cal/(K)(mole)
2,890	8.32	1400	34,00J	46.95
5,840	14,90	1500	37,200	49.15
8,860	20,41	1600	40, 400	51,22
11,930	25, 14	1680	42, 960 (a)	52.73 (a)
15,040	29.29	1680	• •	52,96 (8)
18,170	32,97	1700	43,910	53,34
21,310	36,28	1800	47,110	55, 17
24,460	39.28	1900	50,310	56,90
27,630	42.04	2000	53, 510	58,54
30,180	44.58			
	cal/mole 2, 890 5, 840 8, 860 11, 930 15, 040 18, 170 21, 310 24, 460 27, 630	cal/mole cal/(K)(mole) 2,890 8.32 5,840 14.90 8,860 20.41 11,930 25.14 15,040 29.29 18,170 32.97 21,310 36.28 24,460 39.28 27,630 42.04	cal/mole cal/(K)(mole) T, K 2,890 8.32 1400 5,840 14.90 1500 8,860 20.41 1600 11,930 25.14 1680 15,040 29.29 1680 18,170 32.97 1700 21,310 36.28 1800 24,460 39.28 1900 27,630 42.04 2000	cal/molecal/(K)(mole)T, Kcal/mole2,8908,32140034,00J5,84014,90150037,2008,86020,41160040,40011,93025,14168042,960 (a)15,04029,29168043,270 (B)18,17032,97170043,91021,31036,28180047,11024,46039,28190050,31027,63042,04200063,510

Phosphides

	TmP
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	5. 573
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	25,316
Effective Magnetic	7.93
Moment, Bohr magnetons	
Selenides	
	TmSe
Structure	Cubic

Lattice Type	NaCl
a _o , A	5.640
Magnetic Susceptibility, 10 ⁼⁶ emu/mole	18,180
Effection Menueli	1 00

Effective N	lagne	tic	6.89
Moment,	Bohr	magnetons	

169

169

Authority

THULIUM COMPOUNDS

Authority

263, 264

	TmSi ₂		
Structure	Hexagona	al	
a _o , A	3.76 4.07		
c _o , A			
Volume of Unit Cell, A^3	50.52		
Sulfides			169,153
	TmS	Tm ₂ O ₂ S	
Molecular Weight		401.95	
Structure	Fcc	Hexagonal	
Lattice Type	NaCl		
a _o , A	5.412	3.747	
c _o , A		6.538	
Density, g/cm ³		8.59	
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	21,505		
Effective Magnetic Moment, Bohr magnetons	7.42		
Tellurides			169
	TmTe		
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	25,641		
Effective Magnetic Moment, Bohr magnetons	7.63		
Miscellaneous			267
Compound Lattice T	Суре	a _o , A	
TmGa3 AuCus	3	4,188	

304

Silicides

1

the second second

YTTERBIUM

Symbol Yb	Atomic Number 70	Atomic Weight 173.04
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Authority

PHYSICAL PROPERTIES		51
Abundance	2.7-8.0 (approx. 2.7)	
Density	6.959 g/cm ³	67
Melting Point	824 C	66
Heat of Fusion	1.8 kcal/mole	61
Boiling Point	1427 C	57
Heat of Vaporization (25 C)	38 kcal/mole	57
Vapor Pressure (623-931 K)	$Log P_{mm Hg} = 8.295 - \frac{7696}{T}$	60
Specific Heat (25 C)	(6.0) cal/(mole)(C)	53
Heat of Combustion (25 C)	216.8 kcal/g-atom	57
Coefficient of Linear Thermal Expansion	25.0 x 10-6/C (25-700 C)	61

90

÷.

YTTERBIUM

				Authority
	Thermal Conductivity			
	Heat of Sublimation			
	Cohesive Energy	40 kcal/mole		89
	Work Function			
	Debye Temperature	118 K		97
	Expansion on Melting			
	Surface Tension			
CRYSTA	L PROPERTIES			
	Structure	FCC	BCC	61
	Lattice Constants	$a_0 = 5.4862$	$a_0 = 4.45 A$	61
	Density	6.959	6.52 g/cm ³	67
	Metallic Radius	1.940	1.98 A	67
	Atomic Volume	24.80	26.5 cm ³ /mole	66
	Transition Temperature	798 C		66
	Heat of Transition	0.425 kcal/mo	ble	61
	Ionic Radius	(+2) 1.06 A, (*	+3) 0.858 A	55,93
	Closest Approach of Atoms	3,866 A		56
	Allotropic Modifications			

*

ty

Authority

87

CHEMICAL PROPERTIES

	Stable Oxidation State	+2, +3	81
	Electrode Potential	[Yb = Yb ⁺³ + 3e ⁻] + 2.1 volts (standard hydrogen electrode)	81
	Ionization Potential	lst = 7.1 volts	82
	Metallographic Polishing and Etching		
	Corrosion Rates (In Air)	<1 mil/year up to 200 C	109
	Corrosion Data		
ELEC	CTRICAL PROPERTIES		
	Resistivity (25 C)	27.0 microhm-cm	61

Temperature Coefficient of Resistivity (25 C)	$1.30 \times 10^{-3}/C$	61
of Resistivity (25 C)		

Atomic Volume Versus Temperature (Permission of Elsevier Publishing Co.)

YTTERBIUM

Authority

118

Resistance Versus Temperature (Reprinted from Inorganic Chemistry)

141

309

Authority

141

Partial Pressure-Temperature Phase Diagram (Reprinted from <u>Inorganic Chemistry</u>)

141

YTTERBIUM

Authority

MAGNETIC PROPERTIES		
Susceptibility (25 C)	$71 \times 10^{-6} \text{ emu/mole}$	61
Effective Magnetic Moment	Theoretical 4.5 Bohr magnetons Measured 0.41 Bohr magnetons	61
Curie Temperature	None	61
Néel Temperature	None	61
MECHANICAL PROPERTIES		
Young's Modulus	$1.78 \times 10^{11} \text{ dynes/cm}^2$	57
Shear Modulus	$0.70 \times 10^{11} \text{ dynes/cm}^2$	57
Poisson's Ratio	0.284	61
Compressibility	7.12 x 10^{-6} cm ² /kg	57
Hardness (DPH)	21 (not annealed)	57
Tensile Strength	70 F 400 F 10.4 10.2 10 ³ psi	88
Yield Strength	9.5 7.8 10 ³ psi	88
Elongation	6 10.8 percent	88
Ultimate Compressive Strength		
Impact Strength (Izod)	5.3 ft-lb	71
Workability		
General Fabrication	(See references)	70, 113

Authority

NUCLEAR PROPERTIES

Isotopes

58,	1	1	6,
14	F()	

73

83

Whole- Number Mass	Relative Abundance, percent	Half Life	Decay Mode
168	0.140	Stable	
169		33 days	Κ, Χ,γ
170	3.03	Stable	
171	14.31	Stable	
172	21.82	Stable	
173	16.13	Stable	
174	31.82	Stable	-
175	.	99 hr	Χ , γ, β ⁻
176	12.73	Stable	
177		2.1 hr	β-
ermal Neut ross Sectio		36 ± 4 ba or 125	rns/atom cm ² /g

Therma	Neutron	
Cross	Section	

SAFETY

Details unknown.

1

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point
Entropy	$S_{298} = 15.0$	$S_{1097} = 23.92 \text{ eu}$
Heat Capacity	$C_{p298} = 6.00$	$C_{p1097} = 7.58 \text{ cal/(mole)(C)}$

 $\beta_{\rm s}$

YTTERBIUM

Authority

119

Specific Heat

T. 12	C _p . <u>mj/(mole)(K)</u>	τv	C _p , mj/(mole)(K)
<u>T, K</u>	m)/(mole (K)	<u>T, K</u>	n.j/(moleAK)
	Run I		Run II
0.4275	1.418	0.3697	1.305
0.4428	1.451	0.3864	1,341
0.4651	1.510	0.4051	1.368
0.4959	1.603	0.4268	1.412
0.5355	1.734	0.4514	1.476
0, 5823	1,907	0.4781	1.554
0.6350	2.123	0.5058	1.638
0.6915	2.376	0. 5360	1.746
0.7494	2.654	0.5688	1.860
0.8090	2.966	0.6043	2.012
0.8727	3.311	0.6422	2,171
0.9403	3.711	C. 6811	2.328
1.0109	4,170	0.7217	2,528
1.0848	4,665	0.7652	2.736
1,1615	5,236	0.8123	2.977
1.2422	5.877	0.8645	3.260
1,3283	6.629	0.9226	3,607
1.4200	4.468	0.9850	3,990
1.5201	8, 542	1.0518	4, 431
1,6343	9,871	1,1238	4,941
1.7626	11, 586	1.2044	5, 563
1.2097	13.724	1.2924	6,296
2.0682	16.407	1.3909	7,188
2,2351	19.622	1.4957	8,277
2,4120	23,460	1,6309	9.827
2,6012	28,000	1.7562	11.387
2,7992	34.028	1.9045	13,635
3.0023	40.886	2.0815	16,621
3.2097	48.643	2.2782	20, 498
3, 4197	57.253	2,4883	25,335
3, 6341	67.595	2,7076	31,218
3.8576	78.375	2,9215	38.017
		3, 1315	45.610
		3,3494	53,958
		3, 5487	63,249
		3.7656	73,805
		3.9959	86,267

313

Authority

77

Heat Content and Entropy of Solid and Liquid Ytterbium (Base: a -crystals at 298, 15 K)

Т, К	HT-H298.15. cal/mole	3T-S298.15. cal/(K)(mole)	Т, К	HT-H298.15. cal/mole	ST-S298. 15. cal/(K)(mole)
400	620	1.79	1097(1)	7,930	10.92
500	1,250	3,19	1100	7,950	10.24
600	1,900	4.38	1200	8,700	11.59
700	2,570	5,41	1300	9,450	12,19
800	3,260	6, 33	1400	10,200	12,75
900	3,970	7.17	1500	10,950	13.27
1000	4,700	7.94	1600	11.700	13.75
1071(a)	5,230	8.45	1700	12,450	14.20
1071(β)	5, 530	8.73	1800	13,200	14, 64
1097(s)	5,730	8, 92			1 7. 07

For a-ytterbium: H_T -H298.15 = 5.41T + 0.99 x 10⁻³T² - 1.701 (0.1 percent; 298-1.071 K); $C_p = 5.41 + 1.98 \times 10^{-3}$ T; ΔH_{1071} (ransition) = 300.

```
For \beta-ytterbium: H<sub>T</sub>-H<sub>298,15</sub> = 7.7oT - 2,717
                           (0.1 percent; 1071-1097 K);
                          C_p = 7.70,
\Delta H_{1097}(fusion) = 2,200,
```

For liquid ytterbium: H_T-H298.15 = 7.50T - 300 (0.1 percent; 1097-1800 K); Cp = 7.50.

YTTERBIUM COMPOUNDS

171 011

Antimonides

	YbSb
Structure	Cubic
Lattice Type	NaCl
a _o , A	6.079
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	5, 450
Effective Magnetic Moment, Bohr Magnetons	3.74

YTTERBIUM COMPOUNDS

Authority

169

Arsenides

	YbAs
Structure	Cubic
Lattice Type	NaCl
a _o , A	5.702
Magnetic Susceptibility, 10-6 emu/mole	7,825
Magnetic Moment, Bohr magnetons	4. 61

Beryllides

YbBe13	
10.19	

Bismuthides

a_o, A

314

Authority

1

153,155, 171

	ҮЪВ З	YbB4	YbB6	YbB12
Molecular Weight	205.50	216. 32	237.96	
Structure	Tetragonal	Tetragonal	Cubic	Cubic
a _o , A	3.77	7.01	4.144	7. 476
c _o , A	3.562	4.00		
Density, g/cm ³	6.74	7.31	5,556	
Resistivity, microhm-cm			36.5	
Temperature Coef- ficient of Resis- tivity, 10 ⁻³ /C			2.34	
Coefficient of Thermal Expansion 10 ⁻⁶ /C	 ,		5.85	
Thermal Conduc- tivity, call (cm)(sec)(C)`			0.60	
Magnetic Suscep- tibility, 10 ⁻⁶ emu/mole			8,740	
Magnetic Moment, Bohr magnetons			4. 58	
Work Function, ev		~ ~	3.13	
Microhardness, kg/mm ²			3080	
Color			Black	. • ;
Emissivity ($\lambda = 0.655\mu$)			0.7	
Effective Metallic Radius, A		- 14	2.20	

Borides

1

P 11- 11 1- 16 155 65 154 6

YTTERBIUM COMPOUNDS

Authority

153

Carbides		
	¥РС5	Yb3C
Molecular Weight	197.04	531, 12
Structure	Body-centered tetragonal	Cubic
Lattice Type	CaC2	Fe4N
a ₀ , A	2.673	4. 993
c _o , A	6.109	
Density, g/cm ³	8.097	10.26
Magnetic Susceptibility, 10-6 emu/mole	~2, 500	
Effective Magnetic Moment,	3.69	
Bohr magnetons		

Germanides

	Yb2Ge3		
Structure	Defective AlB ₂		
a _o , A	3.96		
c _o , A	4.18		
Volume of Unit Cell, A ³	56.77		

183

Halides

317

93,108, 109,158, 186,209, 210,235, 236,250, 277

									277
	YbBr2	YbCl2	YbF2	Ybl2	YbBrg	YbCl3	YbF3	YbI3	УЪОІ
Structure		Ortho- rhombic			Hexa-	Mono- clinic	Ortho- rhombic	Hexagonal	Tetragonal
Lattice Type		••	••	••	**				PbFCl
a ₀ , A	60 4 0	6, 53	• •		4.032	6.73	6.216	4.285	3.870
bo, A	an 40	6.68	• •			11.65	6,786		
c ₀ , A	- *	6.91			6.382	6.38	4,434	6.931	9, 181
β, deg		••				110,4			
Density, g/cm ³		••	••				8,168		
Heat of Formation, kcal/mole	••	185.5	• •	-#		(224)			
Entropy of Forma- tion, eu/mole		(39)	• =	••		(62)			••
Melding Point, C	677	727	1377	527	940	854	1157	1027	**
Heat of Fusion, kcal/mole	6	6	5	5	10	9	8	10	
Boiling Point, C	1830	1930	2380	1330	Decom- poses	Decom- poses	2230	Decom - poses	
Heat of Vapori- zation, kcal/ mole	48	55,7	75	37			60		
Entropy of Fusion, eu/mole	6	6	3	6	8	8	5	8	**
Entropy of Vapori- zation, eu/mole	23	23.4	28	23	Decom- poses	Decom- poses	24	Decom - poses	
Color		••					White		

YTTERBIUM COMPOUNDS

Authority

251

	УbH2	YbD2
Structure	Orthorhombic	Orthorhombic
a _o , A		5.871
b _o , A		3.561
c _o , A		6.763

Nitrides

	YbN
Molecular Weight	187.05
Structure	Cubic
Lattice Type	NaC1
a ₀ , A	4. 78
Density, g/cm ³	11.33
Magnetic Suceptibility, 10-6 emu/mole	7,250
Effective Magnetic Moment, Bohr magnetons	4.8
Color	Black

100

153, 223

318

Hydrides

Authority

			Additionaly
Oxides			156,172,
	УЪО	Yb2O3	153,176, 177,259,
Molecular Weight		394.08	266,271
Structure		Bcc	
a ₀ , A	-	10.41	
Density, g/cm ³		9.2	
Heat of Formation, kcal/mole	158	216.84	
Entropy of Formation, eu/mole		(34. 5)	
Melting Point, C		2350	
Heat Capacity at 300 K, cal/(K)(mole)		27. 64	
Coefficient of Thermal Expansion (20-1100 C), 10-6/C		7.5	
Effective Magnetic Moment, Bohr magnetons		4. 5	
Color		White	

1

Heat Content and Entropy Increments for Ytterbium Ox.de (Yb2O3) (Smooth values)

<u>т, к</u>	H _T -H298, 15, cal/mole	ST-S298.15, cal/(K)(mole)	Т. К	HT-H298, 15. cal/mole	ST-S298.15. cal/(K)(mole)
400	2,910	8.38	1365	33, 000(a)	(6. 42(a)
500	5,890	15.03	1365	33, 150(B)	46. 53(B)
600	8,950	20, 61	1400	34,280	47.35
700	12,030	25,40	1500	37, 500	49.57
800	15,200	29.59	1660	40, 720	51,65
000	18,350	33.30	1700	43,940	53, 60
1000	21, 500	36, 62	1800	47, 160	55.44
1100	24,650	39,62	1900	50, 380	57.18
1200	27,800	42,36	2000	53,600	58, 33
1300	30, 950	44.88			

YTTERBIUM COMPOUNDS

Phosphides

	YbP
Structure	Cubic
Lattice Type	NaCl
a ₀ , A	5.554
Magnetic Susceptibility, 10 ⁻⁶ emu/mole	7813
Magnetic Moment, Bohr magnetons	4.5

Selenides

-

192,194, 213,228, 232,268, 278

YbSe	Yb2Se3	Yb4Se3	Yb2O2Se
Fcc	Fcc		Нср
NaC1	NaC1		• •
5.94	5.66		3.76
			6. 69
	7.33		9.26
1945	>1665		
1 x 1(⁸		6.6 x 10 ⁵	
,	7,890		
0.84	4.75		
au	Violet black		Beige
/	/		
	NaCl 5. 94 1945 1 x 10 ⁸	NaCl NaCl 5. 94 5. 66 7. 33 1945 >1665 1×10^8 , 7, 890 0. 84 4. 75	NaCl NaCl 5. 94 5. 66 7. 33 1945 > 1665 1×10^8 6. 6 x 10 ⁵ , 7, 890 0. 84 4. 75

Authority

Authority

321

264

Silicides

	YbSi2		
Structure	Hexagonal		
a _o , A	3, 77		
с _о , А	4.10		
Volume of Unit Cell, A^3	50.5		

Sulfides

•				
	YbS	Yb ₃ S ₄	Yb2S3	Yb2O2S
Molecular Weight	205.10	647.36	442.28	410.15
Structure	Cubic	Orthorhombic	Hexagonal	Hexagonal
a ₀ , A	5.673	12.81	6. 784	3. 723
b _o , A		12.97		
c _o , A		3.84	18.29	6. 503
Density, g/cm ³	6.75	6. 71	6.04	8.72
Magnetic Suscep- tibility, 10-6 emu/ mole	1,450	4, 740	7,130	
Color	~9 48		Yellow	

Tellurides

	YbTe	Yb2Te3
Structure	Fcc	
Lattice Type	NaCl	
a _o , A	6, 39	
Melting Point, C	1740	
Resistivity, microhm-cm	7 x 109	1×10^7

Symbol Lu

Includes the provide the local division of t

323

LUTETIUM

Atomic Number 71

Atomic Weight 174, 99

Authority

PHYSICAL PROPERTIES

Abundance	0.8-1.7 ppm (approx. 0.8)	51
Density	9.849 g/cm ³ (20 C)	67
Melting Point	1652 C	66
Heat of Fusion	4.5 kcal/mole	61
Boiling Point	3327 C	57
Heat of Vaporization (25 C)	90 kcal/mole	57
Vapor Pressure (1651-1932 K)	$Log P_{mm Hg} = 9.247 - \frac{21719}{T}$	60
Specific Heat (25 C)	(6.45) cal/(mole)(C)	53
Heat of Combustion	221.0 kcal/g-atom	142
Coefficient of Linear Thermal Expansion (20-956 C)	12.5 x $10^{-6}/C$	61
Thermal Conductivity		
Heat of Sublimation		
Cohesive Energy	94 kcal/mole	89
Work Function		
Debye Temperature	210 K	97
Expansion on Melting		
Surface Tension		

LUTETIUM

Authority

CRYSTAL PROPERTIES

Structure	Нср	61
Lattice Constants	$a_0 = 3.5031 A$ $c_0 = 5.5509 A$	61
Density	9.849 g/cm ³	67
Metallic Radius	1.734 A	67
Atomic Volume	17.779 cm ³ /mole	66
Transition Temperature		
Heat of Transition		
Ionic Radius (Trivalent Ion)	0. 848 A	55
Closest Approach of Atoms	3. 439 A	56
Allotropic Modifications	Resistivity measurements indicate a structural change at high temperature.	.66
Stable Oxidation State	+3	81
Electrode Potential	[Lu = Lu ⁺³ +3e ⁻] +2.1 volts (standard hydrogen electrode)	81
Ionization Potential		
Metallographic Polishing and Etching		
Corrosion Rates		
	Lattice Constants Density Metallic Radius Atomic Volume Transition Temperature Heat of Transition Ionic Radius (Trivalent Ion) Closest Approach of Atoms Allotropic Modifications Allotropic Modifications CAL PROPERTIES Stable Oxidation State Electrode Potential Ionization Potential Metallographic Polishing and Etching	Lattice Constants $a_0 = 3.5031 \ A$ $c_0 = 5.5509 \ A$ Density9.849 g/cm ³ Metallic Radius1.734 AAtomic Volume17.779 cm ³ /moleTransition TemperatureHeat of TransitionIonic Radius (Trivalent Ion)0.848 AClosest Approach of Atoms allotropic Modifications3.439 AAllotropic ModificationsResistivity measurements indicate a structural change at high temperature.WCAL PROPERTIESStable Oxidation State+3Electrode Potential[Lu = Lu ⁴³ + 3e ⁻] + 2.1 volts (standard hydrogen electrode)Ionization Potential

Corrosion Data

ELECTRICAL PROPERTIES

۰.

Resistivity (25 C)	79 microhm-cm (25 C)	61
Temperature Coefficient of Resistivity	$1.4 \times 10^{-3}/C$	61
Properties

MAGNETIC PROPERTIES

Magnetic Susceptibility (25 C)	$17.9 \times 10^{-6} \text{ emu/mole}$	61
Effective Magnetic Moment	Theoretical 0.00 Bohr magnetons Measured 0.21 Bohr magnetons	61
Curie Temperature	None	61
Néel Temperature	None	61
MECHANICAL PROPERTIES		
Young's Modulus		
Shear Modulus		
Poisson's Ratio		
Compressibility	2.3 x 10^{-6} cm ² /kg	64
Hardness (DPH)	77	57

LUTETIUM

		Authority
Tensile Strength		
Yield Strength		
Elongation		
Ultimate Compressive Strength	144.8 10 ³ psi	61
Impact Strength (Izod)		
Workability		
General Fabrication	(See references)	70, 113

NUCLEAR PROPERTIES

Isotopes

Whole- Number Mass	Relative Abundance, percent	Half Life	Decay Mode	
170		2.15 days	K, e^- , γ , X, β^+	
171		9 days	K, e ⁻ , γ, X	
172		100 days	Κ , ε ⁻ , γ, Χ	
175	97.4	Stable		
176	2.6	2.4 x 10^{10} years	κ , γ, β ⁻ , χ	
177		6.6 days	β-	
Thermal Neutron Cross Section		5 barns/atom 37 cm ² /g		7

SAFETY

Details unknown.

THERMODYNAMIC PROPERTIES

	Room Temperature	Melting Point
Entropy	S ₂₉₈ = 11.8	S ₂₀₀₀ = 25.77 eu
Heat _apacity	$C_{p298} = 6.45$	$C_{p2000} = 9.00 \text{ cal/(mole)(C)}$

56, 133

73

83

76, 77

Authority

77

Heat Content and Entropy of Solid and Liquid Lutetium (Base: crystals at 298.15 K)

	T ^{-H} 298.15 [,] cal/mole	^S T ^{-S} 298.15 cal/(K)(mole)	т. К	H ₁ -H ₂₉₈ , 15 cal/mole	ST -5298.15' cal/(K)(mole
T. K 400 500 600 700 800 900 1000 1100 1200 1300	665 1, 330 2, 015 2, 710 3, 425 4, 150 4, 890 5, 650 6, 420 7, 210	1.91 3.40 4.65 5.72 6.67 7.53 8.31 9.03 9.71 10.34	1400 1500 1600 1700 1800 1900 2000(s) 2000(s) 2100 2200	8,010 8,830 9,660 10,510 11,370 12,250 13,140 17,740 13,540 19,340	10.93 11.50 12.03 12.55 13.04 13.51 13.97 16.27 16.86 17.03

For solid lutetium: H_T -H_{298,15} = 6.00T + 0.75 x 10⁻³ T² - 1,856 (0.1 percent; 298-2000 K); $C_p = 6.00 + 1.50 \times 10^{-3}$ T; $\Delta H_{2,000}$ (fusion) = 4,600.

For liquid lutetium: $H_T - H_{298.15} = 8.00T + 1,740$ (0.1 percent; 2000-2200 K); $C_p = 8.00.$

Thermodynamic Functions

unction	8		H"-Ho	(-F*-H_0)
<u>t, K</u>	Cp. V(g-atom)(K)	S*, j/(g-atom)(K)	T'	T j/(g-atom)(¥)
		0.063	0.036	0.027
5	0.10	0.225	0, 145	0.080
10	0.49	0.607	0.425	0.182
15	1.67	1, 346	0.977	0.369
20	3,66	3.746	2.673	1.073
30	8.47	6. 793	4.677	2,116
40	12. 71	9.973	6.613	3,360
50	15.84		8,309	4, 723
60	18.10	13.072	9, 865	6.127
70	19.74	15.993	11.179	7,533
80	20, 98	18.712	12, 323	8,918
90	21.93	21.241	13.318	10, 269
100	22. 59	23.587	14,954	12.848
120	23.64	27.802	16.252	15.254
140	24.40	31.506	17.307	17.495
160	24, 97	34.802	18, 184	19.585
180	25.42	37.769	18, 926	21.531
200	25.78	40.457	19.561	23.375
220	26,03	42.936	20, 109	25, 101
240	26.25	45.210	20. 591	28.731
260	25.50	47.322	20. 379	27.754
273.1	5 26.63	48, 633	21,020	28, 273
280	26.69	49, 293	21, 369	29.606
298.1	5 26.85	50, 975	21. 404	29.737
300	26.88	51, 141		31, 130
320	27.04	52, 881	21.751	\$2.457
340	27.17	54. 523	22.066	

LUTETIUM COMPOUNDS

Authority

Antimonides	LuSb	275
Structure	Cubic	
Lattice Type	NaC1	
a _o , A	6.0555	
Arsenides		
Beryllides	LuBe ₁₃	179
a _o , A	10.177	
Bismuthides		

Borides

ic	les				153	, 171
		LuB ₂	LuB ₄	LuB ₆	LuB ₁₂	
	Molecular weight	196.63	218.27	239.91	304.83	
	Structure	Hexagonal	Tetragonal	Cubic	Cubic	
	a _o , A	3.246	6. 997	4. 11	7.464	
	c _o , A	3.704	3.938			
	Density, g/cm ³	9.76	7.52	5.74	4.868	
	Work Function, ev			3.0		
	Color			Blue		
	Emissivity ($\lambda = 0.655 \mu$)			0.7		
	Effective Metallic Radius, A			2.19		

Properties

Carbides

Authority

153

Molecular Weight

Structure

Lattice Type

a_o, A

co, A

Density, g/cm³

Germanides

Lu2Ge3Lattice TypeDefective AlB2ao, A3.83co, A4.05Volume of Unit51.45

Lu₃C

536.97

Cubic

 Fe_4N

4.965

10.54

LuC₂

198.99

Body-centered tetragonal

CaC2

3.563

5.964

8.728

Cell, A³

183

LUTETIUM COMPOUNDS

Authority

165

93, 108, 158, 165,209,210, 235,236

					235,2.
		LuBr3	LuCl ₃	LuF3	LuI3
	Structure	Hexagona	1 Monoclini	c Orthorhombic	Hexagonal
	a ₀ , A	4.015	6.72	6. 151	4.271
	b _o , A		11.60	6.758	
	с _о , А	6.371	6.39	4. 467	6.930
	Density, g/cm ³			8,332	
	Melting Point, C	957	892	1182	1045
	Heat of Fusion, kcal/mole	10	9	8	11
	Entropy of Fusion, eu/mole	8	8	5	8
	Boiling Point, C	1410	1490	2225	1210
	Heat of Vaporization, kcal/mole	42	43	60	38
	Entropy of Vaporization, eu/mole	25	25	24	25
	Color	40 GR		White	
	Volume of Unit Cell, A ³		467	185.7	
Hyd	drides				
			LuH ₂	LuH3	
	Structure		Cubic	Hexagonal	
	a _o , A		5,033	3.558	
	c _o , A			6. 443	

Halides

Properties

Authority

153

Nitr	ides		
		LuN	
	Molecular Weight	189.00	
	Structure	Cubic	
	Lattice Type	NaCl	
	a _o , A	4. 766	
	Density, g/cm^3	11.59	

Oxides

i

Lu ₂ O ₃
397.94
Bcc
10.38
224, 5
(35, 6)
23. 40
7. 4
0.0

156, 1	72,
173,	
245	

(Continued)

t

LUTETIUM COMPOUNDS

Authority

Oxides (Continued)

Heat Content and Entropy Values for Lutetium Oxide (Smooth Values)

<u>Т, к</u>	H _T -H _{298.15} , cal/mole	^S T ^{-S} 298.15 [,] cal/(K)(mole)	<u>т, к</u>	^H T ^{-H} 298. 15 [,] cal/mole	ST -S298, 15, cal/(K)(mole)
400	2,550	7.33	1300	29, 340	41.89
500	5, 260	13.38	1400	32, 490	44.23
600	8, 100	18.55	1500	35, 660	46.41
700	11, 020	23.05	1600	38, 840	48.46
800	13, 990	27.02	1700	42, 030	50.40
900	17,000	30, 56	1800	45, 230	52.23
1000	20, 040	33, 76	1900	48, 440	53.97
1100	23, 110	36.69	2000	51,660	55.62
1200	26, 210	39.39			

Phosphides

Density, g/cm^3

Selenides		268
	Lu ₂ Se ₃	
Structure	Fcc	
a ₀ , A	5.62	
Silicides		263, 264
	LuSiz	
Structure	Hexagonal	
a ₀ , A	3. 74	
c _o , A	4. 04	
Volume of Unit Cell, A ³	49.2	
Sulfides		153
	Lu ₂ O ₂ S	
Molecular Weight	414.05	
Structure	Hexagonal	
a _o , A	3. 709	
c _o , A	6. 486	

8.89

Properties

Authority

Tellurides

ANNAL PROPERTY AND

Miscellaneous

150, 267

Compound	Structure	Lattice Type	a ₀ , A	c ₀ , A	Superconducting Transition Temperature, K
LuCa ₃		AuCu ₃	4.169		
LuRu2	Hexagonal		5.204	8.725	
LuOs ₂	Hexagonal		5.254	8.661	3. 49

REFERENCES

- "Rare Earth Metal Phase Diagrams", C. E. Lundin, <u>The Rare Earths</u>,
 (F. H. Spedding and A. H. Daane, editors) John Wiley and Sons, Inc., New York (1961), p 224.
- (2) "Constitution of the Systems of Uranium and Carbon with Molybdenum, Niobium, Rhenium, Tungsten and Yttrium", W. Chubb and D. L. Keller, Report No. BMI-1685 (August 11, 1964).
- (3) "The Yttrium-Erbium and Yttrium-Scandium Alloys", I. A. Markova, V. F. Terekhova, and E. M. Savitskiy, Zhurnal Neorgan. Khimii, <u>9</u>, 2034-2036 (August 1964).
- "Rare Earth Alloys", E. M. Savitskiy, V. F. Terekhova, I. V. Burov,
 I. A. Markova, and O. P. Naumkin; Moscow, Publishing House of the Academy of Sciences (1962). AEC tr 6151.
- (5) "The Y-Nd and Sc-Nd Phase Systems", B. J. Beaudry, M. Michel, A. H. Daane, and F. H. Spedding, preprint of 4th Rare Earth Research Conference Session II, April 22-25, 1964, Phoenix, Arizona (to be published as "Rare Earth Research III").
- (6) Yttrium-Oxygen System", O. N. Carlson, W. D. McMullen, and E. D. Gibson, Annual Summary Research Report in Metallurgy, July 1960-June 1961, USAEC Report IS-351.
- (7) "Phase Diagram of Alloys of the Yttrium-Tin System", V. F. Terekhova,
 I. A. Markova, and E. M. Savitskiy, Zh. Neorgan. Khimii, <u>8</u> (8), 1991-1993 (1963).
- "Phase Diagram and Thermodynamic Properties for the Yttrium-Zinc System",
 P. Chiotti and K. Gill, Annual Summary Research Report in Metallurgy,
 July 1959-June 1960, USAEC Report IS-193.
- (9) "Phase Equilibria in Y2 O3 -Al2O3-SiO2 System", I. A. Bondar and F. Ya. Galakhov (Grebenshchikov Inst. of Chem. of Silicates, Acad. of Sci, USSR) Izv. Akad. Nauk SSSR, Scr. Khim., (7), 1325-1326 (July 1964). In Russian.
- (10) "Stable and Metastable Equilibria in the Systems Y2O3-Al2O3 and Gd2O3-Fe2O3",
 I. Warshaw and R. Roy, J. Am. Ceram. Soc., <u>42</u>, 434-438 (September 1959).
- "Order-Disorder Effects and Solid Solutions of the System NaF-YF₃",
 R. E. Thoma, G. M. Hebert, H. Insley, and C. F. Weaver, "<u>Rare Earth Research II</u>" (K. S. Vorres, editor), Gordon and Breach, Science Publishers, Inc., New York (1964), pp 297-302.
- (12) "The Phase Diagram of the Sulfide System of Yttrium and Calcium", J. Flahaut, L. Domange, and M. Patrie, Comptus Rendus, <u>251</u>, 2535-2537 (November 1960). In French.

- (13) "Rare Earth Silicates. III Constitution Diagram of a Binary Y2O3-SiO2 System", N. A. Torpov and I. A. Bondar (Inst. of Silicates, Acad. of Sci. USSR), Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, (4), 544-550 (April 1961). In Russian.
- (14) "Yttrium-Tungsten Oxides", H. J. Borchardt, Inorganic Chem., <u>2</u> (1), 170-173 (February 1963).
- (15) "Phase Ratio in '.203-Zr203 System II Solid Solutions", Fu-k'ang Fan, A. K. Kuznetsov, and E. K. Keler, Izvest. Akad. Nauk SSSR, Otd. Khim. Nauk, (4), 601-610 (April 1963). In Russian.
- (16) "Phase Diagram of Chromium-Lanthanum System", E. M. Savitskiy,
 V. F. Terekhova, and A. V. Kholopov, Zh. Neorgan. Khimii, <u>5</u> (3), 754-755 (1960).
- (17) "Phase Diagrams of Some Plutonium Alloy Systems", D. M. Poole, M. G. Bale, P. G. Mardon, J.A.C. Marples, and J. L. Nichols, Proceedings, International Conference on Metallurgy of Plutonium, Cleaver-Hume, London (1961).
- (18) "Crystal Chemistry and Phase Equilibrium of the La-Te System", T. H. Ramsey, H. Steinfink, and E. J. Weiss, <u>Rare Earth Research II</u> (K. S. Vorres, editor), Gordon and Breach, Science Publishers, Inc., New York (1964), pp 303-314.
- (19) "Phase Equilibrium in Lanthanum-Aluminum Oxide System", I. A. Bondar and N. V. Vinogradova, Izv. Akad. Nauk SSSR, Ser. Khim., (5), 785-790 (May 1964). In Russian.
- (20) "Studies on the Rare Earth Sesquioxides Beryllium Oxide I. Phase Equilibrium Relationship in the System La2O3-BeO", Chu-kun Kuo and Tung-sheng Yen, translated from K'o Hsueh T'ung Pao, (5), 457-458 (May 1964).
- (21) "Investigations of the Diagrams in the System La2O3-Cr2O3", S. G. Tresvyotskiy and U. N: Pavlikov, <u>Problems of the Theory and Use of Rare Earth Metals</u>, Izdatel'stvo "Nauka" Moscow (1964), pp 159-162.
- (22) "The La₂O₃-HfO₂ System", L. N. Komissarova, Ken-shia Wang, V. I. Spitsy'n, and Yu. P. Simanov, Zhurnal Neorg. Khimii, <u>9</u> (3), 693-697 (1964).
- (23) "Diagram of the System La₂O₃-MgO", S. G. Tresvyatskiy and L. M. Lopato, <u>Problems of the Theory and Use of Rare Earth Metals</u>, Izdatel'stvo "Nauka" Moscow (1964), pp 155-158.
- (24) "Silicates of Rare Earth Elements. I Constitution Diagram of La₂O₃-SiO₂", N. A. Torpov and N. A. Bondar, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk, (2), 153-156 (February 1960).
- "The System La₂O₃-TiO₂, Phase Equilibria and Electrical Properties",
 J. B. MacChesney and H. H. Sauer, J. Am. Ceram. Soc., <u>45</u>, 416-422 (September 1962).

- (26) "Phase Equilibria in Systems Involving the Rare Earth Oxides. Part II. Solid State Reactions in Trivalent Rare Earth-Oxide Systems", S. J. Schneider and R. S. Roth, J. Research Nat'l. Bur. Standards, <u>64A</u>, 317-332 (July, August 1960).
- "The Yttrium-Cobalt System", K. J. Strnat, W. Ostertag, Lt. N. J. Adams, and J. C. Olson, Preprint from 5th Rare Earth Research Conference, Book (27) Five, Ames, Iowa (August 30, 1965).
- "The Sc-Y and Sc-Zr Systems", B. J. Beaudry and A. H. Daane, Trans. AIME, (28) 227 (4), 865-868 (1963).
- "Phase Diagrams of Systems Based on Gadolinium", I. V. Burov, V. F. Terekhova, and Ye. M. Savitskiy, Problems of the Theory and Use of Rare (29) Earth Metals, Izdatel'stvo "Nauka" Moscow (1964), pp 116-123.
- (30) "The System Cerium-Manganese in the Range of 0-20 Atomic Per Cent Manganese", B. J. Thamer, J. Less Common Metals, 7, 341-346 (November 1964).
- "The Structure of the System Ruthenium-Cerium", W. Obrowski, Z. Metallkunde, (31) 53 (11), 736-737 (1962).
- "The Scandium-Erbium and Scandium-Cerium Systems", O. P. Naumkin, V. F. Terekhova, and Ye. M. Savitskiy, Zh. Neorgan. Khim., 9 (10), 2497-(32) 2498 (1964).
- "The Phase Diagram of the Vanadium-Cerium System", Ye. M. Savitskiy, V. V. Baron, and Yu. V. Yefimov, Zh. Neorgan. Khim., 7 (3), 701-703 (1962). (33)
- "Investigation of Aluminum Rich Alloys of the Al-Cu-Ce System", Ye. I. Gladyshevskiy, I. F. Kolobnev, and O. S. Zarechnyuh, Zh. Neorgan. Khim; (34) 6 (9), 2103-2108 (1961).
- "Phase Diagram of the Praseodymium-Neodymium System", I. A. Markova, V. F. Terekhova, and Ye. M. Savitskiy, Zh. Neorgan. Khim., 8 (8), 1998-(35) 2000 (1963).
- "Neodymium and Its Alloys With Aluminum", E. M. Savicskiy, E. S. Stepanov, and V. F. Terekhova, Izvest. Akad. Nauk SSSR, Otdel. Tekh. Nauk, Met. i (36) Toplivo (3), 73-78 (June 1960).
- "Highly Refractory Material Made From Oxides", A. M. Cherepanov and S. G. Tresvyatskiy, Izdatel'stvo, Metallurgiya, Moscow (1964). (37)
- "Study of Rare Earth Single Crystals and Alloys", E. M. Savitskiy, V. F. Terekhova, I. V. Burov, and O. P. Naumkin, preprint of 4th Rare Earth Research (38) Conference - Addendum I, April 22-25, 1964, Phoenix, Arizona (to be published as "Rare Earth Research III").

- (39) "Constitutional Diagrams of the Systems Magnesium-Neodymium and Magnesium-Cerium" M. Ye. Drits, Z. A. Sviderskaya, and L. L. Rokhlin, Trudy Inst. of Metallurgy imeni A. A. Baykov, Metallurgy, Metallography and Phys. - Chem. Methods of Investigation, (12), 143-151 (1963).
- (40) "Phase Diagrams of Titanium With Rare Earth Metals", E. M. Savitskiy and G. S. Burkhanov, J. of Less Common Metals, <u>4</u>, 301-314 (1962).
- (41) "Phase Equilibrium in the System Nd₂O₃-SiO₂", R. O. Miller and D. E. Rase, J. Am. Ceram. Soc., <u>47</u>, 653-654 (December 1964).
- (42) "Phase Equilibria in Systems Involving the Rare Earth Oxides. Part III. The Eu2O3-In2O3 System", S. J. Schneider, J. Research Nat'l. Bur. Standards, 65A, 429-434 (September, October 1961).
- (43) "The Chromium-Gadolinium System", M. I. Copeland, C. E. Armatrout, and H. Kato, BM-RI-6503 (January 1964).
- (44) "Gadolinium Alloys With Terbium and Erbium", I. V. Burov, V. F. Terekhova, and E. M. Savitskiy, Zh. Neorgan. Khim., <u>9</u>, 2036-2038 (August 1964).
- (45) "Nickel-Gadolinium Phase Diagram", M. I. Copeland, M. Krug, C. E. Armatrout, and M. Kato, BM-RI-6566 (May 1964).
- (46) "Rare Earth Silicates. II. Constitution Diagram of Binary Gd2O3-SiO2 Systems", N. A. Torpov, F. Ya. Galakhov, and S. F. Konovalova, Izvest. Akad. Nauk SSSR, Otdel. Khim. Nauk., (4), 539-543 (April 1961).
- (47) "Electron Microprobe Determination of Co-Dy Compounds", J. D. Wood and G. P. Conrad II, <u>Rare Earth Research II</u> (K. S. Vorres, editor), Gordon and Breach, Science Publishers, Inc., New York (1964), pp 209-217.
- (48) "The Solid Sclubility of Holmium in Copper, Silver, and Gold", W. J. Wunderlin,
 B. J. Beaudry, and A. H. Daane, Trans. AIME, <u>227</u>, 1302-1305 (1963).
- (49) "The Metallurgy of Yttrium and the Rare Earth Metals. Part I. Phase Relationships", B. Love, WADD TR=60-74, Pt I (May 1960).
- (50) "Properties of Yttrium and the Rare Earth Metals Oxygen and Alloy Systems",
 B. Love, WADD TR-61-123 (August 1961).
- (51) "Minor Metals", M. Fleischer, U. S. Geol. Survey Circ. 285 (1953).
- (52) F. H. Spedding, et al., <u>Prog. in Low Temp. Phys.</u>, Chapter XII (Garter, editor), North Holland Publishing Co., Amsterdam (1957).
- (53) F. H. Spedding, <u>Progress in Nuclear Energy</u>, <u>Series V. Metallurgy and Fuels</u> (Finneston, editor) Pergamon Press, London (1956).
- (54) F. H. Spedding and A. A. Daane, U. S. AEC, ISC-834 (March 1957).

- (55) "Lattice Parameters of Some Rare Earth Compounds and a Set of Crystal Radii",
 D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., <u>76</u>, 5237 (1954).
- (56) Metals Handbook, ASM (1948).
- (57) "The Rare Earth Metals", F. H. Spedding and A. H. Daane, Metallurgical Rev., 5, 297-340 (1960).
- (58) R. C. Vickery, Chemistry of the Lanthanons, Academic Press, New York (1953).
- (59) "More Accurate Values for the Vapor Pressure of Metallic Yttrium", V. V. Karelin, A. N. Nesmeyanov, and Y. A. Priselkov, Izvest. Akad. Nauk SSSR Met. i Topl., 117-118 (1962).
- (60) "Vapor Fressures of the Rare Earth Metals", C. E. Habermann and A. H. Daane, J. Chem. Phys., <u>41</u>, 2818-2827 (November 1964).
- (61) "Physico-Chemical Properties of Rare Earth Metals, Scandium and Yttrium",
 E. M. Savitskiy, V. F. Terekhova, and O. P. Naumkin, Usp. Fiz. Nauk, <u>79</u>, 263-293 (February 1963).
- (62) "Metallographic Observations of Rare Earth Metals", C. G. Kirkpatrick and
 V. F. Novy, abstract only, Journal of Metals, <u>10</u> (2), 98 (February 1958)
- (63) "Miscellaneous Effects of Pressure on Miscellaneous Substances", P. W. Bridgeman, Am. Acad. Arts Sci., <u>84</u>, 111-129 (1955).
- (64) "Elastic Properties of Yttrium and Eleven of the Rare Earth Elements", J. F. Smith, C. E. Carlson, and F. H. Spedding, J. Metals, 9, 1212-1213 (October 1957).
- (65) "The Metal Yttrium", J. A. McGurty and C. R. Simmons, preprint of Nat'l Western Mining and Energy Conference, Denver, Colorado, April 1960.
- (66) "Physical Properties of the Rare Earth Metals", A. H. Daane, <u>The Rare Earths</u>
 (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), p 177.
- (67) "Crystallography of the Rare Earth Metals", K. A. Gschneider, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), p 190.
- (68) "Refining and Purification of Rare Earth Metals", C. L. Huffine and J. M. Williams, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), pp 145-162.
- (69) "The Metallurgy of Yttrium and the Rare Earth Metals. Part II. Mechanical Properties", B. Love, WADD TR-60-74, Pt II (June 1960).

- (70) "Mechanical Fabrication of Rare Earth Metals", K. M. Bohlander, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), pp 163-174.
- (71) "Selection and Evaluation of Rare or Unusual Metals. Part II. The Metallurgy of Yttrium and the Rare Earth Metals", B. Love, WADC TR-57-666, ASTIA 211847 (March 1959).
- (72) "The Mechanical Properties of Yttrium, Scandium and the Rare Earth Metals",
 C. R. Simmons, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors),
 John Wiley and Sons, Inc., New York (1961), pp 428-452.
- (73) "Nonnuclear, Nonmetallic Uses of Rare Earths", M. M. Woyski and W. J. Silvernail, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), p 512.
- (74) "Thermodynamic Properties of Yttrium Metal and Iron Pentacarbonyl at High Temperatures", J. R. Welty, C. E. Wicks, and H. O. Boren, BM-RI-6155 (June 1962).
- (75) "Rare Earth Metals and Their Compounds as Materials for Thermionic Cathodes", B. V. Bondarenko and B. M. Tsarev, <u>Problems in the Theory and</u> <u>Application of Rare Earth Metals</u>", Akad. Nauk SSSR, Izdatel'stvo "Nauka" Moscow (1964).
- (76) "Entropies of the Elements and Inorganic Compounds", K. K. Kelley and E. G. King, Bur. Mines Bull. 592 (1961).
- (77) "High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds", K. K. Kelley, Bur. Mines Bull. 584 (1960).
- (78) "Thermodynamic Properties of 65 Elements Their Oxides, Halides, Carbides and Nitrides", C. E. Wicks and F. E. Block, Bur. Mines Bull. 605 (1963).
- (79) "Lattice Heat Capacity of Rare Earths. Heat Capacities of Yttrium and Lutetium From 15-350° K", L. D. Jennings, R. E. Miller, and F. H. Spedding, J. Chem. Phys., <u>33</u>, 1849-1852 (December 1960).
- (80) "Reactions of Cerium and Lanthanum With Ceramic Oxides", G. R. Pulliam, Abstracted in Iowa State College J. Sci., <u>31</u> (3), 503-504 (February 1957).
- (81) C. A. Hampel, editor, <u>Rare Metals Handbook</u>, Reinhold Publishing Co., New York (1954).
- (82) <u>Handbook of Chemistry and Physics</u>, 36th edition, Chemical Rubber Publishing Co., Cleveland, Ohio (1955).
- (83) N. I. Sax, <u>Dangerous Properties of Industrial Materials</u>, Reinhold Publishing Co., New York (1957).
- (84) "Allotropy in Some Rare Earth Metals at High Pressures", G. J. Piermarini and C. E. Weir, <u>Science</u>, <u>144</u>, 69-71 (April 3, 1964).

- (85) "The Viscosity and Density of Molten Lanthanum, Cerium and Praseodymium Metals", L. J. Wittenberg, D. Ofte, and W. G Rohr, <u>Rare Earth Research II</u> (K. S. Vorres, editor), Gordon and Breach, Science Publishers, Inc., New York (1964), pp 257-275.
- (86) "Electrical Resistivity of Lanthanum, Praseodymium, Neodymium and Samarium", J. K. Alstad, R. V. Colvin, S. Legvold, and F. H. Spedding, Phys. Rev., <u>121</u>, 1637-1639 (March 1961). IS-206.
- (87) "High Temperature Allotropy and Thermal Expansion of the Rare Earth Metals",
 F. H. Spedding, J. J. Hanak, and A. H. Daane, J. Less Common Metals, 2,
 110-124 (1961).
- (88) "Rare Earths: Sixteen New Metals Are Ready to Use", B. Love and E. V. Kleber, Materials Design Eng., <u>52</u>, 134-137 (1960).
- (89) "A Calculation of the Elastic Constants of Yttrium an the Rare Earth Metals", B. T. Bernstein and J. F. Smith, IS-118, Contract W-7405-eng-82 (November 1959).
- (90) "Thermal Expansion of Rare Earth Metals", F. Barson, S. Legvold, and F. H. Spedding, Phys. Rev., <u>105</u> (2), 418-424 (January 15, 1957).
- (91) The Reactor Handbook, AECD-3647, Vol. 3, Sec. 1 (1955).
- (92) "Contribution to the Knowledge of Metals and Alloys of the Rare Earths",
 L. Rolla, A. Iandelli, G. Canneri, and R. Vogel, Z. Metallk., <u>35</u>, 29 (1943).
- (93) Quill (editor), Chem. and Metallurgy of Miscellaneous Materials, Thermodynamics, McGraw-Hill Book Co., New York (1950).
- (94) "The Isotopes of Lanthanum and Cerium", M. G. Inghram, R. J. Hayden, and D. C. Hess, Phys. Rev., <u>72</u>, 967 (1947).
- (95) "The High Temperature Thermodynamic Functions of Cerium, Neodymium and Samarium", F. H. Spedding, J. J. McKeown, and A. H. Daane, J. Phys. Chem, 64, 289-294 (March 1960).
- (96) "Effect of Pressure and Temperature on the Electrical Resistance of Eleven Rare Earth Metals", R. A. Stager and H. G. Drickamer, Phys. Rev., <u>133</u>, A830-835 (February 1964).
- (97) "Specific Heat of Ce, Pr, Nd, Eu and Lu Metals Between 0.4 and 4.0° K",
 O. V. Lounasmaa, <u>Rare Earth Research II</u> (K. S. Vorres, editor), Gordon and Breach, Science Publishers, Inc., New York (1964), p 221.
- (98) "The Isotopic Constitution of Praseodymium and Neodymium", M. G. Inghram,
 D. C. Hess, and R. J. Hayden, Phys. Rev., <u>74</u>, 98 (1948).
- (99) "The Heat of Combustion of Neodymium", E. J. Huber and C. E. Holley, J. Am. Chem. Soc., <u>74</u> (21), 5530-5531 (November 1952).

- (100) "The Heat of Combustion of Ceriun", E. J. Huber and C. E. Holley, J. Am. Chem. Soc., 75 (22), 5645-5647 (November 1953).
- (101) "The Experimental Determination of the Surface Tension of Molten Neodymium", V. B. Lazarev and A. V. Pershikov, Dokl. Akad. Nauk SSSR, 146, 143-144
- (102) "Preparation of Metallic Promethium", F. Weigel, Angew. Chem. Intern. Engl.
- (103) "The Heat of Combustion of Samarium", E. J. Huber, C. O. Mathews, and C. E. Holley, J. Am. Chem. Soc., 77 (24), 6493-6494 (December 20, 1955).
- (104) "The Vapor Pressure and Heat of Sublimation of Samarium", C. C. Herrick, J. Less Common Metals, 7, 330-335 (November 1964).
- (105) "Isotopic Composition of Samarium", M. G. Inghram, D. C. Hess, and R. J. Hayden, Phys. Rev., 73, 180L (1948).
- (106) "Phase Transformation Induced by High Pressure and Its Effect on the Antiferromagnetic Ordering", A. Jayaraman and R. C. Sherwood, Phys. Rev., 134,
- (107) "Specific Heat of Samarium Metal Between 0.4 and 4° K", O. V. Lounasmaa, Phys. Rev., 126 (4), 1352-1356 (1962).
- (108) F. H. Spedding and A. H. Daane, U. S. AEC, ISC-902 (September 1957).
- (109) "Corrosion Characteristics of the Rare Earth and Yttrium Metals", Linda Lee and N. D. Greene, Corrosion, 20 (5), 145t-149t (1964).
- (110) "The Isotopic Constitution of Europium, Gadolinium, and Terbium", D. C. Hess, Physical Review, 74, 773-778 (1948).
- (111) "The Systems Cerium-Nickel, Lanthanum-Nickel, Praseodymium-Nickel and Cerium Cobalt", R. Vogel, Z. Metallk., 38, 97 (1946).
- (112) "Magnetic Structure of Europium", N. G. Nereson, C. E. Olsen, and G. P. Arnold, Phys. Rev., 135, A176-180 (July 6, 1964).
- (113) "The Fabrication of Five Rare Earth Metals. The Mechanical Conversion of Sm, Eu, Gd, Dy, and Er to Sheet", G. I. Friedman, KAPL-M-GIF-2, Contract W-31-109-eng-Z (December 1960).
- (114) "The Heat of Combustion of Gadolinium", E. J. Huber and C. E. Holley, J. Am. Chem. Soc., 77 (6), 1444-1445 (March 1955).
- (115) ISC-508, U. S. AEC (March 1954).
- (116) "The Isotopic Constitution of Scandium, Gadolinium, Dysprosium, Holmium, Erbium and Ytterbium", W. T. Leland, Phys. Rev., 77, 634 (1950).

- (117) "Electrical Resistivity of the Heavy Rare Earth Metals", R. V. Colvin, S. Legvold, and F. H. Spedding, Phys. Rev., <u>120</u>, 741-745 (November 1960).
- (118) "Characteristics of the Variation of Electrical Resistance With Temperature in Gd and Yb at Low Temperatures", N. V. Volkenshtein and V. E. Startsev, Zh. Eksper. i. Teoret. Fiziki, <u>46</u>, 457-459 (1964).
- (119) "The Specific Heat of Gadolinium and Ytterbium Metals Between 0.4 and 4° K",
 O. V. Lounasmaa, Phys. Rev., <u>129</u>, 2460-2464 (March 1963).
- (120) "Specific Heat of Terbium Metal Between 0.37 and 4.2° K", O. V. Lounasmaa and P. R. Roach, Phys. Rev., <u>128</u>, 622-626 (October 1962).
- (121) "Thermal Conductivity and Electrical Resistivity of Terbium Between 5 and 300° K", S. Arajs and R. V. Colvin, Phys. Rev., <u>136</u>, 439-441 (A) (October 1964).
- (122) "Heat Capacity of Samarium From 13 to 350° K", L. D. Jennings, E. D. Hill, and F. H. Spedding, J. Chem. Phys., <u>31</u>, 1240-1243 (November 1959).
- (123) "The Isotopic Composition of Dysprosium", M. G. Inghram, R. J. Hayden, and D. C. Hess, Phys. Rev., <u>75</u>, 693 (1949).
- (124) "Crystal Structure of Dysprosium at Low Temperatures", F. J. Darnell and E. P. Moore, J. Appl. Phys., <u>34</u>, 1337-1338 (April 1963).
- (125) "Specific Heat of Dysprosium Metal Between 0.4 and 4° K", O. V. Lounasmaa and R. A. Guenther, Phys. Rev., <u>126</u>, 1357-1363 (1962).
- (126) "Electrical Resistivity of Dysprosium Single Crystals", P. M. Hall, S. Legvold, and F. H. Spedding, Phys. Rev., <u>117</u>, 971-973 (1960).
- (127) "The High Temperature Resistivities of Dysprosium, Holmium and Erbium", C. E. Habermann and A. H. Daane, J. Less Common Metals, 7, 31-36 (July 1964).
- (128) "Thermal Conductivity of Polycrystalline Dysprosium From 5 to 305° K", R, V. Colvin and S. Arajs, Phys. Rev., <u>133</u>, A1076-1079 (February 1964).
- (129) "Specific Heat of Holmium Metal Between 0. 38 and 4.2° K", O. V. Lounasmaa, Phys. Rev., <u>128</u>, 1136-1139 (November 1962).
- (130) "Cohesive Energies of Europium, Gadolinium, Holmium and Erbium",
 O. C. Trulson, D. E. Hudson, and F. H. Spedding, J. Chem. Phys., <u>35</u>, 1018-1026 (1961).
- (131) "Peculiar Anomalies in Electrical Resistivity of Some Rare Earth Metals at Low Temperatures", R. V. Colvin and S. Arajs, J. Less Common Metals, 5 (4), 337-355 (August 1963).
- (132) "The Heat of Combustion of Erbium", E. J. Huber, E. L. Head, and C. E. Holley, J. Phys. Chem., <u>60</u> (11), 1582 (1956).

- (133) "The Isotopic Constitution of Erbium and Lutetium", R. J. Hayden, D. C. Hess, and M. G. Inghram, Phys. Rev., 77, 299 (1950).
- (134) "Thermochemistry of Erbium", R. L. Montgomery and J. M. Stuve, BM-RI-
- (135) F. H. Spedding and A. H. Daane, ACS Abstracts of Papers from 132nd Meeting,
- (136) "The Heat of Combustion of Thulium", E. J. Huber, E. L. Head, and C. E. Holley, J. Phys. Chem., <u>64</u>, 379-380 (March 1960).
- (137) "Heat Capacity of Thulium From 15 to 360° K", L. D. Jennings and F. H. Spedding, J. Chem. Phys., <u>34</u>, 2082-2089 (June 1961).
- (138) "Magnetic Properties of Thulium Metal", D. D. Davis and R. M. Bozorth, Phys. Rev., 118, 1543-1545 (1960).
- (139) "The Isotopic Constitution and Atomic Weights of Rare Earth Elements", F. W. Aston, Proc. Roy. Soc., London, A146, 46 (1934).
- (140) "The Isotopic Composition of Ytterbium", R. J. Hayden, D. C. Hess, and M. G. Inghram, Phys. Rev., 75, 332 (1949).
- (141) "Some High Pressure Studies on Ytterbium", H. T. Hall and L. Merrill, Inorg. Chem., 2, 618-624 (June 1963).
- (142) "The Heat of Combustion of Lutetium", E. J. Huber, E. L. Head, and C. E. Holley, J. Phys. Chem., <u>64</u>, 1768-1769 (November 1960).
- (143) "Specific Heat of Lutetium Metal Between 0.38 and 4° K", O. V. Lounasmaa, Phys. Rev., 133, A219-224 (January 1964).
- (144) "The Systems Silver-Yttrium and Silver-Samarium", E. Gebhardt, M. v. Erdberg, and U. Lüty, IMD Special Report No. 13, International Symposium on Compounds of Interest in Nuclear Reactor Technology, AIME (1964), pp 303-314.
- (145) "A New Naturally Occurring Lanthanum Isotope at Mass 138", M. G. Inghram, R. J. Hayden, and D. C. Hess, Physical Review, 72, 349 (1947).
- (146) "Yttrium Beryllide and Compounds of the Type AB13", N. N. Matyushenko and G. F. Tikhinsky, Kristallografiya, 8 (3), 451-453 (1963).
- (147) "Heat of Formation of Yttrium Chloride", R. L. Montgomery and T. D. Hubert, BM-RI-5659 (February 1960).
- (148) "Preparation and Physico-Chemical Properties of Yttrium Carbides", G. V. Samsanov, T. Ya. Kosolapova, and G. N. Makargnko, Zh. Neorg. Khim., I, 975-979 (May 1962).
- (149) "Properties of Rare Earth Nitrides", N. Sclar, J. Appl. Phys., 35, 1534-1538

344

1

Ś,

- (150) "Laves Phase Compounds of Rare Earths and of Hafnium With Noble Metals"
 V. B. Compton and B. T. Matthias, Acta Cryst., <u>12</u>, 651-654 (September 1959).
- (151) "Some AB3 Compounds of the Transition Metals", A. E. Dwight, J. W. Downey, and R. A. Conner, Jr., Acta Cryst., <u>14</u>, 75-76 (January 1961).
- (152) "Structure and Properties of Rare Earth and Yttrium Hard Metals", I. Bender, J. Am. Ceram. Soc., <u>43</u>, 287-292 (June 1960).
- (153) "Hard Compounds of Rare Earth Metals With Non-Metals", G. V. Samsanov, Izdatel'stvo "Metallurgiya" Moscow, 244 (1964).
- (154) "Binary Dodecaborides", S. LaPlaca, I. Bender, and B. Post, J. Inorg. and Nuclear Chem., <u>18</u>, 113-117 (March 1961).
- (155) "Structures and Properties of the Rare Earth Borides", B. Post, <u>Rare Earth</u> <u>Research II</u>, Gordon and Breach, Science Publishers, Inc. (1964), pp 107-116.
- (156) "Low Temperature Chemical Thermodynamics of the Lanthanide Sesquioxides",
 F. Westrum and H. Justice, <u>Rare Earth Research</u>, Gordon and Breach,
 Science Publishers, Inc., New York (1962), p 153.
- (157) "On Rare Earth Oxyfluorides", L. R. Batsanova and G. N. Kustova, Zh. Neorg. Khim., 9, 330-334 (February 1964).
- (158) "Rare Earth Halides", F. H. Spedding and A. H. Daane, U. S. AEC, IS-350 (September 1961).
- (159) "Melting Points of Inorganic Fluorides", B. Porter and E. A. Brown, J. Am. Ceram. Soc., <u>45</u>, 49 (January 1962).
- (160) "Polymorphism of Rare Earth Disilicides", J. A. Perri, E. Banks, and B. Post, J. Phys. Chem., <u>63</u>, 2073-2074 (December 1959).
- (161) "Evaporation Rate of the Components on Thermal Dissociation of Yttrium and Lanthanum Beryilides", V. M. Amonenko, A. A. Kruglykh, V. S. Pavlov, and G. F. Tikhinsky, Izvest. Akad. Nauk. SSSR Met I Gornoe Delo, (3), 158-160 (1964).
- (162) "The Structures of Compounds of Composition AB of Rare Earth Metals With Antimony and Bismuth", R. N. Kuz'min and S. V. Nikitiva, *Systallografiya*, 8, 453-454 (May, June 1963).
- (163) "YH3 and YD3: Heat Capacities and Thermodynamic Functions From 15 to 350 K and Infrar d Absorption Spectra", H. E. Flotow, D. W. Osborne, K. Otto, and B. M. Abraham, J. Chem. Phys., <u>38</u>, 2620-2626 (June 1963).
- (164) "Thermodynamic Properties of ZrH2, ZrD2, YH2, and YD2", H. E. Flotow and D. W. Osborne, <u>Thermodynamics of Nuclear Material</u>, IAEA, Vienna (1962), pp 675-690.
- (165) "Crystal Structures of Some Lanthanide Hydrides", A. Pebler and W. E. Wallace, J. Phys. Chem. <u>66</u>, 148-151 (January 1962).

 (166) "Yttrium, Gadolinium, Dysprosium and Erbium Selenides", M. G. J. Flahant, and L. Domange, Compt. Rendus, 256 (2) 427 + 20 (2) 	REFERENCES
J. Flahant, and L. Domange, Compt. Rendus, 256 (2), 427-429 (1 (167) "Production and Physical St.	uittard, 963).
Nitrides", G. V. Samsanov, T. Ya. Kosolapova, M. D. Lyutaya, Makarenko, <u>Rare Earth Elements</u> , Moscow (1962)	bides and and G. N.
(168) "Rare Earth International States	
(169) "Cell Dimensions	p 232.
(169) "Cell Dimensions and Magnetic Susceptibilities of the MX Compound Earths With F, As, Sb, Bi, S, Se and Te", A. Iandelli, <u>Rare Earth</u> Macmillan Co., New York (1961), p 135.	Research.
(170) "Crystal Structure of guild	
(170) "Crystal Structure of Silicides and Germanides of the Rare Earth M Ye. I. Gladyshevskiy, <u>Problems of the Theory and Use of Rare Earth</u> (Ye. M. Savitskiy and V. F. Terekhova, editors), "Science" Publish Moscow (1964).	etals", th Metals hing House
(171) "Some Aspects of the state	
(171) "Some Aspects of the Structure and Stability of the Cubic Hexaboride Lanthanons", G. D. Sturgeon and H. A. Eick, <u>Rare Earth Research</u> and Breach, Science Publishers, Inc., New York (1964).	s of the
, Stonee Fublishers, Inc. New York (1964) Research	II, Gordon
(1) Inermal and Florence -	
Rare Earth Research, Macmillan Co., New York (1961), p 69.	lestrum, Jr.,
(173) "Refractivition of the p	
 (173) "Refractivities of the Rare Earth Oxides", E. M. Levin, <u>Rare Earth</u> Gordon and Breach, Science Publishers, Inc., New York (1964), p 33 (174) "The Heat Caracities and the second se	Research II,
(174) "The Heat Canacities of much	9.
 (174) "The Heat Capacities of Yttrium Oxide (Y2O3), Lanthanum Oxide (La2 Neodymium Oxide (Nd2O3) From 16 to 300 K", H. W. Goldstein, E. F. P. N. Walsh, and D. White, J. Phys. Chem., <u>63</u>, 1445-1491 (Septem (175) "High Temperature Heat Contents	. Neilson.
(175) "High Temperature II.	ber 1959).
Gadolinium, Neodymium, Samarium and Entropies of Sesquioxides of Eu King, and K. K. Kelley, BM-RI-6033 (December 1961)	ropium, 2. G.
 (176) "Metals and Compounds of Rare Earths", Ch. de Rohden, Annales des 63-76 (February 1963). 	
(177) under (1703).	Mines,
(177) "Thermal Expansion and Phase Inversion of Rare Earth Oxides", S. Steam W. J. Campbell, BM-RI-5847 (October 1960).	ecura
(178) "The Lanthanum-Boron System", R. W. Johnson and A. H. Daane, J. 1 Chem., <u>65</u> (6), 909-915 (1961).	Dhue
 (179) "The Beryllides of Rare Earth Metals", N. N. Matyushenko, V. N. Kar A. P. Svinarenko, Ukrain, Fig. Zhur., 8 (11), 1266-1267 (1963). (180) "The Germanidan and an anti-provide an anti-provide an anti-provide and an anti-provide an anti-provide an anti-provide and an anti-provide and an anti-provide and an anti-provide and an anti-provide an anti-provide an anti-provide anti-provide an anti-provide an anti-provide anti-pro	ev, and
(180) "The Germanides of Lanthanum", M. D. Lutaya and A. B. Goncharuk, Neorganicheskie Materialy, <u>1</u> (3), 326-329 (1965).	

- (181) "Optical Properties of Rare Earth Fluorides of Cerium Group", L. R. Batsanova and G. N. Grigor'eva, Izvest. Sibir. Otdel. Akad. Nauk SSSR,
 (2), 115-118 (1962).
- (182) "The Heats of Fusion of Some Rare Earth Metal Halides", A. S. Dworkin and M. A. Bredig, J. Phys. Chem., <u>67</u>, 2499-2500 (November 1963).
- (183) "Crystal Structure of Digermanides of Rare Earth Elements", E. I. Gladyshevsky, Zhur. Strukt. Khim., 5 (4), 568-575 (1964).
- (184) "Vapor Pressure Measurements on Halides of the Rare Earths", E. Shimazaki and K. Niwa, 7. Anorg. Allgem. Chem., <u>314</u>, 21-34 (February 1962).
- (185) "The Heats of Fusion and Transition of Alkaline Earth and Rare Earth Metal Halides", A. S. Dworkin and M. A. Bredig, J. Phys. Chem., <u>67</u>, 687-698 (March 1963).
- (186) "Thermodynamics of Rare Earth Compounds", R. L. Montgomery, BR-RI-5468 (October 1958).
- (187) "Hydrides of Rare Earth Metals", V. I. Mikheeva and M. E. Kost, Uspekhi Khimii, <u>29</u>, 55-73 (January 1960).
- (188) "Production and Certain Properties of Lanthanum Phosphide", G. V. Samsanov and S. N. Endrzheevskaya, Zh. Obshch. Khim., 33, 2803-2804 (September 1963).
- (189) "The Selenides MeSe of the Lanthanides, From Lanthanum to Gadolinium", M. Guittard and A. Benacerraf, Comptus Rendus, <u>248</u>, 2589-2571 (May 1959).
- (190) "Selenides of Lanthanum", E. I. Yarembash, E. S. Vigileva, A. A. Eliseev, and A. A. Reshchikova, Neorganicheskie Materialy, <u>1</u> (3), <u>130-336</u> (1963).
- (191) "The Polyselenides of the Lanthanides, Lanthanum and Gadolinium",
 A. Benacerraf, L. Domange, and J. Flahaut, Comptus Rendus, <u>248</u>, 1672-1675 (March 1963).
- (192) "The Oxyselenides of the Elements of the Rare Earth Group", A. Benacerraf, M. Guittard, L. Domange, and J. Flahaut, Bull. Soc. Chim. France (11-12), 1920-1922 (November-December 1959).
- (193) "Electrical Properties of Rare Earth Monochalcogenides (Cerium Subgroup)",
 V. P. Zhuze, A. V. Golubkov, E. V. Goncharova, and V. M. Sergeeva,
 Fiz. Tverd. Tela., <u>6</u>, 257-267 (January 1964).
- (194) "Production, Properties and Prospects of Utilization of Selenides of the Rare Earth Metals", V. A. Obolonchik and G. V. Lashkarev, <u>Problems of the</u> <u>Theory and Use of the Rare Earth Metals</u> (Ye. M. Savitskiy and V. F. Terekhova, editors), "Science" Publishing House, Moscow (1964), pp 166-171.
- (195) "Production and Properties of Silicides of Some Rare Earth Elements",
 G. V. Samsonov, V. S. Neshpor, and Yu. B. Paderno, <u>Rare Earth Elements</u>, Moscow (1963), p 25.

- (196) "Silicides of Lanthanum and Their Crystal Structure", E. I. Gladyshevskiy, L. A. Dvorin, A. A. Kulikova, and T. S. Verkhoglyadova, Neorganicheskie Materialy, <u>1</u> (3), 321-325 (1965).
- (197) "Studies on the Silicothermic Preparation and on Certain Properties of Lanthanum Disilicide", V. S. Neshpor and G. V. Samsonov, Zhur. Priklad. Khim., 33, 993-1001 (May 1960).
- (198) "Properties of Monosulfides of Rare Earth Metals", V. I. Marchenko and G. V. Samsonov, Zhur. Neorgan. Khim., 8 (9), 2035-2037 (1963).
- (199) "Thermoemission Properties of Lanthanum and Cerium Sulfider", V. I.
 Marchenko, G. V. Samsonov, and V. S. Fomenko, Radiotekhn. i Electron., 8, 1076-1081 (June 1963).
- (200) "Semiconductor and Certain Other Physical Properties of the Sulfides of Lanthanum, Cerium, Praseodymium and Neodymium", V. I. Marchenko, <u>Problems of the Theory and Use of Rare Earth Metals</u> (Ye. M. Savitskiy and V. F. Terekhova, editors), "Science" Publishing House, Moscow (1964), pp 177-179.
- (201) "Crystal Chemistry and Phase Equilibria of the La-Te System", T. H. Ramsey, H. Steinfink, and E. J. Weiss, <u>Rare Earth Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1964), pp 303-314.
- (202) "The Oxytellurides of the Rare Earth Elements", M. P. Pardo, J. Flahaut, and L. Domange, Compt. Rendus, <u>255</u>, 937.939 (July 1962).
- (203) "X Ray Study of Lanthanum Telluride, La4Te7", A. A. Eliseev, V. G. Kuznetsov, E. I. Yarembash, and L. I. Antonova, Zhur. Strukt. Khim, 5 (4), 640-641 (1964).
- (204) "Lanthanum Tellurides", A. A. Eliseev, E. I. Yarembash, V. G. Kuznetzov,
 E. S. Vigileva, A. A. Reshchikova, and L. I. Antonova, Zhur. Neorgan.,
 Khim., 9, 876-882 (April 1964).
- (205) "The Preparation and the Thermoelectric Properties of Some Rare Earth Tellurides", W. L. Mularz and S. J. Wolnik, <u>Rare Earth Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1964), p 473.
- (206) "Melting Points of LaRu₂, CeRu₂ and PrRu₂", R. D. Reiswig and K. A. Gschneider, Jr., J. Less Common Metals, <u>5</u>, 432-433 (October 1963).
- (207) "The Crystal Structures of YF3", W. Nowacki, Naturwissenschaften, <u>26</u>, 463 (1938).
- (203) "Sulfur Free Cerium", M. Picon, Compt. Rendus, 192, 684 (1931).
- (209) "The Crystal Structures of Yttrium Trichloride", D. H. Templeton and C. H. Carter, J. Phys. Chem., <u>58</u>, 940 (1954).
- (210) "The Crystal Structures of YF₃ and Related Compounds", A. Zalkin and D. H. Templeton, J. Am. Chem. Soc., <u>75</u> (10), 2453-2458 (May 1953).

- (211) "Crystal Structure of Rare Earth Oxychlorides", D. H. Templeton and C. H. Dauben, J. Am. Chem. Soc., <u>75</u> (23), 6069-6070 (December 1953).
- (212) Glassner, U. S. AEC, ANL-5750 (1957).
- (213) "Rare Earth Selenides", W. Klemm and A. Koczy, Z. Anorg. u. allgem. Chem., 233, 84 (1937).
- (214) "Rare-Earth-Rich Alloys", M. Copeland and H. Kato, <u>Physics and Material</u> <u>Problems of Reactor Control Rods</u>, IAEA, Vienna (1964), p 295.
- (215) "Vapor Pressure of Some Rare Earth Halides", E. R. Harrison, J. Appl. Chem., <u>2</u> (10), 601-602, London (October 1952).
- (216) "Investigations on Carbides I. The Crystal Structure of Carbides MC2", M. V. Stackelberg, Z. physik. Chem., <u>139</u>, 437 (1930).
- (217) "Crystallographic Data, Lanthanum Trifluoride Laf3, Neodymium Trifluoride Ndf3", E. Staritzky and L. B. Asprey, Anal. Chem., 29 (5), 856-857 (May 1957).
- (218) R.W.G. Wyckoff, <u>The Structure of Crystals</u>, Chemical Catalogue Co., New York, 2nd Edition (1931); Supplement (1934).
- (219) Brewer, U. S. AEC, UCRL-1931 (1952).
- (220) "Contributions to the Data on Theoretical Metallurgy", J. P. Coughlin, U. S. Bur. Mines Bull. No. 542 (1954).
- (221) "The Crystal Structures of Sc₅Si₃, Sc₅Ge₃, La₅Ge₃, and Ce₅Ge₃", J. Arbuckle and E. Parthe, Acta Cryst., <u>15</u> (12), 1205-1207 (December 1962).
- (222) "The Crystal Structure of the Lanthanide Oxyiodides, SmOI, TmOI, and YbOI", F. H. Kruse, L. B. Asprey, and Bruno Morosin, Acta Cryst., <u>14</u>, 541-542
 (May 10, 1961).
- (223) "Some Electric and Magnetic Properties of Rare Earth Monosulfides and Nitrides", R. Didchenko and F. P. Gortsema, J. Phys. Chem. Solids, <u>24</u>, 863-870 (July 1963).
- (224) "High Temperature Heat Contents and Entropies of Cerium Dioxide and Columbium Dioxide", E. G. King and A. V. Christensen, BM-RI-5789 (October 1960).
- (225) "The Selenides of the Lanthanides Me₂Se₃ (from La to Gd, Th₃P₄ Type With a Wide Range of Homogeneity)", A. Benacerraf and M. Guittard, Compt. Rendus, 248, 2012-2014 (April 1959).
- (226) "Selenium and Selenides", D. M. Chishikov and V. P. Schastlivy, Izdatel'stvo "Nauka", Moscow (1964).

- (227) "Observations on M₃X₄-M₂X₃ Crystalline Phases of Rare Earth Tellurides, Selenides and Sulfides", J. F. Miller, L. K. Matson, and R. C. Himes, <u>Rare Earth Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1964), p 135.
- (228) "Studies on the Selenides and Tellurides of Selected Rare Earth Metals", J. F. Miller, L. K. Matson, and R. C. Himes, <u>Rare Earth Research I</u>, Gordon and Breach, Science Publishers, Inc., New York (1962), p 233.
- (229) "Electrical Properties of Selected Rare Earth Compounds and Alloys", F. J. Reid, L. K. Matson, J. F. Miller, and R. C. Himes, J. Electrochem. Soc., <u>111</u> (8), (August 1964).
- (230) "Thermal Properties of Certain Lanthanide Sulfides", V. I. Marchenko and G. V. Samsonov, Fiz. Metal. i Metalloved., <u>15</u>, 631-633 (April 1963).
- (231) "Low Temperature Heat Capacities and Entropies at 298.15 K of Cerium Monosulfide, Cerium Sesquisulfide and Thorium Disulfide", E. G. King and W. W. Weller, BM-RI-5485 (January 1959).
- (232) "Electrical Conduction in Rare Earth Monoselenides and Monotellurides and Their Alloys", F. J. Reid, L. K. Matson, J. F. Miller, and R. C. Himes, J. Phys. Chem. Solids, 25, 969-976 (February 1964).
- (233) "The Tellurides of Cerium: CeTe2 and Ce3Te4", L. Domange, J. Flahaut, M.-P. Pardo, A. N. Chirazl, and M. Guittard, Compt. Rendus, 250, 857-858 (February 1960).
- (234) "Ternary System Thorium-Cerium-Aluminum", J. H. N. Van Vught, Philips Research Report, <u>16</u>(1), 1-40 (1961).
- (235) "Preparation of the Rare Earth Fluorides", O. N. Carlson and F. A. Schmidt, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), p 77.
- (236) "Rare Earth and Yttrium Halides for Metal Production Chlorides, Bromides and Iodides", F. E. Block and T. T. Campbell, <u>The Rare Earths</u> (F. H. Spedding and A. H. Daane, editors), John Wiley and Sons, Inc., New York (1961), p 89.
- (237) "The Crystal Structure of Monoclinic Sm₂O₃", D. T. Cromer, J. Phys. Chem., <u>61</u> (6), p 753-755 (June 1957).
- (238) "Magnetic Susceptibilities of Praseodymium Oxides", R. C. Vickery and A. Ruben, J. Chem. Soc., 510-513 (February 1959).
- (239) "Determination of Thermal Conductivities of Sesquisulfides of Some Rare Earth Metals", V. I. Marchenko and I. G. Barantseva, Inzh. Fig. Zh. Akad. Nauk. Belorussk., 7, 120-122 (June 1964).
- (240) "Thermal Conductivity of Samarium, Praseodymium and Their Monochalcogenides", E. D. Devyatkova, V. P. Zhuze, A. V. Golubkov, V. M. Sergeeva, and I. A. Smirnov, Fizika Tverdogo Tela, 6 (2), 430-435 (1964).

- (241) "Thermionic Properties of Praseodymium and Neodymium Sulfides", V. I. Marchenko, G. V. Samsonov, and V. S. Fomenko, Zh. Tekhn. Fiz., <u>34</u>, 128-130 (January 1964).
- (242) "The Tellurides of the Rare Earth Elements of the General Formula MTe2", M.-P. Pardo, J. Flahaut, and L. Domange, Comptus Rendus, <u>256</u> (4), 953-955 (1963).
- (243) "Crystal Structure of a Magnesium Rich Compound in the Magnesium-Praseodymium System", V. I. Evdokimenko and P. I. Kripyakevich, Kristallografiya, <u>9</u> (4), 455-456 (1964).
- (244) "Thermodynamics of Lanthanum and Neodymium Hexaborides", E. F. Westrum, H. L. Clever, and J.T.S. Andrews, preprint from 4th Rare Earth Conference at Phoenix, Arizona, April 1964.
- (245) "High Temperature Heat Contents and Entropies of Sesquioxides of Lutetium, Dysprosium and Cerium", L. B. Pankrantz and K. K. Kelley, BM-RI-6248 (January 1963).
- (246) "Tellurides of Neodymium", Ye. I. Yarembash, A. A. Yeliseyev, and K. A. Zinchenko, Neorgan. Materialy, <u>1</u>(1), 60-67 (1965).
- (247) "Use of Less Expensive Rare Earths as Control Materials", J. A. Ransohoff, Nucleonics, <u>17</u> (7), 80-82 (July 1959).
- (248) "Samarium Sulfides for Semiconductor Application", M. D. Houston, <u>Rare</u> <u>Earth Research</u> (E. V. Kleber, editor), Macmillan Co., New York (1961) p 255.
- (249) "Physicochemical Properties of Boride Thermionic Cathode Materials", A. I. Kaznoff, E. W. Hoyt, and L. N. Grossman, Advanced Energy Conversion, <u>3</u>, 167-173 (January 1963).
- (250) "Saturation Vapor Pressure in SmCl₂, EuCl₂, and YbCl₂", O. G. Polyachenok and G. I. Novikov, Zh. Neorgan. Khim., <u>8</u>, 2631-2634 (December 1963).
- (251) "A Contribution to the Theory of the Solution of Hydrogen in the Rare Earth Elements", W. M. Mueller and R. Speiser, <u>Rare Earth Research I</u>, Gordon and Breach, Science Publishers, Inc., New York (1961), p 185.
- (252) "X-Ray Crystallographic Studies of Europium Oxides and Hydroxides", R. C. Rau, <u>Rare Earth Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1963), p 117.
- (253) "The Heat of Formation of Europium Sesquioxide", E. J. Huber, G. C. Fitzgibbon, and C. E. Holley, Jr., J. Phys. Chem., <u>53</u>, 2720-2722 (September 1964).
- (254) "Magnetic Interaction in EuS, EuSe and EuTe", S. Van Houten, Phys. Letters, 2, 215-216 (October 1962).
- (255) "The Sulfides and Oxysulfides of Europium", L. Domange, J. Flahaut, and M. Guittard, Comptus Rendus, 249, 697-699 (August 1959).

- (256) "Ferromagnetism in the Gd-Bi, Sb Compounds with the Th₃P₄ Structure", F. Holtzberg, S. Methfessel, and J. C. Suits, <u>Rare Earth Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1963), p 385.
- (257) "Erbium and Its Alloys", Ye. M. Savitskiy, V. F. Terekhova, and O. P. Naumkin, Tsvetn. Metally., <u>33</u> (1), 43-48 (1960).
- (258) "Crystal Structure of Lanthanum Nitride", R. A. Young and N. T. Zeigler, J. Am. Ceram. Soc., <u>74</u>, 5251 (1952).
- (259) "Ceramic Properties of Samarium Oxide and Gadolinium Oxide, X-Ray Studies of Other Rare Earth Oxides", C. E. Curtis and J. R. Johnson, J. Am. Ceram. Soc., <u>40</u> (1), 15-19 (January 1957).
- (260) "Observations on Some Gadolinium-Selenium Compounds", R. C. Vickery and H. M. Muir, <u>Rare Earth Research</u> (E. V. Kleber, editor) Macmillan Co., New York (1961), p 223.
- (261) "A Structural Survey of the Heavy Rare Earth Silicides", C. E. Lundin, <u>Rare Earth Research</u>, Macmillan Co., New York (1961), p 306.
- (262) "Gadolinium and Dysprosium Intermetallic Phases. I. The Crystal Structures of DyGa and GdPt and Their Related Compounds. II. Laves Phases and Other Structure Types", N. C. Baenziger and J. L. Moriarty, Jr., Acta Cryst., <u>14</u>, 946-950 (September 1961).
- (263) "Rare Earth Disilicides", I. P. Mayer, E. Banks, and B. Post, J. Phys. Chem., <u>66</u>, 693-696 (April 1962).
- (264) "Crystal Structure of Si-Rich Silicides of Rare Earth Metals of the Yttrium Group", E. I. Gladyshevs'kiy, Dopovidi Akad. Sci. Ukr., (7), 886-888 (1963).
- (265) "Magnetic Characteristics of Dysprosium, Erbium and Thulium Hydrides",
 Y. Kubota and W. E. Wallace, J. Chem. Phys., <u>39</u>, 1285-1288 (September 1963).
- (266) "High Temperature Heat Contents and Entropies of the Sesquioxides of Erbium, Holmium, Thulium and Ytterbium", L. B. Pankrantz and E. G. King, BM-RI-6175 (July 1962).
- (267) "Compounds of the RGa₃ Type in Gallium Rare Earth System", P. I. Kripyakevich, V. Ya. Markiv, and D. I. Dzyana, Ukrain Fiz. Zhur., 9, 908-910 (1964).
- (268) "New Results Relative to the Crystallographic Study of the L₂X₃ Rare Earth Sulfides, Selenides and Tellurides", J. Flahaut, L. Domange, M. Guittard, M.-P. Pardo, and M. Patrie, Compt. Rendus, <u>257</u> (8), 1530-1533 (1963).
- (269) "Optical and Physical Properties of Single Crystal Lanthanum Trifluoride",
 H. M. Muir and W. Stein, preprint from <u>5th Rare Earth Research Conference</u>, Book One (August 30, 1965).

- (270) "Magnetic Characteristics of Pr Compounds Having the Rock-Sal: Structure", T. Tsuchida and W. E. Wallace, preprint from <u>5th Rare Earth Research</u> <u>Conference</u>, Book Four (August 30, 1965).
- (271) "On the Monoxide of Samarium", T. L. Felmlee and L. Eyring, preprint from <u>5th Rare Earth Research Conference</u>, Book Three (August 30, 1965).
- (272) "Solid Solubility of Some Gold-Rich-Rare Earth and Lanthanide-Rich Magnesium Alloys", P. E. Rider, R. R. Joseph, O. D. McMasters, and K. A. Gschneider, Jr., preprint from <u>5th Rare Earth Research Conference</u>, Book Five (August 30, 1965).
- (273) "The Crystal Chemistry of the Intermediate Phases in the Ytterbium-Antimony System", R. E. Bodnar and H. Steinfink, preprint from <u>5th Rare</u> Earth Research Conference, Book Five (August 30, 1965).
- (274) "Preparation of RE-Mn Alloys by the 'Amalgam Process'; X-Ray, Differential Thermal, and Thermomagnetic Analyses", H. R. Kirchmayr, preprint from <u>5th Rare Earth Research Conference</u>, Book Five (August 30, 1965).
- (275) "The Preparation and Structure of Lutetium Diboride, Scandium Dodecaboride and Lutetium Antimonide", M. Przybylska, A. H. Reddoch, and G. H. Ritter, J. Am. Ceram. Soc., <u>85</u>, 407-411 (February 1963).
- (276) "Preparation and Properties of Promethium and Some of Its Compounds",
 F. Weigel, preprint from <u>5th Rare Earth Research Conference</u>, Book Three (August 30, 1965).
- (277) "On the Structure of Dihalides", W. Doll and W. Klemm, Z. anorg. u. allgem. Chem., <u>241</u>, 239 (1939).
- (278) "Ytterbocalcogenides", H. Senff and W. Klemm, Z. anorg. u. allgem. Chem., 242, 92 (1939).
- (279) "Unit Cell Dimensions of Some Rare Earth Oxyfluorides", N. C. Baenziger, J. R. Holden, G. E. Knudson, and A. I. Popov, J. Am. Chem. Soc., <u>76</u> (18), 4734-4735 (September 1954).
- (280) "The Calcogenides of Europium", W. Klemm and H. Senff, Z. anorg. u. allgem. Chem., 241, 259 (1939).
- (281) "Terbium Tetrafluoride Preparation and Properties", B. B. Cunningham, D. C. Feay, and M. A. Rollier, J. Am. Chem. Soc., <u>76</u> (13), 3361-3363 (July 1954).

SUPPLEMENTAL REFERENCES - OPTICAL PROFERTIES

- (a) "Optical and Spectral Properties of Rare Earth Oxides in Inorganic Glasses", Kan Fu-hsi, Jeng Chung-hung, and Chai Ying-shih, Scientia Sinica, <u>14</u> (8), 1159-1170 (1965).
- (b) "Compounds of Divalent Lanthanides, Preparation, Optical Properties, and Crystal Structure", L. B. Asprey, F. H. Ellinger, and E. Staritzky, <u>Rare Earth</u> <u>Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1964).
- (c) "Far-Infra-Red Absorption in Superconducting Lanthanum", J. D. Leslie,
 R. L. Cappelletti, D. M. Ginsberg, D. K. Finnemore, F. H. Spedding, and
 B. J. Beaudry, Physical Review, 134 (2A), A309-A311 (1964).
- (d) "Optical Properties of Various Evaporated Rare Earth Oxides and Fluorides",
 G. Hass, J. B. Ramsey, and R. Thun, J. Opt. Soc. Am., <u>49</u> (2), 116-120 (1959).
- (e) "Optical and Electrical Properties of LaB6", E. Kauer, Phys. Letters, 7, 171-173 (November 15, 1963).
- (f) "Optical Constants of LaB₆ and CeB₆", B. M. Tsarev and S. V. Illarionov, Fizika Tverdogo Tela, <u>4</u> (9), 2603-2605 (1962).
- (g) "Optical Properties of Rare Earth Oxides", S. S. Batsanov, G. N. Grigor'eva, and N. P. Sokolova, Zhur. Strukt. Khim., <u>3</u> (3), 339-342 (1962).
- (h) "The Near Infrared Transitions of the Trivalent Lanthanides in Solution. I. Praseodymium (III), Neodymium (III), Samarium (III), and Europium (III) Ions", W. T. Carnall, D. M. Gruen, and R. L. McBeth, J. Phys. Chem., <u>66</u>, 2159-2164 (November, 1962).
- (i) "Spectral Properties of Rare Earth Oxide Phosphors", R. C. Ropp, <u>Rare Earth</u> <u>Research II</u>, Gordon and Breach, Science Publishers, Inc., New York (1964), 481-490.

(Security classification of title, body of a	CUMENT CONTROL DATA	- R&D
1. ORIGINATING ACTIVITY (Corporate author)	setrect and indexing annotation mus	t be entered when the overall tenort is clear the th
Battelle Memorial Institut		LE. REPORT SECURITY C LASSIFICATIO
		Unclassified
3. REPORT TITLE		20 GROUP
Froperties of the Rare	Barch Metals and C	OT Develo
		ompounds
4. DESCRIPTIVE MOTES (Type of report and incl.	ueive datee)	
Final Rept, March 1965 to I	December 1965	
Gibson, John A.		
Harvey, Gifford S.		
JADUATY 1966	78. TOTAL NO. C	
	354	THU. UP HEPS
AF33 (657)-8741	Se. ORIGINATOR	'S REPORT NUMBER(S)
A PROJECT NO. 7381		NUMBER(S)
		AFML-TR-65-430
Task No. 738103		
	BD. OTHER REPO	RT NG(S) (Any other numbers that may be easigned
d	None	obtain copies of this report
(AA), Air Force Materials Labor SUPPLEMENTARY NOTES	12. SPONSORING N	ILITARY ACTIVITY
ABSTRACT	12. SPONSORING M AF Materia	Laboratory
ABSTRACT	AF Material AF AF A	and foreign, relating to Numbers 57 through 71 has erties have been compiled nd by element. Included 1, mechanical, and meleon
ABSTRACT The unclassified lite ttrium and the lanthanide x een reviewed. The best ava and are presented in tabular re the physical, chemical, i roper ties of the elements and re presented. A supplement ptical properties has been i	AF Material AF AF A	and foreign, relating to Numbers 57 through 71 has erties have been compiled nd by element. Included 1, mechanical, and meleon
ABSTRACT The unclassified lite ttrium and the lanthanide r een reviewed. The best ava. nd are presented in tabular re the physical, chemical, in roper ties of the elements and re presented.	AF Material AF AF A	and foreign, relating to Numbers 57 through 71 has erties have been compiled nd by element. Included 1, mechanical, and meleon

Unclassified Security Classification

NETWORDS NOTE NOTE NOTE NOTE NOTE NOTE NOTE Yare earth metals Interesting properties Interesting properties Interesting properties Interesting properties Success properties Interesting properties Interesting properties Interesting properties 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Departers of Departies Imposed by security classification, using standard statement of the report. 1. ORIGINATING ACTIVITY: Enter the name and address of the report. Imposed by security classification, using standard statement with properties security regulations. 1. ORIGINATING ACTIVITY: Enter the name and address of the report. Imposed by security classification, using standard statement with properties security regulations. 1. ORIGINATING ACTIVITY: Enter the names and address of the report. Imposed by security classification of the report. 1. ORIGINATING ACTIVITY: Enter the names of a security classification of the report. Imposed by security classification of the report. 1. ORIGUNATING ACTIVITY: Enter the names of a security classification of the report. Interesting address should be unclassification of the report. 2. REPORT STILE: Enter the second lass address of the report. Interesting properties address of the report. Interesting properties address of the report. 3. REPORT THLE: Enter t
 THE REPORT TALE Enter the complete many drain any production and comparison of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph as the drag of the second and for Graph and Graph as the second and the second as the
 ORGINATING ACTIVITY: Enter the name and address imposed by security classification, using standard statement for the control of participation (corporate author) issuing a service of the control of the report. a. REPORT SECURTY CLASSIFICATION: Enter the over important agencies is not authorized." (1) "Qualified requesters may obtain copies of this report from DDC." (2) "Foreign anno common and dissemination of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report by DDC is not authorized." (3) "U. S. Government agencies may obtain copies of this report by DDC. Is not authorized." (4) "U. S. Miltery spencies may obtain copies of this report by DDC. There and the complete report is a subort of the complete report itile in all ages allowed be unclassified. AREPORT TITLE: Enter the complete report itile in allocation in all cases should be unclassified. TREPORT DATL: Enter the same(s) of author(s) as shown can in the report. Enter the same(s) of author(s) as shown can in the report. Enter the same(s) of author(s) as shown can in the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same and development. Include address. 13. ABSTRACT: Enter ab stract of gravity classified report as day, on the report. Structure at the total number of pages containing information. A. TOTAL NUMBER OF PACES: The total page count indication of the allow address. A. REPORT NUMBER(S): Enter the total number of the seport. A. CORGINATO REPORT NUMBERS: If appropriate, enter the office of the matter the price of the store of the seport. A. CORGINATO REPORT NUMBERS: Enter t
 ORGINATING ACTIVITY: Enter the name and address in the control, subcortactor, graves, Department of Department of the control of person. a. REPORT SECURTY CLASSIFICATION: Enter the over line with apport is to be in accord not the import. Also, when applicable is to be in accord to the secord security regulations. b. GROUP. Automatic Jowugrading is specified in DoD Dictive 3200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that obtional graves the applicable is a specified in DoD Dictive 3200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that obtional graves the applicable in classification in all cases should be unclassified. REPORT TITLE: Enter the complete report itile in all applicable that the access that in applicable that the association in all capitable in parenthesis of the report. Enter the same(s) of author(s) as shown can in the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the same(s) of author(s) as shown can the report. Enter the date of the report as day, onth, year, or month, year. If more than one dide appendix in the same of the contract or grant under which of the contract or grant under which is report. NUMBERC IT NUMBERC I is appropriate, enter the prort, use date of publication, such as project number of pages containing information. A. WUMBER OF REFERENCES: Enter the total number of the seport. A. WUMBER OF REFERENCES: Enter the total number of the seport. A. WUMBER OF REFERENCES: Enter the state of the report is a sproject number of the contract or grant under which is report.
 ssigned any other report numbers (either by the originator r uy the sponsor), also enter this number(s). AVAILABILITY/LIMITATION NOTICES: Enter any lim- tations on further dissemination of the report, other than those

Security Classification