
UNCLASSIFIED

«i>>4 2 6 4 2 6
DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION
CAMERON STATION. ALEXANDRIA. VIRGINIA

9

UNCLASSIFIED



HOTICE: When govemnent or other drawings, speci

fications or other data are used for any purpose 
other than In connection with a definitely related 
gowexiBient procuresient operation, the U. S. 
Goyenment thereby Incurs no responsibility, nor any 
obligation idiatsoever; and the fact that the Oovezn- 
nent nay have foxmdated, furnished, or In aziy way 
supplied the said drawings, specifications, or other 
data Is not to be regarded by lsg>llcatlon or other

wise as In any manner licensing the holder or any 
other person or corporation, or conveying any rl^ts 
or permission to manufacture, use or sell any 
patented Invention that may In any way be related 
thereto.



;o
©i
Tt<
CD
©I

LU
QD

AFCRL.-63-548

PATTERN RECOGNITION RESEARCH

by

Jay Edie 

William Floyd 

George Sebestyen

Prepared by

Information Sciences Laboratory 
Data Systems Division 

LITTON SYSTEMS, INC.
335 Bear Hill Road 

Waltham, Massachusetts 02154

Contract No, AF19(628)-1604 

Project No. 5632 

Task No. 563205

Scientific Report No. 1

14 June 1963 10 19S4

Prepared for

B

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS



Requests for additional copies by Agencies of the Department of Defense, 
their contractors, and other Government agencies should be directed to:

DEFENSE DOCUMENTATION CENTER (DDC)
CAMERON STATION 

ALEXANDRIA, VIRGINIA

Department of Defense contractors must be established for DDC services 
or have their 'need-to-know' certified by the cognizant military agency of 
their project or contract.

All other persons and organizations should apply to the:

U.S. DEPARTMENT OF COMMERCE 
OFFICE OF TECHNICAL SERVICES 

WASHINGTON 25, D.C,



Scientific Report

PATTERN RECOGNITION RESEARCH 

Contract AFl 9(628)-1604

14 JUNE 1963

Approved by

George Sebestyen 
Technical Director

Communication Sciences Laboratory 
Data Systems Division 

LITTON SYSTEMS. INC.

- ii-



PREFACE

This report was prepared by J. Edie, W. Floyd, and G. Sebestyen of the 

Communication Sciences Laboratory, Data Systems Division, Litton Systems, 

Inc. In addition to those listed above, the significant contributions made by 

P. Connoly, V. Maglione, and H. O'Shea of the Computation and Analysis 

Group are gratefully acknowledged.

-iii-



ABSTRACT

Machine Learning and Pattetn Recognition is treated as the problem of 

adaptively constructing approximations to the joint probability densities of the 

N-variables with which members of classes are represented. The adaptive 

techniques studied construct approximations to the joint probability densities 

in the form of generalized N-dimensional histograms in which the locations, 

shapes and sizes of the histogram cells are generated by the known samples 

of the pattern classes. To economize on the number of cells constructed, a 

cell growth mechanism was devised to adapt the size and shape of the cells to 

best represent the probability densities. The accuracy of this method of rep

resentation was tested with the aid of a digital computer on large quantities of 

pattern samples of known probability distribution. The experimental results 

were compared with those that could be predicted theoretically. Quality cri

teria to assess the reliability of the decision rendered by a classification de

vice and to influence the mechanism of machine learning were considered.

- iv-



CONTENTS

Section

1.

2.

INTRODUCTION
Page

1

CLASSIFICATION BY LIKELIHOOD
FUNCTION ESTIMATION...................................................................................18

MACHINE LEARNING BY PROBABILITY DENSITY
FUNCTION ESTIMATION......................................................................................... 29
3.1 Adaptive Sample Set Construction Techniques.............................. 29
3.2 Method Of Selecting Control Parameters....................................34
3.3 Experimental Results of Spear "Learning" with

Theoretically Determined Control Parameters...............................36

IDENTIFICATION OF HIGH QUALITY DECISION.................................... 38
4.1 Two Decision Quality Criteria...........................................................40
4.2 Evaluation Of Decision Quality Indicators....................................42

CONCLUSION.........................................................................................................................

APPENDIXES

I OPTIMUM HISTOGRAM APPROXIMATION OF A 
PROBABILITY DENSITY.................................

u CONTROL PARAMETER SELECTION THEORY . . .

m COMPARISON OF THREE PATTERN 
RECOGNITION TECHNIQUES.................................................

IV LIST OF COMPUTER PROGRAMS RELATED TO 
PROBABILITY DENSITY ESTIMATION......................

V A POSTERIORI IDENTIFICATION OF HIGH QUALITY 
BINARY CLASSIFICATION DECISIONS ....

VI EXPERIMENTAL STUDY OF SPEAR LEARNING AND 
CONTROL PARAMETER SELECTION................................

- V -



Figure

1.

2.

3.
4.

B-1

B-2

B-3

C-1

C-2

C-3
C-4

C-5

C-6

C-7

D.1

LIST OF ILLUSTRATIONS

Page

The Classification Problem Model........................................................... 5
Histogram Estimates of the Probability Density
Function of a One-Dimensional Random Variable............................ 23
"Typical” Samples of a Probability Density......................................25
Distribution of Estimates of Likelihood Functions........................... 42

P D. F. of One Coordinate of a Point (Uniform) Randomly
Distributed Over an Ellipsoid of N Dimensions................................ A- U-7

2 2Probability That 6^ (t) > a^(t-l) as a Function of for a
Cell Located in a Region of Uniform (Class) Probability
Density.................................................................................................................A- U-11
Curve Used in Selecting the Control Parameter ...........................A- 11-16

Bivariate Data Representing Two Classes to be Separated
by Machine........................................................................................................... A-III-2
200 Data Points Used for Machine "Learning" with Class 
Decision Boundary Generated by the Proximity Algorithm,
ASSC U and SPEAR ...... ............................................................................... A-HI-3
Cell Structure Generated by ASSC II for Class 1. • .A-IU-5

Cell Structure Generated by ASSC II for Class 2................................A-III-6
Cell Structure Generated by SPEAR II for Class 1........................A-III-7
Cell Structure Generated by SPEAR II for Class 2............................. A-IU-8

Test Samples From Two Classes With Three Decision
Boundaries Formed From Independent Samples........................... ’ .A-III-10

Flow Chart of GENSPR................................................................................ A-IV-5

-Vi-



Figure

E-1

E-2

E-3

E.4

F-1
F-2

F-3

F-4

F-5

LIST OF ILLUSTRATIONS (Cent.)

Page

Average RMS Difference Between and Q'^ as a Function
of N, for The Sinewave and Sawtooth Waveform Classes. . . .A- V-11

Probability of Optimum Classification of a Sinewave and 
a Sawtooth Waveform (C = 4)......................................................................A- V-16
Probability of Optimum Classification of a Sinewave and
Sawtooth Waveform (C = 10)........................................................................... A- V-17
Probability of Optimum Classification of a Sinewave and
Sawtooth Waveform (C = 50),...................................................... ..... *A- V-18

Bivariate Representation of (x) and q2 (*)......................................A-VI-4

Diagram Specifying Seven "Learning" Experiments on
SPEAR      ...................................................................................................... A-VI-5

Indication of the Effectiveness of Tj^ and 0 as Storage
Reducing Control Parameters......................................................................A-VI-12

Indication of the "Learning Rate" (Rate of Cell Generation)
for Various Control Parameter Settings................................................ A-VI-13

Number of Vectors Processed Before 80% of the Final
Number of Cells Were Generated...........................................................A-VI-15

- V i i -



1

1. INTRODUCTION

^ ^®*^*y'* technology, we are used to the idea that machines can be made 

to do most anything. We are not used to the idea, however, that machines 

could be made to learn to do tasks that we ourselves do not know explicitly how 

to perform. The last decade, but particularly the last few years, has seen the 

emergence of a number of fields of related activities. Artificial intelligence, 
pattern recognition and bionices have gaine prominence in the scientific litera
ture. These fields of activity, in one way or another, deal with methods of 

examining input stimuli for the purpose of gaining information by eliminating 

cerUin redundancies inherent in the input. The information obtained is used to 

describe the input, to draw conclusions from it. or to perform other tasks 

normally considered to lie in the domain of human activity. Claims or achieve
ments in these new fields of activity have persuaded us to look upon machines 

built by man as tools that no longer merely perform explicitly instructed tasks, 
but can serve as useful aids in the performance of normally human functions.

While this belief has been gaining in general acceptance, and the applica
bility of machines to perform more or less hun[ian functions is believed to be 

perhaps just around the corner, there has been a tendency to associate human 

qualities with machines and to extrapolate actual performance capabilities to 

implied capability no longer based on supporUble facts. The purpose of this 

Introduction is, in part, to strip some of the mystery and vagueness from the 

pattern recognition field by outlining briefly the approximate present state of 

the art and by touching on the type of problems that present methods can solve. 
In the process of doing so, the important problems in pattern recognition will 
come to light and this will enable us to put in proper context the work reported 

in this Scientific Report on Pattern Recognition Research.
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Systems that examine the physical world through a set of sensors and 

attempt to select a course of action or attempt to make a decision depending 

on what they see must be able to describe the world first. Systems that can 

provide such a description in a language of their own are not going to be possible 

in the foreseeable future. Another approach to describing the world and con
structing its model is for the pattern recognition system to describe the world 

in terms prescribed for the system instead of using terms invented by the system.

This approach is analogous to preparing a questionnaire where each question 

in effect asks the system to test its environment in a certain manner and report 

its observation (the result of the test on the environment) by filling out the ques
tionnaire. The question may be one that requires a numerical answer, or may 

be one that requires a binary yes or no answer. In either case, the questions 

stated by the questionnaire can be thought of as descriptors of the environment 

which can be treated as a set of parameters in a parametric description of the 

physical world. This notion leads to a vector representation of the environment 

which is simply another way of expressing a set of responses that the system 

would make to a questionnaire prepared for it in advance.

Two important questions arise in connection with the above notion of con
sidering the model of the physical world for use in a pattern recognition system 

as a means for filling in a questionnaire. "What should the questions ask of the 

physical world?" and "What should we do with the answers in the questionnaire 

to obtain the information we are really seeking?" The first problem, that of 

formulating a set of questions to be answered, is the problem of selecting the 

parameters in a parametric description of the environment, while the second 

problem (that of determining how to process the answers or parameter values) 

is a question of data processing.

Regarding the question of data processing, one method is to predigest all 
the possible answers to the set of questions and determine, by some means, the 

conclusion that co\ild be drawn from the responses in the questionnaire. This
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is the type of approach used in decision-making systems that are of the "table 

lookup" or "truth table" variety. Here, in one manner or another, essentially 

all answers or possible combination of answers to the questions in the question
naire have been preprocessed by the designer of the data processing system, and 

the conclusions have been preformulated and have been built into a machine. A 

second approach to the question of utilization of the data is to build into the ma

chine not the answers, that is, the conclusions to be drawn from a set of answers, 
but instead to build into the machine the goal of the data processing system. In 

a decision making application, this might take the form of partitioning the large 

sets of possible answers into subsets, wherein each subset requires that the 

same conclusion be drawn from it. As an example, suppose that there are 

twenty different personality types that we wish to distinguish from one another. 

One of our tasks may be to decide on the basis of information to be gained from 

a questionnaire which of these personality types best describes a given candidate 

we interview. We can treat each personality type as a class and a specific com
bination of answers to the questionnaire generated by a single individual as a 

member of one of the classes. We are thus led to a problem where we wish to 

decide membership in classes. That is to say, we wish to decide that the par
ticular combination of answers generated by the candidate in question is charac
teristic of one or another class of personality types.

Instead of listing all possible answer combinations that may occur during 

an interview and deciding ahead of time which personality type is the best fit 

to each answer combination, we may wish to construct a machine (or at least 

an automatic technique) to classify the interviewed candidates. In this case 

we must give the machine some information about the personality types, either 

by defining them or by giving it some examples of each. If a definition is given 

to the machine, it must merely apply the definitions to the particular set of 

answers generated by a candidate to determine which definition fits best. As 

a result, the machine operates in a manner where the specific operations it 

performs on the input to be classified are programmed in advance. This is of 

BO interest in pattern recognition research.
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If instead, we provide the machine with examples of each class and ask it 

to come up with its own definition of personality types, definitions which it may 

later apply to classify new candidates, we are dealing with the typical problem 

of concern in pattern recognition research. The pattern recognition system 

must abstract class definitions from samples of classes so that it should be 

able to recognize membership in classes at a later time. The pattern recogni
tion system and its environment are illustrated in Figure 1.

It is possible, of course, that the requirements on data processing are 

other than those of decision making. It may be that the set of questions asked 

by the questionnaire in a set of responses that were received do not allow for 

conclusive determination of the type of personality. It may then be necessary 

to initiate new action, perhaps in the form of asking additional questions. What 
kind of questions should we ask, and how can such new questions be formulated 

automatically from the examination of the responses that appeared on the pre
ceding questionnaire?

A problem of a different type that may occur is that the number of questions 

that appear on the questionnaire are so large that it would be next to impossible 

to try to utilise all answers to render a decision. We may then be forced to 

select a subset of the answers and base our decision on the subset. The ques

tion then occurs, how should we select the subset of the answers on which we 

should base owe decision?

Suppose that we have formed a tentative conclusion from a subset of ques

tions already examined. How should we firm up and increase the certainty of 

our conclusion by asking for additional information; that is, which of the re

maining answers shall we seek out as a basis for a more accurate and certain 

decision?

Suppose that we are accustomed to making decisions based on questionnaires 

that are fully completed. What shall we do with, and how should we base a de

cision on incomplete questionnaire, i.e., questionnaires that have not been 

filled in completely by the candidate?

- 4-
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How shall we evaluate trends? It may be that not enough information is 

available to make a decision, but we can assess the trend (perhaps in the form 

of measuring the derivative with respect to time of the probability that a specific 

decision is correct).

Suppose that we send out several interviewers, each with the same ques
tionnaire to be filled in, and they return with answers in their questionnaires 

that are not identical. How shall we evaluate the set of questionnaires all 
answering the same questions asked of the same environment? Which one 

should we believe, or how should we process them to arrive at the best possible 

decision?

These are but a few of the types of problems that can be encountered. 
Problems of this type can be encountered at all levels, in speech recognition, 
character recognition, and even in business.

Artificial intelligence, bionics, pattern recognition, all intend to design 

systems that can eventually answer qeustions of this type. What has actually 

been achieved to date? For the most part we can say that the automation of 

decision-making problems is reaching the point where reliable and sophisticated 

decisions can be made on already parametrically represented inputs. Further

more, the automation of the construction of the decision-making procedure has 

reached the point that useful devices can be constructed that have a built-in 

goal, a goal of constructing decision-making procedures from known samples 

of the decision classes. The subject area of pattern recognition deals with 

techniques of this type. Progress in the automatic formulation of the questions 

to be asked of the physical word, however, has not reached a satisfactory state, 

as yet; but this subject is currently under exploration by an increasing number 

of researchers, and it can be expected that the mathematically treatable seg
ments of the parameter selection problem will reach a fairly satisfactory state 

within 1 or 2 years. Unfortunately, the same cannot be said of the nonmathe- 

matical aspect of the problem of parameter selection. More will be said about 
this later.
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The research reported on in this Scientific Report is concerned, almost 

exclusively, with the problems that arise once the parametric representation 

of the environment has been decided upon and once the class samples, from 

which the pattern recognition system must derive its class definitions, have 

been designated. To put this year's work in proper perspective, a brief review 

of the chronological developments is in order.

Up to the end of 1961 on Contract AFl 9(604)-8024 and other related work 

the pattern recognition problem was formulated as a problem of. vector repre
sentation of the environment followed by the automatic partitioning of the vector 

space into regions from known members of the class populations. At first, 
partitions were created by considering various transformations of the vector 

space that would tend to'cluster known members of the same class while they 

would tend to separate known members of different classes. Depending on the 

classes of transformations that were considered, the resulting partitions of 

the vector space were by means of hyperplanes or by means of the intersections 

of quadratic forms. The former (those that use hyperplanes) have been referred 

to as linear methods and discriminant methods. These methods, in a different 

context and with different motivations and derivations, have been employed by 

anthropologists earlier. The rediscovery and application of these methods, 

however, has occurred in this tinne period. During this time period (prior to 

the end of 1961) the relationship between the clustering ideas (using linear 

transformations, and quadratic forms operating on linear transformations) and 

statistical decision theory was shown. In the same time period the idea of 

using transformations that cluster members of the same class while they sep
arate members of different classes was extended to the use of nonlinear trans

formations as well. It was shown that decisions that are optimum in a decision 

theoretic sense and optimum with regard to clustering notions are one and the 

same, and procedures for constructing such decision making systems have been 

devised.' These methods have been programmed, tested, and found working 

correctly In the process of demonstrating the method of operation of these
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nonlinear techniques, the computational difficulties were explored and the con
clusion was reached that one has to pay a high price in computer time and com- 

plexity for strict optimality.

It was for this reason that approximate techniques and adaptive techniques 

were developed that did not only behave in an adaptive manner but were designed 

specifically to approximate the optimum nonlinear techniques with which excel

lent results can be obtained (at a high cost). That is to say, the adaptive and 

approximate techniques developed on Contract AF19(604)-80Z4 attempted the 

approximation of the optimum nonlinear techniques. At the same time adaptive 

techniques developed elsewhere and intended to be optimum were still restricted 

to operations no more general than those performed by the linear and discrim
inant techniques. Toward the latter part of 1961 the first generalized adaptive 

techniques were tested successfully. The Adaptive Sample Set Construction 

(ASSC) techniques approximate the joint probability density of the parameters 

for each of the sample populations and base statistically optimum decisions on 

the approximate probability densities. They can also make decisions on incom
plete parameter sets and on repeated observations of the same input. Certain 

peripheral problems such as recognition in noise were also considered.

Ehiring the research program reported in this Scientific Report, the adap
tive methods of approximating optimum decisions and constructing optimum 

decision making systems have been refined to such an extent that they now 

process parametric data in a nearly optimum manner. Great care has been 

taken to develop the techniques along lines that retain the simple program and 

the simple hardward realization aspects of the early ASSC techniques while 

increasing the generality of the problems they can solve successfully. A 

hierarchy of methods based on the early ASSC techniques have been developed 

and the estimation of the joint probability densities of the parameters for an 

arbitrary distribution of class populations has been studied. The reliability 

of the estimation procedure and the trustworthiness of a decision can be cal
culated. We thus have developed a figure of merit with which the quality of

- 8 - J
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the pattern recognition system can be measured. It would now seem to be an 

obvious step to attempt to feed back the figure of merit in order to improve the 

classification system.

One of the directions in which current efforts are concentrated attempt to 

utilize the figure of merit (and other diagnostic observations) to improve the 

classification system; that is to say, to improve the method of estimating prob

ability densities. It is believed that the work of the last year has brought us 

much closer to the realisation of nearly optimum decision making systems.
It now remains to couple these systems with automated diagnostic examination 

of the data automated selection of all of the system variables to realise a 

completely automated machine learning system.

Once the system is automatic, the human observer loses insight of the 

detailed processes that occur and can no longer interpret the data. For this 

reason a study must be made of the human requirements when using automatic 

systems. We must decide what to output to the human so that he will not feel 

"left out" and will profit from the machine's experience with the problem being

solved.

Work on the automatic analysis of the chosen parametric representation 

has also been undertaken. This work is not reported in this Scientific Report. 
The problem of parameter selection can be shown to consist of a facet that can 

never be attacked with ^ kind of mathematical, numerical, algorithmic or 

(for that matter) any systematic procedure. The second facet of the parameter 

selection problem (that which can be attacked systematically) can also be stated 

and solved mathematically. During the coming period of time, these problem 

statements will be worked out and easily implemented approximations of the 

solutions will be devised to permit not only the automatic processing of para
metric data, but also the automatic modification of the choice of parameters to 

achieve the overall desired result of realizing improved classification systems 

within the allowable system constraints.

-9-



In conclusion a very brief survey of the last few years of pattern recogni

tion developments will be given. ♦

The pattern recognition problem can be conveniently divided into two 

parts — first, selection of the measurements, of the space to be partitioned, 

and second, finding the method of partitioning this space. Generally speaking, 
the problem of finding a set of parameters and thus defining the vector space 

is an engineering problem, while the method of finding a partition of the vector 

space once the parameters are defined is a problem that can be treated mathe
matically in any one of a large number of different ways. We will thus refer 

to the two parts of the problem as the parameter selection problem and the 

problem of partitioning the measurement si>ace. In addition to these two main 

problems, there are a number of important practical considerations that have 

received theoretical treatment. Among these must be counted the method of 

decision-making when not all observable and measurable parameters are 

available at a given time, decision-making when multiple observations of the 

same stimulus can be obtained, recognition in noise, recognition when the 

measurements are known to have been taken at the time more than one input 
stimulus class was present (multiple target problem), and th*; subdivision of 

the finite number of samples into "learning sample" and "testing sample" 

subsets.

In theoretical advances, the trend has been toward the increased applica
tion of statistical methods. A few years ago, besides exact match techniques, 

correlation with stored references was about the most sophisticated technique 

employed. This is not too surprising for correlation has just recently become 

a household word and has just recently reached wide-spread laboratory use

n

<‘The following is based on a portion of "Pattern Recognition and Machine 

Learning" by N. Abramson, D. Braverman, and G. Sebestyen.
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despite the fact that the peak of the flood of correlation literature was reached 

eight or ten years ago. In addition to this fact, the mathematically more sophis

ticated scientific community was somewhat repulsed by the unquantitatxve and 

unscientific outward appearances of pattern recognition problems. This is often 

the case when the problem we wish to solve cannot be stated clearly.

Since a few years ago the formulation of pattern recognition problems as 

problems in hypothesis testing on multivariable inputs has gained widespread 

acceptance. Inputs have come to be thought of as vectors in a multidimensional 

space or member functions of a random process.

The vector representation has caused many authors to view the pattern 

recognition problem as composed of two subsidiary problems - first, selection 

of the measurements, or the space to be partitioned, and second, finding a 

method of partitioning the space. Marill and Green^'^ have stressed this point, 

calling that part of the system dealing with the first problem the "receptor" 

and that part dealing with the second problem the "categoriser." Most of the 

progress in the theory of pattern recognition during the past three years has 

been in determining methods of partitioning the measurement space, once the 

measurements have been specified.

Probably the most investigated method of partitioning the measurement 

space is with hyper planes.*^* A number of authors have pointed out that
the linear discriminant methods, correlation methods and matched filter meth-^^ 

ods are, in fact, but different realisations of identical operations. Highleyman 

has presented an exhaustive treatment of linear discriminant techniques and 

their uses; among other topics, he has discussed general properties of hyper

plane partitions and heuristic methods of constructing separating hyperplanes 

from empirical data. Linear methods, although they have been studied most 

intensively, are not the only methods used to partition the measurement space 

in pattern recognition. Polynomial discriminants,^^* hyperspheres and

quadratic fbrms^** have also been investigated in some detail.

-11-



Much work has been done in determining optimum partitions of the meas
urement space when the measurements from each class are Gaussian/^’ ’ ^
In general, the Gaussian assumption leads to linear and quadratic data process

ing; in certain important special cases, the quadratic terms need not be 

included, and the Gaussian assumption leads to the linear methods discussed 

above. It has been shown^^’ that geometrical distortions (trans
formations) of the vector space to increase the separability of vectors belonging 

to different classes lead to statistically optimum (Bayes) decisions under quite 

general assumptions about the class probability densities. Thus, the restrictive 

Gaussian assiunption can be removed.

Several studies have been concerned primarily with the use of learning 

observations in pattern recognition. Two different sets of assumptions about 

the nature of the learning observations are possible. We may assume that 

each learning observation is presented to the machine together with a label 

specifying the class of patterns to which the observation should be assigned or 

we may assume that each observation is presented without such a label. The 

first problem is called "learning with a teacher, " the second, "learning without 

a teacher." Learning without a teacher is undoubtedly the harder of the two 

problems. Learning without a teacher has been investigated by Daly, ^ ^ who
has been able to prove certain convergence properties when there are only two 

classes to be recognized. The data processing necessary for an optimum solu

tion, however, grows exponentially, so that Daly^^^^ has also investigated a 

suboptimum linear system for learning without a teacher. Jakowatz, Shuey 

and White^^^^ have investigated learning without a teacher in another form.

They have analyzed and built a system for detecting fixed pulses occurring at 

random intervals in noise. Initially, the system does not know the shape of 

the pulse it is to detect, but as it observes the sum of the pulses and noise, it 

'•learns" the pulse shape and "evolves" into a matched filter. Some analysis 

related to this system has been done by Roe and White and by Hinich, 
but the theory is by no means complete. A similar system has been treated by

- 12-





(19)Glaser. Glaser's system consists of a linear weighting of an energy detec

tor arid a matched filter detector; as the pulse form is learned, the weight 

assigned to the energy detector output is decreased in favor of the matched 

filter output.

The theoretical problems involved in learning with a teacher have also
i 2 qv

received attention. Braverman' ’ ’ has derived optimum data processing for

learning the mean of Gaussian patterns. In addition, he has shown that the 

difference between the error probability of his filters and the error probability

after learning is inversely proportional to the number of learning samples.
(20)

The concept of a reproducing density is used by Abramson and Braverman 

to obtain an iterative solution to the problem of optimal learning of the mean 

of Gaussian patterns. Keehn^^^^ has used the idea of the reproducing density 

to derive optimum methods of learning the covariance matrix of Gaussian pat

terns. When little a priori information is available, Keehn's solution reduces 

to that of Sebestyen's clustering transformation. ^ ^

In a simple case where the measurement space has been reduced to a 

single dimension, and a threshold decision rule is optimum, Kac^ ^ has inves

tigated an adaptive method of adjusting the threshold. The threshold is given 

a small increment after each incorrect decision; this simple procedure is shown 

to bring the threshold to the point of equal errors of the first and second kind.

Those researchers who had character recognition in mind or those who 

were dedicated to a digital approach by inclination have restricted themselves 

to binary measurement spaces. When the measurement space is binary and 

the number of classes to be recognized is just two, the pattern recognition 

problem becomes one of selecting a truth function of n variables. Almost all 

of the work done in this area has restricted the set of allowable functions to the 

linearly separable truth functions. This has been done both because of the 

relative ease with which search procedures can be described in this restricted 

class, and because of the ease of instrumenting these procedures. Widrow and
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have described an iterative adaption procedure for searching the class 

of linearly separable functions which is equivalent to mean square error mini
mization. The properties of linearly separable truth functions have also been

Gab 
(27)

treated by Gableman, Stearns^^^^ and Highleyman.^^^^ Coates, Kirchner
have provided a simplified method of realizing and synthesizing

(28)linearly separable truth functions. Ridgway'
and Liewis

i?a\
has looked into the synthesis 

of truth functions by using a parallel combination of linearly separable functions 

followed by a majority logic circuit, and has investigated an adaption procedure 

useful in such a system. A novel method of analyzing linearly separable func- 

tions has been used by Hoff.' Linearly separable functions — mappings of 

the binary n cube into two points — are approximated by mappings of the 

(non-binary) n sphere into two points. Hoff also discusses functions of this 

type which are invariant under certain transformations of the binary input space.

The primary unsolved question in pattern recognition is undoubtedly that 

of selecting the measurement space. This problem is analagous to the classical 
statistical problem of design of experiments and suffers from many of the math

ematical difficulties of that field. Ball^^^^ has used integral geometry to sug
gest measurements for the character recognition problem which are invariant 

with respect to rotations, translations and scale changes. He has also attempted 

to use some simple results in comparison of statistical experiments to evaluate 

the usefulness of his measurements. Another study dealing with the selection 

of measurements is provided by Lewis.Lewis examines the notion of a 

single number statistic for each coordinate of the measurement space which 

would have certain desirable properties related to the ’’goodness" of the coor

dinate. He shows that, in general, no such statistic exists, but he does show 

an alternate statistic with some merit to recommend it. It is clear that a good 

deal of work will be done in the area of measurement selection in the years to 

come. It is one of the principle areas where our own work is also concentrated.
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2, CLASSIFICATION BY LIKELIHOOD FUNCTION ESTIMATION

Consider the problem of deciding which of M classes has given rise to an

observed event, x = (x , x_, . . ,, x ), and suppose that the statistics of events 
~ 1 2 n

and classes are known, i.e., the joint probability density function of x and

m is known, where m denotes the class label: m > 1, 2.......... M. The decision-

theoretical optimum method of processing a measured event x to render the 

classification is well known. Specifically, x should be regarded as a member 

of the k-th class (Eq. (18), Reference 1) if the cost of deciding in favor of the 

k-th class is less than that of deciding in favor of any of the other classes.

This is stated in Eq. (2.1).

n
M

P^P„(x) m m ~
m 3 1

(m) ^(m)
k " j

< 0 for all j ^ k, j = 1, 2, M, (2.1)

where
c!*”^ ■ the cost (i.e., loss) associated with deciding that x belongs 

to the j-th class when in fact x belongs to the m-th class,

P * the a priori probability that an event from class m will occur, 
m

and p (x> ■ the conditional probability density function of x, given that x 
m

belongs to the m-th class.

This method of decision-making mininuzes the average risk^^' associated 

with the classifications.* If, as is appropriate with many practical classification

*Evidently the basic form of the procedure is the same for other optimization 

criUria. See, for instance [bj for the binary decision case.
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problems, the cost or loss is the same for all mis classifications, then Eq. (2.1) 

reduces to the following decision rule: decide x is a member of the k-th class 

if

^ for all j > k. j »1. 2, (2.2)

Further, if the a priori probabilities are the same for all classes (P » 1/Mm
for all m), then Eq. (2.2) becomes: decide x is a member of the k>th class if

L^(k) > L^(j) for all j / k, j *1. 2. M. (2.3)

where L^(m) s P^(x) is commonly called the likelihood fxmction of m given the 

event, x. When class a priori probabilities are the same, the likelihood fvmc- 
tion is equal to the a posteriori probability of class occurrence; i.e..

Thus, we see that if the statistics of events and classes are known, then an 

optimum (from the standpoint of mini9iiaing risk) method of establishing classifi* 

cation decision boundaries in observation space is known, and the only hurdle 

which remains is implementation of this procedure. Unfortunately, however, 
this resxUt can only be used as a guide to solving any practical classification 

problem, because the statistics of events and classes are usually not known 

precisely.

In most practical problems, all the information available on the statistics 

of events is contained in the values of a finite number, N, of the sample events 

processed in the learning mode of operation of a recognition system. A reason

able way to proceed in this situation is to generate an estimate of the likelihood 

function (or equivalently, the probability density function) of the different classes, 

over the observation space, and render classification decisions in the manner
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dictated by decision theory using the estimated quantity in lieu of the "true" 

function. This is the basis for all of the classification methods discussed in 

later sections of this report.

With this approach to establishing classification decision boundaries in 

observation space, the method of estimating probability density functions plays 

the key role. The degree to which the estimate corresponds to the true function 

determines the similarity between the decision boundaries actually utilized and 

those which would minimize the misclassification probability. In addition, and 

perhaps equally important for advancing the development of automatic recogni

tion systems, the form of the estimate should be selected to minimize the equip

ment complexity (primarily the storage requirements and operating speeds) 

associated with its implementation.

If the probability density function is known, an approximation of the function 

in a form economical from the point of view of the storage requirements can be 

obtained in the form of a histogram. If we are willing to devote a given number 

of storage locations to the storage of an approximate probability density, we 

would like to assure that the approximation we store is the "best" under the 

given constraints imposed by our storage limitations.

As an illustitative example of how imposed storage limitations on the con

struction of an optimum histogram approximation of a probability density can 

be utilized to derive the optimum histogram, the following problem was considered.

Given a probability density p ( x) we would like to construct a histogram 

h (x) such that the mean-squared error between P (*) and h (x) is minimized. 

We impose the constraint that the histogram should be composed of exactly 

K bars but neither the location, widths, nor heights of the bars are in any way 

constrained.

The above problem is solved in Appendix I, where a set of simultaneous 

equations are derived that relate the locations of the left and right hand bound

aries of the histogram bars in terms of the function P^^^i be approximated.

n
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The solution of the simultaneous equations could be obtained only under rather 

limited conditions by an iterative method of numerical solution. This solution 

was programed on a computer and the solution was demonstrated on a number 

of examples given in Appendix 1.

In most practical cases in pattern recognition problems the probability 

density to be approximated and stored is not known. CJnly a few sample observa

tions are available from which the density must be estimated. Although there 

are many methods of estimating probability density functions two approaches 

to the problem stand out as most suitable for consideration in a recognition sys

tem. The first consists of estimation through histogram construction by counting 

the number of occurrences of events in pre-specified regions (cells) in the ob

servation space. Such an estimate is illustrated in Figure 2(a) for a one

dimensional observation space, and N = 20 samples in the learning set of data. 

The area of each vertical bar is an estimate of the probability that x will occur 

within the range of values defined by the boundaries of the (in this case, one

dimensional) cell. This probability estimate for any cell is provided by the 

ratio of the number of learning samples (successes) which occur within the 

cell, N., to the total number of learning samples, N. In general, the probability 

density function p( x), of a multidimensional random variable, x, is assumed to 

be constant over the cell, and equal to the ratio of the estimated probability of 

obtaining a sample within the cell to the hypervolume of the cell. In symbols.

N.

N’ V. 
J

*2.4)

where
N. = the number of learning samples which occur within the j-th cell.

and = the volume of the j-th cell.

♦See, for instance. Reference [3] for descriptions of several methods.
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The caret symbol indicates that an estimate, rather than a true probability 

density function is obtained.

Straightforward application of this method of estimation requires a priori 

specification of the cell structure (size, shape and number in observation space) 

over which the histogram is to be constructed. To reduce storage requirements 

it would be desirable to keep the number of cells small. However, to represent 

the probability density function accurately in regions where this function is 

sensitive to small changes in the cells should be small, which would make 

the number of cells large. A third factor which must be considered in selecting 

a cell structure is that the accuracy of estimation of the probability that ^ will 

occur in a given cell, is proportional to the number of learning samples which 

occur within the cell.^^^ Thus, the minimum resolution which should be attempted 

with a cell structure is limited not only by the (unknown) character of the true 

probability density function, but also by size of the learning set.

Since the character of the (unknown) probability density function plays such 

an important role in determining the appropriateness of a given cell structure, 

it is reasonable to utilize the only information available on this function (the 

learning set) to select the cell structure. This could be accomplished during 

the learning mode of operation of a recognition system by adjusting the cell 

structure (according to a pre-established criterion) with each exposure of the 

system to a new learning sample. There are many ways of implementing this 

procedure. One would be to stai't with a coarse cell structure consisting of a 

few hypercubes, and then increase the cell structure resolution by subdividing 

existing cells to avoid a violation of the constraint that no more than 4 (say) 

samples should be allowed in a single cell. This method of adjusting cell 

structure is illustrated in Figure 2(b) for the same 25 one-dimensional samples 

used to construct the (uniform cell structure) histogram in Figure 2(a). Even 

though the modified cell structure involves two less cells than the uniform 

structure, considerably greater resolution is attained with the modified struc

ture. If the range of possible values of the observation variable (x) is partitioned
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into segments corresponding to unchanging values of the probability density 

function, then both the uniform cell structure and the adapted structure woxUd 

require 9 quantities to represent their corresponding histograms, although the 

adapted structure attains a higher resolution.

Of course, the accuracy of an estimation based on rules for adapting the 

histogram cell structure to the learning samples must be evaluated before the 

utility of such a procedure can be ascertained. The purpose of this histogram 

illustration is to point out the possibility of using an adaptive procedure for 

estimating probability density functions (and therefore, decision boundaries).

The significant difference between this approach to adaptation of decision 

boundaries in observation space and most of the other methods which have 

been proposed in the past few years is that this approach makes a conscious 

attempt to approximate the class probability densities without any prior assump

tions about the distribution of events in the observation space. Having estimated 

the densities, the procedure known to be "optimum" is used to construct the 

decision boundaries. While constraints on the number and type of boundaries 

which can thus be generated do exist with this approach, these constraints 

impose no serious limitations on the distribution of events in observation space 

for a successful separation of classes.

The second important aspect to estimation of probability density functions, 

called typical sample representation, takes the adaptation procedure outlined 

above for histogram estimates as a point of departure, but implements this 

approach in a somewhat different manner. As before, the observation space 

is partitioned adaptively into regions called cells; however, the role of the 

estimation process and the geometrical disposition of these cells are not neces

sarily the same as for histogram construction. First of all, cells are created 

only in those portions of the observation space where learning samples have 

been observed. Since it is expected that in most practical problems a very 

high percentage of the volume of the observation space is empty, this serves 

to reduce significantly the storage requirements. Secondly, the size, shape

I
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and height of a cell is determined from an examination of the local behavior of 

the learning samples in the neighborhood of the cell in question. From the local 

behavior of the learning samples a component function is generated which repre

sents the learning samples in the immediate neighborhood of the cell.

The entire process of typical sample representation can be regarded as an 

adaptive method of approximating the probability density by expanding it in a set 

of not a priori specified component functions. The component functions repre

sent and typify each of the different significant manifestations of members of the 

class by creating a cell corresponding to each of the different manifestations.

The component functions also describe the local characteristics of each "typical” 

concentration of learning samples and they shape the cells.

Figure 3 illustrates the behavior of these component functions for a one

dimensional random variable. The process by which such an estimate of the 

probability density function is constructed encompasses three basic steps;

P(>^) .

Figure 3. Typical Samples of a Probability Density
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• A cell structure consisting of c cells is generated by the learning data.

• Corresponding to each cell, one of a class of functions, {f(x)}, is selected 

according to values of learning data samples occurring within that cell.

• The probability density fxanction is estimated by some sort of combination

of the selected functions, 

c cells.

f^(x)^, j = 1, 2, . . ., c, corresponding to the

Thus, the probability density function is represented by a set of "typical samples", 

where each typical sample consists of a reference point, a component function, 

and a cell boundary.

The cell structure is established by adaptive adjustments controlled by the 

sequence of samples contained in the learning set. Of the many ways in which 

rules for the adaptation can be established, * the following has been studied most 

extensively. The first learning data sample is established as the "reference 

point" for the first cell. The second sample is then compared with this refer

ence point according to a criterion which indicates whether this sample should 

be used to modify the first cell (by adjusting its reference point), or be established 

as a new reference point for 9 second cell. If used to modify the first cell, then 

the criterion by which future learning samples will be compared with the refer

ence point for that cell may also be modified. If the second sample is established 

as the initial reference point for the second cell, then a second criterion is also 

assigned to that cell. The third and succeeding learning data samples are com

pared with each of the established cell reference points (according to their respec

tive criteria) and used to either modify one of these cells, or establish a new one.

The criterion by which new learning data samples are compared with an 

established cell is constrained to reflect a notion of similarity between the cell 

reference point and a new sample. The provision for adjustment of the criterion

*See Chapter 4 of Reference [4] for a general discussion of adaptive methods.
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according to the value of a new sample, allows for development of different 

measures of similarity between events in observation space, according to 

location of the events in that space, as well as class membership. The cri

terion associated with a given cell may be regarded as a maximum allowable 

distance between its reference point and any other point in observation space 

to be associated with that cell, where "distance" is measured in an adjustable 

way. Thus, modification of the criterion for a cell changes the cell boundary 

which consists of all points in observation space equi-distant (at a specified 

value) from the cell reference point.

Either during or at the end of the process of cell formulation, the samples 

occurring in, say, the v-th cell are used to select the component function

from a pre-established class of functions, {f(x)} . This set of functions 

may or may not allow for non-zero values of f^(x) outside of the v-th cell.

In practice, it is convenient to relate the class of component functions to 

the way in which distances are measured between points in the observation 

space and cell reference points. In particular, if the component function for 

a cell decreases monotonically as the distance between x and the cell reference 

point increases, then the process of computing probability density function 

values at x may be reduced to the calculation of distances between x and the 

cell reference points. An illustration of this relationship is the use of quadratic 

forms for measuring distances, and Gaussian forms for the component functions.

The last step in the process of estimating probability density functions with 

typical samples consists of combining the component functions over the entire 

observation space. One way is to consider the probability density function to 

be the sum of the component fimctions:

P(x) (2.5)
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For iincorrelated Gaussian component functions, this method allows for con

venient processing of recognition data samples in which some parameter values 

are missing. Another method of combining component functions is to use 

the function whose cell reference point is closest to the point at which the prob

ability density fimction is to be estimated.

In the next section, recognition systems embodying the likelihood estima

tion approach to the classification problem are described. Each of these sys

tems employs a version of the typical sample method of estimating and repre
senting probability density functions. The adaptation, construction, and utiliza

tion of classification decision boundaries are illustrated for several methods 

involving different levels of equipment complexity for implementation.
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3. MACHINE LEARNING BY PROBABILITY 

DENSITY FUNCTION ESTIMATION

Having phrased the problem of "machine learning" in terms of estimating 

class probability density functions, we may now turn, in Section 3.1, to the 

techniques which have been developed to implement and which operate on the 

principle of p.d.f. (probability density function) estimation. In Section 3.2 

(and Appendix II) a theory is developed for selecting the control parameters 

which determine the performance of the techniques for any given set of data. 

Experiments are described in Section 3.2 (and Appendix III) which have sub

stantially confirmed the theoretical predictions of Section 3.2.

3.1 ADAPTIVE SAMPLE SET CONSTRUCTION TECHNIQUES

There are two aspects of the problem of p.d.f. estimation in pattern 

recognition that must be emphasized. The method of estimation must be 

specified; the method of characterizing the estimated p.d.f. over the observa

tion space, both at points where known examples have occurred and at points 

where past experience does not provide explicit guidance, must be determined. 

The first of these problems can be attacked in a straightforward manner with 

the aid of the theory of statistics. The second problem stems from the fact 

that a finite sample size (usually small) is used for estimation, so that the 

p.d.f. cannot be determined accurately over large portions of the observation 

space, and even if it could, consideration of the practical implementation 

schemes available must be taken into account. To illustrate these problems 

and a possible solution consider the computer program known as the Proximity
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Algorithm.* This program, which has been used with some success in practical 
applications, does not explicitly consider the estimation problem as such but 

provides an immediate simple solution to the second problem. In the Proximity 

Algorithm "machine learning" consists simply of storing all the known data 

vectors in the computer memory. To perform recognition, the Proximity 

Algorithm computes the Euclidean distance between the unknown or test sample 

vector and all of the stored known vectors. The unknown vector is then assigned 

to (or decided to be a member of) the same class as the nearest stored vector.

In effect, an input is considered a member of class A if it is closer to any known 

member of class A than to any known member of any other class. By this pro
cedure the class p.d.f.'s are "estimated" to be "high" (only relative magnitudes 

matter) near known vectors of the class and to fall off in a manner inversely 

related to the distance from the nearest known vector. The estimated p.d.f. 
is therefore characterized by this rule over the entire observation space. The 

recognition machine consists simply of a memory and a distance computer.
The Proximity Algorithm uniquely determines a set of decision regions in the 

one-observation sample space (but no more), and may be used to make decisions 

based on one observation.

The class of "learning" techniques which develop only a set of decision 

regions in an observation space have a fundamental limitation which is important 

in many applications. If the application is such that repeated observations may 

be mlde on an individvial class member (or on different members of the same 

class) then it may well be desirable to base decisions on a sequence of observa

tions and to change the number of observations used from decision to decision 

in a sequential decision rule. However, this is not convenient if the decision 

rxile is tied to a fixed number of observations, and, in fact, an optimum decision

♦Page 91 of Reference [4]
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rule cannot be implemented. For this reason it is important to develop tech

niques which yield an absolute estimate of the class p.d.f.'s even if the single 

observation error probabilities are not significantly reduced. It is fortunate 

that the more sophisticated techniques to be discussed next are clearly not 

significantly more difficult to implement than the Proximity Algorithm.

A program which explicitly considers the p.d.f. estimation problem, and 

which simultaneously introduces an important concept for what is to follow, is 

known as the Adaptive Sample Set Construction Program, ASSC II.* The con

cept to be introduced is that of a "floating" cell structure determined by the 

data. The program operates by processing the known vectors sequentially in 

the following manner. A cell of prechosen size and shape is constructed with 

center at the first known vector. The defining relation for the cell is that all 

points in the observation space that are within a prechosen distance of the cell 

center belong to the cell. Thus, only two quantities are required to specify the 

cell: The (vector) cell center and the (vector) cell radius.**

The second known or "learning" sample vector is used to generate a second 

cell similar to the first if it falls outside the first cell. If the second "learning" 

vector falls inside the first cell, the center of the cell is shifted to the center 

of gravity or mean of the two "learning" vectors. The third and subsequent 

"learning" sample vectors are processed similarly, either generating new cells

*This program has been described in more detail and with some results of 

practical applications in the literature [7, 5].

**The coordinates of observation space may be normalized before distance is 

computed, thus allowing elipsoidal cells in the unnormalized space.
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or updating old cells. Thus, the cells so generated for each class are located 

in the portion of the observation space where examples of the individual classes 

have been observed. Furthermore, the cells tend to move toward local peaks 

or modes of the class p.d.f.'s.

Once a cell structure over the observation space has been established, the 

estimation of the class p.d.f. proceeds in a manner similar to that in con
structing a histogram. The quantities to be estimated are the probabilities of 

a sample vector falling in each cell. The estimator used, of course, is the 

fraction of the vectors in the learning sample that fall in each cell (this esti
mator is binomially distributed and has the desirable statistical properties of 

unbiasedness and sufficiency). In an endeavor to have as efficient a sampling 

procedure as possible, the estimate of the i-th cell probability is taken as 

p. =n./n where n. is the total number of vectors that have fallen in the cell 

throughout its history and n is the total number of known observations from 

the class in question (n is the size of the learning sample). That is, no account 

is taken of the fact that the cell moves about during the learning procedure.

In a conventional histogram the estimated p.d.f. is represented as a 

"staircase" function (constant over each cell). However, this is an undesirable 

form of p.d.f. representation for the present purposes since the cell structure 

as defined here does not (necessarily) cover the entire observation space. 

Therefore, regions in which no observations have occurred in the particular 

finite learning sample used would be assigned a p.d.f. value of zero.

The assumed form for characterizing the class p.d.f.'s once the cell 

structure has been determined, is to fit a function of the form

p^.*p

— 2 -
i Y"2 X b.M

> i

to the k-th cell (for each class) where x s (x^.

X-, .... X ) is an arbitrary point in the observation space, m., is the i-th 

coordinate of the center of the k-th cell, b^ is the prechosen "radius" of the 

cells in the i-th coordinate direction, and is the proportion of the known
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vectors (from that class) which fell in the k-th cell. The total p.d.f. estimate 

is then taken as the sum of the functions fitted to the individual cells, so that 

the assumed form of the class p.d.f. is that of a union of normal p.d.f.'s.

Like the Proximity Algorithm, ASSC II assumes the class p.d.f. to fall off 

inversely with the distance from the known vectors.

In ASSC II the generated cells were made to depend on the known vectors 

both in position and number. An immediate generalization of this is to make 

the size and shape of each individual cell also depend on the data. This con

cept has been embodied in the computer program known as SPEAR (Statistical 

Property Estimation And Regeneration). In addition to updating the cell loca

tions, the data is used to update the cell radii in each coordinate direction by 

an arbitrary rule. (The rule that has been used so far is discussed in detail 

in the next subsection.) Furthermore, the distance measure used in defining 

the cells is arbitrary although only Euclidean distance has been used so far.

The purpose of allowing the cell structure generation mechanism to depend 

so much on the data is twofold. First, a distinct possibility exists for reducing 

the number of required cells from that generated by, say, ASSC II. This, of 

course, would result in a reduction in the storage needed to specify the class 

p.d.f. *s. Second, making the cell structure depend so completely on the data 

relieves the experimenter of the difficult task of choosing the cell sizes or 

radii. This problem becomes particularly difficult when the observation space 

has many dimensions. Using SPEAR, the experimenter exerts an influence on 

the p.d.f. estimation procedure only through certain control parameters. Rules 

for choosing these control parameters can be theoretically derived from rather 

simple models: this is discussed in detail in the next subsection.

The cell structure generated by SPEAR is more general than that generated 

by ASSC II in that different cells may have different sizes and shapes. In order 

to perform recognition using the "learning" results of SPEAR, a program 

called ASSC III has been written. ASSC III is similar to the recognition part
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of ASSC U. For reasons of computational economy, however, ASSC III uses a 

quantized form of Gaussian function about each cell center (or "typical sample") 

and the p.d.f. estimate at a point is determined by only the nearest "typical 
sample" rather than by the sum of Gaussian functions. Experimental evidence 

has substantiated the expectation that ASSC III and ASSC II will have substantially 

the same performance.

The programs described above and related programs are listed in Appendix 

IV with a short description of each.

In order to illustrate certain features of the above techniques, a series of 

three experiments using two-dimensional data (so that the results might be 

plotted) was designed. A description of these illustrative experiments and the 

results obtained is contained in Appendix III.

3.2 METHOD OF SELECTING CONTROL PARAMETERS

Most automatic machine learning techniques are not completely automatic. 
Thresholds and initial settings must be determined and preliminary analyses must 

be performed on the data before the so-called automatic pattern recognition 

techniques can commence operations. These thresholds or initial constants 

are usually determined by human inspection of the data in a. particular experi

mental application. The purpose of this section of the Report is to describe 

attempts to automate, at least partly, the process of initial control parameter 

value selection. The rationale behind this attempt is that whatever human 

inspection of the data (or of the preliminary analyses) reveals, and whatever 

properties of the data prompt us to determine these starting constants, these 

very same properties can be examined by machine to automate the initial con

trol parameter value selection process.

The choice of these control parameters can be determined theoretically.

In order to use SPEAR for class probability density estimation, it is necessary 

to specify the initial cell size.
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In Appendix II the expected behavior of a cell is derived as a function of 

the control parameter t under the assumption that the cell is isolated and 

located in a region of the observation space over which the class p.d.f. is 

constant. Since the desired behavior of the cell in such circumstances is that 

it should grow in size, the value of can be chosen to assure that this should 

happen at least statistically.

The control parameters chosen in accordance with the conclusions derived 

in Appendix II have been used in a series of experiments that have substantially 

confirmed theoretical predictions.

The conclusion reached in Appendix II is that, for effective utilization of 

the cell growth feature of SPEAR, Tj^ should lie in the range 1. 1 siN + 2 to 

1.5'^N + 2 For < 1. 1 n/N + 2 , very little cell growth will take place. For 

Tn > 1.5<^N + 2 , the cells grow too rapidly. The particular choice of should, 

in part, be influenced by the sample size available for "learning". It is thus 

seen that the choice of this control parameter does not depend upon the data but 

only upon the number of dimensions. The initial cell size must, however, still 

be determined from a consideration of the data.
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3.3 EXPERIMENTAL RESULTS OF SPEAR "LEARNING" WITH

THEORETICALLY DETERMINED CONTROL PARAMETERS

The technique presented in Appendix 2 indicates that the controlled cell- 

growth mechanism obtains the best approximations of the joint probability 

densities when the numerical value of the control parameter is between 

1.2 •JWTz' and 1.5 <v/N -f 2 where N is the number of dimensions of the 

vector space. A series of experiments were conducted to determine how well 

SPEAR can estimate class probability densities. In order to facilitate the 

comparison of results with results that would be obtained if the approximation 

were perfect, data of complicated but known probability density was used in 

the tests.

The data was composed of two distributions, each containing four modes 

in a four-dimensional space. The probability densities were estimated by 

employing SPEAR from about 1000 samples of the dictributions. A number 

of different values of the control parameter were selected; best results

were obtained with T. = 1.3 'v/N + 2 For values of t < 1.2 vN + 2 N
cell-growth mechanism was ineffective. For values of > 1.5 */N+2 , 

cell growth was excessive and no discriminability between classes could be 

achieved. These results are in good agreement with predictions presented in 

Appendix 2, Figure B- 3.

In addition to a point-by-point comparison of pdf estimates with the true 

values, independent data from the same distributions also was used to confirm 

the quality of the approximation technique. An additional 1000 vectors from 

each class were tested against the known true probability densities and against 

those obtained through SPEAR learning with = 1.3 ^/N + 2 . An error rate 

of 7. 55% was obtained when the known probability densities were used, while 

an error rate of 7. 8% was obtained using the results of machine learning. This 

result is especially significant since the data distribution was deliberately 

chosen to make class separability difficult. The two distributions may be de

scribed as two intertwined spirals in four-space.
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The good agreement between error rates achieved with the true (0.0755) 

and the approximate (0.078) probability densities is strong evidence that the 

true and estimated densities are close almost everywhere, and that the 

SPEAR-ASSC II technique of machine learning and recognition is close to 

optimum in a wide class of recognition problems

The data, results, and the experiments are described more fully in 

Appendix 6.

II
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4. IDENTIFICATION OF HIGH QUALITY DECISION REGIONS

With any method of automatically making classification decisions, the ques
tion of when or how much to rely on the decisions rendered by the method usually 

is of operational significance. Particularly in applications requiring decisions 

with which a human may not have had prior experience it would be desirable to 

have an automatic decision-making machine emit an indication of the confidence 

which may be placed in a decision, as well as the decision (class indication) 

itself. Although the user of any automatic device will doubtless form his own 

opinion of the overall quality of a classification device, there are at least two 

practical reasons for building into the machine a criterion for judging quantita
tively the quality of its own decision for any given event. First, if the decision 

is judged to be of low quality, then the user may be in a position to either ignore 

the decision or repeat an experiment to provide data for another decision. 
Secondly, the decision quality indicator may be used as a score or figure of 

merit marking the automatic decision making machine. It is conceivable that 

procedures could be found to alter the nature of the cell structure, sampling 

procedure, sample size, or other controllable variables to maximize the 

decision quality indicator and thus improve the classification device. •

For instance, in the method of estimating class probability densities des

cribed in the preceding section and in the appendixes the initial cell sizes and 

cell dimensions are controllable quantities which have an important influence 

on the quality of the density function estimate on which the decisions are based. 

In the course of this study, geometrical considerations were employed to deter

mine the numerical values of cell sizes, thresholds, and initial settings of the
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program variables.* The use of procedures to maximize the decision quality 

indicator subject to variation of the program variables may lead to better 

classification devices. Mainly, the decision quality indicator would serve as 

a diagnostic tool with which to analyze the decision making procedure in order 

that improvements could be made.

While several measures may suggest themselves as suitable indicators of 

the quality of a decision (or of the decision making system), two of these seem 

to be particularly powerfxil candidates. A mathematical formulation of these 

two measures is given in the next subsection; here only the motivating notions 

are explained.

One of the proposed measures of the quality of a decision is the probability 

that the decision is correct. The proposed quality indicator thus measures 

whether or not the decision is correct.

The second is a measure of whether or not the decision is optimum. An 

optimum decision decides in favor of the class having the largest probability 

density at the point in the vector space in question. Since we only have 

estimates of each probability density, we would have to decide in favor of the 

class having the larger estimated probability density. If the estimate of the 

density of class A is larger than the estimate of the density of class B (so that 

we would decide in favor of A), the question is, "What is the probability that 

the actual density of A is larger than the actual density of B?" That is to say, 

"What is the probability that the decision we make is optimum?"

In each of these two cases, it is desirable to define a measure of quality, 

Q(x) and then invent procedures that maximize the volume of the region of the 

vector space over which Q(x) ^ q, where q is a quality threshold level.

*See Appendix II
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4,1 TWO DECISION QUAUTY CRITERIA

We have considered two different notions of what the attribute of high quality 

should reflect when applied to a classification decision. The first is simply that 

the decision should be correct. This suggests that an acceptable quality indica
tor would be an estimate of the probability that a decision based on the event 

X is correct. When using likelihood estimation for constructing classification 

boundaries, this means:

Qj(x) = ^r- X belongs to the k-th class
A A
L (k) s max L x'

~ 3
x«'} (4.1)

The true probability of correct decision for the classification is, of course, 
unknown. The estimated probability can be obtained by substituting estimated 

probability density functions wherever true probability density functions would 

be involved in calculating the true probability of correct decision for the 

(hypothetical) optimum classifications device. This method of estimation pro

duces the following result: *

(k)
k X

’“m
(4.2)

1 
j = l

where
L^(k) = max L^(j) 
~ j ~

*The true counterpart to this quality indicator has been discussed by A. H. Nuttall 

in a Litton Internal Memorandum entitled, "Error Probabilities Conditioned on 

Specific Observations, "December 20, 1961.
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With equal a priori class probabilities,

L^(k)
(4.3)

I ■
j = l

Since values of the estimated likelihood functions have to be calculated anyway, 

Eq. (4.3) constitutes an extremely simple additional computation to obtain a 

quality indication for each point in observation space, and each learning set of 

data.

The second quality indicator measure, Q^{x), reflects the degree to which 

the decision associated with a given point in observation space can be expected 

to be the same as that which would have been rendered by an (hypothetical) 

optimum machine. Thus, the criterion is not accuracy of decision per se, but 

rather accuracy with respect to that attainable by any means. The measure 

indicates whether or not machine learning has been adequate and whether it was 

based on a sufficient number of learning samples.

The "optimum" device which serves as a standard with this criterion 

establishes classification decision regions by computing (true) likelihood func

tions, and choosing the class for which the likelihood function is largest. 

Explicitly, the quality indicator is defined as

= Pr- L (k) = max L (k) = max L (j) ■
X , Xi j - J ~

(4.4)

Since the estimated likelihood function L^(j) depends on the particular set 

of learning samples used in the estimation, repeated machine learning experi
ments with new learning samples would, in general, result in different estimates
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of L^(j). Therefore we may regard the estimate of the likelihood function to 

be a random variable. This is portrayed in Figure 4 which shows the probability 

density of the estimated likelihood function of classes j and k at point x when 

a limited number of samples are used in the estimation. If the number of
A A

samples on which L. (j) and L (k) are based is increased, the variances of the 

distributions would decrease.

It is seen in Figure 4 that there is some probability that the estimated 

likelihood functions are in error and that the estimate indicates that j is more 

likely than k when indeed the reverse is true. The measure indicates
an estimate of the probability that decisions based on estimates are the same 

as decisions if the true densities were known. The quality of a decision depends 

on the number of samples and on how different the true likelihood functions are

■4- L3.O) U (k)

Figure 4. Distribution of Estimates of Likelihood Functions

at X. The explicit relationship between Q^{x) and the- L^(j)^ involves the 

multinomial distribution. For simplicity only the form of Q2( x) for the binary 

classification case (M = 2) is presented here. In the v-th cell, it can be shown 

that*

♦Appendix V
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°2v- Z I
7 / r. r* —c fN.l N. J N.

J 1 J''
N. N.

= 1 r. 
J J J_

N. -r. 
J J

where

= 0 if X = 0

* «gn

L\^l'2 NjN^w
-1 (4.5)

Note that dependence of Q on the learning set,
2v

N. 
Jvj

is indicated explicitly

in Eq. (4. 5)

4.2 EVALUATION OF DECISION QUALITY INDICATORS

Involved in each of the decision quality indicators introduced above is an 

estimate of a probability. If the true probability could be calculated, then there 

should be little reluctance to using each of these indicators in its intended role. 

However, since only estimates can be obtained, the validity of their use may be 

questioned. To obtain some idea of the degree to which the estimated quantities 

produce indications comparable to those which would be produced if the true 

probabilities were known and utilized, both analytical and numerical comparisons 

have been made. To simplify matters we have confined the evaluation to a 

rudimentary method of estimating probability density functions from the learning 

data; histogram construction. The same cell structure (uniformly spaced 

hypercubes) is assumed for all classes, and each class is assumed equally 

likely to be selected. Again for simplicity, only situations in which a classifi

cation decision is desired for a single test sample will be considered. - With

♦Decisions based on multiple test samples are treated for binary classifications 

in Appendix V.
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these restrictions, within the v-th cell the likelihood function of the j-th class 

is assumed to be constant and is estimated by

N.
L s L (j) = j;— for all x in the v-th cell,

IV X •' N.V ~
J ~ J V

(4.6)

where

and

N = the number of learning samples of the j-th class which occur 
jv

within the v-th cell

N. = the total number of learning samples of the j-th class 

V = the hypervolume of the v-th cell.

Consider the indicators, C^, Jt~ 1, 2, defined in Eq. (4.1) and (4.4), 
respectively. Either indicator is useful only to the degree that it corresponds 

to the true probability (of correct or optimum decision) at a given point in 

observation space. Let C^(_x) denote the latter quantity. Now, for convenience.

define

L.
jv (j)<lx (4.7)

where R denotes the region comprising the v-th cell. The quantity L cor-
V

responds to the average value of the likelihood function of the j-th class within 

the v-th cell. * The lack of correspondence between the indicator and its true 

counterpart can be measured by the squared difference between the estimated 

and true quantities. Since <^(x) is a constant within a given cell (by histogram

♦Also, L = the probability that a sample chosen from the j-th class gives 

rise to an event in the v-th cell.
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estimation), it is convenient to use in lieu of in calculating

within that cell. This leads to the following measure of difference between the 

decision quality indication, Q^and its true counterpart:

-22
% ^

Q -Q' = 1. 2; V = 1. 2. (4.8)

for all X in the v-th cell.

For some learning sets, will be large at a given point in observation

space, and for other learning sets will be small at that point. A reasonable

way to obtain an overall measure of correspondence between and is to

average the quantity over a class of learning sets to obtain a rms difference

between the two. Of particular interest in most applications is the class of

learning sets consisting of a specified number of samples. Thus, the lack of

correspondence between Q. and is defined quantitatively as
Zv

(4.9)

where the horizontal bar above a quantity indicates that an average of the quantity 

is taken over all learning sets consisting of a specified number of samples.

Of course, Eq. (4.9) can be calculated only by using the histogram estima

tion and maximum likelihood classification procedures for classes and events 

with known statistics. For evaluation, we must set up the estimate for 

each cell by generating samples for many learning sets according to these 

known statistics, and then proceed to average the values obtained for from 

these learning sets. Ideally, to obtain an analytical evaluation of the joint 

probability density function of and would be determined.for prescribed 

numbers of learning samples for the M classes, and calculated by
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(4.10)

In general this proves to be a formidable task.

An analytical evaluation of E^^has been performed for the binary classifi

cation problem, details of which are presented in Appendix V. An example is 

worked out to illustrate the relationship between the cell structure resolution 

(as represented by the number of cells, c) and the size of the learning set 
(as represented by and N^). Results of the preliminary calculations reported 

in that appendix indicate that for a given learning set size the rms difference 

between Q;(x) and Q(x) actually decreases as the cell structure resolution
1 ^

increases, at least for values c < N = = N^.

During the next ph.,. ol thi, study program, further calculation, will be 

conducted to assess the validity of both quality Indicator, discussed here, for 

several class distributions.
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5. CONCLUSION

The material discussed in this report is concerned with decision making 

and classificatory problems in cases where a parametric representation of 

the machine* s environment is available. Machine learning and decision mak

ing are considered as the task of automatically partitioning the parameter 

space where, in each region, only members of one class are contained. Par

titioning of the parameter space is accomplished by estimating the joint 

probability densities of the parameters for each of the input classes in ques

tion and by performing maximum likelihood ratio decisions on the estimated 

joint probability densities. Thus "machine learning" is the process of esti

mating joint probability densities of the parameters of the input classes, 

while recognition is a process of evaluating and comparing the probability 

densities obtained during learning.

This report considers adaptive methods of estimating joint probability 

densities by use of a generalized histogram construction procedure where the 

cells of the histogram are obtained adaptively and in a manner dependent upon 

the input data. In essence, cells for histogram construction are obtained in 

only those regions of the vector space where input on the number of cells so 

constructed by the use of a cell-growth procedure are described and tested 

both theoretically and experimentally. The results obtained indicate the va

lidity and the practical utility of achieving a reduction in machine storage re

quirements by use of the mechanism for growing and adapting "histogram" 

cells. The methods developed are intended to be readily implementable on 

both general and special purpose computers; in fact, a special purpose com

puter implementing the recognition functions created by the methods described 

in this report has been constructed on another program.
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The decision procedures studied in this report are based on estimates of 

probability densities. It is important to know, therefore, the quality of the 

estimating procedure, both for the purpose of determining how reliable the 

decision rendered in any one instance is and for the purpose of modifying the 

learning procedure to yield decisions with a lower probability of error.

Future work will be directed toward increasing the automaticity of the 

methods described above by studying automated methods of selecting input 

parameters, and by developing techniques that make use of quality estimation 

criteria in influencing machine learning.
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APPENDIX I

OPTIMUM HISTOGRAM APPROXIMATION OF A PROBABILITY DENSITY

Given the probability density p (x), or just p(x), we want to construct am ~
histogram h (x), or just h(x), composed of exactly K bars, which minimizes m ~
the mean-square error between p(x) and h(x). The mean-square error, E, is 

given in Eq. (A-1) where ^^(x) =1 for v^ l^* ^ ® elsewhere.

E=^ [p(x)-h(x)] p(x)-^ a.«.(x)
— 00 — 00 i = 1

(A-1)

We may or may not want to impose the constraint that the area under h(x) 

should be unity. If this constraint is imposed, as in Eq. (A-2), it is obvious 

that a, =a^- = 0.
1 IV

00 K K = 1

y y a.^.(x)dx = 1 = y a^dx + y a^^dx + ^ *i^''i“'^i-P
— 00 i = 1 -00 'K-l

0

u
n
I
I

We now wish to minimize E by proper choice of the a.' s and the ^^(x)' s.

X



We will first minimize the error E. subject to the constraint stated in 

Eq. (A-2), with respect to the choice of a^’ s. We will thus obtain a solution 

which expresses the optimum choice of the magnitude of each bar in the bar 

graph for any given assumption regarding the choice of bar boundaries. The 

a.* s will be expressed in terms of p(x) and the ^^(x)’ s. Then, substituting 

these results into the expression of the error, E, we obtain E in terms of p(x) 

and the ^.(x)’ s. Minimizing E with respect to the choice of ^.(x)’ s should then 

obtain a solution of the optimum bar graph that minimizes the squared error 

between p(x) and h(x).

Carrying out the indicated operations by employing the methods of the 

calculus of variations, we solve for the variation of H in Eq. (A-3) from which, 

by noting that a^ =aj^ = 0, we can solve for a..

6H =

-00

-.2 “
p(x)-^ a.(^.(x) -\Y a.d.(x)

i = l i^^l

dx = 0 (A-3)

X. -V. ,
1 1-1 I

V.
1

p(x)dx -\

1 -I

(A-4)

\
^i"''i-l

p(x)dx +

1-1 \
"k-i-"i I 1

p(x)dx

-00

+ y p(x)dx 

'^K-l

(A-5)

It is thus seen that a^ is somewhat larger than the average p(x) in the 

interval defined by the i*** histogram bar. The amount by which it is larger is
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the shaded area divided by the distance between shaded areas. This result is a 

simple statement of the fact that the area of the extreme quantiles is spread 

evenly over the rest of the quantiles.

In most cases this term will be small. For computational reasons it will be 

omitted and we will consider a^ to be the average value of p(x) in the i*^ quantile.

Substituting a^ into E and partially differentiating it with respect to v^, we 

obtain Eq. (A-6).

K .V.

av -av I ]n n

0E a

i = 1 vi-1

P(x)-
r

1 f P(«d;
V. -V.

1 i -1
1

- J
V.

(A-6)

n r
p(x) -

V -Vn n — 1 r p(«dC

n -1 n -1

n +1_
P(x)

V - V
n +1 n I n +1

P(«d; (A-7)

•{ I + J (A-8)
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But 31/ 3v can be expressed as in Eq. (A-9) and 3J/ 3v as in Eq. (A-10). n n

n

n
p(x)-

n -1

V - Vn n -1 r
/v

P(Q d;

(v -V ,)P(v)-\ P(QdC n n — 1 n j

n -1

n-1

n n — I

n

+ |_P(v^)- V - V ,n n-1
r”\ P(B dB

n-1

p(v„) - 1
3v V - V-n n n-1

1 i

y P(Q d^
V

(A-9)

n-1

since the second bracket in the first integral is identically zero. Similarly,

3J
P(V_^U

1
3v V , - Vn ■n +1 n

'

n + 1 2
P(« dC (A-10)-

Therefore:

0 implies Eq. (A-11) which is illustrated in Fig. A, 1.,

p'V* - V -Vn n-1

pH ,2
\ P(Q d;

V

[P<''n> - V , —V n +1 n

, n +1

n-1

y P(9 dC
V

(A-11)

A = B

for n = 1, 2, ...,K-1

V = —00o
Vk = +co
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A special care of interest is a^ = 2p(v^). It is readily seen that if p(x) is 

monotonic, as shown in the sketch, the solution is completely determined from 

the choice of . By iterative trials of , it is possible to converge to the 

correct solution (if p(x) is monotonic). In general, the solution of Eq. (A-11) 

cannot be obtained.

In an attempt to obtain a general solution to the set of simultaneous equa

tions, Eq. (A-11), several ideas have been tested. These will be listed below.

1) Since an iterative solution coxUd be obtained to determine the locations 

of the histogram quantile boundaries, the v^’ s, if p(x) were monotonic 

on an interval of x, it was thought that perhaps approximating the cumu-

lative function P(ti) = ^ p(x) dx with a bar graph H(ii) of exactly K bars

— 00

would yield quantile boundaries that have some simple relationship to 

boundaries of h(x) on p(x). In particular it was thought that the optimum 

quantiles on H(q) may be identical to those on h(x). If this were the case, 

a general solution could always be obtained, since P(q) is always mono

tonic. Unfortunately, a counter example proved that this hope was 

optimistic.
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2) A second thought for obtaining a general solution was based on the idea 

that if the solution were known for some density function p^(x) then the 

solution for the optimum histogram on the given density p(x) could be 

obtained by finding the transformation that maps Pj(x) into p(x), and 

thus the V ’ s obtained for p, (x) into the v ’ s valid for p(x). Since the 

Gaussian density (and several others) are symmetric (and monotonic 

over the two symmetric halves), the iterative numerical solution of 

Eq. (A-11) can be obtained for the Gaussian density (at least for K a even). 

Since it is possible to transform an arbitrary density p(x) to a Gaussian^ 

density, and similarly, a Gaussian density to an arbitrary density p(k), 

it is therefore possible to map the quantile boundaries on the Gaussian 

density into quantile boundaries on p(x). It was hoped that boundaries 

obtained in this manner would be optimum.

Since theoretically the above hopes could not be readily proved either 

valid or false, a set of computer programs was written to carry out the iterative 

solution of h(x) on monbtonic functions p(x) and for mapping one density into 

another. The following experimental procedure to prove or disprove the second 

idea was devised.

The optimum histograms on two different densities p^(x) and P2(*) were 

obtained by use of the iterative numerical procedure. Both p^(x) and P2<*) 

were monotonic (at least over half of the symmetric functions). The optimum 

histogram quantile boundaries of p^(x) thus obtained were mapped onto the 

second density P2(x)- The location of quantile boundaries so obtained were 

then compared with those obtained from the direct iterative solution of the 

optimum histogram approximation pf The magnitude of the squared error

of approximation were also compared as obtained by the two different procedures,

*See pages 135-138, "Decision-Making Processes in Pattern Recognition", 

G. Sebestyen, The Macmillan Company, 1962.

J
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A summary of experimental results is given below. "Optimum" histograms 

of 6 bars were obtained for three densities.

a) Gaussian: P(x) a ^ exp (-I/2 x^). The locations of quantile

boundaries were -flOk -1.796, -0.957, 0, +0.957, 
+1.796, +00. The error (area between p(x) and h(x) 
was 0.222.

b) Triangular;
and is 0 elsewhere.p(x) = 1 +x for -< X < 0 

p(x) = 1 -X for 0 < X < +1

The quantile boundaries were at -0.8, -0.4, 0, +0.4, 
+0.8. The error due to the approximation was 0.2000.
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c) Back-to- Back p(x) = 1 / 2 e* for x < 0 and p(x) = 1 / 2 e * for x > 0. 

Exponential: Quantile boundaries were at -1.933, —0.677, 0,
+0.677, +1.933. The error due to the approximation 

was 0.3400.

> X

When the quantile boundaries from the Gaussian density were mapped onto 

each of the other two densities and the error between each p(x) and corresponding 

h(x) was compared with the error between p(x) and the histogram obtained by 

the mapping, the following results were obtained.

Error Between 
p(x) and h(x; for

Optimum
h(x)

Mapped h(x) from 
Gaussian Solution

Difference in 
Two Errors

% Difference 
Between Two 

Errors

triangular p(x) 0.2000 0.2098 0.0098 4.9

exponential p(x) 0.3400 0.3482 0.0082 2.4

The analysis of these results did not conclusively reveal whether or not 

these small differences between the two methods of obtaining histograms for 

arbitrary densities were due to round-off errors in the digital computer or 

whether they could be regarded as counter examples proving that the second 

assumption was not valid. It is believed, however, that the above method will 

not yield a general solution.
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APPENDIX U

CONTROL PARAMETER SELECTION THEORY

In this appendix the SPEAR computer program will be described in some 

detail and rules for the selection of the parameters which control the p.d.f. 

estimation procedure will be derived. It is desirable that the individual cells 

be adjusted by the data so that a good approximation to the class p.d.f. should 

be obtained with a minimum number of cells. Furthermore, the size and shape 

of the individual cells should be determined by a reasonable and automatic pro

cedure from the data in order to relieve the experimenter of the almost impos
sible task of picking appropriate cell sizes.

For simplicity consider an isolated cell and let x(t) be the t-th observation 

point (known class member) that falls in the cell, let m(t) be the same mean of 

the first t observations that lie in the cell — m(t) is the center of the cell at 
the t-th step — let a(t) be a vector weighting parameter determined according 

to a given rule and indicating the cell shape, and finally, let be a scaler 

constant, is the control parameter being studied here. Then, the cell is 

defined at the t-th step to be the set of points in the observation space

C(t) X X 1
S = 1

1__ ll_l<a Jt) 1 ^N (B-l)

Thus the cell is the (elipsoidal) locus of points "closer" to the cell mean, m (t), than
a-th direction. It should be noted that such a cell is "mode seeking"in 

that it will move (as a function of t) in the direction of the greatest concentration of data
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points. This is a very desirable feature. The cell is first established according to 

some rule by a data point which does not fall in any other cell so that m(l) = x(l), 
i.e., the cell is initially centered about the first or establishing data point.

If a(t) = a(0) for all t. the cell size and shape remains the same throughout 

the estimation process as in the ASSC II program. Then the choice of ^(0), 
which is based largely on physical considerations and intuition, is very critical 

and an intelligent choice is very difficult. But. if a(t) is made to depend on the 

data sample the volume of the cell may be made to grow to an "optimum" size 

by proper choice of the constant Although the cell might alternatively be

made to shrink if the data indicated this were desirable, it is assumed here 

that the initial cell size is small compared to intervals in which the class p.d.f. 

changes greatly and, hence, only cell expansion is discussed below.

The rule in SPEAR for updating the vector a(t) = (a^(t), . . ., a^{t)) is

given in Eq. (B-2).

a^(t) = max Fa^lO). ^^(t)
^ r = 1

2-,
(t)) (B-2)

Thus, a (t) begins at a preset value and normally grows to be the sample standard 
8

deviation of the sample vectors in the cell neighborhood.

The radius of the cell defined by Eq. (B-1) in the j-th coordinate direction 

is a.(t)Tj^. is chosen according to the theory to be developed here, but the 

initial cell radii aj(0)Tj^ still be picked on the basis of physical consider

ations .

In order that the cells be assured room to grow, an additional feature was
*

incorporated into SPEAR. A (known) vector x(t) =(x^(t), x^it), . . ., Xj^(t)) is 

used to generate a new cell if it does not fall within a given distance of any of

the existing cell centers; i.e., if
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/x (t)-m (t)\^I
8=1

8 s'
»,(t) ^'Vn' (B-3)

where

®N * P'ec**o»en parameter, > 1

N * ^

'n "Xj-nrm—) i <Vn» (B-4)

for all existing cells (m(t) and a(t)^ then x(t) is temporarily discarded. This 

procedure continues until t=t^, where t^ satisfies t^ = c^u . where c^ is the 

number of cells generated up to that time and u is a control parameter. After 

x(tj) has been processed the temporarily discarded vectors are forced into the 

then existing cell structure - each vector going into the nearest cell - and 

used to update the individual cells. The next incoming (known) vector is put 
into one of the existing cells, temporarily discarded, or used to generate a 

new cell just as were the earlier vectors. This process continues until the 

number of vectors is equal to t^ where t^ = Zc^w with c^ equal to the number 

of cells at t = t^. At this time the second group of temporarily discarded vec

tors is forced into the then existing cell structure. This procedure is continued 

throughout the estimation, in general tj^= 2^”^

The cell volume might be considered optimum if it is as large as possible 

and still have the estimated p.d.f. over the large cell consistent with that 

obtained by estimating over smaller cells. It may be possible to show a trend 

to a desirable cell size only for special cases of local p.d.f. behavior. This.

however, should be all that is needed to generate practical rules for updating 
^(t) and for choosing
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In particular, if a cell is located in a region of the observation space over 

which the class p.d.f, is a constant, the cell size should expand until it covers 

the region of uniform distribution. Furthermore, once the cell is "firmly 

established' in the sense that a number of observations have fallen in the cell, 

the rate of expansion should be fairly rapid provided it does not grow substan

tially beyond the region of constant p.d.f. On the other hand, if the cell is 

initially located in a region over which the class p.d.f. is changing, the cell 

should not expand rapidly. Therefore, the rule for updating ^(t) and the choice 

of should be such that the expected cell behavior obeys these two intuitive 

rules.

To construct a model of the "cell growth" mechanism, a cell is assumed 

to lie in a region of uniform class p.d.f. and the random behavior of the cell 

is studied. For simplicity, in the following discussion only one cell is assumed. 

This is not too unrealistic since the cells are kept isolated, as discussed pre

viously, at least for the critical early stages of cell structure generation.

The volume of an N-ellipsoid is

the N-ellipsoid and Kj^ =
r(y) + i'

i = 1

V ib^ when > —^ = 1 specifies

i = l ^i

[8], A short table of is given below.

N 1 2 3 4 5 6 7 8 9

•Sj 2 n 4it
3

2
■a
2

00 3
JT
6

167T^
105

4
V
24

32ir^
945

A slice perpendicular to the x^-axis at x^ is an (N-1 )-ellipsoid specified by

I
i/j

{B-5)
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and of volume

N-1
2\ 2 

X.

(Therefore, the volume 1. obuined by integrating over thu..

bi = 2

b.
tJ

2\
N-1

i = l SV'
j/ i/j

b dx 
i j

(B-6)

r N + l 'l'
2 1 2
N . TIv

i = l

Assume a uniform probability distribution over the N-ellipsoid specified 
N 2 
^ *i
) 7T* p d f- of the X. coordinate is

i = l ^ J

*^N-1

N-1 
2 \~2~

1 -
b^

J jj^ j

b.

i =1
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N-1
N , b^x^l 2

J J

b”
j

, -b. < X. < b.
J— J— J

(B-7)

= 0, if |x. I > b. . 
' }' )

Making the transformation of variables x^ = the p.d.f. of is

r N
[T^hi

r N + 1 p 1)X 2 X Uj

N-1

1-X^
J

, for |Xj|< 1 (B-8)

0, for IX^I > 1.

*S^-1 *Sr-iThe maximum value of g^(x.) is ——r— and of h (X.) is ——----- . Examples of^N'3' IS.b. N'Y

hj^(X^) for several values of N are shown in Figure B-1.

The mean and variance of X^ are easily found to be

Xj = 0, (B-9)

and

----2 -
Var \.= E(X.-X.) =

J J J *Sr

N-1

1 -X. dX.
J

-1
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h„(Xj)

Figure B-1. p.d. f. of one coordinate of a point (uniform) randomly 
distributed over an ellipsoid of N dimensions.
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f .in^eco.'^ede s

*S4-i
- v/2 v/z

Bind cos e ^N+2 3
-ff/2 -t/Z

‘Si-
ir/2

1 1
N.2 I Ncos 0d6.

-ir/2

Therefore Var X. =j N + 2
1 "Sj-i .ff r(^)

1
N + 2 •

(B-10)

The p.d.f. of may be written as

W =
N-l

J¥i^)
(B-ll)

The first factor tends to unity as N-^oo, by Sterling's formula. The logarithm 

of the third factor is
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N-1 2 N-1
1 -X. 

J

J
1

x" x‘

x^ xf
1 + + . • -I

N-1

Hence, for any fixed such that 1 > >
x" X?
2

('

N-1 X^(N-l)
2 ~= exp 2

_ *

(B-12)

In this region, hj^(X.) is approximately normal with mean sero and variance 

. The tails of the distribution of decrease much faster than for the 

normal distribution.

Using the fact that the p.d.f. of is approximately normal over the 

range, say, \\^\ < (but for the factor of

N ,\

which is only slightly greater than unity for N > 3), an indication of the prob
ability of cell growth may be easily obtained. In particular, the probability 

that the j-th component of the difference between the t-th sample point to fall 

in the cell and the (t-l)th sample mean.
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(B-13)

ia plotted in Figure B-2 as a function of Tj^ for several values of N. These 

curves are sufficiently accurate for practical use, particularly for N > 3. The 

t-th observation may be said to contribute to cell growth if

(B-14)

Therefore, the curves in Figure B-2 may be interpreted as the probability of 

ultimate cell growth as t becomes large.

Letting

0. t =1
*j(t) =<

x^(t)-m^(t-l). t > 1. (B-15)

the t-th cell center is located at

m^(t) = m^(t-l) + i 6.{t). (B-16)

Therefore,

5-j(t) ® f ^ [Xj(r)
r = 1

X
r = 1

[x^(r) -(m^(t -1) + i d.(t)) f + Ipi 6^(t)
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t-1

r = 1

1 (t -1) i.(t -1) + «^(t) + «.(•>)'

t.l if(t)

t-2

r =0
(B-17)

Let t=t^be the index of the first sample point for which a^(t') > a^(0), i.e,, 

the first time cell growth occurs. Then, for t ^ t' by Eq. (B-1) and (B-10) the 

expected value of is

t-2

V>-f I
r = 0

t-2

2

N-i-2

r =0

t-2

f I
r =0

(B-18)
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^ a^(0) as t-^-ooN + 2 j
(B-19)

The sum on the right is conveniently approximated for the range of principal 

interest, say, 4^t^t'^20, by

t.2

I
r =0

t-r-1 ~1
t-r i(5t-9).

Then,

S<'> for 4 < t < t' < ot « — —t' < 20. (B-20)

From Eq. (B-2) and (B-18) or (B-19). it is easily seen that a necessary condi

tion for a^ to be greater than a^(0) so that cell growth may be expected to 

begin is

T„ > N + 2. N

^tt may be observed from the curves of Figure B-2 that the probability that 

4^(t) > a^(t-l) is equal to one-half for Tj^ = >/N + 2.

The choice of T., determines not only whether the cell may be expected to 

grow, but also the number t* of observations that must fall in the cell before 

cell growth can be expected to begin. It is desirable that t* be chosen suffici
ently large to establish a firm cell location and that a preliminary estimate of 

the cell probability has been made before the cell may be expected to grow.
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This implies that t* should be at least four or greater. On the other hand, 

since the amount of data available for p.d.f. estimation is always limited in 

practice, t* must not be too large. For most applications t* must be chosen 

less than, say, 20 or else the learning sample will be exhausted before a 

significant number of cells have had a chance to grow to the size and shape 

they would ultimately reach if the amount of data was unlimited.

Having chosen a value for t* that is consistent with the cost of sampling 

(normally increasing at least linearly with the sample size n) and with the 

desired accuracy of the quantities to be estimated (the standard deviations of 

the extimates of these quantities decrease as n the choice of the control

parameter becomes automatic. Writing Tj^ = /3vN + 2, and considering $ 

as an unknown, Equation (B-18) is easily solved for j3.

a^^(O) t-2
i Y t-r-1

r = 0

1/2
. t < t (B-21)

Now t* is the index of the first sample point for which a.(t*) > a.(0) or 

Cj(t*) > Setting

0* =
t*-2

1_ sr t«-r -1t* z
r =0

-1/2

(B-22)

the choice

Tj^ = '3* Vn + 2 (B-23)

will result in a beginning of cell growth after an average of t’S’ sample points 

fall in the cell when the true class p.d.f. is uniform over the cell.
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A curve of a function of t* is plotted in Figure B-3. For the particular

choice of = 1.4 -JnTz , in a long series of repeated trials of placing an isolated 

cell in a region of uniform class p.d.f. (and sampling from the class) the curve 

in Figure B-3 indicates that the average value of t will be approximately 4.7.

Since the p.d.f.' s of greatest interest are distinctly non-uniform over the 

entire space, there will normally be a wide spread in the range of cell probabil

ities. Therefore, the cells with high probabilities will normally begin to grow 

before the majority of the cells have collected t* observations. It is reasonable 

to expect that in many instances the cells located near the modes of the distribu

tion will have grown to their maximum limit by the time an average of t* points 

have been processed for each of the cells in the entire cell structure. (The 

growth of an individual cell is limited by the presence of surrounding cells as 

well as by the non-\miform local nature of the class p.d.f.) Therefore, a 

reasonable choice of the control parameter u is u s t*.

An investigation of the dynamics of the growth mechanism (which is currently 

underway) may be expected to shed more light on the method of choosing the 

control parameter discussed here. Experimentation should also be of value in 

substantiating the theory presented here and should indicate if modifications to 

the viewpoint taken here are necessary.
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APPENDIX III

COMPARISON OF THREE PATTERN RECOGNITION TECHNIQUES

In this appendix the three (related) pattern recognition techniques described 

in Section 3.1 will be illustrated on the same set of two-dimensional data. The 

data used here was generated artificially in such a way that it should be impos

sible to separate classes with simple techniques such as correlation techniques. 

Furthermore, the classes overlap sufficiently to preclude perfect separation by 

any technique. Thus some indication may be obtained of the power of any tech
nique tested with this data.

The first class is represented by 200 examples shown as dots in Figure C-1. 

The second class is represented by 150 examples shown as crosses in Figure C-1 

For "learning" purposes one hundred examples were selected at random for each 

class; these are shown in Figure C-2 with the one-sample decision boimdary 

obtained by use of the Proximity Algorithm, ASSC II, and SPEAR II* computer 

programs. Note the high degree of similarity of the class separation boundaries 

obtained with the three different methods.

With the Proximity Algorithm, "learning" consists wholly of determining 

the decision boundary shown in Figure C-2. It should be noted that the decision 

boundary in Figure C-2 is determined by pairs of points, one from each class, 
such that any point on the boundary lies on the perpendicular bisector of the line 

joining the nearest pair. All data points not included in one of these boundary

The decision boundaries for ASSC II and SPEAR II are dependent on the repre

senting functions as well as on the cell structures to which these functions are 

fitted.
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PHOXIMITY ALGORITHM 
ASSC II
SPEAR II, ASSC III

I
I

Fig. C-2 200 Data Points Used for Machine "Learning” with Class
Decision Boundary Generated by the Proximity Algorithm, 
ASSC II and SPEAR II. . ,
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determining pairs might be considered as "wasted". For example, the data 

point (from class 1) at (4, 9) has no effect on the boundary and really need not 

be stored.

The ASSC H program generates a cell structure for each class in which 

the cell locations are determined from the data but the cell sizes and shapes 

are prechosen and renruiin fixed throughout the "learning" procedure (except 

for overlapping of the cell defining circles). The cell structure generated by 

ASSC II for one particular ordering of the data in Figure C-1 is shown in 

Figures C-3 and C-4. The number in each cell is (in percent) the estimate of 

the probability that a point from the generating class will lie in that cell; i.e., 

the fraction of the "learning" sample that fell in the cell. Note that there is 

sufficient separation between these two classes so that only a few cells of each 

class overlap cells of the other class. There are 32 cells in Figure C-3 and 

31 in Figure C-4.

The cells generated for each class by SPEAR II depend in size, shape and 

in position on the "learning" samples. Furthermore, individual cells are kept 

isolated during the early stages of the "learning" procedure. The cell structure 

generated by SPEAR from the data of Figure C-2 is shown in Figures C-5 and C-6. 

The numbers of cells for the first and second classes are 10 and 8, respectively. 

This represents a reduction of 69 percent for class 1 and 74 percent for class 2 

from the number of cells generated by ASSC II. The numbers at the cell centers 

in Figures C-5 and C-6 are the percentage of class members that fall in each 

cell. Note that while the true shape of the class distributions are not portrayed 

as faithfully by SPEAR than by ASSC II, the decision boundaries are substantially 

the same.

A total of 1 5 or 83 percent of the cells changed in size and shape from the 

initial setting. Since the control parameters were chosen so that the probability 

of cell growth was appreciably higher than one-half, this figure is consistent 

with theoretical predictions In this experiment, the cell radius in the coordinate
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direction is three times the sample (experimental) standard deviation of the k-th 

coordinate of points falling in the cell. (See Appendix II.)

After performing the "learning" operations, the remaining 100 points from 

class 1 and 50 points from class 2 were tested against the three decision rules.

The results of this test are shown in Figure C-7 which shows the test sample 

from each class and the Proximity Algorithm decision boundary (as in Figure C-2), 
Three examples from the first class are on the wrong side (or class 2 side) of 

the decision boundary. Therefore, the probability of deciding with the Proximity 

Algorithm in favor of class 2 when in fact the example is in class 1 is approxi
mately Pr {2|1 } = .03. (The circumflex over the probability symbol indicates 

that the quantity is an estimate, i.e., Pr {i|j} is read the estimated probability 

of deciding in favor of the i-th class given that the example is from the j-th 

class .) The results of testing each of the three schemes are summarized in 

Table C-1. No significance should be attached to the relative magnitudes of 

these error probabilities since the sample sizes used were small.

Table C-1. Frror Probabilities For Three Decision Rules

Learning and Decision Rule Pr {2|1} Pr {1|2}

Proximity Algorithm .03 .10

Assc n .08 .06

SPEAR n - ASSC m .07 .06
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APPENDIX IV

LIST OF COMPUTER PROGRAMS RELATED TO 

PROBABILITY DENSITY ESTIMATION

1. Name:

Description:

Proximity Algorithm

This program finds that vector in a set of stored vectors 

which is nearest (by Euclidean distance) to an input test 

vector. The known classification of the nearest stored 

vector determines the classification decision associated 

with the input.

Computer: Recomp II

2. Name: 

Description:

ASSC II (Adaptive Sample Set Constructor)

This program does "learning", recognition, and "unsuper

vised learning" using the "typical sample" technique. Cells 

for p.d.f. estimation of fixed size and shape are generated 

and updated in location by the known vectors learning samples. 

In recognition the p.d.f. is represented as a sum of Gaussian 

functions, each fitted to an individual cell.

Computer: IBM 7090

3. Name: 

Description:

ASSC lU

This subroutine, in conjunction with program GSREC II, 

utilizes the results of either ASSC 11 or SPEAR to perform 

recognition by representing the class p.d.f. by a quantized



Gaussian function fitted to the nearest individual cell (cells 

not restricted to be of equal size and shape).

Computer: IBM 7090

4. Name; ATT 

Description; This program transforms the results of the ASSC II program 

"learning” into a form acceptable to the ASSC III program.

Computer: IBM 7090

5. Name: 

Description:

GSREC

This program performs recognition on single sample vectors 

as well as on a sequence of vectors from the same class, 
assuming them to be independent.

Computer; IBM 7090

6. Name: 

Description:

SPEAR

Generalized form of ASSC II learning program. Cells are 

updated by the data in size, shape, and in location. This 

program includes a "cell collapsing" subroutine in which 

redundancy is eliminated by combining cells whenever 

possible.

Computer: IBM 7090

7. Name: 

Description:

RATIO

Two arrays of single sample vector recognition probabilities 

are examined by searching sequentially with a predetermined 
"window".

Computer: Recomp II.
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8. Name: 

Description:

GENSPR

This program generates multivariate data of known statistics 

for testing the class p.d.f. estimation programs. The pos

sible form of the data distribution is of a union of Gaussian 

modes with the mode a priori probabilities, means, and 

variances as selectable parameters.

The computer program GENSPR was written in order to 

divorce the problem of testing the various p.d.f. estimation 

techniques from the problem of collecting a sufficient body 

of representative data on a set of physical classes. With 

GENSPR random vectors (up to 16 dimensional) are gener

ated with specified statistics. The form of the distribution 

is that of a sum of Gaussian modes, i.e., the p.d.f. q(_x) is 

given by

where 10 is the number of modes, is the (prechosen)

a priori probability of x be associated with the r-th mode, 

and ^^(x) is an N-variate Gaussian p.d.f. (N ^ 16) with 

means and variances selectable by the experimenter 

(covariances equal zero).

N r . .2-1

1 rs

exp I - j
' X -m8 rs

\

with ars
mode, and m

s-th coordinate standard deviation of the r-th 

= s-th coordinate mean of the r-th mode.

The selectable parameters for using GENSPR are, therefore:
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N, M, Q , m , and aT rs rs
shown on the next page. 

Computer: IBM 7090

A flow chart of GENSPR is
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Fig. D- 1 Flow Chart of GENSPR 
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APPENDIX V

A POSTERIORI IDENTIFICATION OF HIGH QUALITY 

BINARY CLASSIFICATION DECISIONS

In Section 4.2, two methods of identifying sample events for which a high 

quality decision could be rendered, were outlined. In the second method the 

quality of a classification decision is equated to the degree to which the classifi

cation can be expected to correspond to the optimum decision which could have 

been rendered if the class statistics were fully known. With this method it is 

possible to partition the observation space into high and low quality decision 

regions. The utility of such a capability lies in the fact that different cell 

structures (for constructing estimates of probability density functions) can be 

evaluated. A good cell structure can be identified as one which produces a 

large, high-quality decision region.

With a view toward the establishment of bounds within which this indicator 

can be relied upon to provide a satisfactory indication of high quality decision 

regions, its application to the binary classification problem has been examined. 

Although couched in terms of the artificial problem of automatically distinquishing 

between two waveforms, based on a finite number of samples taken at randomly 

spaced intervals, the following analysis applies to any binary classification 

problem with reservations as indicated.

As an illustration of the binary classification problem, consider the prob

lem of distinguishing between periodic sawtooth and sinewave waveforms with 

identical periods and amplitude ranges, as indicated in the diagram.



sinewave

sawtooth

Suppose that the only information available for learning how to distinguish 

between these waveforms are samples of a sinewave taken at randomly 

selected instants and samples of a sawtooth waveform taken at randomly 

selected instants. These '*’^2 comprise the learning set. Suppose

further that classification decisions must be rendered solely on the basis of 

m new samples selected at random time instants from either the sinewave or 

sawtooth. These m samples comprise the recognition set.

Since we have assumed that the two waveforms are known only in terms of 

a set of sample values, a procedure for constructing a decision mechanism 

from these samples must be selected. The procedure investigated here con

sists of calculating a likelihood ratio using histograms (constructed from the 

Ni +N^ learning samples) as estimates of the probability density functions of 

the two waveform amplitudes.

The classification method under study requires that the classification 

decision be rendered as follows. Let c denote the number of cells in the cell 

structure, and let the cells be labeled by the numbers 1 to c. Further, let

{^1}= {kj, denote the cells into which the m samples of the recognition
set fall.

The recognition set is classified according to the rule:
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If L > 1, decide in favor of sinewave
A

If L < 1, decide in favor of sawtooth
(E-1)

where L is calculated by*

rL. =>=T— 'T

and

estimate of the probability that the i-th sample in the test set 

would fall into the k.-th cell, assuming that the sample is drawn 

from the sinewave.
A

~ corresponding quantity assuming that the sample is drawn 

from the sawtooth.

and finally,

- the a priori probability that the recognition set is drawn 

from the sinewave

Pg = the corresponding quantity assuming that the recognition set 

is drawn from the sawtooth waveform.

The caret symbol is used to indicate that estimates, rather than "true" quantities 

are used in calculating the likelihood ratio. The specific forms of the estimates 

implied by the use of histograms in lieu of probability density function are

A “v

*This is equivalent to Equation { 2. Z),
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P«(k) (E-2)

where a is the number of sinewave samples in the learning set which fall into 
k

the k-th cell, and is the number of sawtooth waveform samples in the learning 

set which fall into the k-th cell. For simplicity, we shall assume hereafter that 

each waveform is known to be equjdly likely to occur; i.e..

= 2 *

For a given learning set, we would like to be able to specify those recogni

tion sets for which we are confident that an optimum classification decision will 

be rendered. The histogram cell structure effectively quantizes the space con

sisting of all possible recognition sets into c points. Since each recognition 

set corresponds to the m-dimensional vector {k^, k^, . . each
coordinate, k., can take on c values, the histogram cell structure effectively 

1 . m
quantizes the space consisting of all possible recognition sets into c points.

Therefore, the problem of specifying those recognition sets for which we are

confident that an optimum decision will be rendered, becomes one of specifying

a subset of these c"' points. Let H denote the subset of these c”™ recognition

points at which we are willing to state that a high quality decision will be rendered.

The proposed method of determing H is to let H consist of those test points

{kj} for which Q {k^} > n.

where
Pr {(L-1) (L-l) > 0}
an estimate of the probability that the estimated likelihood 

ratio, £, will produce the same classification as the true 

likelihood ratio, L, would produce if it were known.
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The "true" probability referred to in the definition of Q is that which can be 

calculated knowing the statistics of the classes, the method of estimating likeli

hood functions, the size of the learning set (N and N ), and the cell structure 

(c). The estimate, Q, is determined as follows. Before the learning set is
f _ . . , A

selected, the true probability, Q , of making the same classification with L. 

as with Li at a given test point may be written as a function of the quantities: 

P^(k), Pg(k), k = l,2, ...,c; N^; N^; and the recognition point, {k^, k^, . .., k^}.

Specifically,

q' = Pr{(L-l) (L-1) > 0)

m m a.

i = l \
-1

-i = l

-1 (E-4)

N, N_ 12m

j r jL=1 ? I

iNj -3Jt
1 -Pe(k,)

N,-r/

• 2^sgn
i = l

r.
1 -f -1

X -

► +1 ►

J ^
4

Pa(K,), Pa(V........Pa<V’ ........ ‘'l..........................I'm'
Ni.

N,
■ —«

where ^ and^ indicate 

j r
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”l '^2

I ^ ^ . -PeCively.

jl=“ ja'" ■
:0 r.sO r =0 m

and sgn x = -j—r if x 0 
1^1

= 0 if X = 0

For terms in the expression for Q involving a j =0 and we define

1 -0^1 
-/■O' • ^k.

1
The estimate, Q, is obtained by substituting

V
Pg(k.) = for P^(k), in the expression for Q . Thus,

K 3 “ /N

j r /= 1

lV^2

\j^ k^J\

^Ir

1 - 1 -t:—

1^
2 '

sgn
^2^

m m

IT^-
i = l

/m m m

*- ^2l
N,

1\ ^ i = 1

-1

>

« + 1 -

4

(E-5)

I
n
1
ii

Note that the estimate Q is a function not only of^the^recognition point {k^, k^, .. .

but also the learning set, through the - a. - and -k. 1
Having set up a basis for estimating the likelihood that a given recognition 

point will be classified in an optimum manner, several questions arise. Per

haps the most important questions are;
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(1) Given a recognition point, for what values of and can Q be 

expected to provide a close estimate of cf (not knowing the learning set)?

(2) Given values of N^, and c, for prescribed classes with known 

statistics what is the minimum (true) probability of rendering an optimum 

decision in any cell?

(3) For a given value of r\, what values of N^, N^, c, and m will provide 

values of greater than P^, where

' I •All i = l i = l

1 1

' Aufe).H TT \ TT V
i=l i=l ‘

► (E-6)

The remainder of this appendix is devoted to the first and second of these 

questions. To obtain explicit answers to these questions, it will be convenient 

to restrict our attention to recognition sets consisting of a single sample, i.e., 

m = 1. Introducing this restriction into the equations for Q and Q , we obtain

q; = c^(n,. Nj. P^(k). Pgik))

■I I j r, ^1-jP^(k)JPg(k)'[l-P^(k)J ‘ [1-P (k)]
N^.r

\

^ 8gn
rPA<« 1

i 1K' ] + 1

✓

(E-7)
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”r "2’ V “k)

= Q, [-.• «:• ttJ
N, N^

I Z
j = 0 r = 0

1 - 1 -

N^-r

7 ®8"
N^j
Nir -1 -1

L
(E-8)

In this case, the k-th recognition point corresponds to the single test sample 

falling into the k-th cell.

To answer the first question posed above, we wish to evaluate the rms 

difference between and Q^, where the averaging is performed over all 
learning sets generated by known class statistics; i.e.,

^^'°k-°'k'' = °^2°k°k*'°'k'
/ .2

(E-9)

The random variables involved in the averages indicated in Eq. (E-9) are 

a^^ and bj^. The probability density functions for these variables are

' I
j = 0

PA(k)
-j

1 -PA(k) 6(ak-j)
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j F*11 PbOo' 1 -P^ik) (E-10)

where 6(x) is the Dirac delta function.

Using Eq. (E-7) — (E-10), the mean squared difference between and 
C3^ may be written:

where

I j" ‘*VA<*k»’B<'‘k'kk- Nj- 
-00 - 00 ' 12/

Nj. Pj^(k), Pg(k)

Ni

r, =0 r, = 0 1 2 L t 12/

-2Q N . N^. P^(k), P^(K) j. .,2, ‘j. *^2)

S.K* ^2'

*'2’“"^M' ^2...........^M* ^2...........

M

N,. N,; P^(k), P„(k); r,. r 

2

j = l

Y. "j
T. J
\j/

(E-11)

(E-12)
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The deviation Ej^ is a function of the size of the learning set in terms of ,

and N^, and a function of the cell structure and individual class statistics in

terms of and Pg(k), k = l, 2..........c. To obtain a quantitative indication
of how depends on these quantities, Eq. (E-11) has been programmed for 

evaluation on the Recomp II computer. As in illustration, the sinewave and 

sawtooth waveforms were taken to be the two classes, and a uniform cell 
structure was assumed. In this case, the k-th cell consists of waveform
sample values in the interval _1 ^,2(k_-J2, k = l, 2, ...,c, and the

true probabilities of a sample value occurring within the k-th cell are

Ln-Ul . -sin-^ i-MV \ c c (E-13)

for k = 1, 2, ..., c.

The curves in Figure E-1 indicate the average value, E, of E^, that is, 
c

E si ^ Ej^, as a function of the size of the learning set, N s = N^,
k=l

for c = 2 and c=4. For these two classes it appears that increasing resolution 

of the cell structure serves to increase the accuracy of the quality indicator, 
for a given learning set size. Below some value of N, however (probably near 

N = C), this effect will not be sustained. In fact, we conjecture that for a 

given value of N, there may be an optimum value of c which minimizes E. 
Further calculations will be performed to study this effect.
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At this point it is convenient for analytical evaluation to introduce the 

Gaussian approximation to the binomial distribution. This may* produce a

^ ^ close
The former condition will be satis

fied if min (N^, N^) ^ 10 c. Assuming that both conditions are satisfied, it is 

easily shown that the Gaussian approximation produces expressions for q' and 
Q as follows;

close approximation for q' if min 

approximation for Q if min .
%■ "ki

PaIK) -P3(k)

NiPB(k)[l -PB(k)) + N2PA(k)[l -PA(k)] ^

and

Q, = $ k

/

L/k + M 3-1N, k

(E-14)

where

®(x) I
— 00

(^(u), du.

*It has not been proven that the Gaussian approximation to the binomial is 

valid. The conditions stated simply ensure that the central term in the binomial 

distribution is more than 2.5 standard deviation units away from the origin.
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^(X)

X
1 ” 2 ------e (E-I5)

Now we wish to evaluate the mean squared difference between Qj^ and Q^, where 

the averaging is carried out over all learning sets, for a given recognition point 

(cell) k. Since aj^ and are binomially distributed, we may write for the mean 

value of Q.

I
j =0 r =0

P^(k)j Pg(k)'
N, - j

1 -P^(k) 1 -PB<k)

\

:-^l/
(E-16)

Again we make use of the Gaussian approximation to the binomial distribution. 
This may* be an accurate approximation if min^N^P^{k), N2Pg(k)j-> 5, or
min ^^1’ ^2 « With this approximation becomes

♦Ibid
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dx dy (x) ^ (y)

— 00

*

J^2
* Pb"'* 1 - Pb*“>[‘ -PB<‘^’]y -P^W (E-17)

For suitably large values of and N^, * this expression can be simplified to

Qj^ ^ ^ ^ dx dy (x) (y) «

— eo

'

+NjPg(k)Q-Pg(ky]
(E-18)

= Q,

Thus, at least for large learning sets, provides an 'Vinbiased''estimate of

♦These would depend on the values of • PaOc) ■ and PbOc)
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To complete an approximate evaluation of the mean squared error of esti

mation, it is necessary to obtain a comparable estimate of as a function of

P^(k), P„(k), N-, and N_. Unfortunately all attempts to derive an expression 
A B 1 Z

for this quantity have failed; however, further effort may yield an approximate 

expression.

In the absence of such an expression it is only possible to conduct experi

ments and compare the resulting values of and For classification of
the sinewave and sawtooth waveforms, values of Qj^ are plotted in Figures E-2, 
E-3, and E-4 for several values of N = = N^, and c =4, 10, and 50 respectively.

Equation (E-14) has been used to obtain these plots and therefore they must be 

regarded as approximations.

The graphs in Figures E-2, E-3, and E-4 indicate (as expected) that the 

true probability of making an optimum classification is higher in the cells for 

which the differences between P^(k) and Pg(k) are large, and this probability

increases as the number of learning samples, N = N^ ~‘'2 is increased. The

probability of making an optimum decision remains low (as N is increased) only 

near the points +U —at which P^(l^) is approximately equal to Pg(k)-

These figures also indicate that for these two classes (sinewave and sawtooth 

waveforms) the minimum number of learning samples required to produce high 

quality decisions for all sample events in the observation space is critically 

dependent on the resolution of the cell structure. For a structure consisting of 

4 cells, for instance, 40 learning data samples are sufficient to assure an 

approximate 80 percent probability of rendering an optimum decision within 

each cell. For a structure of 50 cells, however, approximately 500 learning 

data samples are required to assure this level for all cells. Thus it appears 

that to be confident of rendering an optimum decision at all points in this obser- 

vation space, if the number of cells is increased by a factor F (>^ 1), the size 

of the learning set must be increased by the factor F^ , where v > 1.
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APPENDIX VI

EXPERIMENTAL STUDY OF SPEAR LEARNING AND 

CONTROL PARAMETER SELECTION

A series of experiments were conducted to study the utility of the SPEAR 

program feature which makes the generated cell shapes and sises dependent 

upon the known class examples. The theory of control parameter selection 

presented in Appendix II was tested experimentally by repeated trials made 

with a variety of control parameter values. This series of experiments pro

vided a good picture of the usefulness of the technique generally and, specif

ically, the "cell growth" feature of the SPEAR program. These experiments 

have shown that this technique can yield a good approximation to a general 
multimodal, multivariate probability density function (pdf) with a very reason

able number of stored quantities and processing time. In addition, the method 

of .selecting control parameters outlined in Appendix II has given satisfactory 

results. A qualitative indication of the necessary precision in parameter selec

tion also has been obtained.

The data used in these experiments was generated by the GENSPR com

puter program described in Appendix II. This data was used because its 

statistics could be specified in advance and thus the problem of collecting sta

tistically representative data could be avoided. Knowledge of the class statis

tics enabled a precise determination of the lowest achievable error probabilities.

The distribution of each of the two classes considered had four modes in a 

four-dimensional observation space. Specifically, the pdf for the first class 

at the point X ® ( Cji ^2’ ^3* ^4^



qi<x) 0. 2 exp - 1/2 [(^) ^ (^)
(27T) • 16

0.25 exp ■ - 1/2 (^)
(2rr) . 16

(^) ^ (^) ]}

0. 35 1_ _ _ _ r
(2jr)^ • 32 ^

- 1/2
r/l, -25x^ /e,-18^
[(^) ^ (^)

e,-15x^ /I.-13 ^

(^) ^ (^) ]} ^

0.2 - 1/2
[(^) ^

(2ff) -40

(F-l)

and the pdf for the second class is

1 r
->2® - {■ lC“5“) * v~^)(2ff)“ • 40

^ (^) ]}
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u
I
I
1

/I,-16^
0.3

(2W) • 32

53-14.^ .6.-11 ^(^) ^ (^) ])
0.25

(2ir) • 16

r/6,-23^^ /62-11 ^^e.{-l/.[(ii^)4(^) 
‘ . 16 **

(i^i!)\(ii^)j}

0. 3 '*p{-l/^[(~2 ) *(2 ) *
(27T) • 16

(^) ^ (^) J]
2 ... 2

(F-2)

Sample, taken Irom Ute.e two population, may be expected to form two inter
locking .piral, in foor-apace. Visualization of thi. 1. aided by the projection, 

of these two density functions on the six coordinate planes a. is shown in Fig

ure F-i where each ellipse represents a mode of the distribution with the co- 

ordinate radii equal to one (mode) standard deviation.

To study the effectiveness of "ceil growth" a. a technique for reducing the 

required number of cell, (or "typical samples") for good pdf approximation 

and to study the precision needed in specifying the control parameter, eight 

computer run. with SPEAR ("learning" only) were made on 1000 vector, from 

each of the population, with pdf . (F-1) and (F-2). The series of experiment, 
is specified by the diagram in Figure F-2 (here N = 4) in which each choice of 

the control parameter. , 6,^ , SI, and the initial cell radii, ”P”‘

sents an experiment.
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Fig. F-I Bivariate Representation of qj (x) and q2(x)
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Run No. 1, with included as a partial simulation of the

older ASSC II program (see Appendix IV and Reference [5]). The cell struc

ture generation for Run No. 1 was essentially the same as would have been 

obtained with ASSC II except that SPEAR is not written to handle the large 

number of cells ASSC II would have generated and so the run was not actu

ally completed. (See Table F-1). It should be noted that the original ASSC II 

program was written in such a way that the number of cells or references 

generated could be controlled. Usually an upper limit for the number of 

cells created is specified and the program sequences through successive 

"learning" phases with successively increasing values of until the number 

of cells created drops below the specified upper limit. Since the purpose of 

these experiments was to determine the effect of the choice of on cell 

growth, two more runs on ASSC II were performed.

Most of the other computer runs were made with 6^^ = 2, so that, by 

equation B-4, a new cell could not be generated within two cell radii of any 

existing cell; i. e., a new cell was not allowed to "overlap" any existing cell.

All rims but No. 5 had an initial cell radius (in all directions) of (0) = 2

This is the minimum standard deviation for all but two modes in equations F-1 

and F-2. Furthermore and more to the point of designing experiments with 

complicated data of unknown distribution, a plot of the data points in one or 

two dimensions will show characteristic spreads of one to two units about 

local modes. The initial cell sizes including the annular region about the cell, 

must not, of course, be so large that sample points from more than one clearly 

distinguishable mode will fall in a single cell causing the cell to grow exces

sively. For the larger values of , the initial trial standard deviations, 

a_(0), are considerably smaller than the spreads observable by univariates
data analysis. Run No. 5 was included to determine the effect of very small 

initial cell sizes on the rate of cell growth. As shown in the table of results 

(Table F-1), an initial cell radius of one unit proved to be so small that no
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significant cell growth took place even after 1000 vectors from the first class 

had been processed.

For Tj^ = ^yN + 2 and 1.2 vN + 2 , little cell growth occurred. This is 

predicted by Figure B-3. By contrast, excessive cell growth occurred for

large values of Tj^(> 1.5 slN + 2 ). From Figure B-3 rapid but controlled

growth can be expected for values of between 1.2 *\/N + 2 and 1.5 slN + 2 . 

This is supported by the experimental evidence in Tables F-1 and F-2. In

Run No. 4 (Tj^ = 1.3 vN + 2 , 0^^ = 3), only four cells were generated for each 

class which contained at least 10% of the "learning" sample. These four cells 

were located at or very near the four distribution modes. This indicates 

that the pdf' s were approximated very well.

The results shown in Table F-2 give an indication of the accuracy of esti

mation for various values of T... Table F-2 shows a comparison of the trueN
pdf value, q(X), to the estimate, ^(X), developed in each of four SPEAR ex

periments (using the same data in each) for X falling in three distinct regions.

In the first set of comparisons, the ratio (X)/q^ (X) is computed for 

points X near (25, 12, 10, 11) the second mode in Equation F-1. (For con- 

venience the computations were made at cell centers or "typical samples" 

rather than at a single common point.) The second "subdistribution" about 

(25, 12, 10, 11) in Equation F-1 lies near the first and third "subdistributions" 

of Equation F-1 as may be seen by an inspection of Figure F-1. Therefore, it 

would not be too surprising to find cells scattered between these distribution 

modes as well as, or instead of, at the true modes. (This would not neces

sarily mean a poorer approximation to the pdf). The fact that cells were 

located near actual modes is an indication of the mode separating capability 

of SPEAR.

The second set of comparisons in Table F-2 shows the ratio q2(X)/^2^^^’ 

computed at points X near (19, 16, 14, 11), the second mode in Equation F-2.
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The second "subdistribution" in Equation F-2 is well separated from the other 

"subdistributions" of q^(X). Therefore, it was expected that a cell would lo

cate itself about (19, 16, 14, 11) and that this "subdistribution" would be ap

proximated rather well. It is apparent from the table that for Run No. 4, the 

ratio of estimated to actual density values is near unity.

The third set of comparisons in Table F-2 shows the ratio (X)/(X), 

computed at points X near (17. 10, 8, 9), i.e., approximately one standard 

deviation off in the first coordinate from the first mode in Equation F-1. An 

unusually large number of vectors fell in a small neighborhood about 

(17, 10, 8, 9). This is responsible for the fact that every run produced a cell 
near this point and is at least partly responsible for the estimates deviating 

from the true pdf values. Since there are more than the expected number of 

sample vectors in a small neighborhood of (17, 10, 8, 9), the estimates 

q j (X) in that neighborhood are higher than q^ (X) so that the ratio q^ (X)/q^ (X) 

is less than one.

Certainly in both the first and second set of comparisons an accurate esti

mate of the appropriate pdf has been obtained, for the points at which the 

computations were made, with a value of = 1.3 ^yN + 2 . Although detailed 

computations were not made at the other modes of q^ (X) and q2(X), the ac
curacy of the estimate obtained with = 1.3 •JWTT appears to be uniformly 

good. Since the "subdistribution" variances were well estimated with 

= 1.3 VN + 2 , the total pdf's were estimated well over the entire 

space with the exception of a few local discrepancies caused by cells 

not located at the true modes. It must be remembered that the special form 

of the pdf' s in Equations F-1 and F-2 allows an almost perfect approximation 

with the type of representation used in ASSC III.

The third set of comparisons corroborates the conclusion that the best 

accuracy in pdf estimation is obtained for values of near 1.3 vN + 2 . As

A-VI-10



described above, at least part of the deviation from the true value is the result 

of sampling errors and not a characteristic of cells located away from the true

modes.

Figure F-3 shows the total number of cells generated (including those with 

only one vector in them) for the first class versus (and 3 = + 2 ) for

the computer runs in which the initial cell radius was two units. The ASSC U 

simulation produced approximately 320 cells. In large part the fact that so 

many more cells were generated on this run than with larger values of and 6 

is due to the absence of an annular zone about the cell in which no new cell 

centers can be generated (see Equation B-4). That is holding the cell centers 

(or "typical samples") apart so that the cell defining ellipsoids do not overlap 

(see Figure C-4) is a more powerful method of reducing the number of gener- 

ated cells than is the cell growth mechanism alone. However, by eliminating 

those cells which can be considered as "singular events" because they contain 

only a small percentage of the learning sample after the cell growth mechanism 

has been employed, a significant reduction in the number of useful cells is 

possible. For example, as seen in Figure F-3, Runs No. 2 and 3 both gener

ated approximately 90 cells. In Table F-1, however, it is seen that 75 cells 

for Run No. 2 (class 1) contained more than one vector (0.1% of the "learning" 

sample) while only 63 of the cells generated in Run No. 3 contained more than 

one vector and thus were retained by the present SPEAR program. This rep

resents a reduction in the number of useful cells by a factor of 12/75 or 16% 

due solely to cell growth for values of such that little growth occurred.

For higher values of this percentage reduction is even more significant.

For T =1.5 n/N + 2“ (Run No. 6), only 30 cells had more than one vector in 

them. This is a reduction of 67% due to cell growth and a reduction by approxi- 

mately 90% from ASSC U with an equal initial cell size.

In Figure F-4, the cumulative total number of cells generated (including 

those containing only one vector) is shown as a function of the number of

A-VI-11
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known vectors processed for various settings of the control parameters. In 

each of the runs for which these results are displayed the initial cell radius 

equals two units. Observe that for fixed 0 and initial cell radius, the curves 

in Figure F-4 have a common initial behavior. For low values of , new 

cells were generated throughout the learning procedure, i.e., until all 1000 

known vectors had been treated. For large values of , the rate of cell 

generation proceeded normally until one or more cells began to expand ex

plosively, taking in all remaining vectors in the "learning" sample, so that 

generation of new cells ceased. Figure F-5 shows the number of vectors that 

were processed before 80% of the final number of cells were generated. The 

major cause of the difference in results shown in Figures F-3, -4, and -5, 

between the runs with = n/N + 2 and ^ 1.2n/N + 2 (with 0=2) seems 

to be that for Run No. 3 = 1.2's/NTT the initial cell radii were equal to

1.98 units as a result of round-off error.

The results of these "learning" experiments may be summarized by stat

ing that strong evidence has been obtained which indicates that the method of 

control parameter selection set forth in Appendix II is valid, and that SPEAR 

can (with proper control parameters and initial cell sizes) produce satisfactory 

estimates of the class pdf's with efficient use of available storage capacity.

Thus, classification error rates approximating the optimum can be achieved 

with SPEAR pdf estimation or "learning", and an improvement has been 

achieved in performance as well as generality over the earlier ASSC II program.
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Fig. F-5 Number of Vectors Processed Before 80% of the Final 
Number of Cells Were Generated
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