

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

N-63-2-2

DMIC Report 177 Volume 2 of 2 November 15, 1962

THERMAL RADIATIVE PROPERTIES

94346

N

CATALOGED BY ASTIA

294 346

OF

SELECTED MATERIALS

DEFENSE METALS INFORMATION CENTER Battelle Memorial Institute Columbus 1, Ohio

COPIES AVAILABLE FROM OTS \$_____

The Defense Metals Information Center was established at Battelle Memorial Institute at the request of the Office of the Director of Defense Research and Engineering to provide Government contractors and their suppliers technical assistance and information on titanium, beryllium, magnesium, refractory metals, high-strength alloys for high-temperature service, corrosion- and oxidation-resistant coatings, and thermal-protection systems. Its functions, under the direction of the Office of the Secretary of Defense, are as follows:

- To collect, store, and disseminate technical information on the current status of research and development of the above materials.
- 2 To supplement established Service activities in oviding technical advisory services to prodacers, melters, and fabricators of the above materials, and to designers and fabricators of military equipment containing these materials.
- To assist the Government agencies and their contractors in developing technical data required for preparation of specifications for the above materials.
- 4. On assignment, to conduct surveys, or laboratory research investigations, mainly of a short-range nature, as required, to ascertain causes of troubles encountered by fabricators, or to fill minor gaps in established research programs.

Contract No. AF 33(616) -7747 Project No. 2(8-8975)

DMIC Report 177 Volume 2 of 2 November 15, 1962

THERMAL RADIATIVE PROPERTIES OF SELECTED MATERIALS

by

W. D. Wood, H. W. Deem, and C. F. Lucks

.

to

OFFICE OF THE DIRECTOR OF DEFENSE RESEARCH AND ENGINEERING

DEFENSE METALS INFORMATION CENTER Battelle Memorial Institute Columbus 1, Ohio

TABLE OF CONTENTS

Volume 1

																			Page
SUMMARY	• •			•	•			•			•					•			1
INTRODUCTION																			3
Method of Presentation				•									•				•	•	3
FUNDAMENTALS AND DEFINITION																			•
					•	•	•	•	•	•	•	•	•	•	٠	•	•	•	4
Thermal Radiation			_																
Blackbody Radiation													ŀ						4
																			8
Radiation Laws General Relationships	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	8
General Relationships	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	11
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	15
REFERENCES				•				•											17
METHODS OF MELGUD PLOT												-	-	•	•	•	•	•	
METHODS OF MEASUREMENT	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	17
Measurements Needed																			17
Methods for Making Emiliance	Mea	a 911	ren	ner	116								•	•	•	•	•	•	18
General Considerations								1											24
Radiation Delectors																			24
Temperature-Measuring Devic	es		•					:		•	÷		•		•	•	•	•	27
DE DED DUCEDO													•	•	•	•	•	•	
REFERENCES	•	•	•	•	•	•	•	•	•	•	•	•							29
RADIATIVE PROPERTY DATA																			
															- 1				
Titanium and Titanium Alloys																			35
																	•	•	53
from, Mickel, and Cobalt and T	heir		lov	8			-			•	•	•	•	•	•	•	•	•	99
Chronnum, Columpium, Molyb	den	um	. Т	ant	alu	m.	an	d								•	•	•	77
Tungsten and Their Alloys .	•	•	•	•	•	•	•	•	•	•									161
				lur															

RADIATIVE PROPERTY DATA

Coated Materials Suitable	e fo	r I	Clev	vate	ed-	Te	mpe	era	tur	e Us	e.	•		•						209
Ceramics and Graphites	•	•	•	•	٠	•	•	•	٠	•	• •	•	•	•	•	•	•	•	•	421

RADIATIVE PROPERTY DATA

Coated Materials Suitable for Elevated-Temperature Use

TABLE OF CONTENTS

BORON

CRYSTALLINE BORON ON COLUMBIUM											
Hemispherical Total Emittance Vs Temperature Normal Spectral Emittance Vs Wavelength	•	•	•			•	•	•	•	•	209 210
CRYSTALLINE BORON ON MOLYBDENUM											
Hemispherical Total Emittance Vs Temperature			•							•	211
BORIDE COATINGS											
TANTALUM BORIDE ON TUNGSTEN AND TANTALUM											
Normal Spectral Emittance Vs Temperature.							•				212
ZIRCONIUM BORIDE ON MOLYBDENUM											
Hemispherical Total Emittance Vs Temperature				•					·		213
ZIRCONIUM BORIDE ON TANTALUM AND TUNGSTEN											
Normal Spectral Emittance Vs Temperature			•								214
CARBIDE COATINGS											
BORON CARBIDE ON INCONEL X											
Normal Spectral Emittance at 480 F Normal Spectral Emittance at 930 F Normal Spectral Emittance at 1380 F	•	•	•	•	•	•		•	•	•	215 216
	•	•	•	•	•	•		•	•	•	217
BORON CARBIDE ON MOLYBDENUM											
Hemispherical Total Emittance Vs Temperature	•	•	•		•				•		218
HAFNIUM CARBIDE ON MOLYBDENUM											
Hemispherical Total Emittance Vs Temperature											219

									Page
MOLYBDENUM CARBIDE ON MOLYBDENUM									
Hemispherical Total Emittance Vs Temperature .				•			•	•	220
SILICON CARBIDE ON MOLYBDENUM									
Hemispherical Total Emittance Vs Temperature .									221
SILICON CARBIDE ON GRAPHITE									
Normal Total Emittance Vs Temperature							•		222
TANTALUM CARBIDE ON INCONEL X									
Normal Spectral Emittance at 480 F	•	•	•	•	•	•	•		223 224 225
TANTALUM CARBIDE ON MOLYBDENUM	•	•	•	•	•	•	•	•	223
Hemispherical Total Emittance Vs Temperature .									226
TANTALUM CARBIDE ON TANTALUM AND TUNGSTEN									
Normal Spectral Emittance Vs Temperature		•	•						227
TITANIUM CARBIDE ON TANTALUM AND TUNGSTEN									
Normal Spectral Emittance Vs Temperature			•		•	·	•	•	228
ZIRCONIUM CARBIDE ON TANTALUM AND TUNGSTEN									
Normal Spectral Emittance Vs Temperature	•	•			•	•	•	•	229
ENAMELS AND PAINTS				-					
A-418 ENAMEL ON INCONEL									
Normal Total Emittance Vs Temperature Spectral Reflectance Vs Wavelength Normal Spectral Emittance Vs Wavelength	•	•	•			•		•	230 231 232
A-418 ENAMEL ON TYPE 321 STAINLESS STEEL									
Normal Spectral Emittance Vs Wavelength			•						233
A-418 AND N-143 ENAMELS ON INCONEL									
Variation of Normal Total Emittance With Coating '	Thi	ckni	ess	at	120	00 1	F.		234

196

Page

ENAMELS AND PAINTS (Continued)

A-418 AND N-143 ENAMELS ON TYPE 321 STAINLESS STEEL Variation of Normal Total Emittance With Coating Thickness at 1200 F. 235 ALUMINIZED-SILICONE PAINT ON TI-75A TITANIUM 236 Normal Total Emittance Vs Temperature 237 Spectral Reflectance Vs Wavelength . B-1 ENAMEL ON INCONEL 238 Normal Total Emittance Vs Temperature . . . 239 Spectral Reflectance Vs Wavelength **B-4 ENAMEL ON INCONEL** 240 Normal Total Emittance Vs Temperature 241 Spectral Reflectance Vs Wavelength B-7 ENAMEL ON INCONEL 242 Normal Total Emittance Vs Temperature **B-8 ENAMEL ON INCONEL** 243 Normal Total Emittance Vs Temperature 244 Spectral Reflectance Vs Wavelength **B-9 ENAMEL ON INCONEL** 245 Normal Total Emittance Vs Temperature . . . 246 Spectral Reflectance Vs Wavelength B-11 ENAMEL ON INCONEL 247 Normal Total Emittance Vs Temperature. 248 Spectral Reflectance Vs Wavelength . **B-12 ENAMEL ON INCONEL** 249 Normal Total Emittance Vs Temperature. 250 Spectral Reflectance Vs Wavelength **B-13 ENAMEL ON INCONEL** 251 Normal Total Emittance Vs Temperature . . . 252 Spectral Reflectance Vs Wavelength

	Page
ENAMELS AND PAINTS (Continued)	
CHEM INDUSTRIES ALUMINUM PAINT ON A-286 STEEL	
Normal Total Emittance Vs Temperature	250
Normal Spectral Emittance Vs Wavelength	253 254
CHEM INDUSTRIES ALUMINUM PAINT ON TITANIUM, STEEL, AND INCONEL X	
Normal Spectral Emittance Vs Wavelength	255
DULITE 3-0 ON A-286 STEEL	
Normal Total Emittance Vs Temperature	256
Normal Spectral Emittance Vs Wavelength	250
DULITE 3-0 ON INCONEL X	
Normal Total Emittance Vs Temperature	
Normal Spectral Emittance Vs Wavelength	258 259
DULITE 3-0 ON TITANIUM	
Hemispherical Total Emittance Vs Temperature	260
GULTON CERAMIC COATING 6013 ON A-286 STEEL (1/2-MIL COATING)	
Normal Spectral Emittance at 600 F and Atmospheric Pressure	261
Normal Spectral Emittance at 800 F and Atmospheric Pressure	262
Normal Spectral Emittance at 1200 F and Atmospheric Pressure .	263
Normal Spectral Emittance at 600 F and 5000 Microns Pressure .	264
Normal Spectral Emittance at 800 F and 5000 Microns Pressure	265
Normal Spectral Emittance at 600 F and 5 Microns Pressure	266
Normal Spectral Emittance at 800 F and 5 Microns Pressure	267
GULTON CERAMIC COATING 6013 ON A-286 STEEL (1-MIL COATING)	
Normal Spectral Emittance at 600 F and Atmospheric Pressure	268
Normal Spectral Emittance at 800 F and Atmospheric Pressure	269
Normal Spectral Emittance at 1200 F and Atmospheric Pressure	
Normal Spectral Emittance at 600 F and 5000 Microns Pressure	270 271
Normal Spectral Emittance at 800 F and 5000 Microns Pressure	
Normal Spectral Emittance at 1200 F and 5000 Microns Pressure	272
	273
GULTON CERAMIC COATING 6013 ON INCONEL X	
Normal Spectral Emittance Vs Wavelength	274

ENAMELS AND PAINTS (Continued)

NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL

. . •

3

Normal Total Emittance Vs Temperature					275
Normal Spectral Emittance at 600 F and Atmospheric Pressure	•	•	•	•	275 276
Normal Spectral Emittance at 800 F and Atmospheric Pressure	•	•	•	•	
Normal Spectral Emittance at 1200 F and Atmospheric Pressure	•	•	•	•	277
Normal Spectral Emittance at 600 F and 5 Microns Pressure .	•	•	•	•	278
	•	•	•	•	279
N-143 ENAMEL ON INCONEL					
Normal Spectral Emittance Vs Temperature					280
N-143 ENAMEL ON TYPE 321 STAINLESS STEEL					
Normal Spectral Emittance Vs Temperature					281
PRATT AND LAMBERT 91-1524 PAINT ON INCONEL					
Normal Total Emitter as Mar					
Normal Total Emittance Vs Temperature	•	•	•		282
Normal Spectral Emittance Vs Wavelength	•	•	•	•	283
PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM					
Hemispherical Total Emittance Vs Temperature					
Normal Total Emittance Vs Temperature		•	• ,	•	284
NOTRIAL SPACEWOIL L'MAILEANA V. IV. 11. 11			•.		285
Normal Opecial Emittance vs wavelength	•	•	•	•	286
RINSHED-MASON H12144 ENAMEL ON TYPE 321 STAINLESS STEEL					
Normal Total Emittance Vs Temperature					
Spectral Reflectance Vs Wavelength	•	•	•	•	287
Spectral Reflectance vs wavelength	•	•	•	•	288
RINSHED-MASON J-15934 PAINT ON TYPE A-286 STEEL					
Normal Tatal De 144 Dr. m					
Normal Total Emittance Vs Temperature					289
Normal Spectral Emittance Vs Wavelength					290
RINSHED-MASON J-15934 PAINT ON TITANIUM					
Hemispherical Total Emittance Vs Temperature					
Normal Spectral Emittance Vs Wavelength	•				291
	•				292
RINSHED-MASON Q36K802 PAINT ON A-286 STEEL					
Normal Total Emittance Vs Temperature					
Normal Spectral Emittance Vs Wavelength	•	•			293
oposities and and a second sec	•				294

199

										Page
ENAMELS AND PAINTS (Contin	nu	ed								
RINSHED-MASON Q36K802 PAINT ON TITANIUM										
Hemispherical Total Emittance Vs Temperature . Normal Spectral Emittance Vs Wavelength		•		•	•	•	•	•	•	295 296
VITA VAR PV100 PAINT ON A-236 STEEL										
Normal Total Emittance Vs Temperature Normal Spectral Emittance Vs Wavelength (0.8 Mil Normal Spectral Emittance Vs Wavelength (3.0 Mil	C	oa oa	t) t)		•	•	•	•	•	297 298 299
VITA VAR PV100 PAINT ON TITANIUM										
Hemispherical Total Emittance Vs Temperature .		•								300
W-1 WHITE ENAMEL ON INCONEL										
Spectral Reflectance Vs Wavelength		•	•	•	•	•		•		301
W-3 WHITE ENAMEL ON INCONEL										
Normal Total Emittance Vs Temperature Spectral Reflectance Vs Wavelength	•	•	•	•	•	•	•	•	•	302 303
W-4 WHITE ENAMEL ON INCONEL										
Spectral Reflectance Vs Wavelength		•	•					•	•	304
OXIDE COATINGS										
ALUMINUM OXIDE ON INCONEL										
Normal Total Emittance Vs Temperature			•		•	•			•	305
ALUMINUM OXIDE ON TYPE 310 STAINLESS STEEL										
Hemispherical Total Emittance Vs Temperature Hemispherical Total Emittance Vs Temperature	•		•	•	•	•	•	•	•	306 307
ALUMINUM OXIDE ON TYPE 446 STAINLESS STEEL										
Normal Total Emittance Vs Temperature Normal Spectral Emittance Vs Temperature Spectral Reflectance Vs Wavelength	•	•	•	•	• ••	•	•	•	•	308 309 310

200

OXIDE COATINGS (Continued)

CERAMCO B-682P ON A-286 STEEL													
Normal Total Emittance Vs Temperature.		•					•	•	•	•	•	31	1
CERAMCO G-683P ON A-286 STEEL													
Normal Total Emittance Vs Temperature.	•	•	•	•	•	·	•	•		•	•	31	2
CERAMCO G-684TC ON INCONEL X													
Normal Total Emittance Vs Temperature.	٠	•	•	•	•	3		•	•		•	31	3
CERAMCO W-683P ON A-286 STEEL													
Normal Total Emittance Vs Temperature.	•	•	•	•	•	•	•	•		•	•	31	.4
CERAMCO W-683TC ON INCONEL X		·											
Normal Total Emittance Vs Temperature.	٠		٠	•	•		•	•	•	•		31	15
CERAMCO WB-6832 ON A-286 STEEL													
Normal Total Emittance Vs Temperature.	•	•	•	•	•	6	٩	•		•		3	16
CERIC OXIDE ON TYPE 310 STAINLESS STEEL													
Hemispherical Total Emittance Vs Temper	atu	re		•	•							3	17
NORTON LA 9683 ON 6A1-4V TITANIUM													
Normal Spectral Emittance Vs Wavelength		•	•	•	•	•	•	•		•		3	18
NORTON LN 9684 ON INCONEL X													
Normal Spectral Emittance Vs Wavelength		•	•	•	•	•		•				. 3	19
NORTON LN 9684 ON 6A1-4V TITANIUM													
Normal Spectral Emittance Vs Wavelength		•	•	•	·	•		•	•			. 3	20
NORTON LN 9684 ON A-286 STEEL													
Normal Spectral Emittance Vs Wavelength						·		•	•	•		. 3	21
NORTON LA 9696 ON INCONEL X													
Normal Spectral Emittance Vs Wavelength	ι.								•	•	•	. 3	322

OXIDE COATINGS (Continued)

NORTON LA 9696 ON 6A1-4V TITANIUM											
Normal Spectral Emittance Vs Wavelength .											323
NORTON LA 9696 ON A-286 STEEL											
Normal Spectral Emittance Vs Wavelength .						•					324
ROKIDE A ON INCONEL X											
Normal Spectral Emittance at 800 F		•		•	•	•	•			•	325
Normal Spectral Emittance at 1800 F	•	•	•	•	•	•	•	•	•	•	326
ROKIDE A ON TITANIUM											
Normal Spectral Emittance Vs Wavelength .			•	•	•	•	•			•	327
ROKIDE A ON A-286 STEEL											
Normal Spectral Emittance at 800 F											328
	•	•	•	•	•	•	•	•	•		329
ROKIDE A (CONTAMINATED) ON A-286 STEEL											
Normal Total Emittance Vs Temperature .		•									330
Normal Spectral Emittance Vs Wavelength .		•	•		•	•					331
Normal Spectral Emittance Vs Wavelength .		•	•								332
Normal Spectral Emittance Vs Wavelength .											333
Normal Spectral Emittance Vs Wavelength .	•	•	•	•	•	•	•	•	•	•	334
ROKIDE C ON TYPE 310 STAINLESS STEEL											÷
Hemispherical Total Emittance Vs Temperatur	re	•	•	•	•,	•	•	•			335
ROKIDE Z ON INCONEL X					-						
Normal Spectral Emittance Vs Wavelength .	•	•	•	•	•	•	•	•	•	•	336
ROKIDE Z ON 6A1-4V TITANIUM											
Normal Spectral Emittance Vs Wavelength .	•	•		•	•	•	•	•	•		337
ROKIDE Z ON A-286 STEEL						•					
Normal Spectral Emittance Vs Wavelength											338

OXIDE COATINGS (Continued)

SYLVESTER FCM-10 ON INCONEL X				
Normal Spectral Emittance Vs Wavelength	• •			339
SYLVESTER FCT-10 ON INCONEL X				
Normal Spectral Emittance Vs Wavelength				340
SYLVESTER FCR-11 ON INCONEL X				
Normal Spectral Emittance Vs Wavelength				341
SYLVESTER FCT-11 ON INCONEL X				
Normal Spectral Emittance Vs Wavelength	•			342
SYLVESTER FCT-12 ON A-286 STEEL				
Normal Spectral Emittance Vs Wavelength				
Normal Spectral Emittance at 600 F and Atmospheric Pressure .	•	•		343
Normal Spectral Emittance at 800 F and Atmospheric Pressure .	•	•	•	344
Normal Spectral Emittance at 1200 F and Atmospheric Pressure .	•	•	•	345
Normal Spectral Emittance at 1800 F and Atmospheric Pressure.	•	•	•	346
Normal Spectral Emittance at 600 F and 5 Microns Pressure .	•	•	•	347
				348 -
Normal Spectral Emittance at 1200 F and 6 Microns Pressure	•			349
Normal Spectral Emittance at 1200 F and 5 Microns Pressure Normal Spectral Emittance at 1800 F and 5 Microns Pressure	•	•	•	350 351
TITANIUM OXIDE ON ALUMINUM				
Hemispherical Total Emittance Vs Temperature			. 3	352
TITANIA-BASE POWDER ON TYPE 301 STAINLESS STEEL				
Hemispherical Total Emittance Vs Temperature			. 3	53
TITANIUM OXIDE-ALUMINUM OXIDE MIXTURE ON TYPE 301 STAINL STEEL	ESS			
Hemispherical Total Emittance Vs Temperature			. 3	54
ZIRCONIUM OXIDE ON INCONEL				
Normal Total Emittance Ve Temperature				
Normal Total Emittance Vs Temperature				55
Normal Total Emittance Vs Temperature Spectral Reflectance Vs Wavelength			-	56
opectial henectance vs wavelength	•	•	. 3	57

Page

OXIDE COATINGS (Continued)

ZIRCONIUM OXIDE ON INCONEL X										
Normal Spectral Emittance at 480 F Normal Spectral Emittance at 930 F Normal Spectral Emittance at 1380 F	•	•	•	•	•	•	•	•	•	358 359 360
ZIRCONIUM OXIDE ON MOLYBDENUM AND TYPE 301	S	Гаі	NL	ES	· s s	те	El	•	•	500
Hemispherical Total Emittance Vs Temperature	•	•	•	•	·	•	•	•	•	361
ZIRCONIUM OXIDE ON TYPE 310 STAINLESS STEEL										
Hemispherical Total Emittance Vs Temperature		•	•	•	•	•	•	•	•	362
THORIUM OXIDE ON TUNGSTEN AND MOLYBDENUM										
Normal Spectral Emittance Vs Temperature	•	•		•		•	•	•		363
VARIOUS REFRACTORY OXIDES ON NIMONIC 75										
Normal Total Emittance Vs Temperature	•	•	•		•	•		•		364
SILICIDE COATINGS										
Al-Si ON MOLYBDENUM									ŕ	· .
Normal Total Emittance Vs Temperature	•	•	•	•	•		•	•	•	365
DURAK-MG ON MOLYBDENUM										
Normal Total Emittance Vs Temperature	•	•	•		•	•	•	•		366
DURAK-MG ON MOLYBDENUM-0.5 TITANIUM ALLOY										
Normal Total Emittance Vs Temperature	•	•				•	•			367
MOLYBDENUM DISILICIDE ON MOLYBDENUM									w **	
Hemispherical Total Emittance Vs Temperature	•	•	•				•	•		368
W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY										
Normal Total Emittance Vs Temperature										369
Normal Total Emittance Vs Temperature .										370
Normal Spectral Emittance Vs Wavelength				-						371

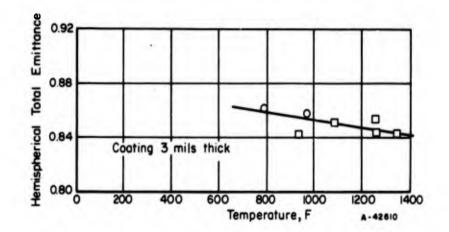
204

Page

SILICIDE COATINGS (Continued)

W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY (Continued)

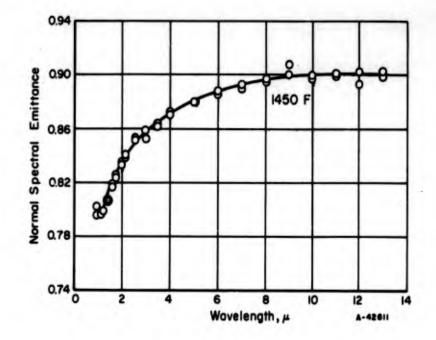
Normal Spectral Emittance Vs Wavelength .									•	•	372
Normal Spectral Emittance Vs Wavelength .		•				•			•	•	373
Variation of Normal Spectral Emittance Vs W	[ave]	eng	gth	Wit	h F	leat	ting	g T	im	e	
in Air	• •	•	•	•	•	•	•	•	•	•	374
W-2 (MODIFIED) ON COLUMBIUM ALLOY											
Normal Total Emittance Vs Temperature		•	•	•	•	•	•	•	•	•	375
W-2 (MODIFIED) ON TUNGSTEN											
Normal Total Emittance Vs Temperature	• •		•		•	•	•	•	•	•	376
PHOSPHATE COAT	ING	S									
ALUMINUM PHOSPHATE ON ALUMINUM											
The second se											377
Hemispherical Total Emittance Vs Temperat Hemispherical Total Emittance Vs Temperat		•	•	•	•	•	•	•	•	•	378
Hemispherical lotal Emittance vs Temperat	ure	•	•	•	•	•	•	•	•	•	510
ALUMINUM PHOSPHATE ON TYPE 310 STAINLES	5S S1	TEF	L								
Hemispherical Total Emittance Vs Temperat	ture	•	•	•	•		•	•	•	•	379
METALLIC COAT	INGS	;									
CERAMIC GOLD ON TITANIUM											
Normal Spectral Emittance Vs Wavelength (S	hinv	Fi	niel	1							380
Normal Spectral Emittance Vs Wavelength (Normal Spectral Emittance Vs Wavelength (N	Matte	F	inis	h)	•	•	•	•	•	•	381
Normal Spectral Emittance VS wavelength (14000			,	•	·	•	•	•	•	
HANOVIA LIQUID GOLD NO. 6896 ON A-286 STEP	EL										
Normal Total Emittance Vs Temperature											382
Normal Spectral Emittance Vs Veniperature	•••	•		:	į	÷					383
Normal opeettar Emittanee vo wavelengen		•									
CHROMIUM-NICKEL ON INCONEL X											
											204
Normal Spectral Emittance at 480 F	• •	•	•	•	•	•	•	•	•	•	384 385
Normal Spectral Emittance at 930 F	• •	٠	•	•	•	•	•	•	•	•	386
Normal Spectral Emittance at 1380 F	• •	•	•	•	•	•	•	•	•	•	100
KANIGEN NICKEL COATING ON A-286 STEEL											
Normal Spectral Emittance Vs Wavelength			•								387


205

METALLIC COATINGS (Continued)								
SINTERED NICKEL "C" ON TYPE 310 STAINLESS STEEL								
Hemispherical Total Emittance Vs Temperature								388
TUNGSTEN ON ARMCO IRON								
Hemispherical Total Emittance Vs Temperature								389
Total Solar Absorptance Vs Temperature	•	•	•	•	•	•	•	390
TUNGSTEN ON INCONEL X								
Normal Spectral Emittance at 480 F								391
Normal Spectral Emittance at 930 F								392
Normal Spectral Emittance at 1380 F	•		•	•	•			393
TUNGSTEN-50% COBALT ON INCONEL X								
Normal Spectral Emittance at 480 F								394
Normal Spectral Emittance at 930 F								395
Normal Spectral Emittance at 1380 F	•	•	•	•	•	•	•	396
MISCELLANEOUS COATINGS								
HIGH-EMITTANCE COATINGS								
Normal Total Emittance Vs Temperature	•		•		•	•	•	397
VARIOUS COATINGS								
Normal Total Emittance Vs Temperature	•	•	•	•	•	•	•	398
BORON NITRIDE ON TANTALUM								
Hemispherical Total Emittance Vs Temperature	•	•	•	•			•	399
CALCIUM FLUORIDE ON TYPE 310 STAINLESS STEEL								
Hemispherical Total Emittance Vs Temperature	·	·	•	•	•	•	•	400
STRONTIUM TITANATE ON TYPE 310 STAINLESS STEEL								
Hemispherical Total Emittance Vs Temperature	•		•	•	•	•	•	401
ZIRCONIUM SILICATE ON TYPE 310 STAINLESS STEEL			-					
Hemispherical Total Emittance Vs Temperature								402

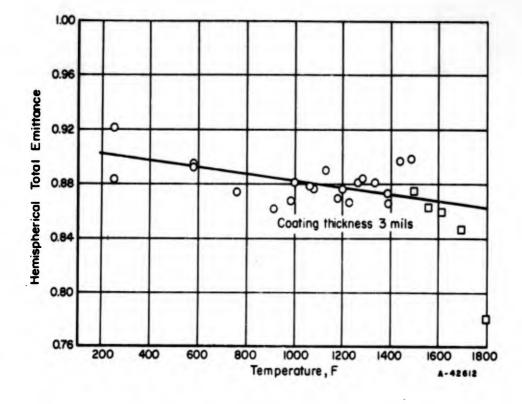
207 and 208

TABLE OF CONTENTS (Continued)


			Fag
MISCELLANEOUS COATINGS (Continued)			•
ACETYLENE BLACK ON TYPE 310 STAINLESS STEEL			
Hemispherical Total Emittance Vs Temperature			403
CHROMIUM BLACK ON TYPE 310 STAINLESS STEEL			
Hemispherical Total Emittance Vs Temperature			404
KRYLON BLACK ON TYPE 310 STAINLESS STEEL			
Hemispherical Total Emittance Vs Temperature			405
GRAPHITE VARNISH ON TYPE 310 STAINLESS STEEL			
Hemispherical Total Emittance Vs Temperature			406
OXIDIZED A-286 STEEL			
Normal Total Emittance (Contaminated With JP-4 Fuel) .			407
Normal Total Emittance (Various Contaminants)			408
Normal Spectral Emittance in Air (Contaminated With JP-4 Fuel)		`.	409
Normal Spectral Emittance in Vacuum (Contaminated With JP-4 Fuel)	·	•	410
Normal Spectral Emittance (Contaminated With Carbon Deposits)	•	•	411
Normal Spectral Emittance (Contaminated With MIL-L-7808) .	•	•	412
Normal Spectral Emittance (Contaminated With MIL-O-5606)	•	:	413
REFERENCES	-		
	•	•	414

HEMISPHERICAL TOTAL EMITTANCE OF CRYSTALLINE BORON ON COLUMBIUM

HEMISPHERICAL TOTAL EMITTANCE OF CRYSTALLINE BORON ON COLUMBIUM -- REFERENCE INFORMATION


Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
Pratt & Whitney Aircraft		3-mil-thick coating prepared by Linde Plasmarc process	Hemispherical total emittance.	Measured in vacuum
		on columbium tube.	Resistance-heated tube specimen. Power dissipated in measured area. Temperatures measured	Data taken from curve.
	Investigator Pratt & Whitney	Investigator Symbol Pratt & Whitney	Investigator Symbol Surface Condition Pratt & Whitney 3-mil-thick coating prepared Aircraft by Linde Plasmarc process	Investigator Symbol Surface Condition Test Method Pratt & Whitney Aircraft 3-mil-thick coating prepared by Linde Plasmarc process on columbium tube. Hemispherical total emittance. Pratt & Whitney Aircraft 3-mil-thick coating prepared by Linde Plasmarc process on columbium tube. Hemispherical total emittance. Pratt & Whitney Aircraft Second Plasmarc process on columbium tube. Hemispherical total emittance.

NORMAL SPECTRAL EMITTANCE OF CRYSTALLINE BORON ON COLUMBIUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		3-mil-thick coating prepared by Linde Plasmarc process	Normal spectral emittance. Electrically Meated	Measured in vacuum.
			on columbium tube.	tubular coated specimen. Integral blackbody slot in specimen tube. Temperatures measured with thermocouples and	Data taken from curve.
				optical pyrometer.	

NORMAL SPECTRAL EMITTANCE OF CRYSTALLINE BORON ON COLUMBIUM--REFERENCE INFORMATION



.

HEMISPHERICAL TOTAL EMITTANCE OF CRYSTALLINE BORON ON MOLYBDENUM

HEMISPHERICAL TOTAL EMITTANCE OF CRYSTALLINE BORON ON MOLYBDENUM--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		Crystalline boron flame sprayed by Linde Plasmarc	Hemispherical total emittance.	Measured in vacuum.
			process on molybdenum strip.	Resistance-heated strip specimen. Power dissipated in	Data taken from curve.
		Coating 3 mils thick (coated both sides).	measured area. Temperatures measured		
			Note: coating loosened from molybdenum.	with thermocouples.	

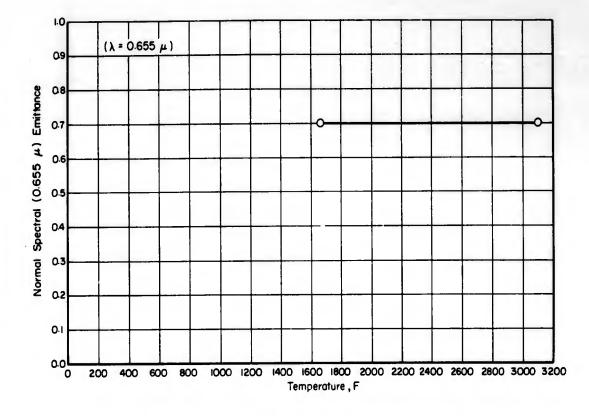
NORMAL SPECTRAL EMITTANCE OF TANTALUM BORIDE ON TUNGSTEN AND TANTALUM

.

NORMAL SPECTRAL EMITTANCE OF TANTALUM BORIDE ON TUNGSTEN AND TANTALUM-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	0	Purity or coating method not defined. Coating thickness not given.	 Two methods used: (1) Coated-tungsten- strip heater. Temperatures meas- ured with thermo- couples. Brightness temperatures meas- ured with optical pyrometer. (2) Hole-in-tube method. Tantalum tube coated with test material. 	Measured in vacuum. Data taken from table and discussion. Data appear to be average of hole-in- tube and strip heate methods.

212



HEMISPHERICAL TOTAL EMITTANCE OF ZIRCONIUM BORIDE ON MOLYBDENUM

.

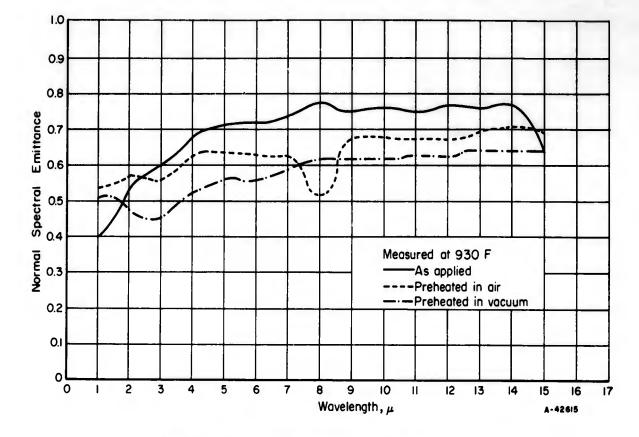
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		3-mil-thick coating of ZrB ₂ applied by the Linde	Hemispherical total emittance.	Measured in vacuum.
			Plasmarc process to a molybdenum strip.	Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curve,

HEMISPHERICAL TOTAL EMITTANCE OF ZIRCONIUM BORIDE ON MOLYBDENUM--REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM BORIDE ON TANTALUM AND TUNGSTEN

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM BORIDE ON TANTALUM AND TUNGSTEN--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	0	Purity or coating method not defined. Coating	Two methods used:	Measured in vacuum. Data taken from tabl
			thickness not given. (1) Coated-tungsten-	and discussion. Data appear to be average of hole-in- tube and strip heater methods.	
				 (2) Hole-in-tube method. Tantalum tube coated with test material. 	


1.0 0.9 0.8 Measured at 480 F As applied -----Preheated in air —--Preheated in vacuum 0.2 0.1 0 10 н 12 13 14 15 16 17 6 9 2 3 5 8 4 7 ۱ Wavelength, µ A-42814

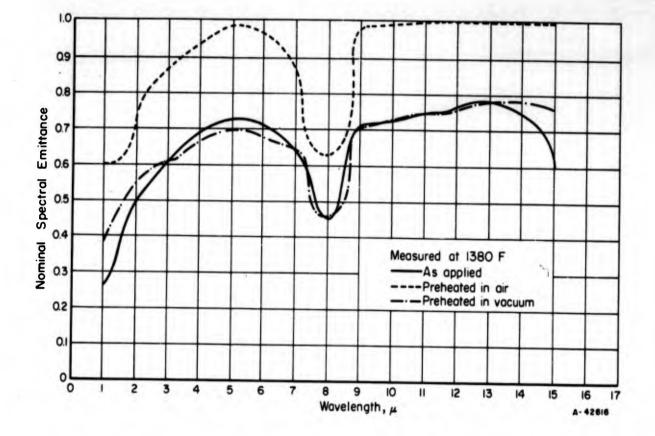
NORMAL SPECTRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 430 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

215

NORMAL SPECTRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 930 F

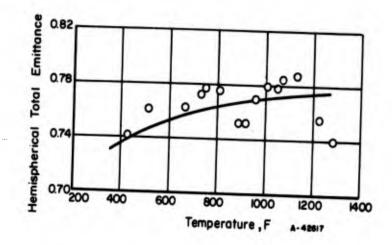

NORMAL SPECTRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 930 F--REFERENCE INFORMATION

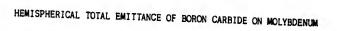
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

216

.

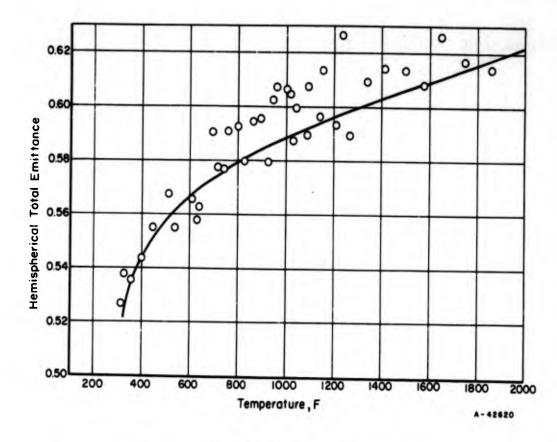
.



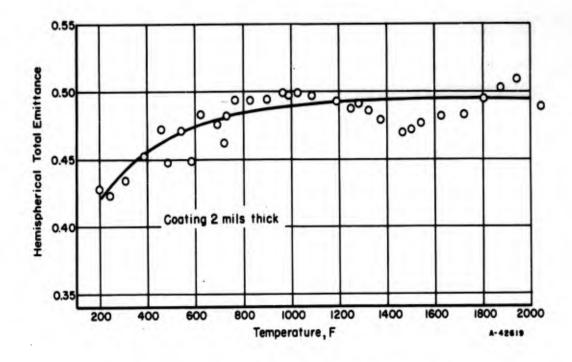

NORMAL SPECIRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF BORON CARBIDE ON INCONEL X AT 1330 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air


.

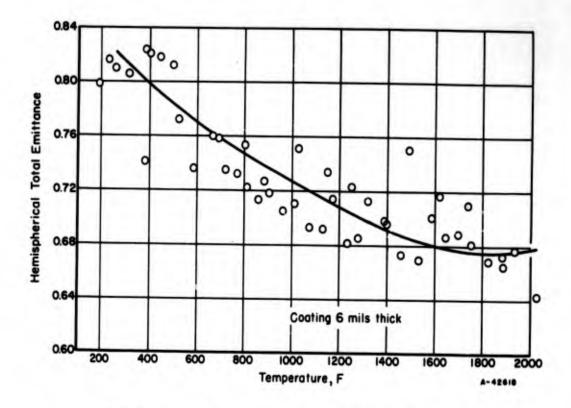
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
	Pratt & Whitney Aircraft		2-mil-thick coating applied by the Linde Plasmarc process to both sides of a molybdenum strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curve.


HEMISPHERICAL TOTAL EMITTANCE OF BORON CARBIDE ON MOLYBDENUM--REFERENCE INFORMATION

HEMISPHERICAL TOTAL EMITTANCE OF HAFNIUM CARBIDE ON MOLYBOENUM

HEMISPHERICAL	TOTAL EMITTANCE	OF HAFNIUM	CARBIDE ON	MOLYBDENUMREFERENCE	INFORMATION
			ONIDIDE ON	MOLIDDENUMREFERENCE	INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		3-mil-thick coating applied by the Linde Plasmarc process to both sides of a molybdenum strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

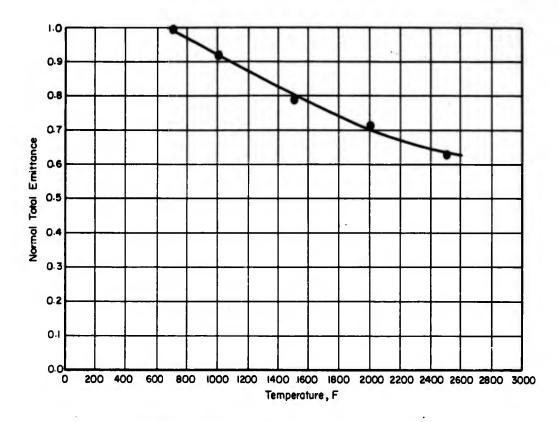


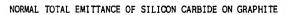
HEMISPHERICAL TOTAL EMITTANCE OF MOLYBDENUM CARBIDE ON MOLYBDENUM

HEMISPHERICAL TOTAL EMITTANCE OF MOLYBDENUM CARBIDE ON MOLYBDENUM--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
-	Pratt & Whitney Aircraft		2-mil-thick MoC coating applied by the Linde	Hemispherical total emittance.	Measured in vacuum.
			Plasmarc process to both sides of a molybdenum strip.	Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curve.

•


HEMISPHERICAL TOTAL EMITTANCE OF SILICON CARBIDE ON MOLYBDENUM


HEMISPHERICAL TOTAL EMITTANCE OF SILICON CARBIDE ON MOLYBDENUM-REFERENCE INFORMATION

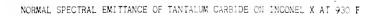
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		6-mil-thick coating applied by an electrophoretic	Hemispherical total emittance.	Measured in vacuum.
			process and coated with an acrylic resin.	Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curve.

•

.

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Anthony and Peerl	•	As received. Coating thickness not given.	Normal total emittance. Induction-heated specimen. Thermopile detector. Comparison blackbody. Temper- atures measured with thermocouples and optical pyrometer.	Measured in con- tinuous purge of helium gas.

NORMAL TOTAL EMITTANCE OF SILICON CARBIDE ON GRAPHITE -- REFERENCE INFORMATION

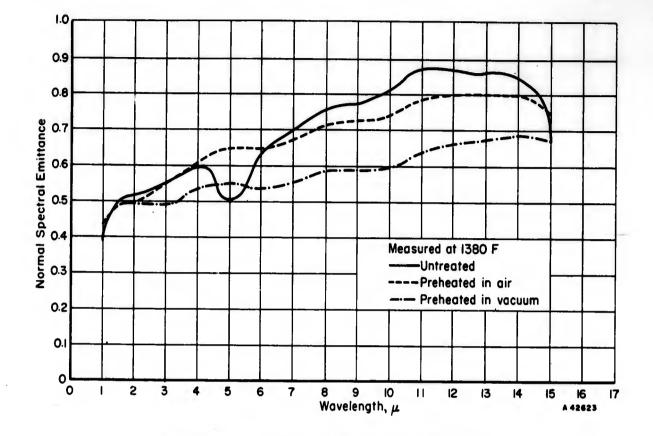

1.0 0.9 0.8 Measured at 480 F . -Untreated 0.2 ----Preheated in air -Preheated in air 0.1 ° 2 3 4 5 6 1 7 8 9 ю 11 12 13 14 15 16 17 Wavelength, μ A 42621

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON INCONEL X AT 480 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.9 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

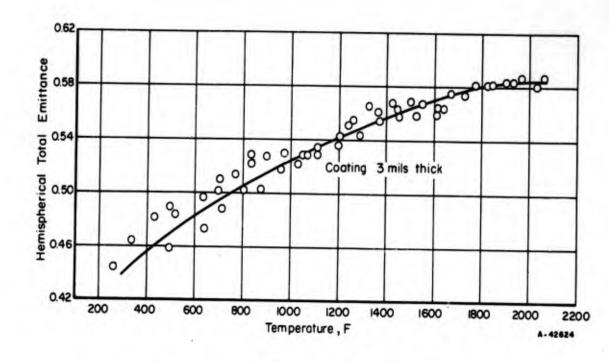
0.9 0.8 Measured at 930 F -Untreated ----Preheated in air 0.2 ----Preheated in vacuum 0.1 0 L 0 8 9 IO Wavelength, μ 2 6 11 12 13 3 4 5 7 14 15 16 17 T A 42622


NORMAL SPECTRAL FMITTANCE OF TANTALUM CARBIDE ON INCOMEL X AT 930 F-REFERENCE INFORMATION

-

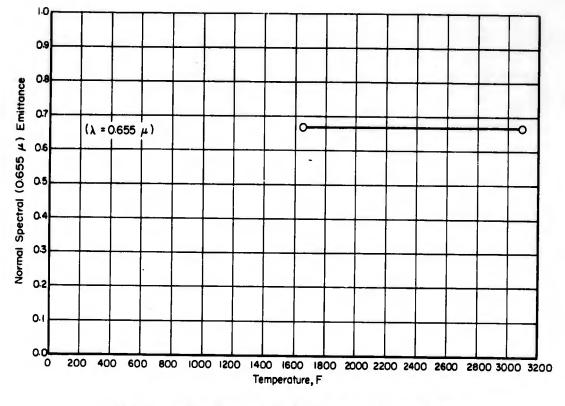
Reference	Investigator	Symbol	Composition and Surface Condition	Test Wethod	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in c.9 x 10-5 mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated bisk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mond- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	MeasUreo in air

224


1.0

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON INCONEL X AT 1380 F--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.9 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk speci- men. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

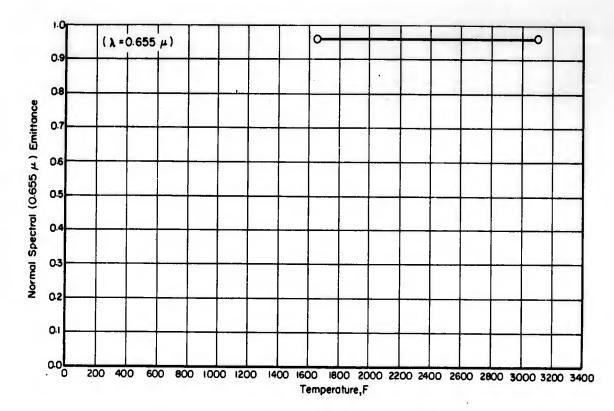
HEMISPHERICAL TOTAL EMITTANCE OF TANTALUM CARBIDE ON MOLYBDENUM

HEMISPHERICAL IC	DTAL	EMITTANCE	OF	TANTALUM	CARBIDE	ON	MOLYBDENUM-	-REFERENCE	INFORMATION	
------------------	------	-----------	----	----------	---------	----	-------------	------------	-------------	--

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		3-mil-thick coating applied by the Linde Plasmarc process to a molybdenum strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum.

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON TANTALUM AND TUNGSTEN

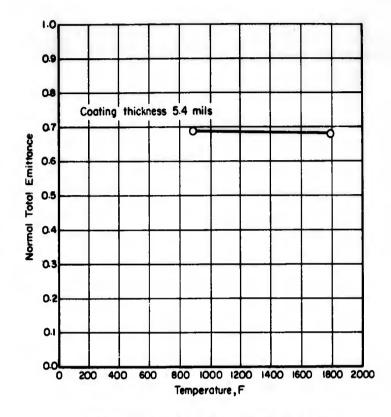
NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE ON TANTALUM AND TUNGSTEN--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	0	Purity or coating method not defined. Coating thickness not given.	 Two methods used: (1) Coated-tungsten- strip heater. Temperatures measured with thermocouples. Brightness temper- atures measured with optical pyrometer. (2) Hole-in-tube method. Tantalum tube coated with test material. 	Measured in vacuum. Data taken from table and discussion. Data appear to be average of hole-in- tube and strip heate methods.

10 $(\lambda = 0.655 \mu)$ 0 0 0.9 0.8 Normal Spectral (0.655 μ) Emittance 07 0.6 0.5 0.4 0.3 0.2 0.1 مەل 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 Temperature, F

NORMAL SPECTRAL EMITTANCE OF TITANIUM CARBIDE ON TANTALUM AND TUNGSTEN

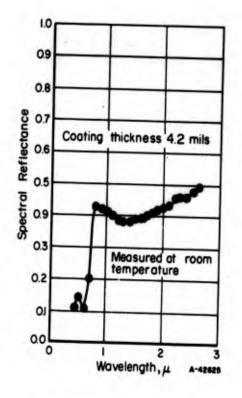
NORMAL SPECTRAL EMITTANCE OF TITANIUM CARBIDE ON TANTALUM AND TUNGSTEN--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	o	Purity or coating method not defined. Coating thickness not given.	Two methods used: (1) Coated-tungsten- strip heater. Temperatures measured with thermocouples. Brightness temper- ature measured with optical pyrometer, and	Measured in vacuum. Data taken from tabl and discussion. Data appear to be average of hole-in- tube and strip heater methods.
				(2) Hole-in-tube method. Tantalum tube coated with test material.	

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDE ON TANTALUM AND TUNGSTEN

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDE ON TANTALUM AND TUNGSTEN--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	o	Purity or coating method not defined. Coating thickness not given.	Two methods used: (1) Coated-tungsten- strip heater with temperature measured with thermocouples, optical pyrometer for brightness temperatures and	Measured in vacuum. Data taken from table and dis- cussion. Data appear to be average of hole-in tube and strip heater methods.
				(2) Hole-in-tube. Tantalum tube coated with test material.	


NORMAL TOTAL EMITTANCE OF A-418 ENAMEL ON INCONEL

.

NORMAL TOTAL EMITTANCE OF A-418 ENAMEL ON INCONEL--REFERENCE INFORMATION

1	Burgess, Jasperse, Marcus, Martin, and Flint	0	A-418 Enamel on Inconel. Coating thickness 5.4 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temper- atures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermo- couple detector.	Measured in air. Data taken from tables.

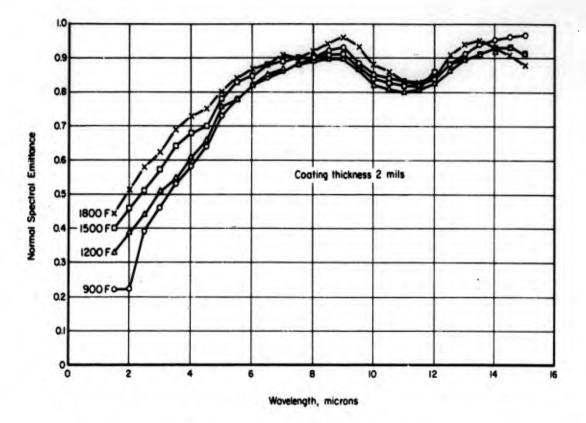
L - .

SPECTRAL REFLECTANCE OF A-418 ENAMEL ON INCONEL

SPECTRAL EMITTANCE OF A-418 ENAMEL ON INCONEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel A-418 on Inconel. Coating thickness 4.2 mils.	Spectral reflectance. Commercial reflect- ometer and spectro- photometer. Quartz prism mono- chromator. MgO standard. (Normal viewing-diffuse reflection)	Measured in air ai room temperature. Data taken from table.
Coating Comp	osition by Weight				
NBS Frit N Cr ₂ O	0. 332 - 70 per cent - 30 per cent				

231

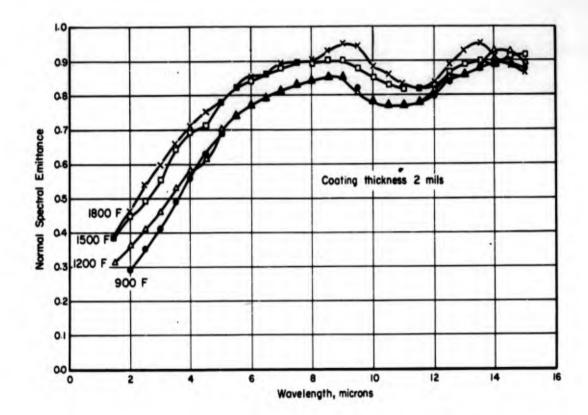

•

.

.

.

N

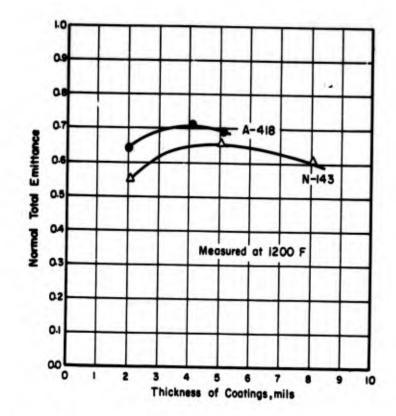


NORMAL SPECTRAL EMITTANCE OF A-418 ENAMEL ON INCONEL

NORMAL SPECTRAL EMITTANCE OF A-418 ENAMEL ON INCONEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Richmond and Stewart	0 4 0 ×	A-418 consists of alkali- free barium beryllium silicate frit with addition of chromic oxide. Coating thick- ness 2 mils. Coated on Inconel. Runs made at the following temperatures: 900 F 1200 F 1500 F 1800 F	Normal spectral emittance. Double-beam infrared spectrometer with sodium chloride prism. Secondary standard [silicon carbide (Globar)] calibrated against laboratory blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from table.

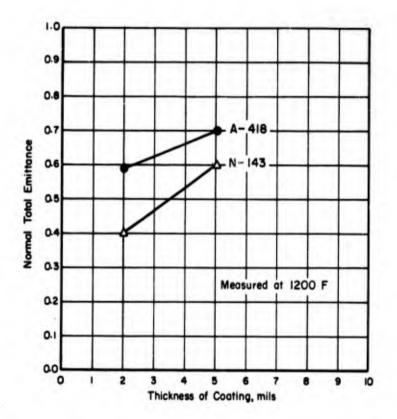
~


NORMAL SPECTRAL EMITTANCE OF A-418 ENAMEL ON TYPE 321 STAINLESS STEEL

NORMAL SPECTRAL EMITTANCE OF A-418 ENAMEL ON TYPE 321 STAINLESS STEEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Richmond and Stewart	• 	A-418 consists of alkali- free barium beryllium silicate frit with addition of chromic oxide. Coating thickness 2 mils. Coated on Inconel. Runs made at the following temperatures: 900 F 1200 F 1500 F 1800 F	Normal spectral emittance. Double-beam infrared spectrometer with sodium chloride prism. Secondary standard [silicon carbide (Globar)] calibrated against laboratory blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from table.

.

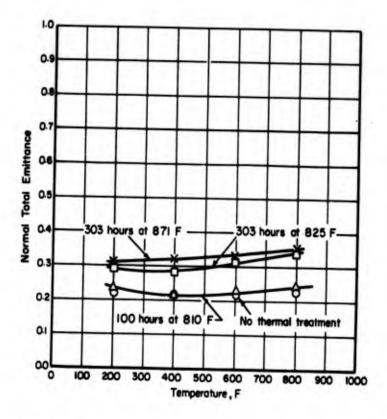

.

VARIATION OF NORMAL TOTAL EMITTANCE WITH THICKNESS OF A-418 AND N-143 ENAMELS ON INCONEL AT 1200 F

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Richmond and Stewart		Inconel coated with NBS coatings:	Normal total emittance. Thermopile detector.	Measured in air. Data taken from
		•	A-418 N-143	Comparison blackbody. Temperatures measured with thermocouples.	CUIVES,

VARIATION OF NORMAL TOTAL EMITTANCE WITH THICKNESS OF A-418 AND N-143 ENAMELS ON INCONEL AT 1200 F-REFERENCE INFORMATION

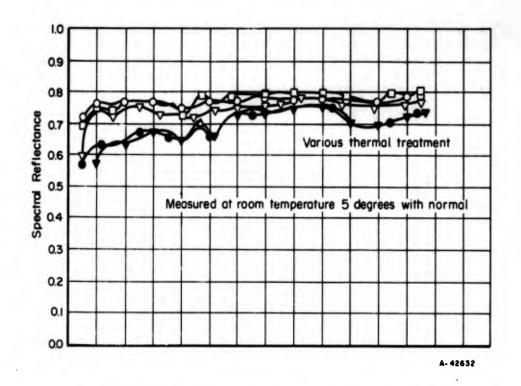
VARIATION OF NORMAL TOTAL EMITTANCE VERSUS COATING THICKNESS OF A-418 AND N-143 ENAMELS ON TYPE 321 STAINLESS STEEL AT 1200 F


VARIATION OF	NORMAL TOTAL	. EMITTANCE VERSUS	COATING THICKNESS	OF A-418 AND N-143 ENAMELS
	ON TYPE 321	STAINLESS STEEL A	T 1200 FREFERENCE	INFORMATION

Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
Richmond and Stewart		Type 321 stainless steel with NBS coatings:	Normal total emittance. Thermopile detector. Comparison blackbody.	Measured in air. Data taken from curves.
	•	A-418		
	Δ	N-143	with thermocouples,	
		Richmond and Stewart	Investigator Symbol Surface Condition Richmond and Stewart Type 321 stainless steel with NBS coatings: A-418	Investigator Symbol Surface Condition Test Method Richmond and Stewart Type 321 stainless steel with NBS coatings: Normal total emittance. Thermopile detector. Comparison blackbody. Temperatures measured

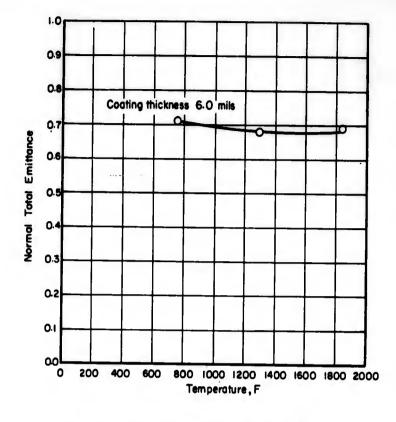
.

,


.

NORMAL TOTAL EMITTANCE OF ALUMINIZED SILICONE PAINT ON TI-75A TITANIUM

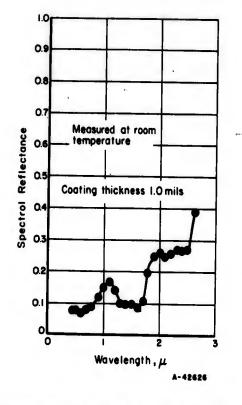
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Bevans, Gier, and Dunkle		Dow-Corning XP-310 aluminized-silicone paint, on Ti-75A titanium (Mat'l. Spec. AMS 4901). No thickness given.	Normal total emittance. Calibrated thermopile detector. Temperatures measured with thermocouples.	Measured in air. Data taken from tables.
		0	No thermal treatment.		•
		Δ	100 hours at 810 F.		
			303 hours at 825 F.		
		×	303 hours at 871 F.		


NORMAL TOTAL EMITTANCE OF ALUMINIZED SILICONE PAINT ON TI-75A TITANIUM--REFERENCE INFORMATION

SPECTRAL REFLECTANCE OF ALUMINIZED SILICONE PAINT ON Ti-75A TITANIUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Bevans, Gier, and Dunkle		Dow-Corning XP-310 alumi- nized-silicone paint on Ti-75A (Mat'l. Spec. AMS 4901). No thickness given.	Spectral reflectance at 5 degrees with normal. Gier-Dunkle reflect- ometer monochromator. Temperatures measured	Measured in air at room temperature. Data taken from tables.
		Δ	No thermal treatment.	with thermocouples.	
		0	300 hours at 600 F.	(Diffuse illumi-	
		0	100 hours at 810 F.	nation-normal	
		•	303 hours at 825 F.	viewing)	
		▲	303 hours at 871 F.	•	

SPECTRAL REFLECTANCE OF ALUMINIZED-SILICONE PAINT ON TI-75A TITANIUM--REFERENCE INFORMATION

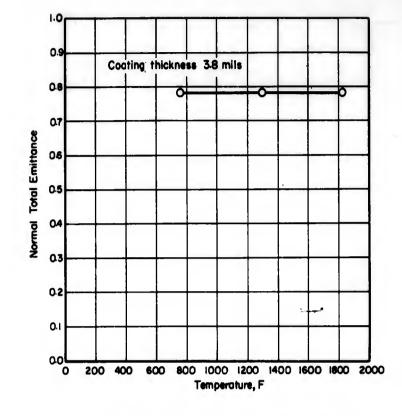


NORMAL TOTAL EMITTANCE OF B-1 ENAMEL ON INCONEL

NORMAL	TOTAL	EMITTANCE	OF	B-1	ENAMEL	ON	INCONELREFERENCE	INFORMATION
--------	-------	-----------	----	-----	--------	----	------------------	-------------

Referenc	e Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	0	B-1 Enamel on Inconel. Coating thickness 6.0 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element.	Measured in air. Data taken from tables.
			and a second	Blackbody hole. Specimen mounted in heating element flush	
				with wall. Temperatures measured with thermocouples.	
				Infrared spectrometer with prism replaced by plane mirror.	
Coating	Composition by Weight			Thermocouple detector.	
B1	it No. 332 - 60 per cent ack Stain* - 25 per cent $r_{2}O_{3}$ - 15 per cent				

*Co₂O₃, 28 per cent; Fe₂O₃, 37 per cent; Cr₂O₃, 10 per cent; MnO₂, 11 per cent; NiO, 14 per cent.

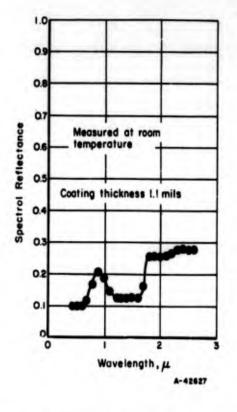

SPECTRAL REFLECTANCE OF INCONEL COATED WITH B-1 ENAMEL

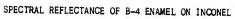
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-1 on Inconel. Coating thickness 1.0 mil.	Spectral reflectance. Commercial reflect- ometer and spectro- photometer with quartz prism mono- chromator. MgO standard. (Normal viewing-diffuse reflection)	Measured in air at room temperature. Data taken from table.

SPECTRAL REFLECTANCE OF INCONEL COATED WITH B-1 ENAMEL-REFERENCE INFORMATION

NBS	Frit No. 332	-	60 per	cent	
	Black Stain*	-	25 per	cent	
	Cr203		15 per		

*Co₂O₃, 28 per cent; Fe₂O₃, 37 per cent; Cr₂O₃, 10 per cent; MnO₂, 11 per cent; NiO, 14 per cent.

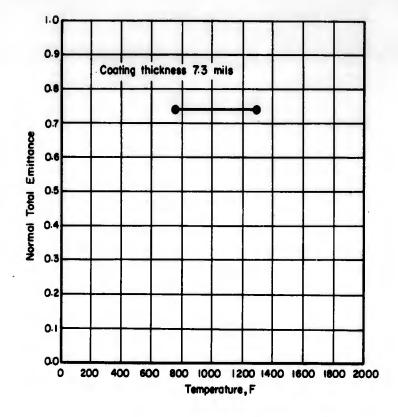



NORMAL TOTAL EMITTANCE OF B-4 ENAMEL ON INCONEL

Compo	sition and	

NORMAL TOTAL EMITTANCE OF B-4 ENAMEL ON INCONEL--REFERENCE INFORMATION

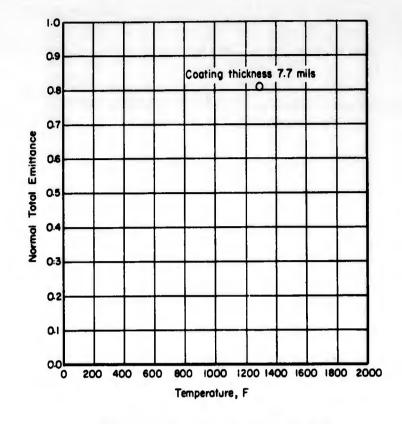
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1 Coating Comp	Burgess, Jasperse, Marcus, Martin, and Flint	o	B-4 Enamel on Inconel. Coating thickness 3.8 mils.	Normal total emittance. Rotating hollow cylindrical Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temper- atures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermo- couple detector.	Measured in air. Data taken from tables.
NBS Filt No Cr2O3 CoO Fe2O3	 a) 332 - 60 per cent b) 5 per cent c) 15 per cent c) 20 per cent 				

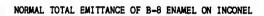

SPECTRAL REFLECTANCE OF B-4 ENAMEL ON INCONEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgass, Jasperse, Marcus, Martin, and Flint	•	Enamel B-4 on Inconel. Coating thickness l.1 mils.	Spectral reflectance. Commercial reflect- ometer with quartz prism monochromator. MgO standard. (Normal viewing- diffuse reflection)	Measured in air at room temperature.
Coating Com	position by Weight				
NBS Frit N	lo. 332 - 60 per cent				
Cr203	- 5 per cent				
Coð	- 15 per cent				
Fe ₂ O ₃	- 20 per cent				

.

.

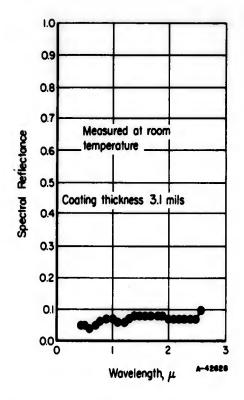

...



NORMAL TOTAL EMITTANCE OF B-7 ENAMEL ON INCONEL

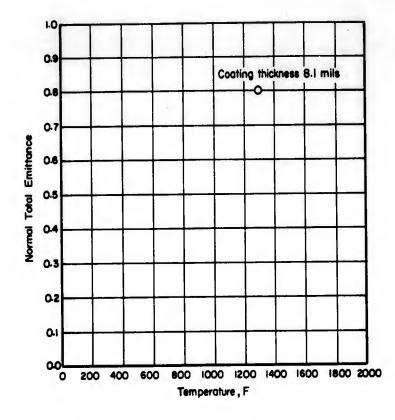
NORMAL TOTAL EMITTANCE OF B-7 ENAMEL ON INCONEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	B-7 Enamel on Inconel. Coating thickness 7.3 mils.	Normal total emittance. Rotating hollow cylindrical Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.	Measured in air. Data taken from tables.
oating Com	position by Weight				



NORMAL TOTAL EMITTANCE OF B-8 ENAMEL ON INCONEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	ο	B-8 Enamel on Inconel. Coating thickness 7.7 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.	Measured in air. Data taken from tables.
Coating Com	position by Weight				


.

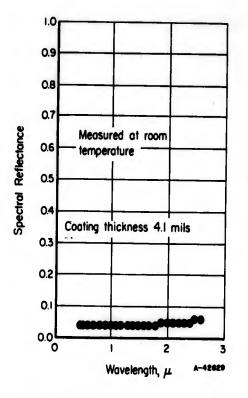
SPECTRAL REFLECTANCE OF B-8 ENAMEL ON INCONEL

SPECTRAL REFLECTANCE OF B-8 ENAMEL ON INCONEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-8 on Inconel. Coating thickness 3.1 mils.	Spectral reflectance. Commercial reflect- ometer with quartz prism monochromator. MgO standard. (Normal viewing- diffuse reflection)	Measured in air at room temperature. Data taken from table.
Coating Comm	position by Weight		8 -		
NBS Frit No NiO·Cr	0. 332 - 60 per cent 2 ⁰ 3 - 40 per cent				

NORMAL TOTAL EMITTANCE OF B-9 ENAMEL ON INCONEL

NORMAL TOTAL EMITTANCE OF B-9 ENAMEL ON INCONEL--REFERENCE INFORMATION

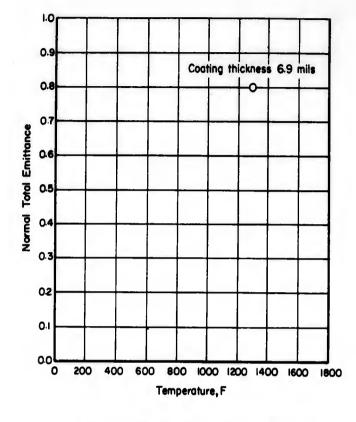

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	0	B-9 Enamel on Inconel. Coating thickness 8.1 mils.	Normal total emittance. Rotating hollow cylindrical Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples.	Measured in air Data taken from tables.

NBS Frit No. 332 - 60 per cent NiO·Fe₂O₃ spinel - 40 per cent

.

.

.

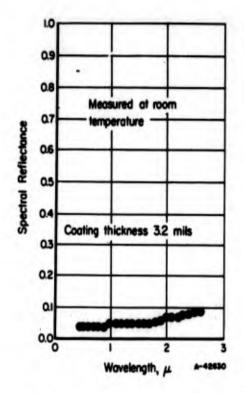

SPECTRAL REFLECTANCE OF B-9 ENAMEL ON INCONEL

SPECTRAL REFLECTANCE OF B-9 ENAMEL ON INCONEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-9 on Inconel. Coating thickness 4.1 mils.	Spectral reflectance. Commercial reflect- ometer with quartz prism monochromator. MgO standard. (Normal viewing- diffuse reflection)	Measured in air at room temperature. Data take- from table.
Coating Com	position by Weight				
NBS Frit No NiO·Fe	2° . 332 - 60 per cent 2° - 40 per cent				

.

.

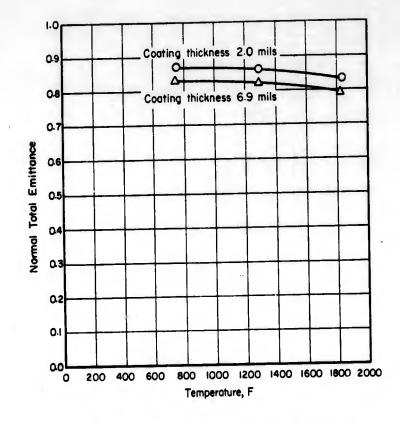

NORMAL TOTAL EMITTANCE OF B-11 ENAMEL ON INCONEL

NORMAI. TOTAL EMITTANCE OF B-11 ENAMEL ON INCONEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	0	B-11 Enamel on Inconel. Coating thickness 6.9 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.	Measured in air. Data taken from tables.
Coating Comm	osition by Weight				

247

.



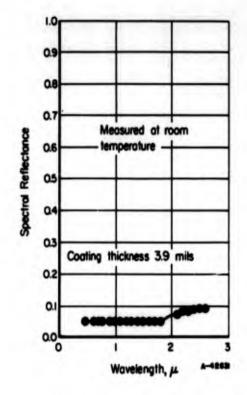
SPECTRAL REFLECTANCE OF B-11 ENAMEL ON INCONEL

SPECTRAL REFLECTANCE OF B-11 ENAMEL ON INCONEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-11 on Inconel. Coating thickness 3.2 mils.	Spectral reflectance. Commercial reflect- ometer and spectro- photometer with quartz prism monochromator. MgO standard. (Normal viewing- diffuse reflection)	Measured in air at room temperature. Data taken from table.
Coating Com	position by Weight				
NBS Frit No CoO·Fe	0. 332 - 60 per cent 2^{0}_{3} - 40 per cent				

7

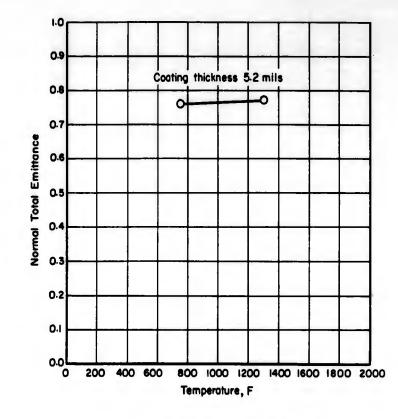
NORMAL TOTAL EMITTANCE OF B-12 ENAMEL ON INCONEL


NORMAL TOTAL EMITTANCE OF B-12 ENAMEL ON INCONEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remaiks
1	Burgess, Jasperse, Marcus, Martin, and Flint	0	B-12 Enamel on Inconel. Coating thickness 2.0 mils. Coating thickness 6.9 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.	Measured in air Data taken from tables.

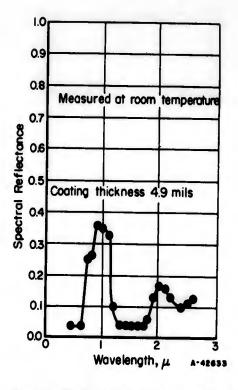
Coating Composition by Weight

.


NBS Frit No. 332 - 60 per cent $Co0 \cdot Mn_2O_3$ spinel - 40 per cent

SPECTRAL REFLECTANCE OF B-12 ENAMEL ON INCONEL

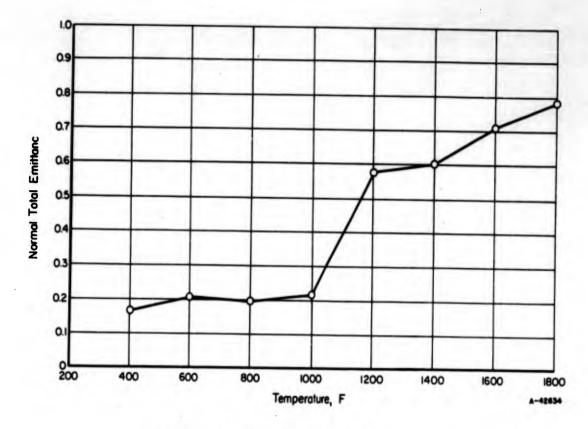
SPECTRAL REFLECTANCE OF B-12 ENAMEL ON INCONEL-----


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-12 on Inconel. Coating thickness 3.9 mils.	Spectral reflectance (normal viewing- diffuse reflection). Commercial reflect- ometer and spectro- photometer. Quartz prism mono- chromator. MgO standard.	Measured in air at room temperature. Data taken from table.
Coating Com	position by Weight				
NBS Frit N CoO·Mn	0. $332 - 60$ per cent $2^{0}_{3} - 40$ per cent				

NORMAL TOTAL EMITTANCE OF B-13 ENAMEL ON INCONEL

NORMAL TOTAL EMITTANCE OF B-13 ENAMEL ON INCONEL--REFERENCE INFORMATION

Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
Burgess, Jasperse, Marcus, Martin, and Flint	0	B-13 Enamel on Inconel. Coating thickness 5.2 mils.	Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.	Measured in air. Data taken from tables.
sition by Weight				
	Burgess, Jasperse, Marcus, Martin, and Flint	Burgess, Jasperse, O Marcus, Martin, and Flint	Burgess, Jasperse, O B-13 Enamel on Inconel. Marcus, Martin, and Coating thickness 5.2 Flint mils.	Burgess, Jasperse, Marcus, Martin, and Flint Burgess, Jasperse, Flint Bis. B-13 Enamel on Inconel. Coating thickness 5.2 mils. Bis. Normal total emittance. Rotating, hollow, cylindrical, Globar heating element. Blackbody hole. Specimen mounted in heating element flush with wall. Temperatures measured with thermocouples. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector.

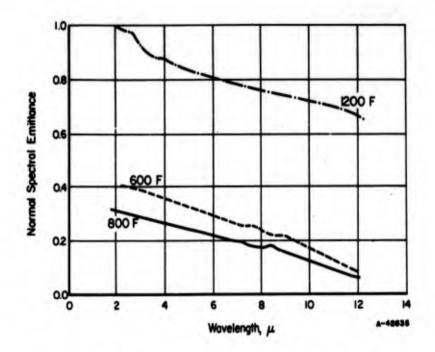


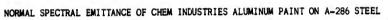
SPECTRAL REFLECTANCE OF B-13 ENAMEL ON INCONEL

SPECTRAL REFLECTANCE OF B-13 ENAMEL ON INCONEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	'Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	Enamel B-13 on Inconel. Coating thickness 4.9 mils.	Spectral reflectance. (Normal viewing- diffuse reflection.) Commercial reflectometer and spectrophotometer. Quartz prism mono- chromator. MgO standard.	Measured in air at room temperature. Data taken from table.
Coating Com	position by Weight				
NBS Frit No CoO.Cr,	0. 332 - 50 per cent 2 ⁰ 3 - 50 per cent				

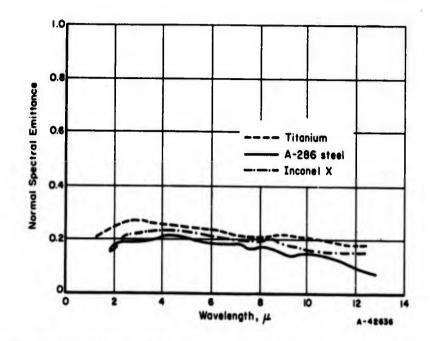
,



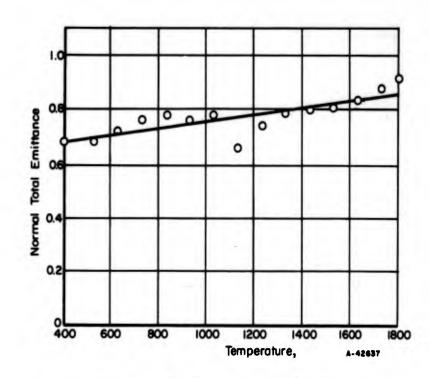


NORMAL TOTAL EMITTANCE OF CHEM INDUSTRIES ALUMINUM PAINT ON A-286 STEEL-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Chem Industries high- temperature silicone-base aluminum paint. Coating thickness and surface condition not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

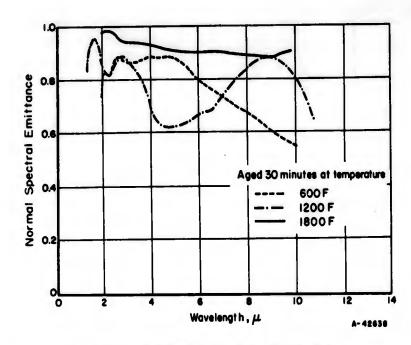

.

NORMAL SPECTRA	L EMITTANCE OF CHEM	INDUSTRIES ALL	UMINUM PAINT ON	A-286	STEELREFERENCE INFORMATION
----------------	---------------------	----------------	-----------------	-------	----------------------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Chem Industries high- temperature aluminum,	Normal spectral emittance. Resistance-heated strip	Measured in air.
		silicone-base paint on A-286 steel.	specimen. Thermistor-bolometer de-	Data taken from curves.	
	5		Thickness and surface	tector. Monochromator.	
			condition not given. Measured at:	Reference blackbody.	
			600 F	Temperatures measured	
		800 F	with thermocouples.		
			1200 F		

NORMAL SPECTRAL EMITTANCE OF CHEM INDUSTRIES ALUMINUM PAINT ON TITANIUM, STEEL, AND INCONEL X AT 800 F

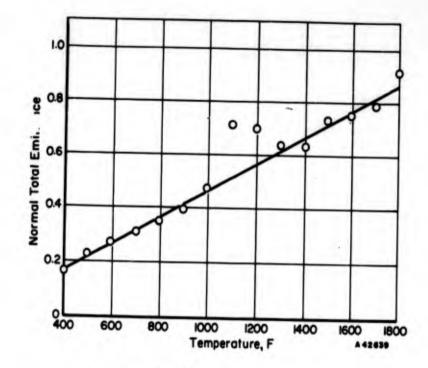
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Chem Industries high- temperature, silicone- base aluminum paint. Thickness and surface condition not given. Coated on: 6A1-4V Titanium Inconel X A-286 steel All measurements at 800 F.	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.


NORMAL SPECTRAL EMITTANCE OF CHEM INDUSTRIES ALUMINUM PAINT ON TITANIUM, STEEL, AND INCONEL X-REFERENCE INFORMATION

NORMAL TOTAL EMITTANCE OF DU LITE -0 ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF DULITE 3-0 COATING ON A-286 STEEL--REFERENCE INFORMATION

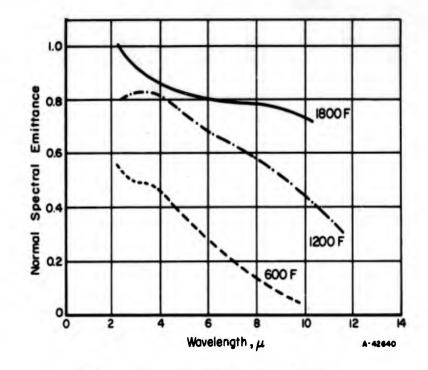
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		DuLite 3-0, an oxide surface conversion coating. Composition or coating thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.



NORMAL SPECTRAL EMITTANCE OF DU LITE 3-0 ON A-286 STEEL

.

NORMAL SPECTRAL EMITTANCE OF DULITE 3-0 COATING ON A-286 STEEL-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		DuLite 3-0, an oxide conversion coating. No thickness or composition given. Aged 30 minutes at temperature. Measured at: 600 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer de- tector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

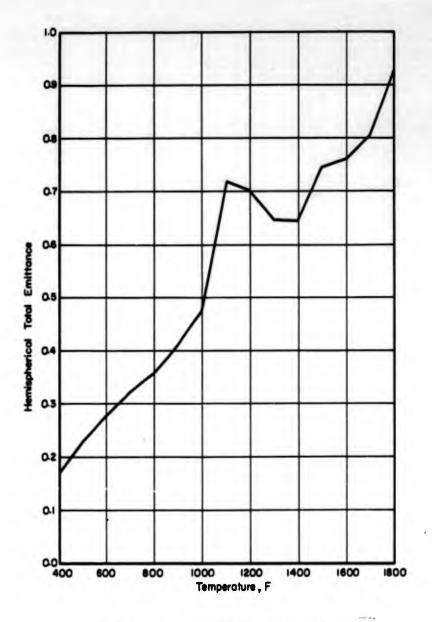
NORMAL TOTAL EMITTANCE OF DU LITE 3-0 ON INCONEL X

NORMAL IDIAL EMITTANCE OF DULITE 3-0 COATING ON INCONEL X-REFERENCE INFORMATIC
--

eference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
, ¹³	Gravina and Katz		DuLite 3-0, an oxide surface conversion coating. Composition or coating thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer de- tector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves,

NORMAL SPECTRAL EMITTANCE OF DU LITE 3-0 ON INCONEL X

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		DuLite 3—0, an oxide conversion coating of the	Normal spectral emittance. Resistance-heated strip	Measured in air.
			base metal.	specimen.	Data taken from
			Thickness or surface condition not given.	Thermistor-bolometer de- tector.	curves.
			Measured at:	Monochromator.	
			600 F	Reference blackbody.	
			1200 F	Temperatures measured	
			1800 F	with thermocouples.	

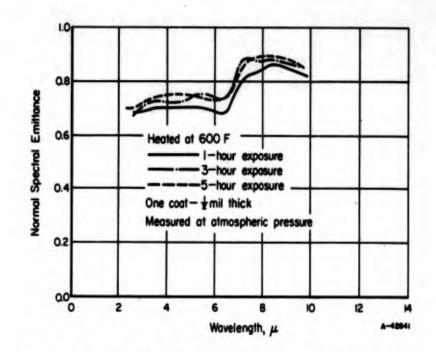

NORMAL SPECTRAL EMITTANCE OF DULITE 3-0 ON INCONEL X--REFERENCE INFORMATION

.

.

.

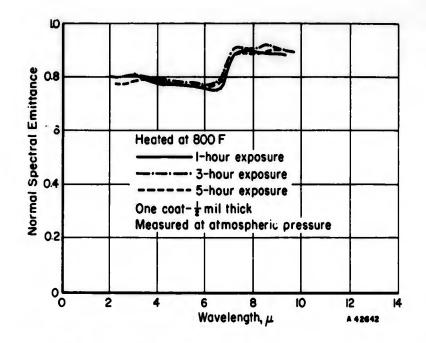
and a second second


HEMISPHERICAL TOTAL EMITTANCE OF DULITE 3-0 ON TITANIUM

HEMISPHERICAL TOTAL EMITTANCE OF DULITE 3-0 ON TITANIUM--REFERENCE INFORMATION

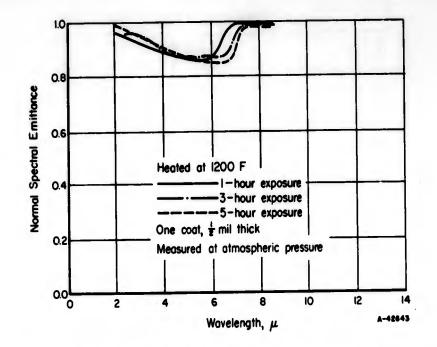
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Dull, R. L.		DuLite 3-O coating on titanium. No thickness given. (DuLite 3-O is an oxide conversion coating of the base metal.) Note: Color of specimen surface changed con- siderably as the temperature increased. Original color - black.	 Hemispherical total emittance. Resistance-heated strip. Specimens coated with test material. Measured power input to test section. Temperatures measured with thermocouples. 	Measured in air. Data taken from curves.

260


.

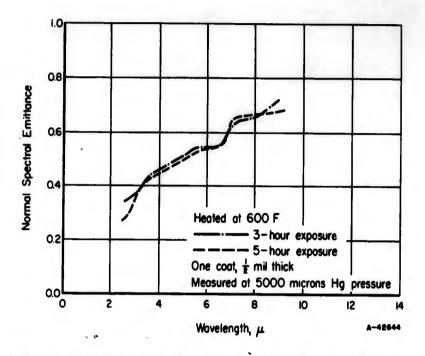
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high chrome-bearing	Normal spectral emittance. Resistance-heated strip	Measured in air.
			coating. Applied as a slip, dried, and fired.	specimen. Thermistor-bolometer	Data taken from
			One coat, 1/2-mil thick,	detector.	CUrves.
			continuously heated at	Monochromator.	
			600 F:	Reference blackbody.	
			1 hour	Temperatures measured	
			3 hours	with thermocouples.	
			5 hours		


NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F--REFERENCE INFORMATION

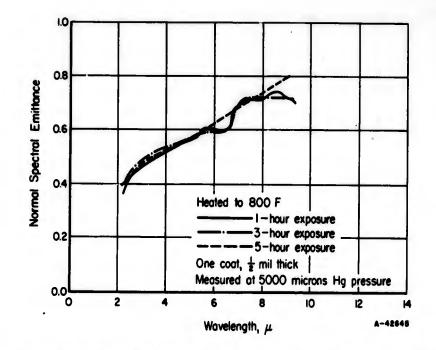
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high chrome-bearing coating. Applied as a slip	Normal spectral emittance. Resistance-heated strip specimen.	Measured in air.
			on sand-blasted A-286 steel, dried, and fired. One coat, 1/2 mil thick, continuously heated at 800 F: 1 hour 3 hours 5 hours	Thermistor-bolometer de- tector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.

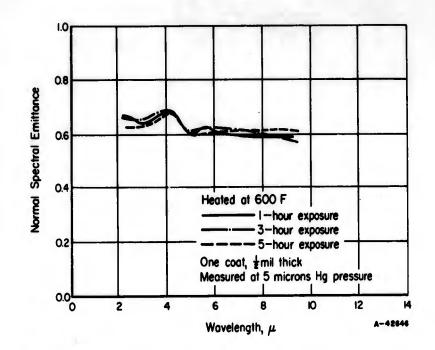
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 1200 F

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 1200 F-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel, dried, and fired. 1 coat, 1/2-mil thick, continuously heated at 1200 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

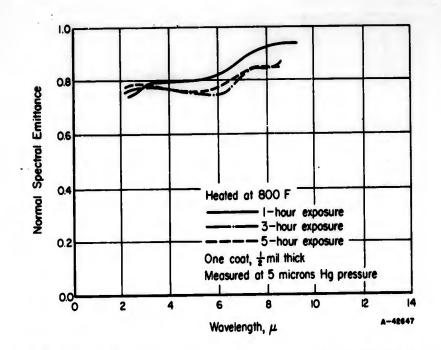
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL	EMITTANCE C	F GULTON	CERAMIC COATING	6013 C	ON A-286	STEEL A	T 600	FREFERENCE INFORMA	TION
-----------------	-------------	----------	-----------------	--------	----------	---------	-------	--------------------	------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton peramic coating,6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted material, dried, and fired. l coat, 1/2 mil thick. Heated at 600 F: 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 5000 micron Hg pressure. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F

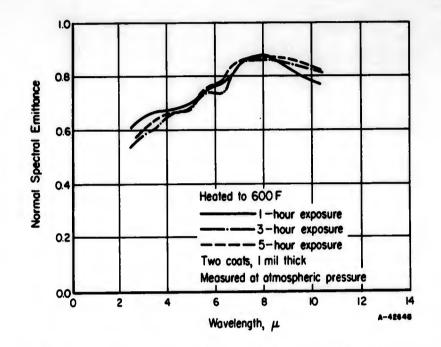
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted material, dried, and fired. l coat, 1/2 mil thick.	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator.	Measured in 5000 micron Hg pressure. Data taken from curves.
		•	Heated at 800 F: 1 hour 3 hours 5 hours	Reference blackbody. Temperatures measured with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F-REFERENCE INFORMATION

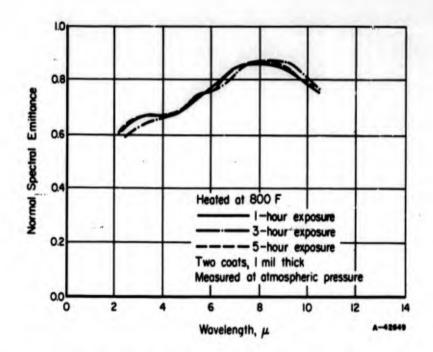
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted material,	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured in 5 micron Hg pressure.
			dried, and fired. l coat, 1/2-mil thick. Heated at 600 F:	detector. Monochromator. Reference blackbody.	Data taken fro curves.
•			1 hour 3 hours 5 hours	Temperatures measured with thermocouples.	



NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F--REFERENCE INFORMATION

•

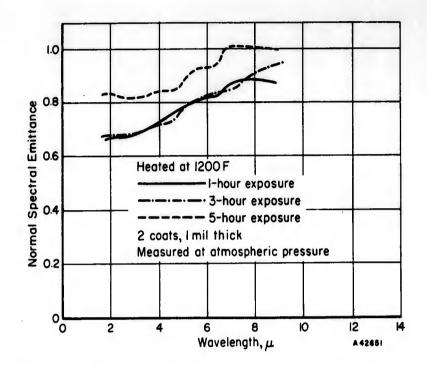

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted material, dried, and fired. 1 coat, 1/2-mil thick. Heated at 800 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 5 microns Hg pressure. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL EMITTANCE OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 600 F-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip to sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick. Continuously heated at 1600 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F

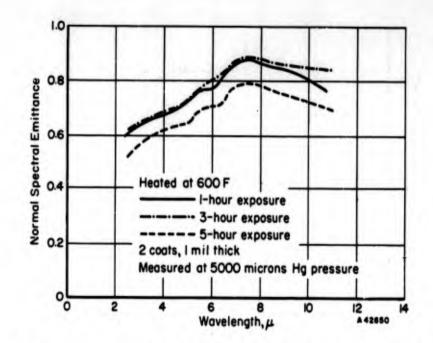

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing	Normal spectral emittance. Resistance-heated strip	Measured in air	
			coating. Applied as a slip	specimen.	Data taken from
			on sand-blasted A-286 steel, dried, and fired.	Thermistor-bolometer detector.	curves.
		·	2 coats, 1 mil thick.	Monochromator.	••
		Continuously heated at	Reference blackbody.		
		800 F:	Temperatures measured		
		l hour	with thermocouples.		
			3 hours		
			5 hours		

NORMAL SPECTRAL EMITTANCE OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 800 F-REFERENCE INFORMATION

269

.

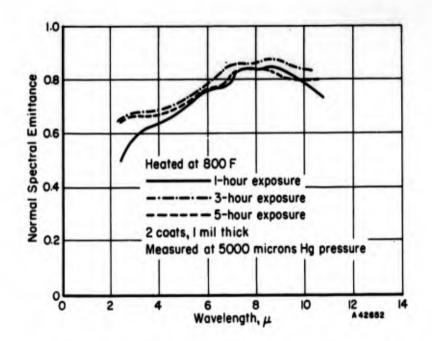
.



NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 1200 F

NORMAL SPECTRAL EMITTANCE OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 1200 F--REFERENCE INFORMATION

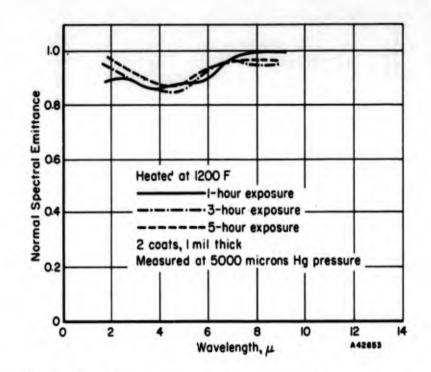
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick. Heated at 1200 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.


270

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL EMITTANCE OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 600 F-REFERENCE INFORMATION

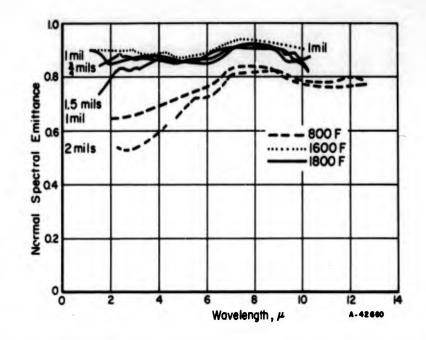
Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
Gravina ard Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel,	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured in 5000 micron Hg pressure.
		dried, and fired. 2 coats, 1 mil thick. Heated at 600 F: 1 hour 3 hours 5 hours	detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.
		· · · · ·	Investigator Symbol Surface Condition Gravina and Katz Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick. Heated at 600 F: 1 hour 3 hours	InvestigatorSymbolSurface ConditionTest MethodGravina ard KatzGulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick.Normal spectral emittance. Resistance-heated strip specimen.00sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick.Normal spectral emittance. Resistance-heated strip specimen.1hour BabursThermistor-bolometer detector.2high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel, detector.Thermistor-bolometer detector.2coats, 1 mil thick. l hour 3 hoursMonochromator. Temperatures measured with thermocouples.



i

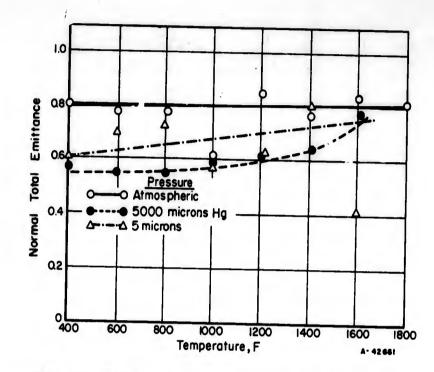
NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 800 F

NORMAL SPECTRAL EMITTANCE OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 800 F--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted A-286 steel.	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured in 5000 micron pressure.	
			dried, and fired. 2 coats, 1 mil thick. Heated at 800 F: 1 hour 3 hours 5 hours	detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken fron curves.

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON A-286 STEEL AT 1200 F

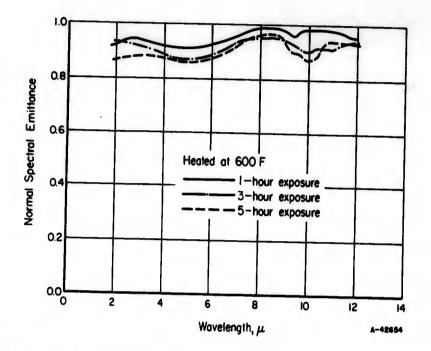
NORMAL SPECTRAL EMITTANC : OF GULTON 6013 CERAMIC COATING ON A-286 STEEL AT 1200 F-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Gravina and Kat	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip	Normal spectral emittance. Resistance-heared strip specimen.	Measured in 5000 micron pressure
			on sand-blasted A-286 steel, dried, and fired. 2 coats, 1 mil thick.	Thermistor-bolometer detector. Monochromator.	Data taken from curves.
			Heated at 1200 F: 1 hour	Reference blackbody. Temperatures measured	
			3 hours 5 hours	with thermocouples.	

VARIATION OF THE NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON INCONEL X WITH COATING THICKNESS AND TEMPERATURE

NORMAL SPECTRAL EMITTANCE OF GULTON CERAMIC COATING 6013 ON INCONEL X-REFERENCE INFORMATION

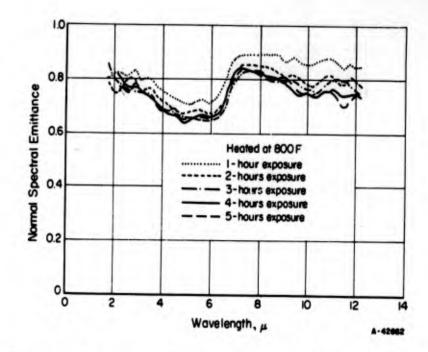
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Gulton ceramic coating 6013. A high-chrome-bearing coating. Applied as a slip on sand-blasted material, •dried, and fired. Coating thicknesses, 3/4, 1, 1.5, and 2 mils Measured at: 800 F 1600 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.



NCRMAL TOTAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL

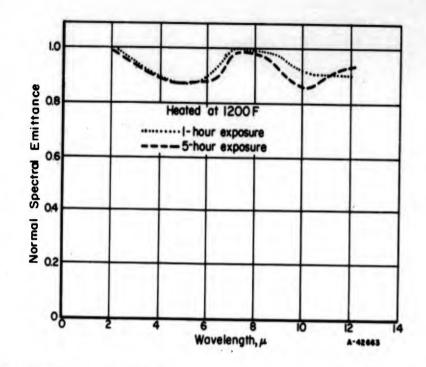
NORMAL IVIAL	EMITTANCE OF	NATIONAL LEA	D BLACK	PAINT	46H47	ON A-286	STEEL-REFERENCE	INFORMATION
--------------	--------------	--------------	---------	-------	-------	----------	-----------------	-------------

NODHAL TOTAL PHA


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		National Lead 46H47 black paint. Composition or thickness not given. Measured at: Atmospheric pressure 500C microns Hg 5 microns Hg.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air and vacuum. Data taken from curves.

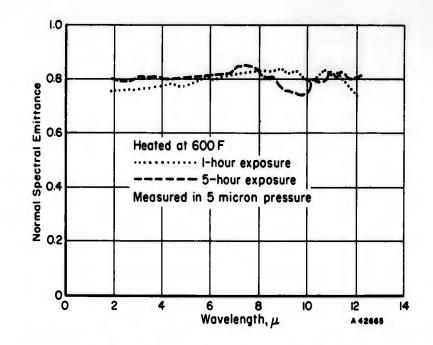
NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 600 F--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		National Lead 46H47 "high heat black" paint. Composition or thickness not given. Heated at 600 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 800 F

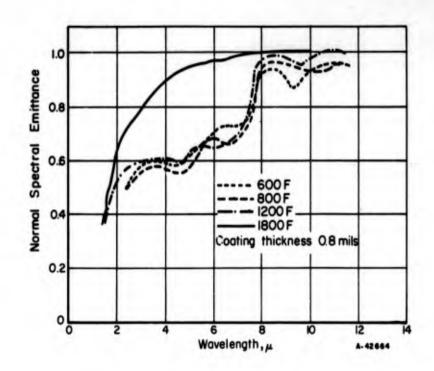
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		National Lead 46H47 "high heat black" paint.	Normal spectral emittance. Resistance-heated strip	Measured in air.
			Composition or thickness not given. Heated at 800 F:	specimen. Thermistor-bolometer detector.	Data taken from curves.
			1 hour	Monochromator.	
1			2 hours 3 hours	Reference blackbody.	
			4 hours	Temperatures measured with thermocouples.	
			5 hours	area chermocoupres.	


NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEELS AT 800 F--REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 1200 F

NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 1200 F--REFERENCE INFORMATION

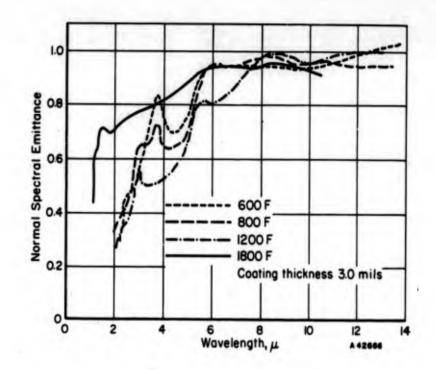
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		National Lead 46H47 "high heat black" paint. Composition or thickness not given. Heated at 1200 F: 1 hour 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured	Measured in air. Data taken from curves.
				with thermocouples.	


NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 600 F

NORMAL SPECTRAL EMITTANCE OF NATIONAL LEAD BLACK PAINT 46H47 ON A-286 STEEL AT 600 F AND 5 MICRONS PRESSURE--REFERENCE INFORMATION

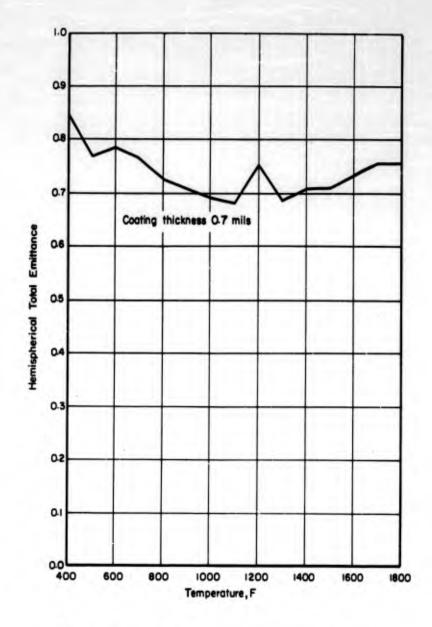
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Gra	Gravina and Katz		National Lead 46H47 "high heat black" paint. Composition or thickness not given.	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured in 5 microns Hg pressure.
			Heated at 600 F: 1 hour 5 hours	detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.

.


١

NORMAL SPECTRAL EMITTANCE OF VITA VAR PV100 ON A-286 STEEL

NORMAL SPECTRAL EMITTANCE OF VITA VAR PV 100 PAINT ON A-286 STEEL RE	-REFERENCE INFORMATION
--	------------------------


eference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Vita Var PV 100 paint. A titanium dioxide pigment	Normal spectral emittance. Resistance-heated strip	Measured in air.
			in silicone vehicle.	specimen.	Data taken from
			Coating thickness 0.8 mil.	Thermistor-bolometer	curves.
			Measured at:	detector.	
			600 F	Monochromator.	
			800 F	Reference blackbody.	
			1200 F	Temperatures measured	
			1800 F	with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF VITA VAR PV 100 ON A-286 STEEL

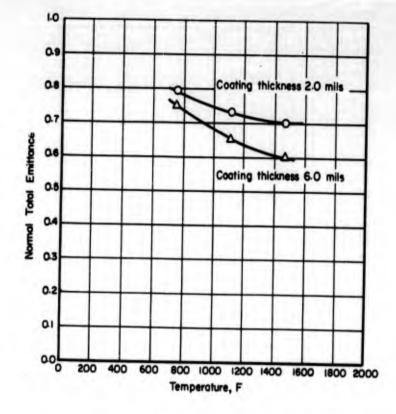
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 G	Gravina and Katz		Vita Var PV 100 paint. A titanium dioxide pigment	Normal spectral emittance. Resistance-heated strip	Measured in air.
			in silicone vehicle.	specimen.	Data taken from
			Coating thickness 3.0 mils. Measured at:	Thermistor-bolometer detector.	curves.
			600 F	Monochromator.	
			800 F Reference blackbody.	Reference blackbody.	
			1200 F	Temperatures measured	
			1800 F	with thermocouples.	


NORMAL SPECTRAL EMITTANCE OF VITA VAR PV 100 PAINT ON A-286 STEEL--REFERENCE INFORMATION

HEMISPHERICAL TOTAL EMITTANCE OF VITA VAR PV100 PAINT ON TITANIUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Dull, R. L.		<pre>Vita Var PV100 coating on titanium. Coating thickness 0.7 mil. (Vita Var PV100 is a white paint with a silicone vehicle and titanium dioxide pigment.) Note: Color began to change at 400 F and varied through yellow, tan, white, cream until brown and flaking at 1800 F.</pre>	Hemispherical total emittance Resistance-heated strip specimen coated with test material. Measured power input to test section. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

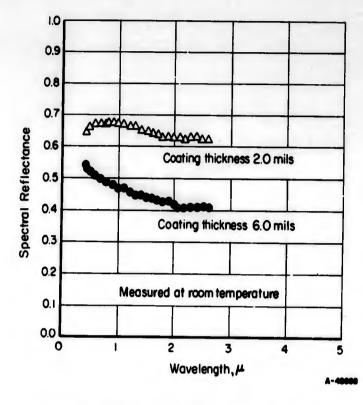
HEMISPHERICAL TOTAL EMITTANCE OF VITA VAR PV100 PAINT ON TITANIUM--REFERENCE INFORMATION



SPECTRAL REFLECTANCE OF W-1 WHITE ENAMEL ON INCONEL

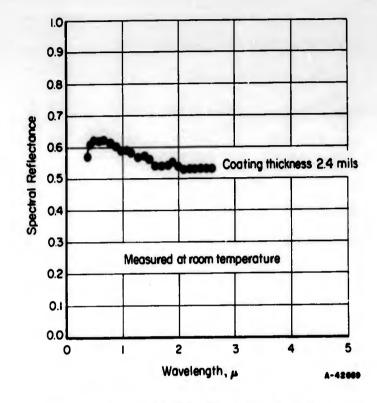
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	W-1 white enamel on Inconel. Coating thickness 3.1 mils.	Spectral reflectance. Integrating sphere re- flectometer. Commercial spectro- photometer, mono- chromator, lead sulphide detector. Hemispherical viewing. Illumination not clear from description whether diffuse or normal.	Measured in air at room temper- ature. Data taken from table.
Coating Com	position by Weight				
NBS Frit N CeO ₂ MgO	0. 332 - 60 per cent - 30 per cent - 10 per cent				

.


SPECTRAL REFLECTANCE OF W-1 WHITE ENAMEL ON INCONEL--REFERENCE INFORMATION

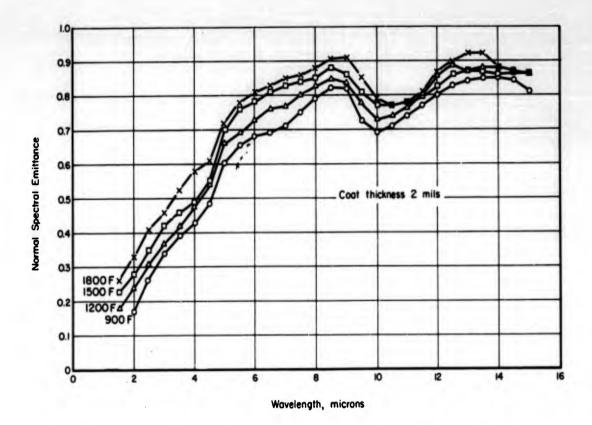
NORMAL TOTAL EMITTANCE OF W-3 WHITE ENAMEL ON INCONEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	0 4	W-3 white enamel on Inconel. Coating thickness 2.0 mils. Coating thickness 6.0 mils.	Normal total emittance. Sample recessed (flush) in wall of hollow, cylindrical, Globar heater. Comparison blackbody, hole. Infrared spectrometer with prism replaced by plane mirror. Thermocouple detector. Temperatures measured with thermocouples	Measured in air Data taken from table.
Coating Com	position by Weight				
NBS Frit No CeO ₂ SnO ₂	 332 - 60 per cent 20 per cent 20 per cent 				


NORMAL TOTAL EMITTANCE OF W-3 WHITE ENAMEL ON INCONEL--REFERENCE INFORMATION

SPECTRAL REFLECTANCE OF W-3 WHITE ENAMEL ON INCONEL

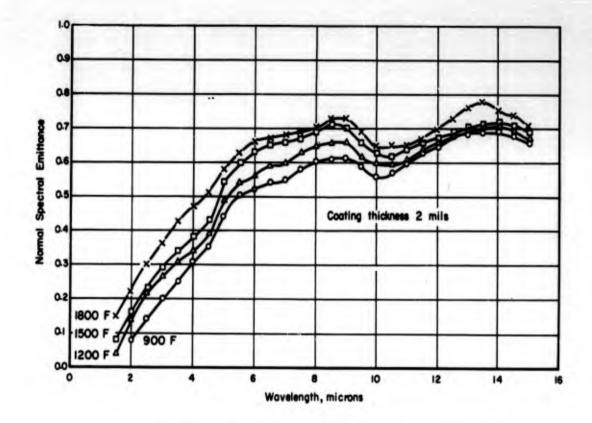
SPECTRAL REFLECTANCE OF W-3 WHITE ENAN	L ON INCONEL-REFERENCE INFORMATION
--	------------------------------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint	•	W-3 white enamel on Inconel. Coating thickness 2.0 mils. Coating thickness 6.0 mils.	Spectral reflectance. Integrating sphere re- flectometer. Commercial spectro- photometer, mono- chromator, and lead sulphide detector. Hemispherical viewing. Illumination not clear from description whether diffuse or normal.	Measured in air at room temperature. Data taken from table.
Coating Comp	osition by Weight			-1	
NBS Frit No CeO ₂ SnO ₂	0. 332 - 60 per cent - 20 per cent - 20 per cent				

SPECTRAL REFLECTANCE OF W-4 WHITE ENAMEL ON INCONEL

SPECTRAL REFLECTANCE OF W-4 WHITE ENAMEL ON INCONEL-REFERENCE INFORMATION

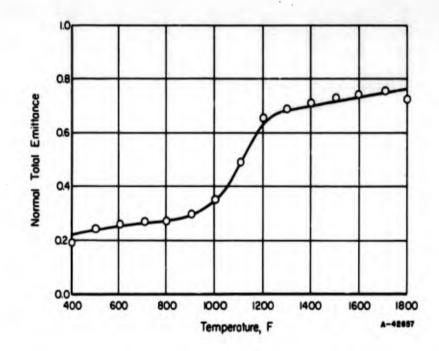
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Burgess, Jasperse, Marcus, Martin, and Flint		W-4 white enamel on Inconel. Coating thickness 2.4 mils.	Spectral reflectance. Integrating sphere re- flectometer. Commercial spectro- photometer, mono- chromator, lead sulphide detector. Hemispherical viewing. Illumination not clear from description whether diffuse or normal.	Measured in air at room temperature. Data taken from table.
Coating Com	position by Weight				
NBS Frit N CeO ₂ ZrO ₂	o. 332 - 60 per cent - 20 per cent - 20 per cent				



NORMAL SPECTRAL EMITTANCE OF N-143 ENAMEL ON INCONEL

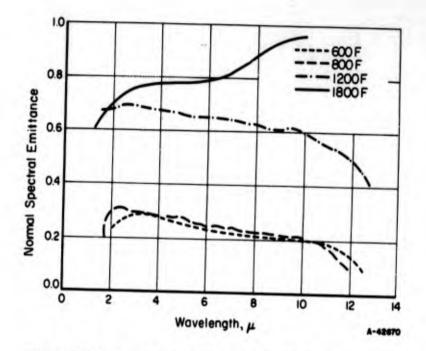
NORMAL SPECTRAL EMITTANCE OF N-143 ENAMEL ON INCONEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Richmond and Stewart	0 0 x	N-143 consists of boron- free barium beryllium silicate frit with addition of cerium oxide. Coating thickness 2 mils. Coated on Inconel. Runs made at the following temperatures: 900 F 1200 F 1500 F 1800 F	Normal spectral emittance. Double-beam infrared spectrometer with sodium chloride prism. Secondary standard [silicon carbide (Globar)] cali- brated against laboratory black- body. Temperatures meas- ured with thermo- couples.	Measured in air. Data taken from tables.


287

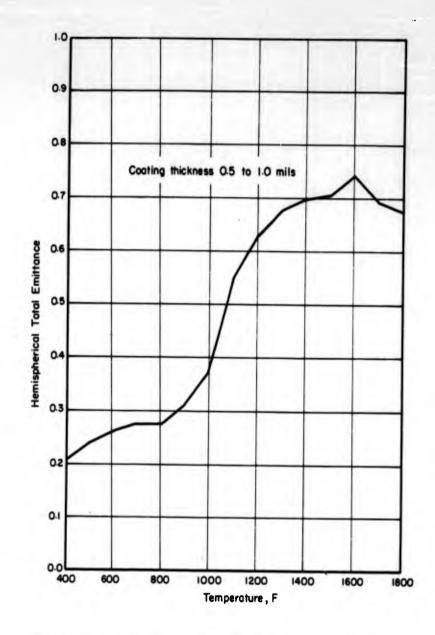
NORMAL SPECTRAL EMITTANCE OF N-143 ENAMEL ON TYPE 321 STAINLESS STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Richmond and Stewart	0	N-143 consists of boron- free barium beryllium silicate frit with addition of cerium oxide. Coating thickness 2 mils. Coated on Inconel. Runs made at the following temperatures: 900 F 1200 F	Normal spectral emittance. Double-beam infrared spectrometer with sodium chloride prism. Secondary standard [silicon carbide (Globar)] cali- brated against laboratory black-	Measured in air. Data taken from tables.
		- x	1500 F 1800 F	body. Temperatures meas- ured with thermo- couples.	


NORMAL SPECTRAL EMITTANCE OF N-143 ENAMEL ON TYPE 321 STAINLESS STEEL-REFERENCE INFORMATION

NORMAL TOTAL EMITTANCE FOR PRATT AND LAMBERT 91-1524 PAINT ON INCONEL X

NORMAL TOTAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON INCONEL X-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Pratt and Lambert 91-1524 coating. Butyl titanate	Normal total emittance. Resistance-heated strip	Measured in air.
			paint with aluminum pigment.	specimen. Thermistor-bolometer	Data taken from curves.
			prgmente.	detector.	Cu1 ve3.
				Reference blackbody.	
				Temperatures measured with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON INCONEL X

NORMAL SPECTRAL EMITTANCE OF PRATI AND LAMBERT 91-1524 PAINT ON INCONEL X-REFERENCE INFORMATION

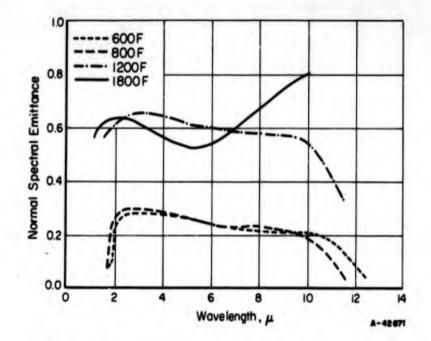
Reference	Investigator	Symbol	Composition and Surface Condition	Frest Method	Remarks
13	Gravina and Katz		Pratt and Lambert 91-1524, a butyl titanate paint with aluminum pigment. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Du11, R. L.		Pratt and Lambert coating No. 91-1524 on titanium. Coating thickness 0.5 to 1.0 mil. (Coating is a butyl titanate paint with aluminum pigment.) Note: Surface began minute blistering at 1500 F and turned to dark brown, peeling flakes at 1800 F.	Hemispherical total emittance. Resistance-heated strip specimens coated with test material. Measured power in- put to test section. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM--REFERENCE INFORMATION

.

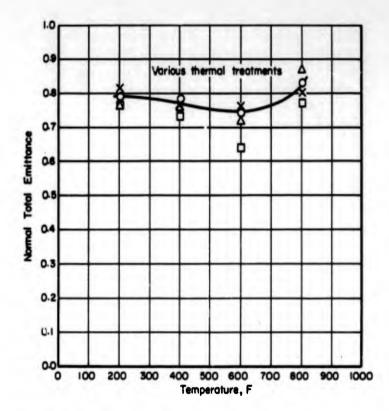

.

NORMAL TOTAL EMITTANCE FOR PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM

eference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Pratt and Lambert 91-1524 coating. Butyl titanate paint with aluminum pigment.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

NORMAL TOTAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM-REFERENCE INFORMATION

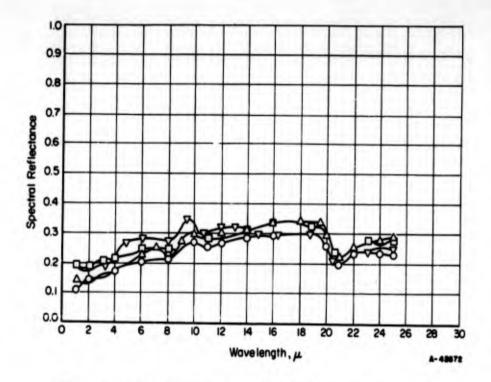
NORMAL SP_CTRAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM


,

NORMAL SPECTRAL EMITTANCE OF PRATT AND LAMBERT 91-1524 PAINT ON TITANIUM--REFERENCE INFORMATION

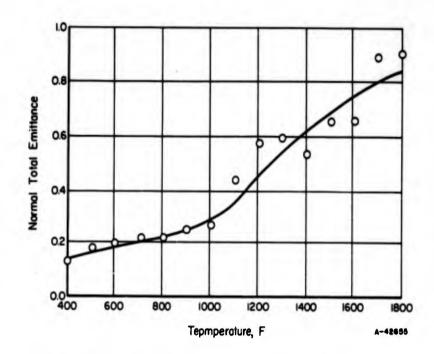
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Pratt and Lambert 91-1524, a butyl titanate paint with aluminum pigment. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

.


.

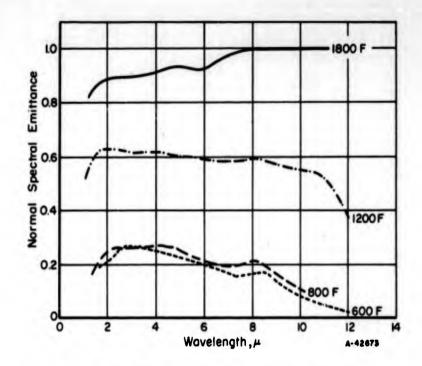
NORMAL TOTAL EMITTANCE OF RINSHED-MASON H12144 ENAMEL ON TYPE 321 STAINLESS STEEL

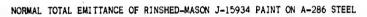
NORMAL TOTAL EMITTANCE OF RINSHED-MASON H12144 ENAMEL ON TYPE 321 STAINLESS STEEL -- REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Bevans, Cier, and Dunkle		Rinshed-Mason black heat- resistant, air-dry enamel H12144, painted on Type 321 stainless steel (Mat'1. Spec. MIS-S-6721.) No thickness given.	Normal total emittance. Calibrated thermopile detector. Temperatures measured with thermocouples.	Measured in air. Data taken from tables.
		0	No thermal treatment.		
		Δ	300 hours at 497 F.		
		0	307 hours at 690 F.		
		×	1000 hours at 705 F.		

SPECTRAL REFLECTANCE OF RINSHED-MASON H12144 ENAMEL ON TYPE 321 STAINLESS STEEL

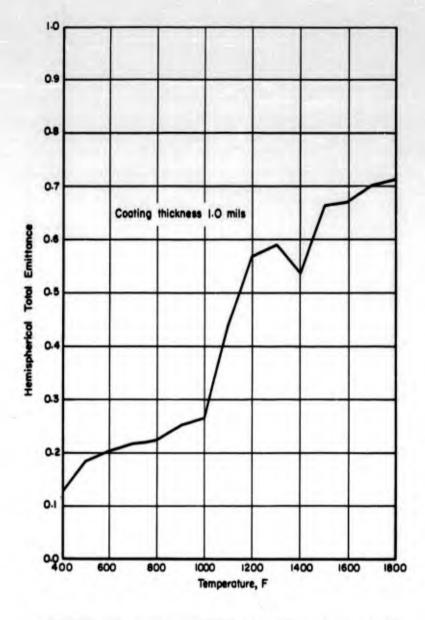
SPECTRAL REFLECTANCE OF RINSHED-MASON H12144 ENAMEL ON TYPE 321 STAINLESS STEEL--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Bevans, Gier, and Dunkle	0 4 2	Rinshed-Mason black heat-resistant, air- dry Enamel H12144, painted on Type 321 stainless steel (Mat'1. Spec. MIS-S-6721.) No thickness given. No thermal treatment. 300 hours at 497 F. 307 hours at 690 F. 1000 hours at 705 F.	Spectral reflectance at 5 degrees with normal. Gier-Dunkle reflect- ometer-monochromator. Tomperatures measured with thermocouples. (Diffuse illumination- normal viewing.)	Measured in air at room temperature. Data taken from tables.



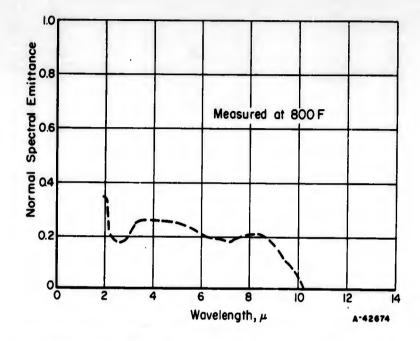
NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF	RINSHED-MASON J-15934	PAINT ON A-286	STEELREFERENCE INFORMATION
---------------------------	-----------------------	----------------	----------------------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason J-15934, silicone paint with aluminum pigment. Coating thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON A-286 STEEL-REFERENCE INFORMATION

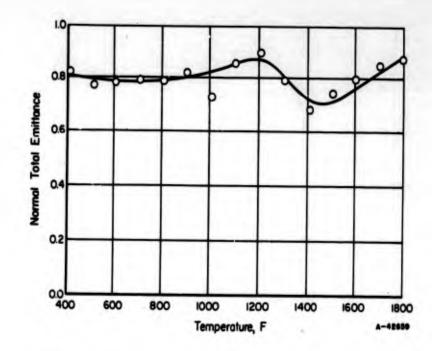
Reference	Investigator	Symbol	Composition and •Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason Paint J-15934, silicone vehicle, aluminum	Normal spectral emittance. Resistance-heated strip	Measured in air.
			pigment.	specimen.	Data taken from
			Coating thickness not given.	Thermistor-bolometer detector.	curves.
			Measured at:	Monochromator.	
			600 F	Reference blackbody.	
			800 F	Temperatures measured	
			1200 F	with thermocouples.	
			1800 F		



HEMISPHERICAL TOTAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON TITANIUM

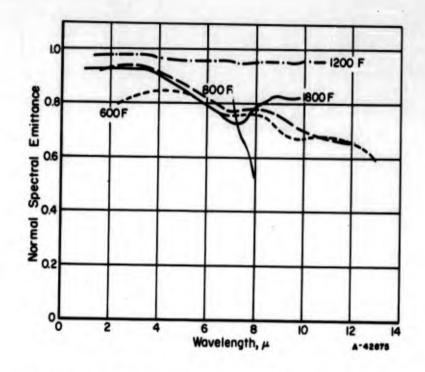
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Dull, R. L.		Rinshed-Mason Coating J-15934 on titanium. Coating thickness 1.0 mil. (A silicone paint with aluminum pigment.) Note: Extensive peeling began at about 1300 F. Nearly all peeled off at 1800 F.	Hemispherical total emittance. Resistance-heated strip specimens coated with test material. Measured power input to test section. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON TITANIUM--REFERENCE INFORMATION


298

NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON TITANIUM

NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON J-15934 PAINT ON TITANIUM--REFERENCE INFORMATION

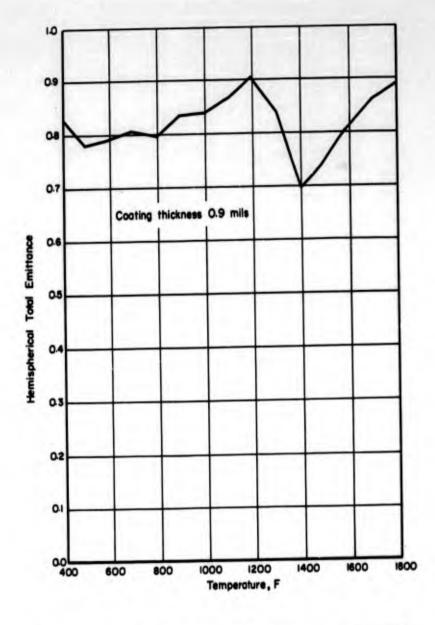

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason Paint J-15934, a silicone paint with	Normal spectral emittance. Resistance-heated strip	Measured in air.
			aluminum pigment. Coating thickness not	specimen.	Data taken from
			given.	Thermistor-bolometer detector.	curves.
			Measured at 800 F	Monochromator.	
				Reference blackbody. Temperatures measured	
				with thermocouples.	

NORMAL TOTAL EMITTANCE OF RINSHED-MASON Q36K802 PAINT ON A-286 STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason Q36K802, silicone paint with carbon black pigment. Coating thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL TOTAL EMITTANCE OF RINSHED-MASON Q36K802 PAINT ON A-286 STEEL--REFERENCE INFORMATION

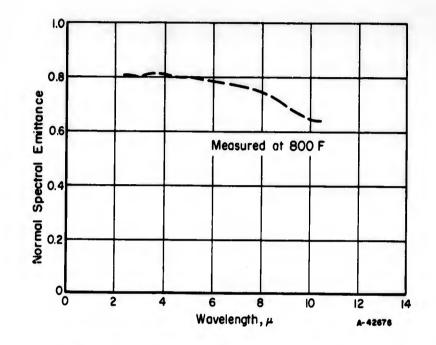
NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON Q36K802 PAINT ON A-286 STEEL


.

.

.

NORMAL SPECTRAL EMITTANCE OF RINSHED-MASON Q36K802 PAINT ON A-286 STEEL-REFERENCE INFORMATION

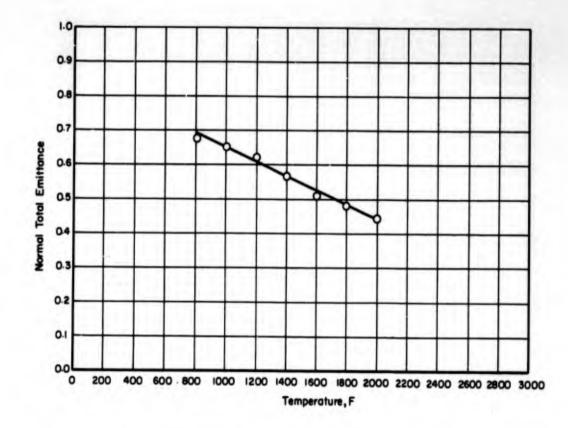

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason Q36K802 black paint is a sili- cone paint with carbon black pigment. Coating thickness not given. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF RINSHED-MASON Q-36K802 PAINT ON TITANIUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Dull, R. L.		Rinshed-Mason Q-36K802 coating on titanium. Coating thickness 0.9 mil. (A silicone paint with carbon black pigment.) Note: Discoloration began at 400 F. Blistering	Hemispherical total emittance. Resistance-heated strip. Specimen coated with test material. Measured power input to test section.	Measured in air Data taken from curves.
			began at about 1600 F.	Temperatures measured with thermocouples.	

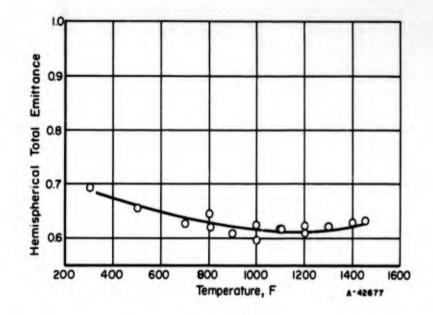
HEMISPHERICAL TOTAL EMITTANCE OF RINSHED-MASON Q-36K802 PAINT ON TITANIUM--REFERENCE INFORMATION

NORMAL	SPECTRAL	EMITTANCE OF	RINSHED-MASON	Q36K802	PAINT ON	TITANIUM-	-REFERENCE	INFORMATION
--------	----------	--------------	---------------	---------	----------	-----------	------------	-------------

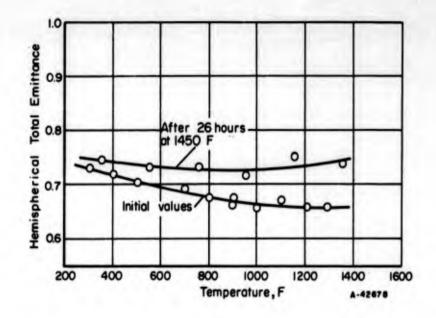

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rinshed-Mason Q36K802 black paint. A sili-	Normal spectral emittance. Resistance-heated strip	Measured in air.
			cone paint with carbon	specimen.	Data taken from
			<pre>black pigment. Coating thickness not</pre>	Thermistor-bolometer detector.	curves.
			given.	Monochromator.	
			Measured at 800 F	Reference blackbody.	
				Temperatures measured with thermocouples.	

NORMAL TOTAL EMITTANCE OF VITA VAR PV100 ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF VITA VAR PV 100 PAINT ON A-286 STEEL--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Vita Var PV 100, silicone paint with titanium dioxide pigment. Coating thickness 3 mils	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
10	Wade, W. R.	o	Flame-sprayed alumina on	Normal total emittance.	Measured in air.
			Inconel heater strip.	Thermopile detector. Resistance-heated Inconel	Temperatures given are those of
			Thickness not given.	strip with test material flame sprayed	Inconel heater strip.
				to "opaque" thickness.	Data taken from curve.


NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE ON INCONEL-REFERENCE INFORMATION

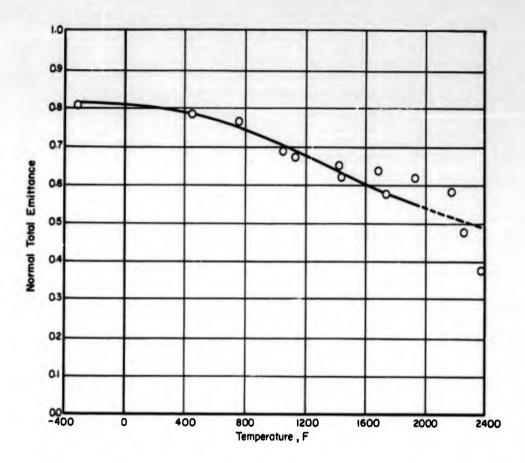
HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM OXIDE ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM OXIDE ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Pratt & Whitney Aircraft		Plasmadyne powder. Coated on both sides.	Hemispherical total emittance.	Measured in vacuum.
			Flame sprayed on Type 310 stainless strip.	Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM OXIDE ON TYPE 310 STAINLESS STEEL

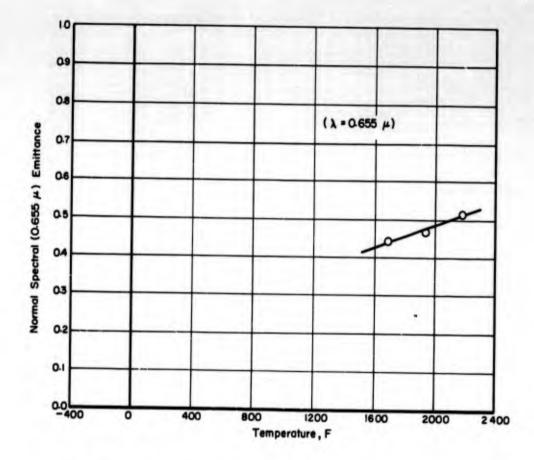
HEMISPHERICAL TOTAL EMIT	NCE OF ALUMINU	M OXIDE ON TYPE 310	STAINLESS STEEL-	-REFERENCE INFORMATION
--------------------------	----------------	---------------------	------------------	------------------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
17	Pratt & Whitney Aircraft		Metco 101 powder. Coated on both sides.	Hemispherical total emittance.	Measured in vacuum.
			Flame sprayed. Initial runs After 26 hours at 1450 F	Resistance-heated strip specimen. Power dissipated in measured area.	Data taken from curves.
•				Temperatures measured with thermocouples.	

.

.

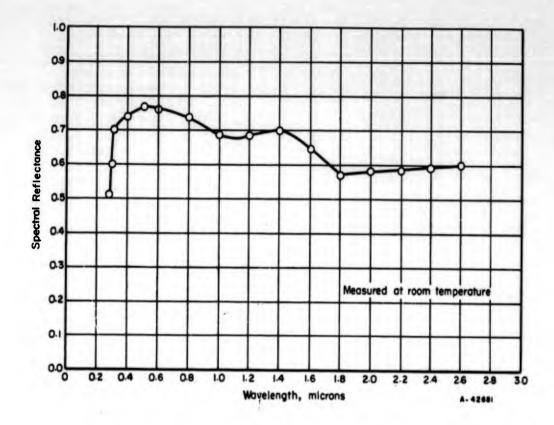
.

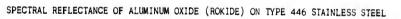

•

NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE (ROKIDE) ON TYPE 446 STAINLESS STEEL

NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE (ROKIDE) ON TYPE 446 STAINLESS STEEL --- REFERENCE INFORMATION

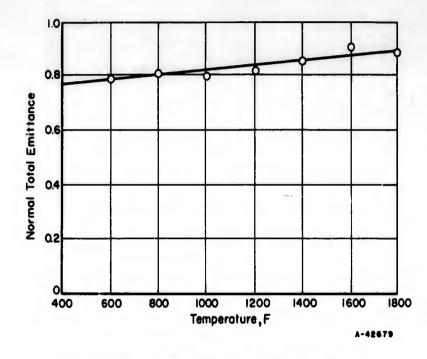
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Olson and Morris	0	As received. Showed purple discolor- ation after test. Thickness or surface condition not given.	Normal total emittance. Comparison blackbody. Furnace heated speci- mens. Temperatures measured with thermocouples. Thermistor-bolometer detector.	Measured in air Data taken from curves.




NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE (ROKIDE) ON TYPE 446 STAINLESS STEEL

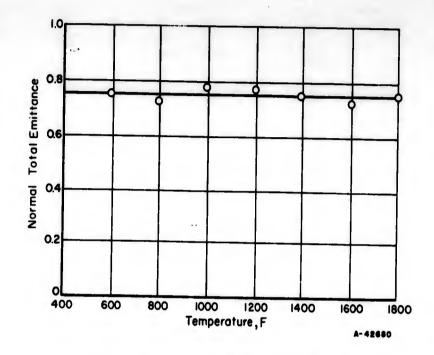
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Olson and Morris	o	Aluminum Oxide (Rokide) on Type 446 stainless steel. Thickness or surface condition not given.	Normal spectral emittance. Furnace-heated specimen. Commercial sensing unit. Appropriate lenses and filters. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

.


.

SPECTRAL REFLECTANCE OF ALUMINUM OXIDE (ROKIDE) ON TYPE 446 STAINLESS STEEL--REFERENCE INFORMATION

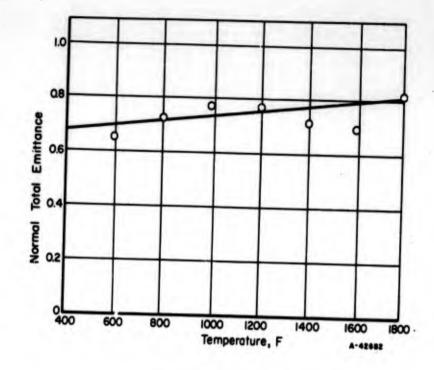
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Olson and Morris	0	Aluminum oʻde	Spectral reflectance	Measured in air at
		, .	(Norton Cc., Rokide A) on Type · '6 stainless steel. Thickness o. surface condition not given.	at 9 degrees from normal (incident radiation). Recording spectro- photometer, inte- grating sphere re- flectometer, and lead sulphide detector. (Normal illumination hemispherical viewing)	room temperature. Data taken from curves.


NORMAL TOTAL EMITTANCE OF CERAMCO B-682P ON A-286 STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Ceramco B-682P, a proprietary black oxide.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured at atmospheric pressure.
				detector. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.

.

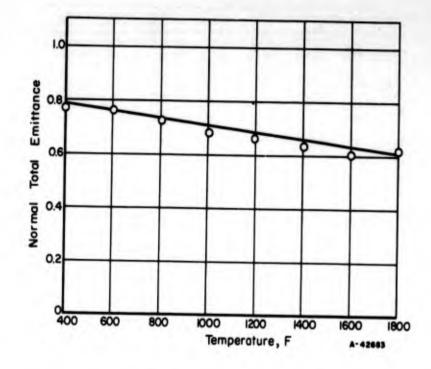
£


**** **

NORMAL TOTAL EMITTANCE OF CERAMCO G-683P ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF CERAMCO G-633P ON A-286 STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Ceramco G-683P, a proprietary green oxide. Composition or thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

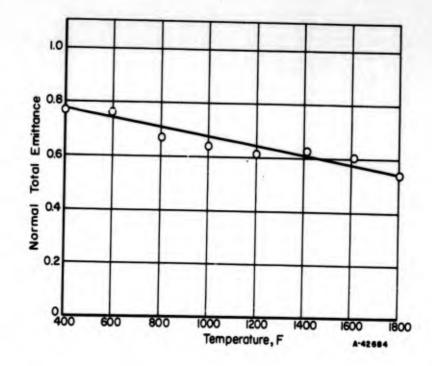

NORMAL TOTAL EMITTANCE OF CERAMCO G-684tc ON INCONEL X

NORMAL TOTAL EMITTANCE OF CERAMCO G-684tc ON INCONEL X-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Ceramco G-684tc, a proprietary green oxide. Composition on thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

.

å



NORMAL TOTAL EMITTANCE OF CERAMCO W-683P ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF CERAMCO W-683P ON A-286 STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Ceramco W-683P, a proprietary white oxide.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

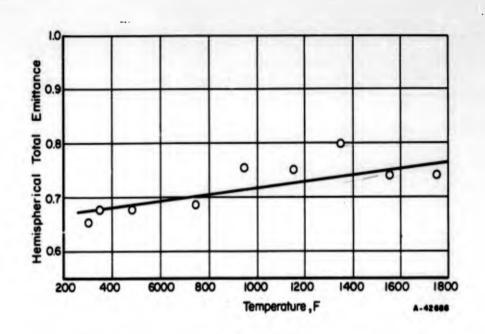
¢


NORMAL TOTAL EMITTANCE OF CERAMCO W-683tc ON INCONEL X

NORMAL TOTAL EMITTANCE OF CERAMCO W-683tc ON INCONEL X--REFERENCE INFORMATION

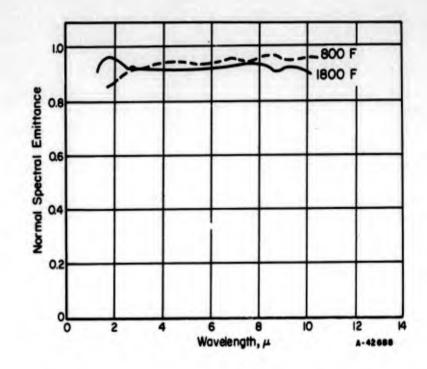
Reference	Investigator	Symbol	Composition and Surface Condition	. Test Method	Remarks
13	Gravina and Katz		Ceramco W-683tc, a proprietary white oxide. Composition or thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

.


-

NORMAL TOTAL EMITTANCE OF CERAMCO WB-6832 ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF CERAMCO WB-6832 ON A-286 STEEL--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Gravina and Katz	Gravina and Katz		Ceramco WB-6832, a pro- prietary brown oxide.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer	Measured at atmospheric pressure.
		detector. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.		

HEMISPHERICAL TOTAL EMITTANCE OF CERIC OXIDE ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL TOTAL EMITTANCE OF CERIC OXIDE ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION

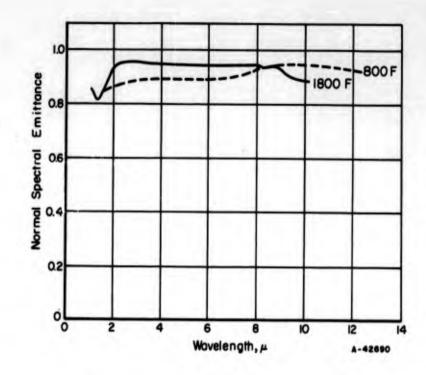
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Metco plasma flame spray powder XP-111.	Hemispherical total emittance.	Measured in vacuum.
				Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured	Data taken from curves.
				with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF NORTON LN 9594 ON INCONEL X

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton LN9684, a very dark nickel oxide. Melting point about 3500 F. Porosity about 2 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF NORTON LN9684 ON INCONEL X--REFERENCE INFORMATION

319

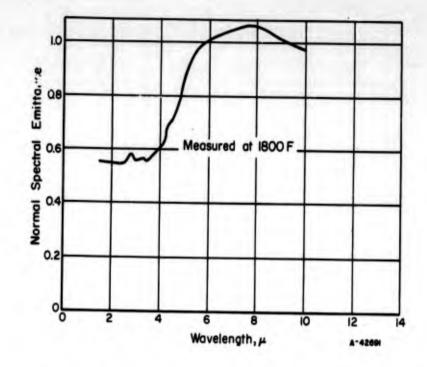

.

NORMAL SPECTRAL EMITTANCE OF NORTON LN 9684 ON 6A1-4V TITANIUM

NORMAL SPECTRAL EMITTANCE OF NORTON LN9684 CERAMIC COATING ON 6A1-4V TITANIUM-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton LN9684, a very dark nickel oxide. Melting	Normal spectral emittance.	Measured in air.
·			point about 3500 F. Porosity about 2 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given.	Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.
			Measured at 800 F	with theimocouples.	

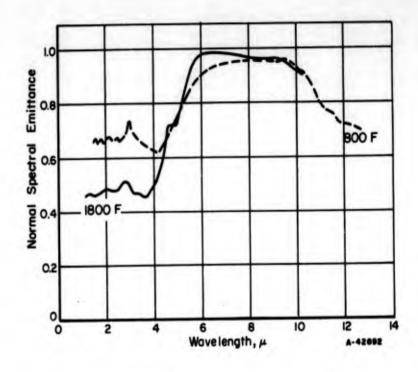
NORMAL SPECTRAL EMITTANCE OF NORTON LN 9684 ON A-286 STEEL


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton LN9684, a very dark nickel oxide. Melting point about 3500 F. Porosity about 2 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF NORTON LN9684 CERAMIC COATING ON A-286 STEEL-REFERENCE INFORMATION

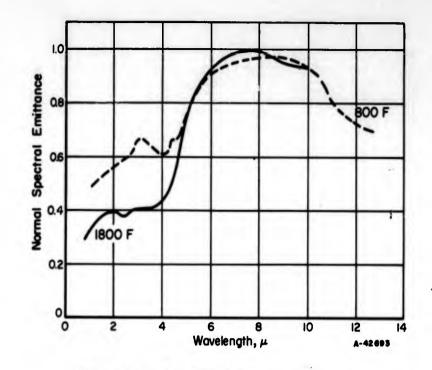
.

.


.

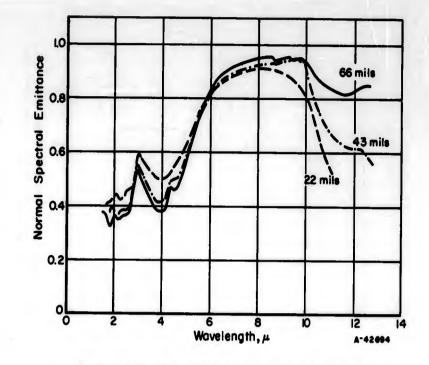
NORMAL SPECTRAL EMITTANCE OF NORION LA 9696 ON INCONEL X

NORMAL SPECTRAL EMI	TTANCE OF NORTON	LA-9696 ON INCONEL	XREFERENCE INFORMATION
---------------------	------------------	--------------------	------------------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton ceramic coating LA-9696, a tan alundum, 92 per cent Al ₂ O ₃ . Melting point about 3500 F. Porosity about 5 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given. Measured at 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF NORTON LA 9683 ON TITANIUM

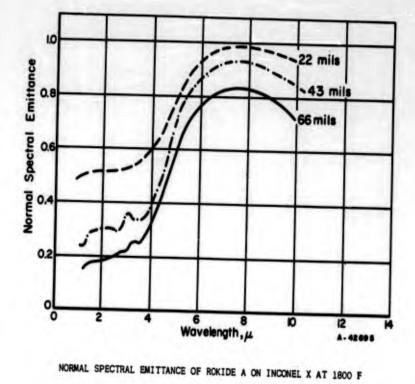
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton ceramic coating LA-9696, a tan alundum, 92 per cent Al ₂ O ₃ . Melting point about 3500 F. Porosity about 5 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.


NORMAL SPECTRAL EMITTANCE OF NORTON LA-9696 ON 6A1-4V TITANIUM--REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF NORTON LA 9696 ON A-286 STEEL

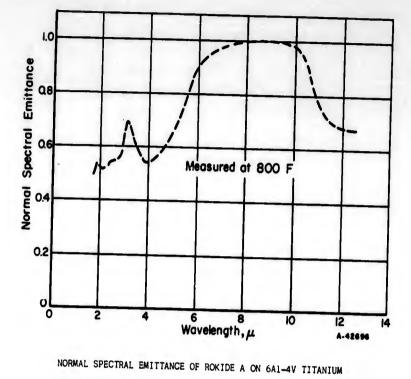
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton ceramic coating LA-9696, a tan alundum, 92 per cent Al ₂ O ₃ . Melting point about 3500 F. Porosity about 5 per cent. Flame sprayed on cleaned, grit-blasted surface coated with 12-mil- thick Nichrome V undercoat. Coating thickness not given. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

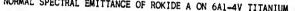
NORMAL SPECTRAL EMITTANCE OF NORTON LA-9696 ON A-286 STEEL-REFERENCE INFORMATION



~a _-

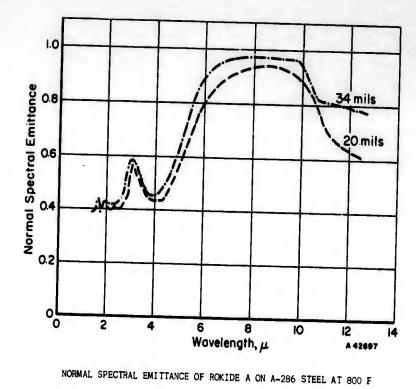
NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON INCONEL X AT 800 F


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide A, white 98.5 per cent alumina. Melting point about 3600 F. Porosity about 4 to 8 per cent. Flame sprayed on degreased, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thicknesss 66 mils 43 mils 22 mils	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

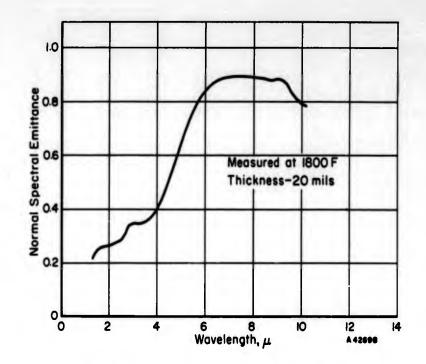

NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON INCONEL X AT 800 F--REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON I	NCONEL X AT 1800 F-REFERENCE INFORMATION
--	--

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide A, white 98.5 per cent alumina. Melting point about 3600 F. Porosity about 4 to 8 per cent. Flame sprayed on degreased, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness: 66 mils 43 mils 22 mils	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.



NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON 6A1-4V TITANIUM-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide A, white 98.5 per cent alumina. Melting point about 3600 F. Porosity about 4 to 8 per cent. Flame sprayed on degreased, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness not given. Measured at 800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

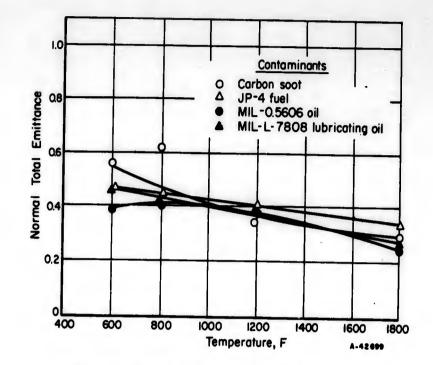
.

NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON A-286 STEEL AT 800 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide A, white 98.5 per cent alumina. Melting point about 3600 F. Porosity about 4 to 8 per cent. Flame sprayed on degreased, grit-blasted surface coated with 12-mil-thick Nichrome V undercoat. Coating thickness: 34 mils 20 mils	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON A-286 STEEL AT 1800 F

NORMAL SPECTRAL EMITTANCE OF ROKIDE A ON A-286 STEEL AT 1800 F--REFERENCE INFORMATION

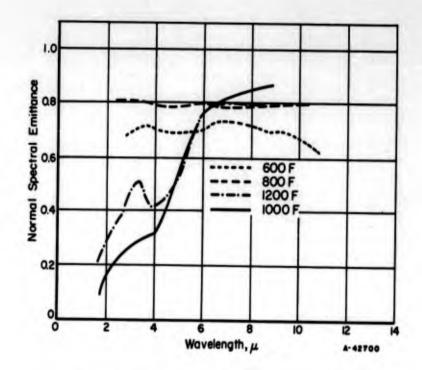

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide A, white 98.5 per cent alumina.	Normal total emittance. Resistance-heated strip	Measured in air.
			Melting point about 3600 F. Porosity about	specimen. Thermistor-bolometer	Data taken from curves.
			4 to 8 per cent.	detector.	
			Flame sprayed on degreased,	Reference blackbody.	
			grit-blasted surface coated with l2-mil-thick Nichrome V undercoat.	Temperatures measured with thermocouples.	
			Coating thickness 20 mils.		

.

.

.

.



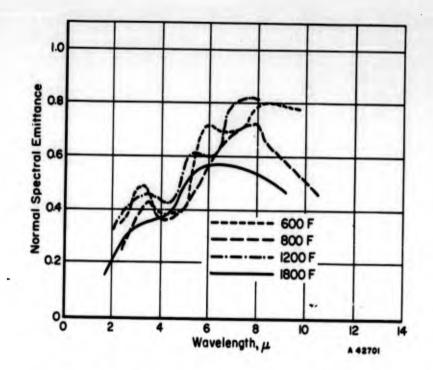
NORMAL TOTAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL

NORMAL IUTAL EMIT	TANCE OF ROKIDE	A (CONTAMINATED)	ON A-286	STEELREFERENCE	INFORMATION
-------------------	-----------------	------------------	----------	----------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz	,	Rokide A (Norton, 98.5 per cent alumina). Contaminated with carbon soot Contaminated with JP-4 fuel Contaminated with MIL-0- 5606 oil Contaminated with MIL-L- 7808 lubricating oil.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

•

NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL

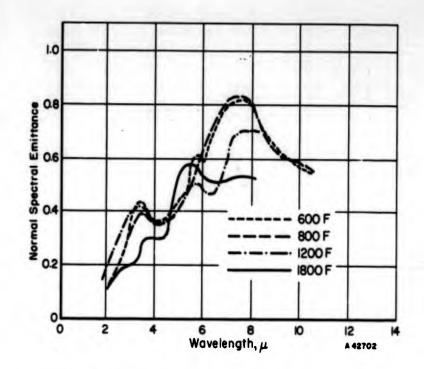

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rokide A, Norton 98.5 per cent alumina. Flame sprayed onto 12- mil-thick Nichrome V undercoat. Contaminated with carbon deposits. Measured at: 600 F 800 F 1200 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

٩,

.

4

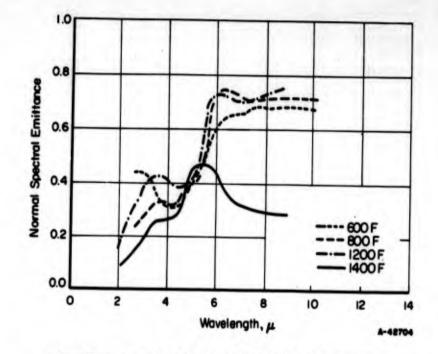
NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL-REFERENCE INFORMATION



NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rokide A, Norton 98.5 per cent alumina. Flame	Normal spectral emittance. Resistance-heated strip	Measured in air.
			sprayed onto 12-mil- thick Nichrome V under-	specimen. Thermistor-bolometer	Data taken from curves.
			coat. Contaminated with JP-4	detector. Monochromator.	
			fuel.	Reference blackbody.	
			Measured at: 600 F	Temperatures measured with thermocouples.	٠
			800 F	with theimocouples.	
• •			1200 F 1800 F		

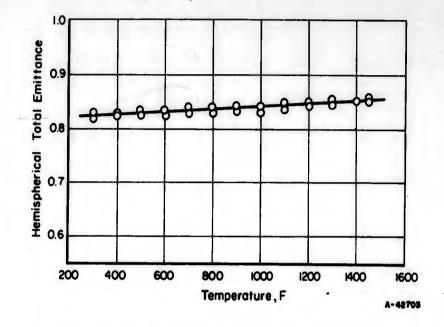
1


NORMAL SPECTRAL EMITTANCE OF ROKIDE & (CONTAMINATED) ON A-286 STEEL-REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL

NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON TYPE A-286 STEEL--REFERENCE INFORMATION

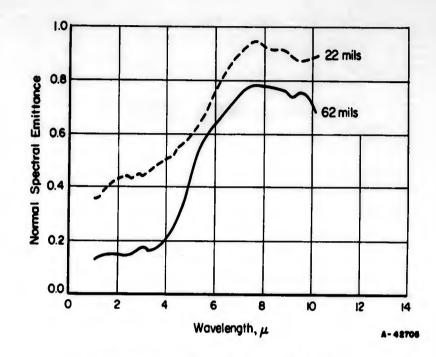
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rokide A, Norton 98.5 per cent alumina. Flame sprayed onto 12- mil-thick Nichrome V undercoat. Contaminated with MIL-L- 7808. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.



NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON A-286 STEEL

ŝ,

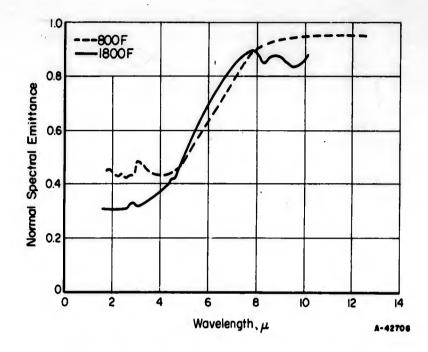
NORMAL SPECTRAL EMITTANCE OF ROKIDE A (CONTAMINATED) ON TYPE A-286 STEEL-REFERENCE INFORMATION


Reference	Investigator	"Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Rokide A, Norton 98.5 per cent alumina. Flame sprayed onto 12-mil- thick Nichrome V under- coat. Contaminated with MIL-O- 5606. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF ROKIDE C ON TYPE 310 STAINLESS STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Rokide C applied to Type 310 stainless steel.	Hemispherical total emittance.	Measured in vacuum.
				Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF ROKIDE C ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION

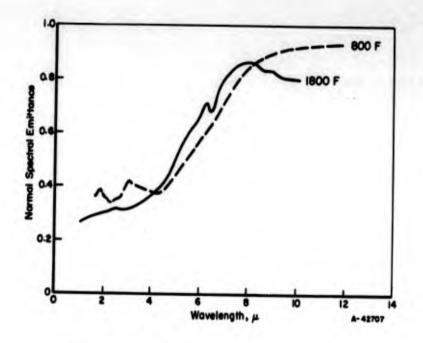


NORMAL SPECTRAL EMITTANCE OF ROKIDE Z ON INCONEL X

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide Z, stabi- lized ZrO ₂ . Melting point about 4500 F. Porosity- about 8 per cent total pores. Coating thickness: 62 mils 22 mils	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF ROKIDE Z ON INCONEL X--REFERENCE INFORMATION

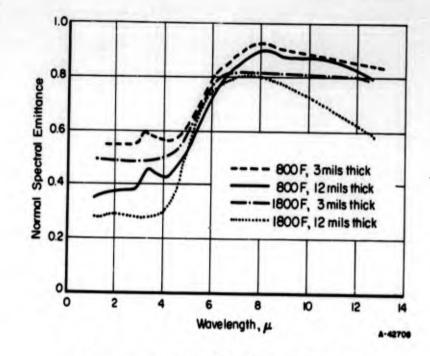
336


NORMAL SPECTRAL EMITTANCE OF ROKIDE Z ON 6A1-4V TITANIUM

NORMAL SPECTRAL EMITTANCE OF ROKIDE Z ON 6A1-4V TITANIUM--REFERENCE INFORMATION

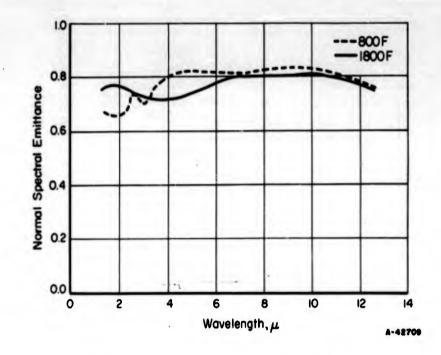
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide Z, stabi- lized ZrO2. Melting	Normal spectral emittance. Resistance-heated strip	Measured in air.
			point about 4500 F. Porosity about 8 per cent total pores. Measured at: 800 F 1800 F	specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.

337



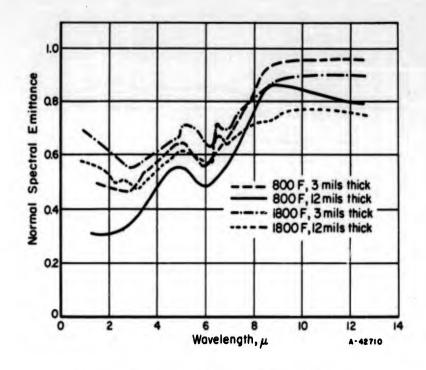
NORMAL SPECTRAL EMITTANCE OF ROKIDE Z ON A-286 STEEL

V	
	N


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Norton Rokide Z, stabi- lized ZrO ₂ . Melting point about 4500 F. Porosity about 8 per cent total pores. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FOM-10 ON INCONEL X

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCM-10, a dark gray mullite. Flame sprayed on degreased, sand blasted, preheated Inconel X. Surface roughness approximately 180 to 200 microinches. Measured at: 800 F, 3 mils thick 1800 F, 3 mils thick 1800 F, 12 mils thick 1800 F, 12 mils thick	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

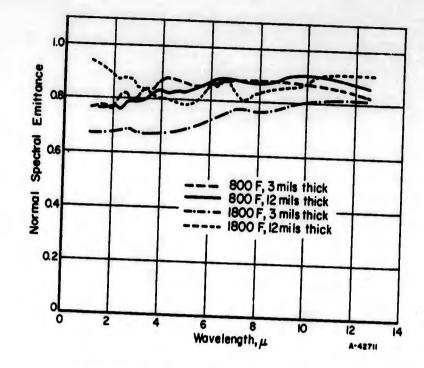

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCM-10 ON INCONEL X-REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-10 ON INCONEL X

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-10 ON INCONEL X--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-10, a light gray titanium dioxide. Flame sprayed on degreased, sand blasted, preheated Inconel X. Surface roughness approxi- mately 180 to 200 micro- inches. Coating thickness not given. Measured at: 800 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

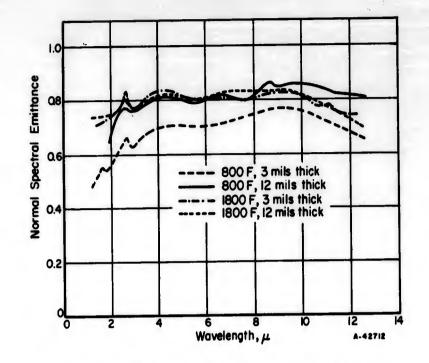
NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCR-11 ON INCONEL X


NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCR-11 ON INCONEL X--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCR-11, a dark gray rare- earth oxide mixture, (50 per cent cerium). Flame sprayed on degreased, sand blasted, preheated Inconel X. Surface roughness approxi- mately 180 to 200 micro- inches. Measured at: 800 F, 3 mils thick 1800 F, 3 mils thick 1800 F, 12 mils thick 1800 F, 12 mils thick	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

4

2


•

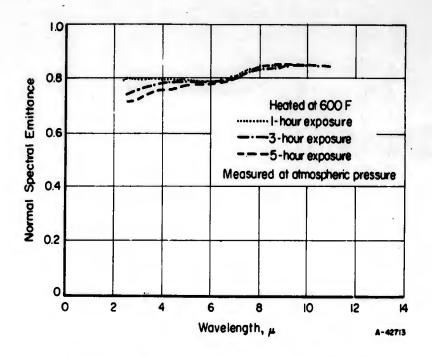
NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-11 ON INCONEL X

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-11, a dark gray sillimanite.	Normal spectral emittance.	Measured in air.
			Flame sprayed on degreased, sand blasted, preheated Inconel X. Surface roughness approxi- mately 180 to 200 micro- inches. Measured at: 800 F, 3 mils thick 800 F, 12 mils thick 1800 F, 12 mils thick	Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Data taken from curves.

SPECTRAL EMITTANCE OF SYLVESTER FCT-11 CERAMIC COATING ON INCONEL X-REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL-REFERENCE INFORMATION

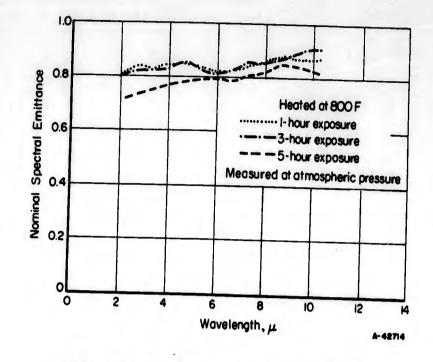

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on de- greased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Measured at: 800 F, 3 mils thick 800 F, 12 mils thick 1800 F, 12 mils thick	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

.

.

10

4

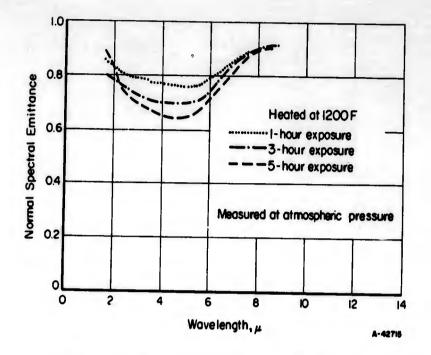


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on de- greased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 600 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL AT 600 F--REFERENCE INFORMATION

.

3

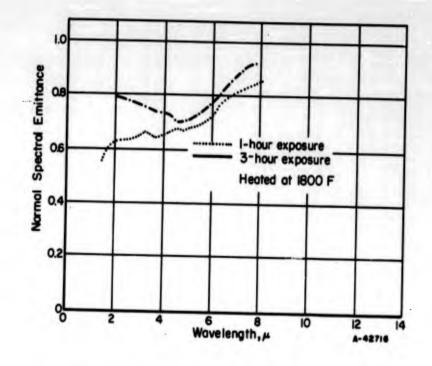


٩

.

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 CERAMIC COATING ON A-286 STEEL AT 800 F-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on de- greased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 800 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

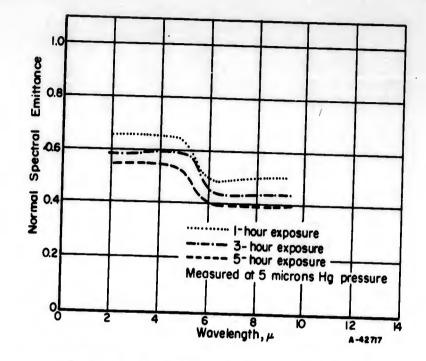

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL AT 1200 F-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 1200 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air Data taken from curves.

.

۰,

,

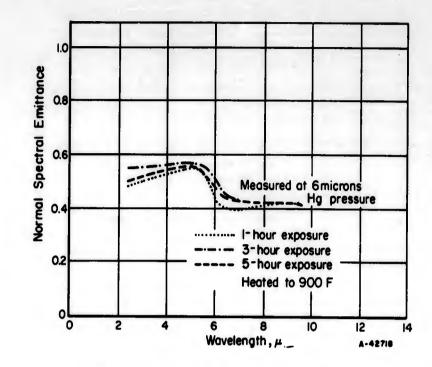

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 CERAMIC COATING ON A-286 STEEL AT 1800 F-REFERENCE INFORMATION

leference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 1800 F: 1 hour 3 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

-

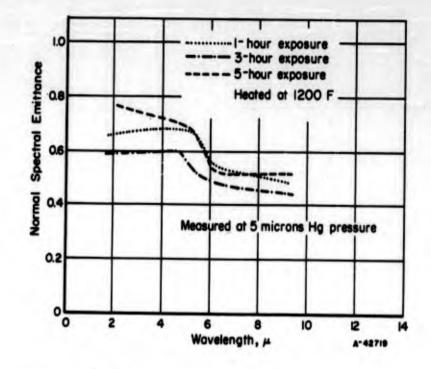
•

e,


NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL

,

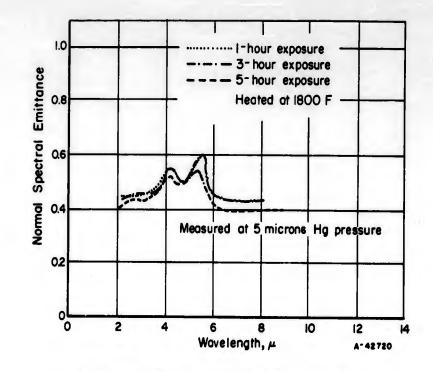
÷


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 600 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 5 microns Hg pressure. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL AT 600 F---REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL AT 800 F-REFERENCE INFORMATIC	NORMAL	SPECTRAL	EMITTANCE OF	SYLVESTER	FCT-12	ON	A-286	STEEL AT	800	FREFERENCE	INFORMATIC
--	--------	----------	--------------	-----------	--------	----	-------	----------	-----	------------	------------

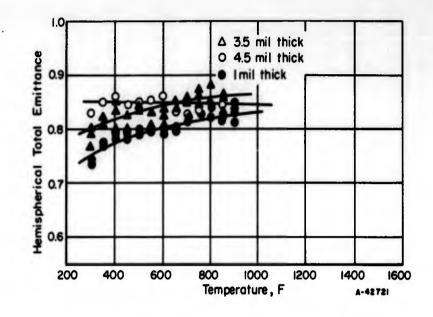
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FC-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 2CO micro- inches. Heated at 800 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 6 microns Hg pressure Data taken from curves.



NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL

,

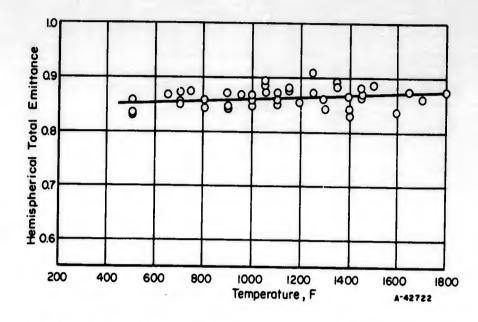
NORMAL SPECTRAL EMITTANCE OF SYLVESTER FCT-12 ON A-286 STEEL AT 1200 F-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 1200 F: 1 hour 3 hours 5 hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 5 microns Hg pressure. Data taken from curves.

NORMAL SPECTRAL EMITTANC	E OF SYLVESTER	R FCT-12 ON A-286	STEEL AT 18	00 FREFERENCE	INFORMATION
--------------------------	----------------	-------------------	-------------	---------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Sylvester ceramic coating FCT-12, a black sillimanite. Flame sprayed on degreased, sand blasted, preheated material. Surface roughness approxi- mately 180 to 200 micro- inches. Heated at 1800 F: 1 hour 3 hours 5, hours	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in 5 microns Hg pressure. Data taken from curves.

-

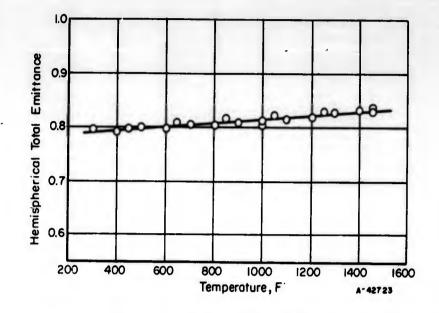


HEMISPHERICAL TOTAL EMITTANCE OF TITANIUM OXIDE ON ALUMINUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Metco plasma flame spray powder XP-1114.	Hemispherical total emittance.	Measured in vacuum.
			Flame sprayed on aluminum strip.	Resistance-heated strip specimen.	Data taken from curves.
			Coating thickness: 1 mil	Power dissipated in measured area.	
			4.5 mils 3.5 mils	Temperatures measured with thermocouples.	

HEMISPHERICAL TOTAL EMITTANCE OF TITANIUM OXIDE ON ALUMINUM--REFERENCE INFORMATION.

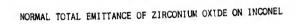
e


HEMISPHERICAL TOTAL EMITTANCE OF "TITANIA BASE" POWDER ON TYPE 310 STAINLESS STEEL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Plasmadyne powder. Flame sprayed on Type 310	Hemispherical total emittance.	Measured in vacuum.
	stainless steel	Resistance-heated strip specimen.	Data taken from curve.		
				Power dissipated in measured area.	
	·			Temperatures measured with thermocouples.	

HEMISPHERICAL TOTAL EMITTANCE OF TITANIA BASE POWDER ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION

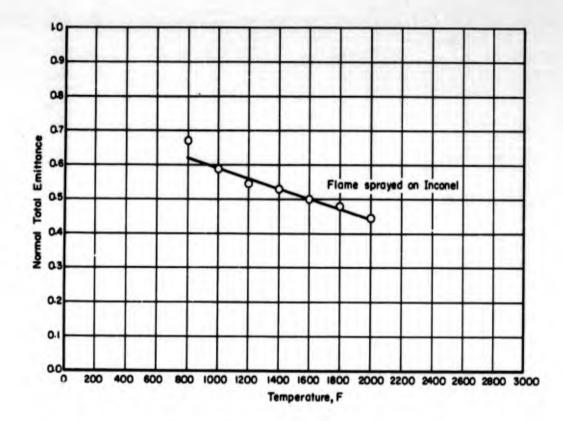
.

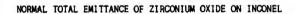


HEMISPHERICAL TOTAL EMITTANCE OF 50% TITANIUM OXIDE-50% ALUMINUM OXIDE ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL	TOTAL	EMITTANCE	OF	50%	TITANIUM	OXIDE-50%	ALUMINUM	OXIDE (ON
	TYPE 3	O STAINLES	5S 3	STEEL	REFERE	NCE INFORMA	TION		

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Metco plasma flame spray powder XP-1121.	Hemispherical total emittance.	Measured in vacuum
				Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curve.

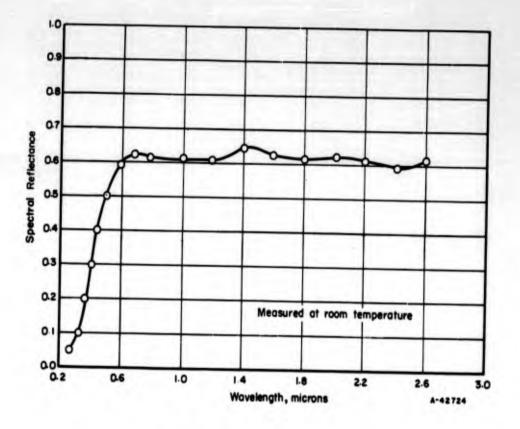




NORMAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE ON INCONEL -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Investigator Olson and Morris	o	Zirconium oxide on Inconel. Thickness or surface condition not given. (Coating burned off probably near 2000 F.)	Normal total emittance. Comparison blackbody. Furnace heated speci- mens. Temperatures measured with thermocouples. Thermistor-bolometer detector.	Measured in air. Data taken from curve.

.



NORMAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE ON INCONEL--REFERENCE INFORMATION

1

**

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
10	Wade, W. R.	0	Flame-sprayed zirconia on Inconel heater strip. Coating thickness not given.	Normal total emittance. Thermopile detector. Resistance-heated Inconel strip with test material flame sprayed to "opaque" thickness. Comparison blackbody. Temperatures measured with thermocouples.	Measured in air. Temperatures given are those of Inconel heater strip. Data taken from curve.

h.,

SPECTRAL REFLECTANCE OF ZIRCONIUM OXIDE ON INCONEL

SPECTRAL REFLECTANCE OF ZIRCONIUM OXIDE ON INCONEL--REFERENCE INFORMATION

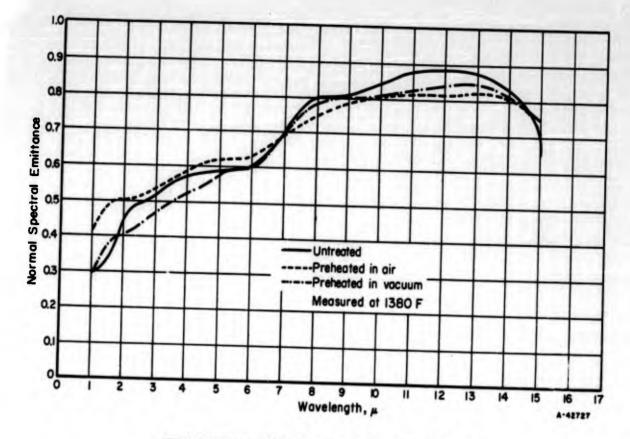
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Olson and Morris	0	Zirconium oxide flame sprayed on Inconel. Thickness or surface condition not given.	Spectral reflectance at 9 degrees from normal (incident radiation). Recording spectro- photometer. Integrating sphere. Lead sulphide de- tector. (Normal illumination hemispherical viewing.)	Measured in air a room temperature Data taken from curve.

1.0 0.9 0.8 Spectral Emittance 0.7 .7 0.6 0.5 IDULION 0.3 -Untreated ----Preheated in air ----Preheated in vacuum Measured at 480 F 0.2 0.1 ob 2 3 4 5 5 7 8 ю 12 13 14 9 II 15 16 17 ı Wavelength , μ A-42725

NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 480 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X (untreated). Heated 30 minutes in air at 1500 F. Heated 30 minutes in 6.2 x 10 ⁻⁵ mm Hg pressure at 1500 F.	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

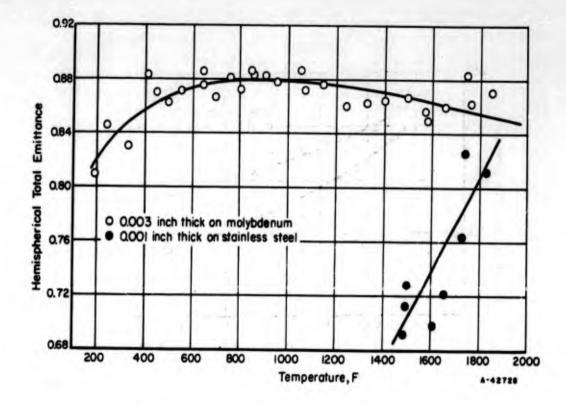

358

1.0 0.9 Normal Spectral Emittance 40 20 90 20 80 80 -Untreated ---- Preheated in air -----Preheated in vacuum Measured at 930 F 02 0.1 0 0 2 3 4 ı 5 6 7 8 9 10 Ш 12 13 4 15 16 17 Wovelength, # A-42726

NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 930 F

NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 930 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X. Untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.2 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air



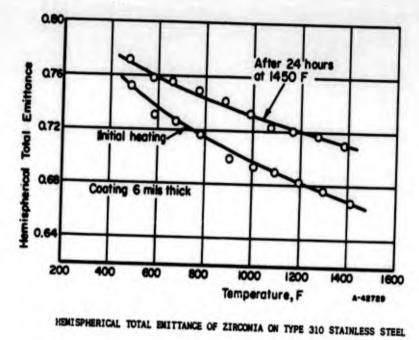
NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF ZIRCONIA ON INCONEL X AT 1390 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X. Untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.2 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with plan- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

360

HEMISPHERICAL TOTAL EMITTANCE OF TWO ZIRCONIUM OXIDE COATED SPECIMENS

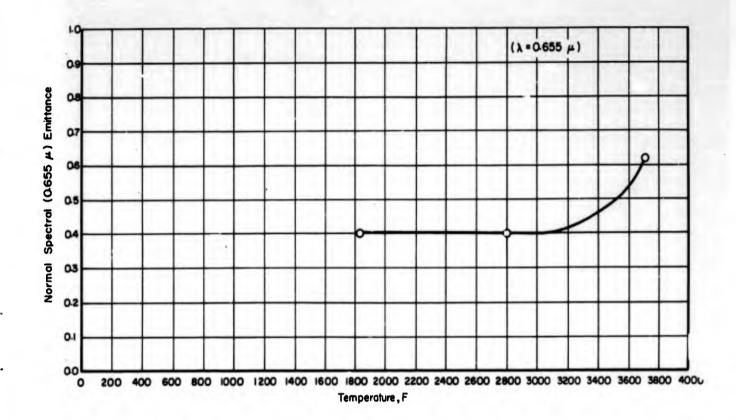

HEMISPHERICAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE ON MOLYBDENUM AND TYPE 310 STAINLESS STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks	
15 Pratt & Whitney Aircraft			2-mil-thick coating applied by Linde Plasmarc process	Hemispherical total emittance.	al Measured in vacuum.	
		to molybdenum strip. Resistance-heated 1-mil-thick coating flame strip specimen.		Data taken from curves.		
			<pre>sprayed by.Metco process on Type 310 stainless steel</pre>	Power dissipated in measured area.		
			strip.	Temperatures measured with thermocouples.		

.

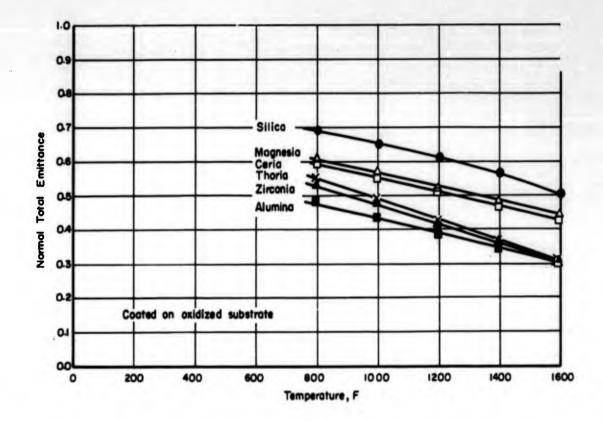
.

t



HEMISPHERICAL IOIAL EMITTANCE OF ZI	IRCONIA ON TYPE 3	BIO STAINLESS	STEEL-REFERENCE INFORMATION	
-------------------------------------	-------------------	---------------	-----------------------------	--

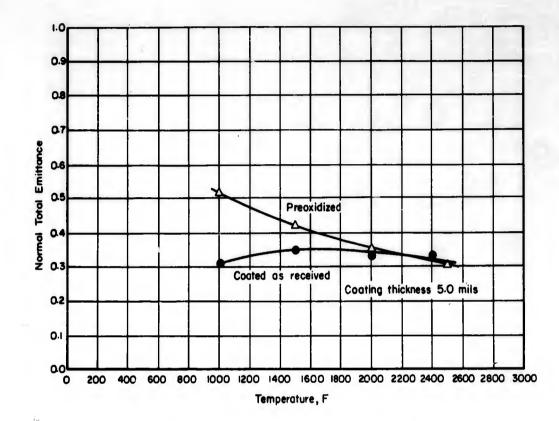
UENTODIES

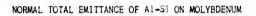

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
18	Pratt & Whitney Aircraft		6-mil-thick coating applied by Metco plasma flame spray process on Type 310 stainless steel tube. Initial heating After 24 hours at 1450 F (cooling and heating show change to be permanent)	Hemispherical total emittance. Resistance-heated tube specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curves.

NORMAL	SPECTRAL	EMITTANCE	OF	THORIUM	OXIDE	ON	TUNGSTEN	AND	MOLYBDENUM	
--------	----------	-----------	----	---------	-------	----	----------	-----	------------	--

NORMAL	SPECTRAL	EMITTANCE	OF	THORTUM	OXIDE	ON	TUNGSTEN	AND	MOLYBDENUMREFERENCE INFORMATION
						- 60			

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Morgan, F. H.	0	Purity or coating thick- ness not given. Thoria cataphoretically coated on tungsten (or molybdenum) ribbon previously flashed in hydrogen.	Resistance-heated, coated ribbon. Temperatures measured with thermocouples. Brightness temper- ature measured with optical pyrometer.	Measured in vacuum Coatings on tungsten and molybdenum gave identical results Data taken from curve and discussion.

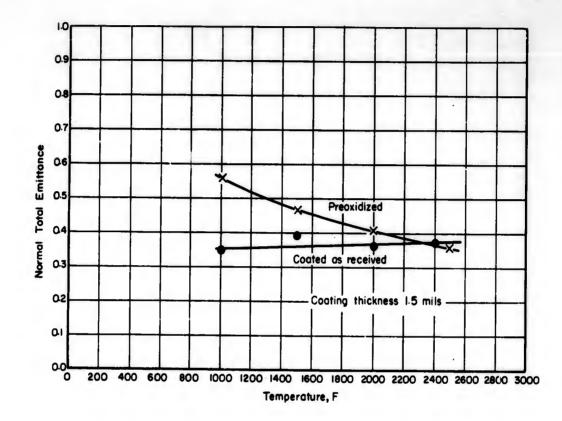

NORMAL TOTAL EMITTANCE OF VARIOUS REFRACTORY OXIDES ON NIMONIC 75

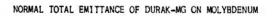

NORMAL TOTAL EMITTANCE OF VARIOUS REFRACTORY OXIDES ON NIMONIC 75--REFERENCE INFORMATION

•

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
12	Sully, Brandes, and Waterhouse	• • • • •	Purest commercially avail- able materials. Applied to oxidized Nimonic 75 strip as water sus- pension. Coating thickness not given. Silica Magnesia Ceria Thoria Zirconia Alumina	Normal total emittance. Resistance-heated metal-strip specimens with ceramic coated surface. Comparison blackbody. Temperatures measured with thermocouples. Thermopile detector.	Measured in air. Data taken from curves. Hemispherical total emittance found to equal normal total emittance for th alumina coated specimen. (Should hold true for the others also.)

...

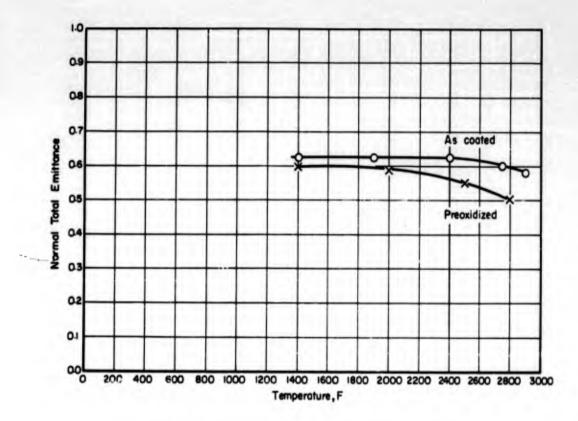




NORMAL TOTAL EMIT	TANCE OF	Al-Si	ON MOLYBDENUM	REFERENCE	INFORMATION
-------------------	----------	-------	---------------	-----------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Anthony and Pearl	•	N.R.C. Al-Si on molybdenum. Coated as received. Preoxidized, then coated. Coating thickness 5 mils.	Normal total emittance. Induction heated specimen. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas.

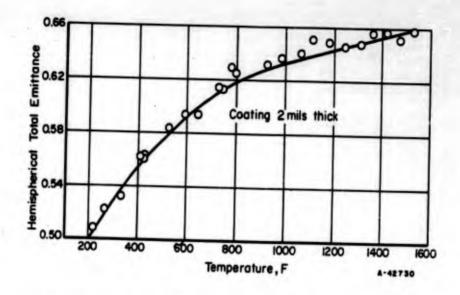
r.,



NORMAL TOTAL EMITTANCE OF DURAK-MG ON MOLYBDENUM--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	. Test Method	Remarks
7	Anthony and Pearl	• ×	Durak-MG coating on molybdenum. Coated as received. Preoxidized, then coated. Coating thickness 1.5 mils, nominal.	Normal total emittance. Induction-heated specimen. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas. Data taken from tables.

×.

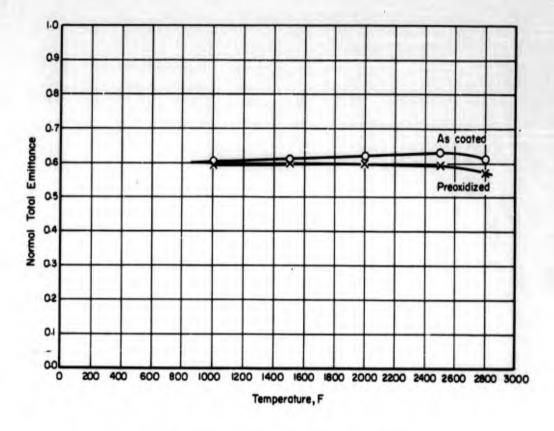


NORMAL TOTAL EMITTANCE OF DURAK-MG ON MOLYBDENUM-0.5 TITANIUM ALLOY

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8	Fieldhouse, Lang, and Blau		Durak-MG coating on molybdenum-0.5 per cent titanium alloy.	Normal and angular total emittance. Induction heated specimen.	Measured in 90 per cent argon, 10 per cent H ₂ gas. Measurements made a
		o x	As coated. Preoxidized at 2000 F for 1 hour. Specimens "flat and smooth" (coating thickness not given).	Spectrometer with prism replaced by plane mirror. Thermocouple detector. Blackbody hole in specimen. Temperature cali- bration with black- body and optical pyrometer.	angles of 0, 30, 45, and 60 degrees with normal to specimen surface. Normal total emittance equals hemispherical total emittance within reported ex- perimental error or ± 5 per cent. Data taken from curves.

NORMAL TOTAL EMITTANCE OF DURAK-MG ON MOLYBDENUM-0.5 TITANIUM ALLOY--REFERENCE INFORMATION

367

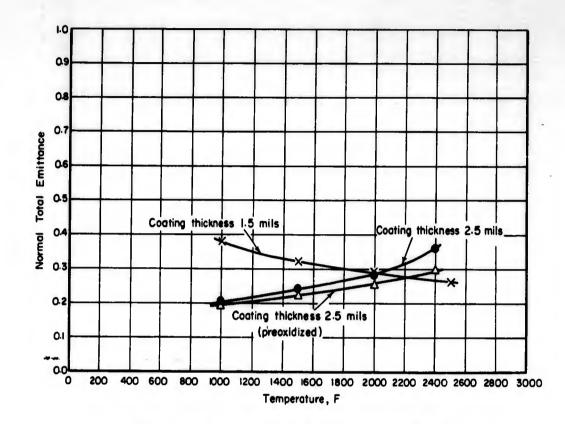


HEMISPHERICAL TOTAL EMITTANCE OF MOLYBDENUM DISILICIDE ON MOLYBDENUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt and Whitney Aircraft		2-mil-thick coating of McSi ₂ applied by the Linde Plasmarc process to both sides of a molybdenum strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

•

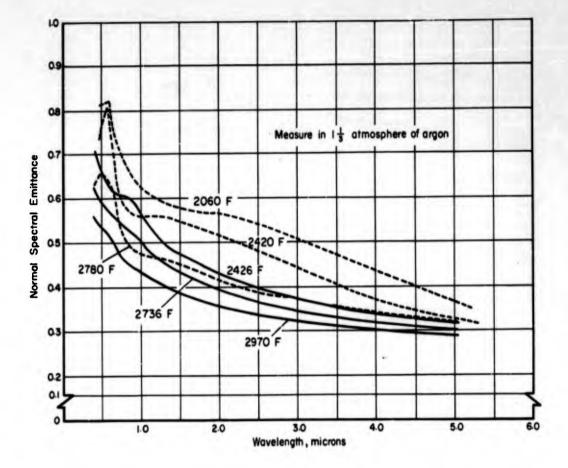
HEMISPHERICAL TOTAL EMITTANCE OF MOLYBDENUM DISILICIDE ON MOLYBDENUM-REFERENCE INFORMATION



NORMAL TOTAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY

NORMAL TOTAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY--REFERENCE INFORMATION

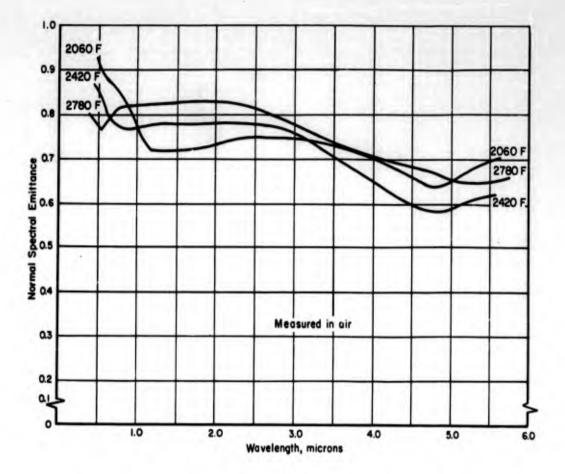
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8	Fieldhouse, Lang, and Blau		Chromalloy W-2 coating on molybdenum-0.5 per cent titanium alloy.	Normal and angular total emittance. Induction heated specimen.	Measured in 90 per cent argon, 10 per cent H2 atmosphere Measurements made
		0	As coated.	Spectrometer with	at angles of 0, 30
		×	Preoxidized, at 2000 F for 1 hour. Coating thickness not given. Specimen "flat and smooth". (W-2 coating thought to be molybdenum disilicide.)	prism replaced by plane mirror. Thermocouple de- tector. Blackbody hole in specimen. Temperature cali- bration with black- body and optical pyrometer.	45, and 60 degrees with the normal to the specimen surface. Normal total emittance equals hemispherical total emittance within reported experi- mental error of ± 5 per cent. Data taken from curves.


369

NORMAL TOTAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Anthony and Pearl	∆ ● X	Molybdenum-0.5 per cent titanium alloy coated with W-2. Coating thickness 1.5 mils. Coating thickness 2.5 mils. Preoxidized, then 2.5-mil thick coating applied. (Alloy not defined.) (W-2 coating thought to be molybdenum disilicide.)	Normal total emittance. Induction-heated speci- men. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas.

NORMAL TOTAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY--REFERENCE INFORMATION

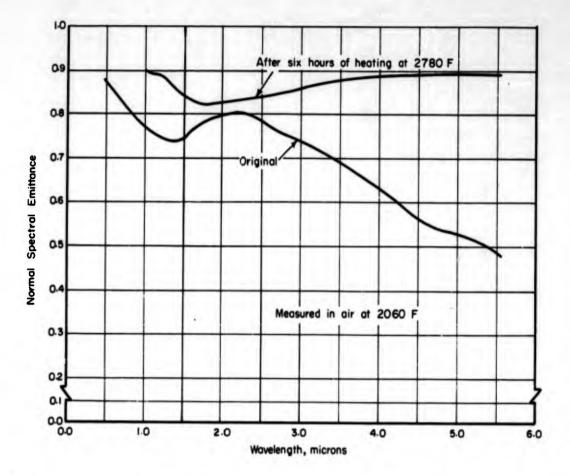

NORMAL SPECTRAL EMITIANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY

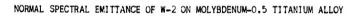
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
9	Coffman, Kibler, and Riethof		Surface condition: as received. Coating thickness not given. Specimen No. 4 - measured at 2426, 2736, and 2970 F.	Normal spectral emittance. Induction-heated specimen. Spectrometer-mono- chromator. Comparison blackbody.	Measured in 1-1/3 atmosphere of argon. Results not repro- ducible at lower temperatures afte heating to higher temperature.
			Specimen No. 5 - measured at 2060, 2420, and 2730 F.		
			(W-2 coating thought to be molybdenum disilicide.)		

NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY--REFERENCE INFORMATION

371

.

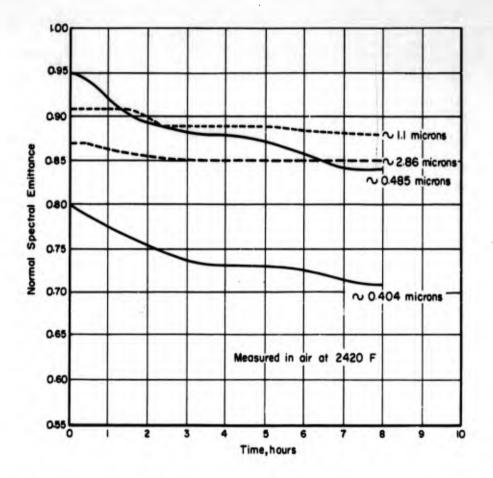

NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY


i

Reference	Composition and Investigator Symbol Surface Condition		Test Method	Remarks	
9	Coffman, Kibler, and Riethof		Surface conditionas received. Coating thickness not given. (W-2 coating thought to be molybdenum disilicide.)	Normal spectral emittance. Induction-heated speci- mens. Spectrometer-mono- chromator. Comparison blackbody.	Measured in air. Data taken from curves. Note: Specimens run at 2060 F, held for 2 hours and rerun; run at 2420 F, held for 2 hours and rerur run at 2780 F, held for 2 hours and rerun. First run at each temperature is shown. The final run at 2780 F showed no further change.

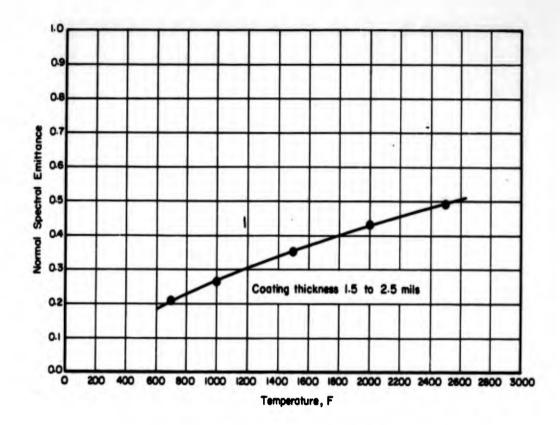
NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY-REFERENCE INFORMATION

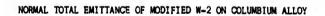
372



Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
9	Coffman, Kibler, and Riethof		Surface conditionas received. Coating thickness not given. (W-2 coating thought to be molybdenum disilicide.)	Normal spectral emittance. Inductively heated specimen. Spectrometer-mono- chromator. Comparison blackbody.	Measured in air. Variation with thermal treatment Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY--REFERENCE INFORMATION

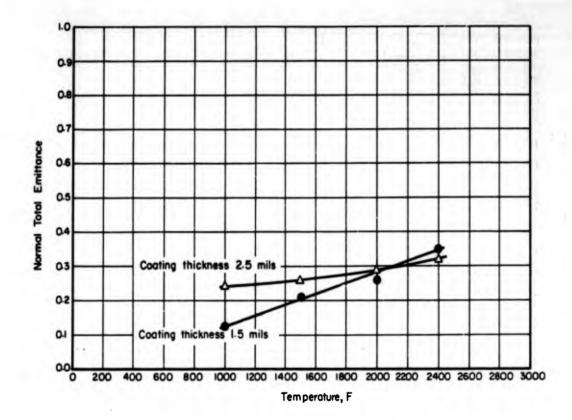

.

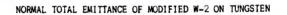


VARIATION OF NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY WITH HEATING TIME IN AIR

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
9	Coffman, Kibler, and Riethof		Surface conditionas received. Coating thickness not given. (W-2 coating thought to be molybdenum disilicide.)	Normal spectral emittance. Inductively heated spec- imen. Spectrometer-mono- chromator. Comparison blackbody.	Measured in air at 2420 F. Data taken from curves. Measured at wave- lengths of 0.404 0.485, 1.1 and 2.86 microns.

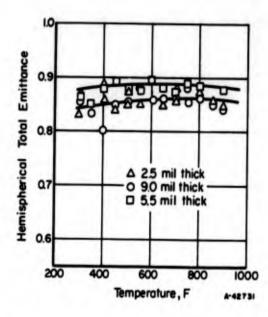
VARIATION OF NORMAL SPECTRAL EMITTANCE OF W-2 ON MOLYBDENUM-0.5 TITANIUM ALLOY WITH HEATING TIME IN AIR--REFERENCE INFORMATION



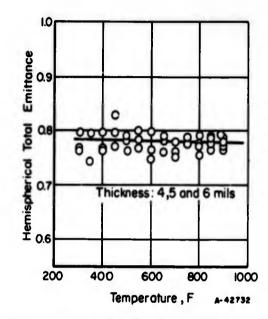

NORMAL T	TOTAL	EMI TTANCE	OF	MODIFIED	W-2	ON	COLUMBIUM	ALLOYREFERENCE	INFORMATION
----------	-------	------------	----	----------	-----	----	-----------	----------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Anthony and Pearl	•	Columbium-10Ti - 10Mo. As received. Coating: T-1 modified W-2, 1.5 to 2.5 mils nominal thickness.	Normal total emittance. Induction-heated speci- men. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas.

Ł

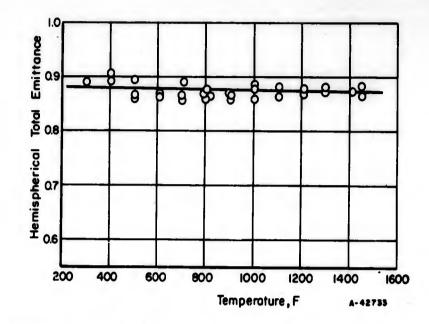

л.

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Anthony and Pearl	• 4	Modified W-2 coating on tungsten. Coating thickness 1.5 mils. Coating thickness 2.5 mils.	Normal total emittance. Induction-heated speci- men. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas.


NORMAL TOTAL EMITTANCE OF MODIFIED W-2 ON TUNGSTEN--REFERENCE INFORMATION

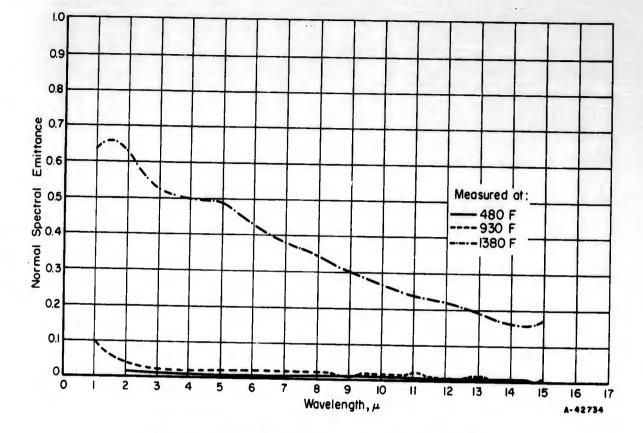
HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM PHOSPHATE BONDED COATING ON ALUMINUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Silicon carbide and silicon dioxide filler. 2.5 mils thick 9.0 mils thick 5.5 mils thick	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curves.


HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM PHOSPHATE BONDED COATING ON ALUMINUM--REFERENCE INFORMATION

HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM PHOSPHATE BONDED COATING ON ALUMINUM

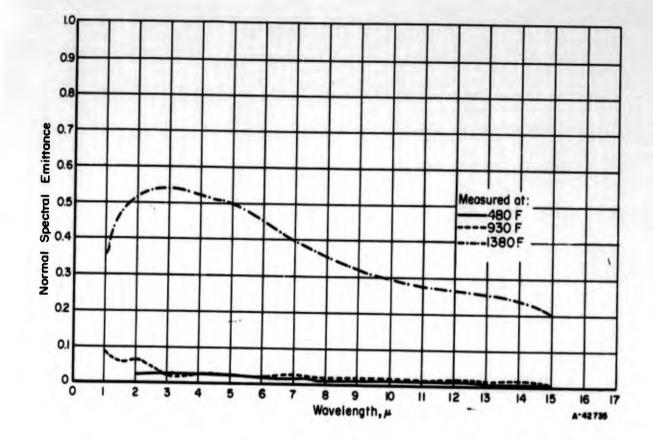
HEMISPHERICAL	TOTAL	EMITTANCE C)F /	ALUMINUM	PHOSPHATE	COATING	ON	ALUMINUM-	-REFERENCE	INFORMATION	
---------------	-------	-------------	------	----------	-----------	---------	----	-----------	------------	-------------	--


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Boron and silicon dioxide filler applied to	Hemispherical total emittance.	Measured in vacuum
			aluminum strip.	Resistance-heated strip specimer. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curves.

HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM PHOSPHATE COATING ON TYPE 310 STAINLESS STEEL

eference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
17	Pratt & Whitney Aircraft		Aluminum phosphate with nickel chrome spinel	Hemispherical total emittance.	Measured in vacuum
			and silicon dioxide filler. Coated both sides.	Resistance-heated strip and tube specimens.	Data taken from curve.
				Power dissipated in measured area.	
				Temperatures measured with thermocouples.	

HEMISPHERICAL TOTAL EMITTANCE OF ALUMINUM PHOSPHATE COATING ON TYPE 310 STAINLESS STEEL-REFERENCE INFORMATION

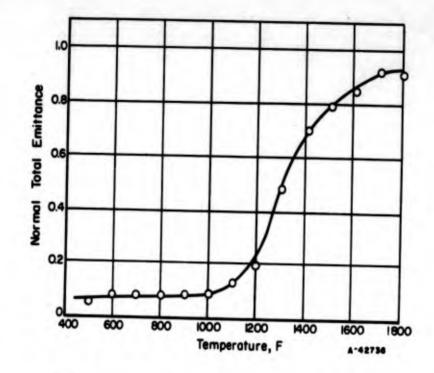


NORMAL SPECTRAL EMITTANCE OF CERAMIC GOLD ON TITANIUM (SHINY FINISH)

NORMAL	SPECTRAL	EMITTANCE	OF	CERAMIC	GOLD	ON	TITANIUMREFERENCE	INFORMATION
--------	----------	-----------	----	---------	------	----	-------------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		As received - shiny finish. Engelhard Industries Bright Gold No. 6854. Applied by spray and fired at 600 C for 5 minutes. Measured at: 480 F 930 F 1330 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

380

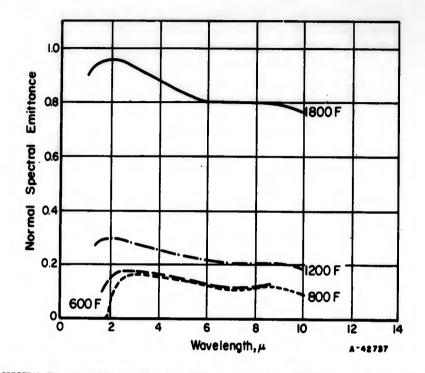


NORMAL SPECTRAL EMITTANCE OF CERAMIC GOLD ON TITANIUM (MATTE FINISH)

NORMAL SPECTRAL EMITTANCE OF CERAMIC GOLD ON TITANIUM (MATTE FINISH) -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		As received - matte finish. Engelhard Industries Bright Gold No. 6854. Applied by spray and fired at 600 C for 5 minutes. Measured at: 480 F 930 F 1380 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

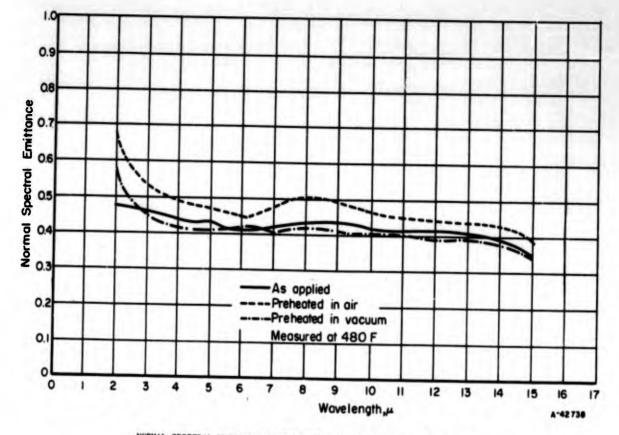
.



NORMAL TOTAL EMITTANCE OF HANOVIA LIQUID GOLD NO. 6896 ON A-286 STEEL

NORMAL TOTAL EMITTANCE OF HANOVIA LIQUID GOLD NO. 6896 ON A-286 STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Hanovia Liquid Gold No. 6896, resinous gold compound dissolved in essential oils. Coating thickness not given.	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.


i.e

NORMAL SPECTRAL EMITTANCE OF HANOVIA LIQUID GOLD NO. 6896 ON A-286 STEEL AT 600, 800, 1200 AND 1800

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Hanovia Liquid Bright Gold No. 6896, a resinous gold compound dissolved in essential oils. Gold content 8 to 20 per cent. Coating thickness not given. Measured ats 600 F 800 F 1200 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

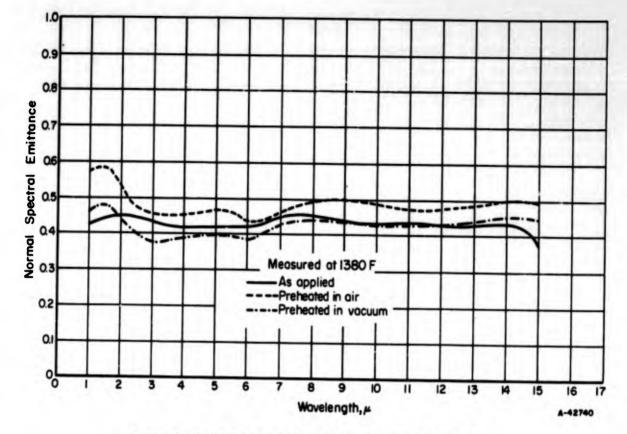
NORMAL SPECTRAL EMITTANCE OF HANOVIA LIQUID GOLD NO. 6896 ON A-286 STEEL--REFERENCE INFORMATION

NORMAL SPECTRAL EMITTANCE OF CHROMIUM NICKEL ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE C	F CHROMIUM-NICKEL O	N INCONEL X AT 480	FREFERENCE	INFORMATION
-----------------------------	---------------------	--------------------	------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		20 per cent chromium - 80 per cent nickel. Flame sprayed on Inconel X. As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air

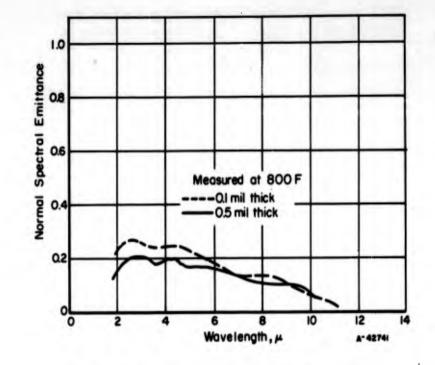
1.0 0.9 0.8 Normal Spectral Emittance 90 20 90 20 90 20 ---Measured at 930F As applied ---Preheated in air ---Preheated in vacuum 02 0.1 0 3 2 5 4 6 8 9 ю 1 12 13 14 15 16 17 Wavelength, µ A-42730


NORMAL SPECTRAL EMITTANCE OF CHROMIUM-NICKEL AT 930 F

NORMAL SPECIFICAL EMITTANCE OF CHROMIUM-NICKEL ON INCONEL X AT 930 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		20 per cent chromium - 80 per cent nickel. Flame sprayed on Inconel X. As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 \times 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chrömator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

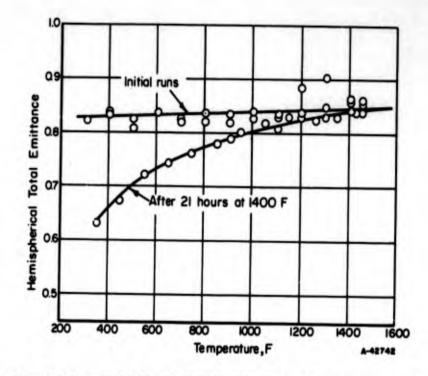
٠...


_____,

NORMAL SPECTRAL EMITTANCE OF CHROMIUM-NICKEL ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF CHROMIUM-NICKEL ON INCONEL X AT 1380 F--REFERENCE INFORMATION

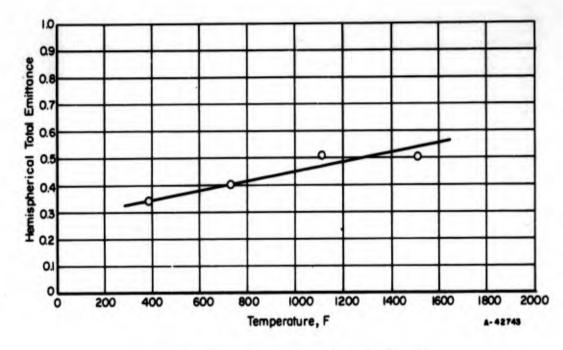
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		20 per cent chromium - 80 per cent nickel. Flame sprayed on Inconel X. As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.


NORMAL SPECTRAL EMITTANCE OF KANIGEN NICKEL COATING ON A-286 STEEL

NORMAL SPECTRAL EMITTANCE OF KANIGEN NICKEL COATING ON A-286 STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13 Composition.	Gravina and Katz		Chemically deposited nickel alloy. Composition given below. Coating thickness: 0.1 mil 0.5 mil	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.
Ni 90-92 P 8-10 C .0400 O ₂ .0023 N ₂ .C047 H ₂ .0016					
Trace impuri	ties of:				
Co, Al, Cu	, Mn, Fe, Pb, and Si.				

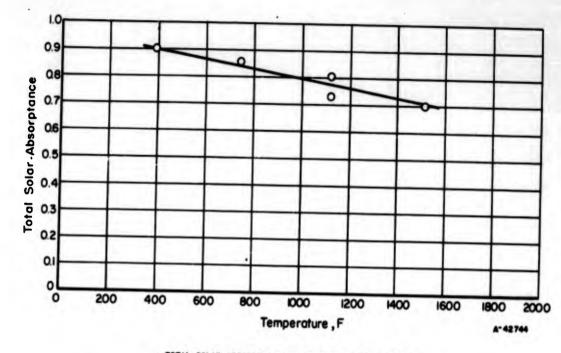
387


с

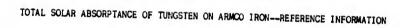
HEMISPHERICAL TOTAL EMITTANCE OF SINTERED NICKEL "C" ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL IDIAL EMILIANCE OF	SINTERED NICKEL	"C" ON TYPE 310	STAINLESS STEEL REFERENCE INFORMATION
----------------------------------	-----------------	-----------------	---------------------------------------

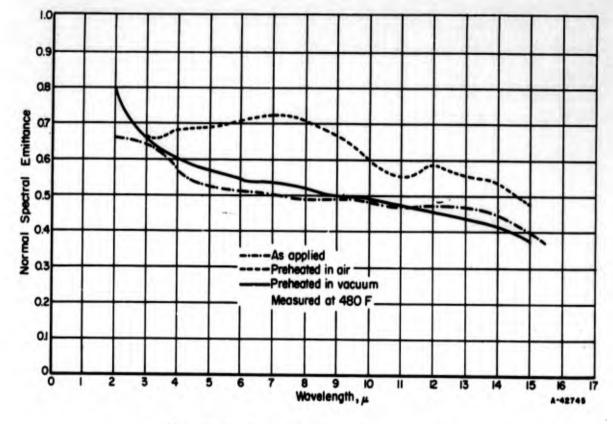
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
17	Pratt & Whitney Aircraft	6 ga	Sintered Nickel "C", lithiated and oxidized. Nickel "C" slurry sprayed on Type 310 stainless steel, sintered in H ₂ , lithiated, and oxidized. Initial runs After 21 hours at 1450 F	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curves.


HEMISPHERICAL TOTAL EMITTANCE OF TUNGSTEN ON ARMCO IRON

HEMISPHERICAL TOTAL EMITTANCE OF TUNGSTEN ON ARMCO IRON-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Butler, Jenkins, Rudkin, and		Metco XP-1106 crystalline tungsten (-200 mesh + 30	Hemispherical total emittance.	Measured in vacuum.
	Laughr i dge		micron) plasma flame sprayed on Armco iron. Surface uniformity judged by eye only. Coating thickness not given.	Disk specimen. Temperature measured with thermocouples. Emittance calculated from mass, specific heat, and rate of change of temperature of the specimen.	Data taken from curve.

.


.

TOTAL SOLAR ABSORPTANCE OF TUNGSTEN ON ARMOO IRON

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Butler, Jenkins, Rudkin, and Laughridge		Metco XP-1106 crystalline tungsten (-200 mesh + 30 micron). Plasma flame sprayed on Armco iron. Surface uniformity judged by eye only. Coating thickness not given.	Total solar absorptance. Carbon-arc-image furnace. Disk specimen. Temperatures measured with thermocouples. Absorptance calculated from mass, specific heat, rate of change of temperature, and known irradiance of the surface. (Solar spectrum simulated by carbon arc)	Measured in vacuum. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE	OF	TUNGSTEN ON	INCONEL	Х	AT	480	FREFERENCE INFORMATION
---------------------------	----	-------------	---------	---	----	-----	------------------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X. Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F Heated 30 minutes in air at 1500 F As applied - untreated	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

1.0 0.9 0.8 Normal Spectral Emittance --- As applied --- Preheated in air Preheated in vacuum Measured at 930 F. 02 0.1 -0 8 9 Wavelength, µ 2 3 Δ 6 10 2 11 13 14 15 16 17 A-42746

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN ON INCONEL X AT 930 F

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN ON INCONEL X AT 930 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X. Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10^{-5} mm Hg pressure at 1500 F As applied - untreated	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

1

392

1.0 0.9 0.8 Normal Spectral Emittance 0.7 --0.6 0.5 0.4 0.3 --- As applied --- Preheated in air Preheated in vacuum 0.2 ---Measured at 1380 F 0.1 0b 2 1 3 4 5 6 8 9 ю 11 12 13 14 15 16 17 Wavelength, µ A-42747

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN ON INCONEL X AT 1380 F--REFERENCE INFORMATION

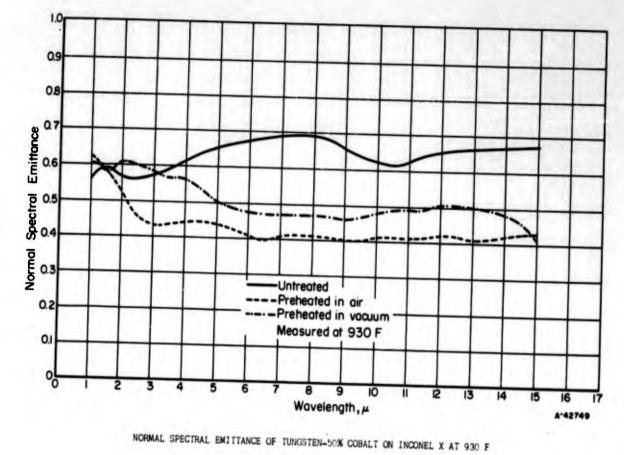
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		Flame sprayed on Inconel X. As applied - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10 ⁻⁵ mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

.

1

.

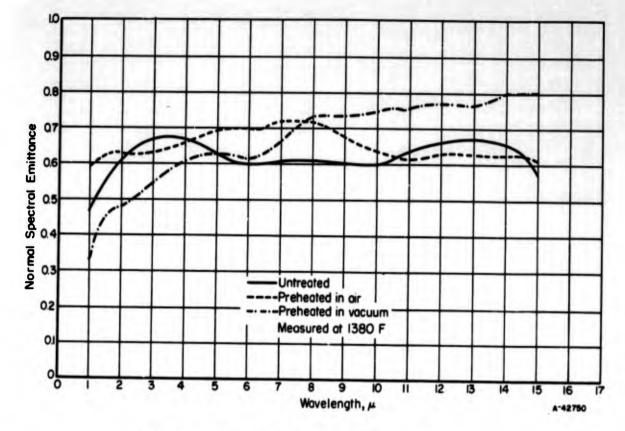
a


1.0 0.9 0.8 Emittance Normal Spectral ----Preheated in vacuum ----Preheated in air _____ Untreated 0.2 Measured at 480 F a 0 8 9 10 Wavelength, μ 2 5 6 10 П 12 13 14 15 16 17 A-42748

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN-50 PER CENT COBALT ON INCONEL X AT 480 F

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN	50 PER CENT COBALT ON INCONEL X AT 480 F REFERENCE	INFORMATION
---------------------------------------	--	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		50 per cent tungsten - 50 per cent cobalt. Flame sprayed on Inconel X. Untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10-5 mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air


394

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN - 50 PER CENT COBALT ON INCONEL X AT 930 F-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		50 per cent tungsten - 50 per cent cobalt. Flame sprayed on Inconel X. Untreated - as sprayed Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10^{-5} mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody" (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

.

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN-50% COBALT ON INCONEL X AT 1380 F

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN - 50 PER CENT COBALT ON INCONEL X AT 1380 F--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
14	Adams, J. G.		50 per cent tungsten - 50 per cent cobalt. Flame sprayed on Inconel X. As sprayed - untreated Heated 30 minutes in air at 1500 F Heated 30 minutes in 6.8 x 10-5 mm Hg pressure at 1500 F	Normal spectral emittance. Furnace-heated disk specimen. Comparison blackbody (Hohlraun). Spectrometer-mono- chromator with photo- multiplier, lead sulphide, and thermo- couple detectors. Temperatures measured with thermocouples.	Measured in air.

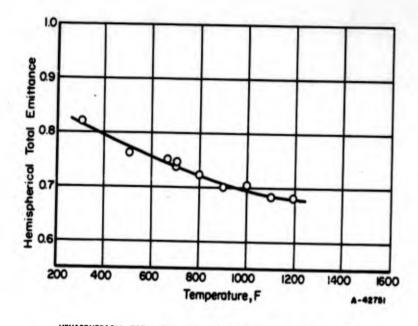
Material	Coating	Coating Thickness, mils	<u>Normal Total</u> 1200 F	Emittance 1500 F
25-52 base with			- 1	
200-mesh overspray coatings of:	Ferrosilicon	2	0.93	0.95
	Chrome oxide	1 1/2	0.95	0.95
	Mild steel scale	2 1/2	0.97	0.98
	Chromite ore No. 1	1 1/2	0.86	0.88
	Chromite ore No. 2 (high Cr ₂ 0 ₃)	1 1/2	0.85	0.89
	Manganese dioxide	3/4	0.92	0.94
	Iron manganate spinel	1 1/2	0.88	0.95
	Nickel oxide	1 1/2	0.92	0.95
25-52 base with 200-mesh Chromite No. 1 as				
a blend containing:	20% Chromite No. 1	1	0.91	0.93
	30% Chromite No. 1	2	0.93	0.95
	30% Chromite No. 1	1 1/4	0.97	0.96
	40% Chromite No. 1	3	0.95	0.96
	40% Chromite No. 1	1 1/4	0.95	0.98
	50% Chromite No. 1	1 3/4	0.93	0.93
verspray of nickel oxide on mild steel 25-52 base with				
overspray of:	Minus 100 and 200-mesh Chromite No. 1	2 1/2	0.85	0,87
	Minus 200 and 325-mesh Chromite No. 1	2 1/2	C.89	0.91
	Minus 325 mesh Chromite No. 1	2 1/2	0.92	0.93
25-52 base with 325-mesh:				
020-m62[]1	Chromite No. 1 overspray	1/2	0.90	0.94
	Chromite No. 1 overspray	3/4	0.96	0.96
	Chromite No. 1 overspray	1 1/2	0.86	0.88
	Chromite No. 1 overspray	2	0.73	0.79

NORMAL TOTAL EMITTANCE OF HIGH EMITTANCE COATINGS AT 1200 AND 1500 F

NORMAL TOTAL EMITTANCE OF HIGH EMITTANCE COATINGS -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
5	Douglass, E. A.			Normal total emittance. Total radiation pyrometer. Coatings on rotating steel cylinder containing blackbody hole. Temperatures measured with thermocouples.	Measured in air Data taken from table.

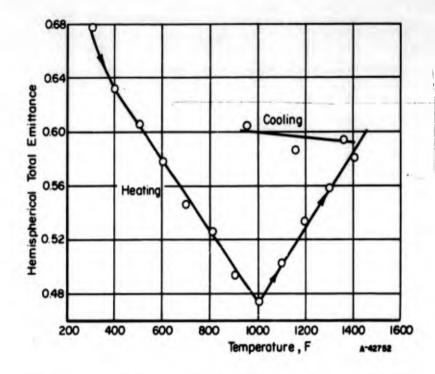
B (1)


		Thicknes	s. mils		Normal Tota	1 Emlations
Top-Coat Oxide	Base(1)	Cover(2)	Тор	Total	Normal Tota 1200 F	1500 F
*Feldspar	5.0	13.0	2.0	20.0	0.32	0.27
*Treopax	5.0	11.0	3.0	19.0	0.27	0.23
*Quartz	4.0	15.0	2.0	21.0	0.49	0.34
*Zirconium spinel	4.5	13.0	3.0	20.5	0.23	0.22
*Alumina	5.0	12.5	2.0	19.5	0.42	0.35
Black Label clay	5.0	14.0	3.0	22.0	0.67	0.60
*Uverite	5.0	12.5	3.0	20.5	0.45	0.33
Zircon	4.0	15.0	2.0	21.0	0.61	0.52
Antimony oxide	5.0	11.0	4.0	20.0	0.62	0.57
Calcium carbonate	4.0	13.0	2.0	19.0	0.62	0.68
*Fused magnesia	5.0	11.5	2.0	18.5	0.57	0.63
*Zinc oxide	4.5	15.5	2.0	22.0	0.51	0,60
*Tin oxide	4.5	13.0	1.5	19.0	6.34	0.35
Zirconia	5.0	13.0	1.5	19.5	0.40	0.34
Diaspore clay	4.5	11.5	2.0	18.0	0.49	0.42
Cerium oxide	5.0	13.0	2.0	20.0	0.35	0.37
Calcium metaphosphate	4.5	13.5	2.0	20.0	0.42	0.65
Vanadium pentoxide	4.5	13.5	2.0	20.0	0.74	0.68
Chrome oxide	4.0	13.0	1.5	18.5	0.79	0.79
XM-1	5.0	15.0	-	20.0	0.69	0.69

NORMAL TOTAL EMITTANCE OF VARIOUS COATINGS AT 1200 AND 1500 F

*Indicates oxides with 5 per cent water glass added as a binder.

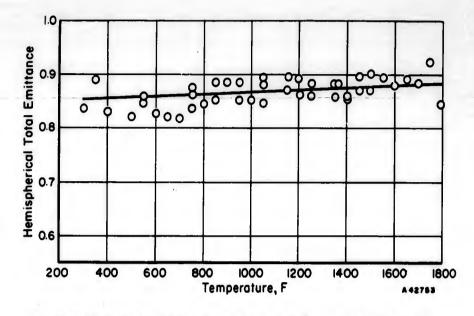
NORMAL TOTAL EMITTANCE OF VARIOUS COATINGS--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
5	Douglass, E. A.			Normal total emittance. Total radiation pyrometer. Coatings on rotating steel cylinder containing blackbody hole. Temperatures measured with thermocouples.	Measured in air. Data taken from table.

HEMISPHERICAL TOTAL EMITTANCE OF BORON NITRIDE ON TANTALUM

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
17	Pratt & Whitney Aircraft		Boron nitride with Synar binder. Coated on both sides of tantalum strip	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curve.

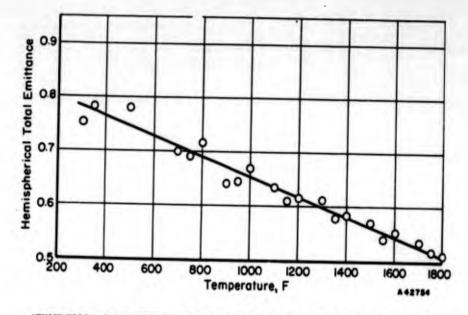
HEMISPHERICAL TOTAL EMITTANCE OF BORON NITRIDE ON TANTALUM-REFERENCE INFORMATION

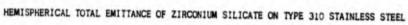


HEMISPHERICAL TOTAL EMITTANCE OF CALCIUM FLUORIDE ON TYPE 310 STAINLESS STEEL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks _
18	Pratt & Whitney Aircraft		A dispersion of calcium fluoride (Acheson Colloid Co. DAG EC 1789).	Hemispherical total emittance. Resistance-heated	Measured in vacuum.
		Coated on both sides of a Type 310 stainless strip.	strip specimen. Power dissipated in measured area.	Data taken from curves.	
			Note: cooling change shown after 20 hours at 1450 F.	Temperatures measured with thermocouples.	

400

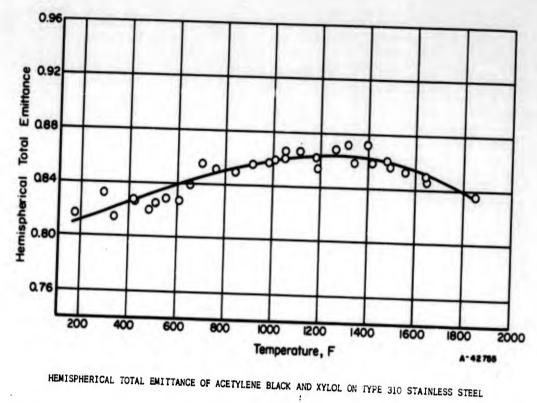



HEMISPHERICAL TOTAL EMITTANCE OF STRONTIUM TITANATE ON TYPE 310 STAINLESS STEEL

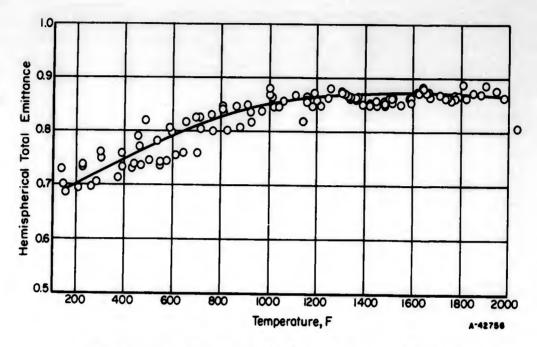
.

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Metco plasma flame spray powder.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

HEMISPHERICAL TOTAL EMITTANCE OF STRONTIUM TITANATE ON TYPE 310 STAINLESS STEEL-REFERENCE INFORMATION

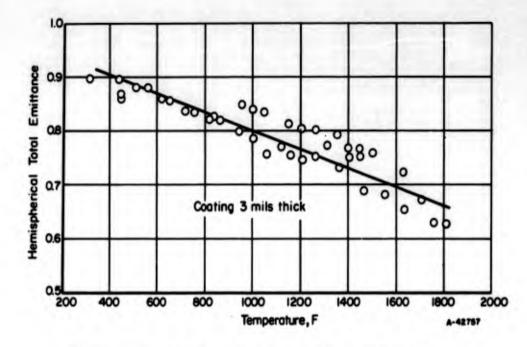


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
16	Pratt & Whitney Aircraft		Metco plasma flame spray powder XP-1116. Flame sprayed on Type 310 stainless steel strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.


HEMISPHERICAL TOTAL EMITTANCE OF ZIRCONIUM SILICATE ON TYPE 310 STAINLESS STEEL --- REFERENCE INFORMATION

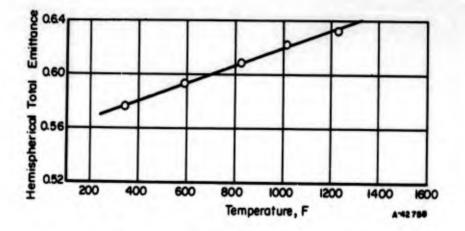
+ 1

HEMISPHERICAL TOTAL EMITTANCE OF ACETYLENE BLACK AND XYLOL ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		Colloidal suspension of acetylene black in xylol (Acheson Colloid Co. DAG EC 1652) sprayed on Type 310 stainless steel strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

HEMISPHERICAL TOTAL EMITTANCE OF CHROMIUM BLACK ON TYPE 310 STAINLESS STEEL

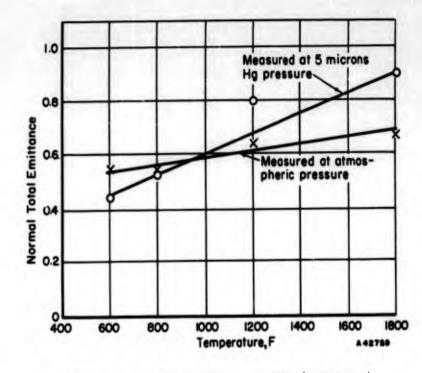
HEMISPHERICAL TOTAL EMITTANCE	F CHROMIUM	A BLACK ON TYPE 310	STAINLESS	STEEL-REFERENCE INFORM	ATION
-------------------------------	------------	---------------------	-----------	------------------------	-------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		Chromium black deposited by a variation of the Solvay process on Type 310 stainless steel strip.	Hemispherical total emittance. Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

HEMISPHERICAL TOTAL EMITTANCE OF KRYLON BLACK ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL TOTAL EMITTANCE OF KRYLON BLACK ON TYPE 310 STAINLESS STEEL -- REFERENCE INFORMATION

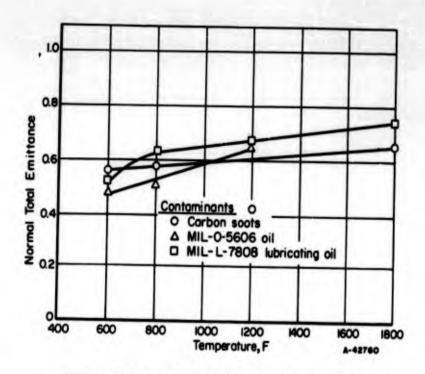
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
18	Pratt & Whitney Aircraft		Commercial Krylon Black, a mixture of carbon	Hemispherical total emittance.	Measured in vacuum.
			black and silicates in a lacquer carrier.	Resistance-heated strip specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Data taken from curve.

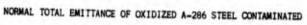


HEMISPHERICAL TOTAL EMITTANCE OF GRAPHITE VARNISH ON TYPE 310 STAINLESS STEEL

HEMISPHERICAL TOTAL EMITTANCE OF GRAPHITE VARNISH ON TYPE 310 STAINLESS STEEL-REFERENCE INFORMATION

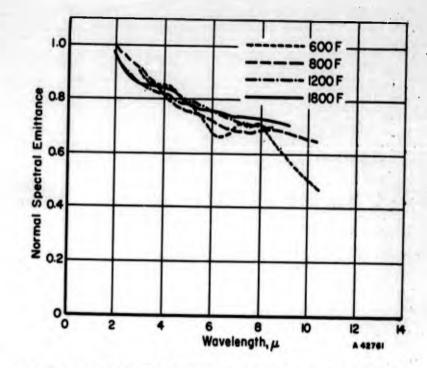
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
15	Pratt & Whitney Aircraft		Spray coated graphite varnish on Type 310 stainless steel. Note: coating flaked off near 1500 F.	Hemispherical total emittance. Resistance-heated wedge specimen. Power dissipated in measured area. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curve.

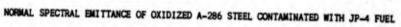

....



NORMAL TOTAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED)

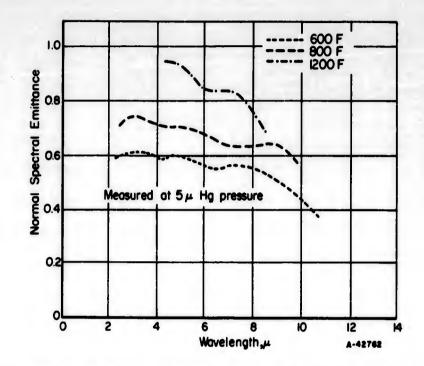
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Surface oxidized and contaminated with JP-4 fuel.	Normal total emittance. Resistance-heated strip specimen.	Measured in air and vacuum.
			At 5 microns (Hg) pressure At atmospheric pressure	Thermistor-bolometer detector. Reference blackbody.	Data taken from curves.
			At atmospheric pressure	Temperatures measured with thermocouples.	

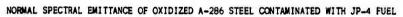

NORMAL TOTAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED) -- REFERENCE INFORMATION



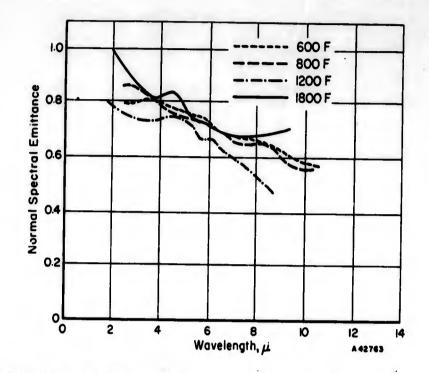
NORMAL IDIAL EMITIANCE OF OXIDIZED TYPE A-	86 STEEL	(CONTAMINATED) REFERENCE INFORMATION
--	----------	--------------------------------------

Reference	Investigator	Composition and ' vestigator Symbol Surface Condition Test Method			Remarks
13	Gravina and Katz		Type A-286 steel, oxidized and contaminated with: carbon soot MIL-O-5606 oil MIL-L-7808 lubricating oil	Normal total emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Reference blackbody. Temperatures measured with thermocouples.	Measured at atmospheric pressure. Data taken from curves.

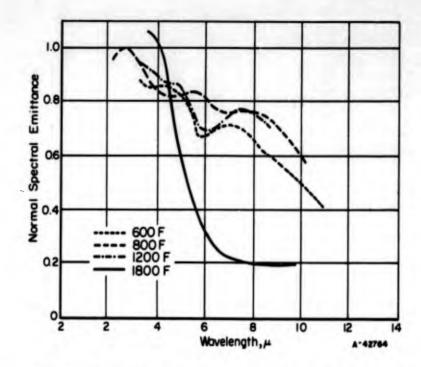

Reference	Investigator	Composition and nvestigator Symbol Surface Condition Test Method				
13	Gravina and Katz		Air oxidized A-286 steel contaminated with JP-4 fuel. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.	


NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED) --- REFERENCE INFORMATION

.


.

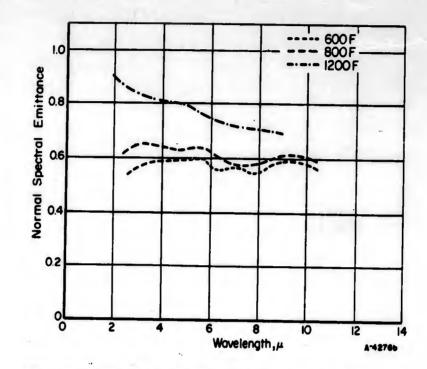
4


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Air oxidized type A-286 steel contaminated with JP-4 fuel. Measured at: 600 F 800 F 1200 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured	Measured in 5 micron Hg pressure. Data taken from curves.

NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL CONTAMINATED WITH CARBON DEPOSITS

NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED) -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Air oxidized type A-286 steel contaminated with carbon deposits. Measured at: 600 F 800 F 1200 F 1800 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolcmeter detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.



NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL CONTAMINATED WITH MIL-L-7809

NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED) -- REFERENCE INFORMATION

Reference	Investigator	Symbc1	Composition and Surface Condition	Test Method	Remarks
13	Gravina and Katz		Air oxidized type A-286 steel contaminated with	 Normal spectral emittance. Resistance-heated strip 	Measured in air.
			MIL-L-7808.	specimen.	Data taken from
			Measured at: 600 F	Thermistor-bolometer detector.	CUIVES.
			300 F	Monochromator.	
			1200 F	Reference blackbody.	
			1800 F	Temperatures measured with thermocouples.	

and the second sec

NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL CONTAMINATED WITH MIL-0-5606

NORMAL SPECTRAL EMITTANCE OF OXIDIZED A-286 STEEL (CONTAMINATED) -- REFERENCE INFORMATION

Reference	Composition and Investigator Symbol Surface Condition Test Method				Remarks
13	Gravina and Katz		Air oxidized type A-286 steel contaminated with MIL-O-5606. Tested at: 600 F 800 F 1200 F	Normal spectral emittance. Resistance-heated strip specimen. Thermistor-bolometer detector. Monochromator. Reference blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

References

- Burgess, D. G., Jasperse, J. R., Marcus, L., Martin, W. S., and Flint, E. P., "Research on Ceramic Coatings With Controlled Reflective and Emissive Properties", WADC TR 60-317 (July, 1960).
- (2) Richmond, J. C., and Stewart, J. E., "Spectral Emittance of Uncoated and Ceramic-Coated Inconel and Type 321 Stainless Steel", NASA Memorandum 4-9-59 W.
- (3) Bevans, J. T., Gier, J. T., and Dunkle, R. V., "Comparison of Total Emittances With Values Computed From Spectral Measurements", Trans. ASME, <u>80</u> (2), 1405-1416 (October, 1958).
- (4) Dull, R. L., "Resistance Heating of Titanium", Republic Aviation Corp., Part I, Contract No. AF 33(600)-38042 (April 15 to July 15, 1959).
- (5) Douglass, E. A., "Investigation Directed Toward the Development of Ceramic Coatings With High Reflectivities and Emissivities for Use in Aircraft Power Plants", WADC TR 56-110 (February, 1956), Contract No. AF 33(616)-2376.
- (6) Morgan, F. H., "Spectral Emissivity of Coatings of Thoria and Other Refractories as a Function of Temperature", Jour. Appl. Phys., 22, 108-109 (1951).
- Anthony, F. M., and Pearl, H. A., "Investigation of Feasibility of Utilizing Available Heat-Resistant Materials for Hypersonic Leading Edge Applications", WADC TR 59-744, Vol III (July, 1960).
- (8) Fieldhouse, I. B., Lang, J. I., and Blau, H. H., Jr., "Investigation of Feasibility of Utilizing Available Heat Resistant Materials for Hypersonic Leading Edge Applications", WADC TR 59-744, Vol IV (October, 1960).
- (9) Coffman, J. A., Kibler, G. M., and Riethof, T. R., "Carbonization of Plastics and Refractory Materials Research", Third Quarterly Progress Report, ASTIA No. AD-245223, Contract No. AF 33(616)-6841 (September 30, 1960).
- Wade, W. R., "Measurements of Total Hemispherical Emissivity of Several Stably Oxidized Metals and Some Refractory Oxide Coatings", NASA Memo 1-20-59L (January, 1959).
- (11) Olson, O. H., and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", WADC TR 56-222, Part III (April, 1960).
- (12) Sully, A. H., Brandes, E. A., and Waterhouse, R. B., "Some Measurements of the Total Emissivity of Metals and Pure Refractory Oxides and the Variation of Emissivity With Temperature", Brit. J. Appl. Physics, <u>3</u>, 97-101 (March, 1952).
- (13) Gravina, A., and Katz, M., "Investigation of High Emittance Coatings to Extend the Mach Number Range of Application of Structural Materials", WADD TR 60-102 (December, 1960).

415 and 416

(14) Adams, J. G., "The Determination of Spectral Emissivities, Reflectivities, and Absorptivities of Materials and Coatings", Northrop Corporation Report No. NOR-61-189 (Aug. 3, 1961).

.

- (15) Pratt and Whitney Aircraft, "Measurement of Spectral and Total Emittance of Materials and Surfaces Under Simulated Space Conditions", Report No. PWA-1863 (July 1, 1959 through June 30, 1960) Contract No. NASW-4.
- (16) Pratt and Whitney Aircraft, "Determination of the Emissivity of Materials", Report PWA-2043.
- (17) Pratt and Whitney Aircraft, "Determination of the Emissivity of Materials", Report PWA-1994.
- (18) Pratt and Whitney Aircraft, "Determination of the Emissivity of Materials", Report PWA-1966.

RADIATIVE PROPERTY DATA

Ceramics and Graphite

TABLE OF CONTENTS

CARBIDES

SILICON CARBIDE

Normal Total Emittance Vs Temperature										421
Normal Spectral Emittance Vs Temperature .										422
Normal Spectral Emittance Vs Wavelength										423
Spectral Reflectance Vs Wavelength		•	•	•	•	•		•	•	424
TANTALUM CARBIDE										
Normal Spectral Emittance (0.5 to 4 Microns) Va	s W	ave	len	gth			•			425
Normal Spectral Emittance (2 to 14 Microns) Vs	Wa	vel	eng	th	•	•	•	•	•	426
TUNGSTEN CARBIDE										
Normal Spectral Emittance Vs Temperature	•			•	•	•	•		•	427
ZIRCONIUM CARBIDE										
Normal Total Emittance Vs Temperature	•		•							428
Normal Spectral Emittance Vs Wavelength	•	•	·	•	•	•	•	•	•	429
GRAPHITES										
ACHESON GRAPHITE				•						
Hemispherical Total Emittance Vs Temperature		•								430
Normal Spectral Emittance Vs Temperature .	•	•	•	•	•	•	•	•	•	431
ATJ GRAPHITE								•		
Hemispherical Total Emittance Vs Temperature				•						432
Total Emittance Vs Emission Angle		•	•							433
Normal Spectral Emittance Vs Wavelength	•	•	•	•	•	•	•	•	•	434
ELECTRODE GRAPHITE										
Normal Total Emittance Vs Temperature	•		•		•			•		435
GBE GRAPHITE										
Normal Total Emittance Vs Temperature										436

TABLE OF CONTENTS (Continued)

Pa	ge
GRAPHITES (Continued)	
GBH GRAPHITE	
Normal Total Emittance Vs Temperature	7
GRAPHITE AND CARBON	
Normal Spectral Emittance Vs Temperature	8
3474D GRAPHITE	
Normal Total Emittance Vs Temperature	19
7087 GRAPHITE	
Normal Total Emittance Vs Temperature	10
NICKEL-TITANIUM CARBIDE HARD METALS	
K150A	
Hemispherical Total Emittance Vs Temperature	1
K151A	
Hemispherical Total Emittance Vs Temperature	12
K152B	
Hemispherical Total Emittance Vs Temperature	43
K153B	
Hemispherical Total Emittance Vs Temperature 4	44
K163B1	
Hemispherical Total Emittance Vs Temperature 4	45
K184B	
Hemispherical Total Emittance Vs Temperature	46

TABLE OF CONTENTS (Continued)

Page

NITRIDES

BORON NITRIDE

Normal Spectral Emittance Vs Wavelength	•	•	•	•	•				•			447	,
---	---	---	---	---	---	--	--	--	---	--	--	-----	---

OXIDES

ALUMINUM OXIDE

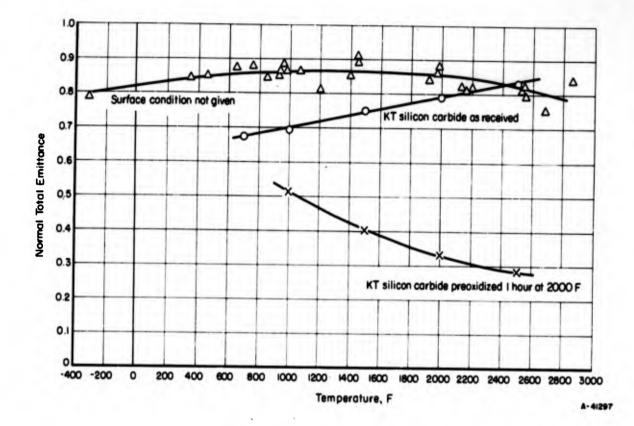
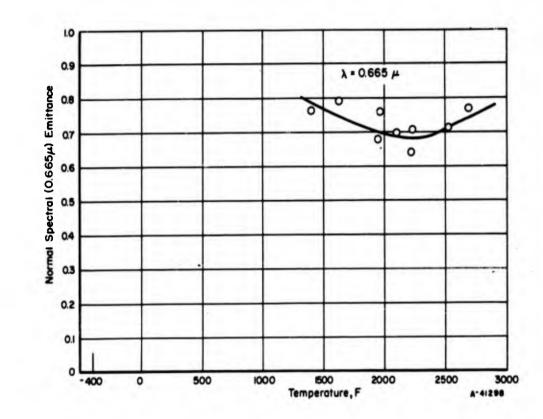

Normal Total Emittance Vs Temperature								448
								449
								450
	•		•	•	•	•	•	451
BERYLLIUM OXIDE								
Normal Total Emittance Vs Temperature						•		452
Spectral Reflectance Vs Wavelength	•	•	•	•	•	•	•	453
MAGNESIUM OXIDE								
Normal Total Emittance Vs Temperature	•	•		•	•			454
Normal Spectral Emittance Vs Temperature		•	•		•			455
Normal Spectral Emittance Vs Wavelength	•	•	•	•	•	•	•	456
ZIRCONIUM OXIDE								
Normal Total Emittance Vs Temperature		•						457
Normal Spectral Emittance Vs Temperature				•	•			458
Normal Spectral Emittance Vs Wavelength								459
Spectral Reflectance Vs Wavelength	•	•	•	•	•	•	•	460
PYROCERAM								
9606 PYROCERAM								
Normal Total Emittance Vs Temperature								461
Normal Spectral Emittance Vs Temperature				•				462
Spectral Reflectance Vs Wavelength	•	•	•	•		•		463
9608 PYROCERAM								
Normal Total Emittance Vs Temperature								464
Normal Spectral Emittance Vs Temperature								465
Spectral Reflectance and Transmittance Vs Wavelengt	h.							466

TABLE OF CONTENTS (Continued)

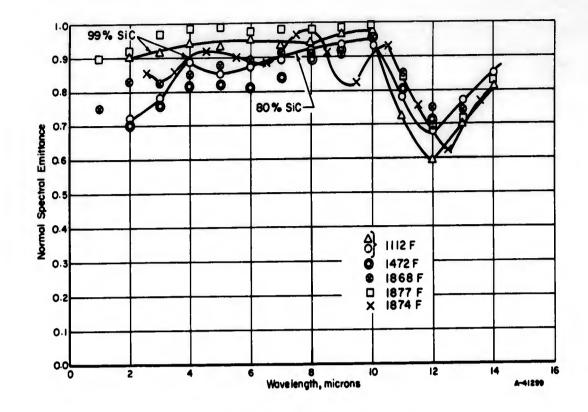
SILICIDES

MOLYBDENUM DISILICIDE

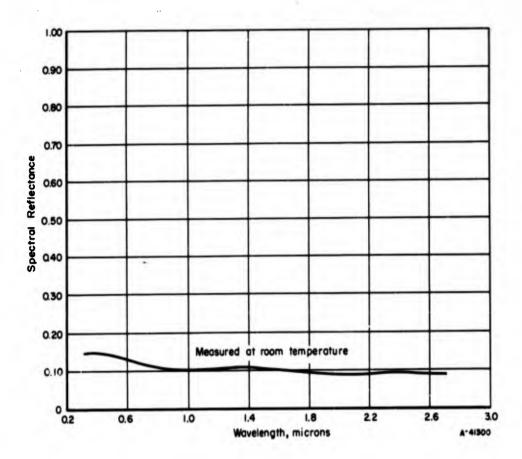

Normal To	tal	En	nitt	and	e 1	78	Ter	npe	erat	tur	e					•							467
Normal Sp	ect	ral	En	nitt	and	ce 1	Vs '	Ter	npe	rat	ture	B	•	•	•	•	•	•	•	•	•	•	468
TABULATION O	FЗ	TOT	AL	s)L	AR	AB	so	RP	TA	NCI	EO	F	FO	UR	GF	AF	HI	TE	5 A	ND		460
TWO OXIDES	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	409
REFERENCES				•			•	•	•		•	•			•	•	•	•		•	•	•	470

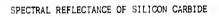
NORMAL TOTAL EMITTANCE OF SILICON CARBIDE

NORMAL TOTAL	. EMITTANCE OF	SILICON	CARBIDEREFERENCE	INFORMATION
--------------	----------------	---------	------------------	-------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Anthony and Pearl	o x	KT Silicon carbide As received Pre-oxidized in air 1 hour at 2000 F	Normal total emittance. Induction-heated specimen. Comparison blackbody. Thermopile detector. Temperatures measured with thermocouples.	Measured in purge of dry helium gas Data taken from table.
2	Olson and Morris	Δ	Silicon carbide Surface condition not given	Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor'detector. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.

NORMAL SPECTRAL	EMITTANCE O)F (SILICON	CARBIDEREFERENCE	INFORMATION
-----------------	-------------	------	---------	------------------	-------------

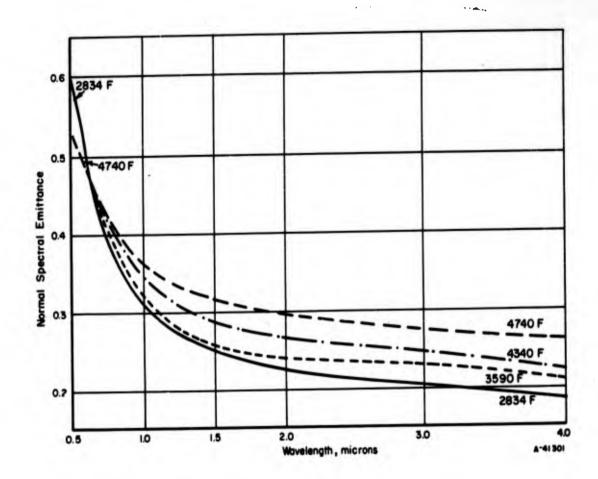

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Silicon carbide Surface condition not given	Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and	Measured in air. Data taken from curves.
				filter system for peak response at 0.665/4. Temperatures measured with thermocouples.	(入 = 0.665 <i>₽</i>)



NORMAL SPECTRAL EMITTANCE OF SILIOON CARBIDE

NORMAL SPECTRAL EMITTANCE OF SILICON CARBIDE -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks		
3	Blau, Marsh, Martin, Jasperse, and Chaffee		Silicon carbide Diamond wheel finish as supplied by manufacturer	Normal spectral emittance. Specimen mounted in wall of cylindrical Globar (SIC) heater.	Measured in air. Data taken from curves. (Curves are drawn		
		Crystolon R (Norton) 99% + pure	Comparison blackbody hole also in heater wall.	through the 1112 F points only.)			
	Measured at 1877 F With the Monochro	Δ	Measured at 1112 F	Temperatures measured			
		Measured at 1877 F	with thermocouples. Monochromator and				
		thermocouple detector.					
	0	Measured at 1112 F					
	0	Measured at 1472 F					
		8	Measured at 1868 F				
4 Blau, Chaffee, Jasperse, and Martin	×	99 per cent silicon carbide (Norton Crystalon R)	Normal spectral emittance. Induction-heated specimen.	Measured in 90% argon, 10% hydrogen atmos- phere.			
	MOLOUN	Flat smooth surface from diamond wheel cutting.	Comparison blackbody. Monochromator and thermocouple detector. Temperatures measured with micro-optical	Data taken from curve.			
		The minima at about 9 and 12 microns are attributed to a thin SiO ₂ surface film. Measured at 1874 F	pyrometer.				

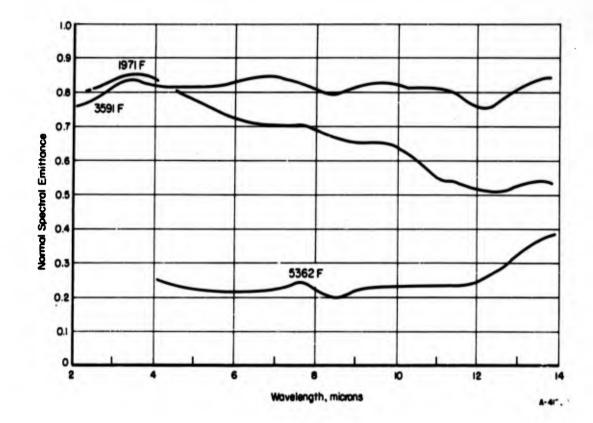


SPECTRAL REFLECTANCE	OF	SILICON	CARBIDE-REFERENCE	INFORMATION
----------------------	----	---------	-------------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Silicon carbide, purity and surface condition not given	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface.	Measured in air a' room temperature. Data taken from curves.
				Integrating sphere reflectometer. Monochromator and - lead sulphide detector.	
				Normal (9 degrees) illumination Diffuse reflection.	

۱.,

ŝ

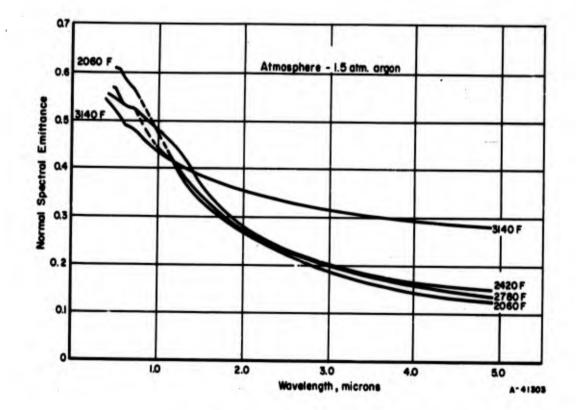

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (0.5 TO 4 MICRONS)

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (0.5 TO 4 MICRONS) --- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
6	Riethof		Tantalum carbide Composition or surface condition not given	Normal spectral emittance. Induction-heated specimen. Blackbody hole in specimen surface.	Measured in argon. Data taken from curves.
			Measured at 2834, 3590, 4340, and 4740 F	Thermocouple detector. Monochromator. Temperatures measured with optical pyrometer.	

.

1

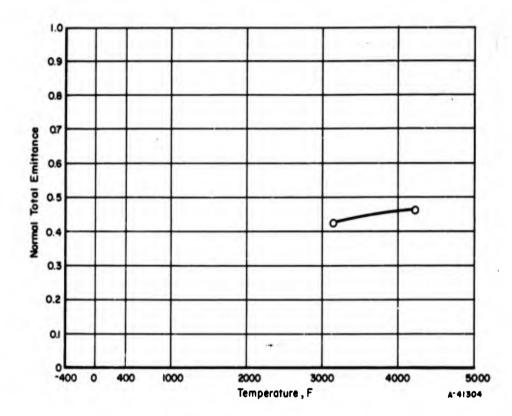


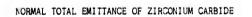
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4 Blau, Chaffee, Jasperse, and Martin		Tantalum carbide Purity not given Surface flat and smooth but not polished	Normal spectral emittance. Induction-heated specimen. Comparison blackbody. Monochromator and thermo- couple detector.	Measured in 90% argon 10% hydrogen atmos- phere. Data taken from	
			(Note: Surface analysis after 3234 K (5362 F) run showed thin tantalum oxide film)	Temperatures measured with optical pyrometer.	curves.

NORMAL SPECTRAL EMITTANCE OF TANTALUM CARBIDE (2 TO 14 MICRONS) --- REFERENCE INFORMATION

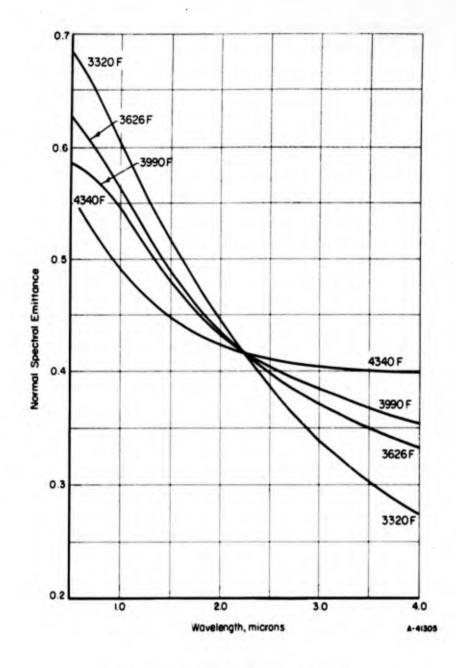
÷

426


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
5 Coffman, Coulson, and Kibler		Tungsten carbide (WC) Surface condition or purity not given	Normal spectral emittance. Induction-heated specimen. Blackbody hole in specimen surface.	Measured in 1.5 atmosphere of argon. Data taken from	
	format	Note: Surface trans- formation from WC to W ₂ C at 3140 F	Thermocouple detector. Monochromator. Temperatures measured with optical pyrometer.	Curves.	
		Measured at 2060, 2780, 2420, and 3140 F			

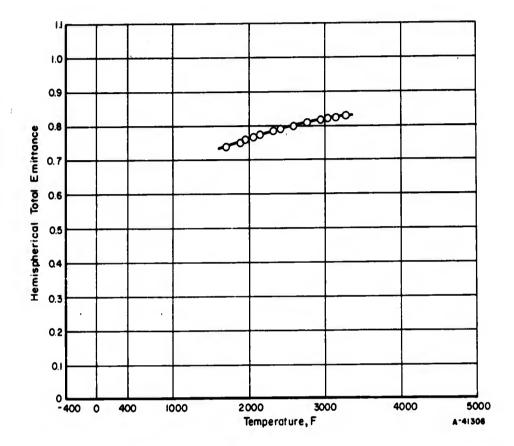

NORMAL SPECTRAL EMITTANCE OF TUNGSTEN CARBIDE--REFERENCE INFORMATION

427


.

.

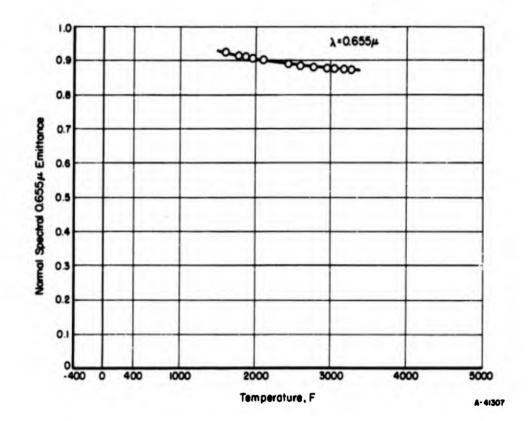
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
5	Coffman, Coulson, and Kibler	0	Formed into "toadstool" shaped specimen Composition and surface condition not given	Normal total emittance. Induction-heated specimen. Comparison blackbody. Temperatures measured with optical pyrometer.	Measured in 1.5 atmosphere of dry, pure, argon. Data taken from curve.


NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CARBIDE

NORMAL SPE	CTRAL EMIITANCE	CF	ZIRCONIUM	CARBIDEREFERENCE	INFORMATION
------------	-----------------	----	-----------	------------------	-------------

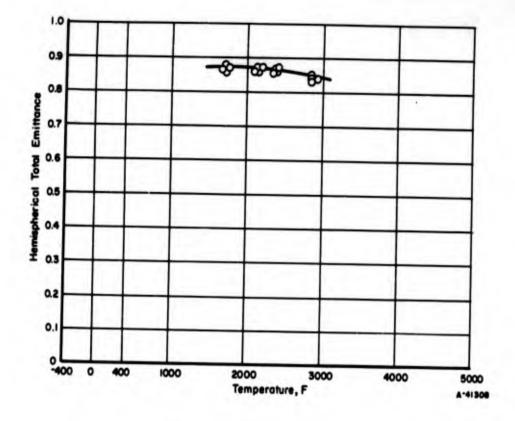
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
<u>~</u> 6	Riethof		Zirconium carbide Composition or surface condition not given	Normal spectral emittance. Induction-heated specimen. Blackbody hole in specimen surface.	Measured in argon. Data taken from curves.
			Measured at 3320, 3626, 3990, and 4340 F	Thermocouple detector. Monochromator. Temperatures measured with optical pyrometer.	

.


.

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
9	Jain and Krishnan	0	Acheson graphite Sample held at 2000 K for 1 hour in vacuum, until emittance became steady and reproducible	Hemispherical total emittance. Hole-in-tube method. Correction of inside blackbody temperature to surface temperature made using known thermal conductivity and wall thickness. Blackbody temperature measured with optical pyrometer.	Measured in vacuum. Data taken from curves.

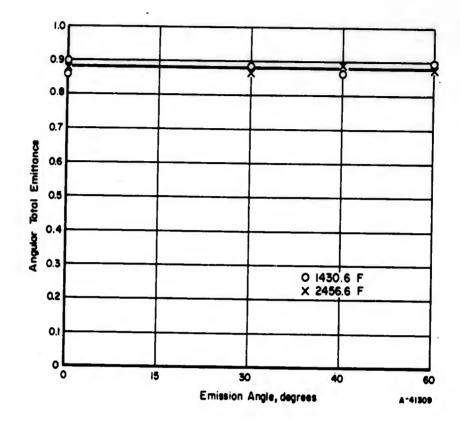
HEMISPHERICAL TOTAL EMITTANCE OF ACHESON GRAPHITE-REFERENCE INFORMATION



NORMAL SPECTRAL EMITTANCE OF ACHESON GRAPHITEREFERENCE INFORMATI	L SPECTRAL EMITTANCE OF ACHESON GRAPHITE-	-REFERENCE INFORMATION	I
--	---	------------------------	---

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
9	Jain and Krishnan	0	Acheson graphite Specimen held at 2000 K for 1 hour in vacuum until emittance became steady and reproducible	Normal spectral emittance. Hole-in-tube method. Temperatures measured with optical pyrometer.	Measured in vacuum. Data taken from curves.
					$(N = 0.665 \mu)$

•


HEMISPHERICAL TOTAL EMITTANCE OF ATJ GRAPHITE

HEMISPHERICAL TOTAL EMITTANCE OF ATJ GRAPHITE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Blau, Chaffee, Jasperse, and Martin	0	ATJ graphite Surface condition not given	Normal total emittance. (Hemispherical emittance equals normal emittance for this specimen.) Induction-heated specimen. Monochromator with prism replaced by plane mirror. Thermocouple detector. Blackbody hole drilled in specimen surface. Temperatures measured with micro-optical pyrometer.	Meusured in 90% argon - 10% hydrogen atmos- phere. Data taken from curves.

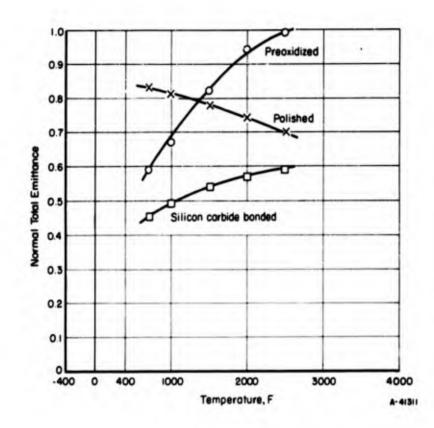
t.

432

" TOTAL EMITTANCE VERSUS EMISSION ANGLE OF ATJ GRAPHITE

TOTAL EMITTANCE VERSUS EMISSION ANGLE OF ATJ GRAPHITE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
J	Blau, Chaffee, Jasperse, and Martin		ATJ graphite Surface smooth and flat, but not polished.	Total emittance measured normally and at 30, 45, and 60 degrees from the	Measured in 90% argon - 10% hydrogen atmos-
		0	Measured at 1431 F	normal.	phere.
		×	Measured at 2457 F	Induction-heated specimen. Monochromator with	Data taken from curves.
				prism replaced by plane mirror.	Normal emittance equals hemispher-
				Thermocouple detector. Blackbody hole drilled in specimen surface.	ical emittance for this specimen
				Temperatures measured with micro-optical pyrometer.	


.

NORMAL SPECIRAL EMITTANCE OF ATJ GRAPHITE

NORMAL SPECTRAL EMITTANCE OF ATJ GRAPHITE--REFERENCE INFORMATION

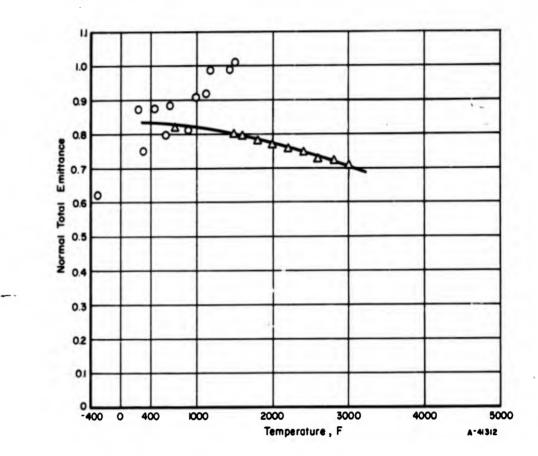
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Blau, Chaffee, Jasperse, and Martin		ATJ graphite Surface smooth and flat but not polished	Normal spectral emittance. Induction-heated specimen. Monochromator and thermo- couple detector. Blackbody hole drilled in specimen surface. Temperatures measured with micro-optical pyrometer.	Measured in 90% argon - 10% hydrogen atmos- phere. Data taken from curves.

NORMAL TOTAL EMITTANCE OF ELECTRODE GRAPHITE

NORMAL TOTAL EMITTANCE OF ELECTRODE GR	RAPHITEREFERENCE I	INFORMATION
--	--------------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Anthony and Pearl		Electrode graphite	Normal total emittance.	Measured in purge
		0	Preoxidized	Induction-heated specimen.	of helium gas. Data taken from table.
		×	Polished	Comparison blackbody. Thermopile detector. Temperatures measured with thermocouples.	
		٥	Silicon carbide bonded		

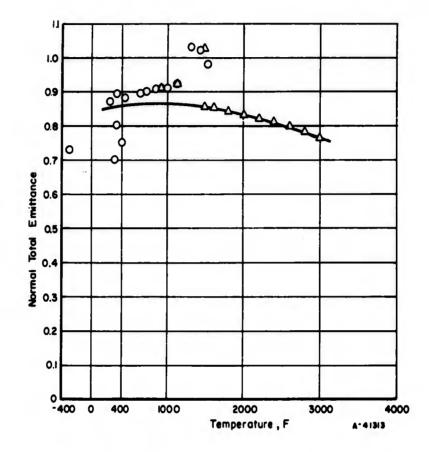
.


435

.

.

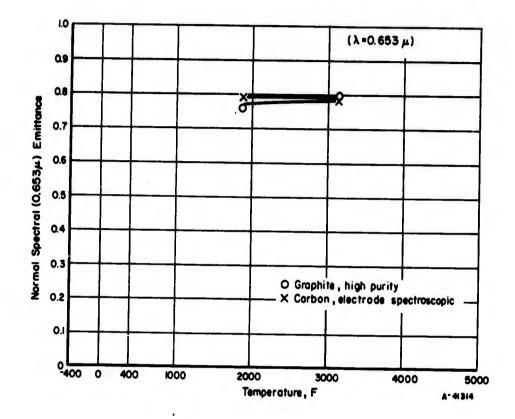
.

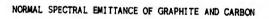

,

NORMAL	TOTAL	EMI TTANCE	OF	GBE	GRAPHI TEREFERENCE	INFORMATION
--------	-------	------------	----	-----	--------------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8	Olson and Morris	0	National GBE graphite Surface condition not given	Normal total emittance. Resistance-heated strip specimen. Comparison blackbody. Temperatures measured with thermacouples. Thermistor detector.	Measured in vacuum. Data taken from curves.
7	Betz, Olson, Schurin, and Morris	Δ	Same as above	Same as above.	Same as above.

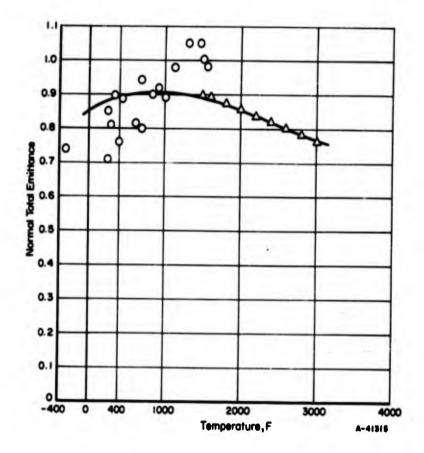
NORMAL TOTAL EMITTANCE OF TYPE GBH GRAPHITE


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8 Olson and Morris	Olson and Morris	0	National GBH graphite Surface condition not given	Normal total emittance. Resistance-heated strip specimen. Compariscn blackbody. Thermistor detector.	Measured in vacuum Data taken from curves.
		Note: Changed with cycling	Temperatures measured with thermocouples.		
7	Betz, Olson, Schurin, and Morris	Δ	Surface condition not given	Same as above.	Measured in vacuum Data taken from table.


NORMAL TOTAL EMITTANCE OF TYPE GBH GRAPHITE--REFERENCE INFORMATION

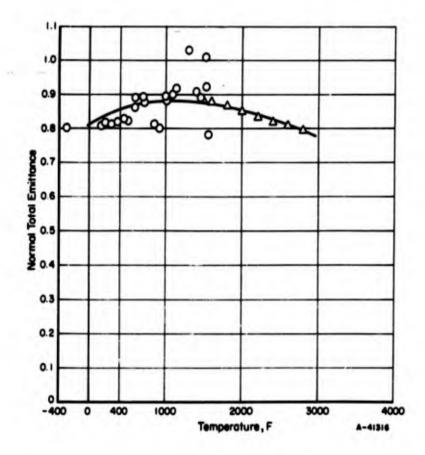
.

.


.

NORMAL SPEC	TRAL EMITTANCE	OF	GRAPHITE	AND	CARBONREFERENCE	INFORMATION
-------------	----------------	----	-----------------	-----	-----------------	-------------

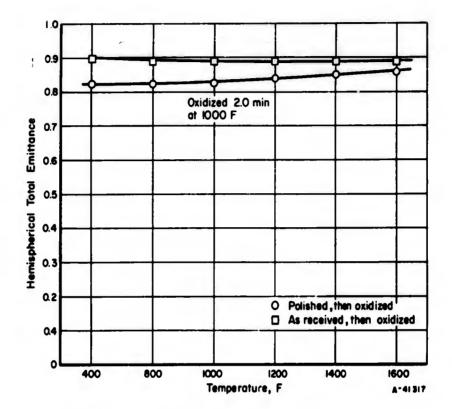
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
10 Thorn and Simpson	0	High-purity, medium- density graphite	Normal spectral emittance. Modified hole-in-tube method.	Measured in vacuum.	
		×	Spectroscopic electrode carbon	Temperatures measured	Data taken from curves.
			Surface condition, polished and then heated to 1800 K in vacuum for 3 hours	with calibrated optical pyrometer.	(∕\= 0.653≁)


NORMAL TOTAL EMITTANCE OF TYPE 3474D GRAPHITE

leference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8	Olson and Morris	0	Speer 3474D graphite Surface condition not given Note: Changed with cycling	Normal total emittance. Resistance-heated strip specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.	Measured in vacuum. Data taken from curves.
7	Betz, Olson, Schurin, and Morris	Δ	Surface condition not given	Same as above.	Measured in vacuum. Data taken from table.

NORMAL TOTAL EMITTANCE OF TYPE 3474D GRAPHITE--REFERENCE INFORMATION

.

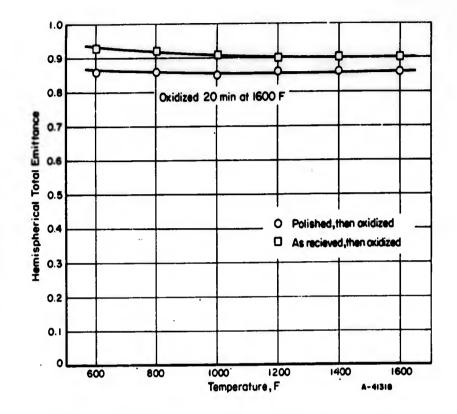

,

NORMAL TOTAL EMITTANCE OF TYPE 7087 GRAPHITE

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
8	Olson and Morris	0	Speer 7087 graphite Surface condition not given Note: Changed with cycling	Normal total emittance. Resistance-heated strip specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.	Measured in vacuum Data taken from curves.
7	Betz, Olson, Schurin, and Morris	۵	Surface condition not given	Same as above.	Measured in vacuum. Data taken from table.

NORMAL TOTAL EMITTANCE OF TYPE 7087 GRAPHITE -- REFERENCE INFORMATION

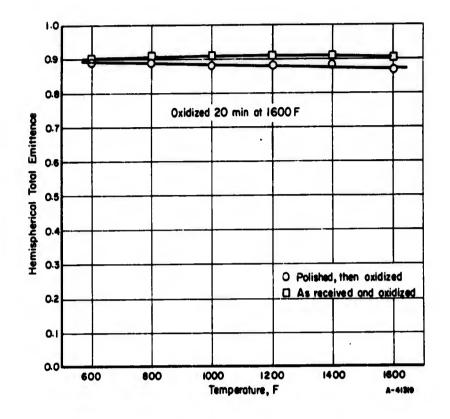
HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED KI50A NI-TIC HARD METAL


HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K150A NI-TIC HARD METAL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11 Wade and Cases	Wade and Casey		Composition: 10Ni, 80TiC, 10CbC	Hemispherical total emittance. (Total emittance	Measured in air. Data taken from curves.
		D	As received, then oxidized	measured normally and at various angles. Normal emittance	
		0	Polished: Hand lapped with 3 micron and 1 micron diamond paste, then oxidized	equals hemispherical emittance.) Thermopile total ratiation detector. Resistance-heated specimen. Comparison blackbody. Temperatures measured with thermocouples.	

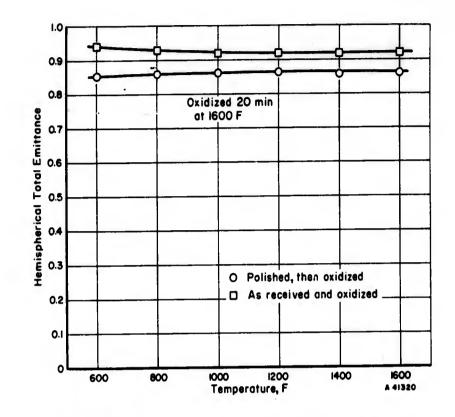
441

:


.

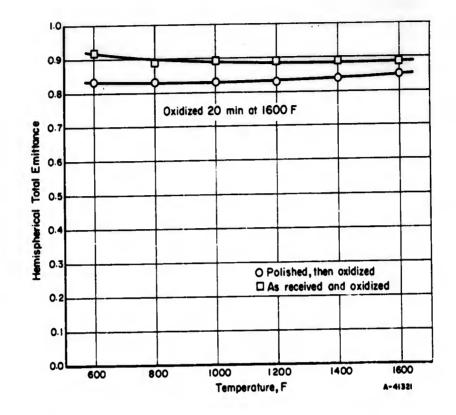
HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K151A NI-TIC HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K151A NI-TIC HARD METAL-REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Wade and Casey	D	Composition: 20Ni, 70TiC, 10CbC As received, then oxidized Polished; hand lapped with 3-micron and 1-micron diamond paste, then oxidized	Hemispherical total emittance. (Total emittance measured normally and at various angles. Normal emittance equals hemispherical emittance.) Thermopile total radiation detector. Resistance-heated specimen. Comparison blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.
	Composition	20Ni, 70T	iC, 10CbC		

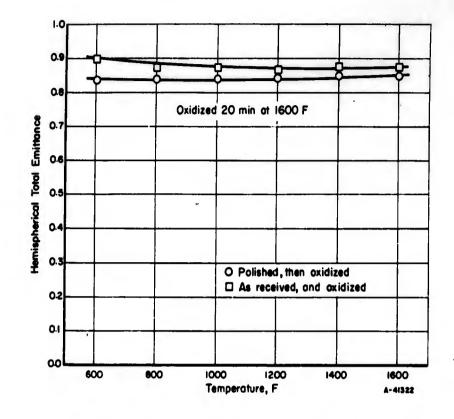
HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED Y152B NI-TIC HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K152B NI-TIC HARD METAL--REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11 Wade and Casey		Composition: 30Ni, 65TiC, 5CbC	Hemispherical total emittance. (Total emittance	Measured in air. Data taken from curves.	
		DO	As received, then oxidized Polished; hand lapped with 3-micron and 1-micron diamond paste, then oxidized	measured normally and at various angles. Normal emittance equals hemispherical emittance.) Thermopile total	
	radiation de Resistance-he specimen.	radiation detector. Resistance-heated specimen.	÷		
				Comparison blackbody. Temperatures measured with thermocouples.	

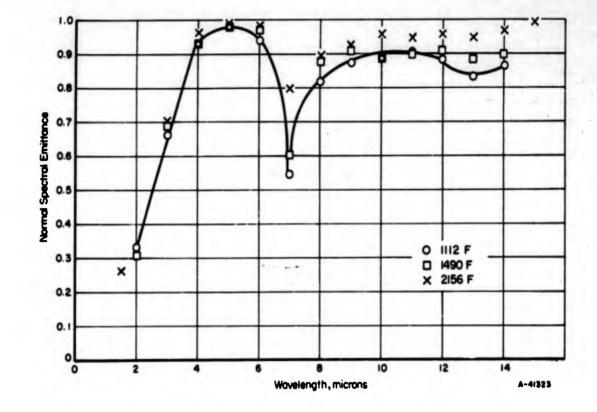
HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K153B Ni-TIC HARD METAL

							11100	METAL DECEDENCE	TNEODHATTON
HEMISPHERICAL TO	1ATC	EMITTANCE	OF .	OX I DI ZED	K153B	N1-11C	HARD	MelalKerekenue	THEORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11	Wade and Casey		Composition: 40Ni, 54TiC, 6CbC	Hemispherical total emittance. (Total emittance	Measured in air. Data taken from curves.
			As received, then oxidized 20 minutes at 1600 F	measured normally and at various	
	. <i>.</i>	0	Polished; lapped with 3-micron and 1-micron diamond paste, then oxidized 20 minutes at	angles. Normal emittance equals hemispherical emittance.)	
			1600 F	Thermopile total radiation detector.	
				Resistance-heated specimen.	
				Comparison blackbody.	
		ъ.		Temperatures measured with thermocouples.	

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K163B1 Ni-TIC HARD METAL

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
11 Wade and Casey	Wade and Casey		Composition: 33.3Ni, 54TiC, 6.7Mo, 6CbC	Hemispherical total emittance. (Total emittance	Measured in air. Data taken from curves.
			As received, then oxidized 20 minutes at 1600 F	measured normally and at various	
		0	Polished; lapped with 3- micron and 1-micron diamond paste, then oxidized 20 minutes at 1600 F	angles. Normal emittance equals hemispherical emittance.) Thermopile total radiation detector.	
				Resistance-heated specimen.	
			£	Comparison blackbody. Temperatures measured with thermocouples.	

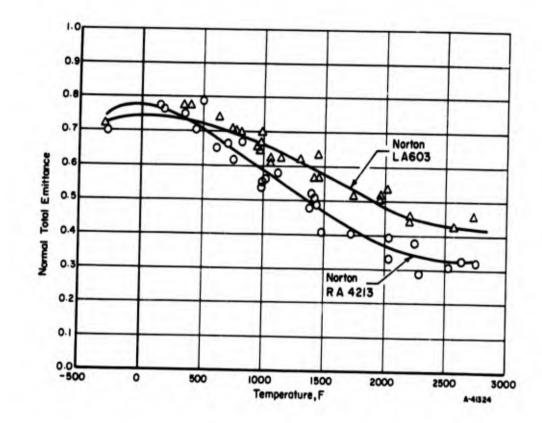

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K163B1 Ni-Tic HARD METAL--REFERENCE INFORMATION

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K184B NI-TIC HARD METAL

HEMISPHERICAL TOTAL EMITTANCE OF OXIDIZED K184B NI-TIC HARD METAL--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
ll Wade	Wade and Casey		Composition: 40Ni, 40TiC, 10CbC, 4Mo, 3Al, 3Cr	Hemispherical total emittance. (Total emittance	Measured in air. Data taken from curves.
		D	As received, then oxidized 20 minutes at 1600 F	measured normally and at various angles.	
		0	Polished; lapped with 3- micron and 1-micron diamond paste, then	Normal emittance equals hemispherical emittance.)	
			oxidized 20 minutes at 1600 F	Thermopile total radiation detector.	
		•		Resistance-heated specimen.	
				Comparison blackbody.	
				Temperatures measured with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF BORON NITRIDE


NORMAL SPECTRAL EMITTANCE OF BORON NITRIDE-REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Blau, Marsh, Martin, Jasperse, and Chaffee		Boron nitride Purity and surface condition not given	Normal spectral emittance. Specimen mounted in wall of cylindrical	Measured in air. Data taken from curves.
		0	Measured at 1112 F	Globar (SiC) heater.	(Curve drawn
		D	Measured at 1490 F	Comparison blackbody hole in heater wall.	through 1112 F points only.)
		×	Measured at 2156 F	Monochromator and thermocouple de- tector. Temperatures measured with thermocouples.	

...

1

	Olson and Morris	^	Norton 14603		
ce	Investigator	Symbol	Composition and Surface Condition	Test Method	Rem
			ويتحمدون ومحمولي والمترك والمترك والمراجع		

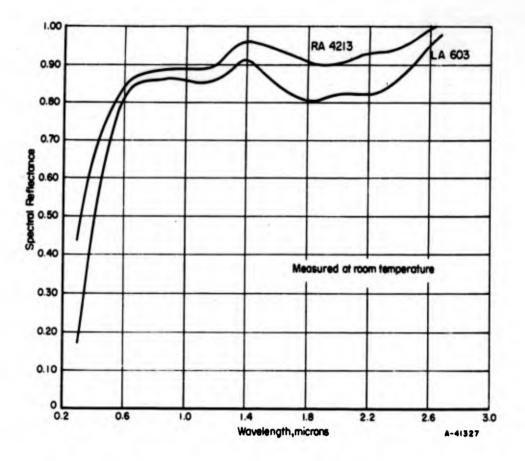
NORMAL TOTAL EMITTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Surface Condition	Test Method	Remarks
2	Olson and Morris	Δ	Norton LA603 Aluminum oxide	Normal total emittance. Furnace-heated specimen.	Measured in air. Data taken from
			Norton RA4213 Aluminum oxide	Comparison blackbody. Temperatures measured with thermocouples	curves.
			Surface condition not given	Thermistor detector.	

NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Norton LA603 Aluminum oxide	Normal spectral emittance. Furnace-heated specimen. Comparison blackbody.	Measured in air. Data taken from curves.
		Δ	Norton RA4213 Aluminum oxide	Commercial radiation detector and filter system for peak response at 0.665µ. Temperatures measured with thermocouples.	(A = 0.665µ)

۷

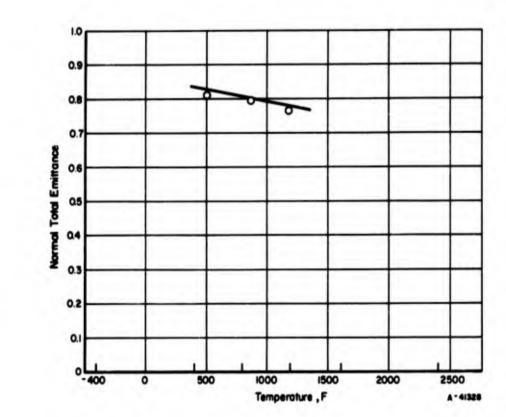

NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE

1

NORMAL SPECTRAL EMITTANCE OF ALUMINUM OXIDE -- REFERENCE INFORMATION

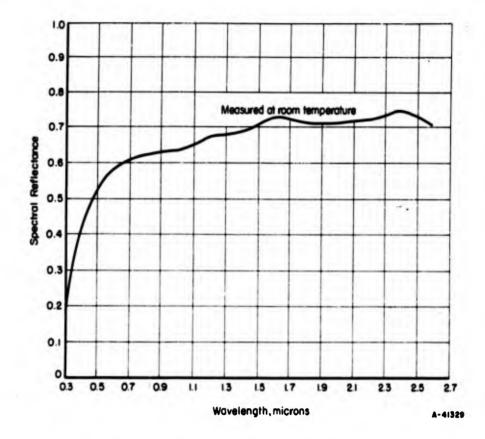
a., .

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3 Blau, Marsh, Martin, Jasperse, and Chaffee	Jasperse, and		Aluminum oxide Diamond wheel finish as supplied by manufacturer TWA No. 2 (Norton A 402)	Normal spectral emittance. Specimen mounted in wall of cylindrical Globar (SiC) heater. Comparison blackbody hole also in heater. Temperatures measured	Measured in air Data taken from curves. (Curves are drawn through the 1112 F
	0	98.56% Al ₂ 0 ₃	with thermocouples. Monochromator and thermo- couple detector.	points only.)	
		×	Measured at 1922 F		
		^	Coors AD85 85% A1203		
		0	Measured at 1112 F		
			Measured at 1886 F		
			Coors AD99 99% Al ₂ O ₃		
		Δ	Measured at 1112 F		
		A	Measured at 1886 F		

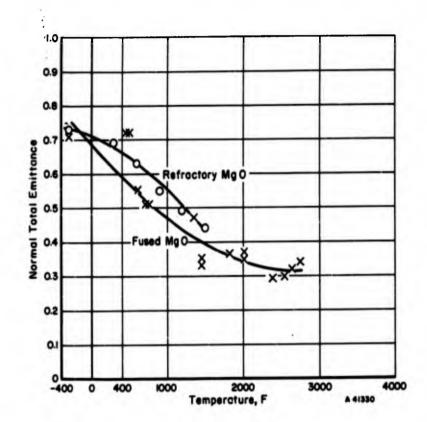


SPECTRAL REFLECTANCE OF ALUMINUM OXIDE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Aluminum oxide Norton RA4213 and LA603 Surface condition not given	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination diffuse reflection.	Measured in air a room temperature. Data taken from curves.

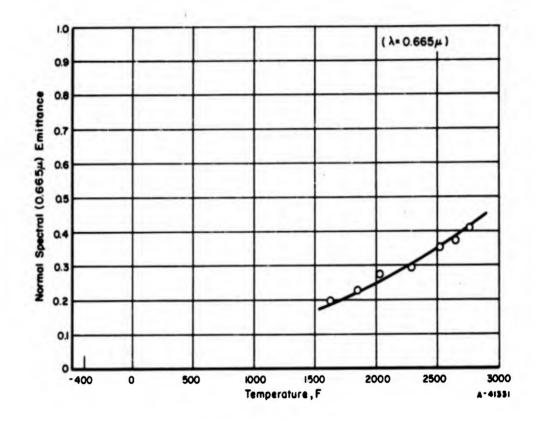

451

.

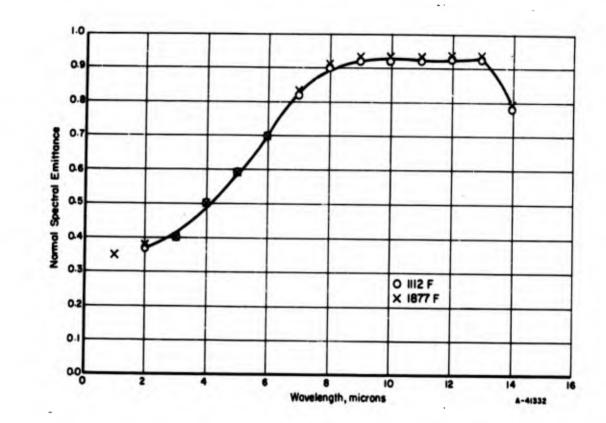

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Beryllium oxide	Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.	Measured in air, Data taken from curves.

SPECTRAL REFLECTANCE OF BERYLLIUM OXIDE

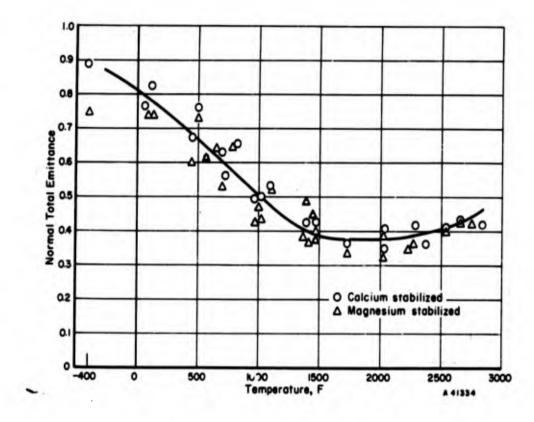
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
7	Betz, Olson, Schurin, and Morris		Beryllium oxide Purity not given As received condition	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectrometer. Monochromator, and lead sulphide detector. Normal (9 degrees) illumination and diffuse reflection.	Measured in air a room temperature Data taken from curves.


SPECTRAL REFLECTANCE OF BERYLLIUM OXIDE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	×	Fused magnesium oxide obtained from the National Bureau of Standards. Surface condition not given	Normal total emittance. Furnace-heated specimen. Thermistor detector. Comparison blackbody. Temperatures measured with thermocouples.	Measured in air. Data taken from curve.
8	Olson and Morris	0	Refractory magnesium oxide Composition and surface condition not given	(Same as above.)	(Same as above.) :

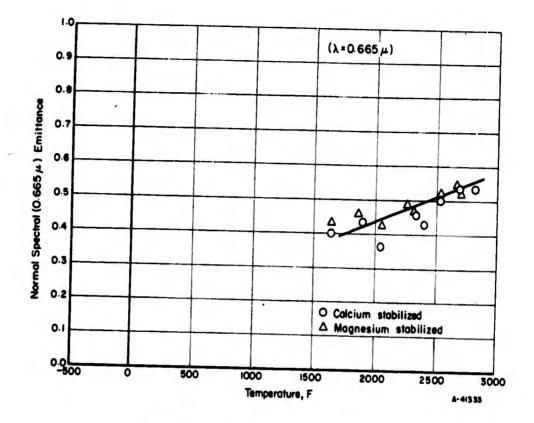

NORMAL TOTAL EMITTANCE OF MAGNESIUM OXIDE -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Fused magnesium oxide obtained from National Bureau of Standards. Surface condition not given	Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665 μ . Temperatures measured with thermocouples.	Measured in air. Data taken from curves. (入= 0.665µ)


NORMAL SPECTRAL EMITTANCE OF MAGNESIUM OXIDE--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
3	Blau, Marsh, Martin, Jasperse and Chaffee		Magnesia (MgO) Norton RM4473 Purity: 97% MgO, 1.3-1.5% GaO	Normal spectral emittance. Specimen mounted in wall of cylindrical Globar (SiC) heater.	Measured in air. Data taken from curves.
	1 - 1		Surface condition not given	Comparison blackbody hole in heater wall. Monochromator and	(Curve drawn through 1112 F points only.)
	•.	0	Measured at 1112 F	thermocouple detector. Temperatures measured	
		X	Measured at 1877 F	with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF MAGNESIUM CXIDE--REFERENCE INFORMATION

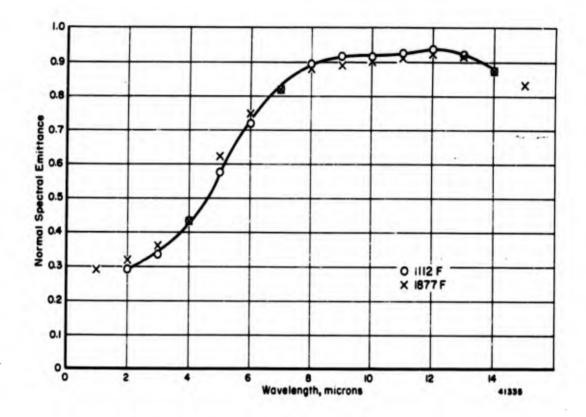




NORMAL TOTAL EMITTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Zirconium oxide	Normal total emittance.	Measured in air.
		0	Calcium stabilized	Furnace-heated specimen. Comparison blackbody.	Data taken from curves.
		Δ	Magnesium stabilized	Thermistor detector. Temperatures measured with thermocouples.	

4

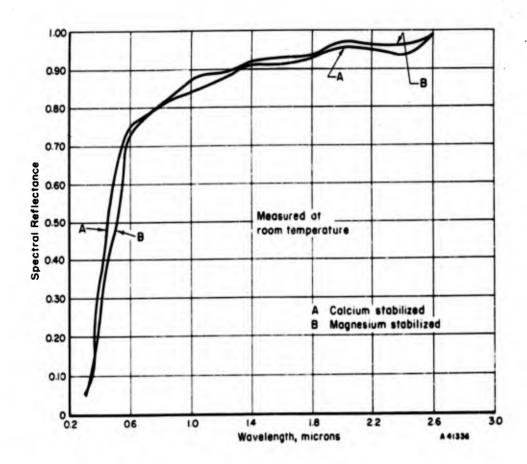


NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0 4	Zirconium oxide Calcium stabilized Magnesium stabilized	Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665µ. Temperatures measured with thermocouples.	Measured in air. Data taken from curves. (入≖ 0.665µ)

Ý

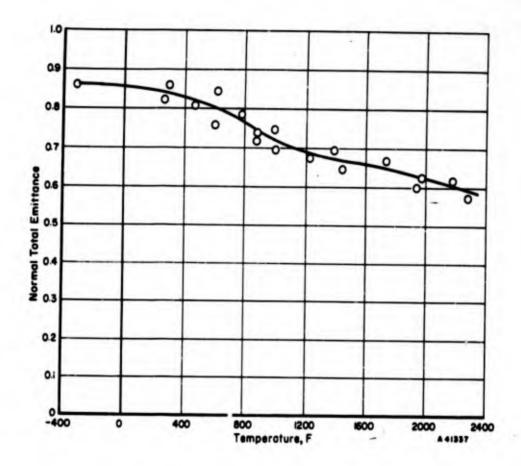
. %


NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM CXIDE

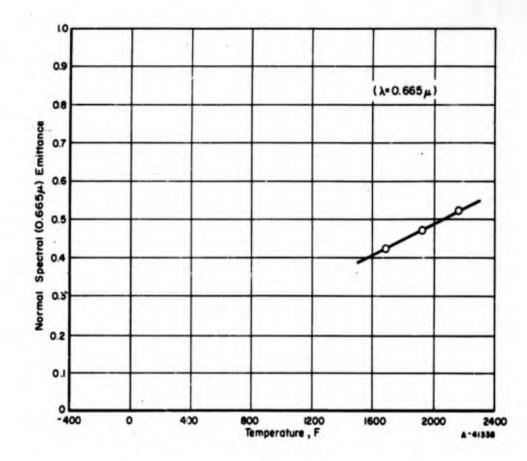
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Pemarks
3	Blau, Marsh, Martin, Jasperse, and Chaffee		Zirconia (ZrO ₂) Norton RZ 5601 Purity: 92% ZrO ₂ ,	Normal spectral emittance. Specimen mounted in wall of cylindrical Globar (SiC) heater.	Measured in air. Data taken from curves.
			 4.5% CaO Surface condition not given 	Comparison blackbody hole in heater wall. Monochromator and	(Curves drawn through 1112 F points only.)
		0	Measured at 1112 F	thermocouple detector. .emperatures measured	
		X	Measured at 1877 F	with thermocouples.	

NORMAL SPECTRAL EMITTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION

459

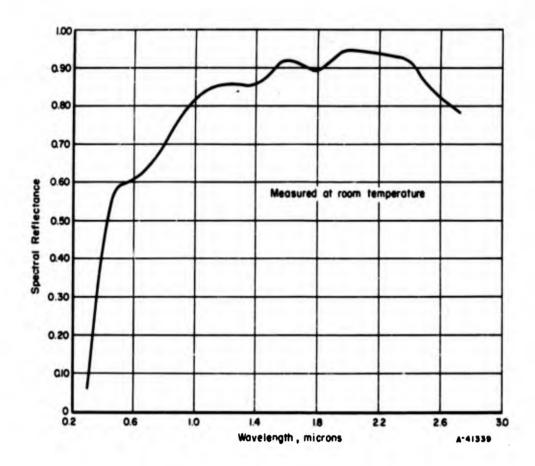

.

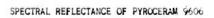
SPECTRAL REFLECTANCE OF ZIRCONIUM OXIDE -- REFERENCE INFORMATION


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Zirconium oxide Calcium stabilized and magnesium stabilized Purity and surface condition not given	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere reflectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection.	Measured in air at room temper- ature. Data taken from curves.

NORMAL TOTA	. EMITTANCE	OF	PYROCERAM	9606REFERENCE	INFORMATION
-------------	-------------	----	-----------	---------------	-------------

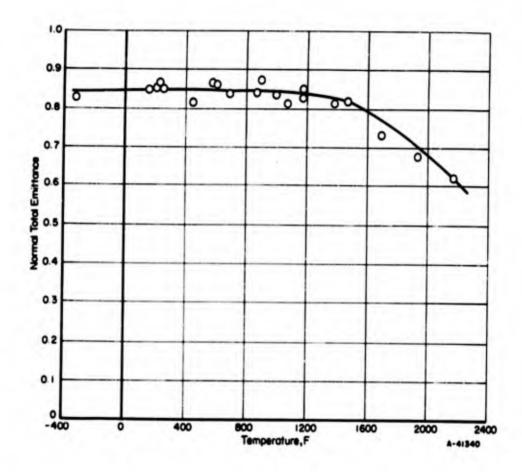
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Pyroceram 9606, surface condition not given	Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.	Measured in air. Data taken from curves.


NORMAL SPECTRAL EMITIANCE OF PYROCERAM 9606

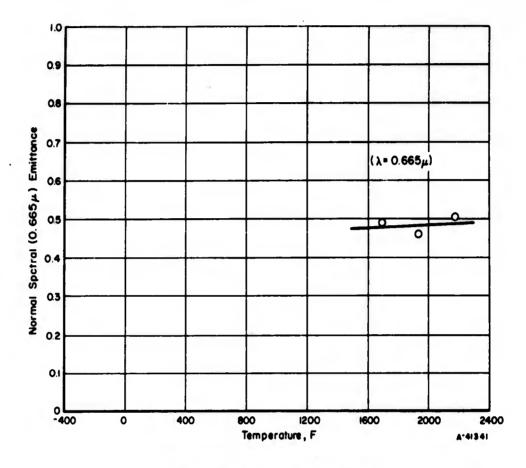

HODHAL	SDECTDA!	ENTITANCE	OF	DVDOVEDAN	9606REFERENCE	THEODMATION
INUTUR. ML.	SPECIRAL	ENILLANUE	ŲΓ.	PIRUGERAM	9000REFERENCE	THECHMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Pyroceram 9606 Surface condition not given	Normal spectral emittance. Furnace-heated specimens. Comparison blackbody. Commercial detector and	Measured in air Data taken from curves.
				filter system for peak response at 0.665µ. Temperatures measured with thermocouples.	(入 = 0.665µ)

.

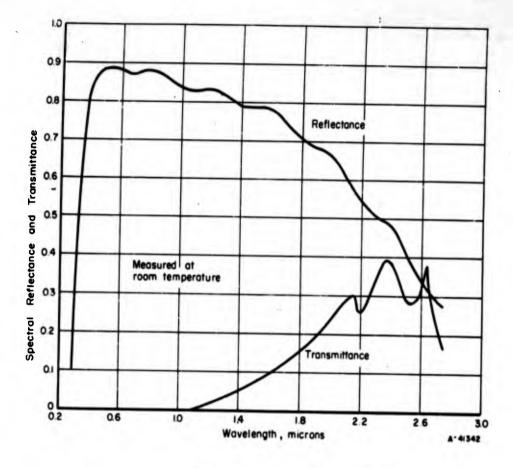

462

SPECTRAL REFLECTANCE OF PYROCERAM 9606REFERENCE INFORMATION	SPECTRAL	REFLECTANCE	OF	PYROCERAM	9606REFERENCE	INFORMATION
---	----------	-------------	----	-----------	---------------	-------------


Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Pÿroceram 9606 Surface condition not given	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere re- flectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection.	Measured in air at room temperature. Data taken from curves.

NORMAL TOTAL EMITTANCE OF PYROCERAM 9608--REFERENCE INFORMATION

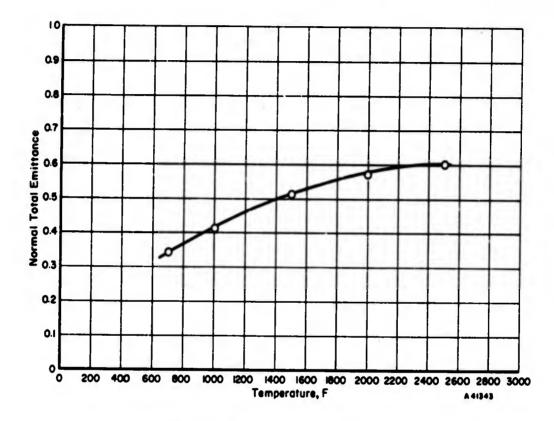
Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Pyroceram 9608 Surface condition not given	Normal total emittance. Furnace-heated specimen. Comparison blackbody. Thermistor detector. Temperatures measured with thermocouples.	Measured in air. Data taken from curve.

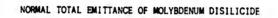

NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9608

ł

NORMAL SPECTRAL EMITTANCE OF PYROCERAM 9608--REFERENCE INFORMATION

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris	0	Pyroceram 9608 Surface condition not given	Normal spectral emittance. Furnace-heated specimen. Comparison blackbody. Commercial detector and filter system for peak response at 0.665 μ . Temperatures measured with thermocouples.	Measured in air. Data taken from curves. (入= 0.665µ)

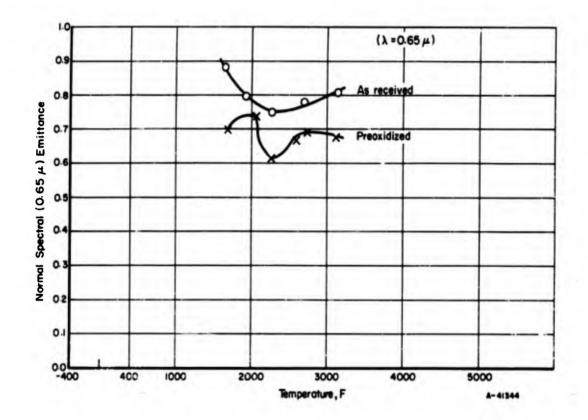

en.

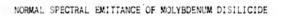


SPECIRAL REFLECTANCE AND TRANSMITTANCE OF PYROCERAM 9605

SPECIHAL REFLECTANCE	AND	TRANSMITTANCE	OF	PYROCERAM	9608REFERENCE	INFORMATION
----------------------	-----	---------------	----	-----------	---------------	-------------

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
2	Olson and Morris		Fyroceram 9603 Surfaces reasonably flat and parallel	Spectral reflectance. Incident radiation 9 degrees from normal to specimen surface. Integrating sphere re- flectometer. Monochromator and lead sulphide detector. Normal (9 degrees) illumination. Diffuse reflection. <u>Spectral Transmittance.</u> Normal specimen position filled by MgCO ₃ or MgO block. Specimen placed in entrance beam to sphere. Diffuse transmission.	Measured in air a room temperature. Data taken from curves.





NORMAL T	UTAL	EMITTANCE (OF	MOLYBDENUM	DISILICIDE-REFERENCE	INFORMATION	
----------	------	-------------	----	------------	----------------------	-------------	--

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
1	Anthony and Pearl	0	As received	Normal total emittance. Induction-heated specimen. Thermopile detector. Comparison blackbody. Temperatures measured with thermocouples and optical pyrometer.	Measured in continuous purge of helium gas.

£.,

Reference	Investigator	Symbol	Composition and Surface Condition	Test Method	Remarks
4	Blau, Chaffee, Jasperse, and Martin	o x	Molybdenum disilicide Surface clean and smooth Preoxidized (Lower emittance for the preoxidized surface attributed to SiO ₂ surface layer)	Normal spectral emittance. Induction-heated specimen. Blackbody hole drilled in specimen surface. Temperatures measured with micro-optical pyrometer.	Measured in 90% argon - 10% hydrogen atmosphere. Data taken from curves. (N= C.654)

NORMAL SPECTRAL EMITTANCE OF MOLYBDENUM DISILICIDE -- REFERENCE INFORMATION

TOTAL SOLAR ABSORPTANCES AT SEA LEVEL AND ABOVE THE ATMOSPHE	OTAL	SOLAR A	BSORPTANCES	AT	SEA	LEVEL	AND	ABOVE	THE	ATMOSPHER	£ .
--	------	---------	-------------	----	-----	-------	-----	-------	-----	-----------	-----

	" <u>Finisa</u>	Above Atmosphere	Sea Level
Graphite-National GBE	(F)	0.850	0.863
Graphite-National GBE	(B)	0.869	0.877
Graphite-National GBH	(M)	0.391	0.887
Graphite-National GBH	(R)	0.585	9.891
Graphite-Speer 3474D	(M)	0.653	0.358
Graphite-Speer 3474D	(R)	0.866	0.871
Graphite-Speer 7087	(M)	0.908	0.911
Graphite-Speer 7087	(2)	0.916	0.918
Beryllium Oxide (Refractory)	(R)	0.421	0.405
Magnesium Oxide (Refractory)	(8)	C.168	0.14.

TOTAL SOLAR ABSORPTANCE OF BERYLLIUM OXIDE, MAGNESIUM OXIDE AND THREE GRAPHITES -- REFERENCE INFORMATION

Reference	Investigator	Symbol		Composition and Surface Condition	Test Method	Remarks
	Betz, Olson, Schurin, and Morris		Sur B• F• M R	face finishes: back front fine milling machine cut as received from supplier.	Solar absorptance calculated by method of truncated weighted ordinate integration using spectral re- flectance vs wavelength curves and solar energy distribution curves over the limits of 0.3 to 2.4 microns. Above atmosphere values corrected for 3 per cent of energy lying outside these limits.	Calculated. Data obtained from table.
			•	back and front surfaces arbitrarily assigned to graphite sample. Sides appeared different to the eye.		

REFERENCES

- Anthony, F. M., and Pearl, Harry A., "Investigations of Feasibility of Utilizing Available Heat Resistant Materials for Hypersonic Leading Edge Applications", Vol III - Screening Test Results and Selection of Materials, WADC TR 59-744
- (2) Olson, O. H., and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", Part III - Techniques for Measurement, WADC TR 56-222, ASTIA AD 239302 (April, 1960).
- (3) Blau, H. H., Jr., Marsh, J. B., Martin, W. S., Jasperse, J. R., and Chaffee, E., "Infrared Spectral Emittance Properties of Solid Materials", AFCRL-TR-60-416, ASTIA AD 248276 (October, 1960).
- (4) Blau, H. H., Jr., Chaffee, E., Jasperse, J. R., and Martin, W. S., "High Temperature Thermal Radiation Properties of Solid Materials", AFCRC-TN-60-165, ASTIA AD 236394 (March 31, 1960).
- (5) Coffman, J. A., Coulson, K. L., and Kibler, T. M., General Electric Company, Cincinnati, Ohio, preliminary information under an Air Force contract.
- (6) Riethof, T. R., "High Temperature Spectral Emissivity Studies", General Electric Company MSVD, Space Sciences Laboratory, R61SD004 (January, 1961).
- (7) Betz, H. T., Olson, O. H., Schurin, B. D., and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", Part II: Techniques for Measurement of Total Normal Spectral Emissivity, Solar Absorptivity, and Presentation of Results, WADC TR 56-222, ASTIA AD 202493.
- (8) Olson, O. H., and Morris, J. C., "Determination of Emissivity and Reflectivity Data on Aircraft Structural Materials", WADC TR 56-222, Part II, Supplement I, ASTIA 202494 (October, 1958).
- (9) Jain, S. C., and Krishnan, Sir F.R.S., "The Distribution of Temperature Along a Thin Rod Electrically Heated in Vacuo", Proc. Royal Soc. London, <u>225</u>, 7-19 (1954).
- (10) Thorn, R. J., and Simpson, O. C., "Spectral Emissivities of Graphite and Carbon", Jour. Applied Physics, <u>24</u> (5), 633-639 (May, 1953).
- (11) Wade, W. R., and Casey, F. W., Jr., "Measurements of Total Hemispherical Emissivity of Several Stably Oxidized Nickel-Titanium Carbide Cemented Hard Metals From 600°F to 1600°F", NASA Memo 5-13-59L.

LIST OF DMIC TECHNICAL REPORTS ISSUED DEFENSE METALS INFORMATION CENTER

Battelle Memorial Institute

Columbus 1, Ohio

Copies of the technical reports listed below may be obtained from DMIC at no cost by Government agencies, and by Government contractors, subcontractors, and their suppliers. Others may obtain copies from the Office of Technical Services, Department of Commerce, Washington 25, D. C. See PB numbers and prices in parentheses.

DMIC Report Number	Title
Report Number	
46D	Department of Defense Titanium Sheet-Rolling Program - Uniform Testing Procedure for Sheet Materials, September 12, 1958 (PB 121649 \$1.25)
46E	Department of Defense Titanium Sheet-Rolling Program - Thermal Stability of the Titanium Sheet-Rolling- Program Alloys, November 25, 1958 (PB 151061 \$1.25)
46F	Department of Defense Titanium Sheet-Rolling Program Status Report No. 4, March 20, 1959 (PB 151065 \$2.25)
46G	Department of Defense Titanium Sheet-Rolling Program - Time-Temperature-Transformation Diagrams of the Titanium Sheet-Rolling Program Alloys. October 19, 1959 (PB 151075 \$2.25)
46H	Department of Defense Titanium Sheet-Rolling Program, Status Report No. 5, June 1, 1960 (PB 151087 \$2.00)
461	Statistical Analysis of Tensile Properties of Heat-Treated Ti-4A1-3Mo-1V Sheet, September 16, 1960 (PB 151095 \$1.25)
461	Statistical Analysis of Tensile Properties of Heat-Treated TI-4A1-3Mo-IV and Ti-2, 5A1-16V Sheet (AD 259284 \$1, 25)
106	Beryllium for Structural Applications, August 15, 1958 (PB 121648 \$3.00)
107	Tensile Properties of Titanium Alloys at Low Temperature, January 15, 1959 (PB 151062 \$1.25)
108	weiding and Brazing of Melybdenum, March 1, 1959 (PB 151063 \$1, 25)
109	Coatings for Protecting Molybdenum From Oxidation at Elevated Temperature. March 6, 1959 (PB 151064 \$1.25)
110	The All-Beta Titanium Alloy (Ti-13V-11Ct-3A1), April 17, 1959 (PB 151066 \$3.00)
111	The Physical Metallurgy of Precipitation-Hardenable Stainless Steels, April 20, 1959 (PB 151067 \$2.00)
112	Physical and Mechanical Properties of Nine Commercial Precipitation-Hardenable Stainless Steels, May 1, 1959 (PB 151068 \$3.25)
113	Properties of Certain Cold-Rolled Austenitic Statiless Sheet Steels, May 15, 1959 (PB 151069 \$1.75)
114	Ductile-Brittle Transition in the Refractory Metals. June 25, 1959 (PB 151070 \$2.00)
115	The Fabrication of Tungsten, August 14, 1959 (PB 151071 \$1.75)
116R	Design Information on 5Cr-Mo-V Alioy Steels (H-11 and 5Cr-Mo-V Aircraft Steel) for Aircraft and Missiles (Revised), September 30, 1960 (PB 151972-R \$1.50)
117	Titanium Alloys for High-Temperature Use Strengthened by Fibers or Dispersed Particles, August 31, 1959 (PB 151073 \$2.00)
118	Welding of High-Strength Steels for Aircraft and Missile Applications, October 12, 1959 (PB 151074 \$2.25)
119	Heat Treatment of High-Strength Steels for Aircraft Applications, November 27, 1959 (PB 151076 \$2, 50)
120	A Review of Certain Forrous Castings Applications in Aircraft and Missiles, December 18, 1959 (PB 151077 \$1.50)
121	Methods for Conducting Short-Time Tensile, Greep, and Greep-Rupture Tests Under Conditions of Rapid Heating, December 20, 1959 (PB 151078 \$1.25)
122	The Welding of Titanium and Titanium Alloys, December 31, 1959 (PB 151079 \$1.75)
123	Oxidation Behavior and Protective Coatings for Columbium and Columbium-Base Alloys, January 15, 1960 (PB 151080 \$2.25)
124	Current Tests for Evaluating Fracture Toughness of Sheet Metals at High Strength Levels, January 28, 1960 (PB 151081 \$2.00)
125	Physical and Mechanical Properties of Columbium and Columbium Base Alloys, February 22, 1960 (PB 151082 \$1.75)
126	Structural Damage in Thermally Cycled Rene 41 and Astroloy Sheet Materials, February 29, 1960 (PB 151083 \$0, 75)
127	Physical and Mechanical Properties of Tungsten and Tungsten-Base Alloys, March 15, 1960 (PB 151084 \$1.75)
128	A Summary of Comparative Properties of Air-Melted and Vacuum-Melted Steels and Superalloys, March 28, 1960 (PB 151085 \$2.75)
129	Physical Properties of Some Nickel-Base Alloys, May 20, 1960 (PB 151086 \$2.75)
130	Selected Short-Time Tensile and Creep Data Obtained Under Conditions of Rapid Heating, June 17, 1960 (PB 151088 \$2.25)
131	New Developments of the Welding of Metals, June 24, 1960 (PB 151089 \$1.25)
132	Design Information on Nickel-Base Alloys for Aircraft and Missiles, July 20, 1960 (PB 151090 \$3.00)
133	Tantalum and Tantalum Alloys, July 25, 1960 (PB 151091 \$5.00)
134	Strain Aging of Refractory Metals, August 12, 1960 (PB 151092 \$1.75)
135	Design Information on PH 15-7 Mo Stainless Steel for Aircraft and Missiles, August 22, 1960 (PB 151093 \$1.25)

DMIC Report Number	Title
136 A	The Effects of Alloying Elements in Titanium, Volume A. Constitution, September 15, 1960 (PB 151094 \$3.50)
1368	The Effects of Alloying Elements in Titanium, Volume B. Physical and Chemical Properties, Deformation and Transformation Characteristics, May 29, 1961 (AD 260226 \$3.00)
137	Design Information on 17-7 PH Stainless Steels for Aircraft and Missiles, September 23, 1960 (PB 151096
	\$1.00) Availability and Mechanical Properties of High-Strength Steel Extrusions, October 26, 1960 (PB 151097 \$1.75
138 139	Melting and Casting of the Refractory Metals Molybdenum, Columbium, Tantalum, and Tungsten, November 18, 1960 (PB 151098 \$1.00)
140	Physical and Mechanical Properties of Commercial Molybdenum-Base Alloys, November 30, 1960 (PB 151099 \$3.00)
141	Titanium-Alloy Forgings, December 19, 1960 (PB 151100 \$2.25)
142	Environmental Factors Influencing Metals Application: in Space Vehicles, December 27, 1960 (PB 151101 \$1,25)
143	High-Strength-Steel Forgings, January 5, 1961 (PB 151102 \$1.75)
144	Stress-Corrosion Cracking - A Nontechnical Introduction to the Problem, January 6, 1961 (PB 151103 \$0.75)
145 146	Design Information on Titanium Alloys for Aircraft and Missiles, January 10, 1961 (PB 151104 \$2.25) Manual for Beryllium Prospectors, January 18, 1961 (PB 151105 \$1.00)
147	The Factors Influencing the Fracture Characteristics of High-Strength Steel, February 6, 1961 (PB 151106 \$1.25)
148	Review of Current Data on the Tensile Properties of Metals at Very Low Teltiperatures, February 14, 1961 (PB 151107 \$2,00)
149	Brazing for High Temperature Service, February 21, 1961 (PB 151108 \$1.90)
150	A Review of Bending Methods for Stainless Steel Tubing, March 2, 1961 (PB 151109 \$1.50)
151	Environmental and Metallurgical Factors of Stress-Corrosion Cracking in High-Strength Steels, April 14, 1961 (PB 151110 \$0,75)
152	Binary and Temary Phase Diagrams of Columbium, Molybdenum, Tantalum, and Tungsten, April 28, 1961 (AD 257739 \$3.50)
153	Physical Metallurgy of Nickel-Base Superalloys, May 5, 1961 (AD 258041 \$1.25)
154	Evolution of Ultrahigh-Strength, Hardenable Steels for Solid-Propellant Rocket-Motor Cases, May 25, 1961 (AD 257976 \$1.25)
155	Oxidation of Tungsten, July 17, 1961 (AD 263598 \$3.00)
156	Design Information on AM-350 Stainless Steel for Aircraft and Missiles, July 28, 1961 (AD 262407 \$1.50)
157	A Summary of the Theory of Fracture in Metals, August 7, 1961 (PB 181081 \$1.75)
158	Stress-Corrosion Cracking of High-Strength Stainless Steels in Atmospheric Environments, September 15, 196. (AD 266005 \$1.25)
159	Gas-Pressure Bonding, September 25, 1961 (AD 265133 \$1.25)
160	Introduction to Metals for Elevated-Temperature Use, October 27, 1961 (AD 268647 \$2, 50)
161	Status Report No. 1 on Department of Defense Refractory Metals Sheet-Rolling Program, November 2, 1961 (AD 267077 \$1.00)
162	Coatings for the Protection of Refractory Metals From Oxidation, November 24, 1961 (AD 271384 \$3.50)
163	Control of Dimensions in High-Strength Heat-Treated Steel Parts, November 29, 1961 (AD 270045 \$1.00)
164	Semiaustenitic Precipitation-Hardenable Stainless Steels, December 6, 1961
165	Methods of Evaluating Welded Joints, December 28, 1961 (AD 272088 \$2.25)
166	The Effect of Nuclear Radiation on Structural Metals, September 15, 1901 (AD 265839 \$2, 50)
167	Summary of the Fifth Meeting of the Refractory Composites Working Group, March 12, 1962
168	Beryllium for Structural Applications, 1958-1960, May 18, 1962
169	The Effect of Molten Alkali Metals on Containment Metals and Alloys at High Temperatures, May 18, 1962
170	Chemical Vapor Deposition, June 4, 1962
171 172	The Physical Metallurgy of Cobalt-Base Superalloys, July 6, 1962 Background for the Development of Materials To Be Used in High-Strength-Steel Structural Weldments,
173	July 31, 1962. New Developments in Welded Fabrication of Large Solid-Fuel Rocket-Motor Cases, August 6, 1962.
173	Electron-Beam Processes, September 15, 1962.
175	Summary of the Sixth Meeting of the Refractory Composites Working Group, September 24, 1962.
175	Status Report No. 2 on Department of Defense Refractory Metals Sheet-Rolling Program, October 15, 1962.
	Argene indexes trat a or polyanism of access of the second s
177	Thermal Radiative Properties of Selected Materials, November 15, 1962.

ţ

UNCLASSIFIED	 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. U. Defense Metals Information Information Center V. Contract AE 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED			UNCLASSIFIED
	Battelie Memorial Institute, Defense Metals Information Center, Columbus, Ohio, THERMAL RADIATIVE PROPERTIES OF SELECTED MATERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus., tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report			This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties.	Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainless steels; iron-, nickel-, and cobalt-base super- alloys; the refractory metals (chromium, columbium, molybdenum, tantalum, and tungsten) and their alloys; coated materials for clevated-temperature service; and ceramics and graphite.	
UNCLASSIFIED	 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. Lucks, C. F. V. Defense Metals Information Information Center V. Contract AF 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED			UNCLASSIFIED
	Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THERMAL RADIATIVE PROPERTIES OF SELECTED MATERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report			This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties.	Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainless steels; iron-, nickel-, and cobalt-base super- alloys; the refractory metals (chromium, columbium, molybdenum, tantalum, and tungsten) and their alloys; coated materials for elevated-temperature service; and ceramics and graphite.	

UNCLASSIFIED	 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. Lucks, C. F. V. Defense Metals Information Information Center V. Contract AF 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
	Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio, THERMAL RADIATIVE PROPERTIES OF SELECTED MA TERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus., tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report		This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties.	Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainlers steels; iron-, nickel-, and cobalt-base super- alloys: the refractory metals (chromium, columbium, molybdenum, tantalum, and tungsten) and their alloys; coated materials for clevated-temperature service; and ceramics and graphite.
UNCLASSIFIED	 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. Lucks, C. F. Lucks, C. F. Defense Metals Information Information Center V. Contract AF 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
	Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THERMAL RADIATIVE PROPERTIES OF SELECTED MATERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report		This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties.	Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainless steels; iron nickel-, and cobalt-base super- alloys; the refractory metals (chromium, columbium, molybdenum, tantalum, and tungsten) and their alloys; coated materials for clevated-tempetature service; and ceramics and graphite.

 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. Lucks, C. F. IN. Defense Metals Information Information Center V. Contract AF 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THERMAL RADIATIVE PROPERTIES OF SELECTED MATERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus., tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report		This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties. Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainless steels; iron-, nickel-, and cobalt-base super- alloys; the refractory metais (chromium, columbium, molybdenum, tantalum, and tungsten) and their alloys; coated materials for clevated-temperature service: and coramics and graphite.	
 Thermal Radiation Wood, W. D. Wood, W. D. Deem, H. W. Lucks, C. F. III. Lucks, C. F. IV. Defense Metals Information Information Center V. Contract AF 33(616)-7747 	UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED
Battelle Memorial Institute, Defense Metals Information Center, Columbus, Ohio. THERMAL RADIATIVE PROPERTIES OF SELECTED MATERI- ALS, by W. D. Wood, H. W. Deem, and C. F. Lucks. November 15, 1962. 470 pp incl. illus tables, refs. (DMIC Report 177 in 2 volumes) [AF 33(616)-7747] Unclassified report		This compilation of data on thermal radiative properties also includes a brief discussion of the basic fundamentals and methods for measuring these properties. Thermal radiative data (emittance, reflectance, and absorptance) are included for the following materials: titanium and its alloys; stainless steels; iron-, nickel-, and cobalt-base super- alloys; the refractory metals (chromium, columbium, molybdenum, tantalum, and tungsten) and then alloys; coated materials for elevated-temperature service; and ceramics and graphite.	

UNCLASSIFIED

UNCLASSIFIED