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Chapter I. 

TYPES OF HEAT EXCHASGS. PUDAMEKTAL CC?K:z?TS AJu) DSFIinnCWS 

Section 1« Types of Heat Exclianre 

lhe concept o" heat exchange (heat transfer) covers a vhole series of 

phencoena Involvlng the transfer of heat from one set of bodies to another or fron 

0/0 fUtbJt/ c 
parts of one body to other parts of the saoe body ~ .At difference In 

temperature, 

lhe process of heat transfer can be carried out In three vays. On the basis 

of this ve distinguish three fundamental types of heat i exchange: 

1. ihermal conductivity. 

2, Convective heat exchange . 

3* Radiant heat exchange. 

übermal conductivity is the transfer of heat between directly touching 

parts of a body. Uxennal conductivity is not related to the n»cromoveoent of the 

bodies or parts of a body. This process of heat exchange is due to the transfer of 

û utfatLk 
energy from one lot of elementary particles of the body to others ■ 1 of the 

/ 

mlcroaotlon of these elementary particles. In the case of gases, these particles 

are molecules. 

Molecules of a gas in the part of it which Is at a higher temperature possess 

greater mean kinetic energy. When the gas molecules collide, th 

- 1 - 
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enero', aa a result of vUich the heat la transferred fron the hotter j^arts of the 

gao to the cooler parts. 

stationary fluids 

la no pure form, theraal conductivity It obterved In tolld bodlct and 

(wiJULiu: 
, ''v 'convective currents are pcsalble In then. 

/ 

In fluida thernal conductivity Is usually connecced vith a vhole 

number of other physical phenomena, for example, nacromotlon of the G*8 nass and 

the related transfer of heat. Study of thernal conductivity in metals shows that 

the propagation of heat In.then Is similar to that of electricity. 

According to the present-day theory, it Is electrons which play the 

main part in electric conductivity, 'Ametale thermal conductivity is 

also associated with the motion of electrons, which play the part of the heat 

transmitters. 

In the simplest theory of thermal conductivity of metals it is assuaed 

that there are free electrons in the metals which behave as gas molecules; these 

electrons move between the atoms of the solid body and thereby transfer the heat. 

Convective heat exchange. This type of heat exchange is effected by 

partie let of liquid thifting through .pace. It it tlvay, .ccompcmltd bySihange 

between particles in direct contact. 

- 2 - 



j /ccordint; to the reason for the »ottoa of the flui^ convective heat 
_ -- ^ 

exchanee is subdivided into tvo typesT 

a) convective heat exchanee with free motion of the nediua (free convection) 

b) convective heat exchanee vita enforced motion of the mediva ( forced 

convection). 

Free convection occurs whenever the motion of the fluid is due solely to 

• different densities in different parts of the mediuu under consideration! which 

in its turn is due to uneven heating of these parts. 

SgPP16» If beat a vessel containing a liquid (Fig. l), particles of 

the liquid at a higher temperature (t >4), are forced upwards a by the colder layers 

04a¿¿u; (% > ft) J 
of liquidised carry tlie heat away with them, ‘convectiva currentsãíe producid in 

the vessel. ïhe a intensity with which the heat is transferred obviously depends 

on the temperature difference (í*«t ), the coefficient of volumetric expansion, 

the specific gravity and the viscosity /V the liquid. 

. forced convection occurs whenever the motion of the fluid is due to « 

outside factors (a current caused by a pump, compressor, the motion of an aircraft 

with respect to the air, a ventilation blast, engine cooling systems, etc.). 

Heat exchange during ^forced convection usually exceeds heat exchange 

3- 



Fig. 1. Conception of natural convection 



during free convection by a large factor, and forced convection la • for that 

— in ^ 
reason in engineering 

of heat. 

^ problems involving the transfer of large amounts 

Radiant heat cxchanre. Heat transfer effected by radiation, or radiant 

heat transfer, occurs vhen a heated body is able to transform some of the energy 

belonging to ' into radiant energy, vhich is/transferred frcm body to 

another. If they encounter a body in their >ith, the heat rays are partially 

absorbed and are reconverted into heat, partly reflected and partly passed through 

the body. 

Heat rays obey the same lavs as light rays:jreflection, refraction and 

absorption. According to present-day views, the nature of radiant heat exchange 

is the transfer of heat and energy by electromagietic vaves possessing a quantum 

nature and conforming to the lavs of thermodynamics. 

Analysis of specific phenomena connected vith the transfer of heat shovs 

that ve usually deal vlthlthree t types of heat exch^jge at the same time, i.e., 

* ** ’ 

In practice ve encounter complex heat exchange. 

Hie combined study of the regularities controlling complex heat exchange 

is mathematically difficult, however. Hence ve usually study the three types of 

! 

heat exchange separately, after vhich ve can go on to calculate the complex heat 

.4. 



exchange fairly easily. 

Vben solving epeclflc taska in practice, the a&omt of beat transferred 

in one vay or another my be quite different Whence in the calculation, ve 

often disregard the tyi>e of heat exchange vhich is of little importance in the 

case in point, and conduct the vhole calculation for the basic type ^ ^ 

•' ‘ determining the effect as a whole. 

for example, convective heat exchange is always accompanied by thermal 

conductivity, but in engineering calculations, particularly during forced 

convection, the ei'fect of thermal conductivity is disregarded. 

Section 2. Fundamental Concents and Definitions. 

Die following concepts are introduced for the study of complex heat 

exchange due to the simultaneous effect of thermal conductivity and convection. 

Heat exchange between a wall and a fluid touching it is termed heat transfer, 

ae body at the higher temperature tj is called the source and the second body 

»t the lower temperature is called the receiver. 

On account of the temperature difference between these bodies (t >t ) 

there occurs the phenomenon of heat exchange, characterised by the presence of a heat 

flux. 

-5- 



liie ofiount or heat {ÄBsing through the given iurface per unit tire la 

à 
T 

called the heat flux and la designated ¿jfccal/hour. The lieat flux passing througj; 

a unit of surface lo called the heat flux density and Is designated ; Vcal/n/kcur. 

Heat exchange between fluids (gases or gps and liquid) separated by a 

/ 

solid wall is called heat transfer through a wall (Fig. 2). If "fc ■> t tw 

the atd’ui.: on '~e- left In Fig. 2 Is called the source and the nedlua on the rlgiit 

Is terned die receiver. There la a flow of beat between these heat exchanging 

media. 

Any physical phencxaenon occurs both In space and time. Hence the study 

of the physical phenaaenon can be reduced to study of the spatial-temporal variations 

in its characteristic values. 

Fran now on all ratter will be regarded! as homogeneous and Isotropic 

^-N 

and possessed of Identical physical properties In all directions. Mathematical 

>• 

physics introduces the concept of the field of a physical value, by whin we mean 

the totality of instantaneous values at all points on the space, under study. For 

sample, the totality of temperatures at all pointa in given region Is called 

temperature field. Ihe mathematical expression of the concept of field is 

an equation. 

- 6 - 



Fig. 2. Conception of 
heat transfer 

Fig. 3. Conception of 
temperature field 



lhe t*zç-erature field equation (Fie. 3) Carteaian coordina tee le written 

in the forn 

**■/(*. y.t1«1) 

Here t ie the field Leaperature ae a function of the coordinates and tiiJ»:, 

X, y and x are the coordinates of the given point, end is the time. 

The temperature t is scalar, hence the tenpeature field is a scalar field. 

This definition of a field is valid as vdi for vector physical quantities 

characterised bpth by direction and value (velocity, acceleration, force). A field 

of this kind is called a vector field. In certain calculations tie temperature field 

equation can be ccnvenitotly expressed in a cylindrical sysleci of coordinates (Fig. 3). 

For the system Eq. (l.l) is written in the form 

(l.2) 

Here t^ls the temperature, r is the radius vector, Is the angle of 

deflection of the radius vector from the selected initial direction, z is the 

coordinate axis perpendicular to the plane of variation of the radius vector, and t 

is the tine. 

A 
shift frem any point in the temperature field in an arbitrary direction 

over an infinitely small distance is bharacterized by a change in temperature. If 

the infinitely small shifts of any point in the field correspond to infinitely small 
- 7 - 



ln t«:;*n.tUre, ü* «nper.ture field 1. teraed continuou.. In .. ® 
uW S Cf.SC 

the derivative- of the tea^rature in any direction is a finite value. If tlie 

Oui-, 
Infinitely .naU sUfle, be It only fronf^int in the field, corre.pcnd to 

‘ flnlte!i or Infinitely Inr£e vnrlntion In temperature, the fle'ul 1. terred 

discontinjrjtujs. 

Bic follovlng arcument. ,111 only refer to continuou» temperature field., 

tte described by E,. (l.l) 8re tented three-dlmen.lona! 

since the temperature t varies alor^ each of the three 
axes of the coordinates x, y 

and ». In practice, ,e encounter case, of t.o-dlmen.tonal am unidimensional fl.lds( 

For these. . the derivatives of tue temperature alone the directions in 

the temperature does not vary disappear. 

which 

For example, an equation of the type 

*-/(*. y, •O (1.3) 

is an equation ef a non-statlcnary^. / ojiuodlmenslona^^ol.emperature field. 

An equation of the type 

Av 
*-»(*) (1.4) 

tteU. e,,Uatl0n a Stea,1J' 8tale(-" "O)“nl-dlmenslonal^_o and « _0J temperatu 

The heat condition» described by the variation In temperature In time 

re 

- 8 



aire temed either non-stûtion&ry or non-steady-a tate. For such heat conditions there 

Is a non-steady state heat flux varying vith time. Kon-stationary heat conditions 

have non-stationary temperature fields. Equations (l.l) or (1.2) for a non-steody- 

state teaperuture field are the most general expression for the temperature field 

vhen the temperatures are different points cn the body and vary vith time. Consequent! 

non-steady-state heat conditions, on the one hand, are due to \sriation in temperature 

voth tine, and, on tie other, to the difference in the amount of heat supplied and 

removed. 

Heat conditions described by non-variation of temperature vith time are 

termed stationary or steady state. These heat conditions have n stationary or 

steady-state heat flux vhich does not vary vith time. Stationary heat conditions 

have stationary temperature fields. Under steady-state conditions the heat flux 

in any body is equal to the heat flux emerging from the body through the corresponding 

surface. 

The equation for a steady-state temperature field is an equation of the type 

*). (1.5) 

vhich is 'on the basis of the invariability of > temperature vith time 

£-o. 0.« 

- 9 - 



Consequently, steady-state heat 

invariability of the tesperatire vith tice 

conditions are conditioned by the 

, vhlch in its turn is detercined by Ute 

equality of the amount of fcea 

In accordance with 

fields corresponding to Ü iCm ß 

t removed and supplied. 

the Classification of heat conditions and the temperature 

we dictfaeuish two cases of heat transfer: non-steady- 

state and steady-state. 

Isothermal suriace. Surfaces representing a geocetric site of points 

vith equal temperature are called Isothermal surfaces or level surfaces. Ut us 

assume we have the body shown in Fig. 4. If there is no heat source, all the points 

on this body will be at the same temperature: 

-const; 

It a certain amount of heat is imparted to it, there will be a Beat flux distorting 

the origina. 0f equal distribution of temperature over the* body, so ttet 

By joining all the points on the body which have the sane temperature, we 

get on isothermal surface. We can make as many isothermal surfaces as ¿..i-jt . 

/Iniquely iétíZes the temperature field in time at a given moment. 

lie very definition of an Isothermal surface implies cT its properties, to 

wit: 

- 10 - 



Fig. 4. Deflnition of an isothermal surface 
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1* iBotheraai surfaces cannot Intersect vith each ether, since the line 

of Intersection vould not be characterized by one, but by several temperatures. 

Such lines cannot exist In the tetperature field. 

% 

2. Isothermal surfaces cannot break off Inside the field - they are 

either closed or else they break off at the outside boundaries, of the body. 

When Isothermal surfaces Intessect vlth a plane, ve find traces on the 

latter In the form of families of isotherms. Fig, 5 shevs Isotherms resulting from 

Intersection of isothermal surfaces and the plane xOy. The isotherms differ one 

from the other by the value /, t. 

Temperature gradient. Let us consider two extremely close isothermal 

surfaces with temperatures t and t+ At (Fig. 6). 

It follows from this second law of thermodynamics and the property of the 

isoaetrlc surface as a geometrical site of points with the same temperature that the 

hea4 flux cannot be propagated along an isothermal surface. By shifting from point A 

in any direction S intersecting the isotherms we find a change in temperature. Here 

the greatest change in t per unit of length is observed when shifting along the 

direction of the normal n to the isothermal surface. 

tte temperature gradient is the limit of the ratio when isothermal 

- 11 - 



Fig. 5. Conception of a 
level surface 

Fig. 6. The Fourier 
hypothesi1' 



surfaces ccnc together to an infinite extent and fa n+VZ, 

Thus, according to the definition, 

(1.7) 

The tenperature gradient is a vector directed along the ooraal to 

the Isothermal surface at A. As the positive direction on the gradient ve «take 
I*« T- 

the direction of temperature increase. The gradient is different for different 

t&y 
points on the same level surface; it is greater vhere ever the distance - between 

the surfaces oí the level is less. 

The temperature gradient determines the temperature increment per unit of 

length of the normal to the isothermal surface, and is a measure of the intensity 

of the variation in temperature. 

Temperature waves, In a numoer of practical cases a non-steady-state 

temperature regime is very often brought about by periodic temperature effects on a 

body (vails of cylinders in internal combustion engines and boilers, vails of 

combustion chambers in jet engines are subjected to periodic heat effects through 

the cyclic nature of the processes Involved). Periodic heat effects on a building 

are due to diurnal 1 variation in the outside temperature and the effect of solar 

radiation. In industrual plants the periodic nature of the heat processes is often 

.12. 



ftBBOclatcd vith correapondint daily intírrupticxis la operations and vith the very 

nature of the cBn'ifacturin£ procesa. Ihua, a vhole mr.ber of cases of utat exchange 

involve the presence of p-eriodlc heat phenccsena. 

The effect of these phenomena on a body cause periodic teaperature changes 

in it. These periodic changes are called temperature va%*es. 
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Chapter ?. 

THERMAL CGKD'XTr/ITY If^R CTFAjY-CTATE C^DITIC?r3 

Section 3. % funlosenta! lav of thernal conduttlvlty In the 

general fors. 

Ik, 
quantitative evaluation of the heat passing through the given body 

as a result of thermal conductivity is based on a hypothesis put forvard ln 1Ö22 by 

the French scientist Fourier. This hypothesis states that the . elementary 

quantity of heat d.t passing through an element of the isothermal surface dF In the 

time Interval is proportional to the temperature gradient 

(2.1) 

The proportionality factor in Eq. (2.1) Is called the thermal conductivity. 

The minus sltji on the right liand side of the equation Is there because 

the tenperature decreases in the direction of propagation of the heat, as a result of 

vhich the temperature gradienta negative value, though the amount of heat d£ 

is considered positive. Equation (2.1) is called the -fundamental lav of 

thermal conductivityJor Fourier's lav. If ve refer the amount of heat transferred 

by thermal conductivity to a unit of isothermal surface and a unit of time, ve 

get the heat flux density 

9 ** -¡¡^z keal/m2 hr. 
(2.2) 
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The vector 

-= - àgrad/. (C.î) 

known as tlie heat flux;is noraal to the level surface and^lrected tovards*^ ecr^ase 

in tenperature. 

Consequently, the vectors q at¿ erad t lie along a atraitfit line, but 

are directed in different directions (Fig. 7). 

Hie projectiaic of the vector q on the axis of the coordinates x, y, z are 

, ¢,= -¾ — 
equal, respectively, to 

^ \ dl 
dy 

ó,' , 
(2.4) 

If we plot the elements of the normals A n to the isometric surfaces 

each point on the isotropic body (that is to say, a body possessing identical 

at 

properties in all directions), the totality of these normals gives us a family of 

Curves called the heat flux lines. They indicate the direction of the heat flux. 

Hie tangents to the W^Limsshow the lines of action of the vectors^ 

and grad t directed in diametricall^l^^tions (Fig. 7). 

Section 4, Thermal conductivity. 

Let us determine the tiiemal conductivity on the basis of the basic Eq. 

(2.1). 

dt 
TdFdx 
on 

(2.5) 
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Fig. 7. Thermal streamlines 
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after vhich we will find Ite dlsensionality. 

/deg. kcal i—=kcal ,.u-hr ■ 
' I M 

‘W 

Numerically the thermal conductivity 1» equal to the amount of heat 

¿asaintí üirou^i a unit of. Isocetrlc surface per unit of tinmen condition that U wie 

temperature gradient at tiie point under consideration is equal to unity. 

Etc thermal conducw.vity ^s one of tá» physical characteristics ‘ 

'-- 
it indicates the skx ability of the given • to conduct heat through thermal 

conductivity. The 
íJoaÍÇ 

A. dlff ers .or dlf.erent subshtnees. The best conductor 

of heat is metal and the worst is gas. 

Tlfferent bodies possess very different theriral conductivities In accordance 

vlth the structure^jmaterial andpieciianism of the propagation of heat. Viermal 

conductivity of a material is determined by means of special experimeots on the 

I O fosA •» A 4* M MM«« M Am • A — .t_ J _1_ 

Its 

temperature of the thermal aggregate state. Figs. 8-10 show the dependence 

conductivity of certain metals and alloys /k, 9/. 

As shown by experience, in the majority cf materials the dependence of 

thermal eonductivity on temperature ¿can be expressed approximately in the form of 

a linear function 

x-Mi+^0i 
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In which X® is the theraul conductivity at 0*C, and j Is a constant detemined 

experinentally. 

Ihe dependence of A. on t nay le an increusinr ns or decreosins function in 

different naterials. Most heat-ins ulatln¿ and wild ins ^teria's are of a 

porous nature. The complex process of the propagation of heat^tlfíe bodies Is 

evaluated by a Eean thermal conductivity, the increase in which with temperature 

is explained both by the increase in \ for cases fillln¿ the pores, as well as a 

strong increase in radiant heat-exchange between the surfaces of the raterial through 

the gps-filled pores separating tnem. The relationship is very often 

disregarded in. engineering calculations and the problem is worked out on the basis 

of certain mean values of the thermal conductivity \ 
*n 

Dable 1 shows X for certain materiaIs 

Biennal conductivity of fpses. According to the kinetic theory of #ises, 

the transfer of heat fe gases by means of thermal conductivity is brought about 

by a molecular transfer of energy during the collisfen between molecules. Hie 

coefficient of molecular transfer in a gas is determined by the following relationshii 

for the thermal diffus ivity /9/. 

■“'T M * 

« 
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Tanle 1 

Thermal conductivity X and thermal diffusivity a oí different materials 

St Material à 
kc*l> hr deg 

1 
2 
2 

Heat Insulation. 
Building materials. 
Metals and their alloys. 

0.02-0,5 
0.8-3 
10-no 

Material (at 2r C) ¡ a m'/Yw Material ( ab C) 'a *-,hr 

Copper 
Aluminum 
Iron 

0,37 

0,311 

0.Ü5S.3 

; Glass 
I Brick 
! Wood 

o.oa«.’ 
0 00119 

O.OOjG 



This formula can ue used to determine the thernal conductivity cf gaaea 

X mm — £• / f » 

Here Is the mean velocity of motion of the (71s molecules In c/sec or n,^iour; 

l. is the mean 

In a; 

■free path length of the &lb molecules lnjaetv*ïen collisions 

c^ Is the the mal capacity of the gas at V “ const In kcal/kg • deg; 

Is the specific gravity of the gas in kg/m3. 

For ideal gases const, since Increases and ^^decreases to an 

equal extent vhen the pressure is increased. Hence the thermal conductivity of gises 

dU+tfó 
hardly ' with variation in the pressure. But for very small pressures, when 

the free path length of the molecules begins to exceed the dimensions of the vessel 

containing the gis, the thermal conductivity of a hi#ily rarefied gas (b£ZlO^atm) 

a strong function of pressure and declines as the pressure falls. 

At very hi^i gas pressures, the forces of intermolecular interaction 

begin to have e marked effect, and the thermal conduttivity increases with the 

pressure. 

lhe temperature of a gps affects the mean velocity of motion of the 

molecules w^ and the thermal capacity , as a result of which the thermal 
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conductivity of #iaec increases as the; ».carer a ture rices. 

Fig. li shows dava for the tlnemal conductivity of different gases 

ab-dined by U. 3. Var.justik at the All-Union Heat Engineering Institute. Heliua 

and hydrogen are narked by a high thernal conductivity (Fig. 12), \¿Uch is greater 

than in other ^íB^s by a factor of 5 - 10 /5/. 

Fig. 13 shows ¿ata for X superheated stean as a function of its 

pressure and temperature. 

Thermal conductivity of 1 jj'ds . The variation In the thernuil conductivity 

of different liquids with tenperaturc is shown in Figs. lh and IJ. For organic 

liquids, with the exception of glycerine, the thermal conductivity decreases some¬ 

what as the temperature rises. The thermal conductivity of water increases with 

temperature and on the situration line reaches a maximum value y - O.59 keal/m • hour-deg 

at t'»îl20*. If the temperature is raised further, X declines. 

Fig. l6 shews the dependence of thermal conductivity of liquid metals and 

their alloys on temperature, determined by the method of consecutive steady-states 

/2/. Variation in thermal conductivity of liquids with their temperature may be 

explained by representing the mechanism of the propagation of heat in drop liquids 

as the transfer of energy through disorderly elastic oscillations. This representation 

- 20 - 
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Fig. 12. Coefficient of thermal conductivity of helium 
and hydrogen (9). 
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Fig. 13. Thermal conrfuctlvity of superheated 
steam according to Tlmrot (broken line shows 

curves for extrapolated experimental values). 

Fig. 14. Thermal conductivity of different fluids (according 
to Vagraitik): 1) anhydrous glycerine; 2) formic acid; 
3) methyl alcohol; 4) ethyl alcohol; 5) castor oil; 6) anyline; 
7) acetic acid; 8) acetone; 9) butyl alcohol; 10) nitro-benzene 
11) isopropyl alcohol; 12) benzene; 13) toluene; 14) xylene; 
15) vaseline oil. 
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Fig. 15. Thermal conductivity of water and steam 
(according to Timrot and Vagraftik). 

I 
% 

Fig. 16. Variation In thermal conductivity 
of liquid metals and alloys with temperature, 
determined by consecutive steady states: 

1 - Na (mp= 97.3*C, b.p. = 878*C); 2 - LI 
(m.p. = 186*C, b.p. = 1317*C); 3 - K 
(m.p. = 63.7*0, b.p. = 760*C); 4 - Sn (m.p. 
231.9*C, b.p. = 2270*C); 5 - Na-K alloy (25%Na 

+ 75% K) (m.p. =-ll*C, b.p. = 784*Q; 
6 - Bi (m.p. = 271*C, b.p. = 1490*C); 
7 - Pb- ■> (m.p. = 327.4*C, b..p. = 
1740*C); 8 - Pb-Bi alloy (44.5% Pb + 55.5% 
Bl) (m. p. = 123.5*C, b. p. = ' 

’ 9 - Hg (m. p. = -38*C, b. p. = 357* C). 
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suggested by M. F. Shirokov, /7, 8/, and the theoretical prenisea of A.5, Predvxdltelev 

/$/ vere used by Vargastik s to describe the experiaental data on theraal 

fa' 
conductivity different liquids, and in nost cases they vere veil confirned. These 

premises have suggested the following forau’a for the thermal conductivity of 

liquids 

* » W4 

in which is the theraal conductivity of a liquid at p = const; 

^ is the specific gravity of the liquid; and 

A' is the molecular weight. 

The coefficient A is proportional to the rate of propagation of elastic 

waves the liquid and is not a function of the nature of the liquid. As the 

temperature varies, the coefficient A changes accordng to the relationship 

^Ad^const. For tj= 0#, A^*= 3.58 * 10 . 
^ _ 

In view of the fact that the molecules of a number of liquids are inclined 

to association, their molecular weight may vary. The data for V for liquids 

can therefore be supplemented with data for the association coefficient of molecules 

In a liquid. 

More detailed data on thermal conductivity of different materials are 

given in the textbooks "Fundamentals of Heat Transfer" by M. A. Mikheyev fkf and 

- 21 - 



"Heat Transfer" by FJ!. Shorir. /}/. 

Sectlcn 3» Dcrl\rttlon of Basic-Differential Iheraa1 ConductIvlty 'jt‘.inn 

When solvlnc absolutely all thermal conductivity problems both under steady- 

state and non-steady-state conditions, it is essential to know the temperulire field. 

But to determine the type of function describing the spatial-temporal 

temperature distribution throughout the field is not possible by the genera! lavs 

of physics. 

<4ma% 
Hence in order to find the temperature distribution in a body the 

effect of therma! conductivity, ve have to use trie folloving method. Ihe phenomenon 

is first studied in an arbitrary singled-out element of the body (elementary farall- 

elepiped vita sides 4x, dy and dz^, ever an infinitely small interval of time dr, 

rather than for the vhole of the body under consideration and over a finite interval 

of time. When deriving the differential thermal-conductivity equation, let us 

consider that the physical parameters X (thermal conductivity), c (thermal capacity) 

thy 
and j (specific gravity) are not functions of the coordinates or/xime within the 

entire field. 

Lgt us single out from a space occupied By a homogeneous and isotropic body 

(Fig. 17) an elementary parallelepiped with the edges da, dy and dz, parallel to the 

corresponding coordinate axes. Let us compile the heat balance for this elamentary 
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parallelepiped. 

To do thie, let ua calculate the an»o\jit of heat supplied to and removed 

throuÿ its faces. 

According to the fundanental '.av of thernal conductivity, the amount o«.f 

heat dQx entering the parallelepiped through the face /?, , As, -kki In the 
,1, y L 15 

direction of the x-oxis is equal to 

*<i:—'ft).?*'' 

In the given case dF ^.dyir, and 

Here 

i<?-—• 

Is ti»e temperature gradient on the face AA,A,A». Correspondingly, 

the temperature gradient. iy for the outlet section in the direction of 

the x-axis will he (dt,dx),t . 

Ihe amount of heat leaving the parallelepiped through the face BB,BxBj 

is then determined by the relationship 

Svtotracting the heat dQp^vhich has left the through the face BBjB^Bj 

from the heat dQ which has entered through the face A^A^Aj ve find the amount of 

heat left in the elementary parallelepiped over the time df 

- 23 - 



te 
lhe tenperuturc ^¡^dient represents r continuc.js function of x he-ce 

U).rO] 
the difference In the nercial \-ulues of the ¿re; lent ^ can be decon:osel into 

a Taylor series 

d't , U.-/,)» dV , 

2 dx>+ 

SinceJj-x, == ¿».then by discardfnß infinitely scall values of the higher 

order ve get 

(-') -(»-) -O-dx. 
\dx),t \d*J,, 

fram whicii 

dQJ « — dxdydzd’.. 
dx* (2.C) 

Bie resuit obtained relates to the projection of the heat flux onto the 

x-axis. In similar fashion ve get for the y-and z-axes 

dn 
dQy^l-j-^dxdy dz dz (2.7) 

and 

dQj— X dxdydzdz. (2.8) 

Ihe total amount of heat accunulated in the elementary volume of the body 

under consideration is made up of the sum of the values determined by Eq8. [2.6), 

(2.7) and (2.8). 

dQ~dQ,+dQf + dQ: 
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or 

^ ß ) (2.9) 

The prodxt 4xd¿iU is the volure of the eletsentary j oralielepiped dV. 

dV*dxdydz. 

xixe sun of the second partial derivatives of any function in a natiiet<atica 

analysis is ter;aed Laß lace operator and is desi^ated in the follovine vay 

(2.10) ixlT dy* T dr* 

Consequently, Eq. (2.9) can be finally written in the form 

4 

dQ-WidVd*.. (2.11) 

In acc^dance with the law of conservation of energy, the amount of 

heat dQ accui.iulai,ed in Lhe elenentary volume dV causes in it a corresponding rise 

in temperature (heating up of the body). 

The temperature of a solid body is in the general case a function of four 

variables x, y, z, and X . In a solid body, however, the spatial coordinates of 

field points x, y and z are not linked with the time coordinates. Hence« when 

considering thermal conductivity in a solid body, variation in temperature over an 

infinitely small interval of time d f is expressed in the form of a partial 

ït. 
differentia 

Thus, we arrive at the following conventional heat equation. 
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(2.:2) 
dQ~c^JVàt J-. 

Here ^ ic the apecific gravlLy in '^/a ¡ c is the thera»’. capacity in 

kcb;/ûc.dwL. 3ince the le.'t-iund sides of Eqs. (2.11) and (2.12) are equal, their 

Tight-hand sides are also equal 

evfV~di-ix'tdV<f-.; 
Qt 

and this, desi^mtiiiL 

■ax^t. (2.13) 

^¡uation (2.13) is called lhe basic differential theraa’ conductivity 

equation. It establishes the relationship betveen the temporal and spatial variation 

in tençerature at any point in the field. 

Ihe value 

1 a—— 

n (2.1U) 

is called the thermal diffdsivity of the bcdy. 

Its dimensionality is found by simple substitution of the dimensionaliti 

of the physical parameters making up the right hand side of Eq. (2.lh). 

A 2 
kcal ' ke • N • deg/rn • hour • kcal • kg • deg *= m^our. 

Bieraal diffusivity is a physical constant. Its value for different 

materials is shown in Table 1. 
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The physical ceanin£ of thereal diffusivity as a proporticnality factor 

between the spatial and tenporal ch-tn^e In teni^ratxye is that it Is a neasure of 

Hli 
the rate of of H.cnperatures at different points In a given tencerature field. 

The greater tl»e value a, the quicker all the points in the field will attain the 

gate temperature. 

Consequently, whereas t'ne thermal conductivity describes the hcat- 

conducting ability of bodies, tlicnral diffusivity aj describes Uie heat-inertial 

properties of these bodies. Equation (2.13) relaies to a case of non-steady-state 

conditions. 

For a steady-state heat condition 

and Eq. (2.13) can be « rewritten in the Torn cV?l- 0 or 

ÍJC* ' d>5 ‘ 

In engineering it is often necessary to study heat excliange and temperature 

distribution in-cylindrical bodies (flat discs, round rods, and so on). In these 

cases it is most convenient to study the basic theraal-conductivity equation in 

a cylindrical system of coordinates rather than in cartesian coordinates. Hie method 

of translating the Laplace operator from one coordinate system to another is set forth 
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in Rcranovbi.iy's book /5/. 

Let us write dowi: ii^in tlie expression for the Laplace operator in 

rectangular (cartesian) systems 

dx* ' dy* di- 

Cais expression relates t<o a certtiin conent in tine. 

In this case the* temperature t is a function of three arguments - the 

coordinates x, y and z, i.e.; 

In the cylindrical systen the coordinates are: 

r is the radius vector of the point, cp is the polar angle, and c is.the 

coordinate of the point (distance from the main plane) - Fig. 18. 

Hie cartesian coordinates x, y and z can be expressed in terms of 

cylindrical coordinates (Fig. I9) 'using the following expressions 

x — rcos7, ^-rsin?. z=z. 
(2.16) 

Substituting x and y as functions of r and <p into the expression for 

temperature, we get 

/«/|x(r. 9). y(r, ç), z]=/,(r, 9. z). 

Thus, the temperature may be representer; as a function of cylindrical 

coordinates. 

- 28 - 



Fig. 18. Diagram of cylindrical coordinates of points 

Fig. 19. Relationship between rectangular and cylindrical 
coordinate systems 

- 28a- 



- Let ui Introduce an expression for the lAp'.ace operator in cylindrical 

coordinates. 

Since the coordinate z both in cartesian and cylindrical coordinates is the 
e 

sane, to obtain the Laplace operator we need only find expressions for the partial 

dérivât 
n n 

ives ^‘‘fcd c¿r1-'nirica- coordinotes. 

Coapilinc expressions for the first and second derivatives for the function 

t “ t (T,<f,t) and taking it into account Uat 

ve get 

¢=0:--0:--0 « A“0- 
dx iy à* à* 

. Vi ^d'-t . 1 à*,± àt 

ijfl ' ày* ^ dr* + r* d}1 ^ r dr 

and 

Hence the Laplace operator in cylindrical coordinates is expressed as 

<2-lT> 

' irir ri d? T r dr ^ d* 

/*=i,(r. (?, r). 

Section 6. Marginal conditions. Iheoretlcai heat-transfer equation. 

The basic differential thermal conductivity equation describes the 

•patial-temporal variation in temperature at any point in the field by uniting 

absolutely all thermal-conductivity phenomena, irrespective of the geometrical shape 

of the body, its physical properties or conditions under which it interacts with the 
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surrounding median. 

This differential equation desctlbes a class of phenccuena of thermal 

conductivity. In order to single out one phencuenon from the whole class, we have 

to supplement the differential equations with additional conditions, for the 

specific case In point. 

Ihese additional partial data which describe the single phenomenon under 

consideration are termed the marginal conditions or uniqueness conditions. 

Hie following may be uniqueness conditions: geometrical conditions 

describing the shape and size of the body in which the heat exchange takes place; 

physical conditions describing the physical properties of the body; temporal 

conditions describing the occurrence of the process in time; cr boundary conditions 

describing the features of the process on the boundaries of the body. 

) 

lhe uniqueness conditions enable us to single out a specific process and 

define it uniquely, i.e., give a full mathematical description of it. The cnrginal 

temporal conditions is defined by setting the temperature distribution in the body 

under consideration at any moment in time preceding the moment under consideration. 

The marginal temporal condition is usually defined by setting the temperature 

distribution throughout the body for an initial moment of time T » G, The 

temperature field equation for this case is written in the fera 
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'-T(*. y* *). 

The mrglnal boundary conditions are related to the interaction of the 

body under consideration and the surroundine nediua (for example, the temperature 

distribution of the body on the surface at any moment in time). The boundary 

s&rginnl conditions in their turn may be set in three vaysj 

1. The first-order boundary condition is set by the temperature 

distribution along the surface of the bod)' at any moment in time, 

2. The second'order boundary condition is set by the heat flux at each 

point on the surface of the body at each moment of time. 

3. The third-order boundary condition consists in setting the temperature 

of the medium ajrrounding the body, and the lav of heat transfer between the surfaces 

and surrounding medium. 

This third method of setting the boundary conditions directly touches on 

the problem of heat exchange between a solid body and a medium 

process which is termed heat transfer. 

The intensity of the heat exchange in the given case is determined both 

by the temperature difference between the heat exchanging bodies as well as the 

heat resistance which is created in the path of the heat flux - • 

the physical-mechanical nature of the phenomena occurring on the boundary between 
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the Bolid body and the médina it. Difficulties of a mathematical nature 

arising in formulation of the analytical theory of heat transfer force us to 

¿4L 
select a simpler mathematical formula and the ' of the study to 

the region of experimental Investigation. 

3his simplified mathematical lav of h*at transfer vas first put forvard 

by Nevton. According to Nevton's lav, the amount of heat dQ supplied (or received) 

by a [element ^surfacelof a solid body d? in the time d* is proportional to the 

temperature difference of the surface and the surrounding median t, the val 

dF end the time interval d't . 
^ * 

Die corresponding equation can be vritten in the form 

ue 

dQ—*(l9—t)dF(k. (2.18) 

In Eq. (2.18) the proportionality factor is termed the heat-transfer 

coefficient it is equal to 

dO 
(l9 — l)dFdx 

Equation (2.18) easily gives us the dimensionality of the heat-transfer 

coefficient. 

À *“ keal/m1 • hour • deg 

Die heat-transfer coefficient is nunerically equal to the amount of heat 

supplied or received by the surface element per unit of time at a temperature 
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difference tetveen tlie vail and the heat receiving nediua equal to 1*. 

The heat-transfer coefficient ¿If vaa regarded by Uevton as a constant 

value, Ihis coefficient takes into account all the features of heat exchange 

occurring near the boindary between tvc heat-exchanging bodies, and is a function 

of a large nmber of variables, for ex&nple: the rate of notion of the cediun, the 

temperatures V and the position of the body in the strean, the size of the body, 

the physical paraneters (thermal conductivity, viscosity, thernal cutecity, etc.). 

When using the basic heat-transfer equation in 

iax practice, ve ha/e to nake a nuaber cf experiments and find the heat-transfer 

coefficient fron the data obtained. 

Hence all the difficulties involved in ca'culating heat transfer, which 

are due to the abundance of influencing factors, are concentrated in the heat-transfer 

coefficientand the theoretical equations for heat transfer put foraard by Newton 

despite the apparent i simplicity, do not in fact offer any particular simplification. 

Section 7. Plane wall 

Using the basic differential thermal-conductivity equation under steady- 

state conditions, wex get 

V*/=0 
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jtxz fren Sq« (2.15) in a cartesian system of coordinates 

if ifi 

Hie plane one-layer vail, In vhich ve are considering thermal conductivity, 

is aaavnod to have Infinitely prenter length and vidth than its thickness $ (rig. 20), 

On account of the infinite extent of the vaU in the directions y awl s 

it nay be assumed that the removal of heat from its ends is non-existant and that 

the heat flux Is directed perpendicular to the vail surface. Hence the temperature 

of the vail only changes along the x-axls, i.e., ve have a uni-dimensional, steady- 

state temperature field, for vhich # # ft 

ÍU-ÍUo 
if' it' V* 

The basic thermal conductivity equation (2.15) in this case takes the form 

iU _ 
— «=0. ix* w* (2.19) 

The tenperature distribution through the vail is found by double integration 

of Eq. (2.19). After the first integration ve get - = 0.., After the second 
dx 7 

Integration ve get 

i *=* C,x -f £j. 
(2.20) 

Here^t and ¿^are the integration . constants, 

It is clear from Eqs. (2.20) that the temperature distribution in the vail 
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71g. 20. Plane wall 
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obeys the Iav of a straight line. The isothercial surfaces represent p’anes pralle! 

to the surfaces of the wall anl normal to the x-axis. 

In order to deternine the integration constants C, and in Sq. (2,20) 

let us use tiie firej^rder boundary conditions, i,e,, let us set outselves the 

following temperature distribution on the surface of the body for any ucaent of tine: 
/ 

at X *= 0, t = tu/ 

atx“^, t - 

Here is the tenperature of the hotter surface of tlie vail in *C 

and is the temperature of the other, colder surface of the wall, hence 
—3U 

Equation (2,20), which expresses the temperature distribution, takes the 

following fom at x ^ 0 

at x S , corresponding, t . = C £ + hence 
“*X 

Cl' 
/_ — /_ - "l (2.21) 

Substituting^, and C. into Eq. (2.20), we get 

(2,22) 

Equation (2,22) Is the final solution of the problem, since the temperature 

distribution described by us satisfies both the differential equation (2.19) as well 
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ae the boundary conditions applied. 

In order to determine the acount of heat pasalng through the eleaent of 

the vail per unit tt tine (dt - I), .let us use the Fourier lav (2.1), according 

to vhich 

rfQr=-X ^ (//7 kcalAr, 
ix 

Equations (2.I9) and (2.21) give us 

consequently, 

dF. 

For the area of surface F in size, ve get 

or finally 

¢=-(/,,-^,)^ kcal/hr. (2.23) 

Let us designate 

(2.24) 

Eq. (2.23) tljen can be revritten in the form 

Q-j kcal/hri (2.25) 

lhe amount of heat passing through a unit of surface of vail per unit 

of time is determined by the relationship 
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koftl/m2hr (2.26) 

or, taking Into account (2.24), 1 

kctl/m2hr (2.27) 

It is ctear fren Eqs. (2.23) 'Uid (2.2o) that tiit; unount of heat passing 

throat '«‘H Is a function of the temperature difference on the surfaces 

The ratio r is usually termed the thermal conductivity of the wall, 

while its reciprocal /a is the the mal resistance. 

section 0. rinne multilayer vail; heat-trensfer coefficient, therai' 

resistance 

I«t us now consider the thermal conductivity of a plane, multilayered 

wall (Fig. 21), consisting of n closely packed layers. Let us assume that the 

thermal conductivities for each layer are equal f and that the thicknesses of 

the layers are, respectively, .....4* 

Since we are investigating a steady-state heat flux, described by the 

equality of the amount of heat supplied and removed fren the body, the flux density 

^ ' entering / per unit of surface (the first layer of an InfSteTy plane w^TTjf 

does not change when it passes through the other layers. 

, ' We will therefore have ». 

f»,) 
•» 

»7 

(2.28) 
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Fig. 21. Multilayer plane wall 
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Let us write Sq. (2.28) in the following forn 

fÍL 

h 

f 

Adding tern by tern, we get e—/ ¥ i. ** *«♦! 

(2.29) 

fron which 
f(t+t+t+- ’ 

Í- 

/ I, T I, T i, T T i. 
». 

or, what is the s-ne thing. 

i ê 
V-íí- (2.30) 

in which 1 is the nunber of the layer. 

Sometimes we introduce for consideration the equivalent heat 

« 
II, 
Iml ' 

«il. dependence, according to /31/, 1, ,hown In Fig. 12. rone, cooelderatlon f 

the hjdraullc resl.tance. does not vary the nature of the dependence of the »In 

characteristics 

or 

s.«, 

(2.31) 
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Eie equivuient thermal conductivity enables us to cocoare the heot- 

conducting pror^rties of a nultilayer vail conposed cr unlike* catcrials vith a 

single layer vull niide of a honogencouo raterial. TJie tenrerature distribution 

through a section of a multilayer vail (Fig.-21) is represented by a broken line. 

/---x 

the distribution being described inside each layer by the equation 

/.mrt -Ç*. 
•i *4 Y lt (2.35) 

Hereje^ is the distance inside the i-th layer free the surface (i-l)-th 

layer vith the temperature t^/ . 

I^t us derive theoretical equations for a plane, multilayer vall^ using 

the third-order boundary conditions vhich are set by the* temperature of the surrounding 

mediun and the heat exchange on the surface of the vail. 

Let t , be the temperature of tlie heat-supplying medium and t - the 

temperature of the receiving medium. 7nere is a heat flux throucJi tlie plane multi¬ 

layer vail betveen these media. 

lhe heat flux density fren the source to the vail according to Nevton's 

Imt b 

(2.34) 
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Under eteeuly-Btate conditions this q-jpntity of hent is transferred b'. oy 

theroal conductivity throu^i all the layers to the oppssite vail surface at a 

* 

teoperature According to (2.30) ve can vrite 

f 7- 

si ui 

lhe saoe aoount of heat is entirely transferred to the receiving medium at 

temperature t^ , i.e., 

(2.35) 

us rewrite ^qs. (2.30), (2,3^) and (2,35) in the following way 

1 V €l 
m 

Adding term by tern , we get jV'Ae/ 

¢-=/, -/2. 

fron which we get 

\ *-» / . ' 

in which 

A— 

Jal 

kcal/m ..hr 

.o " ^ 
kcal/m • hr • deg 

Die value k is termed the heat-transfer coefficient. 

(2.36) 

(2.37) 

Die reciprocal of the heat-transfer coefficient 

• ' 1 / 
1 1 i Vi i 1 '2 + m2 hr »deg/kcal 

1--1 1 

is termed tíie total thermal or thermal resistance of the multilayer wall. 

(2.38) 
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ï j. 
Correspondingly, the VHlues#^( and^^are temed the tuernnl or heat 

resistances of heat transfer, while the .-Sift, 
r . .. ' 

called the thernal reslstAnce 

of the multilayer wall, In which1 Is the thernal resistance of a separate layer. 
K I ! 

Thus, the total thernal resistance Is equdl to the sun of Ik all the partial thermal 

resistances and, 1 il:e the heat-transfer coefficient, therefore depends on the 

conditions of heat transfer between the surfaces and the surrounding media, on the 

thicknesses and thermal conductivities of the individual wall layers. 

Section 9« Graphic methods of determining temperatures t ^ and t1^, 
i -- a 

of surfaces of a plane wall. 

1. Single-layer wall. 

Let us assune that the temperatures Jt / and tj^of the media 

surface of a plane single-layer wall are known. Furthermore, we know the thickness 

of the wall $, the thermal conductivity of the material of which the wall Is made 

and we are given the heat-transfer coefficients and OÍ^for both wall surfaces. 

Under steady-state conditions, given the temperatures of both wall surfaces tw and t w 
-1 - 

the temperature distribution Inside the wall can be determined by means of the 

following graph. 

Along the horizontal In the drawing, on any particular scale, we plot the 

t 
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£,0, 
thickness of the vail, $ “ S ( the séants / and ’ / are plotted on tlie 

ílte 8ldeS|T "C erect ti»e ¡<rpon sane scale on the opposé rrpondiculars 0 A/ and Q.A. free the 

ends of the seßaents obtained to the horizontal axis (Fig. 22). 

The corresponding teaperatures t^ and t^ of both media are plotted to 

scale along these perpendiculars. By Joining the points^ and j¡*, obtained thereby, 

by a stralßit line, ve get a line the Intersection of vhlch vith the surfaces of 

the all gives us the corresponding temperatures of the vail surfaces t^-and t 
•’Wi - 

> 
in the fora of the vertical scßnents and ffi. Here the teaperiture distribution 

1 

inside the wll is given by the line 

First graphic method. Let us assume tliat there is heat transfer throu^i 

a plane vail possessing the thermal conductivity A . The temperatures of the 

surfaces of this vail are, respectively, t^. and t^, vhule the temperatures of the 

source and receiving media are, respectively, t and t (rig. 22). 
— / JL/ 

lat us Imagine another plane vail vith the same thermal conductivity 

as in the actual vail ve are considering. Let the temperatures of the surfaces of 

this imaginary vail be equal, respectively, to the temperatures fif both mediant, and 

tj^, and let the amount of heat passing through It be equal to the amount of heat 

passing through the actual vail of thifcness ^ , 
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Fig. 22. First graphic method 

i 
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Bien, applying ¿q». (2.28) and (2.’6) ve can deternine the thickneos A of 

this icaginary vail 

-'0; 

fren vhich 

a“7"x(t+T + ±)=L+?+ ^ * \ *l * •:/ *1 •: 

Let us deternine the dinensionality of the value X/cx 

kcal I kcal 
M, 

• m»hr* deg/m2 • hr »deg 
# s • • • 

i.e., the values and XjfaiocztaB lengtxi. Let us plot then in the fora of 

segnents on the left and right of the thickness of our actual vail £ (Fig. 22); 

then, draving a horizontal line through the points 0 and 0 , ve can plot the 
**■ i *" 4,/ 

temperatures t y and vf tne vertical on a certain scale, 

Bxe points thus obtainedand^A^vill be Joined by a straight line. 

Vn, according to the similarity of the triangles and ^M^ve get 

or 

from vhich 

AjC p Cfl, 

«» 

M,C= 
1 

- 
■i * «s 
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But 

«onsequently, 

and, according to Eq. (2.23), 

On the other hand, 

Afi ^ Afii— 

p(y subetitutlng the segnents /1 C and £j «« get 

Similarly ve find 

B-f 4,0 
ÀF “ 4,0 

or 

free which 

Bf* 
—(i,-y 
"t_ 

“i i 
H+'+i; 

». JL+I+± •: 

on the scale chosen Is equal to 

BiF-t.,-*, 
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On the other hand, 

BiF*= DtEt—^ jOj. 

Substituting the seeaents B^F aod A,0l, we get 

i.e., the points of intersection of the straight line A( and A ^ plotted by the 

above oethod vith the surfaces of our wall give the temperatures T and Í of 
-rfi 

these surfaces, vhile are segaent of the straight line gives the 

distributicxi of temperature through the vail. 

Hie temperature distribution in the first and second mobile media (line 

segnents and 3,¾) do not correspond to reality. The true temperature distribution 

vhen there is convective heat exchange is shown in Fig. 23. 

Second graphic method. Let us plot the following segments on an arbitrarily 

chosen horizontal line 

•l A •; 

(Fig. 210. Let us P;ot the segœnts 0^, = t) and » t^ as verticals frau 

points 0 and 0^. Let us b join the points A ( and A^ by a straight line. 7ne points 

of intersection B ( and of this straight line with the surfaces of the walls then 

determine the unknown temperatures _ *nd t* 



7 

Fig. 23. Temperature Fig. 24. Second graphic 
distribution during method 
convective heat exchange 
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Indeed, 

i.C 
Cfl, 

and, according to Fig. 2^, ve get 

since 

j f1 li—U 

A>c - ±+i+j. 
•l l 4 

v**0*’ Afi-ii-i*, 

and froo this 

It can be shown In exactly the .sese way that 

BiEi-t.-.. 

The second gsaphlc method .Is also applicable to the case of heat transfer 

through a plane multilayer wall. 

Example 1, Let us determine the thermal conductivity ^.of the vails of 

/engine 4 S if the thickness of the vails Î *= 5 mm, the surface V193 C.5 m , 

the temperature of the inside surface of the 
<««•* 

ti^ ■* 70*, the outside temperature 
*/ 

tovtyi 
tv* ^5*i ftûd the amount of heat passing through the vails is Q ^ 87,500 

kca/^our. Indicate vhat material the ' * * Is made of. 
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According to reference data (see Mikheyev's book) ve can presine the 

H K* KjUt */ 

I 

’ alunlmn. 

Rcanple 2. A brick tunnel-iype dryer has the following diiensions: length 

20 m; width b = 8 n, heigjit h = 3 a. The walls are rade of ordinary building 

brick with a thernal conductivity 0.8 kcal/n hour deg, and the thickness 

c 400 rid. By measurement it is found that the teunarature of the outside surfaces 

of 

How much heat nasses throng the side vails of the dryer per hourÍ 

^oluLI>~n. Let us find the area of the side vails of the dryer. 

fm2at + 2tA «= 2 20-3 4-2-3-3 = 163 M-. 

2. Fran Eq. (2.23) ve can determine the amount of heat passing through 

the side walls of the dryer. 

I 

Q = —)f =:-^-80 163 «K5¾) kcalAr 
^ I 0,4 

dapple 3» What is the heat-transfer coefficient k and the heat resistance 

for the brick wall ( ^ = 0.76 keal/m hour deg) of thickness ^ - 300 mm, if 

the heat-transfer coefficient for the inside surface of the wall isi*( ^ 5 keal/m*-hour• 

deg, and for the inside vall$( = 20 keal/m • hour • deg. 
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Solution 

1) the h«at transfer coex'ficlent is deteralned froo (2.’7); 

I- 
I 

1+JL+l 
•,T * T * 5 T 0,76 20 

ltM kcal/m2• hr * dõf 

2) the total heat resistance Is determined by Eq. (2.5$) 
• s 

, ■ » 

• r»U ' « • ‘ 
-L . 0.75 nr • hr • degAcal 

Example h. Tae heating surface consists of an iron plated." 50 kcal/a 

hour deg) of tbicteess ^ ■= 10 bei. Vater flows past t one side of the plate, and 

the heat-transfer coefficient from the water to the wall 2000 kcsl/m • hour • deg. 

We are required to determine the heat transfer coefficient, when there 

are on the other side of the plate: 

a) running water «1“ 2000 kcal/m t hour * deg; 

b) moving air oft“ 50 kcal/u t hour 1 deg; 

c) stationary air 0(^= 5 kcal/m^nour 'deg. 

Solution 

Let us first determine the total heat resistance of the water -> wall and 

the wall proper 
1 ! . • I . 0,010 

ÏT -T+i - á¿+- »•o*1 »1^ 

But the total heat resistance is obviously calculated frota the formula 
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Substituting n'-oericel vuluee. ve pet “T■ T" + “* • • t| •} 

a) running vt»ter 

I I 9 
y - O.0CO7 + ~- 0.W12; * - 1250 kcal/m^ * hr * deg 

b) moving air \ 

. ) 

0.00)74--^0.0^)7: *-«.3 kcal/m2 • hr ; deg 

c) stationary air / 

-j-•• 0,0007-f — «0.2007; *-4.93 kcal/m2 ‘hr* deg 

Exanple -j. We are required to find tke temperatures t^, and t,- of 
'5 -ÏX. 

both surfaces of a sheet of boiler iron ( A = $0 keal/n hour deg, thickness 

I 20 cn, and the boiler vail is considered plane) and the amount of heat q passing 

through 1 d of heating surface free, the gases to the water in 1 hour, given the 

following 

ffi-8 temperature t - 1000*: 
•’I * 

vater temperature t^ = 200*; 

heat-transfer coefficients 

gpsvaline: 100 kcal/nr hour • deg; 

wall^ water 2000 kcal/m • hour • deg. 

Solution 
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1, u« determine the beet resistance from Eq. (2.38) 
• • ... 

. » * 

2. The heat-transfer coefficient k is 

Â“Õ^CÕ"91,7 kcal/m2 * hr * d«8 

3. The amount of heat passing tlirou^ 1 m1 in one hour is determined 

from Eq. (2.36). 

1-4(/,-./,).91.7(1000-200)^73300 kcal/m2 • hr 

4, To determine the tempera turéis t and t^ let us use Eqs. (2.34) 
* -i» 

and (2.35) • _ 73 300 

/ — /, X - 200 -1- — 236.5* C. 
«, 200Ó 

Example 6. A plane iron v&ll (X.= 5C kcal/m • hour • deg) of thictoess 

*= 0.025 ® i* insulated from heat loss by a layer of asbestos ( )y~ 0*2 kcal/m • hr deg 

of thiclaiess 0,1 m, and a layer of cork (Aj = 0,05 kcal/m • hour* deg) of thickness 

Sj “ 0.1 m. 

We have to determine the thickness of^'al^.ol insulation that vould be 

required for this sheet instead of the asbestos and cork In order for the heat 

Insulation properties of the system to remain unchanged. 

S olutlon 



1. Let us determine the equivalent ti-erma! conductivity of q three-layer 

vail (iron, asbestoe, cork) free. Eq. (2.26) 

. mCOO keal/m• hr• deg 
iL4.il . ÍL . 
»1 T »I », » "*"o,2'0,05 

Clearly, the thickness of the^ alfol insulation x should be such tir»t 

the equivalent thercal conductivity of the new tvo-layer vail (iron-alfol) is equal 

«Afr 
to the thermal conductivity of the three-layer vail, i.e., Acal/u hour deg; 

thus »,+jr 
o*09-#r * iL + i. 

». ». 

0.025 4-x 

0.025 x 

"'50 0.03 

Solving this equation with respect to x, ve get x *= 0.2 m. 
» 

Exánime 7. The following data is possessed for an iron flue pipe 

( \,( *= 5^0 kcal/m • hour ■ deg) of thickness 4 = 20 mm (the v&ll is considered plane 

on account of its slight curvature): 

(Gas vallöt = 50 kcal/m »hour • deg) = 900*; (vail - water 0L- 1000 

a 
keal/n • hour • deg) t - l8o*. 

We are to determine the temperature of the vail surfaces. 

a) when the surface of the iron vail is clean; 

$**" \ 
b) when there is a layer of boiler 1 kcal/m- hour - deg) 

1 on thick on the water side; 
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fr 

c) the some vhen tiie thlc>jie8» of the fur is 1C nn. 

Solution. Case a) 

I I I I 0.03 I 2 / --.„ + T + —.o.wu m • hr * degAcal 

lhe heat-transfer coefficient î^is equal to 

46.73 kcal/m2*hr*dog 

f-4«,73(COO —180) » 33 615 kcalM2 • hr 

‘,,-*1- — * 91:0 5 *= 227.11 C. 

m,* + '1 + *= 213.7* C. 

Case b) See page 52a 

The temperature on the surface of the Iron is 

» An» 22-40 
^-^-^--257,^ G 

\ 

The temperature on the boundary between the iron and the 
¿tr¬ 

is 

V “ V ^ “ 257.1 -32140 ~ * 244.248 C. 

The temperdure on the surface of the is 

- 0 -¡J" *= 244.24 - 32 140^ « 212,1* C. 

.0,02 

Case c) See page 52a 

as can be seen' from the calculation, uie presence' of a layer oí Mete 

reduces the heat-transfer coefficient, and* 

A*'1 

the insulating propertties 

an accident to the boiler. 

of the a—ie^the temperature of the ironf greatly incfease^ and this may cause 
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Case b) 

f 

|-P.05I4t A.p#OÎW+ «.pi _0iC22j m2 . hr . deg/kcal 

* "í¿4- kCaI/,m2 ' hr * de8 

- #■ ¢1.84(900 iso) ■ jo l-ic kcal/m2*hr 

Case c) 

*j- ■ 0,0214+“ °»02i4 + ■ 0,0314 m2 • hr • deg/cal 

hr*deg 

f*31,04(900—16u)«229*5kcal/m2 »hr 

22925 

SO 
>441,5* C, i 

-1 Tj- - 441.5 - 22 925 ~ - 432.3« C 

- 432.3 - 22925 ~ - 203* C 

i 
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Section 13. Cylindrical va I! 

Let us consider the process of heat transfer through a cylindrical vail. 

Let us assuue that the cylinder is of Infinite length so that the heat transfer 

throu£h its ends can he Ignored. 

At each point on the uall of the tube (Fig. 25) the heat flux Is directed 

along the radius, while the Isothermal suffaces represent the surfaces of cylinders, 

whose wes coincide with the axis of the cylinder under consideration. The temperature 

field in the given problem Is steady and unidimensional and is expressed by the 

following equation 

M(r). 

Here r Is the operating coordinate of the cylindrxlcal system. 

The equation for the temperature distribution through the cylindrical wall 

and the equation for the amount of heat passing throuh the wall could be derived 

by double Integration of Eq (2.I5), by expressing the Laplace operator In 

cylindrical coordinates. But to simplify the mathematical transformations we 

will argue along different lines. 

According to the Fourier law, the amount of heat passing through any 

cylindrical surface of radius r per unit of time is equal to the amount of heat 

passing through the entire thickness of the tube, l.e., 
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Fig. 25. Cylindrical vail. 
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1—IÍLm (2-59) 
ér 

Here IJt the length of the area of the pipe under consideration. 

Let ua designate the constants In Eq. (2.39) 

■¿¡-A- (a .iio) 

Equation (2,39) will h then be rewritten In the fora 

Jim. - A — , 
r 

Integration of Eq, (2,Ul) gives us 

(2.41) 

/»—din r+C, 

In which C Is the Integration constant. 

(2.42) 

It Is clear fron Eq. (2.42) that the température distribution In the wall 

of the tube obeys a logarithmic law. 

Flrst^rder boundary conditions. In order to determine toe Integration 

constants Ç and A In Eq. (2.40) 1 let us apply the first-order boundary conditions 

I’**' let w ,et our*elves the temperature distribution on the surface of the 

cylinder under consideration for any Interval of time. 

Let us assume that at 

r«f| /a>/V|. 

Substituting these boundary conditions into Eq. (2.42) we get 

**■»—dinr,+C J ^2.43) 
dinra+C. J n 
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Eq, (2.U3) acV«*illy constitute a system of linear equations with tvo 

unknovns ¿.and A. (since A is expressed In tenas of the unknovn value Q). 

By . . . solving »them vith respect to C and A ve get 

Substitution of A Into £qs. (2.13) and their solution vlth respect to 

gives us the following tvo equations 

ft 

C—is^lnr,+/.,. 

(2.4U) 

(2.45) 

After elenentary transformations ve find the integration constant 

'1 

(2.46) 

Substituting A and C into 2q. (2.42) ve get the following expression 

for the temperature distribution in the cylindrical vail 

#_ Is-'1- + /_ la ~ 
* ' r * rx 

li-Û- 
'1 

(2.47) 

It follows from Eq, Ç2.47) tliat at 

1-=/-, /=/., 

r«r, /=/.,. 

The amount of heat Q passing throu^i the cylindrical vail per unit of 

tine Is determined from Eq (2.4o). 

Qmm2*UA. 
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Subitltutlnc the expression for A Into this, ve get 

0--J-(/,,-/,,) 2k/ kcal/hr (2.UÛ) 

It Is clear fren Eq. (2.½} that h depends both on the thickness of 

the vail as veil as on the ratio of the external and Internal dlaceters. 

In engineering calculations It Is usual to the anoint of heat 

passing through the vail of the cylinder to a unit of length of the tube 

fi-ykeal/hr (2.49) 

For the case of a multilayer cylindrical vail (Fig. 26) the folloving 

equation can be derived by methods vhich are exactly the same as tlwse used for 

the case of a multilayer plane vail (see Cection 8) 

(/,, “/»•h)* 
f,"ZT5Tjr,ni». * 

a, h + 2ij rf,+ + 
(2.50) 

^Inexactly the same vay for^ a ^cyllndrlca^fmultllayer^vally txie 

concept of the equi'/aleniltiieruial conductivity, vhich vas introduced for a multi« 

layer plane vail, remains valid' 

(2.51) 

Balancing the ri^it-hand sides of Eqs. (2.50) and (2.51)1 ve get 

. *«+i 

, V , rfj f- I . «/«4.1 • (2.52) 
• ^ i * . “3 . * . «**4.1 

T"*■ V +T j + ••• + •"■"T“ 
*1 «i h d, k, “« 

Islng Eq. (2.50) ve can vrite the equation for determining the temprature 

t on in the boundary betveen the i-th and the (i+lj-th layers. 
m * 
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Fig* 26, Multilayer Fig, 27, Boundary 
cylindrical wall conditions of third 

kind 

! 
■ 
i 

! 
î 
« 
î 
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V.r''.-S(Tll"í+7;'"‘;+-+,'ln-'ir)' i2-») 

Thlrd-0:4«r Bcrjndary Conditions. Let us new consider the problea of 

he third kind, tlie essence of 

t- of the liquids ru* va.l, and 
f 

a cylindrical wall, uslnt boundary conditions o. tne 

whldi Is to set the tempentures and 

the lav of heat transfer between the surfaces of the wall. 

Consequently, the task of heat exchange Is determined by the corresponding 

heat-transfer coefficients and 

The amount of heat q ( passing through the wall of tube of length 1 h 

from the hot liquid (t^j ) to the cold liquid (t ) can be expressed by three 

equations 

Let us write Eqs. (2.5*0 In the following transformation 

«■Tk-1'-1’- 
-i 

(a.s1*) 

, I ‘.tl^s, w*= r;1 

Summing the left-hand and right-hand sides of the equalities, we get 

+JL|n /,-/,. 
« V rf,«i 2X rf, , i&i ) 

^,-^(/,-/,) keal/m* hr 
From here 

(2.55) 

in which 

_!_+jLua+_j_ 
keal/m *hr‘ deg 

(2.5^) 



The coefficient Is called the heat-transfer coefficient of a 
—1 - ■ ■ 1 

cylindrical vail. Its dimensionality, us can be seen fron equations (2^56), 

differs froa that of the heat transfer coefficient k for a plane vail. !he 

coefficient niutrically equal to the amount of heat passing throj¿h 

the vail of the tube 1 m in length per unit of time from 1 liquid to another, 

providing the temperature gradient betveen then Is 1*C. 

The reciprocal of the heat-transfer coefficient k Is 

(2.57) 

and is termed the total heat or thermal resistance of the tube, and the smcnands 

, s t 
4/a,rf| and l/ay/i are termed the heat or thermal resistances heat transfer, vhile 

the sunmand i/lAlr/ls called the heat or thermal esistance of the vail of tlie tube. 

Thus, ln\ie cus,* of .. cylindrical vail the thermal resistance of heat 

transfer is not only a function of and - i‘lBo of the diameters %od 

the case of a multi cylindrical vail vith n tl^itly packed layers 

. in i 
vith the corresponding thermal conductivities nalogy vith the plane, 

rl\t.«cv3 
multilayer vail, ve can vrite the expressicxuT for the thermal conductivity 

ä_!_ 
1 1 u'tj. 1 . . , 1 , *•*' , 1 ——+ r- In - In —--f- — In —-H 

•l^l 2*1 ¿i 2*j rf; 2*, ét ' .y.+i 
(2.58) 
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r 
t I 

and th«raal resistance 

JL—L+±|,,it+J.|i,*+...+i|n^ü+-^. 
i, Vi *i <l »! <! ». ■<. V..I 

I I. ¿'«t I I 
(2.59) 

i 
Hie temperature boundary betvean tiie l-tii and (^ ♦ l)-th layers 

Is determined from the equation 

/ -/,-If J- + -'-In J + -'-In £ + -+ ¿-In^-1). (2.Co) 

Stamp!e 8. The power developed in a Internal combustion engine cylinder 

lejl • “ 50 hp. Tne specific consumption of fuel Is jc * « 0.220 kg^kp hour. Tne 
-- • “’r 

calorific value of the fuel Is 10,100 cal/kg, '«e are to determine the 

thermal conductivity of the cylinder wall, assuming that lU$ of the total heat 

of the fuel Is removed through the cylinder wall into water. Trie temperature drop 

= 10*. in the wall of the cylinder I*/ - t,y 
-¾ tix. 

The dimensions of the engine cylinder are as follows: D = l£o mm, l •= 175 

and the thickness of the wall ^ - 5 nun. 

Solution. 

l) Let us determine the hourly fuel consumption 

O - Jfy, - 50 0.220 - ! I kg Ar 

2) Let us determine the -hourly amount of fuel given off in the engine 

cylinder. 

Qi - O,,#. - (l io loo-ll! loo kcalAr 
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3) let u* determine the amount of beat removed through the cylinder 

vail 

Q.O.U QjcO.lMll lit)-ISSSI keal/hr 

k) tbe thermal conductivity of the cylinder la determined from £q. (2.48) 

Qln 3* 1555 «2,3<3lg 
«i 

m 
160 

«Tío““50 kcal/m *hr‘ de8 

, faaaple 9. An iron tube ( » 50 kcal/m • hour • deg) with an Internal 

diameter 16 cm and external diameter 17 cm Is covered with a layer of refractory 

insulation ( \ - 0.11) 2 cm thick. On top of this alnsulatlon la a layer of cork 

» ^ 
( A» : 0.035) 5 cm thick. The temperatureof tbe Internal surface of the iron tube 

i 

• - 
is 300 C. Tbe teoperature on tbe outside surface of the cork insulation is 4o £. 

Determine the beat losses In tbe tube over 1 m of Its length; the equivalent 

thermal conductivity, and tbe temperatures on the surface separating tbe Individual 

layers. 

Solution. 

further. 

rfi =0.16 m, I, = So kcal/m . hr . deg 
42 = 0.17 -V. ^: = 0,1 kcal/m • hr • deg 
43^0,21 m. 13 = 0,035 kcal/m • hr deg 
4| = 0,31 M, 

im «300’C, tm = 40°C. 

In~ = 0,05; In= 0.21; 1(1^-0,38. 
4| 4 J 43 

According to Eq. (2.50) ve get 

1i- 
(300-10) 2k 

— = 126 kcal/m * hr 
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To deteradne L let us use Eq. (2.52) 

T la 
0,31 
0.16 

:0,51 kcal/m •hr« deg 

The teapersture ton the outside surface of the iron tube is found from 

Eq. (2.53) 

*», »i 2« i| rfj 2« 50 

In ezatctly the snake vay ve find t., 

'..-'..+¿17^ ̂^+^07^^-558 c- 

The teaperature of the Internal furface of tbe cork insulation is 

extremely blgb, on account of tbe soiall thickness of tbe refractory insulation. 

Example 10, A pipe feeding a refrigerating solution bas cork insulation 

( \ a. 0.045) 75 nm thick. Tbe outer diameter of tbe Insulation is 250 mm. 

Measurement bas sbovn that tbe temperatureof tbe outside surface of insulation is 

f 
« » 

t -20 and that of tbe internal surface t , is -10 . Tbelengtb of tbe pipe is 
-W --V 

*' 'X 

1 - 20 a. How much beat will pass from the surrounding medium to tbe internal 

surface of tbe insulation in 2k hours? 

Solution. Let us apply Eq. ^2.48) 

L-(/ / y/r./ cal/hr 

rf, 

Substituting numerical values, ve get 

Q,0>I2r"20 = •S5-McalAr 
0,100 

_ «i _ 



or 

Q ■■ 24- IS5.3-Î «-IH3 cal 

Example 11. The outside diameter of the Iron steam pipe Is 17 cm, sad 

the Inside diameter 16 cm. The pipe Is covered vlth a layer of asbestor ( ^ • 0.15) 

5 cm thick. On top of the asbestos Is a layer of cork ( X • 0.04 kcal/m - hour • deg) 

5 cm thick. The temperature of the steam floving through the pipe 2) 1st -2^* , while 

that of the air surrounding tbeplpe Is t ^ - 20 . The beat transfer coefficient 

from the steam to the pipe is- 100 cal/m^bour • deg. The teat transfer 

coefficient from the pipe to the air is^^s, 10 cal/m^- hour • deg. 

Let us determine the heat'transfer coefficient and thermal resistance 

per unit of length of pipe. 

Solution. The thermal resistanceof vhe pipe Is determined from Eq. (2.59) 

I 1 1 I , 1 , , 1 

■¡r'-^+V";r+s7'";;+^ ■'T* •"< ' 
Let us total up the Individual beat resistances 

_L = —Î—» 0.0625 m* hr • deg/cal 
.jtf, 100 0.16 

J_ I» il „ -1- in — = 0.0O06I m * hr * deg/cal 
a, rf| 2-50 0,16 

: _L |n il = —l—in 1,54 m* hr‘deg/cal 
a, rfi 2 0.15 0.17 

JL |n it w —!— in — = 3,94 m* hr «deg/cal 
a, rf, 2-0,04 0,27 

1 
«3*4 

1 
10-0,37 
- 62 - 
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The total heat resistance is 

\_ 
*. 

#,0625 + 0,0X361 r 1.51 + 3,^1 + 0.77 5.5| M ur trai tai 

and the heat-transfer coefficient is 

#a-0.172kcal/m• hr 'deg 
59B| 

Section 11. Critical tblctaes# of heat ln»ulatlon of pipe 

Let us consider a case In vblcb a cylindrical vail (pipe) Is covered 

«i. a2.'Ju d:. lu /,, i2 
wltb a single layer of beat Insulating material. The values y are assumed 

to be given and to be constant. Let us ascertain tbe variation In tbe total beat 

'? 
resistance during variation In tbe thickness of tbe Insulatlngoaterlal through I 
variation In Its diameter (Fig. 28). 

Using Eq.(2.59) vd can write - • 

X.-Lxlin/l+M./.-t-JL. 
*a Ml -*l 

When tbe external diameter of tbe insulating material d Increases, tbe 

l/2).j In d-Jtlj MuiJu 
term y Increases, while tbe term j decreases, l.e., vben tbe thickness of tbe 

XT 

Insulating material Is Increased, tbe beat resistance of tbe material itselfls 

Increased and tbe beat resistance beat transfer on tbe outside surface of tbe 

iterlal decreases. 

Thus ve bave to study the function 

i-'W- 
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Taking the first derivative of the right-band side of Eq. (2.$9) vitb 

respect to d^ and equating It vltb tero , ve get 

Í-LY—»-= o. \‘j u-.d, .j¡ 
This gives us 

2», 
(2.61) 

Substituting Into tbe second derivative 

/±\*_L. + _1.=J/J—L\ 
V»./ ¡V; *1 Jv 

tbe critical value of tbe diameter, ve get 

Consequently, at tbe critical value 

tbe thermal resistance l/jc Is minimal, while the beat transfer coefficient k is 
•■c —C 

isaxlmam (fig. 29), i.e., the beat losses at - d^_are greatest. If d^. d^-7 

tbe beat losses decrease on account of a decrease in tbe beat re mowing surface. 

If d^ d^, tbe beat losses are also decreased on account of an increase in tbe 

thickness of tbe insulating material. Experiments show that in practice 

¿^Is mainly a function of tbe properties of tbe insulating material, i.e., a function 

Aa * 
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rig. 28. Determination critical 
thickness of thermal Insulation 

Fig. 29. Variation in thermal-resistance and 
heat-transfer coefficients as function of 

external insulation diameter 
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Section 12. Spherical Vail 

lit os consider the process of tberasl conductivity in a spherical vail 

vltb internal and. external surface radii r and r ^ (Fig. 30) and a tberasl 
-I ■" V 

conductivity , Steady-state conditions ensure that the temperatures on the 

internal (t^) and external (t^ ) surfaces are constant ^gbvlously, in this case 

the temperature! is only a function of the radius r4and the Fourier lav expressing 

the mount of beat passing per unit of time through the spherical surface r can be 

Witten in the fora 

Qtm — X — 4rr’ KKOA.iaC. 
x ir (2.62) 

"if Q Ã 
Designating constant^: and separating the variables, ve get 

di=-A±. (2.63) 

Integrating Sq. (2.63) ve get 

(2.6¼) 

in vhicb C is an integration constant. 

It is clear from Bq. (2.6¼) that the curve axpresslng the variation in 

temperature in a spherical layer is a hyperbola. 

In order to find the unknown A_ and C^let us use the first-kind boundary 

conditions. 
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Fig. 30. Spherical wall 



f 

At 

r-r, 

r-r. 

Substituting these conditions Into Eq. (2.64) ve get 

*1 
/,,--+0. 

ft 
Solring the obtained system of llnesx equations, ve get 

^ I I ’ 

(2.65) 

'i * 

and therefore 

. Q-y*^ <<*-<.,) “V«- 

The Integration constant Is determined from the following 

(2.66) 

Sqs. (2.65) 

r\-r\ 

Substituting A and C Into Eq (2.64) ve get 

~ ,y>-e-7) 
i i 

(2.67) 

r\ * 
for a multilayer spherical vail conalstlng of n layers with thermal 

4|. 1», Ij. • • •. JL f1“"' 

eonductlrlties / , and xadll f , ve get on an analogy with the multi-layer 

plane and cylindrical vails 

Q 1 /J_ jn 1. J.I Í1 —n 
-—— 

I. _L\ 
»1 \/i oJ {r* r»i 

(2.68) 

The temperature distribution inside any 1-tb layer of the spherical 

vail obeys the equation 

/« 
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(2.69) ‘é- 
'•ü-ä^Ü-T) 

ve vil! 

Vor tb« beginning of tbe rod at x - 0 

l_i_ 

rt rH-l 

Sactlon 13. Infinitely long rod 

Let us consider steady-state beat transfer through a rod of infinite 

length (Fig. 31)« One end of tbe rod is kept at a constant tençerture £, . Tbe 

rod is oy a aediua vitb a constant temperature . Tbe beat •transfer coefficient 
"w 

' 

fron tbe surface of tbe rod to tbe medlua is considered constant throughout tbe 

length of tbe rod. Tbe tbemal conductivity of tbe naterlal of tbe rod X 1* 

assuaed to be fairly high; vblle tbe transverse dimensions of tbe rod are so small 

compared vitb tbe lengtb that ve can Ignore tbe variation in teqpeeature from tbe 

axis of tbe rod to its surface in tbe sections perpendicular to its axis. Tbe 

te^erature of tbe rod t is considered a function of one coordinate alone 

Tor tbe temperature of tbe rod to exceed that of tbe surrounding medium 

i.-'.-»»- 

Let us consider tbe thermal equilibrium of a rod element bounded kxX by 

tvo perpendicular sections at a distance x from tbe origin of the coordinates. 

- 67 - 



Tb« length of the element dx, the «re« of the section of the rod 1« F and the perimeter 

of the section 1« U. 

The amount of beat Q ^entering the element under consideration through 

the section I • I per unit of time Is determined by the equation 

(2.70) 

The amount of beat Q^^learlng the element through the section II - II 

situated at a distance x + dx from the origin of the coordinates Is 

<1,M, = -*(£) F. 
Wx/j+rfc (2.71) 

During this time the lateral surface of the rod U dx vlll give up the 

following amount of beat 

dQ-tUSdx. (2.72) 

Compiling the heat balance for the rod element ve get 

-kO/+CL. 

Taking It Into account that 

{-) -(-) \dx/,4.é, \dX /, dU) 

(2.73) 

(2.71) 

ve get 

dx dx* 
(2.75) 

(2.76) 
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Fig. 31. Rod of infinite length 

- 68a - 



Introducing the quantity 

va gat 

I*-'-? 
9 if* 

S-**- 

(a.n) 

(2.78) 

Tba solution of tbe derived linear differential equation of tbe second 

order can be represented In tbe general fora 

(2.79) 

Tbs constants C and £_ can be found byn means of tbe boundary 
n ¿s 

conditions 

At 

At 

xwO . 0"8l«C,+C,t 

x*»oo * 0=O*=C,c*. 

Tbs last equality Is only varied on condition » 0. 

Consequently, 

0|*» Cj h 0»0,e-,x. 

Tbe hourly amount of beat given up by tbe vbole lateral surface of tbe 

rod can be found as tbe beat flux entering tbe rod through its base 

«*—"'(SL- (2.80) 

Since 

(2L—• • 
- 69 - 
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„Therefore, 

Q«*m (2.82) 

or 

Q- (2.83) 

If the beet transfer fron the rod to the eedlua does not take place along 

the «hole surface of the rod, the relue JJ.should be taken to sean the part of the 

•action perimeter along vblch the beet transfer occurs. For a rod of circular 

section with diameter jJ.vitb heat transfer orer the vbole surface, ve get 

Section 1¾. Rod of finite length 

(2.8«») 

(2.85) 

If the cold end of the rod is at a temperature higher than that of the 

surrounding medium, ve bare to use different formulae vhen calculating the heat 

transfer through It. 

Let us designate the length of the rod L and the amount by« which the 

temperature of the cold end exceeds that of the surrounding medium We will 

Ignore heat transfer from the end of the rod or ve will take It into account by 

Increasing the length of the rod so that the lateral surface vhen elongated Is 

equal to the total (lateral and end) surface oft the actual rod. 
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Tbc general solution of the differential equation (2.79) 

is applicable to a rod of finite length. The derivation of this equation coincides 

with that given for a rod of Infinite length, except that the boundary conditions vary 

at JC-O e-Öj-Cj + C, or C,»e,-C,: (2.86) 

at X t*L, Ignoring the beat transfer fron the end of the rod, ve get 

a.-* 

ItL, 

(2.87) 

(2.88) 

Iquatlons (2.66) and (2.68) give us 

¢,(^+^)-0/-^=0. 
(2.89) 

fron uhleb 

C,' i^+r^ 2 Chao (2.90) 

and 

Equation (2.79) for the temperature distribution in the rod can be 

expressed nore conveniently in hyperbolic functions. Substituting the derived 

TÄ1Ä*B 0-| «d ^ Into Eq. (2*79) «ad chaq^ng to hyperbolic functions, ve get 

(2.92) 
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er 

* ch(i£) (2.93) 

At X L ve get 

0, 
cb 00 

(2.9^) 

The beat flux entering the rod and transferred by* tbe lateral surface 

of tbe rod to tbe surrounding medium can be found from Eqs. (2.79) and (2.Õ0) 

-,(,-11-r«1) 

2cb0£) 
(2.95) 

or 

Q-e, e, ih <?i) V°uiF. 

F- ID 

(2.96) 

(2.97) 

and 

koalAr (2.98) 

**»”Ple 13. It la known that tbe tenperature at tbe end of tbe Inlet 

e 
Taire atem In an Internal coofcustlon engine Is t^». l8o (?lg. 32). .Determine tbe 

temperature of tbe ralre at tbe beginning of tbe stem t.^ ; If it Is known that 

tbe diameter of tbe ralre stem Is D^^IO na and Its length Is j« =-120 mm. Tbe 

ralre la made of a special steel with thermal conductlrlty \ - 25 kcal/m • hour ■ deg. 

Tbe beat'transfer coefficient from tbe surface of tbe ralre stem to the 

bushing is 0( - 15 kcal/m^/hour • deg. Tbe tenperature of tbe bushing is 
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is taken to ta constant throughout tha length and It equal to V^» 65 • 

Iota. The Taire aten la considered a rod of finite length. 

« 
Solution. Squat ( 2.9M gires us 

fron nhlch 

a •« 
§t cfctfi) * 

•.-•tchtfl). 

Fig. 32. Calculation of temperature 
field of Inlet valve In engine 

Fron the giren data ve find 

|t - -1. «* ! W - 65» =» 115*. 

Fron Sq. (2.97) ve caleuhte 

I,. USch (15,5.0,12) - I15ch (1.86) = 378* 
-•1 + /,-378, + 65, = «3a. , 

Section 15. Round Plane Fins 

The prob lea of correctly designing fins for air-cooled engine cylinder s, 

economizers, heaters and other heat-exchanging apparatus consists In obtaining 

renoral of heat at the giren consuqptlon of the cooling agent, while keeping 

the weight and the sise of the apparatus Itself down to a 

We have to determine the shape, height and distance between fins. 

The moat advantageous fin-shape for the giren weight or height can be 

decided aathenatically. If the weight and area of the transverse fin are constant, 
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the —rl«« heat reaoral la ensured If the lateral surfaces of the fin are concare- 

parabolic In shape (fig. 33a). In a fin of this kind the teqierature 

gradient la constant all the vay up. By virtue of the difficulties of a 

technological nature, In practice use Is ande of fins vlth a cross-section In the 

fora of a trapexlua (fig. 33b) or a rectangle (fig. 33c). 

An analytical solution of the problem of the propagation of beat through 

a fin and, chiefly, the heat transfer fron Its outer surface a nuaber 

of difficulties of a mathematical and physical nature. The chief difficulty Is 

the necessity to knov the distribution of the heat-transfer coefficient over 

the surface of the fin. Hence the analytical solution of the propagation of heat 

in fins, possible at the present stage of development of the study of heat transfer, 

gives a very approximate result on account of the assumptions made to* simplify 

the physical picture of the given phenomenon. 

Let us therefore consider the heat flux for a rectangular fin under the 

following conditions: 

1) The temperature conditions are steady-state. The tempexture of the 

base of the fin Is constant and equal to t^ f j 

jU&LfAtul 
2) the amount of heat over a unit of time from any part of the 
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Fig. 33. Shape of fins 
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surface of the fin le proportional to the temperSure difference betveen the fin and 

the surrounding nedlua; 

3) the beat transfer coefficient la the ease at all points on the surface 

of the fin; 

M If h Is tbe height of the fin and $ la Ita thickness* the heat loss 

fron the end of vldth nay be taken Into consideration by replacing the actual 

height h by 

3) In rlev of tbe fact that the thickness £ Is snail compared vith the 

either dimensions of tbe fin* ve will take It that the teoprature Is a function of 

one coordinate (operating value of tbe height of the fin)* l.e.* ve are dealing 

with a uni-dimensional steady-state tençerature field, 

'-/(<). 

Let us use Ô to designate tbe t tenpentured difference at any point on 

the fin t and the surrounding medium * ¢ = /-then 6 ^f(x). 

Let us develops the round* plane fin along the mean diameter as shown In 

s 

Tig. Tros now on the task Is reducible to heat transfer through a rod of finite 

length. Let us consider the heat balance of the element of the fin lengthy 

height and dx in width. 
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The «aount of bent entering the element under consideration through the 

section I - I per unit of time, according to the Fourier lav, Is 

_ Kiai/itV 
0,-= — 1— 

4* 

The amount of heat leering the element through the section II.- II per 

mit of tine Is 

Qj“ KKO-i.tac. 

The difference between the amount of beat dQ entering the element Q ^ and 

the amount leering It Q ^1 b the heat transferred to the surrounding medium. Thus 

dQ-Q,-Q,~^D„’.dx. (2.99) 

But i on the other hand, this amount of heat, dQ can be determined by 

Vevton's lav of beat transfer 

dQ=rt2-Dt9dx. (2.100) 

Equating the right-hand sides of Eqs. (2*99) and (2.100), ve get 

from which 

— *=?*- 
dx*** H (2.101) 

B quation (2.101) Is a linear differential equation with constant 

coefficients without « right-hand side, exactly the same in fora as Bq. (2.78). 
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Fig. 34. Calculation of cooling fins 
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Ut as désignât« 

(2.102) 

end «rite the solution of this differential equation In the font 

e-A^+Br-^, (2.103) 

ln vhleh A^and B are Integration constants. 

Zf ve substitute the hyperbolic functions Into Bq. (2.103)« after 

transforaatlon, ve get 

(2.104) 

The link between the constants In Eqs. (2.103) and (2.104) Is expressed 

In the following way 

M^ïVÂB 
(2.105) 

The constants ^and ^ In Bq. (2.104) are determined by using first-kind 

bundary conditions. 

Jt=0 6=0.=/,-/,, 

/t X - h’ there can be no further variation in 0 (extreme point 

Hence, 
(¿ri-*“0 Thu8* i*e-’ M* 

and 

Consequently, 

—=Af — (ch p (x- ),)), -»• = ( Ai sh J» (x - ?,)) ,-*• = 0. 
4* 4x 

•hP(A'-p,)=--0 
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or according to the definition of a hyperbolic fine, 

I,)—-0, 

fron which 

Thusi ve finally get the following dependence for the tenperature 

variation along the length of the fin 

0_0 tfc !» (•> — Æ*) 

^ • cl I-*' 

The aoount of beat transferred by the fin to the surrounding 

(2.)06) 

medium 

per unit of time can be determined b integrating Eq. (2.110). 

Substituting for 0 tbe value of it obtained froa Eq* (2.106)* and 

removing the Integral sign from the constants, ve get 

cb fk' 

if 

Jchnijc—A')rfx 

or 

2a*Dcf% 5h (uA') 2ar.Dtp«0 
¢=-— TTTTa^-— th (¡»A'). 

I» ch(jiA ) r ; (2.107) 

If the fin had a constant tençenture difference, l.e., a constant 

teqperature throughout the height of the fin and a constant temperature of the 

surrounding medium t^ , the amount of heat transferred by It to the surrounding 
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Mdlum would be expreseed by the following equation 

Q,-2ae.*Dt>A\ (2.108) 

The ratio of the heat actually by the fin to the aaount of 

JUtotfJ&L 
heat which the fin could if the teqpemture difference along the height 

were constant and equal to is called the efficiency of the fin (Y^) • 

^Q. (2.109) 

Substituting the ralues Q and Q from Sqs. (2.107) end (2.108) into 

Sq. (2.109)» we get 

» ,»2. 

By maklngg redwetlena we finally get 

r* 
(2.110) 

Tig. 35 gives,for purposes of illustration^ graphic expression of the 

functional dependence of the efficiency of the fin on the value 

\»/(pA') 

furthnrmore. Table 2 hhovs the efficiency of the fin>^ for different fins, the 

heat'transfer coefficient being taken as identical for all fins and equal to 

108 kcal/a^hour * deg, which corresponds to the rate of free flow around the 

surface of 1^5 hm hour. 
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Fig. 35. Efficiency of fin ’V—/O1*')- 
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Table 2 

Tin material 

Height 
of tin, 

h, 
MM 

Thick¬ 
ness ol 
tin, i 
MM -/TT 

K 
M 

H*' T.p 

V 

Aluminum 
Steel' 
Copper 

» 

16 
25,4 

2.3 
0.8 

0.5 

22,8 

83 

36.4 

0.0261 

0.0I&1 
0.0256 

0,595 

1,36 
0.93 

0.9 

0.Ö 

0.75 

i 
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Thu« (fron the point of rtev of beat tran*fer per unit weight) It Is 

an advantage to have a large niafeer of llght| thin fine* Thi* holde till euch time 

¿g atreaa flowing round the fin begins to be distorted by the proocinity of 

tbs neighboring fins. 

The chief problem in designing fins is bow near they can be placed to 

each other without^ seriovi their efficiency through a reduction in 

the amount of air passing between them« 

fcgggXè ih. what i* the efficiency of a fin in an air-cooled aircraft 

engine cylinder^ if the fin height is 12 nan, the thickness S' a-0.8 ant The 

heat-transfer coefficient between the surface of the fin and the surrounding medium 

g, ]£0 fccal/n^ hour i* deg. The cylinder is made of steel with thermal conductivity 

= hj fccal/m • hour • deg. 

Solution. 

l) Let us determine the valuefrom E<i. (2.102) 

2) Let us determine b* 

*' -4 + -- 0,012 + O.OOOJ =- 0,0124 m; 

3) Let us determine ^Ch* 

^-103-0,0124- 1.26. 
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Tb« table of hyperbolic functions for / Vb' = 1.26 gires us 

tfc(¡4')~0.^10C; 

k) Fro« lq. (¿.lio) ve can determine the fin efficiency 

Hi (:•*') ? ,,--— 
* H*’ 

C.S'.Irti 

1,2û 
0.675. 

In conclusion ve give Tables 3 “ H shoving the thermal conductirity of 

different «ateríais /l, 3» *♦» 9/* 

0 
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TABI£ 3 

Haterlal 

1. Pure ■eUli 

Blsisuth 
RK/hOL 
Tungsten. 

Pure iron 

Pure Iron 

forged Iron 

forged Iron 

Gold 

Gold 

C&dalua 

Tbennel Conductlritv of Metals_ 

“1 Ã 
Temperature in °C 

18 
100 

20 

18 

100 

18 

100 

18 

100 

18 

100 

kcal/n hour deg 

7.0 
5.8 

138 

58 

54.5 

52 

51.6 

252 

253 

80 

77.8 

Magnesium 

Platinum 

Platinum 

Mercury 

Mercury 

Steel (tf C) 

Steel (1¿ C) 

Antimony 

Antimony 

Pig iron 

Pig iron 

0-100 

18 

100 

0 

50 

18 

100 

0 

100 

54 

102 

137 

60 

62.4 

5.4 

6.9 

39 

38.6 

15.8 

14.5 

41 

40 
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TABUS 3 (contd) 

2« Alloy 

CcnctantAn (60Cu, 40Ni) 

Conatantán (60Cu, 40N1) 

Manganin (84Cu, 4M, 12Mn) 

(84Cu, 4M, 12Mn) 

Vlckal alloys (70M, 28Cu, 2 Fe) 

Ilckel alloys (62M, 12Cu, 26Fe) 

Ballbearing octal (white) 

18 

100 

18 

100 

20 

20 

20 

19.5 

23.1 

19.1 

22.6 

30 

11.6 

20.4 
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Table 4 

Effect of temperature on heat conductivity of metals and alloys, 

according to International Critical Tables; ^ in 

(kcal/m* hr • deg) 

Temperature,0 C 

0 100 200 300 j 4CO J 500 G00 

Aluminum 
Brass (no-10) 

« 

N®eT tiUrC) 
Tin 

Jfiíár 

tólSÃt 18*) 

lig'.ron 
Pig iron with a 
high silicon 
content 

47.5 46.? 

Table 5 

Thermal conductivity of steels \ (in kcal/m • hr • deg) 
as function of temperature 

Type of steel 
Temperature, °C 

100 2oo 300 400 500 GOO 70) 

Carbon 

IS 
SO 

Molybdenum: 15M, 20M 
•,5hMo 

Chrome-molybdenum; 
I2MX; I** Cr.O.SH Mo. EI107 

»H Ci. 0,8'* Mo 
Chrome-nickel-tungsten 
hçat resistant EI69, 13- 
15% Cr, 13-15% Ni, 2- 
2.8% W 
Chrome stainless EZh-1 
15% Co. 12-14% Cr, 
0.5% Mn 
Chrome-nickel, acid re¬ 
sistance stainless EYa- 
T; 18% Cr, 9% Ni 

46.8 

43.2 

36 

37.4 
15.8 

13.3 

19.3 

13.4 

43,2 
39.6 

3),6 

13.2 

39,6 

36,0 

2S.3 

13.7 

15.6 

16.7 

36.0 

32.4 

20.2 

32.4 

28.8 

23,8 

25.2 

21,2 

18,2 

18,9 

20,3 

13.9 

18.9 

21.3 
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Table 6 

Thermal conductivity of different liquids from data supplied 
by N. B. Vargaftik X • 10^ (in kcal/m • hr • deg) 

Name of 
liquid 

Temperature, in °C 

0 25 50 75 100 125 ISO 

Butyl alcohol 
Isopropane " 

Methyl alcohol 

Ethyl alcohol 

Acetic acid 

Formic acid 

Acetone 
Nitrobenzene 
Xylene 

Benzene 

Toloune 

Aniline 
Glycerine 

Vaseline 
Castor oil 

13.4 

13.2 

18.4 

16.2 

15,2 
22,40 

15,0 
13,25 

11.75 

12,15 

13.0 

16,0 
23.8 

10.75 

15.8 

13.1 

12,9 

18,12 

15.75 

14.75 

22.0 

14.5 
12,9 

11,3 

11,7 

12,45 

15.6 

24,05 

10,65 

15,55 

12,75 
12,55 

17.8 

15,25 

14,30 

21,65 
14.0 

12.6 

10.9 

U.I 
11.9 
15.2 

24,35 

10,5 

15,25 

12.4 

12.2 
17.6 

14,75 

13.9 

21,25 

13,55 

12.3 

10,45 

10.6 
11,35 

14,8 
24,6 

10.4 
15,0 

13,0 

12,0 

10.1 

10,2 
10,8 

14.45 

24,85 

10,2 

14.7 

11.7 
9,57 
9.65 

10.55 
14,05 

25.1 

10.1 
14,45 

13.7 

25.4 

9,95 
14,2 

Table 7 

Thermal conductivity of certain gases at different 
pressures and temperatures 

A. Thermal conductivity of air at different pressures 
and temperatures X* 10^ (in kcal/m • hr • deg) 

£ in kg/cm^ 
1 in 0 C 

20 .| 1(0 1 180 

1 

100 

200 

300 

400 

221 

239 

328 

390 

431,5 

263 

265 

323 

371 

404 

311 

314 

351 

660 

418 
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Continuation Tabic 7 

B, Thermal conductivity' of hydrogen at different pressures 
4 

and temperatures X * 10 (in keal/m * hr* deg) 

i‘2 
£ in kg/cm 

■I In TT 

IS too 300 I 300 

1 

WO 
300 
300 

400 
SCO 

r. 

ISOS 
ISSI 

1607 

1643 
1663 

1660 
l .( 

ISIS 
1640 

1877 
1896 

1909 

1917 

3169 

3183 

2311 
2226 

2236 

2239. 

2530 
2530 
25T>| 

2S68 

2572 

C. Thermal conductivity of helium X • 104 (in keal/m • hr • deg) 
and t = 43* C at different pressures_ 

£ in kg/cm2 
2 

j £ in kg/cin 

I 
10 

30 
30 

40 
SO 

60 
70 
80 
90 

100 
no 

1340 

1345 

1352 

1357 

1363 

1370 
1375 

1382 
1387 

1393 
1400 
1406 

120 

130 

140 

ISO 
160 

170 

180 

190 
200 

210 

220 

D. Thermal conductivity argon X • 10^ (in keal/m 
and t = 41*C at different pressures 

£ in kg/cm2 

1412 

1418 

1424 

1430 

1436 

1442 

1448 

1464 
1460 

1467 

1474 

hr -deg) 

j £ in kg/cm2 

1 
10 
20 
30 
40 
SO 
60 

161 
166 
169 

172 
174 
176 
180 

70 
80 

90 

100 
110 

120 
130 

183 
188 

191 
199 

204 
208 
213 
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Continued Table 7 

£ in kg/cnr ‘ 1 £ In kg/cm2 ^ 
* 

140 
ISO 
16° 
170 

217 
222 

226 

230 

180 
190 
200 

236 
241 
246 

Thermal conductivity of nitrogen at different tcm|>erature8 and 
pressures \ • 10^ (in keal/m • hr • deg) _ 

Ç/cm2 
t B*C 

15 25 50 o 100 200 300 

I 
100 

200 

300 

400 

500 

600 

700 

800 

xo 
1000 
1100 
1200 
13u0 

1400 

1500 

1600 

1700 

1800 
1900 

2000 

2100 
2200 
2300 

2400 
2500 

216 

243 

313,5 

374 

406 

459 

227 

281 

352 

423 

495- 

556 

616 

666 

712 

760 

801 

844 

333 

922 

961 

1000 

1034 

1063 

1103 

1139 

1174 

233 

283 

350 

414 

474 

535 

592 

640 

687 

734 

772 

810 

846 

833 

920 

956 

992 

1026 

10G0 

1091 

1126 

1158 

1189 

253 

?» 
350 

407 

463 

518 

570 

618 

663 

705 

743 

780 

817 

854 

SS9 

925 

959 

994 

1027 

1060 

1092 

1122 
1153 

1182 

1212 
1240 

265 

274 

326,5 

378 

405 

455 

317 

323 

354 

392 

414 

457 

371 

373 

395 

425,5 

444 

481 

I _ 

— » 

Note: Thermal conductivity of hydrogen, helium, argon and 

nitrogen given in Tables 7 and 8 are taken from [3] 
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Table 9 

Thermal conducthlty of Insulating materials at high temperatures 
X (In keal/m • hr • deg) 

Materials 

« I ! 
0 

Mean temperature in *0 

61- 93 N9 201 260 3IG 371 427 

Layer of asbes¬ 
tos felt (about 40 
layers per 25 1 
mm) , 3700,0190.055,0.05 0.0C50.07I 

Same (about 20 
layers per 25 
mm) 

i y ' i 

482 53-, 

260 0,007 0,075 0,0320.0^0,057 - 

Wavy asbestos 
(four folds per 
25 mm) ISO 0,0750,086 0, I03| 

85% magnesia ¡ 3150,0580,061 0,0610,060 

Diatomite with 
asbestos and 
bond 

870.0,067,0.0700,0730.075,0,079(1.0820,000 0.097 
I I I_I_I_ I I 

Diatomit brick 870^,050 0.CS3 0,08-, O.OOOjo.OOVo .097 0,103^, 109 

11000,1890.1910,1080.2010,2'.-8 0.2130.223 0,2150,262 - 
J 1 * I I ! I I I I 

1370|0,191|0,l95 0,20lj0,207|0,213jo,20ljo,231 0,213jo,273|o,3 6 

Diatomite 
powdery 
(bulk density 
290 kg/m3) - .0.0530,0620,0660,071 0,070 0,080 0,091 0,101 
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Table 10 

Thermal conductivity of insulating materials at mean temperatures 

X (in kcal/m • hr • deg) 

Materials 

►i5 
& 

Temperature in *C 

IP ° 
38 93 149 204 316 <27 

Asbestos 

Fired infusor earth 

for lagging pipes 

Insulation 
(loose) 

Cotton 

Silk thread 

snk 
Wool 
Cork powder 

Infusor earth 

(loose) 

577 

2CO 

400 

80 

146 

100 

136 

ICO 

350 

0,130 

0.004 

0,000 

0,016 

0.019 

0.037 

0.033 

0.031 

0.052 

0.145 0.104 

0,008 

0.008 

0.052 

0.045 

0.042 

0,010 

0.039 

0,053 

0.077 

0.175, 0.180 

0,035 0.092 

0,079 0.075 

0,055 

0,050 — 

0.050 

0,049 

0.018 

0,186 

0.10? 

0.067 

0.032 - 

0.070 0.075 0,079 

0.194 

0.127 

Table 11 

Thermal conductivity of insulating materials at low 
temperatures X (in kcal/m • hr1 deg) 

Materials 
ZPc •r! C 

cl 'tt ~ v S¿ 
a ^ 

Temperature in °C 

0 -45,5 j -73.3 j -129 -181 

Asbestos 

Asbestos 

Cotton 

Silk 

700 

465 

SO 

100 

0,20 

0.1330 

0,0134 

0.0432 

0.196 

0,1230 

0.0450 

0,0331 

0.194 

0,122) 

0,0411 

0,0350 

0.186 

0,1072 

0,0330 

0.0292 

0.149 

0.0312 

0,0295 

0.0231 
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CHAPTER 3 

COBVfCTIYE HEAT PCHARGE AKP FWDAMEWTALS Of THRORT CT 8IKIIARITT 

CooTvctiT« beat exchange or beat tranefer la the procese of beat exchange 

I varean J 
vblcb le effeçtefl between any solid surface and a fluid /ii7 The process of 

beat transfer Is a coop lex fora of beat exchange and depends both on thermal 

as well as hydrodynaalc phenomena. 

In the first section In this book It was pointed out that the beat flux 

density q kcal/a • ho’ir say be determined by Rewton's formula (2.3^) 

in which ^ t is the temperature gradient, l.e., the difference between the 

f6«U / , 
tea^erature of the wall and the ft; 0(. kcal/a1^ hour • deg Is the 

heat'transfer coefficient, numerically equal to the amount of heat transferred or 

receired by an element Of surface per unit time at a temperature difference 

between the wall and the receiver of 1*. The beat •transfer coefficient iX depends 

on a whole mufcer of factors: sn / -e thermodynamic state and phyalcal properties 

i ^hTsuz Of the medium "¡surface ( Its temperature, pressure, density, viscosity, 

hemal conductivity, and other parameters)^ the velocity and conditions oi motion 

of the medium (laminar or turbulent), and on the shape and sire ^xf the heat - 

exchange surface. 
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It is not possible to study expert Dentally the effect of any of these factors 

on tbo heat transfer coefficient 0( , since the variation in one of then inevitably 

results In variation of the others, for example, if ve change the temperature of the 

■edlua,\lts density, viscosity and thermal conductivity are inevitably changed as 

veil, and the rate and conditions of motion of the medium tne surface may also 

change» By virtue of this, the heat-transfer coefficient arrived at experimentally 

vould only he varied in the conditions under which the test was carried out. 

T 
beoretlcal analysis of the dependence of the heat-transfer coefficient 

on the factors mentioned above is also difficult, and sometimes ItqpOBSlble. For a 

mathematical description of the complex physical phenomena use is made, as is known, 

of differential equations of mathematical physics. The differential equations can 

be coi^iled also for processes involving heat transfer. * 

But to study this complex phenomenon of heat exchange ve vould have to 

use a whole system of differential equations: differential thermal-conductivity 

equations, convective heat-exchange equationsj motion and solidity equations. On 

account oij mathematical difficulties this system of differential equations cannot 

be integrated. 

When studying’* conçlex phenomena which cannot be investigated by 

Strictly mathematical analysis and which it is difficult to investigate experimentally 
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on account of the large nuaber of variables, we use the Methods of the theory of 

•üdlarlty« 

Section l6. Tundaaentals of thecry of slndlarity 

The study of different cases of beat exchange by natbematical analysis 

W-*jT 
■akes it possible to obtain a final result in rare cases. In 

nost cases it is only possible to give a natbematical formulation of the problem, l.e., 

l) to coqplle a differential équation describing the phenomenon under 

consideration; 

2) to determine uniqueness conditions which pick out one specific 

phenonenon fron a whole class of others described by the differential equation. 

But the final solutions of most differential equations are Impossible 

in most cases on account of mathematical difficulties. In such cases we have 

fkMÍUuÁ 
of a' /case to turn to the experimental study of a' /case of heat exchange and find 

/ an empiric equatlonf providing a link between the characteristic physical parameters 

for the phenomenon, derived experimentally. 

But the experimental dependences obtained only relàte to the 

specific case for which they were The extension of them to cover other 

phenomena leads to gross errors, which shows how unfounded it is to generalize the 

restlts of investigation of Individual cases of heat exchange. 
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For ex&nçle¡ lot us sssudc vo bsve detorslfiod the heat -tr&nifer coefficient 

from a liquid monring In a pipe to the surrounding medica. The variations In the 

rate of notion of the liquid, the conditions of the surrounding medium, and so on 

cause a varltfcm In the heat transfer, which Is such tlst the experlmen 

iju-Ujja tfrUÁrr. 
u 

Thus, It transpires that the application of oStbematlcal analysis to 

beat exchange leads In most cases to Insoluble differential equations, and some 

experiments prevent the results being generalited for the whole group of phenomena 

under Investigation. 

The way out of this apparently hopeless situation has been found in the 

theory of similarity. This theory makes it possible to extend the results of a single 

experiment to a whole group of phenomena. The similarity method enables us to draw 

a nunfcer of generalizing conclusions from differential equations and uniqueness conditions 

without resorting to Integration, butrmerely experimental data. We can thereby 

determine the limits of generalization of the results of the one experiment. 

The term " 81181^^/ is derived from geometry. Geometrically similar 

figures possess the property that the ratio of »dimensions is the same 

nuafcer. Figures expressing this characteristic of similarity are known by that name. 

It has been found that In beat exchange, too, we can point out a whole 
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1 1 

Dudber of ilaUuritle« betveen the teaçerature, klneoatlc and geometric 

relatioQBblpa. If ve take, for exaayle, tbe teaç er ature relationship* during beat 

•xchange, then, as is known, the totality of tbe temperature relationships prorides tbe 

te^erature field. It turns cut that *1! ihr te^returo fiele» can be dlrlded into 

a mofcer of groups, «each of which nay possess an identical characterist.c of 

•lailarlty for all cases united by tbe group. This group of temperature fields possess- 

lag identical similarity characterittics is said to be similar. 

Analogously, all of tbe kinematic fields can be divided into a number 

of groups, each of which possesses a similarity characteristic, and all tbe relation¬ 

ships united by this group are therefore known as similar; in other words, all the 

kinematic fields making up the said group with the identical characteristics are 

siailar among themselves. All this clearly relates to mechanical, geometrical, 

physical and othe^benomena. 

Thus, for similar groups of phenomena and for similar fields we can 

give a finite mathenatical interpretation without integrating the initial differential 

___J 
equation. Furthermore, for a group of fieldS)lt is possible to extend 

a single experiment to cover a while group of phenomena. 

The methods of tbe similarity theory are used in aerodynamics, hydraulics, 

tbe theory of ships and other branches of science. Tbe theory was 
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fir*t applied to the investigation of beat exchange in 1910 by Husselt, and has 

acquired particular i^wrtance in connection vith the development of the so-called 

tberml siuolation, i.e., the astbod of investigating beat exchange apparatus using 

aodels, put forward by Kirplcbev in 1923* 

In subsequent years Kirplcbev^ Mikheyev and other Soviet scientists 

carried out a great deal of work on further substantiating and developing this method. 

At the present time the theory of similarity is being widely ençloyed in the study 

of convective beat exchange, and when applied to it,can produce reliable mathematical 

dependences describing the process under investigation. 

Concept of Similarity 

Geometrical similarity. AS is well known, the term geometrically 

■nar* figures means figures in which the sides are proportional, 

tOT't i'*-! 1 

'"Angies' are equal so that if the three triangles shown in F.ig. 3o are 

geometrically similar, the following relationships can be compiled for them 

^ 4 r 

7 4 Ÿ • , 
This dependence shows that the ratio of the ^iides of two 

similar triangles is the same; the number is designated C and is known as the 

geometric similarity constant. Thus, the similarity constants of two geometrically 

similar figures are the numerical values of the ratio of any 



Fig. 36. Geometrically similar triangles 



linear dlaeniloni of the*« figures. 

If ve consider trlsngles I end III, e siadlarity constant can also be 

obtained for then. 

/,4 < 
'< Í ? 

dial1erly, for trlsngles II and III 

/* /* /' 
*i '« _ *» r” 

~C'C~C 
In the general case, the values of these constants may be different 

from each other 

CtCfC. 

Other relationships nay be cooplled on the basis of the geometric 

similarity of these triangles. 

Vof exanÿle, the ratios of like aides of triangles and heights vo>^d 

also be the same 

These values, as distinct from the similarity constants, sure termed 

similarity Invariants and are designated 1 



F 
t 

■ Thu*, the «lolUrlty inraxlant* of geometrically tlmllar figures are 

tba numerical ratios of tvo linear dimensions In the same figure* It Is not difficult 

to ses that vben the figures change, the similarity Invariant remains unchanged, while 

the similarity constant varies while both during a change In segments In the same 

figure the similarity conttant Is retained while the similarity Invariant changes. 

Similarity of physical phenomena* When two physical phenomena are 

similar, there must be a similarity of the fields of all homogeneous values 
• 

Í4ffUf<rv3^ 
characterizing the phemonenon In question. This means that at points In 

first the space under study at /moments of time, ./of the fl: 

phenomenon SLre proportional to values of the second phenomenon* Like value* 

fcould be taken to mean values which have the same physical significante and the 

same dlmeMonallty. 

Geometric similarity Is an essential precondition for the similarity of 

physical phenomena. 7or example, If two streams of liquid are to be hydrodynamically 

similar, they have to be bounded b^ walls of geometrically similar configuration, and, 

moreover, there have to be similar velocity fields, accelerations, densities and 

other parameters in these streams. Similarity constants and invariants can also 

be compiled for physically similar phenomena. 
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The alallATlty constant of physical phenomena Is the ratio of like relues 

at two ' points In a systea under consideration. Here each physical ralue 

has its own similarity constant, which Is given a special subscript. For exaaple, 

c/Us the velocity similarity constant, c0 Is the density similarity constant, and -a, 

so forth. 

If the three streams of liquid shown in Fig. 37 sre similar, they must 

he hounded by walls of the same shape (for example, cylindrical shape) and here it 

is essential to keep the condition 

£ 
ë' 

r 
á~ d' 

The condition of physical similarity of the streams may he expressed In 

terms of the similarity constant in the following way. Let us take on the axes of 

the streams at distances from the Initial section x - d the like points in the 

streams'g', 0" and 0"' and the points a', a" and a'" In the same sections at distances 

from the tube axis y- d/b. 

At the given points the velocities and densities of the streams are 

designated, respectively, 

\w~__ 
Tha^velocltyj similarity canstants^then take the form 

o¡; ttj; «*: «*; 

p,; p¡: p0’; p¡; pJ- 

- 92 - 



Fig. 37. Hydrodynamlcally similar fluid flows 
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TbeldensltyCslmllarlty constante i axe r 
In the general case 

c.*cutc\. 

(3.2) 

The slnllarlty invariants of these streams may be represented in the 

following way 

\ 

(3.3) 

Clearly, when the streams change, the similarity invariant remains 

unchanged, but the similarity constant valles. The similarity invariants which 

represent the ratio of two like physical values, are called invariant Simplexes. 

Given the physical similarity of complex phenomena, a the similarity 

invariants can be derived in the form of dimensionless cooplexes made up of unlike 

éfdM3Utií4 
phyulcal describing the phenomenon under consideration. These dlmenâonlese 

complexes are termed dimensionless numbers. 

The dimensionless numbers can be obtained for any physical phenomenon v 

provided there Is an analytical dependence between the variable physical values of 

the particular phenomenon. This was first shown by Newton for the case of mechanical 

similarity. 
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Let ua Illustrate this vith sa example. According to Keeton’s second lav, 

force ls/nass times acceleration 

d-. (3.0 

Here ■ le the mss of a body In kg • sec*/»; the velocity in tn/aec, and t' i* tine 

In seconds. 

If we have two similar systems, then by applying this equation to two 

in these systems ve can write 

(3.$) 

for the first system, and 

du- 
(3.6) 

for the second. The similarity constants in this case take the form 

r />*. r n' . r - u' - r ~-'m 
c'~r' C"“*' ' C*- «' * C V • 

Let us express the variables making up Eq. (3$ lu terms of the similarity 

constants and the variables in tbe first system 

_ ,, C, . du' 

or 

CpCt 
•-1' = m - - 
.CmC, dx’ 

(3.7) 

It is clear from comparison of the expressions derived vith Eq. (3*6) 

CpC,' 
that the connples conçosed of the similarity constants^ --should be equal to unity. 
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These complexes cooqposed of siadlÂTlty eonstente are termed •lollarlty 

indicators 

OC. 
cmc\ 1. (3.8) 

If In the latter expression ve replace the similarity constants by 

variables, the expression takes the form 

fron which 

r' t* 

«27 "f 
«' ' •' 

I. 

p* PÏ (3.9) 

It appears that If ve bad a third similar system, It would have been 

possible to write for It 

r* pjr 
»V «,s* «*«* 

When going from one system to another, the complex Invariant derived 

remains unchanged. It Is not difficult to see that the Invariant complex Is 

dimensionless. It Is termed the Newton dimensionless number and Is designated Ne 

*-£• (3.10) 

Three Theorems of Similarity 

first theorem of similarity. The theory of similarity Is based on three 

theorems of similarity. 

The first theorem Is as follows: In phenomena similar to themselves 
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like dlnenslonleee numbere are Identical, and the alnllrlty indicators are equal to 

unity. As vas shown shore for a case of mechanical similarity, the dimensionless 

numbers are ascertained on the basis of^analytical dependence hetveey physl 

describing the phenomenon under consideration. 

are established The arithmetical dependences between the physical 

on the basis of the general lavs of physics and in the case of coaplex phenomena 

can be represented In the form of differential equations. The importance of the 

first theorem of similarity Is that it Indicates the possibility of obtaining a A 

dimensionless number from the differential equations of mathematical physics without 

them. In order to obtain the dimensionless numbers 

these differential equations should undergo so-caled similarity transformations. 

The similarity transformations contist in the following: on the basis of 

an analytical description of the phenomena for two similar systems ve ascertain the 

dmilarity constants; then the variables In the equation for the second system are 

expressed in terms of like variables of the first system, multiplied b.. the 

corresponding similarity constants. After this the values in the equations derived 

are grouped in such a way that the similarity constants make up similarity indicators, 

which should be equal to unity. The similarity constants making up the dindlarity 

indicators derived are then replaced by the ratio of the corresponding variables and 
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, A very simple ve get the dlaensloaleie nunbersy 

exaqple of a •lall&rlty trensforutlon vas considered above vben deriving the Revton 

dlnenslonless nuober Re. 

As VM pointed out, vben studying cooplex phenomena ve bave to use a 

systea of differential equations. 

hiUveíj 
Jot example, courses on hydrodynamics, use differential 

•quations for notion and the equation for solidity (when 

similarity of two geometrically similar streams of liquid) in order to ascertain the 

dlnenslonless nuobers. Vben deriving these equations, ve select a system of coordinase 

; xyz and in tbe medium under consideration ve single out an elementary 

parallelepiped, tbe sides of vblcb are designated dx, d£ and dz, respectively, 

in tbs same vay as vas done to derive tbe thermal- conductivity differential equation 

in tbe first section in this book. After that ve consider tbe forces acting on this 

element. 

of 
Vben deriving differential equations ' motion ve use Revton*s second 

âNt—* 
lav, end as a result obtain tbe following systea of equations, vblcb termed 

tbe lavier-Stokes equations 

(See page 97a) (3.11) 

a 114- 
in vblcb -P is tbe density of tbe medium in kg sec /m ; 





u - *r« projections of the velocity u of notlou of the eleoent on the corresponding 

coordinate axés In m/sec; 

VV are the sane for acceleration due to gravity In m/8e 
ft« A,* 6# 

is the viscosity coefficient In kg sec/m' 
. 

-^1s the time In sec; 

1 
p Is the pressure In kg/m 

The differential solidity equation Is derived by means of the lav of 

conservation of mass, and takes the for’j 

d? . dipuj) . di;u,) , d (?“.•)_ a 
— T — i—~ T j. — 

(3.12) 

If these equetiotE undergo similarity transformations, the folloving 

dimensionless numbers are obtained. 

Geometrical similarity dimensionless number 

The homochronic similarity number Ho* — ; 

The number Fr*3^-* 
U* 

The Buler nus^er Eu= 
fui’ 

at 

--i: 

The Reynolds number Re *=- - ; 

in vhlch h and d are the length and diameter of the stream in 

\) "is the coefficient of kinematic viscosity In mfysec; 

(3.13) 

(3.1*0 

(3.13) 

(3.16) 

Í3.1T) 
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1 Is tbe characteristic disensión; 

If the stream Is of circular section, then I'd, and In tbe case of a 

streaa vith rectangular section 

i j . /V 

and 7 Is tbe area of tbe cross-section of tbe streaa In a . 

Consequently, If two streams of liquid are hydrodynamicslly similar, 

(/1/1/, Ho. Fr, Eu, Re) 

tbs dimensionless groups obtained ( / ) must bare tbe same numerical value at 

■ny corresponding points L tbe streams. 

A . 
The equality of tbe dimensionless grewps, — vC, as pointed out, Is an 

sssentlal precondition foirífcysical 'phenomena. Tbe quality of tbe bonochrcnous 

numbers Ho is essential In studying non-steady-state, but periodically repeated 

dUtaJL*? if v'c/Titi* 
phenomena (for example, during flow. 

Second theormm of similarity. Tbe second theorem of similarity 

establishes the possibility of representing tbe mathematical description of tbe 

phenomenon under consideration ln tbe fora of a functional dependence betveen tbe 

dimensionless groups. This functional dependence Is termed tbe dimensionless 

aquation. Here tbe dimensionless groups are divided Into tbe and tbe 
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ÎüUüMfV*'/ 

The 41i ¡oslocleM group Is (one vblco contains sn unknown value. 

O^JÁÀJ^jL 
Tbs crouds are ones composed of values set by uniqueness conditions. 

Tbs dimensionless equation should establish the functional dependence of 

otl 
the nusber the other dlaenslonless numbers. For example, 

vhen studying the hydraulic resistance of horizontal tubes In a case of steady-state 

Isothermal flow, the dlaenslonless numbers are the Beynolds number 

Re - ul/v and the geometric dimensionless number b/d 1, while the Euler numberi 

Eu-Ap.’p«* 
vhich In this case Is represented In the form y , In which ^p Is the pressure 

_ clia/JuJkV*/rd 
drop at two points In the system under consideration Is the 

dlaenslonless number. * This Is due to the fact that vhen studying hydraulic 

resistances of pipes the unknown value Is the pressure difference >*p which In 

the Suler number numerator. 

The other hydrodynamic dlaenslonless numbers - the homochrcnous number 

Ho-kt// and the Froude number Fr-gUu1— - are not In steady-state 

Isothermal flow, and need not he introduced to the differential equation. In the 

case In polnt| the dimensionless equation takes the form 

E«-/(Re. -J-) 

The fora of this function Is established on the basis of careful analysis of 

experimental data derived for the given phénomène». 
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Tbui, It follows from the second theorem of slmlUrlty that the m&tbeaatlcsl 

description of tbepbenoaenon In question can be represented In the fora of a functional 
! 

dependence between the dimensionless groupe. In certain cases the form of the function 

can be estsbllsbed theoretically, although it is more often established on the basis 

of experimental data. 

The 1 importance of the second similarity theorem is that It shows which of 

the results should be processed. They have to he represented in the fora of a 

dimensionless equation. 

If the investigation is based on experiment, the results of the experiments 

should be processed in such a way that the dependence between the dimensionless 

eonplexes composed of these variable physical values rather than in such a way that 

the dependence between the individual variable dimensionless numbers was represented. 

Consequently, the experimental data should be processed in such a way that we can 

establish the dependence between the dimensionless groups and obtain a dimensionless 

equation. 

Third theorem of similarity. The dimensionless equations based on the 

precepts of the second theorem of similarity are valid both for a phenomenon for which 

they were obtained and also for all phenomena similar to the one studied. 
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Tb« third tbeorea of •lailarlty aasvera the question, vblch pbenowna 

Atould be considered slailar. According to this tbeorea, slallar pbenoaena are a those 

for which the aatbeaatlcal description coincides and the like dlnenslonless 

groups are numerically equal. 

The significance of this tbeorea ¡nay be explained with the example given 

above. The following dependences can be compiled for two steady-state, Isothermal 

streams} 

7or the second stream Fu''-*/,| Re", ¢ ^ j J. 

  

These streams are similar to one another son condition that the dimensionless 

groups In the equation have the same value at corresponding points In the streams 

and If the forms of the functions f and f" are similar. 

Thus, the third theorem of similarity points out the requirements necessary 

and sufficient to satisfy in order for the phenomena to be similar. The practical 

Importance of the third tbeorea of similarity ia that it enables us to single out a 

group of phenomena, to which we can extend data for single experiments, represented 

in the form of dimensionless equations, furthermore, the third theorem has been 

used to establish a new method of investigation - the method of models. 
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Tb« application of the aethod of aodels to the study of beat exchange at 

tb« present tlae Is very cooaon and Is temed tberaal slnulatlon. The research aodel 

Is constructed In such a vay that It reproduces the design elements of the speclaen, 

1 »portant for the process under study, vblch Is carried out In the g aodel In the same 

say 4s It would In the speclaen. 

The third theorem of similarity shows which conditions have to be satisfied 

Í* fcíLavVtíí «T 
here »(the like groups corresponding points In the specimen and 

aodel should have the same numbrlcal value; furthermore, the mathematical descriptions 

of the processes occurring In the speclaen and model should be Identical. 

The aaln difficulty In using the theory of slnllarlty is correct selection 

of the dlaenslonless groups. Groups which in one case are 

jay te In another case, or of no Importance at all for the phenomenon In 

question. When selecting the dlaenslonless groups, a large part Is played 

by self •similarity and stability. 

Stability, self-similarity and the approximate simulation method. 

Vben studying coqplex phenomena It Is difficult to provide all the 

conditions ensuring confíete similarity between the aodel and the specimen, and In 

certain cases It Is not necessary. In practice, when studying such complex phenomena 

as convective beat exchange, part of the set of interacting processes is studied, 
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«tur th« the vboU. In thl. e«e «. M. th. «tbod of .OH»U.d .pproxl»t. ^ 

Çül CajoJL 
ilnulntlon. thl. 1. h.«d on prop.rtl.. of . rl.cou. Uquld, vUch 

are tened »tebiUty end self-elmllArity. 

Stability la the ability of a riacoua liquid to follow a fully determined 

Telocity diatribution law when moving in cbannela of different abape. 

Experience abowa that during the motion of a liquid In a boriaontal channel at 

some dlatance from the channel inlet the velocity diatribution In the croaa-aection 

of the atream la alwaya the aaae, irreapective of the nature of the velocity 

diatribution in the channel Inlet aectlon. 

SeIf-aimilaxity .fia^follova: inveatigation abowa that the variation 

gJLa/b-Ciwt 
vithin certain Undta of a dimenalonleae group doea not alwaya reault 

U*v4wvr»v 
In variation in the group, i.e., it doea not have an effect on the 

proceas under conaideraticn. For example, when liquid movea through a channel, 

the variation within certain aet limits In the Re number has no effect on the 

velocity diatribution In the channel crosa-aectlon. This phenomenon la termed 

■elf-similarity. 

Self-similarity and stability make it possible to simplify the 

differential equations and nmrglnal conditions by disregarding the unimportant 

factors. Furthermore, aelf-aimilarity and stability make it possible to use the 
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bs 
•o*called local beat (10110711/ method atudylng beat exchange« 

Thla method 1« &c follow«: when studying the operation of any aggregate 

the elodlarlty ty(ls In certain parte of it rather than In the whole 

aggregate. Then, on the basis of a careful study of the processes taking place In 

these areas, a general conclusion Is drawn with regard to the work as a whole« 

This method Is widely used to study processes occurring In the combustion chambers of 

Jet engines, In study of various heat-exchange apparatus, and In other cases. 

The model method enables us toa study a process to the fullest and 

•Uplest extent, and to apply the results to the specimen on the (theory of ilallarlty. 

The simulation method Is used In various branches of engineering and Is 

a reliable and powerful Instrument for studying the work of both existing apparatus 

okrCtM 
as well as - under construction. 

Determining Dimensionless Groups from Averaged Values 

When using the methods of the theory of similarity the dimensionless 

groiQS making up the dfaenslonless equations are not usually established for Individual 

corresponding points In the systems a under consideration, but for averaged parameters. 

The possibility of averaging parameters describing processes In similar systems la 

the result of the similarity of these systems. For example, during flow by 

ijt iiuriht* cS ^ 
a liquid In a closed channel, different velocities ^at 
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different point« in the cro»»-»ection. The mean velocity of «otion of the liquid In 

the cro»»-section of the chunnel my be represented in the following way 

in which u is the local velocity and F is the cross-section of the channel. 
• M 

If there are two siailar of liquid, then obviously the velocity 

si ad. laxity constants ¿ have the same value for all corresponding points in the 

» 

corresponding sections of the streaas. It fellows frcr< tUs that t¿e ratio cf 

+be velocities averaged for the section in corresponding sections of the streaas are 

nuaerically equal to the same similarity constant 

Consequently, the Reynolds mutoer may be calculated from the averaged 

velocity when studying these streams. 

Vbat has been outlined above shows that the theory of similarity is of 

I 
extremely great importance in studying comple^phenomena. Every complex physical 

phenomenon is described by a large number of unlike, interconnected parameters. 

If an attempt is mde to establish the dependence between these values on the basis 

of experimental data, the dependence is only valid under the experimental conditions 

and cannot be used if they in any way deviate. The study of these complex physical 

plwnomonit should be based on the theory of similarity. 

Wt f* obtain a dimensionless group on the basis of the first theorem of 
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•Inilarity froa differential equations describing various aspects of the cooplex 

in question. Here the equations nay undergo similarity transformations 

without resorting to integrations. Then, on the basia of the second theorem, we have 

to ascertain the functional depdndence between the dimensionless groups established. 

In this way, the results of the investigations should be represented in the form of 

dimensionless equations. The equations obtained are valid for all phenomena similar 

to /investigated. The similarity of the phenomena is established on the basis of 

the third theorem of similarity. 

It should be kept firmly in mind, however, that the theory of similarity 

does not provide a general solution. Equations of this 

theory generalize experimental data for the phenomena similar to each other. 

The theory is called the theory of experiment, since it is of very great iuçortance 

in a study of processes which is based chiefly on.experiment. The convective heat 

exchange is just one such process. 

Section 17. Application of Theory of Similarity to Study of Convective 

Heat Exchange 

Differential Equation for Convective Heat Exchange and 

Dimensionless Groups 

As shown above, convective beat exchange is a complex form of heat 
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exchange and dependa on a whole nuafcer of factora, Including the nature of motion of 

■ediua the aolid aurface. 

There are two typea of motion - free and forced motion - according to the 

origin of it. Free motion ia the motion of a liquid which occura through a difference 

in denaitiea between the hot and cold parta of the liquid (i.e.# on acount of a 

teaçerature difference). Forced motion ia the motion of a liquid which ia cauaed by 

extraneous agenta (puaça, fana, bodies moving liquid| and so on). In the 

general case free motion may exist aide-by-side with forced motion. 

The notion of a liquid is alao distinguished by the nature of the motion. 

It ia known from hydraulics that there are two different typea of motion - laminar 

and turbulent. In flow the streams of liquid (gas) move in parallel without 

nixing. In flow heat exchange ia chiefly conditioned by thermal conductivity 

in the liquid (gaa)f 

During turbulent flow there is no parallel motion in the streams of liquid. 

volumes of move in disorderly fashion, and mix with each other in a 

chaotic way. When flowing round different solid surfaces, the velocity of the stream 

drops * near the circumvented surface and on the surface of the circumfented 

body becomes equal to zero on account of viscosity. If the liquid flowing round the 

body is not very viscous (for example, air ar other gases)( the effect of viscosity 
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Ur 

Fig. 38. Concept of boundary layer 
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only cbove up in a thin iayerof liquid near the circunvented surface. 
I 

If the streaa of fluid noves along a surface at a constant rate, as sbovn 

in Fig. 33» the equal distribution of velocities is in a thin layer of 

\ 
thickness J located near the solid surface. 

In this layer the velocity of the stream u drops to zero on the surface 

I /ttf.MÎ t 

of the solid body on account of viscosity. The thin layer In vblcb the properties 

of the fluids are manifested is called the boundary layer. 

Study has sbovn that in many cases the boundary layer may be regarded as 

a layer In vblcb laminar flov Is retained. But this Idea Is tentative, and In 

actual fact the boundary layer Is not laminar. In the m*in turbulent flov, some 

'of ^liquid 
iKW-t* ivy, 

complex spiral! ., on account of vblcb there occur 

tí ^ t——-—) ^ 
In the stream pulsatl , transver8eN^eloclty|components |u/^ which are damped by the 

vail In the boundary layer. On account of the smallness of the^pulsatlonftraarerse \ 

components In the layer adjoining the circumvented surface, It Is regarded conditionally 

as laminar. The thickness of this layer ^ is a function of the viscous properties of 

the liquid, Its velocity of motion and the temperature. 

In the boundary layer the transfer of beat depends mainly on the thermal 

conductivity of the liquid and In the bulk of the turbulent flov the transfer of beat 

Is brought about by turbulent mixing. This \ of the transfer of beat during motion 
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of a liquid along a »olid surface aay be used to find an equation describing the beat 

transfer on the boundaries of the body. 

If the beat Is transferred through the i-Wr boundary layer of/llquld on 

account of theraal conductivity, ve can vrlte the following on the basis of the 

Fourier lav 

* . 

On the other 

can be determined by the 

band on the basis of Revton's lav this elementary beat flux 

dependence 

In vhlcb Is the mean of the liquid and is the mean teoperature of the surface. 

Kquatlng the right-hand sides of these equations, ve get 

dt 

from vhlcb 

or 

a*= — 
i dt 
àt ày 

iA/= —X 
àt 

ày 

(3.18) 

Here 

A/-/,-/.. 

Equation (3.18) Is termed the differential equation of convective beat exchange. 
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An essential condition in the thermal similarity of streams is the presence 

of geometric and hydrodynamic similarity. Bence, at like points of systems similar 

in a thermal respect the hydrodynamic dimensionless group and the thermal group should 

have the same ralue. 

The hydrodynamic dimensionless groups Bo, Tr, Eu and Re were established 

earlier. In order to ascertain the thermal dimensionless groups ve have to have 

differential equations describing the process in question. When studying convective 

heat exchange, the following can be used as these equations: 

1) the differential convective heat-exchange equation (3.18) aA/s=—).--, 
ày 

2) the differential thermal-conductivity equation for a medium in motion 

in which 
dt 

3T 
^(3,l9> 

di dz T 'd-t ^ ’dy ' ‘ dz 

Ls the substantial derivative and,,.. * is the thermal conductivity. 
erl 

If there are two systems similar in a heat respect, then Eqs. (3.18) 

and (3.19) can he coag>lled for each of them. 

7or the first system 

for the second system 

a'd/'=-r?- , 
d/ 

(3.20) 

(3.21) 
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(3.22) 

(3.23) 

These equation» bare to undergo similarity transformations in order to 

ascertain the determining dimensionless groups. 

As in the exançle of mechanical similarity quoted above, in order to 

carryout similarity transformations we hare to ascertain the similarity constants 
l 

Ud exprew tbe wlrtle. In tqo. (3.22) »ad (3.23) la ter», of the .UlUrlty e«.UaU 

and rarlables of the first system. 

The similarity constants in tbe case in point are as follows 

(See page 112a) (Eq.) 

Expressing the variables of the second system in Eqs. (3*22) and (3*23) 

in terms of the variables of the first system and the similarity constants, we get 

the following equations c C i - C — > ' — . (3- 24) 
C, ¢/ 

Joint solution of Eqs. (3.24) and (3.20), and then (3.25) and (3.21) 

gives us 
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Tbe •lallArlty indicators can be obtained from here 

C* C« C‘ 

Expressing the similarity constants in terms of variableS| ve get tbe 

Invariant cooçlexes. — — inv, 
p 
. «/ . 
Inv, =inv. 

« l 

The dimensionless invariant-complexes derived are thermal dimensionless 

groups and possess tbe following names: cr/i-’-F'o- is tbe Pourier number, describing 

tbe similarity of physical fields in tine; ul/a ^ Pe is tbe Pedet number. It can 

be represented in other ways, if we multiply and divide tbe complex by the 

kinematic viscosity coefficient 

Pe«"'--?—ÍÍJL 
a « * « 

(3.26) 

As is known, tbe complex ul/v - Re is the hydrodynamic Reynolds number. 

The ratio between the kinematic viscosity coefficient and tbe thermal 

diffusivity (V is known as the Prandtl number Pr - V/a_, The Prandtl number describes 

i the physical properties of a medium flowing round] a solid body^surfac^-r The 

coefficient of kinematic viscosity dt describes the viscous properties of a liquid, 

which condition tbe molecular transfer of tbe amount of motion. The thermal 

diffusivity a which is equal to the ratio between tbe thermal conductivity and the 

volumetric thermal capacity a - expresses the intensity of tbe molecular 
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regarded as a measure of the similArlty 
beat transfer. The Praadtl nuafcer can be 

o( the velocity ai te^ertu« (1.W», •!»« «how tbot (or Ucuid. U vtlch 

ft -1, tbo velocity end te^ertore Meld, to the toondery Uyer « .toller. In the 

cue of guee the Pr rnuker to cloee to imlty end depend, chiefly en the .tonicity 

of the gee. ». Pr nunber for ge.ee vl* different .tonicity ^ 1. .ho« to IUl. 12. 

The cwltf'y is the Hus seit nvmfcer. This number is vben 

Éudylng beat exchange, since it contains the unknown ralue - the heat transfer 

coefficient DC . 

An essential precondition for thermal similarity, as has already been 

pointed out, is hydrodynamic similarity. Consequently, given the thermal 

similarity of tve geometrically similar systems, at corresponding points the 

following dimensionless groups must have the same values 

Nu, Pr. Re. Fo. Ho. Fr. Eu. 

The t^ype of dimensionless groups may be altered by a corresponding 

regrouping of the physical values describing the phenomenon in question. A third, 

derivative group can be made from two . . sroups. This is usually done 

' vi ■> tbe^^ the experiment. 

Tor example, when studying convective heat exchange the Troude nunber 

Tr r gl/u describing the ratio between gravity and inertie is represented in a 
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Table 12 

Atomicity 
gas 

Pr 

2 4 

I I 
0.72,0,8, 1.0 

. -Z ' ■ . ' : • . ' • 

|o 
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I 

different way. 

In free notion of a liquid caused by a density difference, the rate of 

notion of the liquid cannot be measured and the Grasbof number Is Introduced Instead 

of the Fr number 

Or- Fr (3.27) 

In vblcb ^ Is the coefficient of volumetric expansion (for gases 411(1 

At> Is the tempaature difference at the system. 

Substituting the Fr and Re numbers Into the expression for the Gr number 

ve get 

For gases 

The dimensionless group which Includes the heat-transfer 

coefficient may also be altered. In certain cases, the Susselt number Is replaced 

Xu* a/7. 
by the Stanton number, St, which Is equal to the ratio of the Nusselt numbe^and 

the Pedet number .Pe-tila 

Sh 
tl Û 

Hi • 

Taking It Into account that the thermal dlffuslvlty Is equal to o-lV//, 

we can derive the following ’number St=—*—. 
tpV* 
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When determining the Stanton and Peclet numbers we have to keep it it 

rfrd ttfat tLe tbersul diffuflivity ft la uau^Uy reaaiured in hour/m ; hence the velocity 

utmost he expressed in m/hour. 

' in the nost general Tora the diincnsionless equation shou.d 

be represented as a functional dependence of the Ilusselt or Stanton 

number on the other numbers considered above 

Na=/(Ho, Gr, Eu. Re, Fo. Pr) 
or 

St »/(Ho, Gr, Hu, Rc, Fo, Pr). 

When investigating steady-state processes the Eo and Fo nmbers 

are not 7 Furthernore, as shown by experiment, when the 

gas flow is subsonic, the Eu number can be excluded from the dimensionless 

equation on account of self-similarity, since the hydrodynamic similarity 

in this case is retained even if there is no similarity between the absolute 
a 

pressure fields. 

Study shows that in certain cases the intensity of heat exchange 

is influenced by the temperature gradient and direction of the heat flux. 



Kikhcycvicr. has tiiat in order to take these phenoncna into account vy 

should, add the ratio of ïr^ /?r^j to the dinension'ess equation, vhere Pr is 

the ¡randtl nxrnber for the ccan tenycrature of the liquid, and is the i j-cndtl 

nuuber for the temperature of the surface, ^e dimension less equation for a steady- 

state process can then be represented as 

Na-/(Re, Or. Pr. ^ ] 
or " 

SI »/(Re. Or. Pr. ^r/). 

The fora of the function f is established on the basis of experimental data 

vith a carefu1 analysis cf the process in question. V.tien studyinc nör« complex 

phenomena, for example the motion of jj-s at* a hitf'. velocity^ or'variation in the 

aggrecaoe Syatc, we have to introduce ' ' ^nuihers^ for the phenomena 

wider investi^ition. 

Averaninr of Temperature 

newton's fornuli la q - °^(t£ - contains the temperature of the medium 

* (fluid) • surface. The temperature differs at different ooints 

in the stream durinc heat exchance. In this case, the temperature of the * 

is taken to a mean temperature. There are several methods of averaging the 

temperature of the 
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If ve can disregard variation in the rate of notion of the liquid in 

the channel section, t^ can be calculated as the nean tenperature of the liquid 

throu^i the section 

or approximately. 

(3.28) 

In this case the transverse section of the strean F is broken lovn into 

a nunber of elements of area Hie value t is determined by measuring the 

temperature at different poirts in the stream section and is mean for an element 

vith area 

If the rate of notion of the fluid is not constant throughout the stream 

section, t^is defined as the mean volumetric temperature 

t _ i!*1' (3.29) 
' , ’ . ' 

in vhich dv is the volume of liquid passing through the element per second, and 

V is the volume of liquid passing through the cross-section of the stream per second. 

If the temperature of the moving medium varies along the stream, then 

ve average the temperature gradient Z!bÆ_by the following equation 

(3.30) 
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in vhlch and ^^_are the nean tcnperature of the liquid et tiie initial a^l 

t er nina1 eectione of the strean, res.ective'y. 

\A- ■Õ^Ía <— 

1_terperature. The various physical mraneters etc.) 

nakinc up the detertiininc dirons 1er.less nurhers vary vit;: temperature, hence when 

chcoins these parameters they should be related to a certain temperature, which 

is indeed called trie temperature. 

Ihis temperature may be selected in different ways, in accordance with 

the premises of the precien. In certain cases the mean temperature of the 
u 

is taken as the tcnperature while in other cases they take the arithnetic 

ean temperature of the boundary layer (t^ ) 

/ - 'Z*'» 
" 2 

cJui IAIU 

ometimes the temperature is taken to be the mean temperature 

of the washed surface t . In dimensionless equations it is usually pointed out 

Vhich temperature has been taken as the one, and subscripts are used 

H 
for this. For example, - means that when determining the values making 

up the Nusselt number, the mean temperature of the boundary layer (t ) was taken 

as the temperature. The temperaures t^land t jc correspond 

A 
to the Nu^, and Ku^.numbers. 
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Study of 3’ff eren t Tioea of Heat Exchan.-e 

Convective heat exchance dependa on the physical properties or the 

liquid and the nature of its notion. S^uiy has shown tlist heat exchange between 

a solid surface and liquids, for which the andtl msher is considerably less 

than unity, exhibits specific features. 

In liquids for which Ir = vCsXî.the colecular transfer of heat is 

considerably nore intensive than the transfer of mccentun, since in this 

case the numerical value of the thermal conductivity 0(. is many tinjes crea ter 

than that of the coefficient of kinematic viscosity V . Such liquids include 

liquid metals, for which the Irandti nmber is of the order of 1 • 10 ^ Hence 

the study of convective heat exchance in liquid metals will be considered separately. 

In this section ve deal with convective heat exchange with different 

types of motion of fluids, in which the irandti number is of the order of unity 

or nore. 

Convective heat exchange with free motion of nedim. As has been 

pointed out above, the motion of a medium a solid surface is 

free if it is due to the differences in density between the hot and coipL 

particles. 
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IhuE, a ter.r-crature difference is essential for the occurrence of free 

notion. A distinction is nade between the heat exchange occurring In a "Infinite" 

ß]?ace, cccpared with the dinensions of the body, and heat exchange taking 

place in a "finite" space. 

Convective heat exchange with free notion in an infinite space, îîeat 

transfer during free notion of a r^diun due to local heating or cooling in an 

infinite space is of great importance in constructional engineering. 

For example, during the heating of air in buildings with heating devices 

and when cooling certain • parts of buildings and in other cases. This type 

of heat exchange has been studied thorou^ily. A great deal of research has been 

carried out along these lines by Kirpichev and Mikheyev. 

Study of the equations describing heat transfer on the basis of the 

theory of similarity shows that the dimensionless numbers are the 

following 

Gr-?^A* «Pr- —, >* « 

As in all heat transfer, the- number is the Nusselt number IIu . 

A*“* 
Hence on the bee' s of the experimental datft we can ascertain theW of (function 

Nu=/(Gr, Pr). 
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MlKiâyev has shovn that mr.erous experimental data on heat exchance 
0 

for differently^shaped bodies (cylinders, spheres, plates, and so on) in 

different fluids which are larce compered with the sise of the bodies can ehre 

us a dimensionless equation of the type 

Nu«*C(Gr-Pr)". (3.31) 

Hie coefficient C^and the exponent n are functions in their turn of 

the nuaerical complex Or • Pr, but do not depend on the*írshape of the boiy. 

In order to select C^and n/îab le '3\ ^thevalues obtained by liikheye^ 

The subscript m in the latter equation means that the determining 

temperature is t 
A> 

In problems involving aviation engineering, heat exchange through natural 

convection in an infinite space is of no great practical importance. 

Investigation of convective heat exchange with natural, free convection 

CJÍraiJ 

in a finite (/f ) space is of great interest since the data obtained from this 

study can be used to calculate the air layers employed as thermal insulation. 

Convective heat exchange with free motion in a finite, closed space. 

The nature of free motion in a finite space depends to a considerable extent on the 
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Table 13 

Or-Pr C a 

1.10-1 + 3* 10* 

5I0J + 2 10» 
2-10' -r 10^ 

1.18 
O.Si 
0.135 

*/. 

'/4 

'/* 

Fig. 39. Convective currents infinite space 
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ehape of the enclooed spoce end on the nutual arraneeneat of the «ource and 

receiving aurfacea. For exnaple, if the cloaed 8:>ece ia aliped like a vertical 

a lot, the free notion ia determined by the vidih of the slot, ^ aa ahovn in 

Fija. 1% and b. 

If the apace is slmpcd like n horizontal slot, tî.e nature of the 

freo notion depends on vhere the source surface vitli tenperature t ^ is located. 
"'I 

If the source surface is located below (Fie. 39c), then both oacendine 

and descending currents occur in the closed apace. If the source surface 

ia at the top, there are no convective cvcrea'.s (Fig. 39d). 

/ [/eat deal of research has shown that when calculating these fluid 

layers, the processes occurring in them can be tentatively regarded aa 

thermal conductivity phenomena, i.e., we can determine the thermal resistance 

of a layer of this kind as the thermal resistance of a solid, homogeneous wall 

of the sane shape. The thermal conduttivity of this layer is termed the 

equivalent thermal conductivity and is desisted X . 
•V 

thermal conductivity X of a 

stationary fluid filling the layer, since in actual fact in the lajer there is 

free convection. It is conventional to determine in calculations from the 

♦ 
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forrrulû 

in which £ is -tiie coefficient cakins ollovunce for convection. 

Uitierous experícenti«'’. dale obtained fron study of different loyer* 

ehr.pes enables us to establish the dependence of the convection coefficient 

on the coijiex Gr. ?r , detercininc the convective heat exchance in the 

free strean. 

a-./(GfPr). 
✓ v 

In textbooks on heat transfer the fora of this function is given 

as a graph. Furthermore, £ nay be calculated from the following formulae 
£ 

^,-0.105 (GrPr)} J (at GrPr = 103-:-105). 

^-»0,4(GrPr)}» ( at GrPr = 10* 10!0). 

The subscript f means that the temperature t^ is the 

(3.52) 

(3.33) 

«✓¿Zy-iL, ty 

Convective heat exchançe with forced notion of the medium. In 

studying heat exchange with forced motion of the medium, we distinguish the 

Jtivr *-rii~JL K* _^ 
problems of internal and external The próblem of internal flow 

^includes heat exchange between the wall of the channel and the stream of fluid 

in the channel. The problem of external flow includes heat exchange arising 

when the fluid flows around differently shaped bodies. 
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For exanpie, heat ex chance between the ruriace of an aircraft and the 

cedluD throu^ which it is passing, heat exchange between a gps and the 

surface of the protective thermocouple casing, in this stream, and so on. 

^__ 

Heat exchange with forced notion and internal ^lov¡ As is veil 

known, on the basis of the type of notion we distinguish turbulent and laminar flow. 

In hydraulics the dimensionless group evaluating the motion of the stream in tifces 

is the Reynolds msnber. If the Reynolds msnber is Re ^2300, the stream con be 

w 
rejprded as Laminar, but if it is Re >10 the flow is turbulent. 

fUr 
This division of • • into Laminar and turbulent in accordance with 

the Reynolds number, however, is only valid for isothermal streams. If the 

stream is non-isothermal, as a result of the temperature difference, there is always 
r 

natural, free convection which agitates the stream. Hence when investigating 

heat exchange we cannot speak of purely laminar flow. The streaas in which Re< 2300 

are called streams with poorly developed turbulence. Streams for which the 

Reynolds ntnber exceeds 10H (Re >10 ) are termed streams with a highly developed 

turbulence. 

Heat exchange in a stream vlth m poorly developed turbulence. Re < 2300. 

In a stream with poorly developed turbulence, apart from the forced motion of the 
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fluid, there is also free, natural convection, and the effect of this convection 

Increases vith the rate of motion of the stream. 

When a liquid moves in closed pipes the intensity of the heat transfer 

alons the pipe is non-uniform. Ihe heat-transfer coefficient (A shows a 

maximum directly at the Inlet, then decteases and at a certain distance from 

the inlet acquires a set value which remains unchanged throughout the pipe. 

Ihis phenomenon can be explained in the following way. In the initial 

area of the pipe the drop in temperature occurs in a rather thin layer alongside 

the wall on account of the comparatively low thermal conductivity of liquids 

and gases. Hence in the initial sections the temperature gradientstt/dy and 

the temperature difference = t^/t^ are greater than in the sifosequent 

section. 

Bie decrease in the heat-transfer coefficient along the pipe is due 

to the fact that as the liquid moves along, the temperature gradient decreases 

more rapidly than the temperature difference. This produces a reduction in « 

according to Eq. (3.18). 

The length of the section of the tube over which there is a drop in the 
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heatotranefer coefficient oC dependa on the conditions of notion and physical 

paraaetero of the fluid, and also on the sise and shape of the pipe and other 

factors « 

Usually, if the length of the pipe h exceeds its diameter by a factor 

of 50 (h/d > 50), the process of heat transfer is fully stabilized. ^ 
» m 

Investigation shows that in this case the dimensionless groups are 

r'-0,'p¿a£' 

and the is the Husselt number. Hence the dimensionless equation 

should take the form 

H«-/(Re,Or. Pi.^). 

Extensive investigation enables us to obtain the following dimensionless 

equation for calculating horizontal pipes 

(3.34) 

Heat exchange in a stream with highly developed turbulence. When 

the Reynolds nuter^ Re >10 ^e development of free motion in the fluid is 

impossible and the Gr number drops out of the £g?oupS 

Die dimensionless equation in this case takes the form 

Nu-/(Re, Pr, ^). 
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In order to calculate heat exchange In pipe* and ctennela vlth 

differently shaped cross-sections, Mikheyev suggests the following dlaensionless 

equation 

' ' W (J.35) 

For air and diatomic pises, the ?r number is constant (?r 0.27) 

and Eq, (3.35) takes the form 

Nuz-O.OlSRe;4. 

Bie ' for cylindrical pipes and channels is the 
% 

diameterJt>, and ^or PiPee ani channels of a different shape. 

For air at high temperatures when Re > 30,000, we can use the 

Ditrus Bolter equation /b/. 

Nu.^O.OJlRe^ Pr^ (yf\ (3 -36 ) 

The dimensionlees equations(3.3^), (3.35) and (3.36) are valid for 

Ijùt 
pipes h^L > 50; for short pipes the calculation is made by the same equations 

and the correction is added to the number derived. 

•■op*'«!*- 

Bie value is determined experimentally as a function of the Re 

nunber and the ratio li/d from Table lh^suggested by Alad'yev, 
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Table 14 

Value £ 
Cm 

' â/rf 
R* 

1 3 5 10 15 20 30 40 50 

MO* 
M0< 
H0« 

HO» 
HC« 

1.» 
1.63 

1.51 

1.31 
1.26 

1.14 

1.ÏO 
1.M 
1.40 

1.77 
1.22 

1.11 

1.4» 
1.3» 
1.77 

1.16 
1.15 
l.OS 

1.2S 
1.23 

1.18 
1.13 
l.iO 

1,05 

1.18 

1.17 

1.13 
1.10 
1.08 

1.0» 

1.13 

1.13 
1.10 
1/8 

I.OG 

1,03 

1,05 
1,07 

1.05 

1.0» 
1.03 

1,0» 

1.02 
1,03 

1.02 
1.02 

1.02 

1.01 

1.0 
i.C 

i.c 

i.o 
1,0 

1.0 

Fig. 40. Busselt number as function 
of Reynolds number 

Fig. 41. Cross-flow 
around cylinder 



.nib 
If the pipe has bends^(for example, right-angle bend, coils), the 

nature of notion is disturbed on account of the centrifugal effect and the 

additional turbulence due to it. In this case the calculation is nade in 

the sane way as for a strai^it pipe, and the corresponding correction is 

. to the heat-transfer coefficient obtained, and 

-V 

Ihe correction coefficient £Ais established from the relationship 
K 

in vhich 1 is the of the pipe^yfc is the radius of the bend, 

It should be pointeywt that the dimensionless equations (3.34), (3.35) and 

(3.36) cannot be used to calculate heet exchange if the Reynolds nunber is 

2300<Re<l01. 

For these conditions of motion, vhich are termed transient, there are 

no generalizing formulae and only occasional experimental data are found in 

literature. 

Fig. 40 shows the variation in the Nu number as a function of the Re 

number in a logarithmic system of coordinates. In order to evaluate the heat- 

transfer coefficients for ±a transient conditions, in the first approximation ve 

can use the * line shown in Fig. 40. Here it should be taken into account 
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* 

that the shape and size of the channels in transient conditions have a narked 

effect on the heat"transfer coefficient. 

Convective heat exchange vlth forced motion and external clrcuaflov, 

inlt y, 
Heat exchan,-y TfiTpipe-. .... . .. If a stream of fluid flows 

ï 
/ . 

round a body, for example a cylinder set perpendicularly to the direction of 

notion of the flow, as shown In Fig. 4l, the stream moves smoothly around the 

leading, frontal part of the cylinder, after which there Is 4d*ruj>tion of 

the stream and the rear section of the cylinder is washed by a stream with 

complex vort flow. 

On account of the variation in the motion of the stream the 

cylinder, the heat-transfer coefficient the surface of the cylinder is 

non-uniform. Investigation shows that the coefficient is greatest in the 

leading and rear points on the surface of the cylinder. 

This may be explained in the following way: a boundary layer is 

formed on the frontal surface of the cylinder :its thickness increases, 

reaching a maximum. there is at the 

boundary layer. This layer, as it were, the surface of the cylinder 

fron the bulk of the liquid. The heat exchange in the boundary layer is mainly 

i 

130 - 



dctercined by the thermal conductivity; the theraal conductivity X of the fluid 

is ccKpomtivcly saßll, hence the heat-transfer coefficient decreases os tr.e 

thickness of the boundary layer Increases, lhe miniû-xa valuejo( corresrands to 

boundary layer froc tiie cylinder surface, ,n tr.e 

back region the surface of the cylinder is vashed by a stream vith cccplex c vort 

motion, and the heat transfer coefficient is increased. 

f' Thus,rheat transfer is**/« 

determined by the nature of the motion of the liquid vhile flovint round the 

body and the parameters of the liquid (viscosity, thermal conductivity, 

etc.). The determining proupi are the Re and Ir manbers. The dimensionless 

equation therefore takes the form 

N.-/(Rc.Pr.£). 

fin the basis of experimental data the following formula las been 

established 

Sty« C RC/Piy "(p^) • ^,37) 

The values C and n depend on the Re nunber and the shape of the 

body around which the stream flows. For example, for round pipes, they are 

Table 15 t ' 

usually selected from Table IJ. *, 
! C 

n 

M(H+M0S 

1-161+2-101 

0,59 

0.21 O
 

O
 

<y
> 

lu
 

iy
J
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For air and dlatoalc gases at ?r«0J - const, E<j.lj.37) can be 

simplified: ^^0.52^7 »t Rc,mq'-h 1.,0¾ NrU/-.0llSRc;« at Re-Í I03-í-2-10\ 

Stuart Maclaln A/ suggests the following d tension less equation f or 

large Reynolds numbers 

Nu.-OÄ^Pr®-1. (3.33) 

The heat^transfer coefficient ^ calculated with Eq. (J.37) and (J.JS) 

is the mean for the entire cylinder surface. It should be pointed out Ur t 

Eqs. (3.37) and (3.33) are only valid at an angle of attack of 90*. If the 

angle of attack Cj? is lower, X is lower, which is taken into account in the 

calculation by the relevant correction which is established experimentally 

for differently-shaped bodies at different angles of attack. 

Consequently, 

*f“V 

If the cross-stream of liquid flows past a bank of tubes, heat transfer 

is made still more complicated, since the 
ÖVW* 

of the liquid the 

surfaces of the tubes is to a considerable extent a function of the arrangement 

of the tubes. It has been established on the basis of available data that 

the heat-da-ansfer coefficient of the second and third rows of tubes is greater 

than for the first; beginning ot the third row the heat-transfer coefficient 
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rciaalr.e constan*. 

On the basis of a greet deal of research, Mikheyev suggests the 

following dlr.ensicn'ies6 equation 

Hie values C and n are functions of tiie orrangesient of the pi:<es: 

ft; 
for the corridor arrangement (rig. 42) C = 0.23 end n K 0.^5; for^staggered 

arrangement (Fig. 43) C *= 0.41 and n = 0.6. 

For air and diatcoicç gases at Pr 3,7 = const, Eq. (3.3?) takes 

Nu;—0,2lRi°-c Nru^"0.3'Re°* 
the form: ^ (for a corridor banl^and ^ (for a staggsred bank). 

When calculating the heating surfaces of heat-exchanging apparatus 

ve usually calculate the mean heat-transfer coefficient of the entire bank. to 

Hie value (X^can be established from the following relationship 

.•/, + */:+ . . . + ,aFm (3.40) 
** + + • • • + 

Oi. Oj. • • et» 

in which A are the heat-transfer coefficients of separate rows of pipes, 

Ff, .,., Fm 
given a total number of pipes m, while F(> ^ are the heating surfaces of all 

the pipes in each row. 

Heat exchange with longitudinal flow around a flat plate. If the 

liquid flows round a flat plate, a laminar boundary layer forms on the plate 

surface and its thictaess increases in the direction of motion of the liquid, 
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as shown in Fig. 44. 

It has been established that when the Reynolds mmber is Re ■ 4.85 • lo^* 

(I ¿«’j tu 
the laalnar horadar, layer am change, to a turbulent layer »1th a 

thin laminar sublayer (Fig. 44). 

When determining the Reynolds mmber 1 should be taken to mean distance from the 

edge of the plate, and U should be taken to mean the velocity of the stream 

beyond the boundary layer. 

When calculating heat exchange occurring when different flow 

round flat plates, Mikheyev suggests the following equation 

Nu/=C Re’Pr^i,^r^j (3.41) 

For air and diatonic gases at Pr5*0.7 - const, (3.4l) takes the 

Nu^OeOSSRc;», 
form: 

n « 0.8. 

and at Re <14.85 f.10 0.76, n = 0.5; at Re >4.85^* 10^0=0.037^ 

Sac. 18. Connection between Friction Coefficient and ^t-^ran8fPr 

Coefficient. 

The theory establishing the connection between the heat-transf 
er coefficient 
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Fig. 42. Corridor arrangement Fig. 43. Staggered arrangement 
of tubes in bundle of tubes in bundle 

u « 

Fig. 44. Boundary layer during longitudinal flow 
around flat plate. 
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ond the friction coefficient is conventionally temed the hydrodynaaic theory 

of heat exchance. ïhe sain concept in this theory is the assumption that 

vhen a liquid experiences forced notion, trie aechanisns of the transfer.of 

aomentiE; and the propagation of heat are identical. It vas shown above that 

vhen studying flow around diffeent surfaces, turbulent flow is regarded, as it 

were, as consisting of two parts: the bulk of the flow and laminar sihlayer 

occurring near the wall. 

It should be remembered, however, that this representation is tentative 

and there is actually no clearly narked boundary between the bulk of the flow 

and the laminar bublayer. In actual fact^particles of liquid penetrate freely 

from the bulk of the stream into the boundary layer and/back ajpin, thereby 

transferring the manenturn. 

I* 
Bie identity, assuned the hydrodynamic theory of heat exchange, 

of the transfer of momentum and heat is based on the assumption that both these 

phenomena are effected by the same elementary volumes of liquid. 

In the case of certain , over a large »nge of variation in 

temperature the Prandtl number is approximately equal to unity. Gases 

UJ 
/Chi closely /Chis condition. If a liquid (gas) flows round a surface, 
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as shown by expert , the distributions of velocity and teraperature i¿ the 

boundary layer of this liquid are similar. This means that the temperature ooi 

alocity of notion of the liquid In the boundary layer vary in accordance with 

the same law. Hence the ratio of the temperature gradients Ît/Ân and Velocity 

JuAn can be replaced by the ratio of the temperature increment At and Au 0f the 

velocity increment — — 

in _ _ fl/ 

dm tu da ’ 

in Ay 

This ratio is valid for any area inside the boundary layer. 0n the 

boundary of the boundary layer and the bulk of the flow (y = Í), the values 

^t and Au can be expressed as 

A/*/,-/.. 

Aa=U—um, 
* 

in which t j t u^ are the temperatures and velocities of the flow 

beyond the boundary layer and on the surface of the body. 

Taking it into account that u ö we can write 

iL ~ " 
Jim. .fr-ÍS- 
ia Ü 

It was pointed out above that the type of heat exchange in the 

boundary layer is thermal conductivity. Hence the expression for the heat flux 

density based on the Fourier equations can be represented in the following way 
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9 \ * ,-=-1--. 

If ve take it that the boundary layer consists of separate e.esentary 

layers of liquid r,ovine at different velocities, then visccsity obviously 

causes friction betveen these tvo !ayers. As is known fron hydrodynamics, tiie 

friction R can be expressed in terns of the viscosity coefficient^ and the 

velocity gradient 

êa 
in 

According to the equations given above, the ratios can be represented 

as follovs 

f * *•-!/ 

R ï U ' 

(U-dby transferring R to the right-hand side of the equation ve get 

I U-t/ 1:.42) 

This expression is the fundamental equation in the hydrodynamic theory 

/Inv of heat exchange. By using this equation /investigati jflov in pipes nd 

tubes ve can establish the connection betveen the heat'transfer coefficient 

and the coefficient of hydraulic resistance of pipes ? . For example, f ir pip'.T 

of circular section th^ relationship can be established in the following my. 

It is known frem hydrodynamics that in this case R ean be found from the 

relationshipj^ 
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(3.1*3) 

in vhlch £ is the coefficient of hydraulic resistance of the pipe, and depends 

<n the Reynolds nuraber 

C-/(Re). 

If the anoint of heat given up to the voll by the liquid is expressed 

in Eq, (3.1*2) in terns of the heat-transfer coefficient and the teapewtre 

gradient, 

vhlle R is replaced by Eq. (3.43) ve get 

Tailing it into account that A “ , in vhlch A is the 
I 

viscosity coefficient, ^ is the coefficient of kinematic viscosity and ^ is 

the density, ve finally get the folloving dependence betveen the heat-transfer 

coefficient and the coefficient of hydraulic resistance for circular-section 

tubes 

• « 
(3.44) 

This relatloship may he represented in form of a dimensionless equation. 

In order to do this, ve can use as a rough approximation the dependence Ç -¿(Rg) 

for isothermal turbulent flov in pipes ¿ 0.3164 
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V $¿1* 
Xy transferrinc A -o the ’eft-tond side erxi multiplyinc both • oí* the 

equation by the characteristic dimension 1, we get 

ti ^0.3164 pig«.« 

or 

Nu = 0.0395Rt«Jî. (3.^5) 

If it is taken into account that this expression lias been obtained 

for liquids in which a* » 1, it can be considered that Eq. (3.45) approaches 

the earlier quoted equation of Mikheyev, obtained investigatinc flow in 

pipes and tubes with forced motion of the liquid. can be considered that 

the coincidence would be greater if the dependence on the temperature distribution 

in the flow had been taken into account. 

When solving the problem of external flow round a body, i.e., when 

te heat exchange takes place during flow around differently^shaped bodies, by 

means of the basic equation of the hydrodynamic theory of heat exchange (3.42) 

ve can establish the connectiòn between the heat-transfer coefficient X and 

the friction coefficient c . 
•t 



As Is veil known from Mrodynaaics, the friction is proportional to 

the velocity gradient 

* V 2 • (3.½) 

ln »Weh ç f 1. the proportionality coefficient, »Weh 1. temed the friction 

coefficient. If ve .nhditut. R fron ^.HC\ into E,. (J.to) and erpr.ee , 

in terne of the heat-tronefer coefficient, then »e can obtain the dependence 

between and ç ^ in the following forn 

In ite dineneionleee fom thle dependence con be expree.ed a. foilowe: 

"■/“y«/«./. (3>7) 

Ihe dineneimleee equation obtained 1. fully conflraed by experimental 

or liquide »ith ?r äs 1. Inveetigotion of boundery leyere of different 

1 iquld, /5/ ,ith Pr 1 introduce a correction for the pr.ndtl number to dtl, 

equation 

NU/-TCfRe'P'/f- (3.M) 

Una, by meane of the hydrodjnamlc theory of heat exchange ve can 

eetablieh the connection betten heab-tranefer and hydrodynamic thencmena. 

tte eetabliehed connecUon betveen the heat-tranefer and frlcticn coefficient’ 
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enab'CG us to use extensive expérimentai data froa the aerodynamic study o" 

the resistance of differently shaped bodies in order to find the n’xerical 
« 

value , But the chief importance of tl.e hydrodynamic theory, is that is 

discloces tlie phj'sical of heat exchange during forced flow of a 

liquid, since the heat transfer coefficients calculated from equations derived 

on the basis of the theory coincide with experimental data, and thereby confirm 

the assumption made in the theory with respect to the identity of the transfer 

of heat and the transfer of momentum. 

Sec, 19. Study of Convective Heat Exchange using Liquid Metals 

as Transfer Agents. 

The development of heating installations which use nuclear energy has 

given rise to the question of the use of hea-{>transfer agents ensuring large 

heat fluxes at high working tenpaatures., Hie hect'transfer agents used can be 

liquid metals, the advantages of which over other transfer agents are due to the 

following of their properties. 

Liquid metals exhibit high thermal conductivity; high /capacity, 

and a hi$i boiling point. Fur ■termor e, liquid metals do not cause a great deal 

of corrosion to construction materiels, which means that steel as well as other 
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kllovB c'in lie usäd 

Thc^hi^i boiling point, hiji theraa’. conductivity und hi¿h tl^enrj1.! 

capeci»J enable (¿rest 'juuntities of heat to be recoved at hi^i tenneratures, 

fhis ra/.es it possible to use liquii-netal heat-truncfer agents for coolin¿ 

nuclear reectors in vliich the renoval of heat can be at temperatures 

of the order of 5OO - 65O . Ihe use in this case of voter as a heat-trar® fer 

B£eno beccmes difficult, since it requires a considerable Increase in pressure. 

For example, in order to nove a mean veter temperature of the order of t *= 550*, 

ve have to create a pressure of more than 500 atm abs. 

Hie low melting p<tits of certain metals enables them to be converted 

to the liquid state very easily and kept in the plant in that form. The hi£i 

critical temperatures of liquid metals give then considerable advantages as 

h*at-transfer agents in steam plants utilizing nuclear energy. F0r example, 

the critical temperature of water is |lower than that of mercury ¡about 4 times/ 

acccrjnt of this, the use of steamthe possibility 

- —- 
a. raising the * temperature of the steam in a turbine. This 

presents us improving the thermal efficieniy of the steam cycle to any great degree. 

Die regularities governing the flow of ■ liquid metals are similar 

ifctvj»- 

to/lother incompressible liquids. On account of this the pressure loss in 
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carinunicfstinc units with a hefit-conducting contour does not hamper the use of 

liquid-ne tal. heat-tranfifer events. 

As ruch agents liquid metals possess certain neentive properties which 

fc «Vi 
have to be taken into account when usin£ then. One 'these metals when 

used for cooling nuclear reactors is their tendency to beccr.e radioactive, thus 

creating difficulties in desi¿j.in¿ and servicing the heat-remova I 

îhe use of liquid metals in atomic power plants is complicated 

by the need to create low pressures in the condenser in order to obtain the 

corresponding low temperatures. But these shortcomings are not insuperable. 

By dint of the properties mentioned above, liquid metals are being widely used 

in contemporary heat-exchanging apparatus. 

Heat transfer with liquid-metal heat-transfer agents 

On account of the high thermal conductivity of liquid metals, the 

molecular transfer of heat in them is considerably more intensive than that of 

the momentun. The physical properties of heat-transfer agents, as is known, 

are déscribed by the Pj-ardtl number. This number is considerably less than 

unity in the case of liquid metaleras already pointed out. In this case the 

thickness of the temperature boundary layer is considerably greater than that of 

i 
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the dynûnic boundary layer, and the effect of molecular thernnl conductivity ahowa 

up both vithin the boundary layer add In the region of the n»in streea. 

Bie physical paraaetera of sene liquid neta'a as a function Í teaperuture 

are ahovn in Tablea l6, 1? and 18. 

In practice the nost interesting process in studying heat transfer with 

1 iquid-netal transfer agents is heat transfer with forced notion of a iq liquid metal 

in a closed pipe, minerous investigations show that the resistance during flow thnagh 

pipes and the local hydraulic resistances coincide vhen both liquid metals and other 

non-metallic liquids flow through them. 

The investigatiai of nunherous experimental data shows that the temja-ature 

gradient and direction of the heat flux have virtually no effect on heat exchange in 

liquid metals, this being due to the high thermal conductivity and comparatively poor 

dependence of the physical parameters of liquid metals on temperature. Hence the 

ratio Pr£ Ah'is excluded from the characteristic^”""”*' 

Die processing of experimental data in the dimensionless form shows that 

at Pr <$1 the Nu mmber for liquid metals Is [a functlon]maiüy( of the re number. Hence , 

if the dimensionless equation for non-metellic liquids flowing through pipes can be 
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Table 16 

\ 
/' 
/ 

Mercury ih - «ro 

‘1 1 ï 
‘C J kg/m_ 

0 

10 

» 
Jt 

100 

153 
30 

20 
300 

£0 
<i0 

(30 

SCO 

13 

13570 

13 550 

13 470 
13350 

13:30 

13110 

130(0 

12 860 

12800 
12700 

12600 

12480 

kcal/m*hr tl cj kc:i 
*9 

kcalAg • dcg 

6.70 

6.81 

6.92 

7.25 

7.80 

8.35 

8.90 

9.45 
10.00 

10.50 

10.85 

11.15 

11.45 

O.C334 

0,03-33 

0,0332 

0.0329 

0,0328 

0.03:8 

0.0328 

0.(328 

0,0328 
0.0323 

0.0329 

0.03.¾ 

0.0330 

«IOS VU/I 

m-/deg rrr/sec 

1.48 

1.51 
1.54 

1,64 

1.78 
1.92 

2.07 

2.22 
2,37 

2,50 

2.60 
2.69 

2.78 

12.4 

11.8 
11.4 
10.4 

9.4 

8.6 

8.0 

7.5 

7.1 
6.8 

6.6 

6.4 

6.2 

Pr IC* 

3.02 

2.81 

2.« 
2,30 

1.90 

1.61 
1.39 

1.22 
1,(8 

0.08 
0.91 

0.86 

0,80 

Table 17 

Potassium (/ ^ 53,70 c: / b = 76o5 C) 

1 
•c 1 3 

kg/m3 

l 

kcal/m'hr'deg 

t 
ep 

kcai/ke' dee 

a • llS j 

m2/deg 

*•10* 

m2/sec 
PflOJ 

10) 

130 
:co 
'JO 

3» 
330 
■ÏO 
430 
:co 
530 

6.0 

•30 
70 

818 

Í07 

705 

784 
773 

761 

750 
733 

727 
716 
704 

(92 

€31. 

40.0 

39.9 

39.5 

38.6 

' 37,3 

35.8 

34,0 

32,0 
30,0 

25.2 

26.6 

25.3 
24.3 

0.195 

0,192 

0,189 
0,187 

0,185 
0,164 

0,183 

0,183 
0,183 

0.184 

0,184 
0,185 

0,185 

25.1 
25.8 

26.3 

26.3 

26.1 
25.6 

24.8 

23.7 
22.6 

21.4 
20.5 
19.8 

19.3 

56.1 
43.0 

42.8 

33.6 

35.2 

32.4 
29.8 
27.6 

25.7 

24.1 

22.1 
21.6 
20.5 

0,80 

0,67 

0.59 
0,53 

0,49 
0,46 

0,43 

0,42 

0.41 

0.41 
0.39 

0.31 
0.38 
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Table 18 

Ttif>m-»l.*c:'b ~??7<rC) 

•C 

2« 

250 
900 

350 

400 

450 
500 
550 
600 

650 
700 

kg/nf* 

6085 
6950 
6»i0 
6005 

6865 
6830 

6790 
6755 

6720 
6680 
6640 

l-rnl/nvhr’rfr|r krnl/kfrMflg 

26.2 
26.4 
27.20 

28.0 
28.9 

29.7 
30.5 

31.4 

32,2 
33.0 

33.9 

« IO* 

0.061 

0,061 
0.061 
0.061 

0.061 

0.061 

0.061 
0,051 

0,061 
0.061 

0,061 

-o I V" 
m“/deg nr/fee<J 

Pci» 

6.15 
6,20 

6.42 
6.65 

6.89 

7.13 
7.36 

7,62 

7.85 
8,10 

8.37 

27.3 

26,7 
24.1 

21.9 

20.1 
18.6 

17.4 

16.5 
15.6 

15.0 

14,3 

1.60 

1.55 

1.35 

1.19 
I.C5 
0.94 

<M5 

0.74 

0.72 
0.67 

0,61 
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represented in the générai forn by the dependence 

Nu —/(fie, Pf. 

Uien for liquid ce ta Is tlie dimensionless equation should take 

Nu -/ (Pc), 

or takinG into account Pe == Re * Pr, we ¿ct 

Nu—/(Re-Pr). 

The form of the function f depends on the conditions of notion 

Ihere is a great deal of experimental data available at the present time 

on heat transfer with different liquid-metal transfer agents /p/. Generalization 

of the studies nede shows that the chief feature of fused metals affecting heat 

” jt-ew 

e non-wettability of the transfer is the 

For example, mercury does not wet carbon steel at t < 600°. Non-wettability reduces 

the heat-transfer coefficient/^ But it is not possible as yet to make a quantitative 

evaluation of this phenomenon. 

Ojj the basis of the study of flow in pipes in which contamination and 

non-wettability of the surface are possible, we can recommend the following 

dimensionless equation 

Nuy=3,3 + 0,014PeJ\ 
(3.^9) 
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Eq-jation (3.1*5) is recarr.ended for use over the range 200^Pe^.20,000. 

In the region of smll Peclet nusbers 20^?e<200 a rough calculation nay be 

¡nade fron the formula 

Nu^O.TPe/. (3,50) 

II ve consider the surface non-contaminated and cocpletely vettable, the 

folloving formula can be used 

^,=4,8+ 0,014Pe»'. (3.51) 

These equations can deternine the nean heat transfer coefficient for 

long pipes (h/d ^>30). Calculation of heat transfer for short pipes is raide 

vith the sane equations, but the correction is added to the heat-trarrfer 

coefficient K obtained 

a«op = *t*. 
(3.52) 

'Vpj) 
The value ^depends on the ratio h/d and can be established from^equation 

(3.53) 

It should be poihted out that vhen liquid metal flows through pipes 

and flows continuously around different shapes, no corrosion is found on the 

solid surfaces. But vhen the boundary layer becomes detached or vhen the flux 

branches, the solid surfaces undergo destructive corrosion. 
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At the present tine extensive experimenta data is available on 

different solid specimens in liquid metal media /2/. 

In conclusion to this chapter ve give a list of the basic similarity 

groups: 

Ho*--— ^ Ilomochronous number 
/ . 

Ff =-*-• 
•1 

Eu = ^- ; Eu — ^— 
fut pul 

Re= — 

Fo- **— 
p 

n Pe— — 
a 

Pr =3 ' - 
a 

Su — — 

Gr-3 — 

SU 
>* 
s 

fpju 

Fraud number 

Kuler number 

Reynolds number 

Fourier number 

Peclei number 

Prandtl number 

Nusselt number 

Grashof number 

Stanton number 

1 
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CHAPTER IV 

HEAT EXCHANGE WITH VARIATION IN AGGREGATE STATE OF MATTER 

This section deals vith the process of heat exchance between a solid 

surface and a liquid when the latter is boiling, and betven a solid surface and stean 

when the latter is condensing*. These processes are accccipanied by a variation 

in the aggregate state of the working solid, which distinguishes then 

freo heat exchange vith a single phase liquid or gps to a considerable extent. 

Ihe processes of heat exchange when the liquid boils is of great 

importance in present-day engineering. They are , first, in steam 

boilers, and, second, in heat exchange apparatus for cooling surfaces vith high 

* heat flux densities, », atomic reactors, systems for cooling nozzles 

and combustion charhbers in liquid propellant engines, for tempering steels in liquid 

media, and so on. The processes of heat exchange when steam condenses are 

* in condensers, which are essential parts of stationary power plants 

utilizing steam. 

The of the study of heat exchange between a solid surface and a 

liquid or steam is to establish the connection between the heat-transfer 

coefficient OA kcal/mV» htaur • deg and the parameters determining these processes. 
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u>. 
the «knovn heat-transfer coefficient , the anount 

of heat which has to be transferred fron tiie vail to the liquid s kcal/nour, and 
m 

_^ ^ y 
the ^iven ^between the temperature of the vail and the saturation 

r (V^ir-t'7) 
point of t::c liquid > , ani usine tlxe known r.q.(2.lS), ve can deternine the 

total area of surface of the heat exchanger (C,n* ) 

Q = u MS (^.1) 

Sec, 20. Heat transfer w’nen Liquids Eoil, Te:.iperature "leid 

of Eoiliry; Liquid 

By boiling ve mean the process of the formation of a vapor inside a 

liquid when the latter is heated. The temperature of the vapor formed is called 

the saturation point t". Hie saturation point t" is determined by the pressure p 

of the boiling liquid. Experience dhovs that trie boiling pdint of a liquid t , 

is always higher than the saturation point t", i.e., when boiling the liquid is 

■heated with respect to the saturation point. The characteristic Variation 

in the temperature of boiling water at different distances from the heated bottqm 

surface is shown in Fig. 45 /6/. 

An analysis of heat exchange during melting and solidification of the working 

solid can be found in /5/. 
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At the interface between the liquid and vapor there is a soall teaperatuiv 

difference ^ > vhich is determined by the physical properties of the liquid 

and the intensity of vaporization. A sharp increase in the tea^jerature of the 

liquid is only observed in the layer 2 - 5 on thick directly adjoining the botton 

of the vessel. The temperature of the liquid particles adjoining the heated surface 

is equal to the tenperature of the surface. Ihe -heating of the liquid is 

maxinun here * . Observations have shown that os the heat flux density increases 

the heating surface (q keal/m • hour)j the value At increases. 

The possibility of heating a liquid is due to the presence of surface 

tension vhich restricts the bubbles of vapor. On account of surface tension the 

vapor pressure inside the bubble (p ) is always greater than that of the surroundin; 

liquid (p). Hence the vaporization temperature on the heated surface (t" = t ) 
- * 

is always higher than the saturation point t[] above the flat liquid surface. 

The vapor pressure inside the bubble p .and therefore the *^heat 
-1 ‘ 

to 

temperature t", increases the surface tension coefficient <5“^ and'^the 

radius of curvature O' of the surface of the bubble decrease . 

This relationship can be expressed by 'Laplace equation 

(4.2) 
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Fig. 45. Variation in boiling point of water 

when heated from below kcal/m^ • hr, 

iw-109.1*0 

Apart fron naintainin¿ pressure in the bubble, according to the Laplace 

Çu|iv 

equation, heating the liquid is essential to create a temperature gradient 

vhich ensures the nwement of heat ire» the liquid to the vapor. Furthermore, the 

occurrence of /new phase is accompanied by a wastage of work in forming the 

Wv At / 
interface ( frF) and the work of expansion. The heating /can vary over a 

vide range. 

For example, when pure water boils in a special vessel, it is possible to 

produce steam bubbles of small size and . . .- superheat the water 

As¬ 
severai tens of degrees, after which there is violent vaporization thrcutout 

the water. 

îheoreticallyfltfé can imagine the occurrence of the embryonic cavities 

« 

- 151 - 



I 

In the bulk of the liquid through fluctuetier of the èenalty during therrül notion 

of the noleculee, vith the center of vaporization being e cavity in vhich the 

thernodynanic potential of the vapor phase ia eqal to that of the liquid phaae 

(or greater than it). In practice the vaporization centera occur on the interface 

of phaaea present In the given system. Ihey nay be either liquid or solid phases 

(heating surface, dust particles) or the liquid and gaseous phases, for exanp tC 

bubbles of air or some other gas. Here the initia; bubble radius generated in the 

boundary layer is of the order of 

(l*.3) 

% in vhich As the latent heat of vaporization. 

-3 
For example, for water boiling at atmospheric pressure ( S' *= 6 * 1C kg/a) 

at A/=/.-r=5’C fo = 6,7 lO"c m, 

at A/«/.—^=25^0 p0 =1.3-10-« m. 

After this the steam bubble grows rapidly through the heat supplied 

from the surrounding liquid until it attains a maximum size termed the detachment 

size, after which it leaves the heating surface. For a certain period of time the 

vaporization center remains covered with liquid, after which a new bubble is 

generated and the cycle repeats itself. 
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lhe nimber of bubbles of iteaa foraed per unit of tine on the ¿ven 

center Is tenred the detnchcent frequency. The diameter of the bifcble at the 

accent of detachment under conditions of natural convection is determined by the 

equation 

0.,.-0.018¾ 

is - * 

•»» 

1 

\'l- U.4) 

la vhlch V 1* tile edge ansle betveen the bubble and the heetin£ eurface or the 

vetting angle. 

A case may be encountered in which the heating surface is higher in 

temperature than the saturation point, while the bulk of the cold liquid has not 

yet reached this temperature (cooling of liquid propellent rocket engines, quenching 

of metals). This process is known as surface boiling. In this case we have an iso¬ 

thermal surface an one side of which the liquid is superheated while on the other 

it is not yet up to the saturation point. The superheated region in this is 

ÍíJLÍ^UíJ ' 

called the boiling boundary layer, while the underheated region is termed the 

cold nucleus. Ihe steam bubbles condensing in this region are formed in the 

boiling boundary layer. The superheat of the liquid is determined by the 

heat flux density ^q, the state of the heating surface, ^he radius of the steam 

bubbles formed and the nature of the ^liquid (<T). Furthermore, the superheat 

depends on the motion of the liquid with respect to the heating surface. 
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Section 21, Two fundaacctal tycs o. boiling. 

There are two fundamental types of boiling; - * and fila bolline« 

They nay also be ccnbined. 

The transition fron one type to another and the regions in which they 

exist are deternined by the heat flux density q passing through the heated surface, 

the physical properties of the liquid and the hydrodynanic state of the flow. 

The differences in the different types of boiling can be illustrated 

more clearly by neans of the experimental graph in rig. h6, which shows the 

variation in heat «-transfer coefficient from the vail to the water X and the 

heat flux density q^as a function of the of the wall canpared with the 

saturation point of the water * . The wall is the bottom of vessel 

containing boiling water. For any other liquid wetting the wall, 

the difference is merely quantitative. At small degrees of of the wall 

and therefore small heat flux densities, in the region AB the heat-transfer 

coefficient is small and is determined by the conditions of free convection 

of homogeneous liquid. At atmospheric pressure this region is restricted by 

the temperature gsadient t^~ 5* ßn4, correspondingly, the thermal load q *= 5000 

keal/a , hour. As &t increases, boiling begins (the lines BC and BD 

in Fig, 46)# during which there ^^ihe above described increase in the steam bubbles 
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and their detachment 
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V 

»• 

r » 
nucleate 
hniling. .f 

Vi 

/ 

_i— 

TJr " 

•a 

Ï0' 

boiling 

4*-<; «* 

Fig, Nature of variations in heat flux and heat-transfer 
coefficient for boiling water as function of temperature 

head (/»»larj) 

The occurrence and notion of bubbles causes circulation and migration 

of the liquid at the heated surface. Hence(_o^ during boiling/does not 

remain constant, but increases vith Intensification, i.e., vith an Increase in the 

number of vaporization centers and detachment frequency of the bubbles. But the 

number of centers and detachment frequency increases eith the heat flux density q, 

i.e,, vhen the of the vail At is increased. Hence, during 

boiling the heat^transfer coefficient to the liquid c* vhen q and A t are increas®! 

(1/=5° C ‘ii lO; 
rises sharply (line BC and BD in Fig. 46). For example, at keal/m * hour • deg 

/ % 'Af—25*C o’sl* 10’ v ¿ 
and q = 5 * 10 keal/m * hour, vhile at ¿ keal/m • hour - deg, and q = 1 *10 keal/m 

hour. 

Kocf.« 

Thus, Vhen the boiling conditions are most intensive (point5C and D 
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In Fig. 46) 50c tines more heat coy be transferred than at the Initial atage of 

the boiling (A/-55^) and, vhat is ¡erticularly important In practice, at a very 

slight of the vail - only 25* In all. These ' boiling conditions 

V/ i/cri\ *c,v are terned the first critical regime I a ' because fron then on, even if the 

Increase in the heat flux density is very slight, boiling turns into film 

boiling, and there is a sharp drop in the heat-transfer coefficient. 

Film Bolling. 

When the heat flux density approaches the first critical value (</ ‘‘fcr^ * 

the nuriber of vaporization centers is Increased so much that there is rearrangement 

of the boundary layer. The layer of liquid, typical of nucleate boiling, vhich is 

#- 

permeated by bubbles and streams of vapor, Is replaced by apayer of vapor, 

permeated vith streams and filns of liquid, vhich still provides a flew of liquid 

to the heating surface and a hi#\ heat-exchange intensity, then q becomes greater 

than q , the amount 0$ vapor formed becomes so considerable that it carries avay 

^ ÍU 
the liquid in the^treams, the stability of the streams is destroyed and a solid 

steam blanket is formed, forcing the^iquid avay from the heated vail. 

film boiling, the heat is transferred from vail to 

en 
liquid throu#i the film of vapor by conduct! * , convection and radiation. 

The formation of the vapor from the liquid occurs on the surface of the vapor film. 
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On account of the low conductivity of the vapor, the heat'transfer 

coefficient fron the wall to the liquid in filn boiling is reduced (by a factor 

of 20 or 30), compared with its value during critical nucleate boiling. The 

reduction in o(. leads to the transfer of the sane amount of heat fron the wall 

to the liquid q^beccning possible only when there is a corresponding increase 

in the superheat' température of the wall, conpared with At . 

In our example, the supehheat of the wall becomes dangerous for the wall 

at At*750* or tjaSjO*. Hence, the film regine often leads to the wail burning 

¿c- 
throu^/which ‘ -^In heat exchanges’. The transition to filn boiling 

(see the broken lines CE and DE in ?ig. h6). 

(• r V ? •'feAví 

steady-state filn 
«Avo y 
ífííine . in Fig. 46) o< retains a 

permanently low value and q increases solely throu^i an increase in the superheat 

of the wall fat. %e reverse transition from the film regime to the nucleate 

regime (when q^and At^ decrease) occurs, as shown by experiment, when the^ heat 

flux Is comparatively small (lines ja in Fig. 46). 

Bius, we have two critical heat flux densities? q * at which there is 

transition fron nucleate to filn boiling, and q which corresponds to a transition 

from film to nucleate boiling. 
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It follows fron this description of the heat-exchnntje reclaes during 

boiling that the noet effective one Is nucleate boiling with heat flux densities 

close to the first critical value (q ). In order for ^’r^—^tTbT^ininun 
i ' 

size, and the coolant consinption to be as as possible at the^**^ 

uJ / 
Buperhcat^of the well, the process Is carried out in such a way that the hoat- 

tranSiCr coefficient o< is as near to (oí ) as posslb’e, but slightly less tl^n It 

so as not tc cause an accident and destruction of the tubes. 

Dctemlnlng heat-transfer coefficient (oC) fren : .catín- ce 

to boiling liquid in free convection 

2ie most ccciplete experimental observations and theoretical investigations 

Of boiling have been made for the case of free convection of a liquid boiling on 

a surface immersed on a large volume, for example on the flat bottai of a capacious 

vessel. 

Fig. 4? shows the results of experiments on heat transfer during nucleate 

boiling in a large volume of water at atmospheric pressure/plotted in logarithmic 

coordinates /4/. 

Experiment shows that the heat-transfer coefficient is not a function 

of the size of the heating surface. Furthermore, the dependence of <X on q is 
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* iß* • Effect of dimensions of heating surface on heat transfer 
to boiling water: 

1 - Minchenko, brass 9 mm in diameter; 2 - Borishanskiy, brass 11 mm 
In diameter; 3 - Kutateladzc, pipes 31 and 45 mm in diameter; 4 - Kutateladze, 
graphite 2 mm in diameter; 5 - Mac Adams, copper 13 mm In diameter; 
6 - Nikaima, platinum 0.14 mm in diameter; 7 - Kichelli, chrome plate. 

Z** rectlllne'r loi^rithnlc coordinates. This means that and a-(.V)"1. with o( 

depending on to o larca* extent than on q. rocperir.ental data are usually 

expressed by the onpiric formulae (see, for example, Tables 12 - 1 in the 

feference book on heat transfer /9/). Two formulae of this kind for water /4/ 

take fbe form 

a—Aq0-71 
(*.5) 

and 

(4.6) 

in which B ■» A 
1.« 

Experiments show that and n__drop as the pressure approaches critical 

05 Vel1 63 when ^ aP?rcaches q and A t eppronches A"t . Both 
m Ci* "" <T“ 

values 
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A and B &r* functions of the type of liquid, state of the heating surface and 

pressure. 
t 

Sxarnles shoving the effect on the t;*; e of liquid on . i. If tlie 

liquid does not vet the surface, the vapor accuiulates in bubbles vith vide bases 

(Fig. 48) and a great deal of buoyancy is required to detach them, i.e., a greater 

'*/ JL 
bubble size. The detacluientl frequency of the bubbles/feducej, the liquid pht.se 

is farced avay from the surface by the vapor and the heat-transfer coefficient is 

also reduced. 

Fig. 48. Shape of vapor bubbles on wetted 
(a) and unwetted (b) surfaces 

The boiling of mercury on steel surfaces, vhich it hardly vets at all 

at temperatures belov 600°, if of great interest /lO/. In viev of this, lov 

heat-transfer coefficients are characteristic of the boiling of pure mercury, 

and in certain conditions decrease^ as the heat flux increases. The addition 
« 

of a small amount of titanium, magnesium or other ' ' to the mercury leads 
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forafttlon of analyana /10/, Here ^ 
boiling varie« «iiarplj* and 

to the 

Ucme. a« m« a. for other liquid, «ttlac üie .ofrace. » «„taia on 

heat*tranefer co.fflel.nt. durlnc th. bo nine of netal. are .hovn In Fie. 1.9. 

1 - magnesium amalgam with mercury inside vertical pipe; 
2 - magnesium amalgam of mercury on heating surface of pipe* 
3 - film boiling of magnesium amalgam with mercury; 
4 - boiling of pure mercury; 5 - cadmium 
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2. An increase in the surface tension coefficient and viscocity coefficient 

of a liquid also leads to a reduction in the intensity of the notion of a liquid 

during boiling on the surface, and therefore to a reduction in o(. . 

According to experimental data /b/ 

a—a-«, u (U) 

(4.8) 

» 

in vhich is the viscosity coefficient of the liquid, kg sec/nv. 

Effect of state of heating surface on . A netal heating surface is 

often coated vith a layer of oxide. On the one hand, the oxide layer reduces 

the heat transfer, since it adds to the thermal resistance of the oxide film 

betveen the metal and the liquid 

Vù“!. 
•X — 

in vhich $ is the thickness of the oxide layer in m, and 

X. is the thermal conductivity of the layer in keal/m • hour *deg. 

On the other hand, a rou$i oxide film surface creates more 

favorable conditions for the formation of vapor bubbles and this intensifies the 

heat transfer. Hence the heat-transfer coefficient from the surface of th oxide 

fila to the boiling liquid may be greater than ^ for a clean surface. 
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Dependence of oÇ on pressure. Vhen the presaure Is increased, the 

gaturation point in tH increases, and the surface-tension coefficient of the liquid 

is decreased. The diameter of the vapor bubbles ([s therefore decrease^/at which 

they are detached from the surface, i.e., the mnber of active vaporization 

centers end the detachment frequency are increased. Hence, the coefficient t>< 

Increases with pressure at a constant Át until critical temperature difference 

M.,=c=r. is reached, and at this temperature the boiling becomes film boiling, and 

is reduced. 

Fig. 50 shows experimental data for the heat-»transfer coefficient 

vhen boiling va ter as a function of the temperature difference and pressure. 

In the case of vater ve can recommend the following theoretical 

empirical formula (at p-<1^0 atm abs) /U/ 

•=*2t5^Wq0’7 \p in kg/cm2 and q In keal/m2 * hr) (4.9) 

Dimensionless Equations for Determining Heat-Transfer 

Coefficient During Nucleate Bolling 

The quantitative results of individual experiments, formulated by 

empirical equations, cannot be transferred directly to other liquids or other 

conditions for the process. The transfer IsjposslbleJonly|l f the . . 

derived are expressed in the form of dimensionless equations arrived at by means 
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Fig. 50. Heat-transfer coefficient for boiling water 

as function of temperature and pressure 

difference 



the theory of sinilarity . These equations are of £7eat interest, since they show 

the actual possibility of eeneralisine experinenta! data even for such conplicated 

processes as boilinc. The derivation of the existinc dinensionless equations Is 

based on the fundanental assuaption that during developed boiling with free 

convection the i notion of the liquid near the heating surface is conpletely 

detemined by the vaporization, and, as pointed out above, the dimensions of 

the surface have little effect on the heat transfer coefficient oC . 

Kruzffiln /3/ has used the sinilarity theory method to investigate 

a system of differential equations describing the growth conditions of a vapor 

bubble and the transfer of heat fron the vail to the liquid during the action 

of one vaporization ' . In this case, to calculate the heat-transfer 

coefficient oC during boiling use was made of the dinensionless relationship 

-1 l/IXI-0,0325(^-f r* » r f-r w Un (t'-i'fJ 

l (n'P J ’ 
(4.10) 

which was subsequently reduced to the following form after transformation and 

. ca « a—J / nr \0«U / t* \0.533 

:-»•«^TSçrWÎTÎFl •(.) ! (‘‘•ID 

here all the physical parameters were compressed in technical units. 

ytz u )( 
Kutateladze has the processes occurring in the liquid and 

vapor phaseirrespective of one another^ and compiled two independent systems of 
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equations dcscribinc the hyirodynaalc and the roa 1 ohenœena occurring In each of 

then. Both systens arc united by the general boundary conditions on the Interface, 

vhich express the specific nature of heat exchange during boiling. Processing 

of the differential equations derived by the similarity theory has given 

a dimensionless relationship, similar in the final analysis the results of 

calculations ne de by ICruzhilin. Hie final form of the equation for the coefficient* 

vas obtained by Kutateladze in collaboration vith Borishanskiy It 

In the equations given the folloving^za^quantities are conventional: 

is the heat-transfer coefficient during nucleate boiling in kcal/n*'hour • 
deg 

\ is the thermal conductivity of the boiling liquid at the given 

pressure in kcal/m hour deg 

O' is the surface tension coefficient in kg/m; 

! b * # f 
Y is the specific gravity of the liquid and saturated liquid in kg/m ; 

Ä« is the thermal diffusivity of the liquid in mVflourj 

is the coefficient of kinematic viscosity in n^/nourJ 

^ is the heat flux density in kcal/m*’» hour; 

tT’ is the latent heat of vaporization in kcal^cg; 
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• equivalent of aechanical vork In kcal.'kg* n; 

Lp 18 the «pecific heat capacity of the liquid in kcal/kg • deg; 

j is the vapor saturation point in ahs; 

jUk, is the coefficient of viscosity of the boiling liquid at the given 

pressure in kg sec/n*. 

In Sqs. (4.10), (4.11) and (4.12) the values <* dre represented as 

functions of the physical paraneters alone. Hence if ve have reliejle 

values for these paraneters and! if ve the fornulae, ve can calculate ^ and 

as a function of q for any liquid and any pressure. 

To do this ve have to select the cooling liquid and saturation pressure. 

The reoaining paraneters are found fron ïkbles, 

Nucleate Boillnç ulth Forced M tlon of Liquid in Pipe 

The organized notion of a liquid nay lead to an increase in the heat- 

transfer intensity during boiling (an increase in ). The degree of this 

intensification is deternined by the ratio of turbulent pertubations of the 

boundary layer caused by the organized notion of the liquid and by the vaporization 

process proper. 

Intensive boiling often exerts the greatest effect on heat transfer, shce 
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it deve lories ritfit ir. the will layer of the liquid. In this case the heat exchance 

in the circulating liquid is no different fror, heat exchance during boiling of a 

freely convective liquid in a large volume. 

lhe Joint effects of the rate of forced circulation of the liquid and 

the heat flux on heat transfer in a boiling liquid is shown schematically in Fig. 51 

/8/. 

Curve 1 corresponds to the relationship = f(q) for a case of free 

convection. At smell values of q, the addition of forced circulation agitates 

the boundary layer and<p( is considerably increased vhen the rate of forced circulation 

is stepped up (see curves U . U and Uj. ’..-hen the heat flux q is increased, 
-1 -¾. 2 

agitation in the boundary layer due to vaporization becomes the determining factor, 

and the effect of the rate of circulation on the heat transfer is reduced to zero, 

^-' 

and the curves , U^, and merge. 

Uhen analyzing the processes of boiling accompanying forced convection of 

a liquid ve must keep it in nind that there are three zones: 

1st zone: from the site of the commencement of heating to the section I. -r 
in which the pipe wall attains the saturation point. Over this area the liquid 

is only heated up by convection, and Of remains low (see convective heat exchange). 
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For B pipe the leneth oí this soce is deteralned hj' the iortmls (see ref. book 1)1) 

- io,4 C*-55) 

Fig. 51. as function of q and U during boiling: 

1) curvo for developed boiling with free convection 

4Uv^> / 

2nd zone: tixe section L ( ^Uie^ fh&C * in vhicli the liquid 

attains saturation point throutfiout V.. srH.W. In this zone there is gradué 

develoT^ent of vaporization on the vail vith partial condensation in the flov 

nucleus. Both in the section L L and beyond it the vhole of the liquid boils 

^ 3600c^t/otfj«-/|) (U.l4) 
D "* 1* 

Here t is the saturation point in the section L t ; 

t^ is the saturation point in tlæ section L ^ J 
-“1. 

is the tenperature of the liquid and the pipe inlet; 

D is the diameter of the pipe 

U is the velocity of the liquid at th 
-0 

e^ipe inlet. 
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3rd zone: the zone of developed bollin¿, for vhich the re^-ularitie« 

nucleate boiling are wild. 

Ihe boillnf; pointa and are detcinined ua a function of the 

pressure drop alonjj the pipe 

f t* • ni o VoC ”*T*)i (/i 

* ^21,8 rfD-* 

in i&ldi la the boiling point at the pressure £ ö in tlie Inlet section of 

7^-/¡+273,2; /; 
the pine, A Is the holline point at pressure p , at a distance L # fron the 

-i ^ 
inlet section; Ç^ic the coefficient of hy»lrauUc resistance over the length L f 

In zone (l) heat transfer Is calculated by the convective heet exchance 

formulae. In zone (3) the heat-transfer coefficient can be determined fron -qa. 

U.ll) or (M2) for a larce volume. In the transition zone (2) the presence of 

orcanized notion of the liquid in the pipe effects the intensity of the heat exchançe 

until the pertubations contributed by vaporization be^in to liave a decisive effect. 

In practice [coefficient o( is calculated twice - from the convection equations ar¿ 

the boilinc equations - and the greater of the two values is seletted. 

During developed bollinç^ the third zon^the effect of the vapor 

content in the flow is manifestedand it can be taken into account by the equations 

in /9/ 

■=iv-7(1+77p 
(4.16) 
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ln vhich Át Is the dlí:'rrer.ce In heat content In the lljuid at 4Jie pipe Inlet aM 

outlet in Xcal/k^. 

Crlticr'. Heat F'ux Penalties 

In order to calculate heat exchan^ins apparatus, It Is ¿»»rticularly 

laportant to toov ti;e critica! heat flux densities q end q . In most cases 

ve need only îoiov (q ), since this deterr.ines the Units vlthln vhich tlie 

apparatus works reliably. 

V* ^ 
îhe values » and - are deternlncd by the physical properties of 

the liquid, pressure In the system, state of the surface, underheatint °- 

of the ig liquid up to the temperature t" or vapor content in the flow, and the 

■ntensity of forced circulation of the liquid. 

Determining!: in condltims of forced convection In a larre volune 

¿Ce 
of liquid, ki the present time the phenomenon of has been studied more 

fully for free convection in e larße volume of liquid. It is now taken for granted 

that the boiling occurs through destruction of the hydrodynamic stability 

of the developed structure of the boundary layer during nucleate boiling. In the 

case of a liquid nhich thoroughly wets the heating surface during developed boiling 

in a large volume, when the whole of the liquid is at a temperature t". 

Kruzhilin has derived the dimensionless equation for determining q 
^ «-r* 

» 
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AJ 
f.pn'i' b-ZM^Í í'ni. _ T^v 

r-i(f - ,*); “ &>,i- / I ¿7 Vy<V - ï >'11 

xf_ííü_^f*i. (4.17) 
xlr*:(T/-r)J 

Uclnt; thelr ovn systcn of dincnsionless croui-s, l'ájtatelAdze nnd 

Eorichnnskly /9/have obtained an eq-jatlon for q , in vhich, like íCruzhitin's, 
•Cf * 

i 

contains the dinensionless ^rouo 

- ' . „ „ 
Here g is the accelerotion due to gravity (g *= 9.8l n/sec ). 

M 
8 * 

X • 2 
a ji r. 

!— t 
1 

k Í Î 

1 \ ! 

1 . Aj 
KO 233 

p atm abs 

Fig. 52. First critical density of heat flux as 

function of pressure (boiling of water 

in large volume) [9|. 

boiling vater derived by Eq. (4.13). Equation (4.17) elves similar results. In 

both cases the maximum q is found in the pressure area betveen 70 and 100 atm abs. 

vhich corresponds to (0.3 - 0.4) p . In the region of the vacuum and the region 

of the near critical pressure (in the thermodynamic sense) q tends to zero. 

imilar relationships are|satlsfied roughl^j for other liquids as veil. For liquified 
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pees, for cwinple CO^, or the heet-up of ocN^nglncertncWfac^is 

rowdily ho^ Üiat cclculAted by Eqs. (ii.17) or (4.18). 

For surface boiling, vhen apart frcr. the boundary layer the whole of the 

/enaining liquid has not yet been heated to t", the crlticaLheat flux q is 
** * 

increases, sx since condensation of vapor bubbles in the cold liquid nates the 

boiling boundary layer norc stable. On the basis of experimental observations, 

Kutateladze /k/ has put forward a relationship which takes into account the 

effect of the . heating on the peak heat flux, which is as follows 

+0^5(^^-1- (4.19) 

ln »hich » 1» the difference betveen the bulk of the liquid et tenperoture t 

and the saturation point t". 

Effect of state of heating surface on q a . When the heating surface 

i* made rougher, 9 increased, ihis is due to the increased stability of the 

liquid films as they adhere to the roujÿi wurface. 

If a heated plate is horizontally, q i» less than for the same 

it KMJ 1 

plate set on This is due to the fact that large vapor babbles accumulate on 

the bottaa of the horizontal plate and make the generation of a vapor film easier. 

Data fron numerous experiments and theoretical calculations show that 



there Is a com tant r&tic between q and q for each liquid 

(^.20) 

Accordine to the United nictoer of exigerinenta1. data available, q can 

(U/ 
be detemlned for different liquide, includin¿|liquified ¿tises C^and ir^; for txie 

case of boilinc in a larce volvc.e /?/ 

(4.21) «--aoordïW-nj' 
«N» 

It ahouljd be kept in nind however, that q is of no nractical importance 

and is rarely used. 

Determining q during flow of liquid through nines, then • liquid is 
* c-r 

forced throucJa pipes, the two-phase boundary layer proves more stable than during 

free convection; this is pertly because the inflow of cold liquid is greater, add 

partly because of destruction of the nascent vnoor film, hence q increases tyU* 
• <*r 

i 

an increase in the rate of flow as shown in Fig, 53, It can-be seen from this 

Ïtü-Ti- 
graph that q also increases as the difference A increases. 

Fig. 53, Effect of fluid velocity on first critical thermal 

load (water p~l atm aba) 
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i»mérous investi^tic»s °* Î during notion of vapor-liquid Dixtures 

throuc^x pipes show that the walls overheat as a result of the nomal peak heat flux 

with the fonaation of an insulating vapor filn in the boundary layer, and also as 

a result of the drying up of the liquid fila, soné of the liquid in this case 

continuing to nove in the fom of drops in tie vapor streaa. It has been pointed 

out that in the hitfi-pressure region close to critical the peak heat flux 

degenerates in the thernodynaoic sense and the pipe heats up bit by bit 

rather tlian in the usual leaps and bounds, tp the thermal load q increases. This 

is more clearly narked at higher rates l^>10 m/sec, when the vapor extent 

increases, and is greater for organic liquids than for water. 

Ihe importance of different conditions influencing the peak heat flux 

has not been studied to an equal extent. Better known is the effect of pressure, 

velocity and heating on q the effect of vapor content has been studied to 

a lesser extent, and it is only recently that the investigation ofsuch factors as 

the shape and size of channels has been begun. 

Kutateladze /9/ recommends calculation of the first critical heat aux 

density q^during the flow of low-fiscosity liquids (water, alcohols, etc.) throng 

a cylindrical pipe and slotted channels by the following equation 
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(h.??) 

4r*=Anv, i’u-i « gu ) J 

x[.+<r^]. 

in which the coefficients.A and B and the exponents r. and n are deterained J* «V ^ ^ 

enpirically fro: cxijerinental data. This equationi is suitable for moderate 

values U r./sec. 
•H) 

For hißher velocities the lx lover nn£ineerin¿ Institute of the Acode.-ay 

of Sciences of the USSR lias derived the follovinc equation 

X 

•w- 

in vhich q , B and V are coefficients calculated fron exoerinent&l data for 

each liquid. Fic. ^ civ®5 these coefficients for water as a function of pressur 

r * -, Here the coefficient q lias dhiensionality of the heat flux /kcal/n’ hour/ L, -J 

-N 2*-C» yJrLt-tJt 
and represents the hypothetically naxinvcu value q ^ 
and . velocity. It should be pointed out that q is not equal to q , since 

' -«i -<r, 

in a larce volume the rate of notion of a liquid with ndural convection is differen 

fron zero. The coefficient^ íes the dimensionality of velocity^/n/sec^and 

expresses the pa*=t of the nixing of the boundary layer which can be attributed 

to the nascent vapor bubbles. At low flow Velocities, this proportion is high 

and q varies only slirfitly with the velocity U. Shen the flow velocity f-cr ** 

increases, the relative effect of V is decreased and the line ' q = f(U) 
— s - cr ~ ~ 

beccmes parallel to the line q = f(U). The coefficient B has the dimensionality 
•'«.k -, - 



a pipe, and is not Uæ sane es the effect of AfH on tiie peak in a lar¿e voltee, 

detenained by E j. (4.19) 

Fig. Coefficients WQ and B as function of 

pressure for water 

Bie vapor content has a very conplex affect on q during flows through 

a pipe. But there is no single opinion so far on this problem. It can only be 

said that the effect of the vapor content is different at different weight 

consumptions in the pipe. 
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It is :<novn A/ w-ec ^ perireter of a pipe is heated up non-uniforc’ 

the peak ' . *’ .. ^eeurs at hi^¿er values of the heat flux q than is the case 

during uniforn heatinc of the perineter. The effect of the ratio of the l.cncth of 

the heated area of the pipe and its diarictcr (l/d) lif^s also been establish.ed, and 

an increase in leads to a decrease in q . This effect is aoinly appreciab’e 
- W 

Mr 
during the r:otion of a vapor-liquid fixture and at very low decrees of * /heating 

of the order of 5®. b’hen tiie /heatinc is greater than 10 , the effect becomes 

negligible, except for very short pipes L/O <£ 4, in which a futtaer decrease in F./D 

sharply increases q . 

An important part is played by the occurrence of the peak heat flux during 

the flow of organic liquids when the phenomenon of thermal decomposition of the 

liquids is imposed upon heat exchange during nucleate and film boiling, and there 

) 

is precipitation of a l^-er of and a sharp reduction in the heat-transfer 

coefficient . For the moment very little study has been made of this phenomenon* 

Heat Transfer with free fov of liquid over heating surface 

___ OqCApL&JW? “'*'*■**' u* i 

During cooling, quenching and other ‘ ^"wor:-:inu cutting tools; 

-here is free flow of a liquid over the heating surface. Fig. 55 shows the 

dependence of the total evaporation time of a drop of water on the tempe ature of 
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a horizontal netal r/.'ic- /1./, 

lower than trie enturation point 

along it and slowly evaporate. 

■ t long as the temperature of'the surface is 

, trie drops of liquid reaching the surface flow 

^len the temperature of the surface exceeds the 

KO :« m *jo soo soj 
• *c 

FlC. 55. Evaporation time for drops (V = 0.0465 cm3) as 

function of wall temperature 

saturation point, nucleate boiling is observed in the flowing liquid, the heat 

transfer coefficient is sharply increased, and the evaporation tine drops as the 

nucleate boiling is intensified. 

As soon as the tenperature of the vail reaches a certain Unit, a drop 

reaching the surface -. ' . no longer flows around it, but gathers into 

a globule which int emit tent ly canes into contact with the heating surface throughout 

the evaporation tine. A further increase in the tenperature of the surface brings 

about a reduction in the frequency of contact between the drop and the surface, and 

the evaporation tine begins to increase through a reduction in the heat-transfer 
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Intens it/ to the liquid. 

7cie naxinua evaporation tine corresponds to a cessation of contact between 

the drop and the surrace and to the formation of a stable vapor layer separe tine 

the heatinc surface ani the liquid. ? ou then on the evaporation line for tiie 

drop is reduced thro’jppi an increase in the surface teuperature. Thus, the 

foreeoinc sujcests the followInci 

1. Tliere are two different types of b^ilinc - nucleate and file. 

2. The transition froc nue’eate bollinc ^ fib^ffnd from fila to 

nucleate boiling occurs at different specific theraa' loads of the wall q > q 

and corresponiinc heatinc of the wall 

> Atc<f- 

3. Durin" nucleate boilinß tiie heat-transfer coefficient increases 

vilii the heat flux density q and the of the wall A t and reaches a 

maximum on the boundary between nucleate and film reßimes. 

4. Durinc boilinß the heat-transfer coefficient retains a constant 

value idiich is less than the maxlom gC durinß nucleate boilinß by a factor of 20 or 30 

5» Nucleate boilinß of a liquid which does not wet a surface is close 

in nature to the film boilinß of a liquid which does wet the surface. 
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6. Heat exchance# should operate on'Suelea te boiling. 

Sec, 22, He^t Tranafer vlth ifepor ^^óndensatlon 

nJLi UiÀK 

If a vapor a vail vlth 4 tecnerature t lover than Uie saturation 
fir 

point t", the vapor condenses and the condensate settles on the vail. 

Ihere are tvo types of condensation: dropvise, vhen the condensate 

settles In the form of separate drops, and filn condensation, vhe* the condensate 

lx settles in the forn of a filn, Furtheraore, there nay be cases of mixed 

condensation. 

Dropvise condensation is narked by a particularly Intensive heat 

transfer, since direct contact vith the cold vull is maintained throuj^out. 

Dropvise condensation is only possible if the condensate does not vet the surface* 

In practice there is always filn condensation of the vapor in present-day 

condensers. Hie only exception is the mercury vapor condenser in vhich there is 

dropvise condensation. Hence below ve only consider filn condensation. Dropvise 

ï In the case of vater vapor dropvise condensation can be artificially produced 

on a polished surface covered vith a thin layer of fat. The heaVtransfer coefficients 

during the condensation of vater vapor at atmospheric pressure are as follows: 
, , COQÔcwà , 
for film condensation Uz . keal/m • hour, 

^ 40000+10000(1., 
B vith dropvise condensation<*. - ^ kcal/ij . hour. 
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condensation is considered in A/ Bnd /?/• 

In fiIn-type condensation all the heat released durinc condensation or 

the vapor passes to the vail throu^i the file of condensate, îhe notion of 
i. 

a liquid filn is usually laninar, tiie transfer of heat throuch it is effected by 

nolecular conductivity and the thernal resistance of the filn is decisive for 

the heat transfer of the vapor to the surface of the body (the thicker the film. 

the less the heat transfer). 

Let us assine the tenperature of the condensate particles ^thë 

vail is equal to that of the vail t , vhile the temperature of the particles in 
* 

contact vith the vapor is equal to the condensation point of the vapor t"; the 

specific heat flux from the vapor to the vail can then be^ determined by the 

following qualities 

qa-*a(r-tw). 

(4.24) 

(4.25) 

in vhich (V is the heat-transfer coefficient during condensation of the vapor on 

the surface of the cooled body in the section x; 

\ is 

S is 

the thermal conductivity of the condensate; 

the thickness of the filn of condensate in the section x. 
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Equating the ripit^and side« of equalities and (4.25)ve get 

■,«=— kcal/m^* hr* deg 
I# 

Qie value X of a liquid can alvuys be taken fren 

(4.26) 

tablea, hence the 

calculation of the heattransfer coefficient in the given cage reduces to 

deteraination of the thictaiesa of the condensate layer vhich ahouîd be found 

fron the condition of equilibriun of friction, gravity, surface tension and inertia 

of the condensate eleaent. 

W.« vapor condeno« on a vertical val, the ttlcfcnea. of the dripping film 

”k“V'A It. 
of condensate graduallj- Increases (,« 71g> % /¿/y 

Belov ve give the formula derived hy Kusselt* /6/ for tire thickness of 

the condensate film 

(4.27) 

ln vhich X is are distance of the section under consideration frem the upper edge 

of the vail. 

When deriving Eq. (4.27) the follovlng simplifications vers made: the film ves 

taken as laminar; the surfa« tension of the film. Inertia occurring In the film, 

«Ohvection transfer of hast in the film, friction betveen the condo.«« end the vepor 

variation in specific gravity, thermal conductivity and viscosity of the condensa« 

vith temperature vere all ignored. 
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lhe variation in the thickness of the flln as a function of x calculated 

froo Eq. (4.27) i» «^own in Fic. 57. 

Fig. 56. Film condensation on 

vertical wall 

Fig. 57. Variation in film thickness and 

velocity distribution in film of condensate 
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Hie variation in the velocity component u x in each section is shown in the sections 

Barked with a broken line. 

The mean heat^transfer coefficient during Ominar flow of the fila along 

a vertical wall and vertical pipe of height H can be determined by means of (V.26) 

and (4.27) 
- n 

- -5Jv"-o.* y ^7.¡k0*l/m2 •hr •d«» (4.28) 

For a wall sloping towards the horizon at an angle i|) , the heat-transfer 

coefficient o( can be detemined fron the formula 
t 

4 

(4.29) 

It was taken into account when deriving -q. (4.29) that ve^ should 

substitute the conponent parallel to the plane rather than the gravity of the film 

element into the equation of motion for a film element ' along an inclined 

plane /6/. 

Hie surface of a horizcmtal pipe can be considered to consist of small 

plane elements .. different angles ijr to the horizon. If we integrate with 

respect to “jf ■ from 0 to l8o*# the theoretical formula for the heat-transfer 

coefficient for a horizontal pipe takes the form 

a-0.721 X - H**» 
K (4.30) 
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ln vhich d ia tlie dloaetcr oT Uie pipes ln neters. 

iSquatlcns (4.23) and (4.J0) are applicable to the vapor of any liquid 

vetting surface. The values \ andare selected fron the aean teaperature 

sTf+t*' 
>m 9 ~J n 

of the fila h , vhile r is taken froa the condensation tenperature t . Ilusselt's 

derivations are approxinate. ••’hen ccnpardd vith experimenl^fTtUanspires tiat 

the theory reflects the general regularity of the theory correctly, but the actual 

heat^transfer coefficients are approximately 20 - 22p greeter than those derived 

by Eq. (4.28). Acadenécian iCapit» has suggested the ^ "^reason for this 

discrepancy between theory and practice. 

When a thin liquid film flows in an open channel, we have to take into 

accountt the surface tension^vhich was omitted by Ilusselt. In this case the 

calculations show that for a motion of a film, it is not laminar motion, but 

undular motion^ which is observed in practice^ that is the more stable. The 

thermal conductivity of the film during motion of this kind proves to be 21$ 

greater than during laminar flow. Hence for vertical pipes we must introduce 

the correction 

«^^TíTãT 
A (4.31) 

in which X is the heaWtransfer coefficient calculated from (1.28) and (4.29) 

and 0(-2 is the true heat-transfer coefficient for vertical pipes. 
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IhiB correction cannot be extended to cover horixontal pire#, Bince on 

account of the short length of tlie filn there i# no undular flow. 

.^Cc^e j 
At the bottm of tube#, the flow beca-ies turbulent a# a T 

result of the accumulation of a lar¿e anount of condensate, and the thernal 

resistance of the film is sharply reduced. In this case, as veil as during 

dropvise condensation, the heat'transfer coefficient is greater than during filn- 

type condensalion an! inlulrr flow of the nascent coniensite file A/» 

The problem of heat exchange during condensation of a vapor can also be 

solved on the basis of the similarity theory. By using the differential equations 

describing the notion of an element of liquid film, and the processes of the 

propagation of heat tiirough it, plus the equation for the heat balance during the 

condensation of the vapoi, Kutateladze /4/ has found the following similarity 

group for this case 

and 
« - if/3 ,. r 
N T! Pr“T: 0l= j A K=7(r-M 

in which c is the thermal capacity of the liquid and, 

1 Is the characteristic dimension on the condensation surface. 

- 185 - 



for pipes tJüs Is the length h and for hotiiontal pipes It Is the 

liane ter D. 

According to the second theoren of sinilarlty^ the following 

general functional relationship between tlxee dir.ensionless groups 

Na-/(Os, Pr. K). (lfj2) 

Ciis dependence is also confirued by Eqs. (4.28) and (4.30), which can 

be represented In the following generalized foro 

Nu-C(Ga.PfKr*5. (4.33) 

Fig. 58 shows the results of experinents on heat transfer of * 

vapor from different liquidsten norizoniàl and vertical pipes. The experimental 

points for horizontal pipes lie along a straight line, for which C «» 0.72 and 

n c O.25, and thus satisfactorily confirm sq. (4.33). For vertical pipes E s. 

(4.28) and (4.31) are confirmed for a case (Ga «Pr • K) ¿10*^ and in this region 

(Gs'.pri^Möj^o.ösr 
C * I.I5 and n ** 0,25. For the region ’ A and n = 0.33# 

-PrXJm 
Fig. 58. Heat transfer of condensing steam; 

1) on vertical tube; 2) on horizontal tubes 
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««O'1 

Thu», the equations for the heat-transfer coefficient during the 

condensation of -vapor of vertical pipes acquire the following final fora 

Ntt-l.lSiOa Pr K)0« (Ga Pr K<10;5). 

Hu=0,068 (Ga Pr-K)’1* (Ga Pr K > I0'5). 
('.35) 

Effect, of Afferent Factors on !ieat -ransfer IXirinc Condensation 

of Vapor 

Effect of rate and direction of 'roor flow. Equations (4.2C), (^.30) 

and (4,31) are valid for rate of notion of the vapor of up to 10 n/sec. At high 

degrees of velocity there is mrked friction between the vapor and the filn. 

If the motion of the vapor . coincides with the flow of the film, the rate of 

flow of the latter is increased, its thickness is decreased and the heat-trasfer 

coefficient rises. 

When the vapor moves in the reverse direction, the film flow la 

decelerated, the thickness increases and decreases. At hiyi vapor velocities 

the friction may exceed gravity,/the film begins to be carried upwards by the 

vapor and is /from the surface. HereX. increases as the vapor velocity is 

increased. At low vapor pressures (C.l atm abs), the effect of the vapor 

velocity on oC is small (ritfit up to U «= 75 m/sec), but as the pressure is 

increased, even at 1 aim abs, the effect is greatly stepped up (see Fig. 59). 
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There Is no explanation in literature for this experinental fact. 

Effect of state of surface. An increase in the routines« of the surface 

leads to increased friction of the fila. Eence the thickness increases, and the 

reduction in the heat-transfer coefficient nay be as nuch as or acre. 

FiC. 59. Variation in heat transfer coefficient 

as function of velocity and direction of 

vapor at different pressures 

during condensation 

motion of water 

Fig. 60. Relative variation in heat-transfer coefficient during 

condensation as function of air content in vapor 

The thermal resistance of the oxide film also reduces ot to a great 

extent. 
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Eg*i.ect of .heating the vsnor. In the ceee of condensation of a 

superheated vapor * it is essential to take the superheat. q m £ & alA¿ 

Ymr+Çr 
Into accunt, and for the heat of vaporization r ve have to substitute * into 

the theoretical forculae. Instead of the temperature difference ve stiistitqte 

^ ^ ^ ) i^to the formulae as before. In the case of superheated vapor the 

heat-transfer coefficient is only increased to a very slight degree (by 2 - 5^), 

Effect of content of uncondensed rases (for example, air) in vanor. 

If there are uncondensed gases in the vapor, the heat transfer is greatly reduced 

during condensation. Ihis is due to the fact that the noncondensing gas flowing 

towards the surface is cooled together with the vapor and stays near the surface 

in the fora of a concentrated layer of gas molecules/which hampers access to the 

film surface by the vapor. 

The diffusion of vapor through this layer of gas molecules contributes 

a great degree of extra thermal resistance. Even a small content of air in water 

vapor appreciably reduces the heat-transfer coefficient. For example, Vf, air 

contained in vapor reduces the coefficient by 6(# (see Fig. 60 /(,/). 

In order to remove the air from the vapor, industrial condensers contain 

special air separators or air pumps. 
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Effect of dcslt7> of heat exchanrrr. A alnel* tube is noet advantageously 

flaced In a horizontal position. It follows fron Eqs. (fc.jO) and (4^) thaï 

iSru/ï- iw -'rert 

For a pipe d “ 0.02 n and 1^1 n’ vA;u7- 

ob>o o o 
o oo 
o o<J>o 

c>0 oo 
odo 
090 

Fig. 6l. Condensation of vapor in banks with different tube 

arrangements, a) corridor arrangement; b) staggered 

arrangement; c) arrangement for most favorable dripping 

of condensate 

This means that given equal condensation conditions, the heat-transfer 

coefficient for a horizontal pipe is 1.7 times greater than for a vertical one. 

But this is inly valid for one pipe or for the upper row of pipes in a bank. In 

banks vitn^ -1 /8/ the condensate drips from the top rows to the bottom 

ones (Fig. 6l), Hence in the bottem rows the film is considerably thicker while 

the heat'transfer coefficient is lower. Hie mean heat-transfer coefficient of for 

the whole bank of horizontal tibes is dtetermined by the i correction coefficient £ , 

which is selected from the experimental graph shown in Fig. 62, taking the layout 



of the pipes into account /8/ 

(fc.37) 

in vhich i« the hcet-transfer coefficient for one horiiontal pipe, determined 

by Eq. (4.30). 

Fig. 62. Correction coefficient for reduction in heat transfer of 

condensing vapor in different banks of horizontal pipes: 

1) corridor arrangement; 2) staggered arrangement; 

3) same arrangement as in c in Fig. 61 

Fig. 63. Arrangement of pipes in 

industrial condenso r Fig. 64. Arrangement of caps 

on vertical pipes for removing 

condensate 



In lATce conlenaers special Blopin£ baffles (see Fig. 65) are usually 

Inserted to remove the condensate at an intermediate stage /6/, 

For vertical pipes the heat-transfer coefficient in a dovnvard direction 

is reduced through thickening of the film. In this case the mean coefficient can 

* 
be si increased by installing caps to remove the condensate at different levels 

up the pipe (Fig. 6h). 

If placed '• 10 pipe of height H 13 3 m, these caps double 

or treble the nean <K . 

Buis, the material which has been considered suggests that then vaoor 

condenses the heat transfer is rather hi{ji. But we should pay particular attention 

to precautionary measures to prevent it being reduced by the presence of air, * 

wrong (removal of the condensate, deposits of oil on the surface, or other 

contaminations. It is precisely these extraneous factors which,may explain the 

unsatisfactory operation of a condenser. 
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CHAPTER V. 

RADIAI?? HEAT EXCHAKGE 

Sçç. 23. General Concepts and definitions. 

ï When a body is heated, soae of the theraal energy is turned into 

radiant energy and prenantes into the surrounding space in the form of electro¬ 

magnetic vaves. Among these are the veil-known X-ray, ultra-violet, light (visible) 

rays and electron*pietic vaves. The radiated vaves spread through a vacuum at 

the speed of litfit c = 300,000 km/sec and are distinguished, first and foremost, 

by their frequency or wavelength, X . 

At moderate temperatures (up to 1500*) the bulk of the radiation energy 

cons lits of rays with wavelength A- 0.7 to 50 microns. Ihis region of the 

spectrum includes Infra-red and, partially, light rays. At 6000*, about half 

the radiant energy consists of visible and ultra-violet rays ( X = 0.3 - 0.6 

microns ). 

Different bodies possess" ^powers of radiating energyrtlï^ 

quantity and in the type of spectmj at the sane temperature. Radiation is 

inherent in all bodies with a temperature hitfier than absolute sero, and each 

body radiates energy continuously. When it strikes other bodies, the energy 

193 - 



i* partially absorbed and partially reflected, and partially posses throutfi the 

body. The absorbed enercy is turned into heat, vhile the reflected and transnit ted 

parts strike other bodies, and are also partially absorbed. As a result of 

absorption and reflection, the enercy radiated by the body is fully 

distributed betveen the surroundins bodies. 

Ihus all bodies have the power to absorb radiant enercy. If the 

temperature of bodies participating in mutual irradiation is different, 

radiant heat exchance occurs between then. The amount of heat received or 

given off by each body is equal to the difference in the amounts of absorbed and 

radiated energy. But if the bodies are at the same temperature, despite the fact 

that they are all continuously radiating and absorbing energy, they are in a 

state of thermal equilibriun, since the amount of energy received by them is 

equal to that given off. R diant energy is measured in kilocalories. The amount 

of energy radiated from 1 m of surface per 1 hour is termed the eraissivitf of 

a body or the surface hemispherical density of radiation, and is designated E 

E*=-y kcal/m2 * hr 

Of the entire amount of irradiant energy incident on a body Q 0, part 

of i* Qa is absorbed, part Q ^ is reflected, and part^Q passes through (Fig. 65). 
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Hence 

or 

Qa+Qe+Qo-Q» 

¢4 . Q* , i 

Q. Q* <fc 

Introduclnc the new quantities, we G*t 

-t+Ä+o-i. {5;2) 

Here A is the absorptivity of the body, 

ï 

R is the reflectivity of the body, 

D is the transmissivity. 

Bie values, A, R and D are dimensionless and may vary fron 0 to 1. 

Fig. 65« Distribution of radiant energy 

IF A_" ij then H 10 0« This means that all the radiant energy* 

incident on the body is absorbed by it. Such bodies are said to be absolutely black. 
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F 

I* R ■» 1, than 0, i.e., all the energy Incident en the body 

i® reflected by it. If the reflection i® diretted and obeys the lav® of gecoetric 

optic®, the bodies are «aid to be specular; but if the feflection i® diffiae they 

are said to be absolutely vhite. 

if , 

If^ «* 1 andjA 0, i.e.,^all the energy incident passe® tJirougli the 

body, the bodies are said to be absolutely transparent. 

In nature ve do not find any absolutely blech, absolutely vhite x xes 

or absolutely tranreren; enes. _A, Rjma 3_fer ectml bodies depend cn tlieix 

nature, t muera turc and tie unvelen-th of the r edle tien. Host solid bodl es and 

are muids ere opn,ue Tor ,metical purposes; for then D«-,. certain bodies 

t 
only transparent rays of definite vavelengths, and are opaque to others, 

for example, quartz is' ifoque to heat rays (\*,), but Is transirent to 

ll#t and ultra-violet rays. Hoch soit, on the contrary, i. transparent to heat 

raya and opojie to ultra-violet rays. I’lndov elnss Is only transparent to lltjit 

ray®, and practically opaque to heat and ultra-violet rays. 

If the body la opaque,*.+R - 1. Hence the better the body reflect., 

the lea. mercy It abeorbs. a,t Is vhy object, are painted ,1th light color. 

to reduce the effect of heating by the sun's rays. light colors only help to 
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rcii.cct visible tu ye, vîiile tiie stete or the surfece hes e jreeter effect on the 

reflection end tbsorption of heat revs. 

Snooth, polished surfaces, irrespective of color, reflect rwny tines 

better than rou^: ones. Balles vlth en uneven caitia¿ of black paint nay obsorb 

up to 90 - 90? of the energy. 

Tne theory of theme 1 radiation, as veil as in the experinental study 

of enissivlty and absorptivity, ftlie concept of a blacl: body, a node! of vhich can 

be constructed artificially, nf is of very great Importance. Hie properties of 

an absolutely black body ere possessed, for example, by a small opening in the 

vail of a hOn.low body (Fig. 66), 

Fig. 66. Hollow body and behavior of ray Inside it 

Planck's lav 

In order to evaluate the distribution of radiant energy over different 

vavelengths, ve utilize the concept of spectral radiation intensity J (or 

abr^evated to radiation intensity) 
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■ 

(5.5) iE 

Hence, the eolosivity E, vhich representa the total radiant enercy 

throu¿ji 1 & of surface, is equal to 

Em f Arf). 
1=4 

(5.M 

Planck established theoretically the followInc dependence between the 

spectral Intensity of radiation of an absolutely black bodyand the wavclencth 

and tmperature (Planck’s law) 

f.\-i /—3 , u_ 
(5.5) 

kcal/m * hr 

>-l 

in idilch is the radiation wavelencth in n; 

T Is the absolute tenperature in *K; 

c( *= 3.21 • 10 kcal« m fliour; 

c = 1.44 • 10 * n • deg; 
- i- 

e Is the natural locarithra base. 

Planck's equation is easily confimed by experiment. His law is shown 

graphically in Fig. 67. 

Fig. 67. Energy distribution of black radiation over spectrum 
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An analyaia oí thii equation allons that at all tea por a tures the 

radiation Intensity Is equal to zero at very low and very high wavelengths 

'toil* It exhibit« a naxlnun at an interaediate value A . 

Buis, an absolutely black body reflects waves of all lengths fron sero 

to Infinity at all tenperatures, except T » 0* abs. For all wavelengths the 

radiation Intensity Increases with temperature, 

Wien’s Displacement law 

lhe "displacenent" law follows fron Planck’s equation and establishes 

the following relationship between the wavelength corresponding to naximm 

radiation Intensity and the température 

1.7®const-2,9 mm» deg /c 

In order to obtain this relationship we need only equate the derivative 

iQuJfàj with zero. But it was derived by Wien from thermodynamic principles 

nine years before Planck developed his equation. 

Wien's law shots that as the temperature rises, the maximum intensity 

Is displaced towards the shorter waves. A qualitative illustration of this law 

is the fact that ' metal first beccaes red as the temperature rises, then 

acquires other colors (orange, yellow) corresponding to shorter wavelengths 

the region of the visible spectrum. 
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Stefan-Boltgriann Lnv 

ae eniBBivity of an absolutely black body E ^ Is equal to the total 

enerey radiated fron 1 m* of surface per hour and Is deternined by an equation 

similar to (5.4) 

kcal/m2 * hr 
¿ 

Substituting '/Tran Planck’s equation into this one, ve get 

} 'I-5 V. 

X *• 
After transform cion ve finally get 

kcal/m2 * hr (5.7) 

in which c^= 4. 6 kcal/n1. hour - deg - is the radiation factor of an 

absolutely black body. Thus the enisslvity of an absolute black body 13 

is proportional to the fourth power of the absolute teaperature. This, law 

was established eiperinentally by Stefan and theoretically substantiated by 

Boltzmann twenty years before Planck established his law. 

Radiation and Absorption of hon-Slack 3odi es 

Die radiation spectra, of actual bodies differ from the spectrm of 

an absolutely black, radiation intensity at different areas of the wavelengths 

are different, but at no point do they exceed the radiation intensity of an 
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abeolutely blac’f tody at the saze ^}. 

:bay o^iios xvn xx tn^raltt-nt (sîlect-ve) \-urlation spectrum. In 
A 

this case the radiation intensity is equal to zero or/er certain areas of the 

va ve length. 

A particular case of non-black radiation Is the so-called ''¿ray" 

radiation, vhicn means that tlie intensity of radiationTj^at all vavelengtiis 

comprises tiie same propo 

Wy 

i'tion/of radiation intensity of an absolutely b'ack 

A.,‘ (5.3) 

coefficient. Host . 

13ae value t is called the degree of blacimess or the black body 

--„ A bj / 

"♦ ’ solid bodiea^ vitii the exception of metals, can be 

t 
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r-he 'j'-Acijiefls fuctcr L la confli 1errd ¿jt; j 

determined on ii.e 

:¿íes vi til fu ir • a¡;pr oxiau *„í cr.. 

l&sie of ejc.^rLmental data. 

Sie 3tefûr-3oltmann 'ev can be applied to cray bodies. 2* eaiaaivity 

of a eray body E is 

• • / »tl1" _ 
£_f,A>._.f,«W(Q4=f(¡L), kcal/m2 - Kr (5.S) 

in ^iich c is the radiation factor kcal/nv* hour -dec^. 

Bie radiation factor c defends on the type of material, the teaperature 

and to a very tye&t extent on the state of the surface. For exanple, for polished 

copper c=- 0.20, Vhcreas for rolled copper it is c - J.lC. 

Kirchhoff*3 Lav 

ïCirchlioff's ]nv relates eairslvity and absorptivity of a body in a 

state of equilibriun. let us consider tvo fraile! surfaces placed so near to 

one another, compared with their dimensions, that the rays énitted by each of 

then inevitably fall on the opposite surface (Fir;. 69). Let us consider that 

surface I is gray, that II is absolutely black, and that both surfaces are at 

the sane temperature 7, ~ 

Hie system is in a state of thermal equilibrium, and the amount of 

energy emitted by each surface is inevitably equal to the amount absorbed. 
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7Í£. CO, Derivation of KirchhofPs law 

The cray vtll enil.6 S , aut only absorbs pert of the enercy Inc id 

or. it ¿ron the'0lack vail in sccordance with its absorptivity A E . Hence, 

= A E or E./'i *= E . But since sur face I iir.s been taken arbitrarily, the 
- i { -I 1 — J 

(5.10) 

1 elationsuip derived is valid ¿or any bodies 

fL.iU, . ■— *3 • • • 

Thus, the ratio of the cnissivity and the absorptivity at theraal 

equilibriin is the sane for ell bodies, is equal to the ecissivity of an 

absolutely black body at the saiae temperature, and is only a function of 

temperature. Ihis is#' * Klrchhoff's’lav. 

The lav is valid as veil for rays of any vevelencth, i.e., for 

monochraaatic radiation. In this case 

£-4.-/(1,0; (5.11) 



/¡fence the ratio of tae nonochrccatic intensity of radiation at the given 

vavelcngth to tie absorptivity at the sate vavelength for all bodies is the 

saae^and a function of the vuvelength and temperature. In particular, 

A°r iP’ay bodies ^ ^ ar*^ -s ^ie 80£IC &t all wavelengths, since 

A 

It follows fron Kirchhoffilav that the more intensively the baly 

emits rays of a given wavelength, the core strongly it absorbs them. If the 

4 
body does not absorb energy a particular wavelength (/. = 0), it does not 

r'-N M- 
emit • either (l^ “•O), 

Absorption of Energy by transirent media 

Let us assume va heve a certain medium which is impinged upon by a 

ê 

beam of rays with monochronatic intensity (Fig. 70). As they pass throutfi 

the mediin, the intensity is reduced. In the elementary layer dS the. (intensity 

dj.is equal to 

dh- 
(5.12) 

in which fa is the coefficient of absorption of radiadnt energy by the material 
V 

. at the given wavelength X , ' ' is a function of the physical 

properties of the medium and the temperature. 
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I 
i i 
i 
% 

70« Variation in intensity of radiant energy 

when passing through body 

Separating the variables and integrating 

layer S, ve get 
A 

ln4-*= — ßi’S; y-*3*”1*1. 
A A I 

the vhole 

Subtracting the right-hand and left-hand sides of the equality from 

unity, ve get 

/,-4 
4 (5.13) 

or 

A=!-e“M. (5#14) 
<N 

ln »hlch A v lB the absorptivity of the medium for ray. of vavelength X . 

It is clear fmi this ejimtion that even at a lou coefficient of 

abeorption thou* vith a , the absorption may be 
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considerable. IÍ* ßj^i* very t as in nost solid bodies, absorption occurs in 

e very thin surface layer. In this case ve can tentatively consider that the 

absorption occurs on the surface. 

Losbert's Lov 

lhe Ctefan-BoltztAnn lav deternines the total anoint of energy emitted 

by a body in all directions. She variation in mission for different directions 

is detemined by lasibert's lov. 

Let us consider radiatiai into space vith an elenentary area dr on the 

surface of a body (Fig. 71). The total anount of energy mitted in all directions 

t, 
vithin tiie hemisphere from la of surface per unit tine is equal to the 

emissivity E ^cal/^i • hour. Hie amount of energy emitted per unit time 

ffcm the elenentary area dF on the surface of a body in a bean by the 

elenentary solid angle d£L and directed at an angle ip to the normal to the suiface 

is equal to dQ kcal^our 
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Let us Introduce the tvo concepts: 

E ^ is tlxe anount of energy emitted in the direction unit oT solid 

angle throu^i In of area on the surface of a body per unit tine, 

£wmm——kcal/m2 * hr * steradian 
' SO (5.15) 

Jy is the anount of energy enitted in the direction (Ç per unit 

angle per unit tine througi 1 mV area noraal to the given direction. 

solid 

J9*>—-^-7-- kcal/m2 * hr * steradian (5.It) 

rs 

lhe value is terraed the • intensity of radiation in the given direction 

(as distinct fron the nonochronatic-istensity of radiation 3 \ ). It is sinibr 
r> 

to the concept of brigitness in optics. Hie valuenay be different for 

different directions. But if is constant in all directions, this radiation 

is termed diffuse. 

Bie relationship betveen and is clear from the definitions 

£,«7, cos?. 

This is indeed Lambertflav. In ¡articular, for diffuse 

radiation (T<f ■» const) tlie amount of energy emitted from 1 mVof surface per unit 

solid angle per tnit time Is proportional to the cosine of the angle between 

the direction of radiation and the normal to the surface. 
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F 

J<f can be expressed in terns of the eaissivity £ by takinc the integral 

vithin tlte henisphere 

Á-tí 

■ W AeosfrfS. 

lace S (see Kc. 72), 

(5.17) 

fí.Súl^jJL=d,sin,j} 

and 

«S 

Fig. 72. Determining spatial angle in 

spherical coordinates 

Thus, for diffuse radiation ^ , t.e., the enissivity E is 

greater nunerically than the intensity of radiation in any direction îq> by a 

factor of J*. . 
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Let üb recall that £ and T<p have different dinenaionaiity. A^ter 

bubttitutlons, ve finally get 

£ con MaA'n'iac cmepad. (5#i9j 
9 • \ioo/ 

Experience Bhows that for most accual bodlca the Intensity of radiation X*. 
— 1 

‘angles /0 to 60*. only varies very sllgitly over a range • 

SxaoPle8 of the variation fokr different enter la Is are shown in 

Fig. 73. Here J^s is the intensity of radiation of an absolutely blacl: body in 

the given direction. 

cr 4« 4« 4S (0 

% 
Fig. 73. ior rough and smooth 

bodies. 1 - wood; 2 - corundum; 3 - oxidized 

copper; 4 - bismuth; 5 - aluminum-bronze; 

6 - brass 

1. 2, 3 - rough 

4, 5, 6 - polished 
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So far we have been evaliatine the radiation source fron the anount of 

energy emitted fron 1 b* of area of ita surface, ¿nother cUracteristtt of the 

V 

source Is the asomt of energy per l n of surface Irradiated by it. This is 

the so-called irradiation power of the source e similar to the concept of 

. / 

i 11minanee in optical engineering. 

In the case of radiation frem a point source uniform in all directions 

Q kcalour for a sphere of radius r ._ ¢1 
~ 1 ' • 4fr* * 

If the irradiated area dF is set u at an angle to the surface of the 

sphere, the amount of energy faling on it from the point source A (7ig. 72) is 

equal! to 

(5.20) 

Ihe law of inverse proportion dft l/r' becomes less 

applicable as the dimension of the source increases^compared with r. At the 

limit the irradiation power does not depend cn distance for an infinitely large 

source. 

(For example, in radiation pyrometers the readings are not a function 

of distance as long as the surface covers the entire field of vision of the pyrometer). 
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Siailar arcvments can be put forvard for the tranaieat« of the energy E ^ 

ecitted by the ieconi eurface. To find the energy vhich is received by 

the second eurface through mutual irradiation with the first, ve calculate the 

total amount of energy absorbed by each of the surfaces. 
« 

• ühe sécond surface receives throuji radirtionhy by the first 

• • P"(î"~4)(l—/li) 
nils series represents a gecnetric progression with the denõõíiõãtÒr iT 

and can easily be 
WwluJL jCf 

ll-V JL- = . (5.21) 
1-/ l-(l-«(l-.ll) 

Similarly the amount of energy received by the first vail throu^i 

radiation from the second is equal to 

or 
^,-5^,+5,(1-^)(1-4 At 

• • •+5,(1—A)" ‘0-4 A 
£*¿1 _ 

(5.22) 

As a result of mutual irradiation, the second surface receives 

M¡Áj __ 
1-(1-^,)(1-^ * 

• — — 

„ g,+-^i kcal/m* * hr 
¿»+4»—¿Mj 

(5.23) 

Svfcstituting in accordance with the Kirchhoff and Stefan-Boltzmann lavs 
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and 

and after the substitutions vc ^et 

in vhich 

7,1 _ J, VIl\*-/LX1 -a'+A:^:-^IW WJ* 
(5.20 

I •*3|. 

i+A-1 

is the reduced absorptivity Of the systen of bodies or Lhe reduced decree of 

blacrjiess of tiie systen Oa'-^J- 
rs 

Having replaced A by the equivalent values for gray bodies (A 

ve get 
A--1- « 4=-. 

' ti *t 

A‘Ci~±,_L_±~C'' 
«I <J ~ 

(5.25) 

Here c^ is the reduced radiation factor of the system of bodies -7T 

betveen vhich there is radiant heat exchange. 

Die final theoretical equation for heat exchange takes the form 
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í?i) 
ReAiant nc^t cxc!.t-nre betveen tvo aurfacgg Ir. tto^cloggd grncc 

The problem of heat excliari£e between two butfacce in an eac'oeed s.rccc 

is r.iore car ilex than plane parallel sur-acea, but can be solved in e air. liar feshlm. 

In this cace on Ip part of tl:c erissior. bp one of ‘he surfaces strikes t'.'.e other, 

vhile the bu'k of It bp end aja in 8irih.es the first rurfcce. 

The final t!ie ore tical equation takes the for..: 

o^UmMèïjkcaI/hr (5.27) 

in which c _ is the reduced radiation factor of the sister 
-7 

1 

r:\*t ««/ 

and ? is the area of the sraller surface. 
-I 

(5.2°) 

a) 
Fig. 75» simple calculation systems for radiant heat exchange 

in enclosed spaces 

The equation is applicable to bodies of any shape, provided the sirAller 

one is convex. In particular, it is applicable to calulation of heat exchange 

between long cylinders, and also when the convex bed;, tr.d il.t concave holy, 2, 
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foxm an enclosed space (Fig. 75). 

Radiant heat exchange bctveen tvo rjrfaces placed arbitrarily 

in space 

îhe solutions given above for the problem or radiant heat exchange Tor 

' very sinple cases cannot be extended to cover the more co.-r)lex cases which are 

usually encountered in practice. 

It Is only possible to pr -duce epproxlnr te solutions In nost of the 

engineering problem. Let us consider one such eolutlon In greater detail. To' 

there be two elements of a surlace <U ^ and d? , arranged erbltrarlly In 

space (Fig. 7u). The temperature, enlssivity and absorptivity of tiie surfaces 

are 131 own. end equal, respective to 

b***- to. 
Let us ‘ ^ 

r Is tiie distance between the elements flu end d7 , 

•f, h j 
and (Srethe angles between non.-nls and e line joining «reír centers 

(9, and C^aeybe situated ini different planes), 
A 

dJI ( 1b an elementary spatial angle. 

According to Lambert's law, the element dP radiates in the direction of 
— I 

element dF 

t 
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ir. vhich 

4Qlm^i-dFidQitosfi kcalAr 

**» t * 

i.aen, 

rfQ.-l-f//',píteos,,. (;.30) 

Flg. 76. Derivation of equations for 

radiant heat exchange between 

surfaces Df^ and Dfg 

Fig. 77. Graphic determination 

of angular coefficient 

(ô 
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O ’ thiß nr.O’jtr.t oT ener¿¿' Uic e lea ent dr absorbs 

Since is ]ari;e (G.8 - 0.9) for sosi 

take the first absorption into account, if 

(5J1) 
- % • 

U. I 
bodie^ve need only 

rha ar.ount of ener^ absorbed by the element d? ^ throujji radiation 

fron dF^ is calculated in similar fashion 

rfQ»-tEidF*—*—1 cos (5.92) 

3he anount of ener^,- transmitted throu¿h nojtual irradiation by the Tirai 

element to the second one is found the difference 
</Qi_2—dQ:_, 

=7 (V» - Af:) kcal/hr (5.35) 

ReptaclEe ,nd 

-.,.. ‘5-5k) 

For surfaces of finite dimensions, the amount of heat transferred 

by radiation is determined by the integration of d'-l fl vith respect to F ( and F . 

We get 

-(h)1K. j 
Abreviated quantities are 

(5.35) 

usually found in literature 

ad the last equation is written as follows 

Qn^'Sf,[(1¾) ~(-^) ] ?» koalAr (5.36) 

- 217 - 



'-
'"

•K
 

¢,=4,9 KKaA'jfi-HOC'tpao*: 

lry-1,13»^/^ 1s tiie redxed decree of blackness of the s^lea; 

is the conditional theoretical surface of heat exchange; 

is the nean angular coefficient or irrediation factor, 

2g> The Dean anclar coefficient is a purely c^oetr 1c paraneter 

rff*=y»vf- (5-57> 

ê 

The numberical \-alue of shows tlie portion of enercy emitted b/ the 

element dF ^ for the whole semi-space which strikes kz tlie surface F ^ , The 

value is anj averaged value of /for the tóiole of the surface of F , In 
I “1. 

/ 

certain cases <jp can be deteminled graphically (see Figs, 7C and 77), 

Let us draw a tangent plane through the element dF and let us plot 
— I 

a hemisphere with a radius of unity from the center A, The elementary area of the 

cross section of the solid angle djl, xrx of tlie hemisphere r *= 1 is equal to 

äFf—cos^. 

The projection dF' onto the * /tangent plane is 
) 

dF]-dFtcos ?1 - dF,. 

The area of the circle at the base (r = l) is equal to X" , 

« nr* 
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✓ 
2ia1; Vis how tile elevenUry angular coefficient d<p vas deterained. 

/ 
In order to find the arelar coefficient Cf for ti.e entire surface ve 

have to take the integral 

(5JÔ) 

Graphically this can be reduced to deterninine by tire above aeti.od tiie 

projection F", after vhich ve take ita ratio to the area of the circle r = 1 
•1 

(see Fic. 77) 

, '* 
f “T (5.39) 

Slailar plottincs can te nade for each elenent into vhich the surface 

ib à 
? divides up. Inteprati vith respect to F ^ is replaced by summation. 

Graphically this can be reduced to findinc the volume of a body, the base of vhich 

fc. « 
has area F ^ , and the heiQht of vhich is . Finally, by dividinc this 

v>lume by the theoretical surface F , ve cet the nean ancular coefficient Of 

V 
fll***^. 

rf 

It is very difficult to determine the angular coefficient by this method 

in the case of complex systems. Since the angular coefficients are equal for 

geometrically similar systems, their values maybe determined on the basis 

of experiments vith models. 

-219- 



The angular coefficiente have been calculated for certain case* of 

radiant heat exchange encountered in practice and ere given in the fern of graphs, 

/2/, The arrangement of the surfaces for thèse cases is shovn in 'ig. ?8. 

Fig. 73. Systems of radiant heat exchange 

Solar radiation 

In a number of problems of engineering involving heat exchange t solar 

radiation plays a substantial part. The amount of energy emitted by tire sun 

per 1 mvof area perpendicular to its rays per hour an average distance between 

sun ani earth (beyond the limits of the atmosphere) Is constant and equal to S 

S* = lito kcal/mV« hour. S is knovn/as the,solar constant. 
-— -^- 

The density of the stream of direct solar radiation at the earth's surface 

S is less than S. and is a function of the degree of transparency of the atmosphere. 
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For ex&uple, at aid-day in lioccow aeaaoni 3 nmjca 

fraa V30 to 7^0 kcal/i1* hour. 

The density of the alreun of solar radiation 3' incident on r horizontal 

surface of the eartii is a fraction of the angular elevation of the sun above tiie 

horizon h and is equal to 
-6> 

5#*=i5$lnACí 

The theoretical equation for wie rediaùt heat exchange 
■UrO-. 

a~ÍÕdy 

the surrounding nedivua, taking into account .. •. radiation, takes the form 

(5.^0) 

in ^xlch 

Q is the amount of heat supplied or received by the body in kcal^iour; 

T is the temperature of the body in -, K 

T is the temperature of the surrounding space in *K, 

^ is the density of the stream of solar radiation in kcal/m1'* hour; 

* 

? ^ is the surface of a body radiating energy in n ; 

% 
is the surface of the body ilHaainated by the sun in m j 

A(^ls the absorptivity of the body vith respect to the sun's rays 

(given in Table /2/); 

ÇI is the degree of blackness of the surface of the body. 
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Not«. Ti* foraula has been derived fror, a General fomula for radiant heat exchange 

between two turfaces in an enclosed space (see 3*27) 

«4- 

•i M *i / 

p-en (5.M) 

— / p, 
tokinc into account the surface ratio »ft . 

Protection fron radiation 

In order to reduce radiation heat exciianse use is nade of shields. Let 

us consider two parallel surfaces between which there is a shield in the form 

of a thin plate made of the sane material (c ( “ ç w = c , ), 
r\ 

The temperature of the surfaces and the shield are equal, respectively, 

to Tj , and Tj (?ig. 79). 

If the shield were not there, the heat flux per 1 m of surface would 

be equal to 

il-,"c-[(w),-(^)1kcal/m2‘hr (5.te) 

n U r, 

Í 

Fig. 79. Positioning of screen 
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Vhea the screen is there, the following aaount is transaitted fror, 

the surface I to the shield 

and fror, the shield to trie surface II 

Under steady-state heat conditions, and 

from vhich 

but since 

therefore 

-(-¾)]. (5.43) 

a 
i,e., vhen there is one shield, the amount of heat transferred by radiation is 

halved. 

It can be seen that if there are tvo shields, the amount of heat 

is reduced by a factor of three, and if there are n shields, it is reduced by 

a factor of (n ♦ 1). 
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2ie efficiency of ti:e screen increases to a great extent vhen sede of 

ir » 
f 

a good heet»reflecting taterial, i.e., one vith a low i. . 

Irradiation and absorption of rages._ 

Gases also possess the power of irradiation and absorbing 

a a» *** 

radiant energy. 7ne power differs in different ^ses® In aon|to^ic and diatofic 

gases it is insignificant. For example, Nx, C ^and HLare for practical 

IUj 
purposes transparent to heat rays, Considerable enissivity, of great importance 

in practice, is possessed by ~ polyatomic gases, in particular, carbon 

dioBide (CO^) water vapor (HjO), sulphur anhiUride (SO^^), ammonia (t7Hr), and 
« ^ « « 

other substances. 

Ccniiared with solid bodies, the radiation and absorption of gpses 

exhibit tve^important features; 

1. As distinct from solid bodies which mainly have continuous, uninterrupted 

radiation spectra, the radiation of gases is selective in nature. Ihis means 

that ^ "jpses only radiate energy over a certain range of wavelengths^ 

so-called bands. 

According to Kirchhoff’s law which we considered earlier, gases can 

only emit rays with the wavelengths which they can absorb Çk* i&Lj) . Hence 

the absorption of gases is also selective. 
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2. Ac distinct Tros solid, o:<ique bodies, in which absorption a»l 

radiation occur in the thin surface Ifii’er, ^ses radiate and absorb throughout 

their voline. 

The ener£,' of ‘neat rajs passsh¿ throuch a layer of gas is reduced. 

Here the degree of absorption depends on the mnber of nolecules éneo inte red on 

the way. The latter is proportional to the wavelengths of the « ray 1 and to tl« 

partial gas pressure p. Hence the absorptivity of a gas for any wavelength A 

is a function of the product nl. Furthermore, depends on the »temperature 

of the gas T , Hence, 

. .“Vvv ^ 

calculations gas radiation are based on the Stefan-3o’.tzriuna 

law. Although in actual fact the radiation of gases does not always obey the 

law of proportionality T exactly (for example for CO^ the radiation is proportional 

l.r 
to T ‘ , and for water vapor T ), 

1 ty* Ut*£\ «wÆrC 
the figure(ls~ 

j 

* * . * fully acceptable on account of its convenience. 

The radiation energy of the gas per 1 q V of surface per hour is 

“ (5.15) 

in which ^^is the degree of blackness of the gas, determined experimentally 

(taken frcci tabular data). 
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R ? 

üliiß foruula gives 'js tile energy1 of a gasfíato a cavity vhich 

can be re^rded as an absolutely black space T ^ 3*i*. In actual fact^ the 

•tv 
gas i is usually protected by a solid surface,JshelljVith a teaperature ? above 

absolute zero and a degree of blackness 
kf 

The equation for calculating radiant heat exchange between the ¿ps and 

the shell takes the fore 

keal/m2 • hr (5.h ;) 

in vhich €^, is tlie dffective degree* of blackness of the shell; 

£ A 
is the degree of blackness cf the gas at a ¿as teaperature f *K; 

A- is tae absorptivity of the gas at the shell temperature T.-, 
« 

Hie values C. »iarül A ^ are taken fron experimental dila /"if. 
Q 

2iis eq-oativîn is valid for non-luminous gases and jpseous combustion 

products. It is usually enough in the calculation to yihe radiation|^Oxand I¡aC, 

vhile the remaining components in the combustion products can be disregarded since 

the part played by them in the radiation is very small. 

Radiation from flames • 

When there is complete combustion of g a gis or benzene fuel, the fiâmes 

ÛüLe. rCJfU- ¿¿-ó4» _J 

are almost colorless. ^ íe radiation from these flames is of a 
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selective kind and car. lie calculated by tLe equations derived fcr rrn-lit..i:.o\.s 

Radiation iruD luminous flarues is nainly deterained by tiie radiation from 

the decocx-oslticn products o." i.ylrocarlons, red-hot soot ¿articles, coal, ash 

contained in then, and depends >-n the type oí particle, quantity and ii*«.-. 

In actual character, radiation iron l’xoinous flanes is closer to radiation from 

solid bodies tlian fron ¿ases. 

•í" 
An apjoxinate calculation radiant-heat exchange between a luminous 

flame and the vail can be made by the equation 

k^r 

T. ~YJ¿, 
Here * ^ is the effective flane tentierature; 

i;A7) 

T l is the theoretical combustion temperature; 

T ^ is tiie tenperatui'e of tiie combustion products at the firebox outlet; 

Fy. is tiie radiation surface in a ; 

T is the temperature of the vail; 

tw- t V 
and y^arfe Lae degree of blackness of the walls end flame ttaken fron 

experimental data). 
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i . % » 

rZ^VTSTIY + fii** • r*~ ^,J. > + r..%J ^ -.i ’ K . j*\ . *-A'/.W»nG-^• ' 

Sec. FiTr.d&r.ent^^fi of C^^culatlcr. ni* Heut r'x.T'.an'ers 

n cxc.-.ariijer is a device intended to transfer neat fron one heet- 

tronsfer a^ent to anoti’.er. According to tne wxkinj principle, hxat exd.en^ers 

C<Vvt—fct 

divide np into surface end types. Surface heat exchangers are ei tio* continuous 

or periodic in action. 

In continuent ^heet cxciian^ee tix heat is transferred frora one a^ent 

to another turouj; a dividinij vail and the process of lieat transfer is stationary. 

Anonc «wh equipment condensers, steaa toilers, heatinc rystem radiators, 

gas turbine regenerators. 

In periodic heat exchangers, the heating surface is ^Tlternately''! 

kjik 
s flow of cold ana hot liquid. Ute vails of these exchangers receive 

1¿JL 

(accuaulate) heat they are in contact vith the hot liquid and 

give it out vhen in contact vith the cold liquid. An example of this type of 

exchanger are the regenerators in open-hearth and glass- furnaces. 

air heaters for blast furnaces and so on. 

In exchangers, the heat is exchanged by means of direct contact 

t 
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ünd nixln¿ *T.ot and cold liquids 

steaa vater Jed^r.d so on. 

'different tyr-es of '..eatera, 

Hie effectiveness of heat exchnncers and the tes;jerature distribution 

in the:.i are functions of the flow arrar.jenent of the vorhine liquids. "!.ere are 

Cc^'X, 
three sinple sys.ens - pcrailel f lov^counter^flov and cross^flov (ri¿;. So). 

I 
i ^ 

coflow counter- crossflow 
flow 

I I 

--, c ID 
D 
D 

complex systems * 

^ig. Oo. Types of motion of fluid In heat exchangers 

4^, 
In - ilow the hot and cold liquids move in x::erallel in the 

same direction. In countej^flov they move in parallel, but in the opposite 

direction. In cros&^flc* the liquids cross each other. Apart from these 

simple systems of motion, there may be more complex ones, combining the sinple 

systems. 
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When dea lenice nev exchaaeera, the ala oí the ca leu'.a ti on le to 

deteraine the heatinc e-jrface. But 11* Üie surface la known, the ain of the 

calculation le to eetablieh operating conditions for the equipment and 

]LJU 
to detemine the final tearpeiature of the working 

fcjL J 
In both cases the basic theoretical foraulae are/iieat-Ltnsfer 

equation (2.13) 

¢=^(/,-/,) kcalAr 

and the heat balance equation 

Q=(f-0=«J-.ï'.('i-» kMlAr (wD 

in which Q Is the amount of heat given off in kcal/nour; 

F& is the heating surface in m ; 

. V 

k Is the heat transfer coefficient in keal/m • houi^deg; 

u is the velocity of the liquid in m/foour; 

f is the cross-sectional area of he stream in 

^ is the specific gravity of the liquid in kg/n'; 

c£ is the thermal capacity at constant pressure in keal/kg. deg; 

t is the temperature of the liquid. 

Here and from now on the subscripts 1 and 2 relate 
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) , C) ^ 

to the hot Qnd. cold liquidsvhile the su^rscripts prlae^&nd 4oub'ie<’ri^e C ‘J 

t 

refer to the puriiueters of the liquid at the exchanger inlet and outlet. • 

l!ean teniperat’ire rp-odlent 

In the general case the teapernt’jes of the liquid inside the exchange 

do not reriain constant. Hence the heat-transfer equation is only applicable 

in differential fom to ti:e element of the surface d? 

dQ — kMtdF, 

uhile the total anount of heat ifissing tlirough tiiC vhole surface F is found as 

the integral 

Q=i ( klt,dF kcalAr 

In order to siuplify the calculation, we^introduce tl*e concept of 

the mean temperature gradient A t, and the last equation can be represented 

in the form 

Q=k\tF kcal/hr 

For certain simple systems of heat exchangers, the mean temperature 

gradient can be calculated analytically. 

Let us derive the equation fcr the mean temperature gradient for a 

very simple heat exchanger using low (Fig. 8l). The amount of hea 
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transferred throu^i the elcr-ent df" of the surface per hour is 

rfQ«“4(/j—/,) dF kcalAr 

Here the teaperature of the hot liquid is reduced by dt , and that 

of the cold liquid rises by dt ^ . Consequently, 

dQ*=— GjC,. dtl *= Of,, dt^ 

in ^iiich G , and G are the consumptions of hot dnd cold Uquid in kc/acurj 

vhile c. and c . are the thermal capacities. 
- K 

Hence 

d/ dQ 

and dtiw= . 

Subtracting the left and rirfit hand sides of the last equalities, ve get 

<<wo=-^+05-} 

äQ=k ((,-{,) df 
After sibstitution of A and separation of the variables, we get 

—)idF. 
I,-/, \0,«#i C:ep¡ J 

/»'N N The values and can be found from the thermal balance 

equations for the whole exchanger 

Q’>=Glept(tl <,), 
O’ 
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Fie. Ql» Distribution of temperature In coflowing 

heat exchanger 

Then 

_f 
/,-/, I 

Integration then elves us 

'jZh+lLJlhdF. 

(1.(/,-/,)1 'H----W,-Q+v\-rt)\iF. 

Finally, 

g _ (^i — ^ kcalAr 
/,-/, (6.2) 

Thus, for parallel flovs the nean temperature gradient At is eqaal to 

(6.3) 
A/. 

/;-4 ** 
/;-/; 

We can derive the equation for Û t for counterflov in a similar vay (Fig, 82). 

V't-ÿ-OÏ-'i) 
U--• (6.U) 

taiini* 
7^5 

If ve designate the greatest temperature difference betveen the hot 

and cold liquids as f and the least differente as then ve get one general 

teftar- 
formula for and counterflov 
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and 

i/. 
,..“j. 

U. 

tC.5) 

(5.0 

ïhe equations are derived on tLe assumnlion thet the cons'xnption of 

liquids and the heat-transfer coefficient throughout, the length of the heat 

exchanger renain unchanged. Since, in act'jal fact, this is only roughly the case, 

Fig, 82, Distribution of temperature in counterflowing 

heat exchanger 

A t is also approximate. 

For small variations in temperature of the hot and cold liquids, 

0.5 <£■-<( 
^ i im 

vhen , the mean temperature gradient AU can he calculated vithout too 
A ^ 

much error (less than 40 from the[mean¡ arithmetic! 

(5,7) 
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For croeoflow and flow the ca'cu .ation of 

S' 

if A t la very cartera, ..e 

Solutions are given for the nost frequently encountered cases in tiic fom of 

graphs /2/, 

By inoving At, tie heat flax ^ and ¡he nean heat-transfer coefficient k 

Selection of hent-trar.sfer coefficient 

V.’hen calculs ting ¿^^t exchangers the selection of the heat-transfer 

coefficient k involves gi-eat difficulty. Uiis is due to the variation in 

temperature of the working liquids and the complexity of the shape of the 

surface. In practice in nost cases in which the heat-transfer coefficient 

at the beginning (k1) and the end (k") of the heating surface are faiily 
r* rs 

close together, we can take the arithmetic mean as the theoretical value 

But if k1 anti k" are very far apart, tire heating surface has to 

be broken up into areas within which the differente between k* and k" is 

snail, and the heat transfer is calculated separately for each area. 

We operate in the same way in cases in which the conditions of 
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■fc 
flow pea the hefttinc s'jfuce by t;-e working -iT-iid vary sharply. By 

dividing ti’.e surface into ere-s, In each of which the flow conditiv-ws can be 

considered identical, ve avero¿e k^^usini; the followinc equation 

a — + • ‘ 4*ifi ^ 

+ + • • • + 
(6.9) 

Calculating find ter.;<.-rature of working ' iqu’.d 

If ti:e heat exchanger is çiven, the a Là of the calculatiai is to 

detemlne tlie in final teurercture of the liquid. The follcwinc art known in 

the problem: heat in g surface F, heat-transfer coefficient k, consumptions C ^ and 

thermal caoacity c . and c. , and the initial temperatures t’ and f . Hie 
“Pi *+v * * " L 

unknowns are the final temperatures t" and t". and the amount of heat transferred 
'I * L 

In approximate calculations we can adopt the follcwinG methods, 

Q- ÆK “ ' J 
Fr4m the heat balance equation /» we cet tiie relationship between the final 

temneratures of tie hot and cold liquids and the amount of heat (¿ (unknown for 

the moment): 

-_P_ ■ = + 
* » G. ’ * * r. /• 1 ‘ Ft (6.10) 

If we take it that the temperatures of the werkinc liquids vary 

within small limits, then 

q=*f(4±íL<±ü) 
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J 
Subatit^tir^ for t" anl t' tiic expreflaicna tüîer; fron (ó.lC), 

I -1. 

ve find after single transfornritions 

t • * i 
0«=_— !— kcal/hr 

20/,. 20/,, 
(¢.11) 

me un.Ciown fine! temperatures t" and t" can now be fo-xul from F <t. (^.’0), 
» i * L T 

This systec of calcu’atlon Is very simple, but Is only applicable 

to raa^i calcu’ations vl»en t¡:e variation in temperature of tlie liquids is 

snail. In the general case, the final temperature Is a function of the 

notion of the vorkinc liquid. 

Literature cives nore exact solutions for sinpie system - CO' 
f^CvT 

and counter* flow. In viev of restricted nature of their use ve 

vill not consider Liu: (solutions . V.'e will only deal with the 

derivations implied by these solutions on tire basis of comparison of the two 

given heat-exchange systems. 

Comparison of effectiveness o!' heat exchonçe in 

co . and counter. il CM. 

Fig. S3 shows the theoretical dependence of the heat transfer efficienc 

for cd '"'flow with respect to counten”" ''flow at identica.l local values 

of the heat-tronsfer coc"ficient 1: for J.he whole surface. Here Q h* is tlie 
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rr.oxu o. :.eat transferre*! during co ilow, and 1 ^ is the «count of heat 

transferred during comter" ‘-flow, 

WS« is the dlnensicnlesB parameter characterizing the relations.;',. 

uv'jujfn 'ï.' xean tenpciucure gradient At and tl^ variation in temperature of 

the hot liquid (since - ———\ 

Of,jOfh i» the ratio of the hourly thermal capacities of the vorking 
V / 

liquids (or the so-called vater equivalents). 
r> 

It the relationship betveen the voriation in the temperatures 

/ \ 
of the vor hing liquids (since ■——vj. 

VA, 

Fig, 03. Comparison of ooflow and 

counterflow 

The graph shovs tlat cc and counter flow can be 

considered of equa" velue^provided tlie hourly thermal capacities (or vater equivalents) 
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f
of tie vorVr.- ''qjMs » re c onE M dirTe-e-t, to v'.t, et

»f/C,c,.
or If the :-irorjeter ^ Is E;nt*l.

IJ'.e riret conditions Is tentunoun’: to e '/>?rlotlon In tliC tcr.:7.eroture 

one or ‘-le lliuMs s'ljit con.^rdl vl 1: tl-nt of t;:e otlier. '2.e second coalition 

Is for a ctee In valci ti.e :::e:n .ea.cr-tu*e »;radieac Is coasidcrcoli ^eeter

tie v-riatlvn in tie vo.iinj liquid ■.c:..ier t-^os.

In ell oiisr cases in co . •-'low e s-xller quantit;- ol licet Is

I I !c
transrcrred tiicn in counter ' <'ow. Hence froa tie roint or view or -xat

en^^lneerinc, ve sio-jld always clve pre'erence to 90'jnter -Xlow, nrovlded

we ere not forced iy other consider at Ions (for exannle, the desiyi) to use

■flow.

C'

It should be kept in nlnd ?tere tliat In counter -flow nore

difficult teaierature conditions are created for the naterial of the heat 

excltftnger walls, since sone of tlie areas on tlie hot liquid inlet side cone 

Into contact with mxiaun temiierature ^Iquids on botii sides.

Ootimui. E»ke-up and deficiency of heat exchangers

(tu 4
Bie effectiveness of exchancefln heat-exchanee apparatus is a

function of a Icree nurijer of factors, Includlnc the rate of notion of the
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vorhin V»r,~ õ , the si.ape and corrodition oí' the Ijeatln^ sur faces. The sha:« 

of the surfaces Is often deterrtincd by the purpose for uhich ti:e apparatus is 

desicned, and the selection of the conpositioa and rate of notion are left to 

he desicner to a consIderable extent. 

Inprovenent o.n the heaVexchaii^e intensity by increasing the rate 

is accon;*nied an increase in n;/draulic resistance and out^jt required to 

a.-ercoLie -. Hence tiie conpositlon of tiie heating surface as well us 

ar vificiti. intens..fication of heat transfer n’ast be solved by caking 

allowance for the relationship betvedn the 'neat exchance intensity and tiu; 

theoretical power required to pump tlirouch the workinti liquid arxl creatinr: the 

required velocity. 

i . Thus, tiie calculation of heat exchanges is not restricted to 
\ 

deteraininc the heating surfaces and final temperatures of the working liquids, 

but also includes calculating the hydrau’ic resisfmces, selecting the optimum 

9'ze and conposition of the heating surfaces and determining the most 

advantage!aus rate of motion of the liquids. 7ne solution to this complex 

task must also take into account the initial expenditure on erecting the 

apparatus and operatinal costs, which is particularly important when designing 
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indus tri'il and other typet of s Latiorv'-ry heat exchanece. 

The basic requirement in 'neat exdinncers * ' is a 

hi^i deipree of effectivenese vith srüll dincnsions end hyirauiic resistances. 

The decree of perfection of a heat exchanger fron the point of viev of power 

encineerinc cen be evabunted by the follovinc equation 

Ÿ AR 

in which h Is the amount of heat traruferred in keal/nour; 

AR is tlie amount of heat equivalent to trie enercy spent on putnpinp 

tlie liquid tlirouch in keal/nour. 

The greater (j), the better the heat exchanger is. 

The basic character is tic ^showing the economic nature of the heat 

¿¿WC«. . 

exchange in any , . is the efficiency Y£ which describes the 

proportion of heat from the hot liquid used to heat up the cold liquid 

<?i 0? (ij — /j) 

»avail 
(6.12) 

Here Q is the amount of heat received by the cold liquid in keal/nour; 

^____ 
Q j.B the^amount of heat from the hot liquid 

G and G are the cons’oaptions of hot and cold liquid in kgAiour; 

i" and /' are the he*t contents of the cold liquid at the outlet and inlet 
/-1. /-). 

in kcal/kg; 
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i' is the heat content of the hot liquid at the inlet; 

i is the heat content oí* the hot liquid at the tenpemture or the 
“I 

surroundinc tiediun. 

In cases in vhich the B-jstan Includes several heat exchan£ers 1« aeries, 

there is no point in deteminin^ the efficiency for each of then in the seme 

vay^ince non-utilize<3. heat fron the hot liquid is partly ' in tl»e 

subsequent heat exchangers and cannot be retarded as lost. 

Ihe second characteristic shoving the economic nature of an exchanger 

is the so-called heat retention coefficient t , vhich takes into account the 

heat loss into tine surroundinc cediun and is the ratio of the anoint of heat 

received by the cold liquid Q and the amount . by the hot liquid 

Since 
Qj=Qi+Q.. 

in which 
: tt 

is the heat loss to 
t 

the surroundinJnedium, 

--9i—=—[—. 
<?• + <?• « i J?L 

+ Qi 

Ihe value C is a function of the design of the apparatus and the quality of 

the heat insulation. 
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As has been shown earlier# the tenperature Tie Id in a steady-state 

regies in ^¿lich lx the body is Ideated or cooled, the temperature field varies 

There is variation in the enthalpy of the body at 

the same time as the variation in the temperature field. 

The process of heating or cooling can be divided into three regimes. 

The first is characterized by gx gradual penetration of the temperature variation 

into the body from layer to layer, the rate of variation in the temperature 

being different at different points. Dyring the process the temperature field 

iss affected to a considerable extent by the initial state^which may be 

completely arbitrary. The first regime is termed a non-ordered process. 

Next comes an orderly regime, which means that at a certain moment 

the initial tenperature distribution in the body loses its value, and from 

'K 
the on tire process is governed solely by tire conditions on the boundary. 

« 

Here the temperature at all points is a function of the shape of the body, 

its physical parameters and tire heat-exchange conditions on the boundary. 

Kondrat’yev /5,V has termed this orderly process of heating or cooling a 
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reblar rebine, 
j+rjt y 

has formulated a corresponding theoo^" 

Purtliernore, he has put forvard a nuuber of nethòds solang practical 

pròbleris. As tine passes - theoretically after an infinitely long period has 

elapsed - the variation in temperature at different points on the body cones 

to an end, i.e., ve arrive at a third regine vith a constant temperature 

distribution, vhere —=0, which is the basic characteristic of the steady-state 

regime/ A case in which trie temperature of the body is identical throughout and 

equal to that of the surrounding medium is conventionally called the thermal 

equilibrium. 

To illustrate heat exchange in non-steady-state conditions, let us 

consider two different examples. 

Example 1. A body is placed in a medium at a higher temperature ti . 

lhe heating process begins at this point and passes through the three mentioned 

regimes: 

rvít<- 
1. The temperatures on the layers of the body increase. The 

variation in temp er Ature/gradually into the body. 

2. The non-steady-state regime covers the whole body. The temperatures 

vary at all points on the body. 
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3, lhe tenrerbture of the body 1b equalized and equal to ^ . 

non-steady-state re¿lr.c Is conplete. Tue body arrives at a state of thema’ 

equlllbrluc.. 

Graphs shoving the vtrlatlon in temperature on the boundary o:' the 

body t „ end at Its center t as a function of the duration of the nrocess are 
- W - 0 

tlven in ^l£. 81». 

Fig. 84. Nature of variation in 

temperature of body with time 

Fig. 85. Amount of heat imparted 

to body with time 

Iq non-steady-state heating conditions, the amount of heat accumulated 

by the fcody per unit time Ç kcalyfoour, is not constant. The area under the 

Wr 
curve (Fíç. 85) shovs the total amount of heat which lias been used to heat 

the body, i.e., to raide its heat content over the time "C . When the body 

cools, its heat content decreases, and the amount of heat releaded is transferred 

to the surrounding medium. 
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lócasele r. Let ub consider heat transfer throu^i di\"idin¿ 

vail in a non-steady-state refine. 

Hie non-steady-stäte ¡roccas is precede*! by a stationary re^ir* vhich 

ic described bv üic earlier-established dependence of the temperature fie 

for a flat dividing vtll (fij. So). 

r 
If i'.£ tempern ture of the hot mediun now , Junplfrcci t' to t" 

(Fit. vhiU- tl;e temperature of Uie cold wiediu;i 
n Lit 

Sfrcei t' to t 
/ -f ' /v 

the same ns before t, , 

tv. ^ 

the process becotass noneteady-stäte for o certain time, and /’.lie temperature 

curve ''continuesto Vury, be^inniiit at the initial stationary refine described 
I 

f -r -r -/ 
/4. »! •t-. /j 

by the curve ^ , rieht up to the advent of the nev stationary reeice vitli 

the temperature line 

ft-ï. 

Hae variation in temperature t 
• w 

Fig. 86. Nature of variation in 

temperature In plane wall under 

steady-state conditions 

and t^. vith time is shown in ?1¿. &3. 

Fig. 87. Nature of variation in 

temperature in plane wall under 

non-steady-state conditions 
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Fig. 88. Variation in temperature 

and t^2 plane wall with 

time 

Fig. 89. Amount of heat and 

Qg transferred through heat¬ 

receiving and heat-supplying 

surfaces of wall under non-steady- 

state conditions 

CftrcicktoH • Cu/*e. shoutif i+cvrt a-h T a 0 

It is clear frai this tlint the rise in temperauire of the second 

surface of the vail takes place after 

surface, and(Its temperature increases 

The variation in the cnaunt 

the corresponding increcse in the first 

by fever decrees. 

of heat transferred per unit time is shown 

in Fig. 89, in which Q' and C." are the amounts of heat corresponding to a 

stationary regime, while and ^ are the amounts of Lc¿‘' transferred uiU’uug:: 

deceiving and transferring wall surfaces during a non-statioaary 

regime. The area contained between the curves ^ ^ and ^ shows the amount of 

heat which is used to increase tire enthalpy of the wall. 

Hre rate of the thermal process in non-steady-state conditions is 

k v 
determir*d by the therael diffusivity a =1 ||>/iiour. The establisned 

- 247 - 



reliitiona::^.s Letvees tie Vui'i¿»icn ia U";«rature asd fc-crjat of heat transfer? ed 

ere strictly ve^id foor solid bodies elone. -•'hen fluids are ljeatcd| ve can 

only consider the variation in tie neun temperatures, vhich are tiie result of 

ir.cvitttble eq-jllization vhen convection occurs. Consequently, the rate of 

tie non-stationary heat process is a function of the nature of the body, its 

¿hjsical parameters, size and snare, and tl.e oondi^ions uniier which tliere is 

heat exchange with the outside ciediun. 

Solvlnc a pröblea of non-stationary tlena: conductivity Leans finding 

the dependence between tiie variati.cn in Æ.-erature and the anount of heat 

transferred in tine for any point on the body. But these decisions maybe derived 

o» /L -¿»■'»-V» Sh—y , 

(solid balies(of^simple shape,'// a whole number of 

plates, cylinders or spheres Tiiese solutions are usually'¿iven 

for practical use in the form of graphs or tables. 

A number of experimental methods (have been worhed out of late, for 

example, the hydrothermal analogue nethod^^by Luh'yanov /5/. Ihis method is 

based on tiie analogy between the propagation of heat and laminar motion of a 

liquid. Gutenmakher /2/ has developed a method of electro-thermal analogy, 

based on the between thermal and electric phenomena. 
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3cc. r1;. Scl-i^icn 

Above vc derived a dif.’erenlia 1 Ir.erntíl-cond’jctlvity e<juati<x dek.ernin.:’.¿ 

the relations’.^) between the ter.oerature# tlr.e and coordinatea of *:£ body -or 

an Infinitely su-tll voltt.e, i.c., an equation v^ch rûthenâtica'ly deserves 

t transfer Inside the body. In theweneral case of a solid body it takes the hea 

the fom of (2.13} 

H / SU . M , dU_\ 
dr “ V * dj* * dfi)’ 

In order to solve this equation, i.e., in order to find the tempeiture 

field inside tlie body at any moment of tine, we have to the rar^lnal conditions 

1. The initial temperature distribution in the body which is çiven 

by the tenperature distribution inside the body at the initial moment of time 

/(jf.Jf, 2,0) = /(^, 2)- 

If the temperature distribution at the initial moment of time in the 

body is uniform, then 

*. 0)=/, «const. 

2. Ihe bouidary condition describing the geaijetrical shape of the 

body and the interaction between the surrounding medium and the body surface. The 

boundary condition may be given in three ways: 
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y I" " L~K- 'KO 
a) boundary condition of tte first kind ‘set tiie 

temperature distribution on the s-urface of the body for any nocent of tine, i.e, 

If the tenpemture of the surface is tiie sar.e ü*rouJ.out and the 

heat exchange is constant ti.roujr.out the process, *i»en 

^•(x) const. 

Hits latter condition is (¿raphically expressed by setting point A 

(Fic. 90). Tiie amo-unt of heat flovin¿ fron iaside the body to its boundary 

am be determined by the equation 

dQmm —ly. dF. (7 -) 
dn 

In order to determine the amount of heat passing through the surface, 

ve have to find tiie slope of the tangent to the temperature curve at the surface 

of the body, i.e,, t'ue angle 

fa arctan / dt\ 

V ãü/’ 

b) the boundary condition of the second kind is set by the density 

of the heat flux at each point on tiie surface as a function of time, to vit 

A particular case of the second-kind boundary condition is when 

the heat flux density is constant ¢(^)=(7^00051. 
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! 'I 

Fig. 90. Graphic representation 

of boundary condition of first 

kind 

■i 

Fig. 91. Graphic representation of 

boundary condition of second kind 

*1 
I ' 

Fig. 92. Graphic representation of 

boundary condition of third kind 

i 
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Um«, the ho'jndery condition of the sedond kind is of a reciprocal 

nature, i.e,, ve knov ti.e a.ac'jnt of heat passing through the surface und 

therefore ti.e tangent of t.>¿ jangle [sloxc jo? ti.e tangent to the temperature 

curve on tiie surface of the body is ¿ivcn. ^.e ain of ‘he problem is to 

de ter nine the surface temperature, i.e., to determine the position of point A 

(?ic* 9l); 

c) the boundary condition of tija third kind is determined by fr<- 

setting the temperature of the surrounding medium and the heat exchenee between 

the body surface and the surroundin¿ mediiri 

t(,)-1,.(:,-,,1=-1(2). (7.2, 

In problems witii boundary conditions of the third kiwi, the surface 

temperature of the body and the tauten^ of the slope angle of the tangent 

to the temperature curve are variable, but we are given on the outside normal 

the point 0 throvigh which all the tangents to the temperature must pass 

(Fig. 92). It follows from condition (7.2) that 

* r Mt)-</ 

4ft i (7.3) 

or 
ât t<r (t) - // 

*—Y • 

7 — l7.lt) 
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< 
4 

Ut)-// 
lhe wlue tan Cf is eq'jal to the ratio of the aide A to the side 

of a corresponding right-angled triangle. The adjoining side yA is consunt, 

/-(0-// 
vhile a varies continuo-jsly Ü» propor don to tan C|) during the heat exchange 

Hence, tlie boundary ccniitioti of tix third kind dcUmines ¡<oint C, the 

position of vhich renains unchanged, and through vhidi all tiie tangents to 

the tenperature curve at the point lying on the holy surface must pass. 

Toe 
ri* 

point 2 termed tlie direct’ and lies ata distance 

freo tlie surface. ?:£ sejnent ¿ is subtangent to the temperature curve; it: 

value does not depend on the shape of the surface 

5*1* 
(7.5) 

in vhich h is the relative heat-transfer coefficient. 

Uius, the differential equation, given the geoinetric shape, initia' 

and boundary conditions, can be solved, i.e., ve can find the distribution 

tenperature function at any nocent of time 

/(*.j\ *)*=/(*, y. -. *)• 

/Kx^l C_(uwv^/ 

For engineering purposes ve usually 'öurselves the 

process occurring in one particular direction x. In this case the general 

solution takes the following form for a flat vail 

/»¿x+c-f 2 ^ (cossin 
• 3| . (7.6) 
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and for a cylindrical vail 

/■=Mnr-f f + ¿ « (7.7) 

in vhich Te and arc 3eesel functions of tiiC first and second ^ Tire 

constants b and c are deternind from the co;riitions of steady-state (at t •“ o-); 

p and B are determined from the bounrlar/ conditions and A is determined 
“* • - K 

from the initial conditions (at ^=0). 

A detailed descriptions of tríese solutions can be found in the hooka 

by Gräber, ErW. and CrÍ£ull ¡\¡ and Lykov /6/. 

It follovs fra.i the last two equations tlwt tiie unknown function depends 

on a larfc® nitiicr of variables, but it turns out that these variables can be 

¿rouped into tiiree dimensionless complexes vhich are derived from (r.’J) and 

(7.2); 

nuTiher 

— “Fo— Fourier nunber 

-L^L- 
/ Geometric similarity number 

On the basis of the second theorem of similarity the unknown function 

is the same in the form of a dimens ionless temperature ■ V for all corresponding 

processes and can be represented in the form of the relationship 

¿-«<■>1. Fo. L). (7>8) 
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/- . 
7ne Biot krú Fourier rubbers are tLea^l einilarity groups. TJ^ 

B à III 
phyflcal neanlnt of the Diet etcher * een be inter,reted as .-ollcvi : 

i.t i certain temperature difierenee tile heat-trans-'er ecefficient « dcternir.ee 

the recowl or laset from the coolind surface, ul.iie the supply of heat to this 

surface fro.;. Inside the body is detemiued by the the mal conductivity X /l. 

Consequently, the ratio betveen tF.ese cUracteristic falues constitutes tie 

relative intensity of heat transfer from the bMy surface compared vitlt that of 

tlie flow of heat fron inside it to the surface. The scalier the Biot nu^er, 

the less hea t is reueved fron the surface of the cooling body fc corred vita 

*he efflux of heat froia ineide. As an example let us look at the problem of 

the thermal conductivity of an infinitely long rod of constant section. Tiie 

assumption has been made in this problem that the temperature is constant in 

the selected cross-section. This assumption is possible either when the 

thermal conductivity is hi#i or when the heat transfer on its surface is small, 

i#e., whenever the rod is 

The number Bi^-1 corresponds to these ccxiditions, 

thin arid^fraa a thermally conducting material. 

Considering the physical meaning of the Fourier number, we can 

represent it in the form 
1 » —-/it 

pa_£Lss—- 
F0~ /? 
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As cim be ßeer., the * our ler nurier represents the ratio cf tlie 

scale of boat through thenoal conductivity to the scale of variation In 

i 
the heat content of the body cy t , i.e., It Is a measure of the rate of chance 

of the body tenperature In a non-steady state. 

Let us ¿o on to apply the equations éerivei to problems In 

whlcii we are required to find the0 temperature distribution and heat consumption 

.'"or any nenent of tine in the £lven body, 

f" 
Flat »‘e Vüve to cons lier here the cocllnc l*eatinc) of an 

Infinite flat wall of thic’ciess i-S (Fi£. ^Z), The wall is cooled on both sides 

and the coefficient o( is constant tí.roiu¿.out with time and identical for both 

s'ur faces. 

We are also given the coefficients and ^ . These values are 

V*1 n 
constant throu¿Jiout the field. Hence we also know the thermal diffusivity a 

The differential thermal conductivity equation (2.13) for the case 

in point of a unidimensional temperature field, takes the form 

i-. arf" (7. 9) 

Boundary conditions of the third kind (7.3) are used the boundary , 

i 
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* 

or « 

since 
* io 

As can be seen, the therral conductivity equation and the bouidary 

condition cnly include the tenue-rature difference and tiie derivatives fron *i 

tenperlture. 

Fig. 93. Variation in temperature field 

during cooling of plane infinite wall 
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es the Initial Hence if ve tû!<e the tcr^er&ture of tlic surrajndinc r*4iun t ^ 
» 

one, i.e., as tiie first reading, then the temperature head of the vail cun hp 

0“//— 
deaigiated ae 4 

3-.US, E.s. (7.9) end (7J) can be represented in the fora 

i«,a£ , -(it) 

lhe initial condition is^set in t’ne fora of a unifora distribution of 

température vith respect to the entire volume of the bed? at the initial monent 

¢=0 0=07 
of time, i.e,, at and therefore O/O'^f. 

lïie boundary conditions can be vritten in the form 

-Af>. np:i x—-rl: 0* 
— —+A!>, npnjc=—Î. 
ix 

In the last tvo equalities the value -r“ is a projection of the dx 

vector ¿prod t onto the direction of the ettemal norral to the surface of the 

vail. Since the direction of this normal coincides vith the positive direction 

of the x-axis st X = + S , and tb e external normal is directed tovards the 

le^tive x-exis at x ~ ^ ; the opposite si-pi lias been taken on the rlnht-lianl 

side of thetqusUties. Hi is system of equations is a mathematical formula ti on 

of the problem under consideration. Its solution can be reduced to finding 

the temperature ai a function of the coordinates x, the time “C and the 
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c

tl.e :^*r'u.ettre } • r.i "iT .

fere re<i--rt^l -o tlr.d Tunctlon

•«eO(x, t, a, k, 8. »'). ^

Ac :-.s t'r;v d. lecn ro'n oi ru" t'^ove, -.heco c.^n

Ir.to e*rce d'-i-er.c V^'.ess co-O-C>'''s> '»---ci: -re t:.e r iot, Fourier snd 

teaoetrlcal sl:.ill::.rlty n'.i.:oers, l.e.,

i-0(Bl. Fo. L).

V’her. solvlr^ c—lucerin- :.ro'.:'e^'.s It Is usu'-=lly cnou^ih to know 

the tenperature on the s-jrrace ^^and 1= 'i-.e nld-t'ane of tlie wall . In 

this case Eq. (7.2i Is sln-pllfled, since ti*e arc’-i-ieut L beccoes a constant 

mnber (at x = 0,L = = 0 and at x *= J, A = l).

Consequently

Fo)

Fo).

(7.n>

(7.12>

. !Ehe amount of heat Q transferred In the time X la determined

frem tiie variation In heat content of the body and is equal to the initial heat

iy=2ficd'.
cont^ ^ i^ltlplled by the relative variation in the mean temperature of the

body over the time X .
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Hence, the relative ^ rit ti on ir. the hwit content is aleo a function 

of the tvo nähere 3: and Fo 

C. ¢¢(01, Fo). (7. ¡3) 

iw 

4- 

• • T» 

V 

,-11 

■fCX)/ fyi 

^§gj^g., 
V' ^ ‘ ^T~^’ 

•“•'^waU 
as fi 

plane Inflnlte wall 

Fig. 94. ■“ «/(Bi,Fo) as function of 
V 

Fit,». 9? and 56 show graphs for the functions ^ and í> . 
. 0 

When deteruining tl.e unknowns, we heve first to calculate the numbers Ei = ^/\ 

frrh1 and Fo ^Çyí, fror, which we detemine the graphs , and Q,/Q'.' 3y knowing 

these ratios and the values Ù and , we can calculate the unknown 0W, «hf Q,. 

The temperature and M0 are used to plot a rough curve showing 

the temperature distribution in the body (See Fig. 53). At x = -S the rays 

drawn freo points 0 and should be tangents to the temperature curve, and 

voU 

at X a 0 the tangent is horizontal by dint of the symmetry of the temperature curve. 
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10? iZVl * Cl * * I * * ti * im 

,l**vVaU 
Fig. 95. -^ -/(Bi. Fo) as function of 

plane infinite wall 

•‘•‘"‘waU 
0 

Fig. 96. çj“/(B*iFo) as function of 

plane Inñnlte wall 

Thus, temperature curves can be plotted for any moment of time. 

The temperatures t on the surface of the will and at its center t ^ 

may be determined for any moment of time £ fren the follovine relationddp 

*• 

list 
r f'-*/ * 

in vhich t is the .temperature of the surrounding, uodiumj 

V is the initial temperature of the body; 

i 
261 - 



S is the tcnpírrtttrjre of the surface of the body; 

t is ti^e Sec'eruture in tiie diddle plane of the bod;-. 
0 

Tlie solution of the probier: in question is applicable both tc cases of 

coolir-ii as veil ns teatin^ of tr.e plate. It should be pointed crut that if 

the process is unilateral ratiici than bile tero 1, tiien J" has tobe tulxa to 

mean tlie total thicloiess of the vail. 

Cylinder. A cylinder with a length considerably exceeding in dinneter 

ean be re^rded as an infinite cylinder, in vhich the length is infinite 

compared vithihe diar.eter. 

If the heat exchange over the entire surface vith the surrounding medium 

proceeds uniformly, the temperature inside the cylinder only varies as a function 

of tine and radius, 
% 

Hie values ,y(and therefore a) are considered to be known and are 

regarded as constant throu^iout the field. At the initial noment of tine, ifte 

temperature of the qyUnder at ail points is the same. 

Assuming that the temperature field is a function solely of the radius 

vector (r) and does not depend on the polar angle of turn ) and the applicate 
r* 

U), Eqs, (2.13) and (2.17) give us the following differential thermal-conductivity 
0 rs r* 

equation in cylindrical coordinates for the formulated unidimensional problem 
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The boundary condition is such that et r “ the follovini; 

reîationship is satisfied 

if 

Tne initial condition is such stiiat at f = 0 

l7.lo) 

0=1' 

Infinitely long cylinder 

(7.17) 

The solution vith respect to 

Y ' V * Q? 

is also a function of the two numbers alone 

and Fo=^. 

wall 

These relationships are shown in Figs. 97 - 99 in the form of graphs, 

The initial thernal content of an area of cylinder of length 1 is equal to 

kcal (7.18) 

Sphere/ When conver ted to spherical coordinates the differential 

thermal conductivity equation for the unidimensional problem under consideration 
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of infinitely long cylinder 

=--.0 
ffiÿ 

j /./ /. -: V.. — •y'* 

f;fVi ; i tól 
Jj í' S 2 2 j . 2 i „2 S' etcot 4CT na o,/ i is 

8l*etff/Awaii 

Q 
Fig. 99. "qí Fo) as function 

of Infinitely long cylinder 

oake/^the following foru 

àx r dr) 

lhe boundary condition is: at r = R 

Í9 • ¡L 

if * 11 wall 

(7.19) 

(7.20) 
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Tlie initial condition is: at T 

(7.21) 

0./Ô'. ^0' 
In this case the solution vith respect tc A and O/Q'is also a 

function of the tvo numbers alone 

8,= -and Fo«£ . 
* wall 

Ihese relationships are shown in "Ies. IOC - 10? in the fora of graphs, 

Hie initial tiieraial content of the sphere is equal to 

— kcal (7.22) 
3 

After consideration of non-steady-state heat exchange in an infinite 

vail, cylinder or sphere, we should Give due regard to tiie fact tint the process 

of the propagation of heat depends to a tremendous extent both on the georetrical 

shape of the body, which determines the ratio of the, surface to its volume, 

as veil as on its size. 

of sphere 
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different shapes at Bi = const. 

(a) plate 

(b) square beam, length 

(c) cylinder length 

(d) cylinder length = diameter 

(e) cube 

(f) sphere 

Ihe rate of the process is greater in bodies of finite length, for 

example short cylinders, prisms, and increases as the ratio of the body surface 

to its volume is increased. Fig. 103 shows a comparison of the dinensionless 

¿-/(Fo) 
temperature a ' at 3i = const for differently shaped bodies. It is clear 

from this figure that for spherical bodies the rate of the process is hi$ier 

than for those with other shapes. 

Die textbook /"/ gives examples of the calculation for a cylinder 

of finite length. 
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€* 
<► 3ec. ?' , G-nph /'r.Hlytlcal Method of Sclvlr.r Therrr. ■ 

Coniuctlvlly Troble^a 

All aethods used to so’.ve thercal coaiuctlvlty probless ere based on 

certain Binpllflcations and assvnptlons valid Tor a.«crfic problei-s. us 

Y* 

consider one of the cosuione .methods. 

Method of finite differences 

Ab an illustrativ ve can 'use tl.e problem of finding tiie tenperature 

field in an infinite plate, ¿.ven boundary conditions of the third kind. 

The method of finite differences permita us to replace a continuous 

process by one vhich Is discontinuous both in time and space. Here the 

differential thermal-conductivity equation for a flat vail is 

dt jn 

d-.*=adx'- 

and can be replaced by an equation in finite differences, vhich for a unidimensional 

temperature field takes the form 

(7.23) 
ût djrî* 

Fig. 104 shows a flat vail divided Into separate layers of identical 

(Ax„ A*;,... . Hx„~ ÍX.+, )' 

thicknesB A x vith the numbers . Time over vhich process is 

being considered should also be divided into separate periods At, after vhich 

each period is marked vith the corresponding miriber “j».'.".V 
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For tiie elver cejuent of tine tec^raturea rc^tn constant at tine saue 

points. 

Fie, Graphic explanation of finite difference methods 

and conventional signs 

Fort the syslar described, in which ve on’,y take one temperature 

value for anj nonent In tine T . in any layer, for example, t j. in tiie 

middle, the continuous temperature distribution curve t(x) is replace*! by 

a broken one. H-¿re the slope ancle of the temperature curve for the n-th layer 

with respect to its middle line <<? different, and the derivative of the 

temperature with respett to the coordinate should have two values 

M \ At M. *— A 

(a- Ax 

tit \_» 

Vijr/-“ A X 

in vhich the plue or minus eiyis show tiie direction of the approach throu#l 

17.2^) 

(7.25) 

the layer n, the plus si^n standing for the ri$it and the minus síqi for the left. 
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? îhe Bccorii derivative la the finite differencee is expressed as follows 

uí“i7[(£). ~(¿r)-]"¿('**l*+'-'- * ~Vê,) 
f f 
M .:0 

The tecperature derivative with respect to tiue in the finite 

differences for the ^iven layer tahes tiie following fora 

4/ k 
At St (7.27) 

The differential equation in the finite differences (7.23) after 

substitution of (7.2C) and (7.27) into it is then transformed in the followinc va,; 

St 
0—- (/»H. »"f ^*-1.**) Ax5 

or 
2jAt / * + * / \ 
(-~2 Ax* 

This last equation can be used to determine the temperature in the 

middle of any layer for the subsequent nanent of time (k + l), if we hnov the 

temperature distribution for the k-th period of tine 

./, •. *♦> 
2«it ^+1. *+ * ( 7a\x 

Lx* (TT“1)'***- (7.28) 

In a case in which we select the period of time At and the siae of 

'Sir 

the layer A)c ini such a way thatAj[* , Eq. (7.28) takes the form 

/•.*+«= 
/«»i. »•H«-».» 

(7.29) 
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ns can be seen fro^ -q. (?.25; U.e ten pera ture in the niddle of t¿ie n-tir 

layer for the subsequent noient of time t/\ i8 the ari time tic nean of 
lyk.i avi 

(7.2!?) car. also be so’.ved sinply by neans of a graph. To do 

this, when solving a specific problcn, vc first select and the tLue intervals 

are determined fra. (7.J?) 

(7.50) 

blown te...peia.ure disurioution ti.en y'otted as a broken curve 0, 1, ? 

for the initial moment (rig. 105). 

Ffcg. 105. Graphic solution of problem of non-steady-state 

thermal conductivity 

At the following nanent of tine the temperature distribution is 

found in the following way: point 1 is joined to Z by a straight line. At 

the point of intersection between this straight line and the central line 

on the second layer we obtain point 2', which determines thelneanfarithmTti^ 
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<V 
<- 

tendera ture in this '-ayer for the foMowinc period of tiae. l>'¿ Joining 

2 vith point 4 hy & streikt 'ine, ve ¿et point 3’ ond so on. la order to 

obtahiS points 1* and 0' ve have to deteruine the ¿uide point *8 

\/o( uv»»y frct^ ti.e outer surface of the ve' 1 end in accordance vi-n he 

houncUry c«.riditionfl of t!ic Uiird kind a teciperature o. the S’orro'jnd.nj nedliri 

11 as he ordinate. 

Furtheruore, on he left of tlie plate surface ve drav a strain« 

line parallel 4h it at a distance of -£= . Z* strai^it line cai-rcepondinc 

to tlxe plate surface is then* as it vare, the centrai ine o. an aux^lnr,/ — 

After these extra plotting, the ¿uide point A is • Joined to 

the point 0, the line CA intersects the auailiary line at the point a. By 

Joining point a to point 2, ve get tlx pcin’ ”, V./ch l-ternines the t enivre ture 

in the first layer for the subsequent moment of time. The temperature on the 

surface of the plate 0’ at this moment is found from the guide to point i.e., 

as an approximation ve joined point 1’ to point A vith a strai^it line. As 

a result ve obtain a nev broken line C’, 1», 2', 3'..., corresponding to the 

tençerature distribution for the moment of tine . 

For the subsequent period of tine r ve have to carry out a similar 
j&4l 
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9 
¡5-Otting ope rat loe, ob a result o." vlitcl. vo get the teu.erature dtetributloe C" 

1 * ?" 
+ j «- ß J CwC# 

As tlae pcescs, ti.e distribution curves Tor the sane perimis At cor» 

closer together, since the cooling process is gradtolly slowed down. Ia the 

graph method tills nalres it liTricult to plot the result and reduces its 

accuracy. ZT- order to avoid this, vo have to increase At by increasing' A x, 

but in such e way that the nultiylier remains cq'ual t>o unity. Here ttie 

increase of A x vus a ibetor o. 2 leads to a four -fold increase in At . 

It can be seen from consideration of this method that it does not 

impose any restrictions on the tejperatureof the medium t , or on the thermal 
• T 

\ A *-~A. oC 

coefficients Q ïft^or the point A is displaced, ilcnce 

for each moment of tine ve should tal» tlie point from the‘set 4i and"^ 

If there is variation in tlie thermal diffusivity 9 containefl in 

the expression A , the :«riod of tineAt should also change, i.e., tlie 

temperature distributicn graphs correspond to different time intervals. 

îhe finite difference method may be applied to solution of probleas 

of determining the tenpeieture field of a sphere or cylinder under non-steady-state 

conditions, A of this retuod, as pointed out above, is its comparatively 

lov accuracy, the latter being by the thorouÿiness by which the 
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distribution cra?'s ^ro pio'.'.ed. 

L»ec. <.|, .\c,*u|4.' w,-^o . - ..00 

It follows frcci vlxt ÎJC.S been said t:^t the process of cooling of a 

body when U.ere are no internal heat sources in it and the teaperature of tlie 

surro-undinj r.cdi'xn t ^ and the hea>transfer coefficient o¿ in tire are constant, 

U 
can be divided into t¡»e disorder stace recular-reciñe atece. The latter 

occurs at tiie erid of a certain tine after the cooling has beip-m, when the 

initial tenperatuee state of -lie body ceases to have an effect, and neens that 

at the naient it occurs, the teuperaturc field of the s^nten varies accordinc 

to an exoonential i.aw. 

The nonent the k regular reciñe occ’urs, ti:e na tural lo^rithn of tiie 

température head , equal to the distance be-ween the tea pe rature t at any 

point on tlie bod;/ and the permanent temperature of the nediun t | , decreases 

with tine according to a linear law 

In#« —/n--j-C, (7.31) 

its rate of change 

¿(toft) 
—m (7.32) 

being the sane for all points. Tire coefficient m is a positive mnùer describing 

the * *coolinci-îrres?ective,as a who^ of the selection of the 
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* \ 
point on the bod.' K M lue value r. is determined entirely by the Bile er 

• • % V i— * * 
end 

chape of tlie body, its thermal parameters, heat-exdianóe cur.ditions and does 

not depend on the initial temperature field , vhich is a characteristic si ¢1 

of the adwnce of the reculer regime, l.is is still the cace during heatinj, 

i ,e., vhen t t. 

Fic. IOj shows a graph for the variation in the natural ''ogaritî.u of 

the temperature head for two points 1! and as a function of the heat 

exchange that, 

Ftg. lOo . Logarithm of temperature difference as function 

of time during cooling 

When the time T (has elapsed,rslnce the bef-inninF. of the cooling tire 

h j ^ 

second stage f^~the regular regime in which the variation ‘ and for 

points K and M with time is rectilinear with the ideitical and constant 
-1-.1 
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ancle of coefficient Ab can be seen fron the graph In Fig. ’Oo, 

up to the wlvent of the regular reglue (i.e., forT<t(), tliere' is an orderly 

procesa (first stage), d-jinc vhlcl. ^ (graph •[coolingldoes not shov any 
A " 

rectilinear lav end the temperature at Jhe polit is still Influenced by the 

Initial coalitions, location of the point and other factors oentiooed abeve. 

If at the initial recent of tb>e T - 1 the temperature at all points 

on the body is tl.e same, the curve should start from the sane point on the 

ordinftte, othervise, as si*ovn in Fig. lOo, the cu:*ve should start from different 

points. Using Ej. (7.15) for the tvo arbitrary moments of tine, an! subtracting 
A 

one free the other, ve find the coefficient n describing the rate of the 

regular reghne, '.,’e find 

. tal' — !n 3* /n = —-H.ac~' T,-ti (7.33) 

Thus, the coefficient m is tlie tangent of the slope angle of the 

rectilinear segment of the curve to the x-axis on the coordinates The 

f 

angular coefficient of the straight line is elvays negative, since $ tends to 

^ ^—TTN •'‘S/ 
zero at X ^ tend ^to infinity. This formula enables us to determine 

the cooling rate experimentally by measuring the temperature at any'' "point on 

the body for tvo consecutive moments of time during the regular regime. 

The mathematical solution of the problem based on the regular regime 
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theory, vorked out by Kor.drat,ycv, esUtbllshea the connection betveen tiie cooling 

rate m, on tlie one hand, and V..e physical and geométrica’. values of the body 

and the extenvil cooling conditions, on the other. The theory of the recular 

reciæ nay be applied to the solution of practical problem, for example, 

evaluation of the he a tine Bn'^ cooling tine. 

Equaticn (7.34) nahes it possible to deternine the tine of cUnc;e 

t * 

in température fron $ to V et any point on the body 

—Hi) (7-3M 
m can be calculated theoretically if the £«>a;trical 8i-iape 0p ^ 

body, its size and the theroal ¡»raneters of the naterial are known. 

Methods of deterrininc thermal paraneters of a material £ tiie 

heat transfer coefficient (X , tire emissive coefficient c and the îhernal 

resistances hive been worried out on the basis of the recular regime theory, 

The 'theory has been i'vöcover 

bodies and systems of bodies with internal heat sources. 
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CEAPTT.R Vin 

^.w\a r-1 y..i»wL^i-^D i\.uJ .M.oj2; iTI'.iv.iv.-'JTx 4 C.- 

^ r*r /*# * 
Ww 1 ¿>>»* 

The development of Jet engines and the appearance of tflying craft 

and ballistic missiles moving at supersonic velocities has led to the of a 

vhole mnber of nev branches of science. First and foremoct, this applies to gas 

dynamics and the theory of gas transfer. In a number o9 cases the heat-transfer 

problems involved in calculating the heating of bodies around vtfch there Is a 

0UI flow cannot be separated from problems of gas dynamics, vhich has resulted in a 

new branch of science called gas dynamic theory of heat exchange. 

At the present time the designer f of a supersonic flying craft la 

forced to both an aerodynamic calculation as veil as a total heat 

calculation. When I velocltieo < fllghtjof 1-5 lon/sec are attained, the 

calculation of the heating up and methods of protecting the parts of the craft 

la a decisive one. 

A very difficult problem has been the cooling of combustion chanbera, 

noMleSjfgaaHurbine blades in a Jet engine. The high temperatures and heat fluxes 

have forced designers to switch to nev materials, on the one hand, and h&ve 
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necessitated intensive cooling of parts 
UuA lí*. 

accompanying Increase in veight 

and reduction in economy, on the other. All this has been an incentive to 

develop completely new and aore economical/methods - sweat cooling, film 

cooling and /■v-vyw- cooling. 

Let us consider in greater detail what the heating up of 

surfaces at high flight velocities. When a body nerves through a fluid, 

particles of the fluid adjoidng the wall are carried away by the latter on 

account of friction, or, is the aame thing, are decelerated the wall 

round the body^ thus forming a boundary layer. 

Bie deceleration of the particles on account of friction is 

accompanied by the release of heat /"dissipation"of the kinetic energy of the 

flow,* and this leads to the gis heating» up. If there is no^ãt removal from 

the wall (if the nail in insulated), the gps temperature at the wall, and therefore 

AI 
the temperature of the surface, is increased to/value close to the drag 

tempe rature of the stream (TqqJoö. The drag temperature of the flow la determined 

in the following way 

(7-.).-.7-1(1+-1^1 M'). 

Here T^ is the gas temperature; 
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¿sa— jj the ratio of thenaal capacltlea, for air k " l.k; 
/ — 

la the M lumber of the flight; 

^ la the Telocity of the flight and a la the apeed of aound; for 

•ir ^J--r,òTo,^i:)7 

1ha Tarlation in T . as & function of the M mmber for tvo altitudes 

la ahown In Fig. 107. As can be seen* during a flight with M ■ 2.5, the 

teiqperature of the heat-insulated elements Is greater than 500*, and so Instead 

of duralumin, usually used In aircraft parts, a more spalling-resistant material 

has to be employed, k On an analogy with the "sound barrier", the term "heat 

barrier" la not being used In literature. The concept of the "sound barrier" is 

associated with the Increase in resistance with a flight Telocity at an M nunber close 

Fig. 107. Variation in drag temperature as function 

of M number 
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to unity. The concept of a "beat barrier" is associated with the increase in the 

tejiera ture of the wall. The temperature of the non-coo led surface increases 

continually with the M nintoer of the fli^t. At M “ 5, steel parts have to be 

protected by ceramic coverings. At greater M numbers it is no longer possible to 

produce a noo-cooled part /16/. Here it should be kept in mind ttat as the M 

mstber increases, the vail temperature of the flying craft begins to lag behind 

the increase ink the drag temperature on account of heat-transfer through 

radlaticn from the surface. 

In the general case the surface temperature is determined frcm the 

balance of the heat fluxes supplied and removed from the vail. The amount of 

heat supplied depends to a great extent on the velocity and altitude of the 

flight and the geometric dimensions of the body. The heat fluxes to the surface 

of the body may attain 10 «6 10 kca^ • hour. Th*s, for example, a surface 

of this kind is vater cooled, using the latent heat of vaporization in its entirety, 

from 20 to 2000 tons of vater an hour vould be needed to cool 1 m^ It is clear 

from this hov important . it is to he able to calculate the heat fluxes 

correctly so that the most advantageious trajectories and flight velocities can be 

chosen from the point of viev of veight. 

In the combustion chambers and nozzles of jet engines heat fluxes may also 
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be tremendous. The tendency to ng\n" the engine lead to an increase in thermal 

load. Ibe specific thrust of a liquid propellent engine R m ~T~ is equal to 

the thrust referred to the conainptiod per second of combustible components, wi 

Is directly proportional to the exhaust velocity. An increase in the exhaust 

velocity may be achieved by Increasing the thermal content of the gpses In tte 

combustion chamber. In order to reduce the size of the engine, the vorking pressure 

in the combustión chamber oust be Increased. The Joint action of these tvo factors 

leads to a sharp increase in the heat flux densities, particularly in the repico 

of the critical nozzle section. 

Just as important is the calculation of the heat transfer and thermal 

protection of the combustion chanters in an air Jet engine. Iq this type of engine 

tome of the air entering the combustion k chamber is removed for cooling 

purposes. The efficieicy of the cooling is stepped up vhen internal Jet and 

X-a-rrw- cooling is employed. When the M number of the fligit is increased, the 

drag temperature of the oncoming ia increased. The amount of air required for 

Cooling is also increased, and this means an appreciable drop in the thrust and 

to* - 0 • 

economic advantage of the engine. Xs 

Very seribus problems involving heat transfer have arisen in rocketry. 

Modern ballistic rockets may attain fligit velocities of 6 • 7 km/sec. When 
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they enter the atmosphere, the surfaces of the rockets heat up Intensively, and 

Belting or conbustion of the surface material occurs. For example, if the shell 

? /fe * I 
is nadejbf steel, the time the rocket reaches the earth, (several centioeters 

i 

& 

0 \ 

the stell may have melted I' Here ve face the question of electing a covering, 

detemining the optimua trajectory, Calculating^ _the loss of material or 

<x 
determining the rated veight of the coolant. The difficulties involved in 

a 
talculating theee factors are aggravated by the fact that oxygen and nitrogen 

molecules in the air begin to dissociate at such higi temperatutes and there is 

a chemical reaction betveen the covering and the air. Similar difficulties are 

encountered by designers of vinged rockets moving through the atmosphere at 

velocities of - 2 - 5 km/sec when calculating the descendent trajectories of 

artiTicial earth satellites or instrument cassettes, when calculating take-off 

devices, craft with liquid propellant engines, and so on. 

In all these cases we have to solve both problems of determining 

the heat flux to the surface as well as the propagation in time of heat inside 

a complex assembly. 

Hew problems of heat transfer also arise when switching to jet engines 

using atomic energy. Here the chief problems are the removal of heat from the 

reacting matter and the protection of the craft from the Joint action of aerodynamic 
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heating and nuclear radiation. In order to Increase the removal of heat fron the 

reactor it has proved advisable to use Intermedíate liquid-metal heat-transfer 

agents. 

Vk*n • hi^i velocities it has been advishble to increase 

the flight altitude more than 20 kilometers. The rarefaction of the atmosphere 

acquires great importante during motion at an altitude. ïhe air ceases to obey 

the lavs of a solid medium, and the normal hydrodynamic equations become invalid. 

Over the last fev years a nev branch of hydrodynamics - superaerodynamics, or the 

aerodynamics of rarefied gpses and high M nunbers - has been videly developed. The 

need has frisen ^accordingly [for the stabilization of the heat regimes of these 

craft, and therefore the need to find methods of calculating the heat urrier these 

conditions. 

Bie described above, which far from exhaust the (range of 

■ facing the designers of modern Jet engines and flying craft, show the 

need for extensive development of theoretical and experimental research on beat 

exchange and the need for a via tico engineers to master all the achievements of 

the theory of beat transfer. 

✓ 
The present section in our book is intended for students specializing 

la aviation. About half the section deals with convective heat exchange at high 
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temperatwree and flow relocitieB, and with hydrodynaaic nethod# of therml 

protection, -me gecond half gireB «thoda of calculating the heating of apecific 

aircraft and rocket aaseabliea encountered in engineering practice. 

3ec. 28. General Concepts of Bydrodynaaic Theory of Beat 

Exchange 

let ua uae q^to designate the heat flux pnsaing through a unit ^ area 

per unit time (kcal/m • hour), then 

Here X ia the thermal conductivity in kcal/m » hour • deg; 

is the heat flux through the area normal to the direction y (Fig. 106). 

If ve are considering heat exchange between two areas, at different 

temperatures T ( and , it is usually more convenient txT'^^the concept of 

thermal resistance R mv- hour • deg/kca] 

For example, during steady-state flow of heat through a flat plate mde 

of material with a thermal conductivity X 

Bie thermal resistance in more complicated cases may be determined 

in a similar way. 
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In the hydrodynamic study of convective heat transfer it is mere 

convenient to use the heat-exchange coefficient <X kca^ - hour - deg, i.e., q «= 

(T - T ). Hence a ^ '1' * 

Given a definition of this kind, t< or R are veak functiona of the 

k f-r-ct 

tempeÄure difference^^vhich is very convenient» for calculating heat fluxes. By 

singling out a strong function/q .'/the temperature difference in the form of a 

multiplier, ve reduce the problem to calc\*lation of oC or R. When studying turbulent 

convective heat exchange, it is convenient to single out the flux density as 

the multiplier 
q^gc '.U(Ti-T7)c„. (8.1) 
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is a dlnenaionleeo value; since ve have separated the bade Here c 
-H 

terns affecting the heat flux, c is a function of the flow conditions to a 
n 

lesser extent than 

irngC/UCH- (6.2) 

In literature the Stanton nuober, St, is sometimes used instead of c , 
* M 

The dimensionless heat>exchange coefficient is also introduced in the form of the 

lusselt nunber Nu XL/X, in 
ta. 

vhihh L is characteristic dimension. 

In the general case of convective heat exchange, c M and Nu are functicns 

of dimensionless groups determining the flow conditions; M= U/a; Reynolds number 

Re ■ UpL/u, in vhich t*. is the viscosity (kg • sec/m1’ ); Prandtl nunber Pr *= •- ; 
/ 

ratio of uall and stream temperatures T^. = /t^; adiabatic index k = c /c . 
' f""' * 

Fmrthermare, there are dependences on certain other parameters, but ve vill not 

deal with them in detail at this point. The of the theory cf convective 

heat exchange is to determine these relationships. 

convective heat exchange is alvays accompanied by an exchange of 

acmentum. Here the layers of fluid moving at a greyer rate are slowed down, vhile 

those moving more slowly are speeded tip, i.e., there is friction between them. 

In the event of two-dimensional flows, the friction stress along the area 

perpendicular to the directica y is determined by the Newton^equation 
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(6.3) ’"I- ÿ *í/n> 

Ihls force acta along the x-axla. Fig. 109 ahova the friction ffector produced 

by the effect of the apeeded-up top layera of liquid on the lower ones. 

. Fig, 109. Plane flow with viscosity 

0» friction is proparticnal to the velocity head, hence it ia advisable 

to introduce the dimensionless quantity c ^ 

»«i (8» 

Here ia the local friction stress on the vail; 

—la the velocity head of the oncoming stream. 

Uhe valu£ is a function of the same parame ter a as c ^ and Nu. A 
* 

very important achievement in the hydrodynamic theory of heat exchange has been 

the establishment of the relationship between c and c¿ , or Nu and c ^ . In the 
“• H “T - 7 

first approximation for gases at moderate temperatures 

yc/- 

In caaea -• in vhich there are different concentrations of umterial in 
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different layer* of flow, the heat exchange is accompanied by a transfer of mtter - 

diffusion and mass exchange. 

Let us designate 

^-1 kg/mZ * hr, àCt , .2 . 
, à~ kg/m 

in which 5íl is the diffusion factor in m^our; 

(8.5) 

C ^ is the concentration by weight in kg/kg; 

5 , L* the transfer of natter 1 with respect to natter 2 through an 

area one square meter in size in the course of one hour. 

ft 

^ri.8 equation holds for a binary mixture. On ai^uialogy with the 

heat-exchange coefficient we introduce the mass-exchange coefficient - ^ kg/m1', hour 

which is the amount of matter transferred throu^i an area equal to 1 square meter 

r*\ 

per hour at a\concentration difference (equal to unity. We get 

In dimensionless form 

Q=P[(C|)«-(Qa] 

Nu^- 
-~*fD 

(8.6) 

In the general casei the heat exchange, mass exchange and friction 

coefficients are interrelated. Okie is due to the unity of the physical processes 

f the transfer of heat, matter and momentum. It follows from the molecular 

- I 
theory of cases that --- D or . — a — D. 

f 9‘p 
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•Cü 

During turtalent flow the ttensfer of heat energy, »atter and ocoentua 

!• effected througji the intermingling of whole to lunes and moles of gas. In 

this case the link between the transfer processes shows up all the more strongly. 

It should be hpointed out that during flow at high velocities, when 

chemical reactions occur, the transfer of energy is due to all three processes: 

the direct transfer of heat, the transfer of chemical energy and the release of heat 

during dissipation of the ener^ friction. All these phenomena 

should be regarded together. 

t Vs mill leave out) in all these operations (the multipliers coordinating 

the dimensionality of different values in the engineering system, and will only 

Introduce them in the final equations. 

Sec. 29. Seme Preliminary Information on the Bpuaiary Layer 

Calculation of convective heat exchange can be reduced to calculaing 

the bomlary layer. In actual fluid flows, the effect of viscosity, thermal 

conductivity and diffusion are usually manifested in a relatively region 

near the surface, termed the bounlary layer. 

We will only consider two-dimensional flows. In this case all the 

values «re functions of two coordinates jc and y. Prom now on the velocity vector 

conponents along the coordinate axes x and y will be termed u and v,( ^ 
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U y " U «ûd U , ■ Y 
> 

Fig. 110, Dynamic boundary layer 

¡UU fe^u 
When a flows round a body, the velocity of the on the 

body surface is equal to thex velocity of the surface (there Is "adhesion" of the 

). Inside the boundary layer the velocity varies sharply between its 

value at the wall and the Velocity in the outside flow. On account of the fact 

tht the boundary layer is tUn, the pressure across It Is constant, or d/V(7y=(X 

This is the funfcaental characteristic of the boundary layer. 

Die thickness of the boundary layer <5 is conventionally 

the distance from the wall at which the velocity u is 99$ of the velocity of 

the oncoming stream, i.e., u *= u/u 0.99. In the general case of two-dimensional 

flow, u is a function of the coordinates x, y: u = u (x, y). 

To describe the shape of the profile in the given section x use is 

made of the dimensionless coordinate This condition is written down 
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u»=ii(jr/5r:M(n) 
M • In order to sbov that ve are considering a boundary layer in vhlch 

there is a change in Telocity, it is tened the "dymalc” boundary laysr (fig. 110). 

s/ Bxe thickness of the dynaaic layer/increases vith distance. In the 

li 
X Rc 

case of a laminar layer on a plate plate / ; in the case of a turbulent layer 

~ --1-.-. It is clear from this that the layer is [thin .only] at large Re maters. 
j Re0* -* • 

Hence all the derlTaticns in the theory of the boundary layer only hold for large 

Re ntnbers, or for streams with higi velocity and low viscosity. 

For a case of flow with heat exchange, we introduce the concept of the 

thermal or temperature boundary layer. The^~\hennal boundary layer is the 

layer adjoiling the surface of the region of flow in which there is variation 

in the temperature of the liquid between ita value at the wall and the temperature 

of the external flow. Here the wall temperature and the liquid temperature at 

the will are taken as being equal. 

The thickness of the dynamic and thermal boundary layers may not 

coincide. On a flat plate with a constant surface temperature the thickness of 

the laminar thermal layer ^ is approximately equal to 

* y/t/ffp* /RePr 

For the produc^ RePr use is sometimes made of the quantity RePr "= Pe - 

the Peclet mmfcer. 
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ri*. HL Temperature boundary layer 

í'i i* - 
At ^íad the thldmesses of the dynamic and layers coincide. In 

the general case the Pr nvober may differ« considerably fra* unitattaining aeTeral 

tens co* eren hundreda in cerUin liquids. At Pr ^1, the thermal layer la mny 

tines thinner than the dynamic one. The variation in he temperature across the 

thermal layer (Fig. ill) in dimensionless fora can be written down as 

When there is diffusion, we introduce the concept of the diffusion 

boundary layer. %is is the tegicn of flow near the wall, in which there is 

variation in the concentration of the admixture between its value at the wall 

the value in the external stream, lhe thickness of the laminar diffusion boundary 

layer on a flat plate is 

•a _ 1 

* 

In the general case the thickness of the diffusion layer may differ from 

that of the dynamic and thermal layers. 

Bie concentration profile in dimensdonless fora is written asT^ 
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e-è-my 
Ox« determination of the thicknesses of the boundary layer Is sale 

difficult by the fact that the velocity, temperature aal concentration In the 

boundary layer approach their values In the outside flow very smoothly. Hence 

It Is mare convenient to use the Integral values. The thickness of the displacement 

Is 

(8.T ) 

The aao\mt of liquid flowing through an area in heitfit 4t the velocity 

of the external stream is equal to the amount of liquid by which the consumption 

through the boundary layer has been reduced. 

The thickness of the loss in impulse is 

!8,8) 

Multiplying (8.8) by ^ ¿, we get 

m 
fp.al^jpu (um~u)dy. 

The flow of momentan at the velocity of the outside stream througi an 

X** 
area 0 in height is equal to the manen toa lost in the boundary layer through 

i t- f-*- 1 Ç “ 

friction at a true conaanptlon flowing throu^x the boundary layer, thickness 

a** 
0 takes into account the friction lossesm the surface, but does not make 

allowance for the reduction in momentan of the outside stream through a reduction 
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in conauaptlon 

The thickness of the energy loss 

and the thlctoese of the lose of natter (through diffusion) 

(8.9) 

_ _7JL 
j r.u. cm 

c.-c 
~c0 

dy. (8.10) 

hAre similar physical meaning. 

Sec. 30« Calculation of Heat Exchange during laminar Flow 

in Boundary Layer (in Incompressible Liquid) 

During laminar flow the processes of transfer are due to molecular 

riscoeity, thermal conductivity and diffusion. Laminar motion exists at small 

Reynolds numbers. For example, during flow along a plate, the laminar regime 

is established at Ro=>-^r<5-10î. The exact value of this nimiber is a function of 

the statecf the surface, the sharpness of the leading edge, the surface 

temperature, and so on. 

laminar flow may be found near the leading edges y^ody 

(|x) or at flights at a high altitude. Attempts are being made to produce 

r 
artificial Laminarization of the stream at Re > 5 -10 as well, since here the 

heat fluxes are considerably reduced. 

In practice we encounter a tremendous variety of cases of flow round 
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surfaces, but for the calculation ve have to take the. fundamental ones. 

When there Is flow arovnd a the out«lie of a wing, ^s-turbine blade 

or aircraft fusllage (Fig. 112), ve can single out the neighborhood of theleadlng 

critical point A at vhlch there Is a strong Increase in velocity, and the lateral 

surface described by slight variation In velocity and pressure. In the neighborhood 

at 
of the critical point, the heat fluxes are maxis , vhlle the fluxes on the 

lateral surface are much smaller, but act over a larger area. 

critical 
point 

Fig. 112. Flow in neighborhood Fig. 113. Supersonic nozzles 

of leading critical point f 

When gas flows through the nozzle of an engine (Fig. 113), the 

■axlam heat fluxes occur In the critical section of the nozzle, where the 

stream Is densest and greatly speeded up. In the diverging part the flow density 

is smaller, the velocity variation is slighter, and the heat fluxes are considerably 

lower 
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‘Hoe simplest case of flow is flow around a flat plate, in vhlch the 

reloclty of the outside stream u . ^ const. The solution of this problem can 

be used approximately to calculate the heating of lateral vlng surfaces, gas* 

turbine blades, fusllage, combustion chambers, diverging sections of a nozzle, 

and In all cases of flow at slight acceleration or deceleration of the stream. 

Let us first consider the boundary layer in an Incompressible liquid 

may then further refine the calculations for the case of a compressible liquid 

at high temperatures and M numbers. 

Equations for two-dimensional laminar boundary la>er at 

low velocities 

The motion of a viscous liquid is described by the Navier-Stokes 

differential equations, the continuity equation, thermal-conductivity equations 

and diffusion equations. During flew with high Re nuabers, 

(diffusion analogue of the Re nunber ), the equations for the viscous liquid are 

simplified and transformed into boundary layer equations, first derived by Prandtl. 

X. Equation of motion 

(8.11) 
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This equation represents the projection of the nomenttra eqmtion onto 

the X"«xls directed along the surface (Fig. 114). The additional eqmtion obtained 

vhen projecting the equation of notion onto the y-axis is t » const. 

Hence the pressure across the boundary layer is com tant. This important 

property considerably facilitates the calculations. 

2. The continuity equation 

àx * d, (8.12) 

The continuity équation expresses the law of conservation of mass for 

an elementary volune of liquid. 

3. The energy equation 

The energy equation expresses the thermal balance conditions in the 

elementary volume of liquid. 

4, The diffusion equation for any admixture in a £as express the law 

ttf conservation of matter for this admixture. For a mixture coMisting of two 

gases, the diffusion equations are written in the following form 

18.1¾) 
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Fig. 114. Flow at Pr = Pr^ = 1 



/ 

lhe »ubecrlpts (l) and (2) dea lg» te the first and éecond componente In the 
dC| àC7 

dy ày 
mixture. Since ¢, = 0,. /1 . Purthermoore, the diffusion coefficient . 

To eolve the equations of motion ve have to indicate the conditions 

Çtù'ffsU 
vhich are ' * on the boundaries of the area in question by the functions 

describing the distribution of velocity, temperature and coatentration. 

Bomdary conditions 

In the coordinate system bound to the wall, at y = 0, u ■ 0, T*=T*. v=U 
• ~~ “ ' • « 

and C=C*. Using these conditions, the boundary layer equations at y “ 0 give us 

the additional equations 

jL/JL(kâl)=0; 
ày V ây J d* ày \ Oy ) 

If i¿«.0(case of flat plate) and H, P, remain constant, the final 
dx * 

„ fia n VT à'C_n 
conditions acquire the form: at y » 0 — “u* 

On the external boundary, the velocity, diffusion and tmperature should 

change to these values in the etternal stream 

a«o., r=r.. C=C. and y->co(y=l). 

The boundary conditions may also vary in accordance with the physical 

conditions of the problem. For example, the wall temperature is some times an 

(dT/di/),-: {aJi-0~ 
unknown, aai the set value / ‘ for vertical &B feed through a porous surface a 

is used as the boundary condition. An exact solution of the two-dimensional 
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boundary layer equations In the general case is extremely complex, since all the 

▼alues in the equations are functions of tvo variables, since the boundary layer 

equations are differential ones a in partial derivatives. In certain special 

cases, the motion equations can be transformed into ordinary, differential ones 

uilh one Independent variable. This is possible whenever the temperature, velocity 

and concentration profiles arepot functions of the coordinate x. In this case 

the relationships 

Iffc; 

remain the same at different sections. When going on to the ordinate proportional 

to the ratio ÿjl , the dependence of x in the boundary-layer equations should 

disappear. Such with low longitudinal pressure gradients are ones in which 

the velocity distribution in the outside stream is 

am*=cxm R am=ce*. 

at constant T ^ and Ç ^ . 

The solution of these problems have been nmerically calculated and 

tabulated. It should be pointed out that these laws cover certain important cases 

encountered in practice. For example at m = 0, u const, we find flow along 

c 
a flat plate, at m B 1, u x we find flow in the neighborhood of the critical 

point on the flat body (for example, a turbine blade or wing). The solution for 
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■ " 1/5 my b€ used to calculât« flow in the nei^iborhood of the critical point 

of an obtuse, ajcia^aymmetric body. The valies m ^l, correspond to flow near the 

critical section of a supersonic nozzle. In cases in which it is œt possible to 

«O 
use the exact solutions, wejf resort to approximate methods. These methods enable 

us to transform the boundary-layer equations into ordinary differential equations 

by using the integral boundary-iayer relationships. 

The relationship between friction, heat transfer at>l diffiaion. 

¿a ¿y/ák'O 

case of flow in which , under certain conditions we can 

establish a link between the friction and heat transfer directly from the eqmtionj 

without having to solve them. 

Let us assume that^gp -C (flow along a plate), 

Pr»üí£=i and Pr, = 
i fD 

In this case the equations of motion, thermal conductivity and diffus!cn 

become similar 

P« 

f“ir+p%7"£ra' 

d* dy dy\ dy )' 
. dC d / dC\ 
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If ve now consider the variables 

ãmJL 9n J-TIk. 7'm C-C» 
•- f.-r.* c.-c;* 

the tquatlona becane ldratle.1, elnceï.e.C Twy betveen .era >t the «ell eel 

unity on the outer boundary. The equations hold If 

ï-0-C. 

Bxus, ve find an Important condition of similarity for the velocity, 

temperature and concentration profiles 

.• ^ r-r* c~c, 
•- rm-r^cm-c~’ (6.15) 

Biis condition is a result of the fact that the transfer of moment«, energy anl 

concentration Is effected by identical, physical molecular processes. 

** Proflle^reloclty] I® knovn, the friction stress r Is dèterained 

by the formula Applying the similarity conditions, ve get 

» da dû *am dT 
tsarjl--■=- — . 

ày dy Tm — Tw dy 

Multiplying the mmsaerator and denominator by X and taking It Into account ttat 

ve get 

I s pc, and ¢=-)-7-, we will obtain 

T._ X dT _ a. „ 
(f.-f.X dy e, (f.-f.) * 

-1-«-?-. 
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Similarly, for the tranafer of natter 

JL 0_»_ö Q 
*• f.) C9 — Cm 

T 
^Heae expreaslona are transformed into the Aimenalonleaa form. For 

■ = -<7=*^. -Q = Qa. 

conditions on the vail a . Multiplying all the aldea of the «qmlity by the 

\wm>LCf**?DCß 

length L and dividing by A , ve get 

_^  ___ 
(T.-T*)1 (Cm-C6.)pñ 

After multiplication and division of the first term by 

^ _fr ^ QzL_ 

(F.-T*)l ici .» “ (C. - Ct) ?D • 

According to definition 

amh 

qv _ j _t»_ _ f and <?a 
F.-F. >“L 2 1 * C.-Ca 

__ g¿ v* •e»*’ n.n BA -- C 
The values -- = Nu, - — ^ K>- emd ^~^^ betveen friction, heat 

transfer and diffusion finally takes the dimensionless form of 

Nu=Nu r.Re. (8.16) 
d 2 7 

The equation derived expresses the thermodynamic analojy betveen the 

friction, diffusion and heat transfer at the numbers Pr = 1 and Pr^ = 1. 
<c 

In the general case Pr 1 the form • are derived in the form 

Nu—i-f,Re/(P0. 

»iriag laminar flov f(Pr)*Ä Pr 3 , approximtely, and in turbulent flov /(Pr)^Pr0-*. 

Tbese relationships can also be vritten in the form 
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JW__ *r 
, T. e. for Pr«*l —r,j 

and 

(8.17) 

(8.18) 

Pr for laminar and turbulent flow The equation« derived 

for the * '/between friction and heat transfer are widely used In calculation« 

and can be extended to cover a case of high velocity. 

Methods of calculating boundary layer 

One of the methods of simplifying the boundary«-layer equations is 

to satisfy the differential equations as an average for the bouAtry^-layer thickness 

rather than the equations for each Individual particle. 

y 

Fig. 115. Derivation of integral relationship 

of momentum on plate 

Let us consider a very simple example of flow along a flat plate, 

let us look for a solution satisfying the momentum and energy equations for two 

sections of the boundary layer. 
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Let un construct a control surface near the plate iFig. HJ). Let 
fs 

R be the force acting on the liquid on the plate side, and À M the mass of 

liquid merging fron the contour by virtue of the fact that the consunption 

through the face CD is less than through AB. 

The projection of the œcmentun equation onto the x-axis gives us 
• * 
f pMy-{- ~ J P- 

» * 

A/i=J p.u.riy—J vt'jy, 
0 • 

il * 
J pu («. — «) dy = p.ul J ^ 1 - j dy = 

The friction stress t^-î/ÆA/.c. Hence 

xjfmul^di**¡dx. ' (8.19) 
rs 

lhe frictiona acting on tie liquid side of the plate is directed tovards the 

notion of the liquid. 

Ihis equation is called the n integral momentum relationship. Here 

5*. =,$.•(*) 

T* Xs[x) and a . In ids equati on ^Biudependent invariable x and tvo unknown 

functions and S • To solve the equation we have to 

■ T* connection between C and w 

For this purpose the velocity profile in the boundary layer is 

approximated with a function selected in such a way that it satisfies the physical 

conditions of the problem. Let us assume that in the case of an incompressible 

V. 
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g 

o 
<*• 

IUa. 
/ a X vîu-mf(t\) 
l f ■ const; the velocity profile is given as the Unction . , in vhich 

Ihe friction stress is then 

Die thickness of the layer Í at the known my be expressed in 

term of 0 

S\d>stltuting 'í^and o into the integral relationship we get an 

equation for á , and also for ^and Ihe velocity profile is often given 

in the form of a step polynomial 

—*=fl( + fl,r( + OjT.î + fljT,’. 

The profile has to satisfy the boundary conditions established by 

í=0 «=»0 
earlier on: at ^ and —=0; at ^ • In addition, we adopt the condition 

of smooth conju^tion between the velocity profile and the outer stream profile: 

at »1*1 dujdr\*=Q. 
A 

T)-l 

Applying these condUons we get flo^O; o2=0; a,=—• û.a • 
' -*; ■. 2 1 2 

Hence 

'•-T’T 
The Integral relationship takes the form 

'T' P 7 39 
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After integration 

*«4.5l/—; — = — 
Vf«. * [ umfmX y He 

/Re =-0.323 ' I» f-KRc=0.323 

fron vhlch A . The exact solution of the differential equation for this case 

give us 

->-/Re=0.332. 

It is now easy to derive formulae for the heat flux by using the 

hydrodynamic analogy between friction and heat transfer. We get 

J 
S 2 

1 

Nu*= 4- CyRePr j ; 

no —Cy}^Re=0,332. 
Hence 

S-0.332X 

/— , 7.=0.332 X (f - - rj l/!~ Pr f 
j/i^LpfT; ^ ^ 

Nu-= 0^321'Re Pr^. 

y =0332 

Thus, the heat flux density drops as x increases. The mean heat flux 

is determined fron the expression 

fqdx 
rx ÍV 1 

q«x-0,664 X (7-.-7.)1/ 

In cases in which the velocity distribution in the outer stream 

obeys the power law u^ - cx^ , we can derive exact solutions. Here the heat- 

transfer coefficient can be written in the general form 

• (8-2°) 

and u ^ is a function of x and O'- fd0/9nl*¡=* 
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Sie values 0 for certain cases are shovn in the table. 

The values Q at n B 1 can be used to calculate the heat exchange 

in thejneighborhood of the leading critical point. In this region u^ ^ cx In 

Vhlch X Is the distance reckoned from the critical point and 

s-asrxj/-'-?^. 

For air Pr^0.7. In the neighborhood of the leading critical point 

U 
on the axlal^ymnetric body u<3o= cx as veil and 

/”T J. . ■ 
—Pfi =0.76.3). J/ “Pr 

A 
Sec. 31. laminar Boundary Layer in/Ccmpressible Gas 

When calculating the bomdary layer during flow at hlgi velocities aid 

hig^i temperature * <~Wehave to take into account the variation in the density 

of the (ps as a function of the variation in the pressure and temperature 

(compressibility of a gas) and also the dependence of the temperature of the 

physical parameters of the gisî/'A Pr« Furthermore, at high Velocities 
* 

the release of heat through the vork of friction (displacement of energy) and 

through the vork of pessure becomes substantial. At superhigh velocities and 

temperatures about 2000 - 3000a, ve have to take into account as veil the chemical 

changes In the 91s, dissociation, the transfer of heat by radiation, ionizatlon 

and other factors. 
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Conpreeeibility Is the power of a liquid to alter its volune when 

acted on by outside pressure. If the ratio ^ throughout the flow area unler 

Ap=>‘j>--p0 
consideration, the liquid is regarded as inccnpressible. Here and Ç is 

A \9 

the density at a fixed point in the area under consideration. 

When a gas flows round an obtuse body, a pressure is established at 

Çvt 
the forward critical point in sonic flow which is equal to the pressure of 

the total adiabatic drag. Here the density of the gpa assumes the value 

ir“(l+i7i,"’),’'ssl+i'"’ 
P«a/?oaïU; A;>/po = 0,l 

At M = O.45, the value ). If we take an accuracy of 1C# to 

be satisfactory, the gas moving at M 5- 0.45 can be regarded as an incompressible 

fluid. At M >0.45 we have to take the compressibility of the gas into account. 

When considering heat exchange, we must make allowance as well for 

the variation in the gas density in the boundary layer throu^i a large difference 

pt=p/RT^ 
in temperature . If the temperature is T ( at any point on the boundary 

layer and the pressure remains the same, then 

p, == -—-and —=—1 ^ = 1_Tl 
. Po fj 7, ' 

lhe compressibility has to be taken into account with an accuracy of 

10f>t whenever the temperature ratio at the two points T /T ^ 0.9 or T /T 1 1 
" - -0 -i ' * 

Variation in the temperature in the boundary layer also occurs when there is no 
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heat exchange, but vhen the gae is • loved dovn through friction. 

If the vail 1« flrnly In* u la ted, l.e., If there It no heat reaoval, 

the sgM temperature at the surface Is close to the drag temperature 

(l + for air *= 1,4 h rM~(l +0.2M*) T.. 

too 1,1 M « 0.7. Hence in a case of flov along an 

Insulated flat surface vhen there is no adiabatic drag, the compressibility has 

to be taken into account at M ^ 0.7. 

When there is strong variation in temperature, apart from the change 

in density, there is also a variation in the physical properties of the! liquid 

or ps 

P=P(r); X=>.(r); 0=0(7). 

If, furthermore, there is diffusion of gases vith different physical properties 

in the boundary layer, then 

C); *=l(r, C); 0=0(7-, C); p=p(r. C). 

Here C is the concentration of the impurity. 

Bros, vhen Investigation the flov of a compressible gas, ve must make 

allowance for the dependenc £ the physical properties of the medim on temperature, 

concentration and pressure. In certain specific cases some of these factors can 

be disregarded ^ 

- 309 - 



Bpyedary layer eguatlona for high velocities 

On account of friction in the boundary layer there is an emiatlon of 

heat. The kinetic energy of the outer stream is transformed^into heat 

and there is dissipation. 

The amount of heat relaastd through friction is 

gE\d 

energy 

kcal/m3 * hr 
♦8.21) 

If there is a longitudinal pressure drop, heat is released through the vork of 

pressure. The amount of heat released in this case is equal to 

~ —*3600 kcal/m3 * hr 
gEdx 18.22) 

Taking these terms into account, the equations now become (the 

< n 
i/t 

multipliers showing dimensionality haj been left out) 

i8-a) 

Paf,^ + P«/^ = A().»Z) + H(^),+„(^). l8<a4) 

A 

The equations can be transformed into another form. Let us multiply the first 

equation by u and add it to the second. Here we must make allowance for tte 
a la-à<uW) ; 

fact that and 
dx dx 

■«'ÍK-Bfl-tT)’ 
We get the following equation 

dy \ dy r dy V dy \ 
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(. C. •• 

Fron the definition of the drag temperature 

e/¡T+d (u1,2)=cfif rw. 

Ihe equation then takes the following form: 

i* ày ày \ dy) dy \ dy | d f i àju'i*) 

dr l O ày 
If in the rigit-baui side ve now add end subtract the expression and take 

^/1=. pr. 
it into account that ' A we finaily get 

fB + fv^== AA "iU A L A _ A\. 10.25) 
à* ' ày dy \ dy / dy [ \ Pr/ dy \ ^ 

This equation can be used Instead of the ener^ equation for the 

tanpffature T. Its chief feature is that at Pr B 1 it acquires a similar form to 

(8.26) 
that of the equation for low flow velocities 

p«£Â+pviÆ=AfxA?Ly 
P àx Tp ày dy \ ày ) 

The distinction is that instead of the temperature T the equation 

contains T • Hiue, all the conclusions drawn by us with regard to heat 
- 00 

exchange*' 'at low velocities are still valid if we use T qq instead •.? T. 

Consequently, the heat flux at high velocities is determined by tu 

variation in drag temperature in the boundary layer. The transfer of heat 

occurs when there is a difference between the drag temperature of the flux and 

the tendera ture of the uAll. In a more general case, when variable thermal 

capacity is taken into account, ve introduce the concept of the total drag 

.V’ív'T+f t ^ 
enthalpy A " , which is equal to the produce offthemal capacity and ' drag 
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cempcratur«:, j'orlh'l n. « ''.in:r-. The energy eqjAti.ic i*or Pr " 1 cab 

* 

be writven in the fora 

« 

Thus, in the general caee heat exchange depends on the difference 

betveen the total drag energy of the flow and the energy of the g^» «t vdll 

temperature. For the sake of simplicity let us consider a case c = const. 
> 

Let us look at flow along a flat plate at a constant velocity of the outer 

stream const and dp/dx = zero. It is easy to see that by means of the 

equality = “ * the energy equation at Pr = 1 becomes identical with the 

motion equation. The solution of the energy equation is determined from this 

Fqd-F* _ u 

Poo)m~~T* um 

Uhus, at higher velocities of the flow in the bovmdary layer, there 

is similarity between the velocity and drag temperature profiles at Pr = 1. 

Temperature distribution in boundary layer on insulated 

surface at Pr = 1 

I«t us see how the temperature varies inside the bounlary layer at 

large velocities and at Pr = 1. If the wall is thermally insulated, the heat 
\ 

flux is equal to zero H ©*=0: 
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but I 

Consequently, 

7**= 7* — 
7 V 

dT âT,^ \ • du 

¿y \ ày J t, òy 

At the «all u ■ 0 and 

Since 

therefore 

drop _ dfop dt» 

dy d« dy 

Differentiating the expression for T vith respect to u, ve fini 
Voùi-T. - 00 - 

T.-0 7-.=(rM). 
that ^ or ^ . A temperature equal to the drag temperature of the outside 

(4).-7.=0 
stream is established on the insulated vail at Pr ^ 1. But if A , then at any 

Fig. 116. Velocity and temperature distribution in boundary 

layer at high velocities in Pr = 1 on insulated wall 
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Too-W. 
point on the boundary layer ^ . At all point« on the boundary on the insulated 

surface vhen Pr *= l the drag* ^temperature is constant. 

Let us find now the teiq«rature distribution across the boundary layer 

T- , roo this 
2c, 

T-T-+i['~i) l8's8) 
es 

Thus, the gas temperature varies smoothly betveen the temperature of the outside 

stream and the drag temperature at the vail (Fig. Il6). 

Temperature distribution in boundary layer on Insulated 

surface at Pr 1. 

If the Prandtl nunber Pr ^ 1, a temperature is established on the 

thermally insulated vail vhich is different fromthe drag temperature on the 

outer stream. For gases Pr < 1, for example, in air Pr¿£ 0.71. In this case 

the temperature of the Insulated vail is lower than the drag temperature of the 

outside stream. Let us designate the temperatuze acquired by the insulated vail 

T'<(Tv) 
as T_^. Then A . At a higi velocity tvo processes occur simultaneously in 

the boundary layer - the emission of heat through friction and the removal of 

heat through conduction and convection. At Pr < 1 these processes are balanced. 
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Let us introduce the concept of the tenperature recevery coefficient 

*4r 

or in other vorda 

and 

T'~Tm 

(foo).-f. 
(8.291 

JW. 

2ij 

Tt—T. + r b,!L 
2e. 

(8.29) 

lhe tençerature recovery coefficient r indicates the proportion of 

kinetic energy from the outaide stream vhich has gone into the heat content on 

the vail. In laminar flow along a flat plate rc^|Pr. For air r^> 0.84 and 

or 

V'Pr/Wi) 

7>Ml+0,l68i*lL). 

(8.30) 

The distribution of velocity, temperature and the drag tenperature 

on an insulated surface at Pr 1 is shewn in Fig. 117. As can he seen from this 

figure, the drag temperature at the vail is below that of the outside stream. 

Sene of the energy has been transferred* from this region to the outside of the 

boundary layer on account of ihich the drag temperature in this area has become 

greater tten that of the outside stream. 

In a case in vhich the velocity of the outside stream is variable 
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Fig. 117. Velocity and temperature distribution 

across boundary layer at high velocities 

and Pr < 1 on heat insulated wall 
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codst and dp/dx 0, the recovery coefficient r&riea along the length. 

During laminar flow an approxljsate value can be found theoretically 

ve get 

W-+5T, 1+7? (/Pi-1) (8.31) 

Here u^ is the velocity of the stream approaching the body; 

u is the local velocity at the surface of the imersed 

body beyond the boundary layer, and 

T ^ is the temperature of the oncoming stream. 

If ve designate the recovery ©efficient as before^ as r 
(7>r.) (//1.%) 

A P 

r-l + ~(/Pf-l). 
«1 (8.32) 

t v~v_ ^ 

It can be seen from this that at the 'critical point *foJ 0 \ r - I ; 

°Q ^ plate — r= ]/P7. 

When there is flov round the surface, the local velocity k in — I an 

extreme case may attain the so-called maximum velocity, which is related to the 

parameters of the oncoming flov in the following way 

Here 
2c.- 

T."*W¡r». 
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Experlacatal determinatiop of tempereture recovery coefficient 

lhe recovery coefficient can be obtained by direct measurement of the 

temperature of the Insulated surface. For a case of flow along a plate, Fig. lid 

shows the dependence of r on the Reynolds nuaber for the flow of air. As can be 

seen from this graph, in laminar flow the recovery coefficient does not depend 

for practical ' purposes cc the Re nunfcer. At Re 19 ^ there is a sharp 

Increase in the recovery coefficient to r 0.89 through transition to turbulent 

flow. 

Fig. 118. Experimental values 

of temperature recovery 

coefficients 

Fig. 119. Variation in mean temperature 

recovery coefficient of cylinder as 

function of M 

For M > 1 the dependence of the recovery coefficient on M in the case 

of a flat plate proves to be only slight. An investigation was made of the 

experimental dependence of the mean temperature recovery coefficient on the M 

mmfcer for thin wires 
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Ttt-Tm 

(8.33) 

ia vhlch T ^ is the mean vire temperature as determined fron measurement of its 
hi 

electric resistance. The results of the measurements are shovn la Fig. 119'j 

T#»npeTature distribution In boundary layer of compressible 

¿as when there is heat exchange 
fco — T., ^ m 

(foo)--r. •- 
Let us consider first the case Pr ^ 1. Here » ; taking it into 

T%=T+— 
2f# 

account that * , after transformation ve get 

Since 

JW.+(r-rji+£--:(.-i). 

* 1 Mir., then 

(8.34) 

2f, 2 

+ iJLl Ml “ (l - -Y 
r. r. I r. K 2 “-V --/ 

If the M nvtaber is small ve get the vell-knovn relationship 

for small velocities 

T-Tw _ a 

Tm-T, um • 

lhe temperature distribution and velocity distribution ihm across the 

boundary layer are shovn in Fig. 120. 

For the case Pr = 1, vhen T^. ¿L T^, the vail heats '\ÿp. At T T0O the 

vail cools down, at T *= T heat flux q¥-~-).(òTóy)v=0. 00 

T.<(Too) m . 

If K p the curve shoving the temperature distribution has a maximum/ 
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In the aitstde of the boundary layer the gas heat* vç through friction, vhile 

there la a drop In temperature at the vail through removal of heat through it. 

Broa, the temperature inside the boundary lajer may be considerably hlÿxer than 

that of the stream and the vail. It is interesting to evaluate the oaxioira 

temperature. Assuming Pr = 1, let us differentiate the expression for T vlth 

respect to y and let us equate the derivative ( 0T',d\j ) aero. T is determined 

by the equation 

(8.35) 

For example, at a fllÿit mxfcer 20, T = 250* aba; I ia 1000" aba 
» -- • 

T ^5700°. Thus, although the temperature of the stream by the vail does not 

Fig. 120. Velocity and temperature distribution in boundary 

layer at Pr = 1 and with heat exchange 



exceed 1000*, an extremely hi#i temperature la attained inaide the boundaxy layer. 

If Pr^ 1, the temperature distribution on the vail vlth heat exchange 

la aballar In form. 3ut since the temperature established on the vail vhen there 

la no heat exchange is different from the drag temperature T ./ T . the vail 
“C -0\) 

la cooled by the outside stream, if it is kept at T T , and is heated by the 
~r -c 

outside stream if it is kept at T T . 
-w* -e 

Calculation of heat exchange In leminar flow in bourciary layer 

of compressible gas 

At high relocities the heat-transfer coefficient is determined by the 

equation Q»=a(tt—T,). Defined in this vay, it might be thought that the main effect 

of the high stream velocity had been taken into account by the fact that the 

temperature T .ms been taken instead of T. . Furthermore, if TA = T* here. 
" -if -fr 

then “ 0, idiich is in full accordance vith the experiment. 

Die problem Is to determine the heat-transfer coefficient , vhich Is 

in the general form a function of the Re number, the M nvnber, the temperature 

Tv 
ratio ——, the Pr nuaber, and so on. 

In order to determine 0(. ve have to find a solution to the system of 

equations(8.23) and (8.2b), and then find the temperature field Inside the bouxfery 

layer. The heat flux density to the vail Is equal to 
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In certain special types 0T velocity distribution in the outside stream, 

and if there are further limitations, Eqs. (8.23) and (8.24) can be transformed 

into ordinary differential equations. Exact mnerlcal solutions have been derived 

for these cases. In flow vith an arbitrary velocity distribution in the outside 

stream, and with variable tempestare of the wall, the integral relationships of 

mcmentun aoi energy (see also Secs. 30 and 37) can be successfully used to plot 

the approximate methods. 

The integral mcmentun and energy relationships for a flat case take 

the form 
<?,«!<••) 

r4-* 
Here d is the thickness of the loss in d is the displace* 

ment thickness, is the thickness of the loss in energy, ^ andare the 

density and velocity on the boundary of the boundary Layer, is the friction 

on the wall, and „ is the heat flux ddnslty to the vail. 

%us, the two differential equations in the partial derivatives have 

been replaced by two ordinary differential equations. But these contain five 

J4 Vf*. T», a- 
unknowns: + and ^ • Hence to solve them ve have to derive another three 

' V* 

relationships relating these values. These may be obtained by Getting the 
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relocity and temperature profile in dimensionless coordimtea, far example 

i.e.. 

here 

The ratio 

- /::-1 

= kl(r»U-r*l /cKa 

9m 

«=¡.r 
J fi«i \ «i / 

(/V 

■ay also be expressed in terms of the function f arxl f . 
-( 

The result depends on the selection of the type of function f and f . 
-/ 

But, as shown by the calculations, the effect of the type of function on the 

solution is insignificant. Particularly good results are obtained by the use 

in the integral relationships of relocity and temperature distributions taken from 

calculations obtained for partial relocity distribution lavs in the outside stream, 

when exact solutions can be obtained. 

For the flow of a compressible liquid, exact solutions are possible 

if we use special transformations of the coordinates, worked out by Dorodnitsln /5/ 

and Stuartson /13/. For flow along a flat plate an exact solution is obtained 

^ ^ J 
talcing into account the dependence (^bn temperature. 

Calculations show that the dependence of c* on the Re and Pr nushers 
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rmalM the .u* la the ce of . ca.pree.lble gu w for en laca.pree.lble liquid. 

For ft flat pLpte 

Y■= Nu=0332-R.'-'Pr' ’/(m, L'). (8.J6) 
* 

Bie effect of compressibility shows up in the fora of the multiplier 

/(M, T* r»K. Ihe nature of the dependence of the Nu on the M nvtber for a plate is 

ehovn in Fig. 121. When the M number increases, the heat-traœfer coefficient, 

all other conditions being eq\al, (Re = const, x = const) is decrease . Fig. 122 
rs 

shows the deformation of the velocity profile due to the compressibility of the 

gas: as the M nuaber increases, the velocity distribution tends to be linear. 

The temperature ratio TJT, affects the heat transfer during the flow 

of air in such a *ey that the heat transfer increases when the wall cools. 

?or th® flow along a plate ve can use the equation 

,=.(T,-T.)=0WfeLf ''(¿¿jX/Z 

X{T,-T,))'Pr 
(8.37) 

nie valuesand ^ are taken at a /feq. ^.35)/ or, at T* = Tv , if T3>Tt, 

of at T* - T.,if .W:< 1 -I?> 
• • 

Exact values can be determined frc* the graphs in the publications 

described, which give the values of (X , also making allowance for di: relation of 
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air molecules at high temperatures. 

An 

When there is supersonic flow around obtuse leading edge, a shock 

vave la created In front of the body and presonic i flow Is created behind it. 

Ihe heat flux at the leading critical point can be calculated from the equations 

i.=0.763 |(rM). - 7-.1 l/Ã. P,M (8.J8) 

I * Lj 
for an •xlaljaynaetric body and 

Í.-0.57).|(rj.-r.| j,/IPr’-(!^)“■‘, (8.39) 
r\ 

for a flat body. 

Here It is taken that Pr^OJ; A,_ and V are taken at wail 

tençerature and pressure equal to the total adiabatic drag pressure beyonl the 

direct disccxitinuity, and ( 1(^^18 the drag temperature in the outside stream. 

ß= 

The ralue « is determined from the experimental pressure distribution 

t*>2ajb, 
in the nei^iborhood of the critical point. For a rounded end, * in which °< is 

'Bpeed-OT sound, b/2 is half the thickness of the edge. If the end is spherically 

or cylindrically rounded, b/2 'is the distance between the critical point and the 

point (f**45* (Fig. 123). 

Bie heat exchange on the lateral surfkce of a cone around which there 

Is supersonic flow can be calculated with the same equations as for the plate. But 

r 
here the heat flux has to be multiplied by /j' 3» and u ^ and T ¿ tave to be 
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Fig. 121, Heat transfer coefficient as function 

of M number during laminar flow along a 

flat plate 

Fig. 122. Deformation of velocity profiles at 

large M numbers and laminar flow 

Fig. 123. Flow in neighborhood of leading 

critical point 
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determined for flow beyond the boundary layer on the surface of the cone. 

i 

Sec, 32. Heat exchange In Turbulent Flow In Boundary Layer 

So far we have considered laminar flow in the boundary layer, in which 

the transfer of mooentun, heat and matter is due to the molecular processes of 

friction, conduction and diffusion. Here the stresses due tof friction, the heat 

and diffusion fluxes were known functions of the distribution of velocity, 

temperature and concentration. 

In laminar flow we can write down boundary layer equations and their 

solution as determined to a large* extent by mathematical techniques. The 

calculations required experimental improvement on account of the inevitably 

sketchy nature of the phenomena, although the corrections introduced are small. 

The role of the laminar layer theory becomes particularly important at the present 

time in view of the development of flying craftj - very great helgita at 

low Re mxnbers, in which the laminar flow is retained. 

Main features of turbulent floifr 

At high Re nimbera the orderliness of the flow is disturbed, and there 

is general intern of the liquid to a great extent. If one of the streams 

of liquid is colored in laminar flow, we see that it diffuses only to & slight 

extent. During turbulent flow, the dntlre liquid in the tifce becomes colored * 
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a snail distance. Transverse notion vhich beccnes interwoven with the principal 

notion and there arises an "interwoven turbulent notion". Here the resistance 

of the tube is increased, which is due to the intensified exchange of naaentua 

between individual streams. This exchange leads to equilixation of the velocity 

profile in the t\J)e cross-section (Fig. 12U), 

Fig. 124. Velocity profiles in channel or pipe 

3he velocity gradient at the wall (¿) 

compared with laminar flow, and therefore the friction is increased. 

Conditions of transitions from laminar to turbulent flow, 

übe first systematic investi^tion was carried out by Reynolds, who 

found the law of similarity, according to which the transition from laminar to 

turbulent flow occurs approxlirately at the same Reynolds Re = u-d/v , in whidi u 0 
* —- ^ 

Is the mean flow velocity. 

^creases accordingly 

- 327 - 



It nea eütabliahed ttet at Re < 2000, the flow Is always lemlmr. 

Ihe exact talue of the critical Re mmber, a^t which the ‘‘.ransiticn occurs, depenia 

on the ccoditions of inlet to the tube, the degree of roughness, and. so on, anl 

can vary between 2000 aai 10,000. 

Plow in the boundary layer when the body is ism*rsed nay also be 

laainar or turbulent. Hie transition occurs when the Re mmber reaches Re « 

a'lD^Re.^S-lO’ 
e<]ual to Re^ , which for a plate is A . Ihese values correspond rouj^ly to 

(Re.) „ = (aj/*) " « (2700 -:- 3000). 

At the transition fron a laainar to a turbulent bourdary layer, the 

thickness of the latter is increased, the velocity profile becomes fuller, the 

friction is increased, and so are the heat-transfer and nass-transfer coefficient^ 

A diagram of the experimental pattern of transition from a laminar to a turbulent 

boundary layer is shown in Fig. 125. 

Laminar flow Turbulçjxt flow 

Fig. 125. Flow In boundary layer of plate 
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Averaged notion and pulg&tlpg potion 

The study of turbulent flow ah ova that the vllocity and pressure at a 

given point are not constant in time, but vary frequently and non-unifonnly 

(Fig. 126). ihese variations which are known as pulsations are the moot characteristic 

property of turbulent flow. During turbulent motion along and across a stream 

B 

Fig. 126. Pulsation and averaged velocities 

development of the flow. 

IB order to make a mathematical analysis, the flow is divided into the 

mean and pulsating flow. Let us designate the time-averaged velocity u/ and 

the pulsations velocity u', the pressure p and p' and so on. 

Ihe velocity can then be determined in the following way 
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lhe average velocity iß equal to 
tj+i» 

-TT Í (8.U0) 

To average the values ve have to take a fairly large interval of tiae AC 

bo that the average value is not a function of tiae. 

Ore velocity pulsates in all directims. The mean pulsation components 

are equal to zero 

«* *= 0, v'=0, f' *= 0, p -- 0. 

Averaging the products of the values vith respect to time, ve get 

UU'*=0, UU#0. 

Bie mean products of the pulsation components in theg general case 

may also differ from zero uV/0. 

Pulsation motion at velocities u', v' and v' affects the average 

m* —» 

motion u, v and v in such a vay that the resistance to friction Increases in the 

average motion and an additional, apparent viscosity is created. 

Let us drav the line parallel to the vail in the boundary layer 

(Pig. 127). In viev of the flov of liquid througi the area there is a flow of 

momentum “ . If there are pulsations y=p(ü+u') (o + o')=¡.uv+fii’vfv'u' 
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lhe Dean macen tum f lev Is equal to 

7»=piiv+fv'a'. 

As ve see, the presence of pulsations changes the momentum flow by £V~\¿ 

But the flow of manen turn through the area Is equivalent to an oppositely directed 

farce with which the surrounding median acts on the area. Hence, if there are 

Fig. 127. Determining values 

of apparent friction 

Fig. 128. Correlation between 

pulsation velocity 

pulsations, there is an additional force exerted by the top of the flow on thi 

bottom, producing the friction 

:= — f.uV. (8.4l) 
rs 

Ihis friction differs from 2 ero and is directed in a positive direction 

of the x-axls, which is clear from the following arguments. Let us (.insider which 

siga the products uV possessa at any point A on the boundary layer Fig. 128). 
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Articles of fluid reach this point fren the top and from the bottom 

on accovnt of pulsation*. The particles coming from the botten tare a pulsation 

component directed upvards, i.e., positively, ^aring reached point A, these 

particles have a velocity lesa than the mean velocity at this pint, i.e., they 

create a negative pulsation i-u'). 

By exactly the same argument ve can prove that in the case of particles 

coming from the top, the product ?«'<0. Hence 

t——foV>0, 

and the friction acting frem the top on the bottom is directed, vhen the velocity 

distribution corresponds to the drawing, in the positive direction of the x-axis, 

i.e,, the top accelerates the bottom, tfiile the bottom resists the top. 

K«. L^jÇtL 
Theory of_.-__ 

In accordance with this friction 

t——pl?t?. 
dy 

Here ve Introduce the quantity £ - the turbulent f viscosity 

coefficient. On^analogy with molecular friction, £ corresponds toTb 

calculate £ , Prandtl has put forverd a simplified flow system. 

Let us consider two layers of liquid at a distance A y from each 

other (Fig. 129). The velocities in these layers are different, and on account 
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of pulsation there is an exchange of manent '*» betveen individual atreana. Irandtl 

has aaeuaed that the (of liquid shifting on accovmt of pulsation freo one 

layer to another retains the naaentun component in the direction of the x-axls 

over a certain distance. Ihe distance over vhich the particles retain the 

Fig, 129. Determining mixing length 

properties vhich they possessed in the first layer has been called the 

. Ut us designate this value as 1. If the distance betveen the 

layers in Fig. 129 are selected in such a vey that A y = 1, then the particles 

the bottom layer to the top one retain their horizontal 

velocity coupon en ts vhich is u . 

fren 

-1 

tte difference between the mean flov velocity at the points y ^and the 

velocity of the particles reaching this point from the bottom layer gives us the 

pulsation in the velocity at this point 

&U\=*l(dã[dy) 

But if 1 is small, then K . Ihus, the pulsation is 

i 
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Bxe pulsation of the re loci ty in a transverse direction lfX*u# Thi*, the 

friction is 

Vand ,-p(*i)' 
'**/ Uy/ (6./i2) 

In the formula derived, 1^ remains undetermined. But in a nunber of 

cases by using experimental data ve can find the connection betveen the miring 

1 and the linear dimensions of the flow. 

Turbulent flow nucleus and laminar sublayer 

During turbulent flow the total friction in the boundary layer Is 

made up of friction throutfi molecular viscosity and turbulent viscosity 

t-fr+f.) £. 
ày 

Over a vide distance from the vail the turbulent viscosity greatly 

exceeds the molecular viscosity, /part of the boundary layer in vhich ve can 

S' 
disre^rd molecular viscosity is called the turbulent nucleus (Fig. 130). 

Turbulent 
nucleus 

—1, Laminar 
p sublayer 

Fig. 130. Turbulent flow nucleus 

and laminar sublayer 
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Near the vail the turbulent pulsations are damped and the molecular 

viscosity plays the major role. Biis settion of the boundary layer is termed the 

laminar sublayer. On the boundary between the turbulent nucleus and the laminA^r 
J 

sublayer there is a transient region in which the molecular and turbulent 

viscosities are of the some order. When calcula ting fourbu lent boundary layer 

we must consider each region separately and introduce further assumptions with 
« 

regard to the conditions at the point where the region Joined. 

Universal lavs of velocity distribution 

The experimental study of turbulent flow in pipes and boundary layers 
i 

u/u . = (yß)n 
has shown that velocity profiles can be represented as a . The value n ranges 

f £ 
from 7 to 9 when the Reynolds number Re=u-*/v ranges from 10 to 10 . Bie 

representation of the velocity profile by means cf power lavs has become comnon 

and is convenient for supersonic flow as well. 

A second expression for the velocity distribution ean be derived by using 

x=fP(duldijY 

the hypothesis of the turbulent friction ^ . It is rougaly assumed that 

across the boundary layer 'C = const == . 

The mixing 1 - the scale of turbulence by the wall - must be equal 

to zero and can be taken as a first approximation as proportional to the distance 

from the wall 1 = ky at which k is the proportionality factor. 
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After substitution ve get 

and 

Integrating, ve get 

a=--In.? + const. 

k and the integration constant are determined experimentally 

Fig. 131. Velocity distirbution in dimensionli >s 

coordinates 
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The value ^ hoe the dlmeneionallty of velocity and le designated 

18.43) (8.43) 

The logarlthzalc lav of velocity distribution can be written In the form 

Fign. 131 experimental data for the velocity distribution 

with the^ lavs 

As can be seen, the logarithmic lav accords satisfactorily vith 

experimental data at log (yu A> ) 1.5* Belov this point near the vail there 
—X * 

is a laminar sublayer vith a linear distribution of velocity (curve 1 in the 

logarithmic scale). 

Sec. 33. Turbulent Heat Exchange 

In turbulent flow, the pulsations produce further fricticn stresses 

andJ additional transfer of heat. Ihe mechanism of transfer in both cases is the 

same and the analogy between friction and heat transfer in turbulent flow is closer 

than in laminar flow. 

Without repeating the arguments which ve put forward in the preceding 

sections, let us write down the expression for the heat flux density in the form 

q~gxp(vT). 
(8.45) 
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T 
Here v' ie tlie vertief] l'^eMícn oí’ ve?oci+y i ie tl*r ^terperntvre ^ 

On the bM la of the motion of the mixing } , ve get 

r~0 
Here T ia the mean temperature, T-T-rT’. 

Hence 

tx^Pidufrj) a U t -U 
The value ia the analogue iL ÍAjl 

Vk H « 

\ 
\ 

\ 
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? 
\ 

-339- 
to* 

ve took it that í 

By analogy vith nolecuLar weight Pr^nc^/i , let ua introduce the 

turbulent maaber Pr^ = tji ( , which representa the ratio between the turbulent 

▼iacoaity and the thermal conductivity. Hie molecular nvcnber fy- for air 

is approximately eqial to 0.71, and the turbulent number lJr 0.8Ó. Hius, 
T 

in the case of turbulent flow we can take it roughly that ?r CrC 1, 

The temperature distribution across the boundary layer can be represented 

by the same laws as the velocity distribution. 

Hie power lav 

(8.46) 

in which n = 7 to 9 and is the thickness of the thermal bouitiary Layer. 

The velocity and temperature profiles are similar to each other. 

T~Tt m » 
rm-rw am • 

Link between friction and beat transfer. The similarity between the 

process of transfer of momentvsn and heat leads, as in the case of laminar flow, 

to a link between friction and teat exchange. 

Assuming the velocity and taaperture profiles to be similar 

■„ Tm-Tm * 

we get 
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Near the vail there la a laminar sublayer in vhlch ve have to take the 

difference between Pr and unity, and moreover, in the turbulent nucleus Pr,^0/0. 

Hence between the friction and heat transfer the following relationships have 

been experimentally established 

j-'//<P0 18.117) 

Ihis condition is only valid vhen the thersal and dynamic lasers begin 

at the same point and vhen the longitudinal pressure gradient Is sll^it. 

Approximately /(PrfriPr1-4. 

Sec, 34. Semi-enplrlcal Methods of Calculating Turbulent 

Boundary layer 

At the present time it is not possible to write down any exact differential 

equations for manen turn and energy in turbulent flow in the boundary layer, since 

there are no reliable expressions for determining the friction. 

Hence the calculation of the turbulent layer is chiefly based on 

experimental data. Ihe cachonest methods are those in vhlch ve use the equations 

In their Integral form. But the direct use of the integral method, slmilai to 

h* wt—4. 
Polhausen's method for lanlnar flow , the velocity profile is replaced by 

a polynomial or some other function, satisfying the boundaty conditions, is 
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unsuitable for acose of turbulent boundary layer. 

This is due to the fact that the above-mentioned power and lo^rithmic 

-fiV 0* 
lavs of velocity distribution in the turbulent boundary layer are cnl|| true 

turbulent nucleus of the layer and are inapplicable to the laminar sublayer. 

Let us consider the integral relationship for monentus in the case of 

a flat plate 

dx 

4* 
This formula contains two unknowns X and d . In a laminar boundary 

w 

layer ve introduce a further assumption regarding the velocity profile 

IMa condition can express the friction 'C^. and the thickness of the 

2 
energy loss in terms lof Ò , and give us an equation with one unknown function 

i 

In the case ofyturbulent layer, this approach is impossible. Having 

ufuL^fXy/S) * 
set the velocity profile ^ , ve can express 6 in terms of à fairly accurately. 

But ve cannot express the friction on the vail vith this profile since the velocity 

profile in ^turbulentnucleus is inapplicable directly at the vail in the laminar 
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sublayer 

Ihua, ve must derive an additional equation Linking the thickness of the 

V 
boundary layer Û or c vith the friction on the vail. Ihls eqmtlon Is terned 

the resistance Lav. It can be obtained from a semi-emplrlcal logarithmic velocity 

distribution, or else experimentally. 

îhe mo4t complete experimental data at the present time describe flov 

through a tube at présenle velocities and flov along a flat plate at high super¬ 

sonic velocities. 

Example of calculation of boundary layer on flat plate on 

basis of experimental lav of resistance for flov through pipe 

¡hiring flov through a cylindrical pipe (Fig. 132), the friction can 

be determined by measuring the pressure distribution along the vail. The condition 

Fig. 132. Momentum equation for fluid flow in pipe or channel 
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of balance of the liquid colvxm contained between sections 1 and 2 gives us 

- : fl-* R 
L 2 

ItmO 
The friction when determined experimentally for R «-—< 100.000 is 

* , 

equal to 

— -0,0225--- 
rU' ’ ÇJfRÿK 

During flow tbrou^i the pipe the boundary layer fills the entire section aal 

the radius of the pipe is the thickness of the layer. Bie velocity at the axis 

of the pipe U corresponds in the case of the boundary layer to the velocity 

beyond tin this layer. 

Unis, we have an unknown resistance law in the form 

0,0225 ^ i_ 

f«! / «.P* \# îi 
(^r 

Using the power law of velocity distribution with the exponent l/7 

we get the connection between £ and $ . 

’••“‘((if ['-(ífkhí'- 
Thus, substituting this result into the momentum equation, we get 

°,0225(^)- f2 

t 
T 7 dl 

i dx 

Solving this equation, we get 
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M 
0.37 

and then 

GT 

-p- - 0.057 Re7w(Re,« ~). 
— in* 

The mean friction stress 

rf. . ’ 

in lidch R is the total tesistance of the plate vith vidth 1 wer the length, and 

X is equal to 

f ft*** 

4 
n 

C/- -«■- 
0 

¢,^ = -^=0.072¾^. 
0fO 

o 
o 

Thèse equations hold throughout the range of Reynolds nvnbers fron 

S- 7 
5 * 10 to 10 . 

Using the condition of hydrodynamic analog/ betveen friction and heat 

exchange, ve can easily find the corresponding expression for the thermal fluxes. 

Baking — \c/Pr*0,s. we obtain 

-0.» =0.029 ReTPr 

or q=s*(Tm—Tm) ■■ 0,029 •3600¿£« «c, (71.—) Re Jm Pr”M. 

• The mean beat flux per unit length in kcal^n^* hour for the case 

5* 10®K. Re, < 107 ja equal to 

1- - 0,037 • 3600£f«-c, (7-. - Tv) Re7M Pr^‘. 
r 0,8 

In the dimensionless form 

Nu=Y=0.029RerPr 
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Aa ve can see, the variation in the thickness of the boundary layer , 

resistance to friction and heat flux density as a funcUon of the Reynolds umber 

in the turbulent flow differ from the corresponding lavs for flov. 

Flat plate 

Laminar flow 

j_ 
M /Re ’ 

-JU: t. -•>« 

f* 

/R7 * r* 

I 

Turbulent flow 

J_L_ I ^ x«4 

X Re,•, * 

»«l 
_I _ # ^ 
Tc#-Î : tr‘» “ o,s 

•a 
/ Ke 

Nu ~ Re'; f* i 
,0.J • 

Nu-Re?. 

Thus, during turbulent flov the basic characteristics of the boundary 

layer are a function of the Reynolds mtaber to a lesser bxtent than during 

laminar flov, lhe effect of the Reynolds mnber is due to the action of the 

molecular viscosity. When the Reynolds number Is increased, the effect of it 

is still veaker, Ihis is because the thickness of the laminar sublayer in vhich 

the molecular forces play the main part, is reduced as the Reynolds nmber is 

increased. 

Sample of use of semi-empirical logarithmic lav of velocity 

Rétribution to calculate boundary layer on the, flat plate 

In the equation for the velocity distribution 
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the constant« are determined experimentally on the basis of measurement of the 

velocity distribution and friction on the «all of the pipe (see Fig. 131.) 
A 

This equation interlinks the velocity in the boundary Lajer aoi 

the fricticm on the vail. By using the integral relationship for mecen turn ve 

can obtain expressions for the friction. Leaving out the cumbersome operations 

/10, 14/, ve arrive at the final forna 

0.455 M _ «** 0.237RC 

'VilgRe)^’ “(IgR«)^* 

Otese eqwticns are rather superior to those derived on the basis of the 

power lav for the velocity profile with the exponent l/7 since they are applicable 

4 
up to Re 10 . 

See. 35. Turbulent boundary Layer on flat plate in cccpressible gas 

At high flight velocities, the kinetic energy of the outside strean 's 

r^Gat content by the vail on account of friction. The heat flux at high 

flight velocities is determined by the difference betveen the drag tmperature of 

the stream and the tenperature of the vail, rather than by die teoperature drop. 

Temperature of thermally insulated vail 

The degree of transformation of kinetic energy s into heat is described 

by the (coefficient | temperature recovery^ 
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Here is the tmjerature of the heat-insulated vail. Expe ricen tally 

the value has been determined as r ¿^0.89. 

Dxus, in turbulent flow the temperature recovery coefficient is greater 

than in laminar flov. Diis is because the Prandtl mriber for the principal 

o 

turbulent area of the boundary layer is closer to unity (Pr ^ 0.86 for air, 
T 

and Pr-ufX“0,71)- 

Determining heat exchange coefficient 

In order to täte the energy dissipation t throutfi friction into account, 

the heat exchange coefficient is determined by the equation ç.=a{T,-*-T*). 

When determining in this vay, it might be thought that the effect of 

the compressibility vould show up In cC solely through variation in the physical 

properties of the medium. 

Distribution of velocity, temperature and drag température 

When there is flov along a flat plate at high velocities of the outside 

stream, there is approodnate similarity between the velocity and drag temperature 

profiles 

Tjo— 7V u 

t 

Ihe distribution of the drag temperature and velocity across the bo.^ery 

layer can be described fairly veil by either a power or a Logarithmic law, given 
- 347 - 



earlier for the case of aa Inccapresaible £pa, übe distribution of tenperoture 

across the boundary layer coincides qualitatively vlth the tesçerature distribution 

in the laninar boundary layer at hi.gh flight velocities. 

Sec, 36. Bxperlaental Graphs and Theoretical Formulae 

At the present time there are reliable experimental data for the 

variation in the fricticn coefficient as a function of the M nunber. 

Fig* 133 shews a composite graph for the experimental ratios <f the 

friction coefficient ^and the corresponding value of it for an incompressible 

liquid cf • Hie friction values vere determined by direct measurement. The 
T« 

YTS 
following ext .pointing curve is also plotted on this graph 

fc> 
Ihese points vere obtained basically for . case of a thermally-dnsulated 

wall or at the ratio T /Te , hardly differing from unity. Taking the effect 
« ^ 

of the temperature ratio into account, we can recommend the following fomula for 

the local friction coefficient 

(8.10) 

and 

* 
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Fig. 133. Experimental data on friction coefficient as function 

of M number In turbulent flow in boundary layer of plane plate 

lhe heat-exchange coefficient can be determined from the equation 

N“ “ f.-“0'0J‘JRe" '''IttH1 + ‘ rrMT':- (8.50) 
),')•= (Tr T)0* 

Here, if ve take the relationship * , the following *"•r ^ 

existe between friction and heat transfer 

Ihe thermal flux on the cone at the same value Re^^is approximately 

1,17 times greater than on a plate. 

Here 

Nu*~£' e'’-%• 

2 

The equation for the heat flux can be checked by direct experiment over 

i 
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the range of M msfcers ftron 2 to 4 and 0A to 1, 

jt-U 
existing data for heat exchange in an iaccopresslble 

_I_ s - - • 
? r II 1— 

*,»(<• Vah'/V” 

U V 0,1 OS 10 Ke 

Fig. 134. Effect of temperature factor f»#-r»;7V 

on heat exchange 

Fig. 135, Effect of M number on heat exchange 

2, and coincides vlth 

(see Figs. 134 and 135). 
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TWdim it Into cotiß id entice that vhen uaing the hydrodLynaoic analogy 

the transformed equation accords satisfactorily vith experiaatal friction 

coefficients up to K ^ 9, the heat exchange equation can be reccranended for use 

as veil at M > 4 and >0,1. 
• # 

In order to apply the theoretical methods of the boundary layer in the 

case u 4 const, ve must know the betveen tha heat flux and the local 

characteristics of the local boundary layer. 

The energy equation for the flat plate takes the form 

r 

Utilizing experimental data, vep get 

»:«,^’m"7~0'013 R?:lpt',”r;'’(1 +T!'«!rVs.> 
&re - Re,=--'. 

Sec. 37. Calculation of Heat Exchange in Neighborhood of 

Critical Point of P ane and Axial Symmetric Body 

During turbulent flow in the neighborhood of the critical point, the 

boundary layer may be calculated by using the integral energy relationship and tL*> 

connection betveen heat flux and the local characteristics of the boundary layer, 

derived for a case of the power velocity distribution lav. 
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I«t us consider the axial-symnetrlc case. Let us single out the 

contour abed, in vhlch the line b£ coincides vith the line of the current, and 

,_Urn , 

let us take it that a flow with paraneters ^ (Fig. 136) strikes the 

contour. In the section cd the flow parameters beyond the bounlary layer are 

Pi* ».* (Tt)r 

The energy balance condition gives us a heat flux receeding towards 

i 

Fig. 136. Derivation of integral relationship for energy 

for axially-symmetric flow 

the wall ij 

* 

(TJm-2rxfjtuTM(r+y)dy; 

'n* *= m* 
*a **** 10688 fP9 flowing into the section ab - ? altie be is the 

t 
n*m*2i:jpu(r+y)dy. 
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H y« r 
Taking it that A , we get 

L^t us designate 

J Ml l T'-T. J , 

then 

Qm*=2-rc¿iul (r,-rj4. 

y<l^XcJL 
lhe heat flux density ie to the tota] flux by the condition 

Qw=j2*rqadx, 

Finally we get 
a c o-r-- 

^ rfx * 

ie.52) 

When there is flow round the leading, rouided section of an axialX^ - 

symmetric body, r x in the nei^borhood of the critical point. Furthennore, 

at small distances fron the critical, point, at which the flow velocity is * sma.? 

(up to \ = C), we can disregard the dependence of ^ on x. 

J 
Then, at T^= const the energy equation^vhen it is taken into account 

that .takes the form 

<tw +2—. 
—7"») dx X 

(B.??) 

In order to establish the connection between the heat flux and the 

local characteristics of the bo vedar y layer, let us apply the experimental data 
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/O 

for a flat plate 

Í*—=0.013(-^-^P^O +0.2rM5)"0U(—) * 
fVi“i 

Taking it Into cona liera tien that In the region under consideration 

M ^ 1, after substitution and integration, ve get an equation for the heat flux 

_ j_ 

i.-seoofv.îxfr.-r.) o,0!o(H)"‘(?'-)‘*-,‘pr-K kc*i/m2-hr (8.5M 

It follows from this that at the most critical point at x = 0, q 0. 

^arr?^ 
But here there is still laminar heat exchange. The value ^ at the critical point 

/see (8.38) and 18.39)/ 

Pig. 137* Flow 10 neighborhood of leading critical point 

on axlally-symmetric body 

We can obtain an equation for the turbulent heat exchange 1- the 

neighborhood of the critical point on a flat body in a similar way 
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?.-3COOW3.t(r, - rJ O.01-,‘ (8.55) 

In practice ve have to calculate it vith the formulae for lam loar 

i^lanf^^^turb 
bomdary flcv up to values of x at vhtT /y ,rand from then on by the fcrmulae 

for the turbulent boundary layer. This condition can be impinfed as ve accunulate 

data on the transition point between Laminar and turbulent boundary layers in 

the neighborhood of the critical point. 

î=(dujdx) 
lhe value A in the case cf supersonic flov around a body can be 

taken approximately at ß =^0//0. in vhich r is the radius of the end 
- 0 

or the distance along the generator to = 45° in the case of a spherical or 

cylindrical leading part (Figs. 137 and 13&). 

Fig. 138. Flow In neighborhood of leading critical point 

of flat body 

As is knovn free experimentation, vhen there is apersonic flov around 
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blunted bodies In the sections beyond the boundary layer, the velocity & attains 

(X a 
jV* 

Cal cu latine heat exchange in a noza I e 

(jtflth an accuracy of 1^ - the heat fluxes in the nozzle can be 

—1 
calculated vlth the foraula for a flat plate, if ve start counting the distance 

X in the chanber the beginning of the nozzle. Ihe values (In the fornulae 

f 
have to be taket.in each section of the nozzle for vhich ve determiné the heat flux. 

The thickness of the boundary layer in this calculation is too small, vhile the 

f.i—íí)*’ 
heat fluxes are too large. But on account of the fact tlab in the formula A 

the error in the heat flux is insigiifleant. When calculating heat excharge on 

the vails of a nozzle at M ^ 3, the errors may be more considerable. In this 

case ve make use of methods vhich make allowance for the developecnt of the boundary 

layer in front of the sections in question, the so-called "prehistory". It fol tvs 

from the calculations and experiments that the heat flux in any sec tien of a flat 

nozzle is less than on a flat plate of equal length. 
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CHAPTER IX 

HEAT EXCHANGE DUR INC CE’MICAI, REACTTCNC IN 

THE BOlinJAKÏ LAYER 

Sec. ?8. Ifialnar Botmdary Layer during Chemical Rcactlcne In Gag 

At the hi$i gao teaperitures which are attained in tl« combustion 

chambers of liquid fuel and jet engines as well as in the boundary layer on the 

surface of a body moving at high velocities, we have to take into accountthe 

dissociation of molecules, [the chemical reactions occurring in the boundary layer. 

These reactions also take place in cases in which the fed to the boundary 

layer for purposes of cooling may react with the gas of the outside stream, in 

nunter of cases at high temperatures and high thermal flux we have to 

give consideration to the destruction of the surface of the body - by melting or 

evaporation. Here the particles of the destroyed surface may react chemically 

with each other or with the gas in the outside stream. A case • may also be 

encountered in which the chemical reactions take place on the surface fif thé body. 

\ 
The new branch of heat exchange during i chemical reactions is of * 

particularly great and topical importance in solving the problem of cooling 

long-range rockets moving at high supersonic velocity. As is well known, at 
% 

such velocities there is considerable aerodynamic heating of the rocket parts 

/^, 15/. 
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Th!« process is perticulArly important vhen the rocket retvrna to the 

atmosphere, since in this case the increased supply of heat is considerably more 

o 

intensive than the inverse thermal radiation. For exasçle, if the velocity of 

a missile returning to the atmosphere is M ■= I5 - 22, at such higx supersonic 

velocities of moticn, a drag temperature of the order of I50OO - 25000*K is 

produced in the boundary layer near the vail of the missile /lk, 15/. When such 

temperatures develop, there is dissociation of the air," which creates an 

extremely complicated gas-thermo-chemical problem, bordering on the realm of 

magnetogas^if-namics. All this shows the necessity of ensuring special conditions 

for cooling the rocket and protecting its surface. 

To solve the problem of protecting the rocket surface when moving at 

higi supersonic velocities, we must carry out further research both in the use of 

the known types of coolant as well as search for new ones. 

In particular, ve are faced with the problem of further intensification 

of the cooling effect by using both phase transformations accompanying the 

absorption cf heat (evaporation, sublimation, and so on), as well as additional 

use cf the negative heat effects of the endothermal reactions which may occur 

in the cooling agent under corresponding conditions. Naturally, the practical 

rf~ 
application of the additional cooling effect possible eaiothermal reactions 
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«* 

cf dißeccietfot. of the ccoJ»ci rry involve jjren* ¿.ifftcultles. 

First, the cooling agent itself and the decomposition products should 

not be cheaicaldy aggressive with respect to the material of the heat exchanger 

in vhich it is circulating, or with respect to the corresponding cooling surface 

of the rocket. Secondly, the cooling agent and its 'products should possess 

the greatest specific g thermal, capacity in order to ensure maxlmm heat removal 

at the given temperature difference. 

/ 
In principle, it is possible to step<ip the cooling effect by using 

both phase transformations accompanying the absorption of heat, as veil as the 

additional absorption of heat through the completion of the cndotheraal reaction 

viih the heat transfer agent. 

Hie study of heat transfer during chemical reactions ' still in its 

infancy, of course, and a great deal of experimental and theoretical ret -ch 

will,be requieed before it is successfully solved. 

When there are chemical reactions in the boundary layer, ve have to 

take into account Ihe additional emission or absorption of heat inside the 

boundary layer. When considering the motion of a gas mixture as a vhoie, ve have 

lx. Pr* 
to u keep it in mind that the physical parameters of the mixture K etc. vill 

depend both on the temperature and the composition of it. In such cases ve have to 
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;utiaiier the totality of the equations of notion, thermal conductivity and diffusion 

since all these equations are inter^. In the general case ve can add the 

conditions for the chemical reactions - the chemical kinetics equations - to the 

previous ones. On account of the complexity of tha^henomena involved, ve have to 

consider simplified systems. Let us now take a look at^laminar boundary layer, 

■ although the derivations will be applied later to the turbulent bouniary layer. 

All the derivations applied to gas mixtures for which Pr “ 

DDà‘?rÿLTj^/ç^) are not very different from vnity. îhe aim of this 

sec tin of the book is to provide the preliminary information needed for the study 

of theoretical and experimental heat exchange during chemical reactions. 

Bcwmdary layer eqmtions at low flow velocities during diffusion 

and chemical reactions 

I*t us introduce the concepts of gas * • enthalpy 

(9.1) 

lhe enthalpy of the i-th gas component J • is equal to the total 

(M . 
mergy consisting of the heat content of the gas A and (J ),- the chemical 

chem 

energy of formation of the given substance from molecules of individual elements, 

«qual to the energy which has to be expended in order to obtain this matter from 

the elements. For example, if heat is emitted during the combustion of hydrogen 
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and oxygen, the heat of formtlon Is eçual to the anount of heat released 

during the reaction 

'' 11.+70,=^0+5 ,. ,,, 
¢/:-- 1 

J - Q — — 57,8kcal/mole — —3210 kcal/kg 
chem ^ c / M. *( , 

0*. 
lhe chenical energy of H^O comes outj negative^ since it is not 

absorbed during the formation of the K^O, but rather released. Here it is taken 

that the heat of formation of H and 3, is equal to 0, The value J thus 
-1 L - (lx~> 

depends on the system of counting selected. T.bles usually give data on the 

heat of formation from elements taken into the state vhich is stable at l8*C 

and 1 atan abs pressure. When making the calculations, it is of no importance 

IK 
at all vhich system is selected, since ve are dealing with differences /heat 

of formation of different components in the mixture. 

If ve consider a mixture of gases, the enthalpy - the total energy of 

the mixture/is obtained by suamation 

kcal/kg (9.2) 

Here C . is the concentration by veight of the i-th component in 
^ L •" 

the ‘mixture. 

When a gas mixture moves, the total energy of the released volune 

may vary on account of the supply or removal of heat throu^i conductivity, 
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>r of energy directly by the influx or eflux of fps from the voluae, anl 

the transfer of energy during the movanent of different molecules through diffusion. 

Ihe total energy flux at a low flow Telocity through the area oriented 

in the direction of the y-axis á can be repreaented in the following for» (disregarding 

diffusion thermal conductivity) 

i 

Die first term represents the transfer of heat 

(9.3) 

thermal 

conductivity, the second tern convection, and the third throutfi diffusing 

gases* Here Q . is the amount of the i-th component diffusing through the area, 

J » is the total energy of the 1-th compoaent. It is interesting to note that 

in this formula ve do not need to take into account the emission or absorption 

of heat through the chemical reactions separately. During the chemical 

reactions, the total energy« of the mixture J does not vary. This is inleed the 

advantage of introducing the concept of enthalpy J. 

lyd 

Fig. 139. Energy balance and elementary volume 
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and far ft plane caae (Fig. 139) 

dx dy 

As usual In the theory of the boundary layer, in the expression 

ve can disregard the tenas for the mal conductivity and 
X 

diffusion in 

the direction of the x-axis. 

jMs Is implied by the evaluation of the orders of the individual 

terms, and is a result of the slight thickness of the boundary layer. 

The energy equation takes the form 

but 

jWi 
dx ** 

d',rj 

dy 

dx ’ dy * dx 

dJ . jidfu 

dy \ 

dfO\ 

dy)’ 

Proa the continuity condition ve get 



Thus, ve finally get 

>“ £^=,7(^)-2^ >>• (Í» 
I 

to this equation ve must add the momentun equation and the diffusion eqmtion 

fU — +*v du » ± L *L)- *IL 
à* dy ày\ dy) Ox* (9.5) 

(9.6) 

lhe diffusion eqxmtion, ihlch expressed the contulty condition for 

the 1-th component, disregarding thermal diffusion, takes Into account the 

consunption of the i-th component through chemical reactions (w^) • in kg/m*. ^ec. 

The diffusion equation can be derived by compiling the balance of the i-th 

component In the elementary voluae. 

The flow of the i-th component through the area normal to the y-axls 

is equal to a ; through the area normal to the x-axls it is Mx = ^^.(disregarding 

the diffusion flow along the x axis ). The balance"" "equation takes the form 

+ ^ = (tr )( , and then (9.6). 
vd* àx chem ^__ 

a. 
I^t us consider a binary mixture by itself, i.e., . mixture consisting 

of two components. In this case 

¢, + 0,-=1: Qi=-Q2= -iD'jíóC, òy) 

an^ $ diffusion coefficient of the first component in the second: J)^ 
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For a nixture consisting of several components, the diffusion flows 

Q . are expressed in a more cooplex way in terns of the diffusion coefficients 

toe each pair of components - the coefficients of binary diffvnion. In a 

particular case, in which all the binary diffusion coefficients are equal, the 

Q,**—pD(Õ£t!dy} 
expressions for Q • retain their simple form „ , in which D is the bimry 

diffusion coefficient. Although all the operations 
<7M 

relate to a 

binary mixture, the final versions are still valid for a general case of a 

multicomponent mixture. 

I*t us transform the energy equation into another form. According 

to the definition of the enthalpy of a mixture ' Then 

dJ-ZJJCt + ZC'dJ, 

k dJt = Cp dT, 
</(/-0i=0 J 1 cheAi ' 

since ^ , because the heat of formation of each component is a fixed value, 

^ence. 

dJ~'£JidCi + 2lCicpdT. 

but Z^icp¡—cr~ is the mean thermal capacity of the mixture, and 

d/^dT+^J^C,. 

Ohe expression in the right-hand side of the thermal conduttivity 

equation can now be transformed in the following way. Bie temperature derivative 

V/ 
is equal to dT dJ 1_* dy 

dy dy tp Ip 
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Hy substituting it into the right-hand side of the energy equation we get the 

following for a binary mixture 

¿(ÍttK [(" r; f w-y>» "p0 f 

<9-7' 

= Pr^Pr _ 
Pr»*1»/fD 

The formula * to equal to the ratio of the Prandtl diffusion nusber 

Pr-Hf,/). to the Prandtl mrber. Having substituted this expression Into 

the energy equation, ve get an equation in a nev form 

'“7f+p%7% (r, <y' -y4 
(9.8) 

fri 
If we take It in this equation that * ÇÏ it acquires a form similar 

to that of the energy equation for low velocities when there are no chemical 

reactions, except that in this aase the role of the heat content c T is now 

played by the total enthalpy J. ïhe physical meaning of this Is that during flow 

along a surface by a gas mixture, the heat exchange is determined both by the heat 

energy of the flow as well as by the chemical energy which may become heat energy 

on the« walls. Ihe condition (^fèads to the fact that the surplus chemical 

energy in the outside flow over the chemical energy of the gas at the tmperture 

at the wall is completely converted into heat energy. But if Pr ^Pr ^ and the 

processes of diffusion and. thermal conductivity take place with different degrees 
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of Intensity, it cay happen that the conversion of chemical into heat energy Is 

not complete. In the same va y that vhen studying the boundary layer at hitfi 

velocities in a case Pr ^ 1 ve introduced the concept of the tenperature recovery 

coefficient, vhen there are chemical reactions ve can speak of the enthalpy 

recovery coefficient, vhich takes into account the degree of traesfrmation of 

chemical energy into heat, 

\ 

Ohe heat flux transferred to the vail s is determined by the formula 

l /dJ' X /dJ\ 
'•-TMl 

/ dJ \ _ ~ Ja 

-me derivative^ ^ in >hich J ^ is the total enthalpy in the^ 

outer stream, J is the total enthalpy of the gas by the vail, ^ is the 
“ if 

X Jm 
thickness of the boundary layer. Then —z • 

In the same vay that in studying flov at high velocities it vas 
« =-- 

(fco)-"-7’» 
advisable to determine the heat-exchange coefficient ^ , in the case 

tL¿. 

of flov with chemical reactions it is convenient to determine 

coefficient by the expression 

(9.9) 

Here ve are already taking into account the main effect of the chemical 

reactions on the heat flux by the fact that ve are now dealing vith enthalpy. 

Ihe value a may vary on account of variation in the physical characteristics 
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of the nedltca. Ab a first apprendrai ion, a can be taken fron so lull ona for 

flow without cheaicnl reaction, mking allowance for the chemical reaction by 

P« 
oubatituting the values * into the final formulae and taking their chemical 

caapositicxi into account. For example, the heat flux on a plate can be 

calculated from (8.37) 

*.-0.332'-I- ' ]i!±.(9.10) 
* Pv* V.U»P»/ 

in which C. is the mean thermal capacity of the mixture at T = T _ . 
‘-ar - ' ? 

J** and J at the set temperatures T and T are determined from 
* - “ - w 

* 

the chemical composition. If the temperatures are substituted for the enthalpy, 

we may make a large error. For example, in the combustion chambeas of liquid fuel 

engines using a mixture of kerosene and oxygen, the temperature reaches approxiiattely 

35°0* /16/. On account of strong dissociation of the combustión products, some 

of the chemical energy is not converted into heat. At a temperature of 1000* 

on the cooled vail the chemical energy may change to heat, i.e., there is 

reccdbination of the molecules. The temperature difference 25OO*, 

the difference-^^^3500°. So if we use the difference (T^- T ^.) to detezaine 

the heat flux, ve are liable to make a very la^fte error. 

Distribution of velocity, enthalpy and temperature across 

the boundary layer 
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When there are chemical reactions, the of the temperature is 

played by enthalpy. Ihe equation for the distribution of enthalpy and velocity 

across the layer in the« case Ir = I’r^ = 1 during flow along a plate are similar 

to each other. It ie easy to see that by sxtostituting condition / = /rH—• (/-—/«) 
-—■ 8m 

the energy equation becanes identical to the motion equation (at dp/dx = 0). 

This condition 

J — J* u 
J.-K~ (9.11) 

is the similarity condition for the enthalpy and velocity profiles in the boundary 

layer. Ihe temperature distribution her may take an arbitrary form, depending 

on the nature of the chemical processes in the boundary layer. 

Ihe similar condition for the velocity and enthalpy profiles c implies 

a relationship between the beat transfer and friction in the ■ normal form 

NuRe. 

Here it should be kept in mind that in the formula for the number Nu = 

the value is referred to the enthalpy drop « r,=<7»/^- ~ 

In the general case, if Pr ^ ^ the condition linking the friction 

and heat transfer during chemical reactions can be vritten in the form 

Na=|i/Re/(Pr,Prd). 
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/(Pr. Pr.) 
Ju0t as for an exact value of o< , the fore of the function can be 

determined by solving the boundary layer differential equation. But to do this ve 

have to set ourselves the specific dependences of the chetlcal reactions. 

Extensive experimental research is nov going on to find these relationships. 

Sec. 39. Equations for laalnar Boundary Layer during Chenlcal 

Reactions at Flow Velocities 

When the velocity of the flow is high, ve have to nake allowance for the 

emission of heat in the boundary layer throu^i friction and the work of pressure. 

Qmli(duldtj)* 

** of dl‘“ is by ^ fomu,‘ i • wr,£ 

of pressure is equal to uip/dx. 

ühe equation for the enthalpy distribution in the boundary layer 

for a binary mixture, taking these terms into account, takes the fora 

The motion equation is 
+-7^(0-7^^-4 

ta»L+,vlí.^±LJí.yíe- 
^ djr dy dy\ dy / ix 

(9.12) 

By multiplying the second equation by u and adding it to the energy 

equation In exactly the same way as ve did earlier when considering the boundary 

layer In a compressible gas, ve get after transformation 
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+i K' - i h=(' - -)
(9.13)

Here la the drag enthalpy or the total enthalpy of the gas

Eixture.

lie equation arrived Is the most complete equation for the boundary 

Uyer energy In a ccfriressib^e gas vhen there are chemical reactions. If the 

iKBtoer ?r = Ir =1, then the last tvo terms in the equation fall out, and the 

energy equation takes f fom Bimilar to the-t of the equation for low velocities, 

with the only difference that the part cf the temperature Is now played by the

total drag enthalpy /»=" •

In actual fact, the ntsabers Ir and differ from unity, hut for

most gases this difi'erence is of toe order of 30^. Here it is edvissble to 

calculate on the basis of* the assumption that Pr = ^ ^ ®

correctlOTi baking into account the difference in the Prandtl ntriberE fraa

( P,- < f and ^ I). Physically speaking, this means making allcwance 

for the fact that the sxirplus chemical ener©^ and kinetic energy of the external 

Btream are a transformed Into heat on the wall to an Incanplete extent.

She heat flux In the general case can be determined by the formula

(9.1U)

- 371 -



It night be thougit when detemined in this vey that « would! differ 

fren its value for a case in which there are no chemical reactions, principally 

because of the variation in the physical properties of themed lie. 

In order to take the effect of the difference between the Pr and Pr ^ 
40 

msabess free unity into account, we introduce the concept of the effective total 

^athalpy /,</oo • Bien K . J a is assessed experimentally. 
— C- 

Distrlbutlon of velocity and enthalpy across the boundary layer 

Let us consider a case of flow along a plate in which ^«.0. 
ix 

Bie energy eqmtion at P; = Pr(j=l becomes identical with the momentum equation 

on condition 

U00)m J* em (9.15) 

It is easy to show that all the derivations regarding the temperature 

distribution at Pr = 1 in a case of high flow velocity without chemical reaction 

can now be extended to cover a general case in which the part of the temperature 

is played by enthalpy, while the drag tender ature is played by total enthalpy. 

ühe condition relating the friction and heat transfer can be written 

In the form Nu = j^Re/iPr, Pÿ, 

and= 
* */ Ut-J*) 
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lhe value/ aa a first approximtion can be taken fron the solutlono 

derived vithout chmical rsectlona but vith variation in the physical character is tics 

of the medlun /Eqt. (8.37) - (8.39)/. 

Sec. 40. Different Cases of Flow in Bwindary Layer vlth 

Chemical Reactions and Methods of Calculation 

Calculation of the bountry Layer vhen there are chemical reactions 

requires the setting of specific coalitions for these reactions. In the general 

case these coalitions can be set in the farm of reaction rates and temperature. 

The muter of these relationships should correspond to the maber of passible 

reactions in the mixture. 

Let us go back to the system of equations for the boundary layer in 

the case of a binary mixture 

Here the diffusion equation for each component contains the term W • 

vhich corresponds to the rate of consumption of the given component in kg/sec * m^ . 

P, MÆ Pr, Prd 
The values ^ are functions of temperature and composition of the mixture at 
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each point on the boundary layer. 

lhe solution of this problem in the general fora, vhen the reactions 

occur inside the boundary layer, Involves very great difficulties. But in a 

maaber of cases ve can simplify « -• . by Baking certain assumptions 

the physical pattern of the flow. 

Case of chemically balanced flow in boundary layer 

If the chemical reaction rates are excessive compared vith the rate of 

transfer by diffusion and convection, it can be considered tl»t at every point 

on the flow there is a composition corresponding to chemical equilibriua. This 

point the composition of the mixture is a . function means that at each 

of temperature and pressure. 

As an example t let us look at the case of a cheaical reaction of the 

first order O^io + 0. The rate of consumption of the oxygen molecules 0 is 

detemined by the condition ^ = Here V( is the rate of decomposition 

of 0 ^ into atons, idxièe V ^ is the rate of the reverse formtion of molecules 

from atoms. 

It follovs from chemical kinetics that the reaction rates are 
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Here k. / k. are the proportionality coefficients, depending on 
I ^ ^ 

k - ‘ 
température. According to the Arreniua lav k=k¿r , there E is the activation 

energy. In the case of chemical equilibrium V = V • If it is taken into -, - j. 

account now that in our example C ( ♦ C 1, it is eleeur that at the set 

temperature and pressure the composition is determined. 

In actual fact, the equilibrlua is disturbed on account of diffusion and 

convection and V B V equals zero. But if the temperature and pressure in the 
- » ~ 1 

stream are fairly high, the diffusion and convection terms are small compared 

t ^ i 
vith V/ , ani Vv ; 1/, 'K “ € in vhich ^ | and 

., - L 

In order to satisfy the eqaation, ve need only increase the velocity V 
» 

s lightly above V , vhich is done by a very slight deviation in the concentrations 
- L 

€ 

C , and C from their equillbriua values. Ibis deviation is approximately , 
-I ' V V 

Thus, at fairly higi reaction rates the diffusion equations are replaced by 

T) 
chemical equilibrium conditions. In each case the reL&tlonahlps « can be 

calculated. By knoving the composition ve can then determine 
V 

functions 

of temperature and pressure, after vhich the problem is reduced to the solution 

of only two equations: momentum and energy. 

In the flow of air along a flat plate at very higi velocities of the 

I 

outer stream vith dissociation, this problem has been solved by Mur - -^) f[/ 
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on the basie of cettain simplification«. Ihe calculation for equilibriua 

dissociation can be reduced to addition of the condition dependence of 

the physical properties of the gpe on J - the enthalpy of the mixture - 

instead of the usval relationships for non-dissocia ted gps. 

4L 

It is assuaed that relative portion of at<ns of each element across 

the boundary layer remains constant. The chemical equilibrium equations are used 

to calculate the variations in the molecular composition of the mixture consisting 

<rf 0, N, and NO molecules. As a result ve can plot the graphs 

(Figs. l4o, l4l and 142). Froa then on the calculation is in no vay different freo 

the calculation of the boundary layer vithout chemical reaction except for the 

variable physical properties of the medium. 

The results of the calculaticns show the variation in the heat exchange 

coefficient c, freo 10 to 15?; this is due to Ihe fact that the effect 
- tv 

of dissociation is taken into acoouvt by replacing the*"* tmperature drop in the 

formula for heat flux by the enthalpy drop 

f.—T-1(4,)- 

It should be pointed out that although oife varies only subtly, the 
« 

heat flux may be considerably different from the value obtained vithout taking 

dissociation into account. 
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Flg. 140. Enthalpy of air as function of temperature 

Fig. 141. Viscosity of air as function of temperature 

Fig. 142. Variation ln as function of enthalpy 
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Exangle, A plate is moving throng the air at a temperature T m 300* 

and M - 10; the drag temperature T « 000*. Let ub asauae that the atatlc 
• 00 

pressure la p = 0,1 atm aba. Let ua determine the heat flux for the vail 

temperature T «= 2000* and T = 4000* from tvo equations. 
■if, 

If ve dlaregard dissociation, then çV^o(rw-r* ),, 

f.,-4300«, fli,| -Î300*. 

^ take dissociation into account (disregarding the wiatlon in ^ ) 

yw«s0,?4 ' 6300=.1510 

^ a ®od a \ lhe values J and J are determined from the -H - - , 

gr^h (Pig. l4o) for p = 0.1 atm aba. So ve get 

bteá/k 
Jmt — 500 mmt.tftt, # / : ^->0 kcal/kg 

Bien, 
- -.-(1510-500)¾ 42001 
T#* 0.241 

and 

f*. — (I5IO-20CO) <0. 

Bius, In the first case in vhich the temperature of the surface la 

belov the dissociation point, ve ob tail an approximately true result. But if the 

^ ---- 
temperature of the surface is . - po^t, the calculation 

Ifcc 
idien dissociation is disregarded gives J qualitatively opposite result - heating (of 

the plate ¿ vhereas in actual fact the plate gives off its heat. 
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In the general cue the effect of dissociation on the heat flux Is 

not very great, provided the tan pera ture on both boundaries of the boundary layer 

is below the dissociation point. But if this condition is not observed, the 

effect of dissociation on the heat flux nay be m considerable. 

Boundary layer with non-cquHibrlua dissociation. 

If the cha&ical reaction rates are comparable with the transfer rates, 

the chemical composition at each point in the stream depends on temperature and 

pressure, and in addition is determined by diffusion. In this case ve must solve 

the diffusion equation, making allovocce T>'.r '•he -rue kinetics of the chemical 

reaction. 

Fig.l43. The case of chemical nonequilibrium in the 

boundary layer 

lhe problem is simplified when the flow is totally chemically unbalanced, 

i.e., ifcen the velocity of the stream is high so that the chemical reaction does 

not have time to affect the composition of the mixture to any great extent. 
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When air flows round a flat plate, chealcally unbalanced flow can be 

reduced to the case already considered by us for flow without dissociâticn. Indeed, 

the gas in the outside stream, which is at a low temperature, is not dissociated, 

while the chemical reactions do not have time to take place in the boundary layer. 

The opposite effect sny occur when there is flow around a blunt-nosed body with a 

receding shockwave. When the temperature is raised, a chafticol composition 

corresponding to equilibrium at this temperature is established beyond the 

shockwave. 

If it is assuaed that the composition of the gas does not vary in 

the boundary layer, the problem is reduced to the study of flow without chemical 

reactions, but with new physical properties differing from those of the air. 

Finally, we can imagine a ease in which the chemical reactions only occur on 

the surface of the body through the catalyzing effect of the surface. Here we 

must make allowance for the diffusion of the reaction products from the wall 

to the boundary layer (Fig. 143). 

General comments 

lhe examples we have considered show that in the investijption of heat 

exchange at high velocities or at higi tempe atures we must have seme idea of tie 
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nature of the che ai cal processes talcing place. Experimental study plays an 

enonoous part In this problem. In order to reproduce the conditions under vhich 

the reactions occur in reality, ve oust strive for velocities and températures 

close to the real ones in the experimental models. 

For approximate calculation of heat exchange in liquid-fuel engines 

and on the surface of flying croft ve adopt the condition of chemical balance. 

Oie value K is taken fron calculation without chemical reactions, but vlth 

correction for the variation in the physical properties of the mediua /16/. 

If there is considerable difference between the molecular velghts of 

the gases in the mixture, ve have to add to the energy and diffusion equations 

terms for the diffusion of thermal conductivity and thermal diffusion 

occurring throu^i the tendency of lighter molecules to shift to the higher 

temperature* region, and the tendency of heavier molecules to shift to the lover 

temperature region. In certain cases these terms may attain the order of 10^ 

of the principal terms in the boundary layer equations. 
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CHAPTER X 

EYDROPmKIC tCfflCDS OF FIRMLY PROTECTING SLRFACrS, SWEAT OOOL3K 

In the preceding aectina ve have considered methods of calculating 
\s 

the boundary layer for the heat flux froa the gas to the vail. The surface 

temperature occurring during aerodynamic heating may exceed the tolerated 

temperature from the ' point of vlev of strength, leading to destruction 

of the surface. In such cases ve must arrange for the surface to be cooled. 

Sec. 4l, Possible Methods of Cooling and Thermal Protection 

a) Die cánonest method is convection cooling, during vhich the hot 

stream is on one side of the surface while the cold liquid or gas Is on the 

other side, (Fig. 144); 

When calculating the cooling of combustion chambers In liquid-propellent 

engines, this fora of cooling is termed external cooling (vlth respect to the 

combustion chamber^. When calculating the cooling of surfaces vhen there is flow 

round the body on the outside, this form of cooling Is termed internal cooling. 

At very higr heat fluxes it may happen that the temperature difference on the 

mall ¿ at the given thickness of the vail is very large, and despite sufficient 

cooling of the side T , the tesperature T is still greater than the tolerance; 
•V ~ *■ . 
- V I 

b)farrier cooling la commonly used for combustion chaster vails and 
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Jet engine noxsles« A stream of cold gas is fed throu^x boles or a slot In the 

nail in the direction of the stream and protects the surface (Fig. 145). 

Hot stream 

cooling fluid 

Fig. 144, Convective Cooling 

Hot stream 

coolant 

Hot stream 

coolant 

Fig. 145, Different systems of barrier cooling 

Hot stream 

cold gas 7 
• . cooled surface 

The stream slowly mixes with the hot gas, as a result of which the 

surface temperatuee Is Increased. In practical cases there are several slots 

arranged in a line (Fig. 145); 
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- -J 
Hot stream 

boundary layer 

Fig. 1½. Sweat cooling 

Hot stream liquid film 
_i_ 

M protected wall 

cooling fluid 

Fig. 147. Film cooling 

c) Sveat cooling. The cold gas or liquid vlth the same properties 

as In the outside stream or with different properties is fed througi a porous, 

permeable or perforated surface into the boundary layer (Fig. 1½). 
* t 

•y K 

To keep the wall temperature constant, we have to feed|the coolant 

in accordance with a special regime. Sweat cooling is sometimes called gas 

cooling, and if a liquid is used then it is termed condensate cooling; 

384 - 

f 



4) Fila cooling. The liquid here is fed through an orifdce or slot 

e 
f ^ 

and fonas a protective fila on the surface (Fig. Ih?). The fila is along 

the surface by the strean and evaporates. Normally the fila does not have tiae 

to ^coppletely|evaporate^t and is destroyed earlier througi loss of stability 

and splattering. It is used for cooling combustion chambers and nozzles in 

liquid propellent engines, where one of the mixture components tusually a combustible 

K. 
one) serves as the coolant; 

e) Jbe use o^protective coating with a hi§£ failure point and with a 

high-netting point and evaporation temperature; 

f) the use of the internal thermal capacity during the short-term 

effect of thermal load. The inside parts of the construction nay not have time 

to (Fig, iW). The surface of the body must be made of a material 

V 
with a flairly low thermal conductivity|and high theraal capacity yc; 

g) at low heat fluxes occurring at high velocities, a large part is 

played by the removal of heat througi radiation, which is the main type of cooling 

during flights at very high altitudes. 

Ohe calculation of convective cooling, provided the heat exchange 

coefficient and °<vare known on either side, is not very difficult. In sweat. 
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Fig. i48. Temperature distribution at any 

moment of time in non-steady-state heating 

barrier and film cooling the heat exchange coefficient la a function of the Intensity 

4L 
of the coolant feed. Ihe calculation includes determination of the heat-exchange 

4L 

coefficients during interaction between the coolant and the outside stream. 

Sec, hg. Sweat Cooling 

laminar Flow in boundary layer 

Let us ccnslder the laminar boundary layer on a flat plate (Fig. 149) 

at low flow velocities. Hiere is flow around the plate at a velocity u , 

the coolant is fed throu^a the porous surface at a vertical velocity v^ , which 

in the general case is variable along the length (*V 

Fig. 149. Sweat cooling 

- 386 - 



Sm Bfloentum equation for the lonlnar boundary layer U the sane as 

OvKT" 
during flow an impermeable surface 

„„ in , _ da dT-u 

But vhen gas is fed through the vail, certain changes have tobe made 

to the boundary conditions: 

»* y0,*--0 

Bm vortical velocity component by the vail differs from sero: 

at y-l«eu. , 

Deformtion of the velocity profile in sveat cooling 

Sm equations for motion and the above-described boundary condition 

imply 

(àu'dy)w~'9,p greater than sero, since friction acts in the direction 

of the stream , vhen gas is fed ( P.t>r > 0 ) the second velocity derivative 
A 

hy the vail is dVdy5>0. 

Uhls means that by the vail the velocity profile should bulge upvards 

(Fig. 150) 
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Fig. 150, Shape of velocity 

profile in sweat cooling 

Fig. 151. Effect of gas feed 

through surface on shape of 

velocity profile 

Since dPuldy^O , tan o< should increase and the angle eC between 

the tangent to the profile and the y axis should be reduced; o(^ , . But on 

layer : changes smoothly to the velocity of the outside stream. Hence inside the 

boundary layer there must be ax point of inflection at which d-u/Otf-O t and above 

Which d:u!õy-<C0, i.e., there must be a decrease in the angle x . If = 0, 

V * ? J 

As the gps feed is increased, the profiles deform, and the point of 

Inflection moves away from the wall (Fig. I5I.). The deformation increases as 

the gas-feed rate is stepped up. At the same time as the deformation of the profile, 

there is thickening of the boundary layer. In order to separate these two 

phenomena, let us consider the dimensionless relationship 
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Let us substitute Into the notion equation at y “ 0 

Thus, the deformation of the velocity profile vlthln relative coordinates is 

ib*v9W*\ fc# 

determined by the value /.-** ***, the parameter characterising the profile 
A 

shape (shape-parameter ), Fig. I52. The effect of the 91s feed on the shape of the 

profile is similar to the effect of a positive pressure gradient. 

Fig. 152 • Shape of velocity profile and dimensionless 

coordinates 

The physical significance of the deformation of the velocity profile 

can be explained in the following way. The gas fed througi the wall does not have 

a horizontal velocity component, as a result of which it slows down the motion 

of tiie gas in the boundary layer. The drag ' exerts the greatest effect in 

the part of the layer where the kinetic energy of the particles is less, 1 .e., by 

the wall. When the pressure gradient is prolonged dpjdx>b , when there is ne . gas 
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feed throu{£ the vail, the pressure is stepped up through a reduction In the 

velocity of the outside streari. Ihe pressure across the boundary layer Is 

constant, ^articles near the vail vlth less kinetic energy are sieved down 

to a greater extent at the sane longitudinal pressure drop. 

Increase Inboundary layer thickness. When the gas is fed through the 

surface, the velocity profile becomes less complete (Fig. 153). 2ie total 

nass of decelerated £ps is thereby increased - the boundary layer thickens. 

fig. 153 • Increase In thickness of boundary layer 

Reduction in friction on the vail 

The friction on the »all * or É in relative values a . As can 

àit dr¡=tgj * 

be seen from fig. 152, a eq\»ls tan oC is reduced vhen the coolant is fed in. 

The thickness of the layer is increased. Hence, during sveat cooling there is 

a reduction in friction through the simultaneous action of deformtion of the 

velocity profile and increase in the boundary layer thickness. 

A 
Shape parameter f A and coolant feed 

The degree of deformation of the profile is described by the shape 

parameter,/it=P«^Vr. Let us consider the physical meaning of this parameter 
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/ r»**« ^ «•> » *•* 

» •*> *m X 1 * 

Ib flow along a plate 

1 _ 1 » 
l ytt' * 

Subatltutlng this result Into the equation for f , we get 

(io^) 

ae shape parameter is proportional to the ratio of the ^s consuaption 

>S> 
thrcutfi the plate to the consumption flowing througx the boundary layer (Fig. •). 

Fig. 15^. Determining physical significance of shape 

parameter of velocity profile 

In the general case, f can be variable along the wall. But of 

special interest is a case in which f = const. If f = const, the deformation 
~ or ~wT 

of the velocity profile occurs in all sections along the plate to an identical 

extent. I*t us consider at which gas feed v^_ (x) there will be a constant shape 

parameter 



but í — -t ^Re and therefore 

V'Re. 

If c const, thenrw '-^T '°n » plate the shape of 

pa rai» ter f^, is constant when the gas. is fed acccrding to r„ 

Let us deteraine the variation in the inflection along the surface 

during laoinar flow along a flat plate when fw- = const. We will get 

I fi, 
Thus, if , then in every section the amount of coo 

is proportional to the friction. 

(Ut 

l^nt supplied 

All results we obtain purely qualitatively can be derived strictly 

on the * -.. . basis of solution of the differential equation of motion for the 

boundary layer. 

Effect of feeding pas through the surface on tempe ature 

distribution and heat exchange 

All the conclusions drawn above with regard to the effect of the gas feed 
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on velocity distribution and surface friction hold as ieLl for heat «change. There 

is deformtion of the tenperature profile Oien the coolant is fed in (Fig. 155). 

The thickness of the thermal boundary layer is increased. Since the bounlary layer 

equations do not vary, the relationship between friction and heat-exchange during 

flow along a flat plate is retained in the form 

Ch™ —~~—=:rí/Pr J 
tmK'f 2 

'¡he heat flux to the wall is 

'-'W.-m. 
in idilch 

X 
When the coo^nt is fed in, the heat flux is reduced throu^x deformation 

of the tenperature profile and thickening of the thermal boundary layer. The 

deformation of the temperature profile is a function of the shape parameter f 

If f const, ow~1/Vjc, then the heat flux \;Vx. 
~ w 

Fig. 155. Temperature and dimensionless 

coordinate proñle In sweat cooling 
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*• I 
Uhus, If the coolcnt is fed In according to , at a 

> 1* 

constant vail teniiemture the heat flux Is proportional to the consmptlon of 

k 
coolant. This condition Is Indeed desirable, since the heat reaching the vail 

should be absorbed by the cooling gas. 

Sec, 4?, Method for Calculating Boundary layer on loroua Surface 

The laminar boundary |layer equations In the partial derivatives can be 

reduced In a number of cases to ordinary differential equations and solved numerically. 

Examples of these solutions can be found In the references. 

In the general case the solution can be found by using Integral methòds. 

Integral relationships for laminar layer on plane porous airface 

Let us compile a momentum equation for the outline singled out from the 

plane plate (Fig, I56). We find 

* • j pa* dy -f AMum—j p.u^dy — — IT. 

Here Am Is the amount of flowing at the line be; 
« * ft 

AAf=j p-u- dy+j pwvvdx-j pu dy. 

' S' A,- Fig. 156. Derivation of momentum equation 
on porous surface 
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After substitution of ^ M JK Into the Initial equation ve get 

(10.3) 

Here W is the total resistance acting on the plate of single vldth 

t, i\" frr* 

»••1 4x t."m * 

The equatton derived differs from the corresponding equation for an 

Impermeable vail in the second term on the rigit-hani side. 

0» integral relationship for energy takes the form (at T “ const) 
-ni ' * • 

7Tj±zïïrrT,-fS. ■■ Íll0-k) 
• * " 

Ihése equati®8 can be solved by replacing the velocity ard tempeimture 

profiles by polynanials, only if the shape parameter f = const and the" ' 

Telocity and temperature profiles are deformed to the same degree vhile retaining 

their similarity in different sections. But in this case, vhich corresponds to 

a P,v9~\’Vx_^ 
the cool nt feed A , • an analytical solution may also be obtained. 

In the general case ve have to resort to mmerical calculation of the 

integral of relationship by breaking up the plate into small areas kx ani 

asswing £ ^ to bm constant in each area. 

Results of calculations, theoretical formulae and graphs 

Flat plate in an incompressible liquid at , 
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Fig*. 157 and 158 show the curves for the variation in dlnenslcnless 

friction and heat exchange coefficients as a function of f , vhen related by 

the folloving equation 

1 JL 
Nu = --c/ Re Pr* • 

2 ' 

Here it is taken that 

/.=2^YRc. (10.5) 
f.“. 

The corresponding values of X * and y \ are deternlned from the eqwtlons 

i.-i(r.-7-.)|/*--K'p^. (10>7) 

It is interesting to note that 4t the final f the friction on the vail 
- hr 

disappears• 

The friction distribution across the boundary layer (Fig. 139) is 

also determined from this solution. Uie maximum friction occurs inside the 

boundary layer. The maximum points correspond to the points of inflection In 

the velocity profile. The line passing through the inflection points is the 

current line in the boundary layer (Fig. l60). 

- 396 - 



Fig. 157. Variation In friction and heat exchange coefficients 

as function of Intensity of coolant feed in laminar flow 

as function of coolant feed intensity in laminar flow 

Fig. 159. Distribution of friction and half-boundary layer 

In sweat cooling 
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lhe total {ps conau&ptlon through the porous píete over the length x 

fren the leading edge is equal to the consmptlon through a section of the boundary 

layer taken at the sane distance between the vail and the current line passing 

through the points of inflection on the profiles. This line, as it were, divides 

the gee fed through the surface fren the outside strean. But it should be kept 

ow-r 
in nind that although there la no convective flow this line, the nolecular 

exchange between both parts (self-diffusion) Is always present. 

Flow of a conpresslble gas along a flat plate. When calculating the 

flow of a compressible gps, we have to use graphs (Fig. 157’ARD 158) which show 

/ 

the variation in Q due to f at different M nunfcers and ratios of the gas 

enthalpy by the wall and in the strean. 

Fren these data we can calculate the friction and heat flux, using the 

following equations 
, zap ,* 

1.-1/-- 0' Prî 
r i*.-» 

(10.8) 

(10.9) 

Here K is the drag enthalpy and J is the enthalpy of the gas at 

the wall temperature 



(tön ■mfnmrmmnLiTr 

Fig. 160, Streamlines In boundary layer In sweat cooling 

In a casein which dissociation is possible in the boundary layer, the 

transition from the taaperatures to enthalpies enables w to take its 

offset into account. 

Flow along the lateral surface of a cone in a supersonic stream. In 

order to make this calculation we can use the relaticnahips established for a 

plate, keeping the following rule in mind. At the seme distance from the leading 

edge; the heat flux and friction on a cone are greater than on a plate by a 

factor of -JT; if the mass blast velocity is greater than the mass velocity on 

I— 
the plate by a factor of ^ 3. 

Ihus, for the calculation we can use the sasie graphs as for the plate, 

taking the following equations into account 

(10.11) 

(ioao) 
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f 

P»rr V**- / I——- 
A f.*. ‘ 

(10.12) 

Here the sifescrlpt ûo indicates the conditions on tte bounlary 

' O 

layer boundary (on the surface of the cone during circumflov by an ideal gas). 
A 

Flew in the nelffrborhood of the leading critical point on a flat and 

axlal-aymnctrlc body. In the neighborhood of a critical point the velocity 

distribution corresponds to In order to determine the heat flux we can 

use the following formulae: for a flat body 

(lo.U) 
(0.71)* 

for an axial synnetrlc body 
_ i 

uo.14) 
(0.71)» 

if \ i— ^ f*r* 

V’’'’ t ' 

Hi« graph« «honing the variation In 0 aid 6 a« a finition of f 
** JL are 

contained in Figs. l6l ani 162. 

4 

I* 

12 

*1 

* 

Fig. 161. Variation in o’« in sweat cooling in neighborhood 

of leading critical point on axially-symmetric body 
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Bi« graphs hare been calculated for Pr ■ 0.71. In order to extend the 

j. j. 
•olutlons to cover other Pr nuntoere, the nultlpller Pr 3 /0.711 has been added 

to the expression for heat flux. The subscript v means the conditions at the 

veil tenperature at the leading critical point. 

)-{dudx)t.3 
eben there is supersonic flow around a blunted body may 
Ÿ A 

be taken as 

Here 0( is the speed of sound and r the distance between the critical cr -■ 0 

point and th^transltloni Une^ through the speed of sound (the ha If-width of the 

blurted part when the end is flat, or the distance along the surface between the 

critical point and the section in which the central angle is cj> ^ 45*). 

l'Ut* 162. Variation in and in sweat cooling in neighborhood 

of critical points on plane body 
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¡aJOL . Determining Surface temperature In Sveat Cooling 

Heat balance during heat exchange on poroua aurftce 

Let us consider an area of the porous surface (Fig. l63) of length Ax 

and vldth 1. Cold gesan enthalpy Jfl Is fed through the plate free the 

underside. The enthalpy of the air at the plate ojtlet Is 

-—/wl 

• ■ f2oi '• 

Fig* 163. Derivation of heat balance equation 

for porous surface 

Let us compile the balance of heat fluxes reaching the outline an& 

ging from It. We get 

f A* 

Here q is the.heat given off through radiation per unit area; 

i -t 

2Is the total heat loas through leakage. 

f• "r~G00^ip,vwAt/. 

Dividing the Initial equation by A x¿, ve get 

Cm • 
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Dlsre&rdlog radiation and leakage, ve get 

ve bate derived an equation relating the cona«option to the heat'trana fer 

coefficient at aet vail and atrean températures. 

It follows fren the equation that the condition J ■ const, J ■ const 
- -w* 

my only be satisfied if oc is proportional to p v* . As ve found earlier, 
\ w'»-w* 

a 
lilis condition holds in laminar flow alohg a flat plate then the coolant la 

fed In accordance vith ~ ] 'Vx(f const). 

Ihe heat-transfer coefficient oc nay be expressed fron solution of 

the bovmiary layer equations 

Substituting this relationships into the heat*flux balance condition, 

ve gat 

Ÿt 

After transfonation ve get 

».». (K-W 
fm*. * 'm .. 

But la the case of a plate ve get 



Consequently, 

Pi* 

W* *"* 4,,1',,4 ^ ft« «he h,« *1»«. Furth,™,., „ 

ta« «h. r.Uttau.htp betvwn 9' ud ff fr» .olutton of th, hnunl.r, taj,r 

equations (Figs, 157 ani 158). 

«taltal^ e fr« th, «tvhUty, ., g,t . itovtoe th. dq,,d,oc, 

of fy « th. poräoeter -L=H,. (ng> 

Pr7 

Fig, 164. Graph for calculating coolant consumption 

'S.. 

Äls par aaeter - t* 1s usuaUy giren in advance, ve can dete no ine 
Vp—JqíPi* 

'<C ilnQtl} f«» th, psph «1 th«, work out th, con,«ptlon of coolmt p,r «lt 

«f«« fsrlT«-. 
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CcnparlBon of economic advantage of sveat and convective cooling 

I*t ua ccoBlder the moot advantageous case in convective coolingf vhen 

tlie vail is very thin and the heat exchange coefficient on the cold side is 

very high, since the coolent reaches the vail vith an enthalpy J and leaves it 
~ 0 

vith an enthalpy ^ balance condition can then be written in the 

fora 

f»*3 r ) ~ ~ ^ij) ■ 

In actial fact, on account of the thermal resistance of the wad and 

the boundary layer on the cold side, the final enthalpy J la less tten J 
- ur « 

lhe value <X does not depend on the coolent consumption for practical purposes 

‘ V *= iP*v*e0 Ÿ—}. ^ó=const. 

After transformation ve obtain 

/ « *0 

In the graph shown in Fig. L64 this equation corresponds to a straight 

/ 
line drawn from the origin of the coordinates at an angle of o( , with tan « 20 

For an incompressible ' 1¾ - 0.664. The ratio f during 
m 

t 

convective and sveat cooling is equal to the ratio of the theoretical consumption 

required for cooling. As can be seen, sweat cooling becomes particularly advantageous 
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at higja taper ature gradient*. 

para» ter 

tteoretical graph* for floe in neighborhood of critical point 

Fig*. i6j and 166 show graph* for the dependence of f „ on the 
• Hr 

-T-r 
U*—</#) Pr7(0,71)~ 

for a plane case 

(10.15) 

and fpr an axial-syanetric case 

Kv9ms\V^9jvV\^. (10.16) 

PlodTantagcs of «neat cooling 

Sveat cooling bring* about a saving in coolant, but it* use involve* 

grat difficulties. One of them is the need to use a apeala 1 porous saterial 

with a lower degree of strength than a solid »terial. In order to be able to 

K ___ 

feed the coolant through the porous surface, a certain pressure margin 

bas to be crated. 

In swat cooling, the resistance to friction is decreased, but when 

thare is an outside flow round the body, the wave resistance is Increased througi 

an Increase in the thickness of the boundary layer, and this is particularly nrked 
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on thin bodies at hlgb M flight maters. When the noszle of a Jet engine is 

sveat cooled, there is a certain loss in thrust. 

Fig. 167 shows the variation in the thickness of the impulse loss 

and displacement on a flat plate as a function of f, . 
*sT 

Ote value ¿ is determined fron the impulse equation 

at 

• ir+//. 0. 
oool 

/ .Sii^V^^const. 

Ve get 

—l^Rc—i-f/K Rc+/» 

f 
Let us now consider what the outcosie is s when Ò and ò in the 

Jet nossle are incfeased. Let us suppose that for a nozzle calculated for an 

Ideal ve are given a constant total gas conaunption. The thrust of this 

nossle of R. ■ mu (Fig. I68). On account of the boundary layer, the true 
^ U A 

nossle has the thrust 

The effective section at the outlet is decreased on account of the 

thickness of the displacement, and ve get («.) , through which the thnat 

is reduced. But this loss in thrust can easily be*^ ^recovered by widening 
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Fig. 165. Graph for calculating coolant consumption 

(plane body) 

Fig. 166. Graph for calculating coolant consumption 

(axially-symmetric body) 

Fig. 167, Variation In thickness of displacement 

•ad Impulse losses as function of coolant 

feed Intensity 
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n 
B* 

Fig. 168. Supersonic nozzle 

the nozzle by a factor or r. 
Let us compare tvo cases, In one of vhich the cooling of the nozzle 

K 
Is convective and the coolant is fed to the ccmbustion Chamber, while in the 

other case cooling is effected by |c embus tibie fed throujÿi a porous wall. 

The bulk of the gas leaving the nozzle is the same (m). 

Let us consider that both nozzles have been corrected, each one 

by Its emission thickness £ , and that they have a flow velocity at the 

outlet u ^ . 

Then 

mu,- 

Thus, although the friction in the nozzle has been reduced, the 
\ 

thrust has dropped. 
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If the coolant contributes the extra nass, M , then 

Wi • P"):?,«’. 
u'- r;- 

la tail ease tie thniet Is Increased ty a value equal to the reductlcn 

in the resistance to friction in sveat cooling« 

Sec, 45, Sveat Cooling by Gaa vlth Physical Properties Differing 

Fren those of Oncoming Stream 

In order to reduce the consumption of cool nt, ve have to select 

■aterials capable of absorbing large anoints of heat in such a way that at the 

set tempexture difference between the wall and the coolant T0 , the enthalpy 

itr “ ¿0 absorbed by the codent is maximum. An evaporating coating is some times 

ised in this purpose, the calculation of which can be reduced to that of the 

A. A 
porous cool nt. Furthermore, the weigit conamption of cool nt can be reduced 

(L 
by selecting a cool nt with physical properties for uhich the reduction In the 

> 

heat-transfer coefficient ^greater . 

In such cases the bomdary layer equations remain unchanged, but we 

now have to solve the complete system with regard for tfae^^dif fusion equation. 

Whan« canpiling boundary coalitions for these equations, we have to take the 

heat balance and material on the surface into account. Die mass velocity of 
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U
l 

of cool «t feed, and the gas concentrât!cn at the vail are related. 

Material balance condition. Concentration of lapurlty at sur Pace. 

Let m consider for the sake of simplicity a binary mixture with tvo 

V 

«■ponente. In the outside stream (Fig. l69| the fps concentrât!« Is 5«*.“ ^ 

C . • 0. the rate of flow is^^u . A coolent vith concentration 1 1« 
-uJL* ** 

fed throu^i the surface. Concentration of ^ses at the vails Is desisted C^, 

. 
. and C ♦ C - 1, the wlue C measured In kg/kg. 

(D^aj > 

a- íL-t 

|«r 
i, .. ---J 

oo&V* |ffoool 
Q)( coolant 

yig. 169. Diagram of prous cooling by a gas 

with properties different from those of the 

flowing stream 

The condition for the conservation of mass for the entire mixture is 

O» continuity condition for the first component - the g^syikes the form 

(10.17) 

Ihe removal of ps by the stream P r. in steady-state conditions is 
' tjf kP 
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compensated by Inverse diffusion stream \.. No gas passes throu^i the vail. The 
' J- 

continuity condition for the second component - the cool mt - is written in the fora 

'•'•Soot^'f’coi^coo! 

or 

cool cool 
lio.lß) 

The cool nt fed throu^i the vail is removed from it by diffusion and 

convection. Adding the continuity equation for the two components, we get 

In a * ; \ binary mixture, the diffusion flow of the components is the 

same in absolute terms 
cool 

o,,, --fD, i—)l Qm, =-fD =0 ., = 0. 
cool ' to i «tool cool ^ cool cool 

Thus, the coalitions on the vail can bve written in the following fora 

(10.19) 

or 

cool 
(10.20) 

The concentration of the admixture at the vail is a function of the 

iss velocity of the cool nt feed 

—3L^Li* + i. c. 
bool p»r' 

(10.21) 
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If I* very large C -° I, if the diffusic» of theg gas from 
' - * -u* 

the vail Is large, C~ -+0 . 

cool 

Heat balance on porous surface with physical properties of copient 

differing fron those of outside strean 

Let us coopile the heat balance in the outline (Fig, 170). Freo nov ' 

on all values relating to the gas vill be narked vith the subscript 1, and those 

relating to the coolent vith the subscript 2. The heat flux reaching the outline 

fren the boundary layer throu^a thermal conductivity and diffusion is 

«•-a* 

+2M£).' 
The amount of heat passing through the lover face together eith the 

X 
cool At is gp*vjt , and the amount» of heat emerging through the upper face is 

[gpmVglw. • 6®^ 
V 

qm+g?*vJtssg?*v*,v 

Hence for a binary mixture 

dT\ . , . ndCt 

The enthalpy of the mixture is 
/«“ Ci */iw + 

, and J and J are the enthalpy of 

each of the components at the vail temperatise. Taking the relationship for J ^ 

inte »eoount, « get + 

** gPwVw (--^0 + + CiJlJ- 
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Taking the material balance condition Into account, ve get 

ll0,22) 

On the rlÿt-hand side ve have the heat vhlch has gone Into vanning up 

A 
the cool mt fron the Initial tempe ature to the vail temperature. 

Fig. 170. Derivation of heat balance equations 

&nu, of the entire heat transferred from the stream to the vail 

only * certain part equal to ).(dT¡dr)), goes Into the vail to heat up the cool nt. 

lhe remainder£/.OtfDdC./ch/compensates the variation In enthalpy of the 

• treaa equal to(/i.—/2J; J is the enthalpy of the mixture at the temperature T „ 
"W - \£ 

may differ from the enthalpy of the cooient at the vail outlet J ^ , althoujh 

the temperaturds are the aame on account of the different thermal capacities 

and chemical energy of the component. 
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It follows from the material balance condition that when solving the 

boundary layer equations, ve cannot set tie gas concentration by the wall and tk 

nass velocity of the feed on an arbitrary basis, since they are linked by the 

condition 

In practical examples, ve are required to determine the amount of heat transferred 

to the vail This part of the total heat transferred fron the straam to 

the vail Is equal to 

(10.23) 

In order to reduce the consumption of cooÿnt, ve must select material 

K 
vith a high enthalpy difference (J * )• If ve use a gas as the cool nt, 

"0 
n 

then It should possess a high thermal capacity c . Among such gares are the 

ligit gases H (c = 3.5); He (c = I.25) /14/. 
cs ~ r> 

Materials vith a hi$a latent heat of vaporization can also be used. 

Among such materials are vater (r = 530 kcal/kg) /l4/. Solid lubricants used 
rs 

tat heat insulation may be made of materials capable of evaporating and 

absorbing large amounts of heat in the process. Hie maximum heat of evaporation 

Is shown by carbon (r^j 12,000 kcal/kg) /14/. When selecting the material ve should 
* 
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also take Into account kc the vay in vhich the heat flux k reaching the vail q ^ ^ 

S' ' 

The Veight conauaption of coolant can he reduced by reducing 2^^* 

Prellainary calculations and experimental data shov tht the use of ^ses with Iwer 

fr 
density as cool nte brings about a great reduction in the heat flux. 

Ectert and Schneider /18/ have calculated the effect of feeding hydrogen 

through a porous plate on the friction coefficient in air at low velocities. The 

boundary layer equations take the usual form and the aforementioned material- 

balance condition is taken into account in the bomdary conditions. It too 

been found from this calculaticn that at the same consumption by weight of 

coolant, the friction is reduced considerably. Hie friction corresponds 

approxisately to the friction which would occur if a stream with a hydrogen 

concentration equal to that of the wall flowed round the plate. 

The resulting graph is shown in Fig. 171. Curve 1 shows the hydrogen 

cooling, ^iille curve 2 shows cooling effected by air . 

Fig. 171. Comparison of effectiveness In cooling by air (2), and 
hydrogen (1) 
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In his publication /6/ Caernyy considere a boundary layer with an 

¡tt, 4**^ 
interface. It is taken that on aides of the interface there is saterlal 

differ ing in physical properties. In the particular case of friction along 

w4»«yt 

a flat porous plate, as has been pointed out, the energing fron the 

leading edge of the plate separates the consuaption of liquid fed throutfi the 

plate from the consvxnpticn of liquid arriving at the boundary layer fron outside. 

If we disre^rd diffusion, this line is impermeable. By solving the equations 

for the external and internal parts of the boundary layer separately, and taking 

the mutual effect of both parts into account throu^i conditions on the interface, 

the investigator has obtained an expression for the friction as a function of the 

i 

ratio of densities of the liquid fed in and the liquid in the outside stream. 

Publication /4/ solves the problem of laminar flow around a 

plate, taking the diffusion of water vapor into the boundary layer into 

account and making certain assumptions for the sake of simplicity at the same time. 

Sec, 46. Turbulent Boundary Layer on Porous Surface 

A laminar boundary layer can only be established st low Beynolds numbers, 

During flow along a porous surface, when the gas is fed to the b mini ary layer, 

the stability of laminar motion is reduced and there is an earlier transition from 
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froc Remirar to turbulent regloes. 

During turbulent flow there 1b an Increase in heat exchange ani 

resistance, so that at low gas feed rates, eveat cooling may erven produce 

negative results. When the consvmption of cool nt is further increased, the heat 

flux# even in the case of turbulent flow, becomes less than the flux on an 

impermeable surface in laminar flov. 

. 
Qualitative aspects of^gffect of gas feed through surface on 

turbulent boundary layer 

fi. 
In general, the effect of feeding to the turbulent boundary layer 

is similar to the corresponding effect on a laminar layer. The velocity profiles 

o~-/~ ^ 
are deformed becane curtailed (Fig. 172)# and the thickness of the layer 

increases. At low feed rates, however, the profiles do not show points of inflection 

K 
vhen the cool nt feed rate is further increased/there is in effect a point of 

inflection# and the velocity profile assîmes a form similar to that of the profile 

in free turbulent flow. The defornation of the profile is similar to that 

of the velocity profile when the pressure gradient is positive. 

Qualitatively speaking, we can distinguish three basic types of flov 

In a turbulent boundary layer with a vertical gas feed. At comparatively low 

feed intensities, its effect only shows up in the laminar sihlayer. If the velocity 
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profile on an iaperaeable valí la close to linear in the sublayer (Fig. 173), then 

at a lov gps feed the velocity profile in the sublayer is deformed, and a 

point of inflection Is obtained. When calculating this case ve 

assune that the flov in the outside pert - the turbulent nucleus - has not changed, 

and that all the relationships obtained for an impermeable surface can therefore 

be used for the outside part. Ihis theory, vhich is known as the "film"¿eory 

accords satisfactorily with experiments, even at considerable ps feed rates. 

Fig. 172. Velocity profiles In turbulent flow 

along porous surface 

Fig, 173. Deformation of velocity profile in 

laminar sublayer 
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When the feed i» -tícreaecd, ti the effect of the coolant begins to 

show up In the turbulent part of the layer as veil. This extremely Important 

case Is the most difficult one to calculate theoretically. Here experimental 

investleptlcn aaquires great importance. But r made to use a 

method similar to the one for obtaining a logarithmic lav for an lopenneable 

vail in order to solve this problem. The friction is represented in the fora of 

X^fP(d:i!dij)2 

the Prandtl equation h (l is the mixing ). Here the gas feed is 

taken into account by considering friction across the boundary layer to be variable. 

The third flow regime on a porous surface corresponds to a consumption 

of coolant for Vhich the effect of the vail on the boundary layer is veakened, 

and the boundary layer is rearranged in similar fashion to the boundary layer on 

the edge of the turbulent stream. Here there is no longer any effect by the 

Reynolds mafcer. When the coolant feed rate is further increased, the boundary 

layer separates from the vall^completely. The friction and heat exchange 

coefficients betveen the outside stream and the vail vanish completely at this 

point. 

When calculating this case, ve can use the methods employed for free 

turbulent flov. The consunption of cooljtnt at vhich there is detachment of the 

boundary layer corresponds approximately to the consumption carried avay by the 
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b ouater y Layer on the edge of the free turbulent streaa. 

A 
Dlaenaloplees characterletic of coo!.-nt feed Intenalty 

In flow the effect of the supply of mixture Is described 

ccnpletely by the shape parameter ~ - . B» parameter 
f-“- 

f is proportional to the ratio of the total consimption fed through the porous 
-fcf * 

surface and the consvcptlcn flowing into the boundary layer at the given section. 

Vo can take it that a similar ratio describes the effect of the mixture feed 

on the turbulent boundary layer as well. 

In the boundary layer 

from which 

^ 1*r" » rrf 

f.O >.8- *H 

Bris parameter can be used, no matter what the blasting intensity. 

The experimental data can be processed in the form of the relationship 

«„»Wisü-LA 
V 

0, 0¾) 
At low degrees of coolant feed intensity we can assvne ^ . 

Here cu is the dimensionless heat exchange coefficient on an impermeable wall. 
'"o 

At 
ReOO’i—^« 

-421 - 



When the Intensity Is Increased, the relationship betveen the thickness 

of the boundary layer end the Reynolds nunber is veakened, and ¿Vx const. In 

this case /« f= 

Thus, in the general case 

Since c ^ is not known beforehand, it is more convenient to represent 

^Re*, in which n Í0.2 - 0) decreases as the cool nt feed io:reases and the 

Reynolds mnber Re = increases. 
t*- 

Fundamentals of film theory of sweat cooling 

Let us consider the equation for notion in a laminar sublayer in an 

inconpresslble liquid (Fig. 174) 

du , du dt 
OU-hpv-— — 
r dJt r dy dÿ 

In Tiew of the fact that the thickness of the laminar sublayer is 

rery snail Mï* I, we can take it that inside it Ou.dx—Q., it follows 

duldx-]-ãv'dy*=-Q 
fron the continuity equation A that dv,dy=Of and tlat therefore v ; . 

The equation can now be written in the form 

yo 
da ^ dt 
ày" d, 

or 
du ^ dt 

S P d/ dy 
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and 

’ àj 

from vhich 

t—Cc • 

At a and €•=• . As a result ve get 

f» 

Let us take It as the second condition that on the stb layer boundary 

at t=t,, 

il, 
t»=V’ . '« 

-ii, 
=\c • . 

Ihus, if the friction across the laminar sublayer's constant on an 

impermeable vall^'in sveat cooling the friction is less on the vail than on the 

boundary of the laminar sublayer. In the film theory it is assumed that t on 
/t- 

the border of the sublajer remains the same as vhen no cool nt is fed iftwíWÍ-^ 

1 0W (, 
i 
1 

i, * 

Fig. 174. Concept of film theory of sweat cooling 
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We ere now left with detemining the thickness of the laminar sri layer; 

experimental data for the velocity distribution in turbulent bounlary layers 

tell us (Fig. 131) that the region of transition from laminar flow with linear 
A 

Telocity distribution in the laminar layer to turbulent flow with logarithmic 

distribution in the turbulent nucleus corresponds rou^ily to u, y¡\ ¡ 10 , 

In which «« — 

B»e produc ' u,y\ , constructed along the lines of the Reynolds 

mmfcer, describes the stability of the flow in the lamimr sublayer. Let us 

suppose that the transition from laminar to turbulent flow in sweat cooling 

i occurs at the same value »,^/«=10. 

Ihe thickness of the laminar sublayer Ò, is then determined by 

the equation 
* _ 10"' 

Vt 
Thus, 

• . 1/5 
^ f »r- 

4 • 

in i&ich 'ï. is determined from friction data for an impermeable wall 

¢/,-0,057 Re7°ând Re, « — 
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Finally, in ave&t cooling 

to 

and then 
fy-» 0,057 Re —0,îg *" / 

« - nj> 4 

¢.-3600jpu 

•• »0 , . 
., "«rpr^r^âJ, ,, 2. U0.25) 

-f/(7"-— 7.)-0,029 RîJ8'^ rc- * keal/m hr. 

Experinental relatioRghipa 

Floy along a flat aiat». Fig, 185 shows the velocity distribution in 

the boundary Layer, As the blasting intensity is increased, the thickness of 

the layer increases, the velocity profiles become more and more asymptotic, 

striving toward the form of the profiles at the - ' - , point of the boundary 

layer Wien the pressure gradient is positive, ^ to the form of the profile 

In free turbulent flow. 

Fig. 175. Variation in shape of velocity profiles in increase in 
coolant feed intensity 
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Fig. 176 Bhowa temperature profiles free vhich.ve can see s ini lar 

¡a 
deform ti en vhen the cool nt feed is increased. Fig. 177 ahoirs erperirrntal 

\ 
curves for the ratio e /(c CV vhen air flows round a plate, and air and 

* ~ H \ 

heliuc are fed through a poroua surface. Curves^^l ael 3 teve been obtained 

at M-3, and a wall-strean tenperature ratio T /t ^3.3; Re ^ 4 • 10^/. 
“Ir I X ' * 

Fig, 176. Variation in temperature across boundary at different coolant 
feed intensities. 

f, 
^,0 

r ig. 177. Variation in heat-exchange coefficients in sweat cooling on 
plates with turbulent boundary layer 
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Tv 7,¾ ! M ¾ 0 
Curte 2 corresponds to experinents with low velocities at / and / over the 

Reynolds meber range 9 • 10< Re X3.3 • 10*/2/. The ratiof'r'/r)1 * ;i« plotted 

along the x-axls. These graphs can be reconoended for use in calculations. Fig. 178 

shows Hacker's experimental data /13/ for the friction coefficient (the curve 

. tsik 
has been drawn through the experimental points <f $ 103I), 

xi^From Fig. 177 (recalalated) 

Curve produced 
the experimental 

-j^Boÿta- 

ct i m 0.0* ;;j coo i’J a: 
U-P- * 

Fig. 178. Variation in friction coefficients as function of coolant feed 
intensity in turbulent flow 

It also plots data for curve 2 fron Fig. 178. 

Experimentation has shown that when we attain the nunter 

I Ref-0,03 
» “-f- 

the boundary layer is detached^jTõrced away from the wall, which accords with 

the conclusions drawn from the above qualitative arguments. It should be pointed 

out, however, that measurements the extreme regimeare extremely inaccurate. 
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This publication refera to the fact that a.t high ga* feed intensities 

throng the surface the velocity profiles are S-shaped and similar to those 

in tree turbulent streams. 

I 
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CHAPTER XI 

BARRIER AMD CDhE IKED COOLINC OF COMBlJETICï{ CHAMBER 

WAUE ARP NOZZLES IN JET EH3IHSS 

Barrier and canbined cooling are the basic methods used to cool combustion 

chambers and nozzles in Jet en^nes. Systems of barrier anl combines cooling 

are shown in Fig. 179. 

Fig. 179. Barrier and combined cooling 

Barrier cooling is simple fron the point of view of desigi. A high 

f-A 
pressure drop is not required to feed the cold &s through a slot, and air 

V 
frcm|duct at the caribustion chamber inlet is usually used for cooling purposes. 

In the common designs there is a deries of consecutive slots for feeding in the 

cold air. 

If there is a chance of hijgi variation in pressure or pulsations in 

the pressure along the cooled perimeter of the combustion chamber or nozzle, 
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it may transpire that in certain areas the cold Jet, vhich possesses a smll head 

*ith respect to the mean pressure in the chamber, cannot overcome the counter- 

^ ^ a 
pressure, may result in local overheating. If this is , ve have 

to have a large pressure margin in the cavity vith the cold gas, ifcile an additional 

resistance must be prevented in the outlet slot. 

Sec. 47. Flow during Barrier and Cccblned Cooling 

Let J use the term barrier cooling to mean the type of ^ 

cooling in Wilch the vaR on the outside is insulated or almost insulated, so 

that ve can disregard the removal of heat through the vail. 

let us first consider an ideal case in vhich there is no friction on 

the vail. Here the vallmay be regarded as the plane of symmetry of a free 

turbulent Jet in a higi-apeed stream (Fig. l80). 

In free stream ve can single out initial area in vhich 

AJ 
there is a constant velocity nucleus, a transient area and a ''area (Fig. 80). 

For the sake of simplicity let us adopt a conditional system in vhich 

i. p 
the Jet consists of an initial and a area. 

Fig. I81 shows the velocity and temperature distribution in various 

0 

croea-sections of the free jet. In the initial area the temperature and velocity 

on the stream axis remain constant and eqval to their values in the outlet section. 
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Fig. l8o. Calculating boundary cooling 

Fig. i8l. Velocity profiles and temperature 
profiles in turbulent free jet discharged 
Into ooflowing stream, velocity of which 
is greater than discharge velocity. 

In the -'area there is a gradual variation in velocity and temp crater e of the 

gas on the stream axis. As the distance fron the outlet section increases, the 

velocity and temperature tend to their values in the outside stream. This pattern 

corresponds to a case in vhich there is no friction or heat exchange on a plate 

V situatéd in /plane of symmetry in the stream. 

Let us now consider the picture when there is a thermally! insulated 

plate in the stream axis, and when there is friction (Fig. 1Õ2). On accomt of 
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this friction a boundary layer of thickness 6 is formed on the surface. 

In the boundary layer there is a drop la velocity to xero at the vail. 

Since the vail is Insulated, the temperature across the boundary layer remains 

constant and equal to what it vas on the layer boundary. Ihe variation in 

temperature on the stream axis (vail teaperature) is shovn in ^ig. l83. The 

continuous line corresponds to a case in vhich there is no boundary layer on the 

vail (no friction), t&ile the broken line shows the case considered of a thermally 
A 

insulated surface. 

Ihe calculations Involves the problem of finding the temperature 

distribution^-''along the vail and determining x . - the distance over vhich 

the temperature of the vail does not exceed the tolerance. 

In combined cooling, the vail is protected by a cold stream on one 

side and 1m further cooled by the flow on the other. The velocity distribution 

across the boundary layer remains the same as in barrier cooling. Hie 

temperature distribution in this case is shovn in Fig. 184. 

Sec. 48. , Calculation of fell Temperature in Barrier Cooling 

Initial area of stream 

In order to calculate the initial area, ve have to determine the 

flare angles of the displacement region of the'stream ** and (Fig. I85). 
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Fig« 182 . Effect of wall boundary layer on velocity 
and temperature distribution in 

barrier cooling 

Fig, 103 . Variation in temperature of wallTw in barrier 
cooling (T without taking effect 

id 
of wall boundary layer into account) 

/ 

Fig. 184. Combined cooling 
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Bie angles and are functions of the velocity ratio n = 
' -Î 

Fig. 186 shows the variation in the tangents of the flare angles of 

the displacenent regie« tan ^ and tanacas functions of a. The broken lines 

correspond to theoretical values, while the solid lines represent experimental 

▼alues, lhe theoretical calculations show tan = tan^ *= 0 at n *= 1 This 
' X » * 

|ir = '.indujo i/) 
is due to the fact that the turbulent viscosity yp is proportional to the 

Milocity gradient even at i::-'ur 

CJ !J>r 

Fig. 186. Variation in flare angles 
for mixing regions as function of 

In actual fact, apart from turbulent viscosity, there is lamiMir 

viscosity, laminar diffusion and thermal conductivity, the effect of which begins 

to show up when the turbulent, thermal conductivity and diffusion are reduced. 

Fig* I85. Flare angles of mixing region 
In initial area 
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Sie mixing streams also have an initial turbulence due to the presence 

of the boundary layer along the vail dividing the stream, and to various 

Ti-ti 
pertubatlons upstream. these factors [determine the vldth of the mixing 

region at “ u x the least flare angle of the mixing region, and therefore 

the grtftest length of the initial area, vhere T = T^, occurs at u A == u ^ • 

In the general cose ve oust distinguish[dyña^c and thermal mixing 

zones. Experiments show that at m <0.4 the dynamic mixing zone is somevhat 

narrower than the thermal one; at 0.4 m Cl the outer boundaries of the 

thermal and dynamic zones coincide. Let us take it throu^iout that the dynamic 

and thermal mixing zones coincide. 

In order to determine the Length of the initial area, ve must knov 

thepoeition of the ,,poleM of the mixing zone - the posidon of the point at 

ihich the boundaries of the mixing zone intexsect. If the vail dividing the 

tvo streams is infinitely thin, the pole is located at the end of the vail, at 

the point vhere the stream converges. If the vail thickness is increased, the pole 

Is displaced upstream (Fig. 187). 
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Fig. 187. Variation In position of pole 

in mixing region as function of wall 

thickness 

Fig. 188. Concept of pole of mixing region 

The length of the Initial area reckoned from the point of convergence 

of the stream may now be calculated from the equation (Fig. l88) 

X. — si Xu, 
bdt 'l,‘ 

(11.1) 

in which x.^ Is determined fran the graph in Fig. 187, tfxile tan is calculated 

from the one in Fig. 186. 

Calculation of area 

A great deal of experimental research on free turbulent streams has 

made it possible to find a universal lav '[the velocity distribution in the 

area of the het 
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Sr-l'-efr (11.2) 

Here y 1« the distance from the streaa axis, and b is .half the 

streaa vidth. 

Bie teaperature distribution is taken to be similar to the velocity 

distribution 

T,-T _ «r-«L Tt-T" *r-ux (11.3) 

Die velocity and temperature distributions on the streoa axis are then 

also similar to each other 

Tçç T/ Utc ~~ 

Tt-T, Ut-Ut 

In order to determine U and T on the stream axis let us compile an 
*V* - A* 

equation for the momentum of the free stream, using the condition p = const. 

Let us assune^'on the stream axis there is a wll vlthout friction or heat 

exchange (Fig. 189) 

Bien 

AjP/*i+(*- hi) u*'p'=j pVL'dy- 

Having divided both parts of the equality by , ve get,after 

transformation 

Si 0 
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then « I 
7 ’ 

The Integral on the right-hand aide can be transformed on the basis of 

the condition 

Fig. 189. Derivation of momentum equation 

In the general case the calculations are complicated, but for practical 

purpoees ve can approximately determine the distributicn of the axial values at 

n ^ 1, T /r 1. 
- " - / 

This gives vail temperatures vhich are too high. In this case 

-0,3155(1-01. (11.4) 

This equality shois the relationship betveeni—and ^9q) # 

! 

I 
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Fig. 190. Calculation of barrier cooling 

Half the stream width is approximately equal to b ** tan « Here 

X Is the distance between the converging point of the stream and the section under 

consideration, x* is the distance between the converging point and the pole of t.v 

basic area (where the boundary of the mixing region of the basic area intersects 

the stream axis). Ihking it for purposes of approx ism tion that the boundaries 

of the stream pass through the edge of the slot (Fig. l9l), we get the equation 

»=*tga, + A^ 

Taking the substitution into account (Fig. l9o), we find the dependence 

of (I—u«r) on x, after which we we derive u and T from the equations 

ÜI.5) 

Fig. 191. Determining b 
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Calculation of wall boundary layer 

Calculation of the initial and basic areas gives us the temperature and 

velocity distribution along the axis T lx) and u (x), the dependence of the 
•■ax ■— ""M ”■ 

stream vidth on the distance b (x) and the velocity and tempecture distribution in 

the cross-sections cf the stream 
2 

T-T« = g-g„c = [ j _/1\1 ]: 
rr-r^ l J 

This distribution is derived vithout regard for the effect of the 

boundary layer fonned on the plate. In the first approximation it can be taken 

that the effect of friction on the vail is restricted to the regie» of the all 

boundary layer. 

In order to calculate the thickness of the boundary layer ve can use the 

equation 

«=0.37 (.;£/)•. W (U-6) 

In this equation U is variable on the boundary of the boundary lajar, 

and the calculation has to be carried out by successive approximations. For 

f 
practical purposes, however, we can take it that ^when calculating the 

thickness of the layer, and that v is determined as the temperature T ■» Tl +-—-. 

Knowing the thickness of the boundary layer we can find the velocity 

and temperature on its boundary u ^ and T ^ from the equations for the distribution 
of u and T in different sections of the stream. 
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Sec, 1»9. Order of Calculation of Wall Tenrcraturc In Cocblned 

and Barrier Cooling 

In combined cooling throu#i a wall there is heat exchange. Barrier 

cooling is a particular case at q *= 0. 
- ïf 

The calculation of combined cooling is made in the following sequence 

Fig. 192. Combined cooling 

1, At the set m * find tan* and tan oí^ÍFig. l88). 

2, We determined the length of the initial sector x = —■*! - .r. 
init 

(x is determined from Fig. 182). 
*" IT A 

3. 

4. 

5. 

We calculate half the stream width b^hc-x—h » . . s 

From the graph in Fig. l9o we find (l - u ). 
- AX 

We find u and T fron the équation 
"Vk 

•oe*“®x_foe — Tj¡_, 1 —tfoe -«_——-J-. 
•r—«x Tt — Ts m 

6. We find the thickness of the wall boundary layer 
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7. Ve fiad u aad T, 
•í - J 

8, Ve find the heat-exchange coefficients 

_i_ ^ 

al~Q,02Q5-2C00t;?.ulc(ai'-'j * Pr" 

9, We find the heat-exchange ky coefficient with the outside 

(• X \-4> _ i. 
P' *• 

10. The wall temperature is determined from the equation 

«i 

at 0( * 0, T - TA . 
a -*r f 

m 

Sec. 50. Results of Calculations and Experimental Data 

The welocity and temperature profiles obtained experimentally accord 

satisfactorily with the data obtained by calculation by the system set forth above. 

Pig. 193. Variation in wall temperature along insulated 

surface as function of relative distance from slot 

x/hgj at different m 
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Fig. l93 shews the experinental temperature distribution along a thenaslly 

insulated surface in barrier cooling. It follows from the graph that vhen 

■r 
lilncreaaed, the effectiveness of the cooling is improved, and the 

distance i; over which the wall temperature remains lower than a value based 

consideration of strength, is Increased. Here the length of the initial area 

is also Increased (Fig. 194). 

^-^ 
Foononlc advantage of cooling. The consunpthn of ccol nt through * 

•lot of height h and width equal to unity is determined from the equation 

So.r*"''''- 

to 

Here the consumption per unit area of the protected surface is equal 

“1. J ■= IA ykg/sM-m2 (HJ) 

In which 

Xm. 

•1 

Having set outselves some values of —TL-'-, we find the corresponding 

values of a fraa the graph in Fig. 1¾ for different x, and then we find m/x. 

Fig, 195 shows the dependence of G on m calculated at u ^ 100 a/sec. 

It follows fren the graph that the economic advantage of barrier cooling decreases 

as a-u^u^ increases. When the velocity u is Increased, the consuaption of 
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cool nt Increases more rapidly than the operational range. 

Fig. 194. Variation in length of initial area - 

as function of m 

Fig. 195. Variation in specific coolant consumption 

In barrier cooling 
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FILM COCIJ!« OF VALU Ç7 CCLSirTTON CKAIPFR Aim irOU’.LFG IK 

LIQUID PHOPFLL ITT RX:3rr lit m «J 

”1 
Fila cooling is used to cool . 'protect/ogiinst erosioRjthe Wf.Us of til 

-( 
combustion chnabers and nozzles in liquid propellent rocket engines*/*-/« 

K film cooling arises in viev of the fact that at hi^i heat flows occurring In 

1 iquid*propellent rocket engine chambers, external cooling of the chasber Is an 

extremely difficult problem on account of the considerable temperature difference 

between the inside and outside surfaces of the vail. 'furthermore, if the fuel 

is used as the coolant", its thermal capacity may not be sufficient to absorb the 

transferred heat. At high heat flows there is also a danger of certain areas of 

the vail overheating with local boiling of the coolant. 

Fig. 196. Film cooling . 

For filjn cooling use is usually made of a liquid fuel which is fed to the 

surface through a special slot or series of holes (Fig. I96). The liquid film forms 

a film on the surface^which is carried away by the external flow throu#i friction. 



Ao 

ft- ft* ÍL* _J 
• noveo, evapora t€8/abo orb lug; the latent heat of evaporation. The 

liquid vapor, reachine the boundary layer, acts on it in the saae vay as a pis fed 

throu(ji a porous surface, and increases the thickness of the layer and reduces the 

heat renoval. 

The fila usually ruptures before it is fully absorbed#since there is 

oplashine on account of loss in stability. In the(reelon 

uilfs X 

.the begirmine of the film rupture a gas curtain is created 

temperature lever tiian that of the exwernal flov. The gas film also protects the 

surface over a certain distance. 

51. Different Systems of Introducing the Liquid 

There are different systems for introducing the coolant to the layer by 

the vail (Fig. 197). The use of a porous surface is difficult on account of the risk 

of the pores becoming clogged if the fuel contains an impurity. The point at vhich 

the coolant is fed - the cooling belt - is located near the part of the structure 

vhich is stressed to the greatest extent from the point of viev of heat - the 

critical cross section of the nozzle (Fig. 19Q»). 

As the coolant use is made of one of the components of the combustible 

mixture (usually the fuel) or else a specially neutral liquid, for example, vater. 

The difference is that the combustible reacts vith the oxidizer of the external flow 



Sloe 

Fig. 197 

Syteea of hole« Porous surface 

Different method of feeding a coolant 

vhereos a neutral codant does not react and Traduces setter cooHn¿;. But the use 

of e neutral coolant leads to^reductlon in per unit of velght of the total 

cornsinptlon of the fuel coaponents and consimption of coolant. 

Fig. 198. Cooling critical section of noszle 

Parameters Requiring Determination In Calculatlnr Fila Cooling 

A designer using fihn cooling is faced vitli the following problems: 

1. Hie method Ox feeding the liquid to the wall layer^ the geometrical 

dimensions of the slot or holes, their positioning,^the feed pressure. 

2. Calculation of the amount of coolant required for the given length of 

to be cooled. 

3* Temperature distribution along the surface. 



4, Effect of the coolant on the en£Íne «.hruet. 

In order to solve these pro’ulcis ve have to study the flov of a liquid fi'a 

vhen acted on by friction and evaporati at the sane tiue. 

Research ahovs tiiut the tethod of feeding the liquid through a clot or by 

means of radial holes nahes it possible to create a continuous filn. Hie clcin’inens 

Of the surface plays an important ¿/art. Big scratches or strips of scale can 

deflect the film and create unprotected areas. 

Fig. HJ shows the results of experimental determination of the critical 

feed rate for a coolant, at which the film is ruptured (Fig. 200) as a function of 

the slot vidth and gas velocity in the stream. 7ne lever the velocity in the slot* 

the more reliable is the use of the stream. At hi£a feed rates the film ray be 

ruptured. 

52, Stability of Film 

Ho matter at what rate the coolant is fed to the surface, the films form 

waves throu^i the action of the gas stream, 'lien the feed rate is increased and the 

film thickens accordingly, waves are formed vith a hi$i period, and drops are torn 

from the surface of them (Fig. 201). The formation of the vaves is connected vith 

a loss in stability of the flow in the film (Fig. 202). At points where there fc 

a concavity, the static pressure of the flov is less than P > p . Consequently, 
•I —i 

fS'o 



Regions of adhesion and detachment of film as function 
of flow rate, coolant feed and width of slot 

v/cool y 
donation of film 

and air 

/' Velocity greater than critical 
v/cool 

Flow under different conditions of coolant feed 

Fig. 200. 

State of film surface during stable and 
unstable flow 

Fig. 201. 

4CI 



the pressure distribution in the outside fiov is such that eny undulation oust 

increase. This increase is counteracted by viscosity and surface tension. 

The stability of the film should depend on the relationship betveea the 

velocity of the liquid in the film and the rate of flow of the gas (Fig. 20“). The 

hi CjVvtj 

more viscous the liquid, the greater this difference , On the other liand, an 

increase in viscosity leads to the pertubations abating. 

Experimental Investigation of Flixi Ctability 

In order to investigate the stability of the fila, we carried out tests 

with cold and hot external flow in transparent pipes. The liquid was let out 

throu^a a slot and visual observations were nade. It was found that at sna'l rates 

Y 
of consuaptionrf, there are very snail oscillations, and that the rupture of the film 

at high rates of flow is due to the occurrence of long-wave oscillations. 

In order to detenaine the length cf the film, we measured the temperature 

of the surface of a wall heat-insulated on the side (Fig. 20h). The length 

of the film was determined frem the sudden rise in temperature at the end of the 

fila. 

It was found that when the consumption of the coolant increased, the length 

of the film first increased in proportion to the increase in the consumption, but 

. i 

then, beginning at a value G^, began to slow down (Fig. 205). 



« t 

PIß. 202 Towards an understanding of 
lost In stability oí motion 

fila* 

Velocity distribution in film 
of liquid and gas feed 

When caapared with visual observations, it was found that the bréala in 

the curve (Fig. 20$) correspond to the occurreat of large oscillations and splashing 

of the filo. When the coolant consuwption is high, the cass exchange between the 

film and the flow is increased and the econcnic factor of the collant is reduced. 

'1 

•* 
ï * 

«• 
K* 

»• • 
* . Radial holes 

• • 

* Slot 

cool 

Vo'j 

Crltlcsl length 
of film as 
function of 
consumption 
of coolant 

i Fig. 205 
cool 



E.'fcct of Indivídua! Fuctore on r::.-3 r^yth 

a) ^(-ithod of Teed, provided the filia udhereaJ^aB little effect on tlie 

length or the critical lenfiUi of the flln (?i¿. 206); 

b) fiscoeity Increases the rilm's liability; 

c) rate of external flow, variation in pipe diaoeter lias little effect on 

&!#V • 
Paraaeters Detennlnlnt; Stability of Flln 

In the sane vay that the transition fron laminar to turbulent flov in tlie 

boundary layer is detemined by the ninber Re^Npüpx/jí, , the stability of the flow 

in the film can be related to the number 

Re^-U&i 
»• f 

(-2.1) 

Here ’¿^iB rul€ motion of trie liquid in the film, ^ and^i^\are 

the density and viscosity coefficient of the liquid, and A is the thickness of tiie 

film. 

Fig. 207 Linear distribution of 208» Variation in critical 
velocity in film. Reynold's number 

Assuming that the velocity distribution in the film is close to linear 

¢5-/ 



G Vf?,*V- 
(Fig, 207); ve (jet*001 1 váere is the vidtii of the fi'u. Ihle gives us 

Re^i&apl 
flcoöl ^ 

If a cylindrical surface is being cooled,k then b ■ h-D and 

(12.2) 

Re*--^.Çûoi 
‘tofP (12.3) 

¿he Re^ nio.iber describes Lite stability of the film, ’.l.en it exceeds a 

certain value (Re^) , the flhn Is ruptured, 

Experlnentatlon shovs, however, that Re^ cannot describe the stability 

ccopletely. It transpires that In turn (Re^ )^. is a function of the ratio of the 

V Iscosities of the coolant and nlxture of the vapor and gases of the external flow 

at the surface of the fila (Fig. 208). It follows frota the graph that (Re^)^. 

increases as, decreases. 

Determining (Re^ )^X 

In order to determine (Re^^\^the hypothesis has been put forward that 

the thickness of a stable film should not exceed that of the laminar sub-layer In 

the boundary layer of the external stream (Fig. 209). If the thickness of the film 

exceeds that of the laminar iub-layer A^^X^acc or ding to this hypothesis the stream 

In the film then becomes unstable. 

Study of experimental data on the velocity of distribution in a turbulent 

boundary layer has shown that in the laminar flow region near the wall «¿><10 



(Fig. 210). ïïere«,= Kv> 'Ulus, the thic;<ness of the laminar sub-layer is 

layer 

Ulis graph plots the experinental points obtained by Abranse ! vhen studying 

/C #•*; * 

the stability of filns. The vertical axis shows u\/ux, , while the horizontal axis 

plots the corresponding value log^/t A/v cool¡[ere u* and ^ are calculated from the 

critical value G , at which the filn loses stability. 
’M, 

logarithmic 
Lav/ of turbulent 

kernel 
[near distribution 

'in laminar sublayer 

1 ¡T# 
Fig.210. Velocity distribution in 

semi-logarithmic coordinates 

! 

53. EVAPORATION OF LIQUID FILM IN TURBULENT BOUNDARY LAYER 

Calculation of the evaporation rate and, accordingly, the length over 

which the film evaporates entirely^can be made on the basis of the following 

assumptions : 



1. Bie consunptioo of coolant Is les» tiian critical; the filu adiieres 

to the surface Is stable. 

2. Biere Is no renoval of heat through the vail and all heat reading 

the film goes into evaporating It. 

If the coolant is liable to react with the external gas flov, the additional 

heat emissions have to be taken into account. 

5^. Heat Balance Conditions and Mass 

When the film evaporates, the heat reaching the surface is spent on vartaing 

up the liquid to evaporation point and on latent heat of evaporation. The length 

of the film at a known value of the heat transfer coefficient is 

<12. <) 

(12.4) 

here A J is the heat absorbed by the liquid during heating and evaporating, in cal^g; 

Ä. is the heat-transfer coefficient; 

b is the width of the film (b ■ 7LD for a pipe); 

Jy. is the gss enthÆlpy at the film surface. 

is determined by the temperature and composition of the gas of the 

surface 



Hie teaser a ture of the fiLu, and therefore the tei»¡>erttture of the gas on 

the aurface, depends in turn on the concentration of vapor in the evaporating liquid 

To determine the concentration i)^ > ^ cun use 'approximate relation- 

•hips with ve obtained for a case in which is fed through a porous surface 

iC^cool—7T7~ 

(12.5) 

Die concentration of tlic coolant at the wall is already less than unity 

on account of removal|throu¿fli diffusion^of the vapor into the boundary layeyl At 

C^. ■ 1, the temperature of the film would be equal to the boiling point of the 

liquid at the given pressure in the external flow, which could lead to rapid 

destruction of he film through boiling of the intrnal particles of the film. At 

Ç^Cl evaporation occurs ata lover temperature than the boiling point, and the 

liquid only evaporates at the surface. 

Condltl® -f ml-kuU may be obtained from the critical dependence 

of the saturated vapor pressure on the temperature ^ ^ ° ^ 6^ven 

case p is equal to the partial pressure of the liquid vapor above the surface 

ioon *T t 

The heat transfer coefficient £ may be taken from experimental data on 

IS* 
porous cooling. 
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CHAPTER XIII 

CONCEPT OF HEAT EXCHANGE IN RAREFIED CAGES 

Over the last fev years flying craft have been able-to attain ever higher 

layers of the atmosphere during flights. This applies particularly to supersonic 

craft. Ballistic missiles of the type V-2 used to reach I50 ka. Artificial earth 

satellites move at altitudes of I50 - 1000 km at velocities of km/sec. 

When designing flying craft ve must be in a position to determine the 

aerodynamic resistance and thermal flux. At such'* ' higi velocities, the 

drag tenperature reaches 10 - 20,000*. The heat flux, hovever, is reduced through 

a reduction in density. In order to make the calculation, ve must know exactly 

lP®r^^re and density at great heights. If ve are to place instrunends 

aboard a rocket moving at a great height, ve must first calibrate them in highly 

rarefied vind tunnels. Investigation has shown that the flov of rarefied gases is 

different from flov at normal pressures. 



Table 19 

Sec. 55. Physical Parameter cf Air at iilri. Altitudes A/ 

Altitude T °K / 
MM 

Ilg . 

« 
Numbgr of particles per Jem 

N; ! O; 1 o~ 

. 0 

20 

40 ¡ 

€0 ¡ 

80 

100 

ISO 

300 

m 

32 

240 

420 

ICO 

240 

4Î0 

1M> 

760 

241.8 

2.C5 

0,23 

3 10-ï 

M0-J 

8.7- 1C-« 

3.8- 10-* ! 

2-10” 

1,5101 

0,7-10* 

4.3-10'* 

1,510- 

2,8 10» 

1.5 10" 

4.7-IC7 

5-10* ! 0 

! - 

1.7 10* 

M0* - 

3.8 10* - 

7,6-ICi- - 

- M0" 

- 1 7-10» 

Sec« $6. Gas as a totality of Separate Molecules. Free Path 

Length of Molecules, 

When studying the flow of a gjia at hiÿi rarefactions, we have to take 

Into account the fhct that the gas is a totality of Individual molecules. When 

considering the molecular structure of gases It Is assumed that the molecules are 

in continuously disorderly motion, that they collide with and strike 

against the surface of the body Immersed in them. It Is also assumed tt»t the 

lavs of the Impact of elastic spheres are applicable to the molecular collisions. 

Uxe interaction of molecules is disregarded inletween collisions. 

(½ the basis of these motions, we can introduce the concept of the free 

path length (free path of a molecule) as the distance traversed by the molecules 

from one collision to another. Since the molecules move at different velocities 

and have different free path lengths, we usually consider the mean free path of the 

Ho 



■oleeule 1« The nean path and the nunber of molecular collisions Involved depend 

oo the size of the molecules themselves, If they are regarded as spheres of finite 

dimensions. 

The kinetic theory of gases shows that 

/= (13.1) 

Here r is the so-called gas kinetic radius of the molecule, which is 

a function of distance over which railecules may approach one another during 

K 4 V 2*^0 
collisions; ' Is the ntsaber of molecules per unit volume; A is the cross- 

section of the particle. 

The nature of flow around ah body depends on the relationship 1 a ni the 

site of the body L. If the ratio l/L ^1, the mediun may be regarded as a solid 

one (continuum). In this case all the lavs of gas dynamics are applicable* 

If 1 Is comparable with the size of the body, we must take the 

discretion of the medium Into amount. This region Is the region of 

rarefied gases. The value ^increases as pressure decreases. It Is only 

possible to move from the gas dynamic region to the rarefied gas region through 

reduction of pressure In the medium, or else by reducing the size of the body 

under consideration. 

As can be seen from Table 20, If the dimensions of the flow region 



in question are L m, then the ratio ]/L < 0.001 up to a flying altitule of 

approxis&tely 60 las. At greater heights ve must take the rarity of the nedlum 

into account. 

Tfeble 20. 

Mean free pat i length of molecules at different heirfits 

Altitude 
km 

Pressure 
Hg . 

Number of 
particles 

per 1 cm'^ 1 in cm 

0 

10.3 
32 

62 

» 
94 

too 
ISO 
300 

400 

ICO 

176.2 

6,:5 

1.55.10- « 
9.0-10-J 

2,1-10-1 
1-10-1 

3.7.10- * 
3-10-« 

1,16-10-4 

2.5 ir» 
7.3 :n 

2.9.:0^ 

4.5 :o:í 
4.4.:o:« 
3.6-:)11 

3.:019 
2.5-:o" 
1.4I9'0 
3.9-:09 

5.6- 10-9 

2.3-10-1 

7.7- 10-9 

4.9-IC-i 
0.5 

2.8 

6 

20CO 

15CC0 
55000 

Sec, 57. Relationship Between Viscosity Coefficient^ and Mean 

Free Path Length 1 

Let us consider the interaction between two layers of liquid at a distance 

, —/o. 
1 fron each other IFig. 211). If there is a velocity gradient in the direction 

a 

of the y axis, at the distance 1 the flow velocities u differ fren each other by 
^ W V 

iy 
the value ^ . On account of the chaotic motion of the molecules at a mean 

Velocity V, the particles may shift the distance 1, keeping at the same time their 



Bonentum In the direction of the x-axls, vhlch they poesessed in the previous layer. 

The following momentum is transferred across the line 0-0 

•• —. da 
ft in » fvl --. 

This momentum corresponds to friction between the top and bottom of 

the stream 

Thus, p~?i7 . The theory gives us the value p*0,499/Qgan velocity 

Fig. 211. Concept of free path length 

of molecule 

of the aoleculescMO^o, in vhlch a is the speed of sound. Hence we can take it 

that and 

M » 

Sec. 58. Parameters DeterminlnK Boundaries of Gas Flow Regions 

The degree of rarefaction of a gas is described by the ratio of the 

mean free path length and the size of the region under Investigation 



Here U le the flow velocity. As the M number increases and the Re 

miaber decreases, the degree of rarefaction of the cediim is Increased. 

When considering a boundary layer the linear value determining the size 

the region In question is the thickness of the boundary layer 6 . The 

degree of rarefaction of the stream is described by the ratio --«--A 
» ¿ » ‘ 

Here L Is the size of the body (for example, the distance from the leading 

adge during flow round the plate, the diameter of tlie sphere, and so on), We get 

-Í.«=_L-4 ^A 
^ » ¿ * ^ Re » ' r 
^ is the mtio of the boundary layer thickness to the size of the 

body - durtg laminar flow this is of the order of 

» 1 

ttus In a case in which we can speak of the existence of a boundary 

layer (fairly high Re mmibers), the ratio 

J. _M_ 

At very low Re numbers, when no boundary layer can be singled out, the 

size of the flow region around the body is of the order of the body size 

h 
Re * 

Investigation has shown that at l/i < 0.01 we can disregard the 

discretion of the medium and regard the gas as a continuum. 



M¡\ Bõ<o,oi 
^«18, the value» ^ correspond to the continue - gasOlynaaic region. 

1'Rc>0."* 
The value« * ccrreepood to rarefied pa flow. At very hi#* degrees of 

rarefaction, when the free path length of the molecule« is considaably greater 

than the dimensions of the body, vhen calculating flov aro\nd the body ve can 

disrefprd the nitber of collisions between the molecules, canpared with the nwfoer 

of collisions with the surface. Ciis region is called the free-molecular flow 

region. It is characterized by l/£ >10, or M/Re >10. Ihe region of free 

molecular flow is studied by methods involving the kinetic theory of gpses. 

it 
/ 

Between the gas dynamic region and the free molecular floÿregion there 

is a transitional region which is very difficult to study. Two effetts are 

observed in it. 

The first is that the gas velocity by the wail is not equal to zero, 

and the gas glides along the surface at a finite velocity. 

Fig. 212. Flow regions 



; 

This flow is therefore called slip flow. The second effect of the slip flow 

is the tençerature discontuity at the wall during heat exdange between the 

gas and the furface. The gas temperature at the surface is not eqml to the 

surface tenjerature. The boundaries of the slip region are deterained by the 

relationship. 

M 

V Re (13.2) 

Fig. 212 shows a graphic représentât ico of the boundary of the gas 

flow.regions: 

M 

VO* 
<0.01- 

0.01<-4r<l- 
V*t 

gas dynamic or continuum, 

flow with slip, 

free-molecular flow region. 

These values have been put forward by Tzya*. They relate to aerodynamic 

phenomena in a gas and are approximate. It may be found during experimental 

investi^tion of Individual aspects of heat exchange that the boundaries of the 

regions have shifted. 

Sec. 59, Free Molecular Flow 

Heat transfer and resistance during free molecular flow can be calculated 

fron the kinetic theory of gases. Here it is assumed that the molecules colliding 

i at a hig: velocity with the surface transfer the bulk of their energy to it ani are 



then reflected vith considerably less energy, closer to the energy corresponding 

to the vail temperature. îhe gas molecules striking the vail adapt themselves 

to the conditions on the surface. This phenomenon is described by the adaptation 

or accommodation coefficient 

• wm 
£(T — £g,j 

(13.3) 

in vhich is the energy of the reflected molecules, the energy at 

the vail temperature, and is the energy of the incident molecules. 

CT< 1 depends on the physical properties of the gas and the redi um. 

Calculation of the heat exchange consists in èetermidng the difference 

between the total energy to the molecules impinging upon it, and the 

energy carried away by the reflected molecules. In the general case ve have 

to take into account that the incident molecules have different energies, sine*: 

the velocities of the mal motion of the molecules are distributéd in accordance 

vith Maxvell's lav. 

But at a high flight velocity of 6 - 8 km/aec, the thermal velocities 

' /V 

of the molecules can be disregarded (y^j^ <^500 m/sec). 

here v nere v^ 

(v >* 
mem. .therm 

is the velocity of the fligit. 

In this case the energy of the molecules impinging upon the body is equal to 



F __ V ,Rírcji)' c 
**•»*“ iV 2 “MM' 

Here N le the nunber of nolecuks hitting the surface per unit tine, 

is the area of 
iflfc *v%44JLa. j 

‘JodyV and m is the mass of the molecule. 

If the surface teàperature is not too high ( ^lOOO*), the approximate 

value of the total heat flux is 

Q » F koal/seo 
X 2.427 

Nv^nv F 

here n is the nunher of particles per unit volume at the given altitude. 

For a case of flow along a flat plate the following formula has 

been theoretically derived 

•»-0-,707^ 

in vhich is thejheat exchange coefficient 

/ ~~ 

/áec. 60.SIIP Flow 

(13.5) 

the length x. 

Hits flow area is the least studied. As the gas beccmes rarer, the 

molecular flov equations for a continuum require further refinement. Apart from 

the normal expressifs for the heat flux, and friction, on the right-hand side 

of the Navier-Stokes equations or the boundary layer equations ve add terms of 

a higher order. These generalized eqmtions are termed Farne tt equations. 

As evaluations have shovn, the additional terms in the expressions for 

y 



friction and heat flux relate to the tern* as M%; they ^sliould Üierefore 

only be taken into accomt at fairly hlßh values of M^e. 

Ihe additional terms in the Barnett differential equations are of a higher 

order, « «couit of which we are required to add or vary the boxüary conditions. 

At the present time no solution of the Barnett equations have been obtained. 

For calculations in the slip region we use an approxtoate nethod thich 

consists in applying the continuum equations and calculating the slip in the boundary 

conditions. The slip may be expressed analytically by the following relationships. 

For the velocity 

Here 18 the ÉP8 velocity by the wall, u is the rate of motion 

of the wall, 1 is the mean free path length of the molecules. We get similarly 

for the temperature discontinuity 

7>-o-T,- 1.93S — („ - 
• *+1 K, U 113,6) 

Here 5* is the accommodation coefficient, k is the adiabatic exponent, 

\ is the thermal conductivity, T is the gps temperature by the wall, T 
“ JfjWJ * -mutt 

is the wall temperature. 

For a flat plate under these conditions the solution hash been 

theoretically derived as 



Here 

/ RcPr __ja ? /'Re Pr 

‘ y: » ï**1' lo.T) 

V.' J 
h exp(.r)*=•r,. 

J 

lhe ccrreeponding value of £X la also obtained for a caae of flow 

around a aphere. Iheae valuea do not tally very veil vlth experimental onea 

Sec. ¢1. Experimental Data 

Experimental Inveatl^tlc« of heat exchange vaa carried out In apeclal 

highly rarefied vlnd tunnel a. îhe hltfi degree of rarefaction vaa obtained by 

vere experienced in booating tl* atmn in the nozzle. At very low Reynolds 

manbere, vhich occurred in the experiments ^e = 10 - 1000/, the bounlary layer 

bee caca so thick that It practically fills the entire nozzle section. In order 

to improve the velocity and temperature fields in the cross-section of the nozzle 

ve sucked out the boundary layer through a perforated vail. 

Pig. 213 shows the variation in the temperatnre recovery coefficient measured 

r=Vco).-r.’ 

4yo 
1 

V 0 



r' 
vit2i ßiaall spheres 2 - 12 inn in dianeter as a function of the ratio Ee>i. 

As can be seen from the graph, the temperature recovery coefficient is constant 

at M,VRe<:0,2. 

f 

* FI®« 213, Temperature recovery coefficient on sphere 

As increases, the recovery coefficient increases and even exceeds 

unity. In this case the equilibrium temperature is greater than the drag 

temperatute of the stream. 

Ihe same graph shows a curve for the ratio of the mean free path length 1 

and the sphere diameter D, As can be seen the deviation o$ the recovery coefficient 

occurs at 1^^0.05. 

2hë graph In Fig. 2lU plots the recovery coefficient for a p flat plate, 

a* continuous line corresponds to the theoretical value r *® 7/6 for a free - 
mm 

molecular stream. 
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O 

CJ¡ 

¢4 

in a 

Free molecular 
flow theory 

Fig. 214. Temperature recovery coefficient 

on plate 

Fig. 215. Relative recovery coefficient as function of 

attack angle ^ 



fig. 215 shows the 

coefficient as a function of 

experiaental variation in the température recovery 

the angle of attack of a cylinder. The vérticai 

axis plots the value 

r__ 

here -vr &Dd -‘jo* are ^ t-caperature recovery coefficients at attack angles 

on the cylinder - 45- and f = 9o\ As can be seen fron the graph, the 

coefficient falls as the angle decreases. 

(a) nozzle 

Fig. 216. .Nu-/(Re) as function for spheres 

Sgt-TydBifi« coefficient. Fig. 216 1. . gr.jfc ^ Ywl,tlon 

in a.. Nu-a„T3,V a. a functlan of the K. mnber for .pheree. A. cm be 

MM, »t lo» Re=«A.> th. experimental pointe deviate fr« the line corre.pondlng 

to 4e continu«. HU, deviation occure earlier at high M number.. Curvee »or 

different M nunbers do not coincide. 

•¿73 



Curveo vith different K nurouero cnn be car.nfttible if ve plot the 

parameter K/^Re or the reciprocal |7e/V. along the x-axis, rather than the Re 

nunber (Fig. 217). This confiras the right selection of the similarity paraoeter 

r*' 

for rarefied &lb in the fora of ; M/Krc. 

.Mu 

M t 1.(,) l 
Q M pr: .s' 1- 

12,) 
A-6.ÍÍ 

• - 1 
• - r 
* —7 

•*
 

S' 

* 

■, 

A V 
0 / i ' 3 4 i 6 7 d 10 

Pig, 217, Nu as function of for spheres 

(a) Nozzle 

Flow region boundaries. It follows from the graphs that the heat 

exchange and tempeature recovery coefficients deviate from their corresponding 

M:VTe>(0,05 + 0,1) 
values for a continuum at « , Thus, in this case the continuum region diverges 

3mewhat, compared with the evaluations made by Tzyam. 

It follows from experiments on determining the recovery coefficients that at 

i/l ^.10 there is a free-molecular flow. 
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CHAPTER XIY 

SOME ASPECTS OF THK CALCULATION OF TdZ HS>\ T-'JP OF VING HD 

FI.YIJtC CRAFT; ICTHODS OF PIERMA^L PROTECTION 

The foregoing sections in Üds book contain basic inf creation from the 

theory of heat exchange and Ü# boundary Layer. Methods of solving very simple 

problems vere used as illustrations. In actual calculations ve have to take into 

account the Joint effect on a nicher of factors, for example, the surface of a 

flying craft heats up in the atmosphere on account of friction against the air. 

The heated surface radiates some of the heat, through vldch the temperature of 

it is reduced. The remainder of the heat flux may move inside the part. 

Calculation of the heating up of a flying craft includes determining 

the surface temperatures of the design elements, from vhich the heat is not 

transferred inside, the surface temperatures^ ¡hen heat is removed, and the 

temperatures of certain internal parts of the craft and the fuel. In a mmber 

of cases ve have to calculate the thermal insulation of certain parts sufficient 

to ensure the temperature tolerance for the given part. 

In the general case, the problems facing the designer depnd to a considerable 

extent * the purpose of the craft, its flight altitude and velocities, and involve 

a specific type of design In this section ve vill deal, as an illustration, vith 

¥■71 



fundamentals of the calculation when allied to a craft flying through the 

ataoephere at supersonic velocities, at altitudes of up to 30 - 40 km and at 

5. A flying craft of this kind must be equipped vith a ram Jet or a liquid 

fuel Jet engine. Under these circumstances the air is regarded as a solid medi ja 

and its dissociation behind the shockwave in front of the leading edges and in 

the boundary layer can be disregarded /l,C/. 

It is natural that here we are only concerned vith^ some of the aspects 

of the problem and do not take the design details into^ ' account. The data 

set forth below is merely an illustration of the application of equations and 

methods of the theory of heat exchange. Detailed consideration for specific 

design systems is left to special textbooks. 

Sec, 62. Steady-State equilibrium Temperaure of Insulated Surfaces. 

At the commencement of the flight, the temperature of the body is 

gradually increased through acceleration and the gradual heat-up of the part. 

'yfllght^ __^the heat exchange conditions may also vary with the 

altitude and velocity. But if these changes are fairly smooth, the variation in 

time of the heat flux from the gas to the surface at each given moment nay be 

disregarded. Here we can speak of a steady-state surface temperature at different 

points on the trajectory. 

/77 



/»I I 
f.angle of sweep 

/1» 

Section through AA 

Fig. 218. Possible shapes of wings from above and 

In cross-section 

a) Bie taaperature of the vint or fusilage surface at a distance fr<ia 

the leading edge. 

The ving of a supersonic aircraft, when vleved from above, can be 

rectangular, triangular or same other shape (Fig. 218). In cross-section, the 

ving may have a rhomboid, triangular or other profile, comprised 

of straight lines or lines vhich are fairly straight. îhe fusilage is usiatty 

a body very close/to~a cylinder, except for the nose vhich is close to« conical. 

In certain cases there may be an air collector - a supersonic diffuser - in the 

noee (Fig, 219), In all these cases, vhen calculating the boundary layer ve 

can disregard the longitudinal pressure gradient. Thus, vhen calculating the 

thermal flux from the gas to the lateral surface ve can use the solutions obtained 

A* A«« 

approximation. The leading edge should be eonsldered 
nr 

for a flat plate or cone 

separately. 



Fig. 219. Nose area of supersonic aircraft 

It should be pointed out that this division Is a conditional one. A 

heat-exchange calculation taking the development of the boundary layer along the 

surface of the vlng or fus liage Into account is more accurate. The blunting has 

an effect on heat exchange on the lateral surface both througi more Intensive 

build-up of the boundary layer as veil as variation in the flow parameters 

bejroDi the boundary layer. ^ Mi 10 the heat flux on the lateral eurface 

■ay be reduced through blunting by a factor of 20 or 30$ or more. 

Let us compile thek heat balance for the following element of the surface 

? =7,. 
con 

flare q is the removal of heat from the vail through radiation, and q is the 
L 'tnv 

convective heat flux, vhich in the caee of a plate can be detemined from the equation 

(14.1) 

7 =«(r,-r.). 
con 

i 



de value « maybe determined from i'-qs. (8.37), (8.33), ^3.3^), (8. 

(8.54) and (8.55) in Chapter VIII. 

Here 7^= (1+0.2/^) . For a turbulent tegime r = 0.89 and for 

laminar r - 0.845. Bie subscript 1 corresponds to parameters on the external 

boundary of the boundary layer. Hence if the ving is set at an angle of attach, 

ve have to calculate first the velocity, density and M, nunber for ideal 

clroumflow, taking the drag of the pa in the densification discontinuities 

at positive angles of attack and the expansion of the gas at negative angles 

into account. 

Further, 

f'"4,9‘í(íí)'~(rco)'J k“*/“2-l>r 1x4.2) 

Here £. is the coefficient of blackness of the surface, vhich is a 

function of the naterial of the vail, the state of its surface and the temperature 

Ohus, to determine the temperature of the vail ve must equate (l4.1) 

and (14.2) 

The «lu. K. 1, . function of the ratio a, elation should be 

solved a either graphically, or by successive approximations. 



If the blunted leading edge is set at an angle to the streaz, ns is the 

case in a svept back vine, the heat flux is a function of the angle of sveep 

(Fig. 220). 

Fig. 220. Decomposition of velocity into normal 

and tangential components during flow around 

swept-back wing 

Here ve should consider separately a case in tfiich the stream velocity 

caaponent perpendicular to the leading edge is greater than the speed of sound 

(supersonic leading edge) and less than the speed of sound ("subsonic Reading edge"). 
• ** 9 * 

In the first case a receded shockwave situated along the edge oeurs 

in front of it. In the second case there is no shockwave and the parameters of 

flow at the surface can be calculated from the adiabatic drag condition. The 

M ,cos y > 1 
first case is determined by the condition (Fig. 220) A ; the second case 

by the condition 

M.cos-Kl. (lM) 

In a turbulent regime the heat flux is found from the expression 

¢9/ 



in vhich 

(1^,5) 
«I —u_ sin;. 

^ M. C0j 7 > 1; 

2 

* 2a. 1 
?•-= — M. cos i at M- cos : < l ; 

«r.l ¿ ^.C' 
f, !■ the density on the boundary layer; la the coefficient of 

kinematic viscosity at a pressure on the critical line and veil tmperature, and ¿I 

is the speed of sound in the oncaning stream; b ifl the thickness of the edge. 

Surface Temperature of Insulated Elements In 

Flights 

When there is a rapid gain in velocity or altitude, ve lave to take into 

accomt the noe-.tatlo.arjr nature of the heatlng-up both through the variation 

in th» in the heat exchange coefficient * a. veil a. the heat through of the 

part vith time. 

In the general case solution of this problem necessihtes the use of 

laborious methods of the thermal conductivity theory. But vhen calculating the 

heat-up of thin vailed shells, the calculations can be considerably simplified. 

If the shell is fairly thin and a good conductor, it can be taken that the 

temperatures of the inside and outside are equal, i.e., that the temperature drop 

inside the shell is negligible. This is the case vhen the thermal resistance of 

the body S/k is much less than the resistance of the boundary layer l/o< 



Far example, far a steel shell 

JL«! at -" , Blc I. 
à « i 

e-1 .li.v; 1 = 39: a -s. 100. ni»0.0-:.'>. 

When an aluaimai shell Is used ül Is c;T' . 

f'n J.Lc Uwi- ef ti.ir ve can cc. r« the heat balance for the 

element of the surface for an arbitrary accent In time 

or 
rj -4.9. 

Here c Is the theroal capacity of the wall unterlal, sy Is the specific 

gravity of the wall material when disregarding the removal of heat from the shell 

Into the body. 

In order to determine the variation of the surface temperture with 

time, we divide up the totire segnent of the fli^it into small intervals Ac.. - 

Then, knowing andoi;,, from the preceding interval, the temperature 

increment throughout the following interval can be determined from the equation 

Ar., 

is determined for each moment in time by the usual formulae. 

t?3 



nrir .- Ca cu'aiioRc 8:.ow tha4. in a n'jr-ifcer of cases w»'. tecf-eratix-»* in a non-cVit:.-» 

f itfit is nuch ever Uian ti.e equiUoriua •.ec.i^tiure. U*.!.!zirv; Viis r>xi r , roc'v. 

designers are using duraiunin even for boosting up to - C (T up to ’200#C) 
-0) * 

/6/. 

Sec, Ck, Heat Insulation of i^&rts of Cruft 

In order to prevent overheating, the inside ports of the craft are 

Insulated fron the hot outside surfaces of the fusiläge. ID the port of the body 

containing the engine, protection has to be provided fron the heat flux coning 

from the engine. Here ve distinguish tvo cases. If it is possible to arrange 

for iifcrnal cooling, the thernal insulation must be selected in such a way that 

the amount of heat reaching the cell fron the surface is equal to the amount of 

a 
heat removed by the cool nt. 

tte insulation chosen must be made of a material with a low specific 

gravity and high thermal resistance. Ihe characterUtic heat capacity of the 

insulator does not play any part here, since we are considering a stationary heat 

exchange regime. Ihis case also includes large heat containers, for exemple, the 

fuel tanks. Here the thernal capacity of the insulators Is sligit compared with 

that of the fuel. In the examples given ve could use as insulators iteterial with 

a small thermal conductivity A. and lelatively high coefficient of thermal 

difflsivity Among such materials we find* for example, air ( X = 0.02, 

¿/y 



,72). Her*- 'j.t weight of U;*.- lr.su'Mt!<«n 1' r..n:'«’ 

For purpoces of cccparlson we will point out, for exa¡nple, that In 

as good an insulating material as cork plate ( \ = 0.036, a «= 0.00042, = l9o 

kg/m ) the characteristic thermal capacity is much higher, the therml diffialvlty 

is lower, but the weight of the material here is greater /6/. 

Bie second case occurs Genever there is no internal cooling of the 

section and when the characteristic capacity is small. If the flight lasts for 

an unlimited time, the whole dection will eventually acquire the temperature of 

the surface. But when the flying tine is limited, we can select a heat insulating 

material, such that the temperature inside the section does not exceed the 

tolerance. Fort this the material must satisfy two requirements at the same time: 

it should have a low X and a large , or, what is the same thing, it should . 

have as low a thermal conductivity as possible & c ^ . In this case air 

may prove unsuitable in view of its low thermal capacity /l, 6/. In practice we 

encounter several Intermediate cases. 

Sec. 65. Calculation of Single Layer of Heat Insulation when there 

is Slight Increase in the Heat Content of the Protected hart 

Ulis may be the case when the effective thermal capacity and permissible 

temperature increment of the body is small. Furthermore, let us consider that the 

flight time is relatively short. For the sake of simplicity we will take a flat body. 
i 



nttterlùl and T be the temperature of the S’jrface of tiie bod¿- and the Inside 

surface of the Insulation. 

Let us consider first how to determine the thicimess of the Insulation 

without nriktne allowance for Its thermal capacity ‘Y;*^* tl,ere 18 

insulation, little heat goes inwirds, and the surface tem^rature Is eq’jil, 

with a fair degree of accuracy to the equilibrium teoperdture T ^ dòteralned 

h/kUy 
fnom Eq. (l4.3). The thermal resistance of the insulating material R^- ^ . Under 

these coalitions the problem san be reduced to calculating the non-stationary 

heat of the body under a boundary condition of the third kind. An exact 

solution has been developed in the theory of thermal conductivity for the 

temperatuee distribution in a plate of infinite length and finite thickness /2/. 

ïhe plate is heated on both sides (Fig. 221). We are given the temperature of 

the plate at the initial moment of time T y , the temperature of the surrounding 

medium T , and the heat transfer coefficient * . The variation of the tempemture 
r ** 

in all the sections of the plate with time is determined from the solution. 

With certain assumptions, this solution can be used in our case. Let 

us suppose that the body in question is located in a medium at the temperature T . 
" r 

#=-- 

B* teat.transfer coefficient betveen the enrface of the body and the medium 1. ^tn 



•n ;b • -n ¡>tc jrd inet- w*ih the '.rut ti.er:» insj’.*. e-e le r»*3!s'<l^.Cí• 

to heat ex«-... 0- >*veen the (lutolde mediin at a teaperature I . This 
~ c 

representation is possible since the temperature on the surface of the insulation 

Ttf virtually remains unchanged with tine. 
* 

The conditional temperature of the outside medium in our case if T and 

the conditioií[heat-exchance coefficient isa,.,”-' . Variation in the temiera ture 
in 

T in the boundary of the* body is determined fron the exact solutions /2, 3/ 

in the form 

•-V~-=/<BI.Fo). 
/ —/0 

Here T^is the initial temperature of the body, 

Biot nunber, —_ ^n4^r l ^/t 

^ JiV 
Fourier Number — — 

Fig. 221, Variation In temperature 

of plate with time 

The greatest possible increase in surface tempera ture ,- T^is the ret 

value. Since the fligit time T has also been set, the Biot number is uniquely 

/P? 
i 



defined fror, jrw :.s, nr.d ihc required resistance of tile iRsu.n*! or. It tii refore 

-v. 
R • ■*. o • 
- u k • 

Aa a result of the calculation it cay apper that the required thicknesa 

of the insulating material cannot be ensured in the given part. An increase In 

this thickness can be created by reducing the permissible increase in temperet 

(Tf - T^) or increasing Fo by reducing the product or increasing 
T 

the time X . 

ure 

In all cases it is advisable to use insulating material with 

a high characteristic thermal capacity. The shorter the flight time, T , the 

more effective this will be. We will only describe here an approximate method, 

suitable for an extremely slight increase in surface temperature, i.e,, atCl, 
r® —To 

'rt*1’« T|¿is Permissible surface temperature of the body at the end of the 

heating up. In this case the surface temperature can be taken as eqml to 

In order to determine the heat flux we use the solution of the problem of 

non-stationary heating of two infinite plates with an initial temperture T * 
« ^ 

One side of the first plate is kept at T ^, while the front side of the second 

one at the moment T = o acquires the temperature T , and is kept at it the whole 
« W" 

time (Fig. 222). 

Let us designate the parameters of one of the plates (insulation) 5 > e : 



e-* » 

and the paraceters of the o'jor fit« ifcod») '. 'V , / a, j.roalaa i» rorr.ua: ited 

In the following way. Two plates of thickness Í Unsulation) and it (biMy) are 
t “T. * 

- f 
in • contact at a temperature a (FíE. 22J). At an initial mcnent of time the 

outside surface of the first plMe (insulation) mmentatily heats up to a temperature 

vhich is then kept constant. The surface of the second plate (or to be more 

exact, on the axis of the body) maintains a constant temperature T A . We are 
_ M 

required to determine the temperature T( fa on the contact surface, and the heat 

U (t) y 
flux passing through the contact sur face "In the tine X (see /2/, p. 238). 

Fig. 222. For the determination 

of the thickness of the thermal 

insulation 

Fig, 223. Conditional calculation of insulation 
at low variation in surface temperature 

oir body /in7“ ~ . 
r*-7o 



Having deterclned Ñ vi), ve can re. ace t:.e '.fja resistance ,'C Uu- 

insulation F. • by an effective value (R; )/, deletlned in ajch u way Uiftt tlie 

heftt flux passing throutfi this insulation in the tine z at a twiiffature 

difference (ï - T ) under steady-state conditions is equal to the heut f’ux ¿ it ) 
W "w>4 - * 

Fig, 22k. Dependence _-£lO- from p. ^nl 

"In ' 

The solution to the problem considered in the above-mentioned book by 

Lykov gives us 

ll«.C) 

in vhich 
Fo. i jp • 

&'In’is 
Q'-ï/A^.-r )• 

in in In wall 

Let us introduce the effective heat resistance, vhich makes 

allowance for the thermal capacity of the insulation on the basis of the conditioH 

that the heat flux in the time T under steady-state conditions is equal to Q _ , 

i ¿9o 



■jicn 

or 
Q(r).^"rkall - 

Wef 

T e (T.-T. )) /(FaJ= -’’/walU 
In In wall In lnr 

Then aruHiplylnc both sides of the equality by ^=-^. and takine 1:1.7) InU’ 
In 

account, we get 

'V! fn’bf 

or 

Fig. 224 shows the dependence of—In on Po4 =—1¿ 

‘Ur 1 
At low F^, the effective heat resistance of the insulation throutfa 

internal thermal capacity is greater than under steady-state conditions. When 

Fo j^lncreaseq, i.e., all other things being equal, the effect of the thermal 

capacity of the insulation decreases as time increases, 

lhe surface temperature of the protected part may be found by the method 

fit forth at the beginning of this section if we were to replace the true value 

R, by its effective * value R , . 
™ i«* — aA 

Sec. 66. Heat Up of Fuel in Tanks 

i 

When an aircraft is moving at a high speed, the fuel tanks must be firaly Ht 



Insulated, tte tm aera tu re of the fuel oust not exceed Its boiling point. In 

a ninber of cases the naximon fuel temperature is determined froa considerations 

of ensuring the smooth supply of fuel to the engine, the spalling resistance of 

the packing, prevention of cavitation In the feed lines, and so on. 

Bie problem of heat insulation becomes particularly acute vhen desiring 

machinery for flights of the longest possible range. In this case the aircraft jaust 

carry 
tremendous reserves of fuel, the veight of uhich amounts to as much as 75^ of 

the total veieht of the aircraft. By the end of the flight, which nay last several 

hours, the temperature of the fuel in the reserve tanks may becaae excessive. The 

use of any heat insulating material means an increase in the dry weight of the 

machinery and, accordingly, a reduction in the range of the fli^t. 

The final fuel temperature Is also a function of the make-up of the tanks 

aboard the aircraft and the in which they enpty. The tanks which empty 

first need not be insulated at all; those which empty last must be insulated to 

the maximum extent. Fuel contained in one large tank heats up more quickly 

by the end of the fli^it than fuel contained in several tanks emptying one after 

the other /l/. 

Let us consider the calculation for the heating up of fuel in a cylindrical 

_... ____ .,. .... ,.. ... •— . - ‘ 

tanki. The lateral surface of the tank is the fusilage, around which there is a flow 

¿IZ, 



of supersonic air. The tank reoaina full until the eni of the fll^t, or Is 

eaptled under set conditions {sí¿. 225). 

Hie heat cay reach the fuel throu^i the vetted tank surface or 

thrcw^ the non-vetted surface Z by convection end radiation heat exchange 
-*»w 

f 

to the free surface of the fuel F. 

Fig. 225. Fuel tank 

Let us designate the volune of the fuel at an arbitrary manent of tine 

as V, and its specific gravity and thermal capacity as ^ and C . Hie heat 

balance equation can then be written in the following form 

Uh.Q) 

in which T is the temperature of the fuel, taken as identical througiout the 

volune, c Is the tine, q is the heat flux density through the wetted tank 

surface, and q ^ is the heat flux density to the free fuel surface. 



In order to deteraine the variation in thcx tecperature of the fuel T 

vith time, ve tave to express q , q,* V, S and F in the form of time functions, 
—' — — k*<fr 

after vhicb ve can numerically calculate tlve variation in 7 vith respect to X" , 

by aplittinc up the entire fii^it tine into finite intervals. 

a) determining the heat flux densityq through the vetted surface 

Hie continuity conditions for the heat flux take the form 

Here ^ is the heat-transfer coefficient from the outside stream to 

the vail, K is the heat-transfer coefficient from the inside surface of the vail 
T 

to the! fuel, £ is the degree of blackness of the outside surface,f and ^/?jn 

is the thermal resistance of the insulation. 

Taking out the temperature of the inside vail Tr , ve get 

and then the variation in q as a function of the variation in T 

b) determining the heat flux density through the free fuel surface F 

Hiere may be heat exchange between the Inside non-vetted surface of the 

tank S and the free surface of the fuel through natural convection of gas and 

vapor above the surface of the fuel and also through radiation 



Let us use õ(* to designate the coefficient of heat exchange through 

natural convection, referred to a unit area of the fuel surface. ïhe degree of 

blackness of the inside surface of the tank s is designated £ # , while that of 

the fuel is taken to that of unity. Ve can then Introduce an effective degree of 

blackness, referred to unit area of free fuel surface ( £ ^ ), for the radiant 

heat exchange between the tank walls ani the fuel surface. 

The continuity condition for the heat flux can now be written in the 

following form 

1 r. s, 

(14.9) 

This expression at a set value of F is used to determine q as a function 
- .1 

of the fuel temperature T . 

Ifevlng calculating 7i (5, T) and H f ve can solve numerically the basic 

heat balance equation. Die variation i in the volume of fuel V, the sarfaces S 
— VX.U- 

and f as a function of time can easily be determined at the set dependence of fuel 

consvmption vlth time and the geometric dimensions of the tank. 

Below we give examples of the use of theoretical relationships to determine 

the heat regime of the surface. 



Pggl,le U We are ^ired to determine the tonperature of the aircraft 

fiBllace at a distance of 1 ■ fron the Leading edge. 

// — 20 km, M// — 4, Th « 216,5*. /»^ ■= 41,7/jw.iî pi.'îr., *«0,8?. 

O 

We are to consider the laminar and turbulent flow . in the bourriary layer. 

Solution. The temperature is determined from the balance 

In laminar flow 

f - oon 
f -0.824 

con 

f. — 0,3321,(7, -TV) ]/ 
oon V h* 

In turbulent flow 

oon 

M| - .M/,. ft m f/r à, 

and ^ and y- f are the coefficients of viscosity and thermal conductivity 

at ï 14 > ï “ 1 n> £ T H (l + 0.2 r K ); for laminar flow r = 0.845 and for 
** — • H ** 

turbulent flow r = 0.89. 

^£PPle 2» Betermine the total amount of heat which has to be removed 

from the bottan surface of the wing at an angle of attack 10*50’ in order to keep 

the surface temperature at 500#K. Uie flow cnditions are laminar, the flight 

altitude i. 57 ta., H H = 4, T H = 255% P = 0.69 x lo’’ ke cm/m. tte 

degree of blackness £ = 0.8, 

/?/ 



Solution, lhe heat flux density ia /_ 

« <'» - WW V‘iï - "• irá)'- 

... 

Here a are the pis parameters beyond the density discontinuity. 

The tables contained in /5/ give us the slope angle of the discontinuity 

^ th* K number beyond the discontinuity M ( «= 3.23, f f is the gas 

density beyond tlie discontinuity, -=0.5, . 
Pi 

T, _ (M-0.2M») 

Th" (l+0.2M|) * 

r, = T,(l+0.2r.M*). 

in i&ich r is the recovery coefficient/r = 0.845^ 

Knowing T ^ , the tables give us the thermal conductivity A and the 

• “jlit&yUAjJ} -fa 
viscosity coefficient^( for air in a ' Bystem. 

nv fi ' 
Die value is determined fron the curve or from the approximate eqimtion 

1.-0.332. 

Let us solve the same problem for turbulent flow in the bounlary layer. 

The convective heat flux is 5^= 

P.-Pl^-0,89, 

Ml 

Here 



6
-* ' 

•• i 

fig??1* Calculate the aoount of cold air vhich has to be fed through 

a porous surface In order to cool it down to $00*K with air at T 250#K. 

The surface is an axial symmetric end r ç - 3 cm. The flow is laminar, radiation 

and *>r are at a temperature T». «<f-«;0.!. 
** • — 

m - 0.M.9 

can be disre^irded. 

P11*t c®iulont: H = 'e, » w = 5.2 km/wc, ç = 0.523* lo’3 kg. 
_ W 

2¾¾. 

The graph for the relationship (see Fig. l6C) 

gives us f , after which we determine 
•W 

/r/w J/ ^ P 

Here ?w Is the density of the air at the forward critical point at wall temperature, 

hw is the viscosity coefficient at the wall temperature (da\ 

- •«> * H.3 »/î‘oo- ~ 

u r.ÜÍL__ 
" 4W“20.i/r¿ - 

•• 288 

is the total pressure beyond the strai^it discontinuity* 

[*+l M «i ■ 
(»4-I 

+ (Raylei^i’s 
, . - Equation) 

Po 1M.7MÎ, 

PH i?«*-!)*-«- 

*9r 



The parameter 

-to- 

K-J* 
2. i, 

(7r-y0)PrT(Of71)7 

la determined in the following way 

J.-'Sco- (^-0.24) 

J* ^ tfTç. (Pf * 0,71); 

2) determine the amount of heat during convective cooling under the 

same conditions 

r rfr U » 0.» » 5 >• (r^ - T.) I / rr-T 

Tq) 
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SCKE FEATURE CF HiF. IS'.T C^.ICl^TIC:^ IN IJQUID racrKL^.T 

ROCISI CTíGIirS 

& 
In deBiyiint liquid-propell *t rocket eneine« one of the nain problema la to 

ensure reliable protection for the walla of the combustion cluuaber and nozzle fron the 

effect of the red-hot ccnbuation products. At high ea8 pressures and teciperature,|very 

great heat occurs In the combustion chanber on account of convective and radiant 

"R4** - 4 
heat exchange. Ihe specific heat on the chanber walls attairrj * 13 kcal/nl • hour, 

and 20 • 10^ kcal/u1 • hour in the critical cross section of the nozzle. Hie hl#x 

temperatures of the (pees in the chamber increases the siiare of heat throu^i 

radiant heat exchange, the proportion constituting 20 to 3$ of the total heat 

In modern engines /l, 7/» Fig* 2?6 shows the rou$i distribution of specific heat 

along the length of the chanber and nozzle. 

Fig. 226. 

Approximate Distribution of specific heat flux 
along combustion chamber and nozzle in liquid- 
propellant rocket engine. 

Set 



It is an extremely difficult task to cool the chamber vnlla and nozzle under 

theee circumstances. For example, vhen there Is outside liquid cooling, it is 

necessary to provide for an extremely large consumption of fluid through the cooling 

Jacket. If fuel is used as the coolant, its thermal capacity nay prove insufficient 

to absorb the heat renoved. Furthermore, at hi$i specific heat there is a 

considerable température throu^x the cooled wall, on account of which 

it is difficult to ensure a fairly low temperature on the inside of the wall. 

All these difficulties are mode greater in present-day hopped-up engines 

with increased pressure-in the combustion chamber, and when using special high-caiorlj 

fuel. In these cases we have to use various combined systems of cooling. When 

arranging for the cooling of a rocket engine, we have to ensure minimum energy loss 

on overcoming the resistance of the jacket or heat losses when the chamber is cooled 

on the outside by a liquid which is not a combustion component. 

Part of our problem is(comparative of the possible methods of 

thermally protecting the chamber walls and nozzle from the viewpoint of the principle 

them In different cases. Examination of specific designs 

pv* 

special (which also describe the relevant methods of calculation. 

Í»«. 

-fk'* kL- 
67. Distribution oiiHeat AlongrCombustlon Chamber 

In order to obtain a picture of the distribution of the specific heat . 

SC 2- 



alona the coabustion chanber wc can utilize the approxinate fonnula for the 

coefficient^ heat-exchange 

(15.1) 

loo la ^ 

Here G is the c&s ccosunption, d is the diaaeter of the chanber or nozzle, 

temperature, T is the ten^eraturc of the voll. The values 

6n^ A are determined at the vail temperature T 

(I?.??) 

Hie convective heat flov is determined from the expression 

fc-’qiroo-T'.), 

in vhich c ^ is the mean thermal capacity in the boundary layer. 

As follows froa the expression for the specific heat 

V, 

or ^ess inversely proportional to oN/l Hie naxinum heat occurs in the critical 

fk* ¿ 
moie 

cross section of the nozzle. 

In order to calculate the heat radiation ve can use the 

empiric expressions /7/ 

^co,“33|^7[(^,'5-(|*-),S] kcU/*X'¿r (15#3j 

(15.4) 

n*1"® ani are the partial gas pressurep^d 1 is the reduced^e^gth 

of the ray 
0 



I 

The gaees regaining in the combustion chamber radiate to a considerably 

lesser extent, on account of vhich ve may qbsusc 

^=^0,+V- 

The gas temperature T £ in tiie combustion clmmbcr is equal to the 
<44^, 

temperature T^; as the gases move along the nozz:e, the temperature TÄ drops. Thus, 

«ík itm'Ç ft 
the heat fl- radiation shovVa naxinun in the combustion charier and ij 

reduced in the nozzle as the gas speeds up. The variation in heat fl—along the 

chamber is shown in Fig. 226. 

LjlZ 
Consideration for heat exchange radiation of gases does not affect 

the qualitative picture of the heat fl distribution. 

68. Methods of Thermal Irotection of Chamber and Nozzle Surfaces 

in Pochet Qigines 

Use of thermal capacity 

qfUfaiL 
The thermal capacity method is used in rocket engines which for a 

short time, or when using fuels with low calorific value. Tiie engine or its parts 

are made of fairly thick metal. The heat coining from the hot combustion products 

in 
is taken by the surrounding walls and heats them a j tempera tu resurface ( 

permissible from the viewpoint of strength. This is taken as close 

.Tö/ 
to melting point. 



Fig, 227« Vitiation In thick wall temperature with time for 
different materials 

Fig. 227 shows the Increase In the vail temperature for three materials: 

I r' 
copper, steel and. duralum n. Hie cu-ves are calculated for a case In which 

■ 4800 kca!/^ • ho'wir 'deg^and for an initial temperature 
chrf 

betveen 

(.iu 
Li n -5 = the gas and the vail » ~ = 3OOO . When calculating the temperature ve used the 

theoretical solution (see p. lh8 in /6/) for the problem of the heating of the 

surface of a rod restricted on one side by an insulated lateral surface viti a 

Distance from hot surface in cm. 

SOS’ 

'■ ' V ’ ' .. . I 

Temperature distributior 
with time in plate made 
of copper and steel. 



Ac can be Been fron these curves, copper takes the longest tine to heat up 

± 
to the uelting point. Ziis is due to greater theraal conductivity 

throu^i vjiich heat renoval inside the vull is increased. Fig. 228 shcvs the 

(distr^ut^t^^tlJe^very tv7se^^dT^tTr s^rtl^p\in a plate nade of ateel 

and copper^ 

Use of the theraal capacity meLhod is strictly United in view of the need 

for heavy' metal ports. 

Use of UlrtHleltlnr; Ateríais 

Hie use of materials vita . low thermal conductivity results 

in still steeper temperature curves than for steel. But if the melting point ng point o. the 

mterial is fairly high,or even equal to or greater,than the combustion point, a 

thin vail of highraelUng material protects the part froa heating up. On account of 

the poor mechanical properties of high-melting materials, the inside of the charier is 

made of a high-melting material, vhich is then surrounded by a metal casing Ca3 

take the mechanical stresses. Another criterion for the suitability of a high-melting 

material is its response to the chemical action of the combustion products end ability 

to vithstand a sudden increase in temperature. 

Fig. 229 shovs data for a number of materials vith a hi& melting point. 

' V. 

vith the combustion points It also ftheir melting and softening points 



of mixtures of oxygen end peraffin, nitric acid and paraffin, and hydro^n peroxide 

i 
71 

and hydra, ne hydrate /i/, /!♦/, 

nt can he seen froa tne £7anh, a nxiber of^materia's va fairly hi^i 

melting point. Experiments have shown tixe possibility of using graphite, tungsten 

LfeukiU oAJh. 
carbide and silicon. Most hi^melting carbides and nitrides ^ withstand tixe 

airiest temperatures developed by rocket engines. 

Temperature C 
<M0 

lungs cea 

Sublimation 
point J 

Rhe»iumlParífnn.uS---: -I ,- 
Tantalum •--—** r 1 

Molybdenum 
Osmium 

Iridium 

Pig, 229, Softening and melting points of high-melting materials 



External CooLlnr 

External coolinc is the caaconest cooling nethod. 'Hie coolant circuïatee 

throu^i channels with a snail cross section Jthe outside o*' the vails vashed by 

hot ¿ps on the inside. 
# 

If the heat fl fraa the gas to the vail . fTiTthe calcülation ve 

have to determine the rated consumption of coolant ensuring removal of the heat 

received, and the rated coefficients * heat-exdinnge|on the of 

the coolant, at vhich the temperature of the surface of the vail does not 

exceed the tolerances. 

iiW Mean density of heat flux Maxioum density of heat flux 
In combustion chamber in nozzle neck 

WTl'A A W YAx .>A'A'-*S A o œ a r anee point of steel 
1187. Ni.Cr 7. 
Apperanee point 
of sof^ steel 

pure aluminum 
_ j copper 

m Wv cu w' k;; ■ ch uc)> ' 
Specific heat flux, kcal/cm?sec. 

Fig. 230. Temperature of inside surface of walls 2.5 mm thick 
using different materials as a function of the specific 
heat flux. 

Let us consider the factors on vhich the temperature of the inside surface 

of the vail depends. At a given heat flow q and vail temperature on the side of the 

coolant T , 
-X 

the temperature of the surface on the hot 

S’*/ 

gas side determined 
«•It 



frota the express ten 

r.^l+r. 

Here £ is the thickness of the vail and A is U the them 1 

conductivity. 

If is more or less constant, ¿^increases vlth en Increase - hr in ^ or 

X . The value a decrease in A . The value i cannot be lover than a certain limit, hence in order 

to reduce ve have to select materials vith a hi ¿i A • In this case, however, 

" T 
ve have to takerinto account that the surface temperature tolerances ¡for different 

materials [may be different]. 

Fig. 23O shows the temperature of the inside surface of the vail as a 

ll* 
function of the specific heat fl for four materials: soft steel, alloyed steel 

(165» Cr, % Li), copper and aluminum. In ail cases the vail thickness is 2.5 nun. 

The temperature of the outside surface of the vail is 230 C. 

As can be seen freo the graph, aluminita, and particularly copper^shov lover 

surface temperatures. When steel is used, the temperatures of the vail are higher. 

So although th® melting point of steel is higher than that of aluminum and copper, 

/loi the use of steel is restricted by/lover heat 

Sol 1 



Deterclnlnç Heat Tronere? Coefriclents and Tenperoture 

of Wall on Side of Liquid 

It vaa aasuced in the forecoine examples that the temperature of the vail 

on the side of the liquid vas fairly snail and reuained constant. This is the case 

at fairly hitfi values of the heat-transfer coefficient In the general case, the 

temperature of both surfaces should be determined freu the heat balance condition 

(15.5) 

The total heat résistai ce betveen the hot gas and the coolant is the sum 

of the resistance of the boundary layer on the hot gas side, the resistance of the vail 

and the resistance of the boundary layer on the coolant side: 

#-4+?+-^-. 
•. * •* 

Here is the [coefficient_^heat-exchangej including heat transfer by 

radiation. 

Fig. 231. Temperature distribution at different heat-transfer 
coefficients from wall to coolant. 

S'/e 



Variation in ûn on R only if Vö^^E o* the order or (greater 

than the rena^ning teras in the aid. Ac increases, the Inst tern decreases and 

tiie temperature of the vaj.1 on the outside tends to ¿e^teuperature of the liquid. 

Fig. 231 gives a qualitative idea of the temperature distribution in the boundary 

cross section of the vail vhen ¢1 ovaries. 

$ê\M/ be determined by the empiric formula 

V r ^(tlr 
Here 

d° 
e 

kcal/ br degr-e 
(15.C) 

c6-4 -l— 

F^ia the jarea_cross-sectionybf the cooling channel, d^ is the equi¬ 

valent diameter 0* tne cross section Ox the caannel, and is the perimeter 

of the crocs section. 

Since the heat fl var along the length, the vail temperature is also a 

variable. During the calculation, the entire length is broken up into sectors and 

the value of T is determined for each one. 
• »V 

Checking the presence of enough coolant, 

Hie greatest amount of heat vhich can be taken up by the coolant is determined 

by heating it to the boiling point at a set pressure in the cooling jacket. The heat 

balance condition can be vritten dovn in the following form: 



N 

(15.7) 

Here q . is the specific hea flow at the i-th sector, f . is the area 
-1 - -1 

of the i-th sector of the chanber, c is the themal capacity of the liquid at nean 

(jutíít 
and tenperature, and T and^T^j are the temperature of the liquid at the 

' of the cooling jacket, respectively. 

IS (¿t 

When there large heat fl , it may be found that the consumption of 

a component is insufficient for purposes of cooling. In this case both ccnnonents 

)1 ingfore intr< are used, or else internal or caabined coolingfi traduced. 

1,^ 

flß» 232 Variation in heat flux during variation 
in vail temperature. 

Surface Bolling of Liquids 

If the temperature of the surface in contact with the coolant exceeds the 

boiling point, the formation of vapor begins in the boundary layer, although the bulk 



of the liquid ie at a temperature considerably below the boiling point. 

Fig, 232 shows the variation in the wall temperature for three different 

sets of conditions. Between points 1 and 2 we find convective heat exchange 

conditions, i.e., the temperature of the wall is lower than the boiling point. 

At point 2 the boiling polnl is reached and snail bubbles of vapor form by the wal 

and condense when the , the tenperuture of which is below the boiling point, 

naves inwards. The heat-nexchange coefficient is increased throujÿi this process 

end the cooling conditions are therefore improved. The heat^exchonge coefficient 

nay be increased by a factor of 5 “7» 3ut if the temperature of the wall is 

j 
further increased, there nay occur film boiling, (which ^xfalls siiarply. In 

this case the surface may become dangerously hot and nay fail. 

When designing modern engines with external cooling, use is made of 

rated conditions with bubble boiling. 

Internal Cooling of Combustion Chamber and Nozzle in 

Rocket Engines 

As has been shown above, the use of external cooling becomes difficult 

when the specific is stepped up. Furthermore, in a mxnber of cases we 

have to protect the surface from chemical and mechanical action by the stream of 

redact gases. Here it is advisable to use internal cooling. In internal cooling, 



(\ liquid or eaa (see Cuapter X) ia forced üiraiji a nvcaber of slot# or openings onto 

the surface. 

It should he pointed out that the use of porous cooling is deterained to 

considerable extent by the availability of a spalling-resistant and suitably strong 

porous naterial. In order to keep the tenperature of the combustion chncber and 

nozzle vail constant, the consumption of coolant has to be varied in proportion to 

the variation in the heat fl But in viev of the fact that the heat fl in the 

diverging area is sharply reduced, it is sufficient to feed the coolant throuyi the 

chamber or nozzle vail just before the critical cross section. 



Captions *c fíjur^s. 

Fij. 2?5. Approxiratr -iistrubution of specific heat flux a 1 onj[chaser ^oabustloñ] 

and nozsle in liquid-propellant roclínt en.dne 

22?. Variation in thick wall température with tine for different materials 

Fig. 2?6, 'enperature distribution with tine in plat- made of copper and steel 

Fig. 229. ^ Softening and melting points of hi-melting 

materials 

Fig. 230. Temperature of iusidp surface of walls 2.* mm thick using different materials 

as a function of the specific heat '‘lux. 

Fig. 23I. Temperature distribution at different heat-transfer coefficients from rail 

to coolant 

Fi¿. 232. Variation in heat rlux luring variatio in .veil temperature 
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CHAPTER XVI 

ERAT CONDITIONS Hf CRf-.F? FLYING HI UFí ER IAYF3S OF ATMCSP3KRR 

(ARTIFICIAL EARTH SATELLITES ) 

As the velocity of the fli^it Is stepped up, the heat flux fron the air 

3 
to the surface of such craft increases approximately in proportion to Ç V . Flints 

at velocities greater than 3 tan/sec in the lover layers of the atmosphere are 

virtually inposáible. When the flight velocity is increased,however, the 

centrifugal force offsetting gravity is increased and the part played by the 

aerodynamic buoyancy is reduced. On account of this the fli^it altitude cay 

be increased, and it becomes possible to fly in rarefied layers of the atmosphere. 

At a flight velocity of ~~ J.9 km/sec, centrifugal force exactly balances gravity, 

and the altitude of the fli^it is unrestricted. Here the air plays a negative 

part, creates resistance and heats up the shell of the craft. At heights greater 

than 200 Ion this resistance disappears for practical purposes. This altitude 

region is indeed the re^on in which artificial earth satellites orbit the earth. 

The aim of the present section is to give a brief description of the heat 

conditions for artificial earth satellites. 

When considering the heat regime for satellites, we are faced with the 

problem of determining the tempeature of the internal and external parts and the 

S'* 



poßflibility Ox controlling then;« Tenperature control (of the instruiente, 

apparatus and conpartnents assljjied to living organlsns) is essential if ve are 

to prevent thee overheating or becoming too cold. The problem is further 

c(»plicated by the fact that during the flight there is no natural convection 

in the gps filling the satellite, vhich forces us to install artificial 
! 

ventilation. The ins trúcente and the living organises give out heat, the 

■atellite heats up on account of solar and terrestrial radiation, and at low 

atitudes through interaction with the surrounding medium. To avoid this over¬ 

heating, all the heat has to be taken away from the satellite. 

This can be done most effectively by radiation from the surface. Here 

ve have to satisfy two conditions. First, the amount of energy reaching the 

radiation surface from the outside and inside must be equal or less than the 

amount of energy radiated from the surface. Second, the temperature of the 

•hell must be lower than that of the parts cooled inside. 

These requirements are satisfied by proper selection of the 

dimensions of the radiation surfaces and emissivity characteristic is a function 

of wavelength. The sun’s rays must be reflected from the surface, i.e., the 

blackness in the visible part of the spectrvm A ^ must be low, and at the same 

time the surface must radiate to a maximum extent, i.e., the blackness in the 



infra-red region £ corresponding to the region of characteristic radiation must 

be as diose as pasible to unity. 

Bie output of the fan mist be fairly low, since the energy reserves 

aboard the satellite are United, and in addition, all the heat given out by 

the ventilator nust also be renoved by the cooling systen. While the satellite 

is in notion, there nay be nonents when all the instniaents are switched off or 

when their output is very snail. This gives rise to the danger of wercooling, 

particularly when the satellite passes throu^i the earth's shadow. If the 

control system is correctly designed, the tempeiature of the instruments should 

Increase when ihe fan is switched off, and decreased when it is switched on. 

If the fan output is varied, it is always possible to keep the temperature within 

set limits. 

An exact calculation of the temperature control system is complicated 

by the fact that the heat flux varies during the flight, the heating up and cooling 

down of the Instnments is non-stationary, and the thermal capacity of the 

instruments or that part of it participating in the thermal exchange has to be 

included in the calculation. 



Sec. 69. "xterna1 Heat Sources 

Radiant energy 

The radiant energy is a sum of the longwave energy of radiation from the 

earth, radiation from the sun and solar energy reflected from the earth. The 

components of radiant energy coming from the earth are shown In Table 21. Each 

of the radiant energy sources mentioned is a variable In the general case, ueda 

function of the position of the satellite with respect to the earth, the season, 

the state of the earth's surface, the atmosphere, and so on. 

Since the satellite Is moving 4t a great velocity and at fairly extensive 

distance from the earth's surface, thou^i its trajectory passes over an extensive 

part of the globe, it can be considered that the radiant energy received by the 

satellite's surface is equal to a mean. Hence the amount of radiant energy can be 

calculated on the basis of the mean yearly heat balance of the earth. 

The amount of radiant energy coming from the sun per unit area 

perpendicular to the sun's rays at a mean distance between the sun and earth 

(beyond the earth's atmosphere) is determined by the solar constant 5 Q , which 
* 

Is equal to 1140 keal/m2* hour ^/. 

Columns 2 and 3 in Bable 21 /^/ show the energy, shortwave and thermal 

radiation from the earth per unit surface. 



Table 21 

Type of radiant energy 

Shortwave radiation 
1. Reflected from clouds into terrestrial 

space 
2. Reflected into terrestrial space 

through disperion by atmosphere 
Reflected into terrestrial space 

from earth’s surface_ 

Total reflected 
Thermal radiation 

Radiation of atmosphere into 
terrestrial space 

2 Characteristic thermal radiation of 
earth’s surface_ 

- Total radiated 

in •ÍS Í E keal/m2 
oi u 

! 

157,2 

22.8 

180 

It follows* from this table that the proportion of reflected solar 

energy - the earth’s albedo - is oC = 0.37. 

2» heat flux emitted per unit surface of the earth S is determined 
- o 

from the heat balance 

Wd£._*•»-=?>_ 180 koal/m2 . br (16.!) 

Radiation froa the atmosphere plays a fundamental part. In order to calculate it t 

we introduce the concept of the effective radius R, determined in such a way that 

the radiation from the surface of a sphere R is equal to radiation from the earth's 

surface and from the atmosphere. It was taken in the calculations that the height 



of the atooephere vas the upper liait of the troposphere, i.e,, I?. tea. In 

accordance vith this the effective radius of the earth vas taken as H » 6310 ten ♦ 

12 ten. where R ** 6310 ten is the earth's radius. 
- 0 « 

Heating due to earth's radiation « 

Let ua consider a flat plate, the plane of vhlch comprises the angle $ 

vith a line Joining the plate to the center of the earth (Fig. 233). If the 

angle Is such that the plane of the plate does not Intersect the earth's surface 

[ß the anount of heat reaching the plate througi the earth's own 

radiation is not a function of the assunption vith refprd to radiation. 

Pig. 223. Calculation of earth's own radiation 

Incident on inclined plane 

The quality of the energy radiated by the earth and that pasting through 

a sphere of radius (R0 ♦ H ) shows that 



«£.</<■= ¢,4= (/?+«)>; (IS.S) 

vh,™ HI. the ««ecu™ ccd lus of the «arth, H 1. Ih, tllfit .HUud. (a = B ,-12 ta). 

Far a plate set at an angle ß>^, 

(¡6j) 

If the plane of the plate intersects the earth's surface , the 

heat balance condition gives us the relationship 

tte specific heat flux falling on the plate on both sides, Q, and Q is here 

considerably dependent on the radiation lav. 

lÄt us assme tiiat the amouit of heat given off by an elenient of the 

earth's surface dF is determined by Lambert's lav 

dQ^—dQcos 9 dr, 

in idllch oLSL 1b the solid angle at which the plate is visible. 

& ia the angle between the normal to dF and the direction toward» 

the plate, 

n>e total amount of heat reaching the plate on one »Ide is obtained by 

integrating with reapect to the earth', surface vi.ible on that »ide. At (2 = 0 

the plate la vertical, and the exprea.ion for the heat flux 1. written in the 

final form 

r;t* 



riß. 234 Shows the dependence of the heat flux reaching the plate 

cm one side on the fll^t altitude and slope angle. On the right of the y-oxls 

ve plot the amount of heat reaching the side of the plate froo which the leaser 

part of the earth’s surface is Visible. 

Fig. 834. Amount of heat received by plate through 

earth's own radiation as function of angle 

of slope of plate 

ae amount of heat reaching a spherically-shaped body can be determined freo 

the equation 

(16.5) 

Wien calculating the heating up oí a body of arbitrary convex shape, rotating 

In epees In e disordered vay, ve can ule the expreselon derived for the spherlc.1 body. 



lhe effective area aalcTbLips F Is equal to 1A of the entire surface 
~ ♦llÀ 

of the body. 

Heating up throu^i reflection of solar energy from earth’s surface 

The heating up due to reflected solar rays depends on the shape/and 

orientation of the flying object, as well as on the mutual positioning of sun, 

earJi and ooject in questioi (rig, 235)» lhe amount of energy passing through 

an area of sphere, radius R H, at an angle "lj> , is, moreover, greatly dependent 

on the distribution of the reflected energy in different directions. The reflection 

nay be specular and obey Lambert's lav, or may be uniform in all directions. 

Sun. 

235« Mutual arrangement of sun, earth and satellite 



The amount of solar energy reflected from a unit surface of the earth 

Is determined by the expression 

ï' 

in vhlch it = 0.37; = n4o Iccal/m • hour, r the angle between the normal 

to the area and the directicn of the solar rays. If the reflection obeys Lambert's 

lav, the amount of heat reflected from the earth's surface F is expressed by 

cosicosidQdF (*«=*-ï). 

. r 

For a case In which all the |arth's surface visible from the plate is 
Illuminated by the sun we derive the formula In the finite form 

Qnp ^0,45 S9cos y X 

xll-ï-)'_ 
IU+/// <(/?+//) 

W+7RH _W-f2/? I 

”/f(^TW^ln H i’ 

(16.6) 

The results of the calculation are shown in Fig. 236. The values 

calculated for a case of uniform reflection do not differ by more than 1 or 2$. 

O -MS-V”»8 X 
la this case • . Î • 

VTF+2RH 
R K-yi- 

(16.7) 

If the reflection is specular (Fig. 237)« the amount of heat reaching 

an area is determined by the eqaatlon 

n —.c * / Ê. \**ln2T 
Q.*.», »• 4 • (i6.8) 

in which J ■■/(<•) is determined by the graph shown in Fig. 238. 

heat energy reaching a unit surface of the plate at an angle 

Hie amount of 

? to the horizon 



Fig. 237 

Fig, 236. Amount of hejtt received by plate through sun's 

reflected radiation as function of angle 

Fig. 237. Calculation of earth's reflected radiation 

incident on inclined plate 

Fig. 238. Relationship between angles } and Fig. 238 



can be determined from the following expression 

Q 
spec, rei 

P \* iln?r coi (Jj- l) 

r h) »¡«'j' cos) 
( lfi.9) 

la vhich 

It it assuned that the specular reflection occurs at angles OT close 

to 7C/2. 

Fig. 236 shows the reflection according to Lambert's lav for small 

and according to the lav of specular reflection for T-*r/2. 

In the general case fif a body of arbitrary shape, the heat fixa 

per unit area amidships is calculated by the following formula 

0 ^ R \l>ln2T 1 
"*V ■ . 4 \fl+ H/ tin> cost 
spec, ref 

Heat up due to collision vlth air molecules and atoms 

When stems and molecules collide vith the surface of the satellite, some 

of the energy of the forvard and backward degrees of freedom is transferred to the 

vail. Hence for a unit area of sxxrface at an inclined angle to the direction of 

motion ve get /2, 3, 4/ 

mol 
(16.10) 

In vhich E is the forvard motion wtxika. energy of the incident molecules, 

E.^is the rotational energy of the molecules impinging on the plate. 



When deriving this expreaeion ve assune that the accomodation coefficient 

for the forvard and rotational (A^) degrees of freedaa are close in sise, 

%nd range frota 0,68 to 0,95 andOi^fl^I.for different construction materials, vhile 

the accomodation coefficient for a vibration degree of freedan * - u (8ee 
' r' U . 

« 

Chapter XIII). 

Using the la kinetic theory of gases, ve can easily derive the following 

expressions /2/ 

(l6.ll) 

in tfiich n is the number of particles striking the area per unit time, 

N is the msaber of particles per unit volume; 

V is the most likely velocity of thermal motion of the molecules 

V-Y2kT¡ 

k Is the Boltzmann cons tant j 

U is the velocity of the satellite; 

9" is the angle between the plane of the area and the direction of the 

velocity; 

S'A? 



B Is the oasB of the aolecule; 

ÿ (p Is & function vhich si rapidly tends to & constan^equal 

to 2.5. 

ae totational notion enerey of the instant solecules is 

(16.13) 

in vhich J is the nunber of decrees of rotational freedcn. 

The energy of the reflected nolecules is 

ll6.H0 

Fig. 239. Amount of heat received by plate through 

recombination of atoms and collisions with 

molecules as function of altitude 

The ratio of the second and first terms in (l6.ll) is --- . Fox a 

fligxt 200 km at ^ 8 ha/sec (i 1000*K), this value nay be of the order 

of 0,025» The accuracy vith vhich the temperature of the atmosphere and molecular 



concentration at hitfi altituies are determined is extremely snail and for certain 

models of the atmosphere the discrepancies attain several orders /8/. Hence in 

the expression for forvard motion of the incident mo'eculss ve can disregard the 

second term (ß) 

If ve ifjiore both the rotational notion energy of the Incident molecules 

and the energy of the respected molecules at the same time, ve obtain a total error 

not exceeding For high altitudes at vhlch the air temperature Increases 

this error is greater, but the value itself rapidly tends to zero, and can 

be Ignored at háigits greater than 300 to (Fig. 239). 

For altitudes of 100 to or more, ve can use the following simple equation 

vlth a fair degree of practical accuracy to determine the energy due to collisions 

vlth molecules 

2 

Hie accuracy which is determined by the accuracy with which ve know the particle 

concentration and temperature in the atmosphere. 

Eq, (16.12) for determining n at large ß takes the form n s HU sin 9. 

K Heating up due to recombination of oxygen atoas 

It Is assumed that at altitudes greater than (lOO - 160) to the oxygen 

is totally dissociated /2, 6/. During the flight of a satellite, there may be 

S’Bo 



ternary collisiona and recocbination of the atoras on Us surface. ratio of 

a mnber of collisions between atona and surface required for recaablr»tlon and 

the total msnber of collisions is temed the effective recccMiötlon. Experimental 

research to study the recccbinaticn of atonic oxygen A#5/ shows that for the 

materials investinted . 
i 

Bms, per unit surface Q “ 'hG(: , 

in which E is the recombination energy.per o» oxygen atom, equal to 2.5^1 ev, 

n is the mnber of atoms colliding with the surface /lo/. 

Variation in the recombination energy as a function of altitude is 

shown in Fig. 239. 

Sec, 70. Temperature Control 

Since the satellite carries different scientific apparatus and instruments 

aboard; we are faced with the problem of maintaining the temparture within set 

limits. Ihe amount of heat reaching the shell from outside is variable and 

ranges within vide limits, Hxe internal heat emission when the instnments are 

working may also be variable. Under these conditions a special system of temperature 

control is required to provide stabilisation of the temperature of the instruments. 

This system may be basted on the absorption (or emission) of heat inside 

the satellite; or on ihe reoval of heat away fra it. In the first case we can use 



chemical reactions during which heat ia given off or absorbed, or e^se the 

}. 

temperature effect when the aggregate state of the raterial changes (melting, 

evaporation, crystallisation). 

Ohe most rational system is one in which the heat frca the instruments 

is transferred by a heat transfer agent to the rodiation surface, which is at a 

lower temperature than the instruments. Ihe transfer of ’neat to the radiator is 

controlled by the thermal resistance of the intermediate medium. The heat transfer 

agent can be a gis set in notion by a fan, which then absorbs the heat froa the 

instruments and transfers it to the radiation surface. Any conducting material 

with properly selected radiation coefficients A ^ and £ can be used for the 

radiator surface. 

In order to reduce the amount of heat received through direct or 

reflected solar radiation, A ^ must be as small as possible. Furthermore, at 

small A it is easier to carry out visual observa tiens of the satellite from 
« 

the earth. On the other hand, the surface of the radiator should have a caximun 

degree of blackness for the infra-red region of the sector so as to increase 

the energy flow radiated per unit area/ 

Figs. 240 and 2^1 show the variation in the emissivity of a surface as 

a function of vavelen&th and the material used to make it. It also plots curves 

S3 2- 



for Ideal and permissible coatings. Fig. 241 ahcvs tiiat polished metal surfaces 

ere not suitable as radiator material. 

Fig. 240. Energy spectra of sun earth and degree of blackness of 

radiating covering as function of X . Curve ab shows area a, b 

of curve for solar radiation on an enlarged scale 

J Infrad red region 0 mlcr<Ai 
.'Visible region ‘ i 

Fig, 241, Degree of blackness as function of wavelength 

for polished metals 



Surfaces vtich do not conduct electricity, for example, vhite paint, 

metal oxide films, make mere suitable materials. 

Let us consider the heat balance of the shell of Ute satellite rotating 

in arbitrary fashion, though not too slowly, and let us make the average temperature 

for the whole surface the temperature of its shell. A rotating satellite with an 

infinitely conducting shell would also have the same temperature. In view of U« 

fact that tiie satellite receives external heat fluxes on only part of its 

surface /for example heat throujji collision with molecules is received by the 

middle section 7 , while radiation is emitted by the entire surface (r)/, it is 
~ h — 

convenient to refer the heat flux to the mean surface in the middle (f ). The 
JT* 

ff 

mean middle means the mean arithmetic area of the middle in all possible directions. 

The heat supplied to the shell is used in heating it up and is radiated 

into space. The heat-balance equation for ** a thermally conductive 

satellite shell, if it is assumed that the surface consists of n surfaces and 

that each surface has its own coefficients A and Í , takes the form 
- s 

''"Z!+¿A ■ “ ¿ ^.^.+ 
<■» <■! I mi 

!16a5) 
lal 

in which is the heat capacity of the shell; 

Q is the heat reaching the shell from inside; 
- io« 

, *3</ 



i is the tine; 

y % 
c “ lj,06 kcal/n • hour • deg ; 

0 

T Is the tenperature of the shell; 
-KT 

L&» the ex le ma 1 heat flux 

£Q#"0h.+Q«m+SQ3«-+'4Q3.-...>+^ í,e* F1íi* 242)‘ 

It can he seen fron (l6.1p) that variations In the temperature of the 

shell, and therefore the temperature of the instrunents, are decrease« as the 

thermal capacity of the shell is Increased. At a very hltfi thermal capacity, the 

shell acquires a mean tenperature, vhlch is determined by the area of the radiator. 

Fig. 242. Example of distribution of external heat flux 

incident on satellite during motion in circular orbit 

(H-ÍOO km). 

For set external heat fluxes, Internal heat emission and blackness 

there Is a minimum area of radiator at vhlch the heat removal can be assured for 

MS' ... 



set radiator temperature T . If the area of the radiator is finite, this 
» w 

coédition enables us to vork out the miniaua amount of heat given off incide the 

satellite which can be removed throutfi the shell at a set teinpcrature T . ïhe 
fat 

amount of heat supplied to the surlhce of the radiator from inside is determined 

fron the heat balance of the inside assemblies. The heat enitted by the instruments 

is partly spent on heating them up and partly rtnoved to the wall. 

To determine F in (16.15), let us use the rule, according to which 
* 

a 

for any convex disorderly rotating body the ratio of the area of the entire 

outer surface to tire mean middle (to the mean shade) is a constant value and 

equal to fc. In the particular case of a sphere, this is obviously = 4. 
-M 

Without loss of generality in the argments, we can consider a satellite in 

the form of a sphere with a good conducting shell. The conclusions drawn 

remain valid for rotating satellites of any other shape as well. 

If we consider the heat balance separately for different parts of the 

surface with different coefficients A ^ and £ , or at different intensities 

of heat removal from inside, this rule is applicable to each sepa iate area. In 

this case when calculating the area F we only need take the visible outside 

surface into account. The inside surface, althou^i visible throu^i an imaginary 

section, Is not considered. The surfaces in question must be plane or convex 



and mist not eellose one another. 
J 

Sec. 71» Ventila foi System 

Let us now take a look at some of the features of controlling tecpeiuture 

by means of forced ventilation of &b in the cell. The ^s flow set in notion by 

a fan passes throueh the radiator into tubes for ooolinfi the instruments and 

returns to the air intake of the fan. The calculation includes determining the 

rated power of the fan and the geometrical parameters of the ays tan. 

Initial relationships are 

Here H is the output of the fan at a wolmetric consumption per second of W 
r - U*. 

and gradient À jt ; 

of heat supplied to the radiation surface from inside; 

the temperature difference between the radiator inlet and outlet; 

<jp is the specific gravity of the gas; 

JT and the areas of the radiator and instniaent surfaces participating 
V 
- in the heat exchange; 

andíí^re the heat exchange coefficients. 

The pressure head A P is spent on overcoming hydraulic resistance in the 

system. Hydraulic resistance of the radiator is determined by friction a^inst the 

— ,-- S'3 7 -,__ 



vail aod local realEtanccB. A large port is played Inside the satellite by vertex 

losses during flov around the Instruaents. Using the condition of hydroiynaaic 

analogy, 

ve get 
r ‘*sr * 

' Tt-Ti ,-5l] 7»* 
^ • (16.18) 

í ‘-f af 

here is the friction; 

S ^ is the flow area of the radiator; 

— is the ratio of the total radiator surface to the surface participating 

In the heat exchange; 

1$! is the flow area of the cell; 

C i« the resistance coefficient of the cell. 

Fig, 243, Relationship between heat given out by instruments 

and total heat emission at different pressures of surrounding air 

(Sp through section of radiator) 
S'3 S' 



After transformtion, we get 

116.19) 

in which K is a function depending mainly on the gMoetrical dimensions. 

Bie temperature T ( at the outlet from the radiator should not be lower 

than the smallest temperature pena is sib le for the instnaaents. 'x ^ 



r 

slightly less than the m&ximiun instrument temperature. It follows that 

when the permissible temperature range is narrowed the power required by 

the fan Is greatly stepped up. 

* • e 

The relative proportion of energy spent on driving the fan increases in 

proportion to the square of the total output, including the fan output. 

In a steady-state regiiae 

At set parameters of the cooling system there is a maximum instrument 

output and a corresponding maximum fan output, at which cooling may still not 

have been effected (Fig. 243). When the output of the fan is further stepped up, 

the output of the instruments has to be reduced in order to keep the temperature 

constant. Otherwise, the fan will chiefly be working for itself. 

If the instrument output is small, the amount of energy used t-> drive 

the fan becomes négligible, and the latter can he selected from purely functional 

conditerations. In thi^ case, instead of the smooth control we can apply step-by- 

step control, i.e., the fan is switched off when the - ximum permissible 

.anperature of the instruments is reached, and switches on when the air is cooled 

down to the minimum permissible temperature. 

Here an important part is played by the thermal resistance of the 

^¢0 



assembly and the gas R when the fan Is turned off (Fig. 244). It should be fairly 

Large in order for the leaders ture of the ins truncate when the fan is switched off 

4 

to be increased, since otherwise the instruments may becooe too cold and it will 

no longer be possible to control it. 

Fig. 244. Theoretical system of 

satellite 

Sec, 72. Radiation Surface 

In the general case the radiation surface may Include areas with 

different values of A and i , It is only possible to arrange for cooling if there 
” - 

I 

is an element in the satellite with a fairly low temperature. The part of the 
I 

•hell of the satellite can serve as this element, since it is a radiator surface, 

: 
The heat received by the satellite shell is equal to 

XQ#* 14, (1¾ + Qorp) -f •oQstu + Q UOM (16.20) 
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in vhich F is tiic area of tlie ou laide surface of the shell, 9 

T ifl the nean tecrjerature of the outside surface of the shell, 

At »öd lg are the reduced coefficients of absorption in the visible 

and infrajred areas of the radia tiro spec trun. 

Let us take it that the satellite shell consists of several parts, each 

one vith its own radiation coefficient and ¿ in the visible and infrared 

parts of the spectmn. For example, for a shell conaistin¿ of tvo parts, A and t 
~ 0 

are determined from the equations 

. _ «rf(a — 1)*i 
*o _ • 

(16.22) 

(16.23) 

in ifcich A , Í and A , i are the coefficients of radiation in the visible arú 

infrared parts of the spectrun for the first and 

seoand parts, 

n is the ratio of the area of the t vtal shell surface 

to the area of the first part. 

Let us take F to be F = F/4, It is clear from the equations that 

0¿ A ^ 1 and 0 <C £ ¿Ll. 
- 6 0 

For certain arbitrary values of A 0 and £ ô ve determine the temperature 

I 

of Çhe instrunents for motion in an orbit, the plane of vhich is perpendicular 

of the sun's rays (Fig. 24$$, and ve plot graphs shoving to the direction 



the'variation in temperature as a function of motion of the satellite in Its orbit 

(Fig. 2½). 

The calculation Is repeated for the second extreme position of the orbit 

and we determine the range of A and i over which the teanerdure of the 
-a * 

inetrasents keeps within the set values. 

* orbit 

Fig. 245. Position of two extreme 

orbits 

Admissible temp. 

Fig. 246. Heat conditions for satellite during motion through 

orbit 

¿"¿J 
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The practical application of nuclear energy in engineering, particular! 

In transportation units, as Is veil known, is deternined at the present tine by u 

nunber of engineering problens. Cne of the nost important branches of science 

determining progresa in nuclear power engineering is heat transfer. 

The great variety of utilizing energy fron nuclear reactors 

/15, l6, 19/ prevents us giving a complete survey of the typical heut-exchange 

problems in power engineering. 3ut if it is taken into scccunt that nest of the 

processes in the transfer of heat,/heat-exchange apparatus and devices are 

described fairly adequately in apéndices to books on ordinary heat engineering, 

the task for this section is somewhat simplified. 

Here we will discuss certain specific features of heat transfer when 

utilizing the heat fron nuclear reactions in power reactors. 

The problems will be considered in the follovint order: 

1. Heat released in nuclear reactions, forms of manifestation and 

energy carriers (micropicture). 

2, Heat release in different parts of nuclear reactors, heat 

, x J~Jb 
Imacropicture), processes of transfer to the working substance in the power 

plant, and processes accompanying the harnessing of nuclear reaction heat (heat 

emission in parts of a power unit plant in the field of radiation, activation of 



heot transfer agent, and so on). 

73. Energy Release In a Nuclear Reactor 

Kature of Nuclear Hect Release 

Energy nay be released In large quantities during tvo types of nuclear 

reaction. These are nuclear reactions involving the fission of the nuclei of 

hear/ eleoents such as uraniua, thoriua, plutonium, and the reactions involving 

the caabining of nuclei of li¿>it eleaents, for example, tritium (thermonuclear 

reactions), although the latter are accompanied by a large energy release, they 

are far frm practical application at the present time, thou&i for the time being 

we will deal only with the energy release during fission reactions. 

From the example <Tfthe fission of the isotope uranium u'^ÍFig. ¿’17) 

It can be seen that the energy appears in the fora of (l) kinetic energy of the 

(fragments_^fission,j (2) kinetic energy from neutron fission, (3) end ''J'' 

radiation energy (instantaneois, accompanying the event of fission),(4) radioat.-ive 
« 

decay energy and ^ ) of the fission frapaents; (5) energy from the protons 

and neutinos obtained during fission and further transformation of the fission 

fragsents. 

Present day experimental data /12/ describing the mean distribution of 

fis* 
. energy over these particles and radiations during the fission of U are given in 

SH Table 22. 



ï> 

Fig. 247. Diagram showing aerial development of fiaaion of U 235 

Nucleus V235 

Free (J V f ”\. 
neutron“1^ ,, ^ / > 

t/ neutron cn?)Intennediate Sec.neutrons 
— nucleus excited state c)Fission 

caused^b^neutron ven 

V 

jO '■}&!!!- 

counters 
V235 • 

Mean Particle Energy Distribution During Fission of U 

Table 22 

Kinetic enerar of fission fragmenta 

^ quanta of fission (instantaneous) 

Kinetic energy neutrons 

Energy of |^-and radiation of fission products 

aiergy of other types of radiation 

162 Mev 

5 Mev 

5 Mev 

11 Mev 

10 Mev 

I ofU J 193 Mev 

It is conventionally taken in engineering calculations that 200 million 

electron volts are produced per one fisdon event, H.is amounts to I9 • 10 kcal 

1 g of fissile matter, i.e., the calorific value of uranium "fuel" is .more t.’nnn 

per 

a million times that of a chemical fuel. 

In solving problems of heat transfer it is important to know where, in which 

^arta of the reacto^ and at what distance from the point of nuclear decay the energy 

s/r is released. 
1 



As can be aten fr« able 22, the flssl® frayente carry a ;ar£e anount 

of enere. &ey hurtle avay freo the fls.lcn point In different dlrectlœs at 

tremendous velocities (of the order of 134 m/sec), tte enere level of the fragen 

; correspond to about if all particles of œatter moved at tlie velocities of 

the fragüente. 

! 

îbe path length of the fragments depend on the medium, its density, 

«topping power and so on. In solid bodies, however) the fragment path does not 

exceed tenths of a milimeter. Such small distances are to a considerable extent 

«plained by the fact that the fragaents are strongly ionized and easily fcteract 

V ith particles of the medium. Along the stopping path the fragments undergo a 

series of co.lisions with particles of the medium, giving rise to different types 

of oscillation, altering the potential energy of th^íedium and causing displacement 

of the atoas in the crysjfcl lattice. Ihe energy then spreads from the frag nent 

trajectory through the medium by the normal paths - thermal conductivity and 

radiation. 

TUclng Into account the nail fragment path length., It can be taken that 

their energy 1, releaeed locally. It can be con.ld.red by the .am. token that the 

radition of fission fragments occurs at the same fission point. The other fission 

energy carriers release (5- particle energy locally, for practical purposes, since 



theii ptith len^-tiic in solid bodies wiount to 0,1 - 1,0 cc.. 

local Heat Release 

According to ».ether the reactor la hasogeneoua or heterogencoue, the heat 

release In the mterlal of the active zone In the reactor Is d.tera'ned In dlffer.-at 

v-Vj. :u a Lecogeneoas reactor, In vhich the fissile natter Is uniformly distributed 

thro.^ the rudera tor, or 6 one tire 8 nixed ,1th the heat transfer agent, the task 

is canparatively single. 

Bie anount of heat released per hour per unit of volune depends on the. 

number of neutrons passing through a unit of area (neutron flux nVn/an1-. eec), on 

the concentration oí fissile tatter y<M Its tendency to capture neuirone ,1th 

subsequent fission of the nucleus ( (Tf m cm1 or In barns* Is the effective fission 

cross section), 

flakine it into account that durin6 one fission 200 nev enerar i8 released, 

to obtain a thermal capacity of cfae kolovatt ve need c - 3 • 105 uranius nuclei 

fissions per second, and to release 1 kcal in the course of an hour ve need c = 3.49 

(o 
- 10 fissions per second. 

In a homogeneous reactor using pure U * vith a graphite 

moderator, the uraniun concentrât!« is taken as such that per 1 a there are 5.7^10^ 

uraniun atoms (approximately vei&t); and the total (macroscopic) fissi on cross- 

I _ |o ^ c^ x. 



section is 2/ » A»/ ca2 

» 
* 

Assunlng 

•/-«910-M ca2 

ve get 

X/b5,76 SI9.|0-*««3,I6 I(M 

For our exanple let us take a neutron flux in the center of the active 

U 
zone in the reactor equal to ny » 10 neutron/cm • sec. Ihe total number of 

fissions a second will then be 

10113.16.IIX.3.16 10'' flMlons per oecopd In m3 

lhe volvnetric heat release is 

f 3,1610^ 
f*- —- rf 3.49-1010 

■9-10» kcal/n>3 . hr 

distribution of Heat Release in Reactor 

Die distributions of the neutron fluxes ny and therefore the heat releases 

q^re non-uniform through the active zone, during 1he[chainrHScI5SFJreacticn of UMf 

fission, the neutrons are constantly being generated; some of them are absorbed by 
) 

the uraniun atcms (for the most part the neutrons cause new fission events) or 

other materials in the reactor; the diffusion processes cause a "leakage" of some 

of the neutrons from the reactor. These processes can be calculated and solution 

( 



1 

of the neutron bbLance equation aakes it poesibie to derive h regularity i'or tlielr 

distribution tlirough the active tone in the reactor^ fkf. 

-- 
For theplnple case of a cylindrical reactor of finite length L 

O 

vithout a reflector, the distribution of the neutron flux through ti* volir.e of tlie 

reactor Is detertiined by tlie following equation 

*tM»(/ll')aCOS*^ JQ^-r) */co2 * 

in vhlch (nv) is the neutron flux in the center of the active zone, 
— 0 * 

(17.1) 

X is the distance along tie reactor axis, L is the length of the 

reactor, r is the radial coordinate, il Is the radius of the reactor, and J is the 
*" - - a 

zero-oi’der Bessel functi.n. 

In an actual reactor the neutron flux distribution is rather different 
\ 

(Figs. 2W and 2h9). In order to cake a ron^i estimation of the neutron distribution 

in the active zone of the reactor vith a reflector, L and R in Eq. (17.I) are 

replaced by the imaginary values L' and R'; the latter are determined by extra¬ 

polation of the curves nv =» f Jx) and nv = f (r) in the reactor vith the reflector. 
~ 1K 7^' 

Equation (l7.l) takes the form 

8/cm2.sec. 

(17.2) 

Accordingly, the distribution of the volume heat release in the two central 

ssz. 



•ectiona of the active zone is expressed by the following equations: 

Zn the croes section 9» ku/*'. L 

In the longitudinal section COS " jt** ‘ he 

In the heterogeneous reactor this nethod can be used to calcúlete the 

energy release in the heat-producing elements alone. All the physical constants 

for the calculation can be taken fron scientific literature 4, 8, 12, 20/. 

Fig. 248. 

Distribution of Chennai 
neutron flux along radius 
of uranium graphite power 
reactor vlch reflector 

Distribution of thermal neutron 
flux along length of uranium 
graphite power reactor with reflector 

Fig. 249. 

Heat release in the moderator and heat transfer agent^. slmllazj^to heat 

release in the ref lector^ parts and reactor protection's calculated in a different 

way, since it is determined by the absorption of energy solely by neutrons and 'jprays, 

SÏ3 



Ihe neutron end Y* relation heve incocpaiably ¿reeter penetrfttln¿ power 

than the fission fratpvnts and /J-particles. During fission,as well as during 

radioactive ddcay of the fiseion fra^cents^ there occur neutrons and f quanta 

with different degrees of energy. The sphere of heut release fron these radiations 

depends on their energy. 

Fig. 250 shows another exrmple of the distribution of the neutron strewn 

in a reactor. 7ue transfer of neutron and ^ quantun e"er# frac, the point of 

fission through the active zone does not distort to any great extent the conventional 

law of.proportionality of the heat release to the neutron flux. But the removal of 

.on this small quantity of energy from the active zone by the neutrons and 4"- radiatic 

t 
is a deciding factorin calculating the heat release outside the active zone or outside 

the heat producing elements in the heterogeneous reactor. 

The absorption of neutrons and ^-quanto determines the heat release in 

the regulating rods and unis of the reactor within trie active zone. 

Heat release through the neutron and 'JT-quantum energy is considerably 

more couplicated by nature than in a nuclear reaction. The heat release depends 

not only on the properties of the material and particle energy, but also on the size 

I 

and configuration of particular units of the reactor. It works out that the absorbing 

power of materials varies with the particle energy (Fig. 251). It is clear from 



^exacçij.® given that if a. snail energies (0«5 taev) lead is superior to iron as u 

protective naterial, when "hard " ^ rays pass through it, vheir absorptive powers 

are hardly different. 

25O. Distribution of neutron flux in cross section 
of stationary research reactor. 

Cios, in order to calculate the heat release freo neutron and Y” miction, 

ve have to solve a ccoplex integral equation (with integration with respect to the 

volume of the part, the type and shape of absorption, the particle energies, the 

elements constituting the material of the part, col so on). 

In practice the integral equation is solved by numerical methods, and is 

SSS" 



moat frequently replaced by S'matlon 
uv-+i~ tka 

areas within which the ^araaei 

are averaged /12, 20/. 

Voluiaetric heat release in the raterial when neutrons are absorbed and 

quanta are emitced with energy E vitix u small free i>ath length (in a heavy material, 

it*. 
for example^ lead), can be calculated from (2o|. 

Ä (^) "^ I1.. jc*“ * ( - E, (|.fr)J + 

on Fig. 252 shows the results of the calculation of the funcU 

r (•. f») “»-► * Je" • I - El fci*)) + E, 1 - pi j. |nL+;| 
|l —•/ 

m 

for different values of (X and M 
J * 

liking this function into account, we get 

«(C)-ij7 io-<.,(£)Ä^n.£)f(1|,4) 1^1, ¿r 

Here n(^) is the shore of neutrons bringing about ^quanta with energy E 

during absorption; 

Vth' neutron f^ux every second through cm^; 

^16 coefficient of energy absorption of the ^-quanta in the 

given material in cm 

% is the neutron absorption coefficient in 
-/ 

cm 



Is the neutre» transfer coefficient in cn , 
m 

i 

i» the linear absorption coefficient in cn , 

b is the distance to the point at which the absorption of the Y-quantun 

takes place in cm. 

Die physical constants required for the calculation can be borrowed from 

/4, 6, 12, 20/ and other sources. 

74« Transfer of Heat to Heat Recovai Surfaces 

Oils process of heat transfer within the heat'producing decent is very 

inportant because it determines the basic characteristics of suitability for work - 

heat resistance (maxima temperatures in body and on surface of elenent), thermal 

stresses (tempera ture distribution - maximum gradients and temperature differences 

in the element), and transfer of heat to the coolant (temperature on heat-removal 

s urface). 

As was found above, a characteristic feature of the energy release in 

nuclear reactors ia the heat-release volumetricity. Hie process of heat transfer 

is somewhat conplicatèd thereby. In order to take internal heat release into account4, 

when deriving the general thermal-conductivity equation we have* to compile a heat 

balance for the element of the body volme dV. 

^ f •ts'" 



fí
ji

ò
.a

.)
 

■U 

QtSO 

•0 

30 

20 
n 

0,100 

so 
. to 

70 

to 
0050 

to 

‘ 30 
20 

10 

r r t i 
i 
i - A — 

— 
i 1 1 

.. 4_ 1 
1 

i 1 
r 1 i 

ft 
“T“ 
i i ► 4 1 

1 T i 
r1 
A _j _ _L 
\ V k ! i ”1 i i 

■ 
V 1 ! .1 i • i 

* lead j> Jijig / en| j 
^, Iron •7.f< R/cm'* 

1 'T¡ 
1 • 1 i 

' 1 : * 3 
S £M*v 

Fig. 251. Mass absorption coefficients of 



Ble integral parte of the heat balance are, accordingly, 

îî/j\ 18 heat releaséd over the tine df in the volune dV 

lhe «pecific volunetric heat load* - the productivity of the internal heat 

•ourcee /9/ - will be deaigiated at y^kcal/a* hour, then 

dQx=q,dVdv. 

b) the amount of heat .pent on heating up lhe volune element d; dependa 

on the the mol cepeclt, ç,|n the 4en.it, of the body j end on the rate of d-oee 

in the temperatureit/dt , i,e., 
«a 

T5 

c) sane of the heat d^^ leaves the body through thermal conductivity 

and In the general case is determined by the equation 

or 

<*Qa= -WtdVdt' 

Developing the heat balance equation 

rfQ»-rfQ,+</<?„ 

q9dVd-. dVd-.- WtdV<h 

ve get 



The general equation for theroal condctlvity at dt/dt" ■ 3 glvea us an 

equation for the stati6nar> process voluaetrlc heat release 

^+^.=0. (17.3) 

Actual heat-producing e’enents, as vill be shown below, have cccplex ciiapes - 

ribbed rods, corrugated sheets, blocks with Internal channels, and so on. 

The solution of the thermal conductivity equation for such bodies Is 

extremely cumbersome. As an example, let us consider solution of Eq. (17.2) 

for heat producing elements with a very simple shape: a plane p’ate, cylindrical rod, 

cylindrical pipe^with the condition that qy\and \ are invariable through the 

volume of the body. 

Flat Plate 

If the plate Is unrestricted in the directions y and z, the thermal 

conductivity equation takes the form 

S+t“0- 
(17.¾) 

* /\ VU* 
heat release pattern occurs In many other technical problems, for example, 

when electric current is passed through a conductor, when high frequency current 

is used to heat bodies, when a chemical reaction occurs in a body, and so on. 

SÍO 



Let us solve Zq. (17.¾) by assic.in£ ^ mu»¡ then in tecra linç. first] 

the equation 

du=-Ss-äx. 

ve get 

secondary integration gives uo 

t—*-j+C,x+C,. 

(17.5) 

(17.6) 

Fig. 253. Temperature distribution in plate 
during volume heat releaae j8l 
(shoving derivation of equation). 

For cases in vhich no other heat action is imposed upon the heat 

caused byjfcolaa^feat release (for example, flow across a plate from an outside 

«- 

In actual conditions, there is local non-uniformity of volune heat release in 

the reactor elements on account of neutron "corrosionfor example, in the body 

of an absorbing red, and to a lesser extent,in the body of a heat producing element 

in a heterogeneous reactor. BUs fact must be taken into account in exact calculations 

or neat in reactors. ~ S'il ' 



beet BOirct), there íb aiwajB a naxiasun tenx>erature inside the plate (Fig, 253), 

Ihio fact nay be utilized to find the integration constant C ^ ; this point in the 

plate dt/dx ® j. Placing the origin of the coordinates (x » Z) the seclio 

vhere the tenperature reaches a uaxiaui, ve get C 

these conditions (17.Ú) takes the fora 

0 fron iq. (17.5). Under 

vt+c- UT.T) 

Qie la^tex integration constant can easily be found fron boundary 

conditions. In the general case the heat renoval nay be different on each side 

of the plate, îhe tenperature of tire plate surface is then t^ ^ t^ 
-tfj -K* -/A 

Hie integration constant can be deternined free the cooliticns Lhut at 

x » x , t,.. Ihen 
--1--3 

C —t 4. Í2. fi 
* *,+iT* 

Substituting the value of obtained into ^q, (17.7) w« get 

^.+ 2^ (**-•**)• (17.S) 

If the distance is unknown, it can be found by using the condition 

for finding C^, 

Solving the new equation 

J-K'-*,)’-,’! 

tpgether with Eq, (17.8), we get 

Si>x. 



(:7.9) 

lhe equation deterainine the temperature field in a flat wall witii bilateral 

heat renoval finally takes the fora# 

^ { y [(/», - ) + (I7>1>}) 

Fraa (17.10) we can easily obtain exA;rejsions for the temperature in a 
/ 

plate with symmetrical heat renoval (/r, —/, -0) 

^-^-((7)-4 (17-u) 
Die naxinun terocrature difference in the plate with syanetrical heat 

renoval is obtained fron the condition t ■ t at x * 0 
~ '/F - 

mtít, 
• * W 

Cylindrical Bodies of Infinite Lenrtii 

(17.12) 

Die general equation (17.3) in cylindrical coordinates, using the 

expression for V t frau "q. (2.17) for the stationary process dtldx-0 and rf//<k=0. 

takes the following form 

<f'r P ä, + 

To solve this equation ve can use the sane method as for Eq. (17.4), e.g., 

ve assise 

it 
* 

Dien, 

A+JL+1l=o. 
P à 

(17.13) 





and, accordingly, 

'■'•'ïl'-O'l 
(:7.-.7) 

Die naxinin temara turo difference vhen t « and ^ « 0 la 
'0 

t —/ =. 
• • r 4 * 

(17.18) 

Exatn^c. In a cylindrical rod d ■ 10 ns in a heat prcducint elcaeat 

made of fc^uite vita u:'-niu. ~Zj, the oaount of heat released is qA - 10 keal/m1. hi 

let us assume t - 23W C, X - 12.5 Ixal^our^íeg (Flc. 255). 
n ^ " 

Die temperature differential oetween Uie outs hie surface ard the rod axis is 

V, , . f»»; KI2V10-« 
* 4.12,5 L- 

For a cylindiicai pipe with bilateral heat renoval, Lhe probien can be 

solved in the sane way as for a flat plate. Ve will give the solution for Lie 

staplest case - cooling on the inside surface only (?ig. 256), ihen at A 

the integration constant, according to Sq. (17.15), Is equal to 

Cr 
ft»! 

24 

(17.16) then takes the forn 

then 

Bie integration constant C 1 can be determined from the condition at »es?l| /*/ 

X 4 4 4 2 P*' 

scr 



kcal/m hr C 

Thermal conductivity coefficient of certain 
non-metalilc materials as function of temperature. 

Fiß» 25C.. Calculation of temperature field in pipe 
wall during volume heat release. 

Hie final fora of the equation deteiainint lhe teaperuture distrioution 

n the pipe wall is 

(17.20) 

The tea perature difference on the pipe wall is deternined .rom the equation 

Itfí 
rhír+ft)’-'! (17.21) 

jrti. 



Ve can derivo on equation for Ure tejera ture d le tribut len In a cindr ica'ly 

shaped vail vhen tlie heat re...oval fra: the outer surface is \ In a slal'or 

vay. ac te t 

•or 

(17.22) 

Generalization of different coses of volu..fc hcr.t release 
¿sibt (4^)1 L 1^/ 

(tHe expressions given above for tcuperature distribution in bodies during volume heat 

release enables us to ascertain the proportionality in every individual cese betveen 
• 

ÖU. ntCu j 
the teaperature drop and the complex \ in vhich R is ^ linear 

dimension in the genera’ case, lhe proportionality coefficient betveen the given 

complex and a temperature drop (At on the length R nay be express*! by the 

n(«^.imensional value $) , For exa^le, for a cylindrical rod (R * ^ 

> m*. 
*•» î|«<i ‘sa— 

for a flat plate (R = J ) 

i/ -Jé 1 . 
su *v 2 ’ 

for a cylindrical pipe vith internal heat removal (R f 

St 7 



w2ln - — -¡Y I 
hm • V h * 

Ihus, $ expresses ti.e diTference beaten the leurra ture drop in the bodp 

and the ten^rature drop in the cy’-indrical rod ( $ c bo it cun Le tentative!,.’ 

called the 8;iape factor or ¿•eonetric factor. 

In tiic general cuse the dinensicnless value a. cun serve es a 

criterion of siuilarity for her¿t phenoaena in voluae heat release. Literature 

detcribcs the use of this type of criterion /?/ lui^n as the loaiciuntijev criterion 

.lus Po = 4 

Po*3 ku 

The identical nature of the Fo criteria (or $), ether conditions of 

similarity oeint, satisfied, implies the similarity of the temyercture fields In 

bodies of different sizes. 

Taaperature Field vita Variable X or q/^\ 

The above-given solutions con be expanded to cover a case in vhich the 

thermal conductivity coefficient of the material varies greatly vith temperature. 

A linear approximation of temperature dependence in the form a. is usually 

adequate. îhe temperature distribution is then expresad, in the following way /9/. 

For a cylindrical rod 

(17.23) 

Sit 



(iY.?5) 

Ter a cylindrical pipe with Intern;.: heat removal 

for a cytitidrical pipe with external heat rettcval 

BUfl netnod am be used to take into accouit ti«; variation ^^;hrcu¿» 

the arterial of too reactor c:ei.'.onia¡ the necea.itj nay arl.e vhen caicu’otine ti* 

neat reieose in a heat^roduclnc eieaent vlth a !oree concentration of fu.ile miter, 

vhen the externai ¡ajera "ecrecn•, the interna! enea freo the neutrona, or in a 

regulating rod. 

»•■hen the field of heat reieaaca la aet ‘ &rtiMature' 

the »oluilco, (¡iven linear aWroxlnation, vlli not be in any vay different fraa 

the one at A ; it is rather more complicated, however, to solve the problem 

t. A *> , 
vhen the heat release field is given (BõdTé^etry ( 

Kore general problems are solved in Lykov's monograph /if. 
> 

Oi particular interest are the problems of the distribution of temperature 

in multilayer walls, for example;a heat-producing element in a shell or with a 

protective covering; these problems can be solved by means of the above-me*tioned 

methods. 



Tejera Vire .leid ¡.nd m-.' Ctressec 

Aß hbd alre^idj jeen ¿-ointed out, the tea^ertture distribution (ttersinee U.e 

(jwmi 

thermal Btreeses in'the material of the heat-producin¿ element or otlier 

element in the reactor. Indeed, if ve use equations fron the elaatlci.^ theory /15/, 

¿JL ti f'UK. JL fa* 

ve cun see ti;at the stresses are 

as veil as the absolute values of the temperature 

[temperature j d is f r ib u ti on\ 

,.-«¿frill Kt;cM\ 
1—1» 

in vhich A is t'.ie coefficient of linear tea;>erature expansbn, 

E is the modulus of elasticity, 

(17.2Ö) 

yt* is the Poisson factor, 

T is the temperature at the point in the body vhere there is stress (S', and 

T is the mean temperature of the body, which in the general case is a 

function of the temperature distribution; 

f- * 
[TdV 

l" 

For example, for a cylindrical rod the mean temperature is determined as 

follows 

or 

I’w 

7=:---/ 4-^ 

I pdf 

T t ^mn 
/ "*.T J • 
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The value 

that the theraal itreesea are proportional to the ctplex of ph^Bical-ceclianical 

properties and the heat load 

In vlev of tire fact that nost high-tenperature reactor water in !s do not 

poesess good constructional properties (ceramic materials, brittle acta Is ), tire 

evaluation of their resistance to thera&l stresses (spalline ’•esistance) is of prime 

Importance. 

When speaking of the spalling resistance of reactor materials, it is 

essential to take into account the fact that when irradiated for sane time by 

neutrons and V-quanta, the physical-meclianical properties of a material may be 

! altered. This fficient of thermal conductivity A and the rupture 

stress (T\in particular. Ihe strength of the material nay either increase or 
yuf 

decrease. Irradiation usually decreases thermal conductivity. We know of an 

experiment /12^ in which the thermal conductivity of a quartz crystal decreased by 

a factor of 30O after irradiation. It is also known, however, that at high 

temperatures radiation damage to reactor materials is decreased to a considerable 

extent, i.e., there is a sort of annealing of the materials. For example, X» e# It, 

ceramics with a beryllium-oxide base decreases by a factor of 6 or more after prolonged 



irradiation; after annealing 

considerably, end do not come 

at i;x>) - 1100 C the radiation changes in X reduce 

to acre than lÿ - of X in an unirradiated raterial 

At/. 

aus, it is very Important to keep in mind irradiation dances in therral 

conductivity when designing and constructing nuclear pover reactors for use at low 

and medium temperatures . 

75. Heat Removal from Nuclear 3 actors 

Temperature Distribution In H--at-Producid, Element Chanr.cl 

As was demonstrated above, the temperature for the heat-release distribution 

along the reactor takes tiie form 

?.=?*. cos-p-. 

Between the beginning of the acoivc zone (x * —> ) and the cross section x 
- 3L - 

• V the heat released is q^c, in which q<p= —mis the specific heat release per unit ’enrtb 
^ ^ fa 

of the working channel, while F is the cross section of the heat-producing 

elements in one channel (q q ), 
-V -X. 

Ihe heat-up of the heat-transfer agent can be found from the condition ' 

that all the heat released along the length x is taken up by the heat”transfer agent 

SJZ, 



At the Bûac tine the amount of heat released In the reactor alone the 

ength X la 
J M f J cos dx, 
t 

"T 
i 

-T 

Bie heat-up of the transfer agent la therefore 

(17.27) 

'/-'A ~ f COS^fi/x. 
•et. J ¿ 

By integrating ve get the function 

“'-'z- F + ¿U)- (17.28) 
Attention «hould be given to the fact that the heat-up of the coòlant 

dependa solely on the working conditions. The values A. and £ do not have au effect 
•Ijr - 

on the heat-up, but are the result of the established reactor coalitions. 

ae (temperature_jW 11 jean be determined from the heat-transfer 

to the gas. For instance, in the center of the reactor 

f*. ) ^ 

in which is the temperature drop between the wall and the coolant in the 

Biddle of the reactor. 

If we take it that Ä changes only slightly along the reactor and that 

£ c*~rr+Jt 
the mean value £. Ncan be used in the calculations, the value of the 

ict. "U -{tv (mortv^tL ^73 



temperature drop & along the reactor is determined by the folloving expression 

0=9ocos 
KX 

V' 

The temperature of the vail of the heat-producing element t at each 
• tT 

point is determined in the folloving vay 

'. = '/, + *'/+«• 

Substituting expressions for and 9 into the equation ve get 

*»=*/.+Asln-j7^-Mj+£cos~, (17.29) 

in vhich , A^and 3 are constants úetenrined by the vorking conditions of 

the reactor 

A —1 Â  A «In P 
3600(i^e (f. 

mean mean 

/W 
_n vnich is the_coolcd surface of the heat-producing element - unit length 

r*abç 

Fig. 297. Temperature distribution along working 
channel of reactor 



Hie relationßhip bctveen o . F^ and F can be expreased in every individua'. V 'fr 

case in terns of the georetric parameters oF the active zone* For the specific 

example of an uraniua graphite reactor, the temperature distribution in the center 

channel, calculated by Eqs. (17.23) and (13.29),16 shown in Fig. 257. 

Hie position of the cross section in which t Q obtains a caxlmm can be 
« 

determined analytically as well by inking the first derivatires (dt /dx) equal to 

zero. 

Tempe rateare Field in Reactor and Flattening 

When considering the temperature distributions in the cross section of a 

reactor ve must take Into account the fact that he&t release depends on radius 

(for centrul ’rose section) 

^-^,,005-^7^^2,405 j (for any othei points in reactor) 

A heat-release field of this kind, provided special measures are not 

adopted, means that the heat-up of the transfer agent in the peripheral channels 

is considerably less tlian in the center. Ihis Is very unfortunate from a thermo¬ 

dynamic point of view: the mean temperature of the heat-transfer agent at the 

This is admise ble in the case of gaa coollngrfduring cooling by a liquid 

or two-phase transfer agent^ )*e have to calculate the heat transfer in stages by 

dividing up the reactor into several zones. 

S7f 



reactor outlet Is lover than t, ^ in the central channel, and tr.e efricienc^ is 
-7,3: 

reducf-d durlnt; subsequent utilization of that beat. 

In order to recti.this 6;¿ortrcoc;in¿ ve can apply various methods 1 

( 

a) reducing the relative coolinc surface in the peripheral d^unela; 

b) artificial re -distribution of the coolant consuapticn in diffe rent 

channels, and 

c) profilinc the concentration of fissile natter, and therefore the 

heat release through the active zone free tlie condition t(r) ^const. 

Hiis latter nethod is advisable as veil for flattening the tet.r«rat -ure 

along the reactor; in this case greater power can be obtained fror, a unit of volume 

& 
of/reactor /22/. 

Heet transfer 
Ace* r$ 

Both gases (air, hydrogen, carbon dioxide, heliua, etcj and liquids 

(va^er, or^inic trans.er agents, liquid salts and netnls) arc used as heat-transfer 

agente. They nay be used in different power systems, i.c., with closed open 

loops, with an invariable aggregate state, and with '• the heat-transfer agent 

coanging from the liquid pause to tue ¿as pliaee and bac ¡0 on. 

Let us consider the basic requirements of a heat-transfer agent ani the 

heat-removal system when applied to nuclear power reactors. 

•TV 6 



i. íhe set of requirenenta ensuring rsinln’xn teflon on tiic nuclear reaction# 

a) the heat-traiiBfer a¿^nt shou’d not Btron^ly absorb neutrons or have a 

negative effect on their moderation and scattering; 

b) the volit.c through vhich tlie heat transfer agent flcvs in the active 

zone should be ainim, os far os possible. 7nis is essential in cases in vhich 

the transfer agent is not itself a moderator or heat-producing substance. In such 

coses the optimn voluue of the transfer agent is determined by the physical 

calculations of the reactor. 

2. Puaping the heat-transfer agent through should take(as“Tittle energy 

fren the power plant as possible. 

3. Optitiuu operating 

>,■ 
a) cheijical stability of the naVter at high temperatures and when irradiated; 

b) corrosion resistance heat transfer agent and reactor elements 

in contact with heat transfer agent; 

c) nininum liability to be activated by irradiation; 

d) maximum freedom from activizlng impurities. 

All these requirements must be satisfied and at the same time the heat- 

transfer coefficient must be increased to the maximum extent, for from the point of 

vlev of increasing Jie economic nature it is not an advantage to increase nouer 

£77 



by increasing tiic teapcroture dif.'e rence between tiie heat-prainciu^ element and the 

transfer a^ent. 

Research on the selection of heat-transfer afccnts satis ¿Ving this ^ricty 

cf requirevente is on a fairly lar¿e scale AA Äe following hea;-transfer 

agents ray be of practical interest. In closed oo? engines the heai-.ronsfer agent 

iß air, the characteristics of vhich arc well known. Heliut, nitrogen or carbon dioxide 

can be used for closed-loop reactors. Data for therual conductivity, tejera ture 

conductivity and viscosity of these ^ses are shown.in Pigs. 258 - 2C0 /2}/. 

Seat Removal Syatem 

..5}¾tena fot rcL^vlng-heat in nuclear power reactors can be classified on tl tne 

basis of the following: 

1. îhe type of heat removal fren heat-producing elenents - irradiant i heat 

exchange 

- convection heat renoval, 

2. Ifype and phase state of heat transfer agent: 

- non-boiling liquid 

- boiling liquid, 

- inert or aggressive gas. 

oop: 
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Fig. 260. Thermal conductivity, thermal dlffusivlty 
and dynamic viscosity of carbon dioxide 
as function of temperature. 



Oocn loop, 

- closed loop. 

- two-loop plants In which(icat enclne operates thoworhinc solid of the 

second loop wltiiout toin^ tluou^h the reactor. 

• with heat regeneration faca:-transfer agent is heated-up before reactor 

using heat not completely used up In heat machine) and so on. 

Given the great varie«.y of possibilities In heat renoval, the process 

does not prevent any difficulty In principle, since siailar systens have been widely 

used la heat engineering for some time. Admittedly, Inorganic possibilities of 

obtaining high temperatures are typical of nuclear power engineering, consequently 

there are specific features in heat exchange et high temperatures - an increase In 

the share of radiant heat-exchange, an increase in the thermal conductivity of gases, 

and so on, which have not been very much studied so far. 

Intensification of Heat Exchange as I-iethod of Increasing Reactor *8 

Specific Power 

ïhe specific power which can be removed from a unit volwe of the active 

t 
zone In the reactor is limited by the heat removal and the admise ble temperature drop 

in the heat-producing elements. Several ways of increasing the coefficient of heat 

transfer A to the transfer agent are known. The most practical and premising ones 

ft I 
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are the following: 

i ^ t) înprcïvenent tiie dealgp of the heot-producine decente; 

b) uae of liquid-cetal tranafer alenta; 

c) uae of porous hcat-produáinc ebenenta. 

lM?roveaont ir. Dcal^ of Hct 1 oducln.t Elenentá 

•< 
At the present tine vhen nuclear power entlneerinc atill in ita infancy, 

the variety of types and shapes of heat-producing elements prevents us fren caking 

a detailed analysis of then fron the standpoint of heat transfer. 

Matters are further complicated by the fhet that in addition to 

the heat transfer, the life of heat-producing elenents is deteredned by their 

•palling resistance. Furthemore, the conaxcption of expensive fissile natter on 

the construction of a reactor also depends on the shape and size of the heat- 

producing elenents. It is known, for instance, that the best geometric shape, from 

the point of view of physics, in a gas-cooled heterogeneous reactor is a cylindrical 

rod. 

?lgS. 261 and 262 show examples of heat-producing element systems vith 

different methods of intensifying heat transfer. When providing for more complicated 

element shapes, the following obligatory requirements must be kept in mind. 



Moderator 

Moderator 

Fig. 261. Example of systems for forming heat-re leasing elements 
In heterogeneous reactor. 

S) 

/O O Q 0\ 

/0 o 0 o o\ 
/0 o 0 0 0 o\ 

(OOOOOOO) 
VO O 0 0 0 
^0 O 0 0 0> 
vo 0 0 o> 

b) 

262. Example of systems for forming heat releasing 
elements In homogeneous reactor. 



ron 

r:ie social shells - ribbing - cusí i.oi cause: 

a) the odnlbßlon or any considerable quantity of undesirable (neut 

absorbing) materials into the active zone: 
9 

b) an Increase in the channel resistance beyond seneib'e 'in'ta 

.iquid t.etal n ut Trierer er,ç 

lhe use o: liquid-net#1 heat transfer agents for cooling reactors involv 

a meter of unquestioned adventages*. Fused .neh's e/hibit conohieruble tiiernal 

capacity and very high thercai conductivity, which is foe reason for the sailer 

amount of heat transfer agent/to be pimped through the reactor. The h>tLrodjnaaic 

es 

ays ten here differs only slightly frou the water systems, and|losses pressure «I 
in the loop are not unduly increased. 

Uquid ne tais have hi{£ nelting points (see Able 23) /?/, hence higji 

pressure can be naiutained in the circulation system aai there is no danger of a 

vapor film (crisis) occurring. 

For e thermal neutron reactor liquid metal heut transfer agents are not 

particulariy good on account of the relatively higi neutron capture power. But for 

intermediate and fast neutron reactors, which, admittedly, necessitates an increase 

in the mass of the fissile matter, transfer agents such as liquid Na, K, Li, Pb, Bi 

and mixtures of them are presently acceptable. 
s?/ 

m- (j , ¿ C4 .Î, 



t 
•c 

,1 \ i ‘ t \ L-r'í 
. 1. I^kcal/sj kesi/ ? i ¡m2.sec 

. £3 j hr.deg.kg.deg? ,hr ¡ • 

“'"{".i1 'so 
V186 s 

<»i ■ » 
1 ! 

1.0 0.081 73.1 0.C3.S 

! i 
Sodium Na 
t -97.3°C 
tb-878°C 

• 23 : « 

1 

0.301 i 0.195 I 28.9 0,0(53 

! i i 
- ¿6.5* 81+53.5r r- 

t -123.5°C 
t"-1670°C 

Í 
tOI-W 12 

1 

O.OM 1 : 
0.01 * 13.6 0.0141 

• ! 
1 I 

25X Na+757. K ~ Í 
t_- — ll°C t 

V ’8<*°c ¡ 

751 ‘ 18.5 

1 

0.231 
! • 

0.107 ; 26.7 0.009 
j : 

i i 

As distinct Tran non-cetalllc liquid heat-transfer agents, metals ore much 

more stable In the neutron and radiation fields, but they are activated when 

flowing through the active zone a naaber of times; hence the loop has to be protected 

from radiation. At normal temperatures, netal transfer agents are usually in the 

•olid sUte; this is a good thing from the viewpoint of repairing loop uniU without 

having to pour off all the metal, though it means that the reactor has to be pre-heated 

before being started up. Ihe high electric conductivity of liquid metals enables us 

to use airtlgit electromagnetic pumps, gauges^ani so on. 

The negative properties of liquid-metal heat-transfer agents are their 
srf 



hitfi corróa Ion-erosion •liability at hiyj tenper atures, ti.e danger of a fire vhen 
CK 

hemetica’ly-sealed closed loop is broken, and fcigi oxidibility, vhi ca causes oxides 

to settle on the vails of heat exciumges, If oxygen gets into the systec, and sharply 

reduces trie heat transfer coefficients. 

The initial study of heat exchange with liquid »tal» /ll/ shows that 

dependences obtained for other fluids can be wed to calculate ther. 

it vas fwnd .ater /lo/ that the .dependence for ^ heat exchange with 

heavy fused ae ta hr was 

Nu-(3-»-4,5)*+O.OI4PeM. 
(17.30) 

^ This equation tallies well with some of the ones fornerly quoted by other 

authors /8, 17/. 

In Ref. /10/ the iquatiœ for a range in variation 200< ?e ^ l4oo 

has been adjusted to Nu ■ 5.9 O.OI5 Pe^'% 

If we caopare water cooling and liquid lithium cooling at temperatures 

trm 300 to 500 C and Re ^50,000, there Is reason to believe that the coefficients 

of heat transfer fron the channel wall to the liquid metal will be 5 to 10 times 

greater than to water. 

It Is important to calculate the flow of liiuid through the reactor 

c orrectly. We can solve thfe problem by finding the optimum, taking into account the 



hydraulic resicumce of ¿x syeterr., power consicption of putpinc f-nd the ¿ain In 

heat uoiwer in the reactor. 

Cooling of I’orous 3ody 

If the heat-producing eler.cnts of a reactor are aide in the form of a 

tJn, 
porous bodj' vit., capillary ' , this enables us to intensify the heat exchange 

to a considerable extent, r-ositjiers are now planning reactors of this ty^e /2/. 

Indeed, in snail cross section channels flvw is '.aninary, and, furfaermore 

the distance betveen the source and the heut consur^er is reduced to a ninucsun, 

keeping the tijeraal resistance ninimm. 3xe striking results vhich can be obtained 

by reducing the channels in the heat exchanges can be seen fran the following saople 

dien the size of the tube is reduced fron lÿ an to 2.¾ cn, the volune of the heat 

exchanger is reduced by a factor of 10, and the weight by a factor of 3. Ule heat 

transfer to the gas flowing along the stall cross section channels can be calculated 

by (The theory of heat exchange in capillaries /2/. 

Hewer and greater demands are being made on heat-transfer devices vhich 

»- 

Um free tern depends on the state of the surface, l.e., whether it is oxidized, 

clean, unwetted, and so on. 



u\ai out, 

f 

^Lay a very la¿jortant ¡art in the con¡)ii.cRted aysteaa o2 pover plant«, 

not lebst, progress in further intensifying convective heat exchange vith different 

sedla vill be of exceptional value to nucteur pover engineering. 
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