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Preface 

About a year ago, Major Everette Garrett suggested 

this topic to the Class of GE-61. I had casually noticed 

parametric amplifiers mentioned in different articles and 

was just slightly interested in the subject. However, 

before I undertook to write a thesis on Parametric Ampli¬ 

fiers, I felt it might be wise to locate an elementary 

article on the subject and become familiar with some of 

the basic aspects of parametric amplification. I combed 

the library for an article that explained the subject and 

I must admit that I am still looking for one that gives a 

good clear, elementary approach. The more I searched, the 

more convinced I became of the need for such a workj there 

was plenty of information on the subject, but most of the 

articles assumed the reader had a solid background in the 

principles of parametric excitation and negative resist¬ 

ance amplification. I sincerely hupe that this thesis will 

partially fill that void and that it will provide an aid in 

attacking the many advanced articles on this subject. 

I can't begin to thank Major Garrett, my faculty advi¬ 

sor, for all his assistance and encouragement. He certainly 

made this thesis a great deal less painful than it would 

have been without his aid. Thanks, too, to my ASD sponsor, 

Mr. William Eppers, and to Captain Prank Brown for their 

helpful discussions. 
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My wife deserves a special thanks for her patience 

throughout the past year and a half . . • and for proof 

reading this thesis. 

Matt Quinn 
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Abstract 

The parametric amplifier is studied beginning with 

several mechanical models and progressing to several 

parallel resonant electrical circuits. Two regenerative 

parametric amplifiers, the degenerate and the non-degenerata 

case, are analyzed by linear circuit theory and comparea to 

the negative resistance amplifier. The Manley-Rowe energy 

equations are then derived by a simplified method. Finally, 

the degenerate case of the parametric amplifier is analyzed 

by the Mathieu Equation and on the analog computer. 
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A STUDY OP 

PARAMETRIC AMPLIFICATION 

I. Introduction 

This report contains a basic explanation and an analysis 

of parametric amplification. It should provide the back¬ 

ground necessary for a student's understanding of the current 

literature In this field* The aim of the thesis is to give 

the reader an aid in approaching and understanding advanced 

articles on this subject; these articles are presently appear¬ 

ing in ever-increasing numbers as the parametric amplifier is 

improved. Because the field of parametric amplification is 

literally "exploding", the student should have a basic under¬ 

standing of the principles of this phenomenon. 

Parametric amplifiers are also called reactance ampli¬ 

fiers and MAVARS (Modulator Amplifier by Variable Reactance); 

however, only the first name will be used in this report. 

Basically, a parametric amplifier is an electronic 

circuit that uses the nonlinear characteristics of a storage 

element of a resonant circuit to amplify an input signal. 

This nonlinear storage element is the variable parameter of 

the amplifier circuit and, hence, the name "parametric” amp¬ 

lifier is used. The underlying theory is quite simple: if 

two circuits which are resonant at frequencies, co, and 

- 1 - 
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respectively are coupled through a nonlinear reactance which 

varies sinusoidally In time, then power of one of the fre- 
t 

quencies may be converted to power of the other frequency. 

The nonlinear capacitor or inductor is the heart of the par?- 

metric amplifier because It is responsible for this power 

conversion from one frequency to the other. Without this 

element, there would be no amplification. 

The principles of parametric excitation are certainly 

not new; they have been explored and studied for well over 

one hundred years. Yet in the past decade there has been a 

tremendous surge of Interest In this phenomenon. Actually 

there are two reasons for this interest: first, parametric 

amplifiers offer exceptionally low noise qualities; and 

second, the nonlinear storage elements that are required 

for this type of amplifier have only recently reached a 

stage of development that makes parametric amplification 

feasible. 

The noise generated in an ordinary amplifier is caused 

by the random motion of electric charges passing through the 

passive circuit elements, the tubes, and the transistors. 

There is an inherent nonuniformity in these so-called "stream 

of charges, and this causes an erratic current which is caiic 

noise. The parametric amplifier overcomes this trouble to a 

great extent because there is no charge transportation toroug 

- 2 - 
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a high-impedance substance. Negligible noise is generated in 

a nonlinear capacitor because its carriers move such a minute 

distance. For example, the carriers in a junction diode move 

about 10“^ millimeters during parametric amplification, anc 

such a slight movement generates very little noise. It can 

be stated somewhat loosely in this way: the mechanism of 

amplification depends upon reactance rather than resistance 

for energy conversion. Reactance is a noiseless quantity 

while resistance is inherently noisy. 

One important difference to keep in mind about parametric 

amplifiers is that radio frequency energy is used as a source 

of power in amplification, whereas in klystrons, for example, 

direct current energy is used for the source of energy. 

With this in mind, the parallel resonant form of the 

parametric amplifier is analyzed. The results of this analy¬ 

sis are compared with the known results of a normal regenera 

tive amplifier. In addition, the gain and bandwidth are 

studied in some detail. 

» 

- 3 - 
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II. Historical Background 

The study of parametric excitation Is certainly not 

new. As early as I831, Faraday presented a paper on this 

subject to the Royal Society; his experiment dealt with 

the vibrations of the particles on the surface of water in 

a large wine glass. His results would be quite difficult 

to verify In such an experiment. (Ref 1) However, In 

1859 Melde demonstrated these same principles in an experi¬ 

ment that vividly shows parametric oscillation. Figure 2-1 

shows a set-up simllsn* to Melde's vibrating string experi¬ 

ment. Melde used a string attached to the vibrating prong 

of a tuning fork on one end and to a fixed body on the 

. other end. (In this example the string is supported by a 

frictionless table in order to neglect the weight of the 

string.) The tuning fork places tension, T, on the string 

periodically; this tension is applied on the string at the 

natural frequency of the fork. If the string is initiallv 

displaced, then the tension, T1, will tend to stabilize the 

string. However, momentum will force the string to continue 

moving past its undisturbed position. Again when the string 

has moved to a maximum position in the other direction, the 

tension, T^, will tend to stabilize it. As before, its 

momentum will carry it through until the tension, T3, has a 

chance to exert a force on the string. In this manner the 

- 4 - 
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string maintains oscillation by parametric excitation. It 

should be noted that the string oscillates at a frequency 

that is half the frequency of the tuning fork. Stated in 

other words: for every cycle of motion of the string, the 

prong of the tuning fork completes two cycles of motion. 

One other important thing to note is that the oscillation 

of the string Is entirely dependent on the tuning fork. 

If the tuning fork should be removed, the motion of the 

string would completely die out due to the losses present 

in any actual system. The tuning fork adds energy to the 

system to overcome these losses and, hence, oscillation 

will continue as long as the tuning fork adds this energy. 

(Ref 2) 

It might prove helpful at this time to look at another 

example of parametric excitation. The ordinary child's 

swing operates on these principles. After receiving an 

initial push a swing can continue to oscillate by a child 

merely changing his center of gravity with respect to the 

swing. The child acts much like the tuning fork in the 

last example because the child adds energy to the system 

by raising his body; when he raises his body, he is, in 

effect, simply raising the center of gravity of the swing. 

Figure 2-2 shows a child "pumping" a swing. When the child 

stands erect at either end of the arc, the system has more 

- 5 - 
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potential energy than If the child was hunched. At the 

extreme end of the arc, the swing has no kinetic energy; 

all of its energy is potential energy. Consequently, if 

the child stands erect and, so to speak, places energy into 

the system, the swing can oscillate. The child actually 

overcomes the losses in the system by standing erect. On 

the other hand, the acceleration of the swing, as with any 

compound pendulum, is directly proportional to the length 

of the pendulum. When the child hunches -during the pumping 

of the swing, the length of the pendulum and, in turn, the 

acceleration of the pendulum is increased. The child's 

pumping is analogous to the prong of the tuning fork in the 

previous example. 

In a parametric amplifier, the portion of the circuit 

that supplies the energy is commonly called the "pump”. 

The name is quite logical when the parametric amplifier is 

compared to the swing, because the child's pumping is res¬ 

ponsible for the parametric action. What would happen if 

the child did not pump; in other words, what would happen 

if the child remained rigid throughout the swinging? The 

swing would merely damp out to rest due to the losses in 

the system. Now to return to the historical background. 

Beginning in the i860'a, Lord Rayleigh published sev¬ 

eral works on parametric excitation. His contribution to 

- 6 - 
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this field was merely a more detailed analysis of the works 

of Faraday and Melde. (Ref 3) The first parametric ampli¬ 

fier that closely resembles the amplifiers of today was not 

made until 1936. At that time Hartley proposed a resonant 

circuit with a capacitor having moveable plates. A picture 

of this is in figure 2-3. By moving the plates of the 

capacitor in and out at twice the frequency of resonance of 

the tank circuit, a signal can be amplified. (Ref 1|) 

In detail, the system operates in this'manner: the 

hands pull apart the plates of the capacitor and thereby 

change the value of the capacitance. 

d 

where £ : dielectric constant in farads/meter 

A : area of the capacitor plates in meters^ 

d : distance between the plates in meters 

The only element in this equation that varies is the dis¬ 

tance between the plates. Therefore, the capacitance varies 

inversely as the distance between the plates varies; the 

capacitance decreases as the plates are pulled apart and it 

increases as the plates are pushed together. 

- 7 - 
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The charge on the plates, Q, cannot change instantane¬ 

ously, so that when the capacitance changes, the voltage, V, 

must change immediately. 

Referring to figure 2-3 (a), the plates are brought back to 

their closed position at time, t = t0. In figure 2-3 (b) 

the plates are separated at time, t = t . The resonant cir- 

cuit has a sinusoidal output when the plates are left in 

their normal position. Then, at t = tx the plates are sep¬ 

arated and work is done on the circuit overcoming the attrac 

tion of the plates. The hands in this illustration are 

basically the pump, and the hands supply the energy to the 

electrical circuit. At t = to, the plates are returned to 

their closed position and there is no work done at this 

time because the voltage across the plates is zero. This 

process is continued as shown in figure 2-l|. 

If the output of a device is greater than its input, 

that device can be considered an amplifier regardless of 

its use. In this respect, the circuit is an amplifier. 

However, since this output in figure 2-l| (a) can be ampli¬ 

fied by merely increasing the amplitude of the pumping, 

- 8 - 
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consider this output to be simply oscillation. Therefore, 

fipure 2-4 (a) illustrates parametric oscillation, and, of 

course, there is a good deal of distortion present. 

Amplification can be obtained from the same circuit by 

merely increasing the displacement of the two plates. By 

pulling out and pushing in the plates farther, the output 

will continuously increase. Theoretically the voltage 

would increase without bound, but in practical cases the 

circuit would break down before this would happen. Actually, 

the entire pumping sequence is just a repetition of the case 

in figure 2-4. In the case of amplification in figure 2-5, 

the amplitude of C(t) is greater than in the previous case. 

In the case of attenuation of the output, there is a 

noticeable change. This is illustrated in figure 2-6. The 

amplitude of C(t) is not important in this case, but rather 

the phase of the pumping is the critical factor. In this 

case, the plates are brought together when the charge is a 

maximum. Therefore, no work is done on the system; in fact, 

work is done by the attraction of the charges in bringing 

the plates together. The plates are brought together at 

time, t = t ’, which is the same as t in figure 2-3. On 
-A. 

the other hand, the plates are separated at time, t = t0t, 

when there is no voltage on the plates and, hence, there is 

- 9 - 
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PUMPING- OUT OF PHASE 

-- ATTENUATION 
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Since the charge does some internal work on the system 

while no external work is applied to the system, the voltage 

decreases. This shows that attenuation is produced by merely 

changing the phase of the pump. For this reason, the phase 

is quite critical in this type of parametric amplifier. 

- 10 
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III A. An Example of 

Parametric Oscillation 

A pendulum bob of weight, W = nO0 is attached to a 

weightless string which is movable at a frequency that Is 

twice the frequency of oscillation of the pendulum. Ihe 

equation of motion for a simple pendulum is 

F = ma (3-11 

where the force! Fq = ~ WSmG 

the mass: IT) 

the acceleration: Cl 

where S = Z Ö ; l is the length of the pendulum. 

m = - WsinG 0-2) 
dt* 

mid2© _ _ tnqsinG u-j) 
dt2- ^ 

£0+1 sin© = 0 (3-1,) 
dt2 1 

When the angular displacement is restricted to small values 

of G , the sine of the angle can be replaced by the angle. 

Sin 0 S’ Ô for small Q (3-5) 

+ £ e = 0 
dt2 1 

d2Q + U)n Ô = 0 
d tZ 

q » 7 ] 
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Since the natural frequency of the simple pendulum, 

nr -j- , is independent of the mass of the bob, the 

frequency depends on the length alone. The acceleration 

due to gravity is considered to remain constant. 

However, the pendulum depicted in figure 3-1 (a) is 

not a simple pendulum because its length is continuously 

changed by a force which is acting at twice the natural 

frequency of oscillation of the pendulum. The motion of 

the pendulum bob is shown in figure 3-1 (b). liow equation 

(3-7) no longer describes the motion of this pendulum 

system. The new equation of motion is 

die 
dtz 

+ 
Kt) 

(3-8) 

where JUt) = 10 +• Ai Cos(2u)0t + Op) 

and fio >> AÍ 
This can be shown to be of the form 

+ <0-2|gcos2ua)e = o (3.9) 

The entire derivation is illustrated in Chapter XII using 

an electrical analog of the pendulum. 

HOTE: The approximation that $=rj£0 is not changed to 

S £ J2 (t) • 0 in this case because the variation in Q. is very 

small. In other words, lo» Ai. 

12 
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o 

In order to understand how parametric oscillations are 

produced, it is best to inspect the tension of the string 

throughout the pendulum swing. When $ is a maximum value,, 

i.e. at either the right or left extreme position of the 

swing, the tension is the weight of the bob multiplied by 

COS 9 t which is somewhat less than unity. 

T 
6 = 6 max 

W CoS 0 (3-10) 

On the other hand, when G is zero, i.e. when the bob 

goes through the center, the tension is the weight of the 

bob and the centrifugal force of the bob moving in its curved 

path. Therefore tension is somewhat greater at this point 

than at the extreme positions. 

T 
0 = 0 

w + Wit2 (3-11) 

The above analysis is the same as for a simple pendulum. If 

the force that changes the length of the string was not pre¬ 

sent, the analysis would be complete. If the pendulum bob 

was given an initial displacement, the pendulum would swing 

until the oscillations died down to zero meaning that the 

bob would come to rest. The motion of the pendulum would be 

damped by the frictional or resistive forces present in the 

system. 
- 13 - 
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However, because a force is present that changes the 

length of the string, the pendulum can continue oscillating 

indefinitely. The force that acts on the string supplies 

the energy to overcome the frictional or resistive forces. 

One important point to observe is that the force is applied 

at a frequency that is twice the natural frequency of 

oscillation of the pendulum. The importance of this can not 

be overemphasized, yet the reason for it is rather basic. 

The force acts on the string and pulls up on the string when 

the bob is at the center. Conversely, the string is let 

down when the bob is at the extreme position. The force, 

therefore, pulls up against a large tension and lets the 

string down when the tension is smaller. In this way work 

is put into the system and this work is converted into 

energy to overcome the resistive forces that are present. 

If there is more energy supplied to the system than is 

needed to overcome the resistive forces, then the pendulum 

will absorb the energy by increasing its swing. If the 

pump, as the force is often called, supplies more energy 

than necessary, then the bob will increase its swing until 

the system stabilizes, tohen this occurs the system can be 

considered a parametric amplifier. 

- 14 - 
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III E. A Comparison with 

The Electrical Analog 

In chapter II, Hartley's experiment with a variable 

capacitor was explained in detail. The mechanical pendu¬ 

lum system is a mechanical analog of that case. If the 

pendulum was ’’pumped11 with a rectangular wave instead of 

a sinusoidal wave, then the three illustrations could be 

used to portray the angular displacement instead of the 

voltage. The variation called C(t) in figures ?.~k, 2-5, 

and 2-6 would then be called F(t) in the pendulum system. 

For the first case, figure 2-4, the pendulum is 

pumped with a force of the proper magnitude and phase in 

order to sustain the oscillations of the pendulum.. The 

frequency of F(t) is exactly twice the frequency of the 

oscillations, which is expected. This case is parametric 

oscillation. 

In the second case, figure 2-5, the same phase is 

retained, but the magnitude of F(t) is increased. The 

bob will increase its swing until the system stabilizes. 

In this case there is parametric amplification. 

Finally in the third case, figure 2-6, the phase is 

changed by 90° and attenuation results. When this happens, 

energy is being removed from the system by the pump. The 

force drops the string when the bob is at the center and 

- 15 - 
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pulls on the string when the bob is at an extreme position 

of the swing. The force lets the string down when the ten¬ 

sion is greatest and pulls up on the string when the tension 

is somewhat smaller. In this way the oscillations are re¬ 

duced as pictured in figure 2-b (b). 

O 
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FIGURE 4-1 
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Because there are several resonant tank circuits in 

H.ost parsnetric amplifiers, a short review of tuned circuit 

oscillation is presented. The response of a normal tank 

circuit is included in this thesis so that it can be com¬ 

parad to the response of a tank circuit with a time-varying 

st orage element. 

An ideal resonant tank circuit is shown in figure 

When a voltage is applied to the circuit, the tank will re¬ 

sonate at The differential equations can be 

written with either the charge, the voltage, or the current 

as the dependent variable. The charge is used in this re¬ 

view so that no integro-differential. equations result, Tne 

driving functions of all of the differential equat-ors will 

be a constant current placed in the circuit at tine, t = 0, 

The differential equation'of the L-C circuit 

u-2 (a) is 

i rt 

’ \ rcnPi 

L di 

dt C 

; - da ana. sine© l — 

0 

i dt — 0 

a 

Í h 

and V — -pg , the expression can 
dtJ * C 

.-hanged to 
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L ^ + 
dtz 

a_ 

c 

Q(o) 
C 

= O (4-3) 

d2a 

dtz 

a _ guo) _ vío) 
LC l c 

The homogeneous equation is 

L 
(4-4) 

d2Q Q.' 

dt2 LC 
= 0 /¡I ,C. ) \ 4 X / 

In this case, sustained oscillations will result sinne there 

is no resistance in the ideal circuit of figure 1-2 (a) a 

graph of the solution is. shown in figure 4-2 Cfc). The solu¬ 

tion is of the form 

ar(t) = 
a-(t) 

c 

wnor - 

= Vm sin(cont +- (¾) 

Jlc 
and @(;j = 0 

V 0. '•‘-- J / 

In any actual tank circuit there is resistance present 

the previous case depicted an ideal case » Figure 4"3 (£-) 

shows an R-L-C circuit and the homogeneous different! nt rí-!'. 

- 18 - 
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equation of such a circuit is 

d2Q , R dQ , I 

dt; 
■f 4- 

L dt LC 
Q = O Ü > 1 fix 4 

•In order to investigate the solution of this equation, the 

differential equation should be compared to the normal form 

of the second order differential equation. 

-h 2 :fo)n áOi 4 u)nz(l ~ o 
dtz d t 

Í4-6 

The coefficients of the two equations, (ü-7) and (4-6), car 

be equated. 

COn - i o 
LÜ 

con - 
/ ! /r> 

n/ L- 

2 cf oon - 
ß_ 

L 
? - R 

2 COyq L. 2 4*') 

since the quality factor,, Q. — ^4d._zL 

R 

. 19 .. 
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Taa general solution of this equation Is

\r(t) =— =• Sin Cco^tf ©ci)

where = COn 7 I — “^f ^ 0<d = O

and this, in turn, can be written

--S-tZ L ^ •-vCt)-\/fY) e sin (cudt0j) (U-io)

In this case, the solution Is a damped sinusoid as pictured 

In figure 4-3 (b). The voitaf’e will "die" down due to the 

exponential damping of the resistance, R. If R = 0, as In 

figure 4-2, then sustained oscillations result, and this 

was found to he true In that case.

If by some means a negative reslstr.. cs could he Intro­

duced In the tank circuit as shewn In figure 1.-4 (a), tnen 

a still different type of solution would result. The homo- 

penoous differential equation of the B-I-C circuit with the 

negative resistance Introduced In the circuit is

d^Q R dQ ,

dt^ L dt
i

LC
0,-0

- 20 -
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The general solution of this equation Is similar to equa¬ 

tion (4-10), 

v(t) = e sin (u)jt + G¿) (4-12) 

In this case, however, the solution Is an Increasing sinu¬ 

soid as shown In figure 4-4 (b). The voltage will continue 

Increasing exponentially until it eventually becomes infinite. 

The first two solutions, those depicted in figures 4-2 

snd 4-3# are both stable solutions, while the last solution 

in figure 4-4 Is unstable. These concepts are quite import¬ 

ant in understanding parametric amplification because the 

regenerative parametric amplifier uses negative resistance 

properties to obtain amplification. However, there is a 

method to obtain conditionally stable amplification from a 

circuit with negative resistance. This method is discussed 

in the following chapter. 

« 21 - 
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V. An Analysis of Parallel and Series 

Resonant Regenerative Amplifiers 

■ The tank circuit of figure 5-1 (a) can be considered a 

rerenerative'or negative resistance amplifier. It contains 

.a negative conductance, gn. The tank circuit can be assumed 

to., be operating, at’frequency, <^| , so that the two react- 
*■ • • 

anee;elements, and C.,* have no effect on the circuit. 

,' is included in this Furthermore, the ideal filter, o;, 

circuit so. that the circuit will .have the same form as the 

parametric amplifier circuit; the two will be'analyzed in a 

similar method. .. . 

The circuit of figure 5-1 (b) is equivalent to.that 

cf figure 5-1 (a) when the circuit is operating at fre¬ 

quency, 10. 

CÜ. - 
s/I,C, 

The H matrix for the circuit of figure 5-1 (b) is 

(5-1 ) 

H = 

0 

G-q, + &, + 9n 

- 22 - 
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The power gain forward, of this circuit is 

C2l -I- D 

where 

&9i +&i ^ 9n + &L 

&L 

p G'r —-_ (S-t) 

&9i + G, + 9n + g'l 

When the totp.1 conductance of the circuit is zero, oscilla¬ 

tion should result. That means that 

G-g, + G"! + 9n + = O (5-7) 

AZl+ B 

2m - fn - c ?L.+ D 

When oscillation occurs, the power gain should, be infinite. 

Equation (5-6) shows that this condition is met, because the 

denominator is zero at oscillation; thus the power gain 

is infinite. When the total conductance of the circuit is 
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negative, there vd.ll be amplification, but the circuit vdll 

be unstable. This case was mentioned in Chapter IV.- 
ft;« a> 

&g|+ &, + 9n + &L <0 'HI 

However, stable amplification vdth a .power gain greater than 

unity vdll result when - . • ' 

GL > G-g, +■ G, + 9n Ö (5-9) 

Thus 

pGf - 
G L 

G-Q + G-, T 9n -)-ti. 
> (5-10) 

It is important to notice that this circuit is ^ot.entialiy 

unstable for large gain. This means that in order to igc- 

Ha© large gains from such an amplifier, it must be operated 

in the oscillation threshold. This is a major disadvantage 

of the negative resistance, amplifier. Nevertheless, this is 

one of the methods that is used in parametric amplifiers to 

achieve large gains. 

Figure 5-2 (a) is the series resonant regenerative amp¬ 

lifier and is a dual of figure 5-1 (a)• The power gam uf 

O / _ 
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this configuration can be found in a similar manner to be 

pGf = 
R L 

4 R, 4- r 4- P 
(5-11 

n L 

The transducer gain of the amplifier, of figure 5-1, is 

found in order that it can be compared with the transducer 

gain of the parametric -amplifier. 

P&t = 
out 

in ovo Hable (5} 

out v,2g L 

Z 

G', 
&9i +&i + in + &L J L iS'13) 

R'n -il, = -fi 
available 

Z 

9| 

P&t 
4 &9, ffL 

(Gg, + G-, 4-qn + &Ly 

K „ 11, 

r h r' i 

p&t - 
4G-gi &L 

(CT, +9n) 
z 

25 
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where 

= + ^/ + Ö-L 

The similarity between the regenerative amplifier and the 

parametric amplifier will become apparent when the latter- 

is analyzed. (Ref 5:104-6) 

- 26 - 
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VI. An Analysis of the Parallel Résonant 

Form of Parametric Amplifiers 

A parallel resonant parametric amplifier is pic 

in figure 6-1. There are three tuned circuits in th 

lifter: 

UJ| : . the signal frequency 

(-Ü2 : the idler frequency 

tUp : the pump frequency 

These are the' names that are commonly' used in the 1.1 

The three'frequencies are related by: 

U)p — CO i 4-(-02. 

load conductance, G , is placed in the signal 

in each of the three branches there is an ideal. 

he properties of the filter are: 

Y - o @ -Cl. ~ cu 

Y = oo .CL Y- L) 

- 2? - 
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The current through the nonlinear capacitor, ic, is found by 

differentiating the charge. 

ic 

where 

dQ 
dt 

d = C' u- (6-6) 

d Q dor 
dir dt 

(6-7) 

dQ z: Co +• Aor (6-8} 
du 

^ — _dC (6-9) 

so that dU” 

ic - CCo -I- A or) dv~ ( Ó»10) 

dt 
By a transformation of axis, Co can be deleted from the 

equation. This is done to simplify the derivation; the CQ 

term will be reintroduced later in this chapter. 

7) qr dtr 
dt 

(6 »11 

- 28 - 



GE-EE-61-llj 

The voltage across the nonlinear capacitor, Vc, is made up 

of many frequencies due to the mixing qualities of such a 

nonlinear element. However, there are only three frequen¬ 

cies of interest and these are the only ones considered! 

all the other frequencies have negligible effect on the 

circuit. 

V, CoS +- Ö, ) 4- cos (iuzt 4- 02) 

4- Vp Cos (cOpt 4" ôp) 
(6-12 ) 

The voltage is somewhat difficult to work with in this form. 

Therefore, the voltage will be converted into a contra-rota¬ 

ting vector form. 

+ ^ eJÖzeJajet 
2 4- 

- 29 - 
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The two equations, (6-12) and (6-13)» are equivalent. 

Figures 6-3 and 6-4 are Included In order to clarify this 

equivalence. There are two simple methods of arriving at 

the contra-rotating vector form: first, directly from the 

exponential definition of the cosine; 

cos a),t ^ ej q. e J 
Z z 

(0»14) 

second, from the Euler Equations. 

jüj.t rr COS U)|t +- j SMI OJ,t (6-15! 

e-ja),t _ CoSaJi^ -jsinajjt 
(6-lo ) 

Adding equation (6-15) to equation (6-16) gives 

^ - 2 COS 60,t (6-17) 

V j©i V 
In figure 6-3, the real parts of -J- Q and J- Q add 

together to form a quantity equal to V, COS 0] - Ti:ie 

imaginary parts of these two quantities cancel out® Ihis 

- 36 “ 
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last statement Is always true in contra-rotating form; the 

imaginary part of the two quantities always cancels. 
V, i (iO|t + @i ) 

ïn figure 6-1+, the time variable has made Q 
V *** 

and ,e~J @l such that both are Purely imaginary 

quantities. Since the imaginary portions of the contra¬ 

rotating vectors always cancel, then there is nothing left. 

Since U),t + ©i - 90° and V, COS 90*- 0 , the two are equiva¬ 

lent. 

Furthermore, these quantities are written in vector 

form such that, 

V, = 

V .= Vi -'öl 
y e 

V, = eJ L 

V., = ^ e-J e2 

vp= 

V = VP e"J0p 
v.p j e (6-18) 

~ 31 - 
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> 

so that 

in (t) = V, e 
^ jUJjt1 t fy 

f V.,e'J 

+ V2ejU)at H-V,e'JW2t -2 

+ Vp e1 wpt + V_„ e'J Wpt 
'-P 

(6-19) 

The derivative of this quantity with respect to time is 

Chic 

Ht = ]w\ 
V.,e'jUJ 

f- 

+ ja)2 
V e^2t _ ^e-ja>zt 

+ ito 
JWP 

ypejWpt _ v_pe'J^ (6-20) 

The current, i ’, is completely defined in Appendix A. 

Appendix A contains equation (6-21) which is the product of 

equations (6-19) and (6-20). Now only the frequencies, OJ¡ , 

(¿¡2 » and COp , will be considered since the other frequen¬ 

cies will have no effect on this ideal circuit. 

- 32 - 
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The frequencies 

2C0| 

2 IÚ2, 

2. üJp 

that are found In equation (6-21) are 

60| ± CÚ2. 

LVZ± ÜJ, 

üJp ir üJ| 

Cüi ± üüp 

(jüz± ÜJp 

ÜJp± üJ I (6-21a) 

In an actual circuit, due to the high Q of the tank circuits, 

the frequencies other than 

OJ| = cop - OJ2 

(j)z 3 CJp CU| 

OJp = 

Cüp = 0)2. 4- 101 (fa-21b) 

would have negligible effect on the circuit. The d. c. 

terms cancel out. 

2.60( and 26ü^might have some effect on the circuit if 

the parametric amplifier was quasi-degenerate, i.e. CO, = • 

However, this amplifier is non-degenerate; the degenerate 

amplifier is discussed later. 

- 33 - 
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/ 

* / 

4- wp VpV., e1 Wzt 

+ ooAv,eJ^ - oo^V.^j 

This reduces to 

Xc' = iA{^WjW,t - 

+ CpV.^eJ^ -wpV.,^^'. 
J 

There are three different components of ic’ : 

ic(w,) = j AW, [ 

4 J 

(6-22) 

(6-23) 

(6-24) 

- 34 - 
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P 

Iq =• j A CÜ2 ^Vp jCeP‘e''> jWit 

L — 6 e 

^Vp 

4 

■"|($p-$i) -j^zt 
e e (6-2Ç) 

= J A UJp N^Vp 

L 4 
J (9)4-02) jCOpt 

e e 

V,\4 e-j(6, + 9i)e-ju)pt 

T 
(6-26) 

The admittance of the nonlinear capacitance and the other- 

two tanks as seen from the respective tank is 

Y'(w,) = 

• / . w w j(6p-92) j^))t 
-j A ca)| V2.\/p e e 

2 V, eJ^ eJUJ,t 

r 

2V, 

Y W 
i¿(Uz) _ -JA ujzV, Vpejiep e'ejU,: 

V2eJ02eiu,2t 2- V2 eJ02 eJü7-r 

_ ,A^:V'VP pj(ep-eZ~&l) (fc-26) 
e 

- 35 - 
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f 

.jAWpV,^ ejie,+e2)eja,pt 

v0 RJep ojwpt 2 Vp e 

2Vp 

j(ö| -^p) 
e (6-29) 

In each of these equations the real part of the quantity is 

used. 
The current in each resonant circuit is equal to the 

voltage of that circuit times the admittance of that reson¬ 

ant tank and the admittance of the remainder of the circuit 

¿ I - ^Tj + 

0 = v2 vr^ + 

ip = Vp VTp 4 

If the conductance of the diode, Gc, is neglected, then 

Yr = Gt + jOJ^Ci + Co) + - (6-33) 
1 1 JW|L| 

where 

G-T| = Gg, + G) + &l (6-31*) 

V, Y 'Cw,) 

V, Y (u)2) 

- Vn V ((dp) 

(6-30) 

(6-31) 

(6-32) 

- 36 - 
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Yr^ = ^ Co) + 
J W2L7, 

(6-35) 

where 

G-Ti = G-z 

Yr = Gy + jU)p(Cp+C0) + 
ja)pLp 

(6-36) 

(6-37) 

where 

Gv = + G-i 
(6-3Ö) 

Tp + ~P 
Then, three équations can be written for this amplifier 

similar to equations (6-30), (6-31), and (6-32). 

I, 

0 

_ V y .Au^Pe^p-®'-^ 
1 Ti J 

= V2yT -jAWz^Pej(ep"0|-ei:> l6-1,0) 

ip = vpvTp-i^^ ,Ml, 

Equation (6-UO) can be reduced In order to find an expression 

for voltage, V^. 

- 37 - 
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V, = j'Au)2 ^ ej(ep-e,-©2) 
zvrz (6-I42) 

Taking tha conjugate of both the numerator and the denomina¬ 

tor does not change the voltage, ^2* 

V7 = -jA^2VivP -j(ererh) 
2Y* '2, 

(6-U3) 

Substituting these values of V2 into equations (6-39) and 

(6-l|l) gives 

i i = V, yTi - a X 
4Y_* 

CO, üû' 
(Ò-41+) 

i-p = + A2 yp ajpW2 

P 4YTl 

(6-45) 

The total admittance at each frequency can now be found. 

Y(u) ^ _ Y^_ _ U) i U)2 ( A Vp ; 

4Yr2* 

Y (Wp) = Yfo +• 
cop u>z ^ A V'i)2 

4 Y 

(Ò-Í+Ò) 

- 38 - 
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Equation (6-1+6) shows that the mixing properties of the 

nonlinear capacitance have made an equivalent negative 

conductance appear in the signal resonant circuit. 

Equation (6-1+7) shows that a normal positive conductance 

appears in the pump circuit. Equation (6-1+6) can also 

be rewritten as: 

= Y-J. + 9n (6-1(8) 

where 

9n = (6-1+9) 
4 Yr * 

r2 

By properly choosing the variables in equation (6-1+9), 

amplification can be achieved. This circuit can be handled 

in a similar manner to the regenerative amplifier circuits 

of Chapter V. (Ref 6:12-11+) 

- 39 
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VII. An Analysis of the 

Degenerate Parametric Amplifier 

A parallel resonant degenerate parametric amplifier. 

Is pictured In figure 7-1. Thi* is nwrely a "degenerate*1 

case of the normal parametric amplifier that has just been 

analyzed. The idler In this amplifier Is tuned to the 

same frequency as the signal; for this reason, the idler 

circuit can be deleted. 
\ 

The frequency relationship in the degenerate case is 

the same as for the normal amplifier. 

top = U)| + U)2 

However, because 6U|= » this relationship can also be 

expressed as 
t 

(7-2) 

The degenerate case is analyzed because it brings out several 

Important features of Its phase relationship. Although the 

degenerate case is simpler than the normal parametric ampli¬ 

fier, its phase relationship is a definite disadvantage that 

outweighs its simpler construction. This analysis shows the 

importance of the phase relationship. 

— I4.O — 



GE-EE-61-14 

The frequencies are 

ÜJ, = CO? =r 
JT, (C, + Co) (7-3) 

and 

Cüo ~ 
•/Lp(Cp f Co) (7-1() 

This derivation is similar to the previous derivation, so 

that much of the detail is left out. Chapter VI should be 

consulted for a more detailed explanation of the steps. 

■ic= A V dt 
(7-5) 

Uc - V| Cos(u)¡t-hG¡) 4 VpCos(u)pt + Gp) (7 -6) 

Trc=ViejU,|t + (7-7) 

+- Vp^ +- v.pejWpt (7-7) 

dit • r r; i14'/1-' >7 ^ = - V.,6 
~ iU),t w 

j^[vpeJtüpt - 
. (7-8.) 

- 41 - 
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Appendix B contains equation (7-9) which ie the product of 

equations (7-7) and (7-8). Only frequencies, CO, and 6Up 

will be considered since the other frequencies will have 

little effect on this ideal circuit. 

= jAU), £ ^ V, 

Z ï 

e-jtep-e,) 

+jA4í [ \ I ej2e' 

Vi V, 
2 2 

e'JZel g-J^pt 
(7-10) 

The current, i ', consists of two parts 
w 

XcW = jAo), [ vPvi gjCep-e^gjuijt 
4 

VpV¡ JJ^p-0)) -, e - v_p;i e 
4 

J J 
(7-11) 

yLC^p)= jAU)| ej2e' ej^pt 

- ^.2 e"j2e| e"^^] (7-12) 

- 42 - 
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There are also two admittances 

' V, eie,ejUJ|t ~ 2 V, eje' eJ ^ " 

= -{Aw, VLeJ(eP“2^ 
2 Vi 

(7-13) 

Y(wp) = 
iç; (U,v) 

Vpejöpgjwpt 2. Vp g) 

• V,?* j(29| - Bp) 
ev, 

(7-11+) 

P 

In each of these equations the real part of the quantity is 

used. Using an attack similar to equations (6-39) through 

(6-1+1). 

1.= V.Yr - iTlMiVlVp ySP-Z9l) 17-151 

*f= VpYT (7-16) 

- 1+3 - 
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where Ym is the same as equation (6-33) 
1 

and Y-, is the same as equation (6-37) 
P 

Y(w,) = YTi -JAW, Vp e^ep-2^ 
2 

= Vr -jAWlV'%Jfte''eri "•lt' 
p J 'Wf 

The phase of the degenerate case Is extremely Important. 

If (20|-0p) =: 

then g jCzei-ep) = 

and e = cosir/zf jSin^Vz = J 

j(0p-2©|) 
Similarly eJ r - "J 

So that equations (7-17) and (7-18) become 

Y(üü,) =: Yr - ^0), Vp 
Z 

YÍ 66)0)- Yy 4- A U)| V| 
P 2Vp 

(7-19) 

(7-20) 

(7-21) 

(7-22) 

(7-23) 

(7-24) 

- 44 - 
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Por this phase requirement, the nonlinear capacitance makes 

a negative conductance appear in the signal circuit. Equa¬ 

tion (7-24) shows that a normal positive conductance appears , 

in the pump circuit. 

Equation (7-23) could also be rewritten 

YCco,) = + 3n (7-25) 

(7-26) 

By properly choosing the variables in equation (7-26), ampli¬ 

fication can be achieved. This circuit could be handled 

similarly to the regenerative amplifier circuit of Chapter V. 

The signal phase angle, @i , can shift l80° and the 

previous discussion is still valid. Figure 7-2 shows that 

the 180° shift has no effect on the system. 

ÖI 4- IT = &/ (7-27) 

This quantity can be placed in equation (7-20) 

j (20/- 0p) _ jir/z 
(7-28) 

- 45 - 
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[2(e, f ir)-ep3_ e^2 (7_29) 

ej2lr ejft6,-&p)_ ! ^ (7-30) 

However, If the signal phase angle should shift 90°, there 

would be an amplification. Instead there would be atténua 

tlon. 

e, + V*. = 9/' (7-31) 

Again this quantity can be placed in equation (7-21) 

eJ (zei"~ ep) ^ ejT/z (7-32) 

-j% (7-33) 
6 ~ <2 

eF,e)(Zel-6p) __hj = _j (7-3(() 

Consequently, equation (7-23) becomes 

Y(fW|)= VT| + 7\ O), Vf (7-35) 
z 

With a positive conductance in the signal circuit, attenua¬ 

tion results. 

- 46 - 
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VIII. The Gain and Bandwidth 
o 

of the Non-Degenerate Parametric Amplifier 

The gain of a parametric amplifier can be found in a 

manner similar to that for the negative resistance amplifier 

of Chapter V. Consequently, the power gain (transducer), 

pG^., for on-resonance operation is 

= ■ (8-1) 

P t C&r, + 

However, the power gain for off-resonance operation is some¬ 

what more difficult to obtain and it is necessary in order 

to find the bandwidth of the amplifier. The numerator of 

the power gain is assumed to remain constant off-resonance? 

the denominator varies as the fractional detuning varies. 

Y(oO = Yt, - (7\Vp)z 
4 Yrz* 

(8-2) 

The only two quantities that vary off-resonance are Y™ 

and Y», . 
i2 

=&Ti0-J2è»Q,) (8-3) 

" 1|? “ 
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(8-1+) 

where 

1 : center frequency of the signal 

-0.2î center frequency of the idler 

ilp = Cüp = -0_| 4- -0.2 (8-5) 

UV-On -0-2 _ Ldl 

-a. 

(6-6) 

(jOp is assumed to remain constant throughout the 

entire derivation. 

Q1 : quality factor of the signal tank 

$2 : quality factor of the idler tank 

Substituting these expressions into equation (8-2) yields 

Y(C0,)=&T|(l-j2bQl)+ - - (8- 

(l+j2fejr1Qi) 

Then, in turn, substituting this expression into the power 

gain of equation (8-1) gives 

» 48 - 
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p&t - 
4 G9i &l 

G-^fl-jZbQi) + Qn ^_j ^ 

■ ' l + Oä^Q,)2 

(8-8) 

Defining four quantities, a, b, c, and d, in order to 

simplify the algebra 

a= G- r, (8-9) 

b = 2 b Qi G"- T| (8-10) 

C = 

d = 

9n 

I + 

I + (Zá^Qi)2 

(6-11) 

(8-1?) 

PGt - 

4&g &L 

£(a-jb) + (c-jd)J 
(8-13) 

P&t = 
4 <?g, &L 

DENOMINI ATOR 
(8-11|) 

- 1|9 - 
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denominator = [(o?-jZab-ba) 4 (cz-j 2cd -dz) 

j- C'Zac-Zbd -j^bc -jZad)J (0-15) 

=■ J^(a24-2ac 4CZ)-(4 d?) 

- j ( 2ab 4 2cd 4 2 be 4 2ad ) J (8-lb) 

In order to get the real part of the-power g a in, the numera 

tor and the denominator must be multiplied by the conjugate 

of the denominator. 

denominator = T ^a+c)2--(b+d)2- 

-j 2(ab + cd + be +ad) ~j 

DEM* DEM* = [(a+c)z-(b+d)2 J2 

+ 4- [ab +cd +be+ad T2 

- 5o - 
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DENOMINATOR ” [ Ca-f-c)^ -I- ( b + d)^ 

+ 2 (ob+ cd+ be -1-(101)2-]] 

= [Ca+c)z + (b+df] 
2. 

(8-19) 

(8-?0) 

Since the imafinary part of the power gain has no effect on 

the bandwidth and the magnitude of the power gain, only the 

real part is considered. 

pG-t - 

p&t - 

p<H = 

4&g &L [(Q--K:)2- (b+d)1^ 

[Ca+cj^Cb+df]2 

(a^c)1 -, 
Cb+dPJ 

[' * (ct] [^d!+(b+<lf] 

4G9,&l 

[(afc)z+(b+d)2] 

(8-21) 

(8-22) 

(8-23) 

- ^1 - 
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When the gain is large, the quantity 

(o+c)2 

(b + d)2 
O (8-21() ' 

Substituting the values for a, b, c, and d into the gain 

equation (6-23) gives the final power gain expression. 

4 __ 

PG’t ' [(&, d- + 8-^f| 

where 

A = 1 + (tfegQb)1 

iiiQz 

^ SLz Q| 

This is the power gain for off-resonance operation. The 

bandwidth can be derived frei» this expression by equating 

the power gain off-resonance to one-half of the power gain 

on-resonance. The equality will give the fractional de¬ 

tuning at the half-power point, and the bandwidth is nor¬ 

mally defined as twice the fractional detuning at the half 

power point. 
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4 G-g, Gx 

(&r, + + ^gn)z 

4 Gg i &L 

zC&r. + gn") 
ie-26) 

Equate the denominators 

+ - ^r, + gn)2" (8-27) 

Fcndwidth 4 28 (8-28) 

2b = ÍG-ri + gn) (8-29) 

Ql ^1-1 + TTTS ^ 
This approximation for the bandwidth was checked on the 

IBM 1620 digital computer using the experimental parametric 

amplifier of Buckley and Hupert as a model. The formula is 

correct to about two per cent when is in the eighty to 

one hundred range and is correct to about ten per cent when 

Q1 is in the forty to fifty range. (Ref 7013) 

- 3>3 - 
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The gain bandwidth product of the parametric amplifier 

is 

\fpG-t ' * BAND1VIDTH = 

2 gL (&r( +• 9n) _ 

C&r, il2Q|G-T| + sil 
(8-30) 

2 siz -i-qn) 

(Ref 8:1325) 
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EC. A Derivation of the 

Manley-Rowe Equations 

An understanding of the Manley-Rowe energy equations 

Is necessary for a complete comprehension of parametric 

amplification. These equations relate the average power 

at different frequencies in the nonlinear storage element 

of the parametric amplifier. The only assumptions in the 

derivation are that the nonlinear storage element is loss¬ 

less and that the characteristics of this nonlinear element 

are single-valued. The original derivation is quite sophis¬ 

ticated and quite difficult to follow. (Ref 9:906-8) 

Consequently the following derivation is based on a simpler 

analysis of these equations by Salzberg. (Ref 10îl5lUl) An 

interesting thing to notice is that the Manley-Rowe equations 

are independent of the shape of the characteristics of the 

nonlinear element and are also independent of the external 

circuit to which the nonlinear element is connected. 

In this thesis a nonlinear capacitor is used in most 

examples, and for this reason, a nonlinear capacitor is used 

in this derivation. However, a nonlinear inductor would 

give the same results. 

Since the capacitor is lossless, the sum of the powers, 

P^, and Pp, should be zero according to the law of 

conservation of energy. 

- 55 - 
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R + Pz + Pp = O (9-1) 

where 

power at r, 

power at ^2 

pump power at fp 

Since all the voltages and currents are sinusoidal, the 

average power is 

p - Y-L COS Ö 
2 

(9-2) 

0 : the angle Vetween voltage, V and 

current, I. 

The impedance, Z, across a capacitor is 

(9-3) 

(9-4) 

? - * - 1 V 
¿ c zir-PC “ i 

r = airfCv 

Since 

a= cv (9-5) 
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I = 2irfCV = 2ir£Q. 

P = V (z^Q) Cose 
z 

P = i(TTQVCOSe) 

W = irOV COS© in energy per cycle 

Consequently, equation (9-1) becomes 

-f 'fi Wp =1 0 

(9-6) 

(9-7) 

(9-8) 

(9-9) 

(9-10) 

There are many different frequency relationships that can be 

found using the three frequencies, fp f^, and f^. Nearly 

every article in the literature refers to sum and difference 

frequencies. There is no uniformity on this subject because 

sum equations can be changed to difference equations by 

merely subtracting a frequency from both sides of the equa¬ 

tion. On the other hand, difference equations can be changed 

to sum equations by adding a frequency to both sides of the 

equation. 

Theoretically there are nine different frequency rela¬ 

tionships for parametric amplifiers. 
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Sum Equations 

V= 

fP = fl + 

Difference Equations 

f, = ip 

i| = ip - fZ 

iz = i| - -pp 

■fi = ip - i) 

ip = i| ~ fi 

ip - iî 

(9-11), 

(9-12) 

(9-13) 

(9-14) 

(9-15) 

(9-16) 

(9-17) 

(9-18) 

(9-19) 

However, there are only three distinct frequency relationships, 

because all are repeated three times in different forms. 
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There are two classes of parametric amplifiers: 

(1) Degenerative and (2) Regenerative. 

Degenerative 

Down Converter ■" (9-20) 

Up Converter r - r 
fp - rZ rl (9-21) 

Regenerative 

Negative Resistance (9-22) 

First, to analyze the energy relations in a Down 

Converter: 

Substitute the frequency relationship into equation 

(9-10). 

■f| Wj + ^2. ~ Wp - 0 (9-23) 

(W| + Wp) f| + ( Wz - Wp) ~ o (9-2I4) 

Since the frequencies are not zero, then 

W| Wp — O ~ Wp = O 
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(9-26) 

r, 

(9-27) 

The frequency spectrum for this case is pictured in figure 

9-1. 

(9-28) 

The negative power, P^, shows that power is being supplied 

to the output from the input. The power absorbed by the 

output, ?2, is a fraction of the power supplied. Conse- 
r 

quently the minimum loss of the down converter is - ç ' 
The down converter is stable. * 

Second, to analyze the energy relations in an up con¬ 

verter: 

Substitute the frequency relationship into equation 

(9-10). 

(9-29) 

(9-30) 

(9-31) 

60 



GE-EE-61-1¾ 

INPUT OUTPi 

vO 

r 
'a 

:P CONVERTER 

"p TZ -f, 

FSG-ÜRE 9-Z 

Pacing 61 



GE-SE-61-14 

The frequency spectrum for this case is pictured in figure 

9-2. 

R = fLtfp (- F| ) = £l + C- P,) (9-32) 

The negative power, Pp shows that power is being supplied 

to the output from the input. The power absorbed by the 

output, P2, is a multiple of the power supplied. Conse- 
fz 

quently the maximum gain of the up converter is . 

The up converter is stable. 

Third, to analyze the energy relations in a Wegative 

Resistance case: 

Substitute the frequency relationship into equation 

(9-10). 

■P, W, + w2 + + VVi = O (9-33) 

■Pi Fp (9-31*) 

(9-35) 
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The frequency spectrum for this case is pictured in figure 

9-3. 

In the case pictured in figure 9-3» there would be a conver¬ 

sion gain since f2 is greater than f^ More important than 

this gain is the fact that the pump supplies power to both 

circuits. The pump will supply more power to the higher 

frequency circuit; in this case circuit 2 would receive more 

power. The maximum gain in a negative resistance amplifier 

is unlimited, but the amplifier operates in a potentially 

unstable region in order to realize this high gain. 

The reader should recall that there are two cases of 

regenerative parametric amplifiers: the degenerate esse and 

the non-degenerate case. Both have been analyzed in earlier 

chapters. 
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X. The Gain and Bandwidth of 

the Parallel Resonant Form of the Parametric Up-Converter 

The parallel resonant form of the parametric up-converter 

Is pictured In figure 10-1. The only difference between the 

parametric up-converter and the parametric amplifier of 

figure 6-1 is that the load, has been removed from the 

signal branch and placed in the idler branch to become Gr . 

T 1,2 It should be noted that this is the regenerative para- 
> 

metric up-converter and its basic frequency relationship is 

COp — 60| 4- CO2. 
(10-1) 

A number of steps will be left out of this derivation due 

to the similarity between this derivation and the one for 

the normal parametric amplifier in Chapter VIII. In addi¬ 

tion the conversion gain will be compared to the value 

obtained from the Manley-Rowe equations of the previous 

chapter. The conversion gain from the Manley-Rowe equa¬ 

tion is 

n 
lo i n 

(10-2) 
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Two quantities are changed due to the load being relocated 

in the idler circuit 

= Gg, + Gi (10-3) 

+ ^ 
(10-1*) 

The conversion gain is 

Va* 
P &c = . 2 

pG-c = \ 

p&c = 

^ (&r;+9n)Z 

y = A CÜ2. V| Vp 

2. Vr z' 
rz 

(10-5) 

(10-6) 

(10-7) 

(10-6) 

(10-9) 
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pGc - ^ • — . 4 ^9.do-io) 
Yr7 ^ 

4Yrz feT>9ny 

4G9i 

037-/+ 9nf 
(10-11) 

Where conversion gain on-resonance is 

pGc= ^ 4 &9' &L^ 
W| &Tz (G-T|' + 9n)Z 

Where conversion gain off-resonance is 

(10-12) 

P 
9n_ 

U>\ Gr- / - A 
Tz 

4 ^9, Gk 

4-^/+ 4-bzQ,YG-T/+ 'BjlB)1'’ 
A 1 A ^ - 

(10-13) 
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where 

A = I + (Zb^Gkf 

b = 
Sl2 0., 

The bandwidth for the up-converter is actually the same ex¬ 

pression that was found in equation (8-29) for the bandwidth 

of the normal parametric amplifier. 

(Ref 8:1327) 

(10-lii) 
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XI. Parametric Amplifier Simulation 

on the Analog Computer 

In order to better understand the parametric amplifier, 

its operation was simulated on the analog computer. The 

degenerate case was chosen because its frequency relation¬ 

ship is well defined and its operation is the basis for all 

preliminary study of the parametric amplifier. In addition 

the phase of the pump, which is quite critical in the de¬ 

generate mode, can be accurately controlled on the analog 

computer. 

The computer results show that the output of the para¬ 

metric amplifier is dependent on both the magnitude and the 

phase of the pump. Furthermore, the loading of the signal 

branch was investigated in order to see the effect of dif¬ 

ferent loads on the amplifier. 

The tank circuit with losses is merely 

ÿ + ô ÿ + UJs1 y = O 

where y 

and 

(11-1) 
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However, this differential equation must have a driving 

function, and Ax(t) is chosen to represent the time- 

varying driving function. 

ÿ + @y -H ^s2|j = ^^(t) { 

In this case, the action of the nonlinear capacitor is 

incorporated into the circuit by merely multiplying the 

signal and the pump together. 

y y +- cús\j + üJ52 y =r A xi (t) (11-3) 

This reduces to 

Lj 4- 3 y + tJ)s~ ( I + ) y =■ AicCt) (11-U 

where 6Us î signal frequency 

¿Op : pump frequency 

p : accounts for the losses 

: the angle of the pump voltage in 
relation to the pump current 

LL = P CoS (hupt -(¿>) : the pump 

A X Ct) = A COS UJst: the living function 
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The final equation that was used on the computer is 

y + ß 9 +- U)sz[i + ^ cosCüjpt-(25))^9 = 

0.5 Cosu)5t 

There are four series of computer runs: 

Series 1 : $=-4 

Series 2 : ß r: . 4 

Series 3 : $=.5 

Series 4 : ß = .3 

@ P = 4-5 

(S> P =. 3o 

@ P = 30 

@ P= 30 

Series (1) and (2) show the effect of the magnitude 

of pumping. Several runs were made with the magnitude of 

the pump, P = 60, but the output was unstable. Series (3) 

and (4) can be compared to Series (2) in order to see the 

effects of loading on the output. 

The runs were all made with no pumping on the first 

run in each series to compare the effects of pumping. In 

the second run, the pump was made a cosine function while 

In the third run, the pump was shifted 90° so that it was 

a sine function. 
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In the second run of each series, amplification 

should be noted; in the third run, attenuation should 

be noted. Each can be compared with the first run of 

that series to see the amount of amplification or 

attenuation present. 
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SETTINGS 

COj1 = . 16 OJs = 4 

Cüp1 = .64 U)p = .ô 

A=01 

INITIAL CONDITIONS 

x(o)= 1 
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CASE ONE 

(M-2') 

y Co) = o 
lj(0)=0 Cm - 3) 

y (o) = 45 

(,,-4) 

ij(o) = 0 
i| (0) = 36 
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CASE TWO 

(3 = .4 

(ll-s) 

4(0)= 0 

4(0) = 0 (11-6) 

y(o) = 30 

4(0) = 0 
ÿ (o)=24 









GE-EE-61-14 

CASE THREE 

ß= .5 

(11-¾) 

y (o)=0 

y (o) = O ¢,, 

y(o) = 30 

4(0) = ° 

y(o)= o 
Cj (O) = 24 
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CASE FOUR 

[3 = .3 

(•h-h) 
y(o)= o 

ÿ (0)=0 (11-12) 

y(o) = 30 
y Co) = 0 
J (11-13) 

4(0) = 0 

y (o) = a4 
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XII. A Derivation of the 

Mathieu Equation 

No analysis of parametric amplifiers would be complete , 

without some reference to the Mathieu Equation. Classically, 

the Mathieu Equation has been the tool used to explain para¬ 

metric excitation. Furthermore, the model of the parametric 

amplifier on the analog computer can be supported by a deri¬ 

vation of the Mathieu Equation. 

There is one short-coming to this derivation; the model 

of the nonlinear capacitor is not as realistic as the model 

used in the circuit theory analysis of Chapter VI. Actually 

the capacitance is a function of voltage, and voltage, in 

turn, is a function of time. The derivation of Chapter VI 

used C(v) and included all the voltages that appeared in the 

circuit, while in this derivation C(t) is used and it is 

considered to be varied by the dominant voltage. This deriva¬ 

tion, then, assumes that the "pump” is much greater than the 

signal. The assumption is quite valid for a first-order 

approximation; a more detailed derivation might include the 

second-order effect of the signal. Although the results 

are very nearly the same, this basic difference should be 

kept in mind throughout the analysis. The Mathieu Equation 

does two important things; it links the model simulated on 

the analog computer to the model of Chapter VI and it shows 
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the classical attack to the parametric excitation problem. 

The capacitance of the L-C tank circuit of figure 12-2 

is shown in figure 12-1. 

C(t) = Co + AC SinCoipt+0p) (12-1) 

where Co is constant 

and Co A C 

If AC=0, then the discussion in Chapter IV is applicable 

because the tank circuit is a normal resonant L-C tank. 

However, AC does have a finite value in a parametric ampli¬ 

fier and its magnitude is dependent on the amount of non¬ 

linearity of the variable capacitor. (This subject is 

discussed in more detail in Appendix C.) 

The homogeneous differential equation of the circuit 

in figure 12-2 is 

dia + = o 
dt* L C(t) 

(12-2) 

The equation can be rewritten 

ÔzGi a = o 
(12-3) 
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where 6p ^ 90° 

Using the binomial expansion and since 

COS ¿Opt I I 

and ~=- « I 
Co 

then ^ [i - 
AC 

Cos ¿Opt I 
Co f J 

[' ^ c;Coswpt] 

(12-i|) 

The extreme values of C(t) are found in order to pet the 

equation into the desired form 

O) 
Z __ AC i - 1 fl: - LI -7v MAX LC r-o J (12-5) 

i __ 1 r. , AÇ-) 
L' ^ Co J (12-6) 

Aoo = 4- (. ' ^HllO ) (12-7) 

Using the approximation that \J I •— ‘ 

for small values of x 
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Aw = i[^f T (12-e) 

(12-9) 

AC _ z A10 
Ct, Wo 

(12-10) 

This can be substituted into the original equation 

d2^ 
COS 0)ptj Q, = O (12-11) 

The result is 

d2Q. 

dt1 
-I- U)0 [i - 2. ^ cosu^,t3Q = 0 (12-12) 

This compares very closely with the normal form of the 

Mathieu Equation 

i2 
4 (ct-2cj.Cos2^)y = o 

cl^Z. (12-13) 

- 7U - 



GE-EE-òl-li* 

where 

Q = y 

a)02u)p2 __ ( cúoUip}2 

4 V —J 

00 P u)0 A eu 
4 

EXAMPLE 1: The defreiiorate case requires that 60p = 2 ¿Oq 

then if U)o — ^ 

C0p=:Z 

then Z = t a~ I = ^ 60 

The solution to this differential equation is 

Q. = A Ce, (t, Ato) -)- 8 Se, (t, Ato) (u.u,) 

where CC, : the even Mathieu function of degree one 

Se I : the odd Mathieu function of degree one 

A and B are arbitrary constants which can be found when the 

initial conditions of the differential equation are known. 

EXAMPLE 2: The non-degenerate case requires that LOp^LOo 

*5 - 75 - 
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then If üúq = I 

COp =4- 

then Z = 2t a= 4 cj. = 4A6Ü 
The solution to this differential equation is 

Q. — C 4- O Se^CZt) 4-A¿t)) ( 12-15) 

where 06^ î the even Mathieu function of degree two 

$02.: tlle odd Mathieu function of degree two 

C and D are arôiTrarÿ constants which can be found when the 

initial conditions of the differential equation are known. 

Again resistance in the circuit must be considered, 

so that the homogeneous differential equation for the cir¬ 

cuit of figure 12-3 is 

d^Q ^ dQ + _Q_ 

ditz ' L dt LCCt) 
(12-16) 

It is somewhat more difficult to change this equation to the 

form of the Mathieu Equation, but it is advantageous to do 

this. Using a change of variables 

-Kt 
Gi-ixe 

( 12-17) 

where 
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The new differential equation Is 

.. " -Kt » 
Q = ¿i £ - 2/^yiX 6 

2KQ = +2KÚ-&Kt 

a _ 
LCLt)~ 

,2 
■f /czyue 

7 —Kjt 
- e/<¿/ae 

-h 
i 

LCCt) 

-kt 
ue 

AÀ.Z + - /< 
^LCCt) 

-Kt - 
M.e =° 

(12-18) 

-Kt 
and since C 0 for finite values of K. and t , then 

k2+_1_ 1/U. =0 (12-19) 
^ L LCLt) J 

â+C-^+^O-gccSUïVlu*0 --20) 

.u+cOo2[0- $)-2^005^^0 ll?'21> 

This, too, compares very closely with the normal form of the 

Mathieu Equation 

^ -H (a-2^005 2¾)y-0 (12-22) 
d 
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where 2 = 
Z 

K tr 
y and Xi — Q.6 

a= — ) = (u>¿-~ K1) up' 
4 ^ w^1-/ 4 

uj0Aa> 
4 

The result of the change of variable is quite logical; the 

exponential can be considered the damping term due to the 

resistance in the circuit. The two solutions closely re¬ 

semble the solutions found in Chapter IV for a normal L-C 

tank and a normal R-L-C tank circuit. The even Mathieu 

function can be replaced by the cosine, while the odd 

Mathieu function can be replaced by the sine. If the 

quantity, A (x), was zero, the solution to the ordinary 

differential equation could be expressed in terms of co¬ 

sines and sines. The limits of the Mathieu functions as 

that quantity,A LO , approaches zero are 

Cem(t) Au)) n Cos mt 
Aco-> 0 (12-23) 

Sem(t, A to) 
AU)“>0 

Sin nit (12-24) 

(Ref 11:274-6) 
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XIII. Conclusions 

In th« past decade outstanding results have been 

obtained from parametric amplifiers. These amplifiers . 

have overcome many of their original disadvantages and 

appear to be exceeding many early operational predic¬ 

tions. The chief asset of parametric amplifiers is their 

low noise figure. Typical noise figures for these ampli¬ 

fiers range from 2 to 6 db, while comparable noise figures 

for conventional tube amplifiers range from 12 to 20 db. 

(Ref 7:311) On the other hand, parametric amplifiers do 

not have as low noise figures as masers; masers are con¬ 

sidered the ultimate in low noise amplification at this 

time. However, masers cannot be operated at room tempera¬ 

ture while parametric amplifiers are designed for such 

operation. Masers must be operated in the liquid helium 

temperature region, and the disadvantages of this low 

temperature operation are apparent. Heffner claims that 

materials may be discovered that allow maser operation in 

the liquid hydrogen region and perhaps, even in the liquid 

nitrogen region, but he doubts if masers can ever be used 

at room temperature. (Ref 12:3) Incidentally, parametric 

amplifiers that have been designed to operate at these 

reduced temperatures have noise figures that compare favor¬ 

ably with masers, so that parametric amplifiers may even 

displace masers in some operations. 
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There are several short-comings of the parametric ampli¬ 

fier. One important disadvantage of the negative resistance 

parametric amplifier is that its operation is only condition¬ 

ally stable. In order to obtain high gains, this amplifier, 

like all regenerative amplifiers, must be operated near the 

threshold of oscillation. In addition the bandwidth of this 

amplifier is quite narrow. To overcome both these defects to 

some extent, distributed or traveling wave parametric ampli¬ 

fiers have been proposed; the traveling wave amplifiers are 

more stable and have increased bandwidths. 

Another disadvantage of the regenerative parametric 

amplifier is the high frequency of pumping. Since pumping 

must be performed at the sum of the idler and the signal fre¬ 

quencies, the pump must have a frequency greater than the 

signal. A higher frequency pump source is often not desir¬ 

able—particularly when the signal frequency is in the high 

microwave range. To remedy this fundamental drawback, a 

parametric amplifier using lower frequency pumping has teen 

suggested in which two or more pump sources at frequencies 

lower than the signal frequency are used. Chang and Ploom 

constructed such an amplifier using these frequencies: 

pump = 3oornc 

signal -Pg = 360 me 

idle ■= 220 me (Ref 13:23) 
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A third disadvantage is that the degenerate amplifier 

is sensitive to the phase of the pumping. This can be 

easily overcome by merely changing the frequency relation¬ 

ship so that an idler is used. In effect the degenerate 

amplifier is changed to a non-degenerate amplifier; after 

such a change, the phese no longer affects the operation 

of the amplifier. 

There are relatively few conclusions that can be drawn 

from this type of work. One conclusion is that the analog 

computer can be used to simulate a parametric amplifier. 
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XI7. Recommendations 

There are still several things that should be done 

before a parametric amplifier is built. First, the non¬ 

degenerate amplifier should be investigated thoroughly 

on the analog computer. In addition, second-order effects 

should be taken into account on both the degenerate and 

the non-degenerate case. The computer provides an excel¬ 

lent check on the stability of the different amplifier 

configurations. The stability can be theoretically calcu¬ 

lated by the Mathieu Equation and then, verified on the 

analog computer. 

Second, the nonlinear differential equation could be 

analyzed on the digital computer. Such an attack could 

include both small signal and large signal investigations. 

The analog computer approach used in this study and the 

Mathieu Equation are only valid for small signals. The 

Mathieu Equation is a linear differential equation and car 

only be used for portions of the C(v) curve that approxi¬ 

mate a straight line. Ey working with the digital computer 

or the analog computer using a function generator, large 

signal investigations can be made. 

After this analysis is complete, a non-degenerate 

parametric amplifier should be built. The range of fre¬ 

quencies should be in the low radio frequency range. To 
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the author's knowledge, this area has not yet been Investi¬ 

gated. Semiconductor diodes that are specifically designed 

for this application should be used in the amplifier. Also, 

piezoelectric crystals with high Q and narrow pass-band 

properties should be considered for use in the circuit. 

Finally the gein and bandwidth equations of this thesis 

should be verified by an experimental amplifier end an ex¬ 

perimental up-converter. Of course, the final step could 

be miniaturizing the entire set-up. 

For any further reading on the subject, three compre¬ 

hensive bibliographies are recommended: 

1. Louisell has over 200 references. (Ref 1I|) 

2. Mount and Eegg have an annotated bibliography. 
(Ref 15) 

3. Mumford has 200 references and a history of 
parametric amplification. (Ref 16) 
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x/= jA^ 

Appendix A 

Equation 6-21 

~ j 2 toit 
O), V, V, e + U), V, V, 

+ Ü,, V, Va ej(“,+W2)t ^ O), V, V, 

r; r; jCtJ, 4-0^)1 ^ 
+• 60, V, Vp e + ^ V, v_p 

/-V. ^w* 

- 60, V_, V, + - OJ, VH VH 

- e1 -w,v,V.2 

-w.^VpeJ^P'^ - aj| V., Yp 

^ ^V,v, e^'^Vu^V., 

^ I ^ *%✓ 
•f Í0¿ \/^ 6 +- 

w w j(UJ2 + iOp)t 7- ^ 
+* 0^2.^2, ^ ^ ^2. ^2/ ^ 

j (60,-602)+ 
e 

j(co,-UJp)t 
e 

_ j 2c - t 

-j (,10' + ^02.)t 
e 

_ i ^6'J, +- 6Ün)ti 
e 

j( 0)2-0),U 
e 

2 

i J (O)?. ~0)p)t 
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^ ^ -j ^0),-f U)2)t 
e “ OJ2 V_2 V., e 

- CO2, V-2 - t02 V_2 V.2 6 

-j 2u)¿t 

~ -, jCujp-a)2)t r; (7 -jCo)2+a;p)t 
- coz V_2''p e - V_p e 

+ a)pVpV,e)(a,,+Wp)t +. wpVpV-ie 

■t-iOpVpVpe’2tJpt + ajpVpV.p 

j(cup-iO|)fc 

+• cupVp Vz & 
J (C02 + O)p)t 

■h 
j(i0p-0)2)t 

^ 'N- 

— cop V-p V, ß 
J(CLI|-C0p)t ' / v^ ÿ e-jCoj|fa)p)t 

- WpVpV, 

- cop V_pV^ e 

-u)pV_pVp 

j C^oz -oop)^ -J ( C02 + ilOp) 
— 60p V_p V-2^ 

~ ~ 2¿Ont J 
- copV_p V_p e j 
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Appendix B 

Equation 7-9 

¿o j A j gu, V, V¡ eJ +- V, V , 

C 
ww jCüJi+'Wpît r\ r} j(6U| -Lüp)t 

+- Gü|V|Vp6 Cü|V| \/_pe 

~ aj|\/.|V, - u),V,V_j e 
_i2L0|t 

- - j(o;p-a),)t ~ 0 -j(u),+Lüp)f. 
“UJ|V-|Vp6 LOjV-iV-pG 

~ fr )(cü|-f60p)t ~ ?r .(u;p-aj,)t 
4- CüpVpVj G -f UJpVpV-i G 

'v ^ 12 cOpt f'" 
4-GüpVp\/pG 4- ¿DpVpVp 
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Appendix C 

Properties of a Semiconductor Diode 

V * 

Although the voltage sensitivity of a semiconductor 

junction's capacitance has been known for some time, these 

diodes have only recently been used in parametric ampli¬ 

fiers. One reason for this is that the-diodes have just 

now been perfected to a degree worthy of good parametric 

amplification. In fact, the losses in the diode are con¬ 

stantly being reduced by new methods of manufacture. The 

present parametric amplifiers use the properties of bound 

electrons in diodes rather than free electrons which are 

used in klystrons and traveling wave amplifiers. By using 

the electrons in a solid rather than using free electrons 

boiled off a hot cathode, low noise devices can be realized 

because the temperature of the working substance is respon¬ 

sible to a large degree for the amount of noise generated. 

Also because the movement of the carriers is so slight, 

there is little noise generated. This factor was mentioned 

in more detail in the Introduction. 

One other important factor in favor of parametric 

amplifiers over their conventional counter-parts is that 

parametric amplifiers can be used at much higher frequencies. 

A typical electron beam contains about 10® electrons per 
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cubic centimeter while the useable electrons in a solid may 

be between 1019 to 102^ electrons per cubic centimeter. This 
ô 

great difference in the amount of electrons offers great posT 

sibilities for high frequency amplification. (Ref 12:3) 

McMahon and Straube sum up the other important advant¬ 

ages very well: "Voltage-variable capacitors have opened 

new opportunities in miniature circuitry, and have given 

rise to a burst of activity in the parametric amplification 

field. Prime advantages relative to mechanical capacitors 

are size, weight, electronic rather than mechanical control, 

speed of response, and stability under shock and vibration. 

Advantages relative to reactance tubes are in size, weight, 

life* total power, heat generation, frequency range, and 

stability under shock and vibrât ion.1’ (Ref 17:74) 

Nearly every study on parametric excitation contains an 

account of the potentials in the semiconductor diode; conse¬ 

quently, this is omitted and a basic discussion of the 

operation of the junction is includ id in its place. When a 

reverse bias is pi.so<?d otcross a. sem ond.uctor junction, a 

region which is depleted of mobilo ouvriers is supported in 

the junction. This io the depletion layer that is pictured 

in figure G-l, Is m applied voltage is varied across the 

junction 3 tho width of the do plot ion r ayer- change a r This 

depletion layer acte as nn insulator., and the result is a 
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f' 

capacltanc« which varies inversely as frequency. 

Although the equivalent circuit of a semiconductor 

junction is quite complex, a simplified model can be usçd 

that is accurate in the normal operating range. This is 

the model of figure C-2 (a). The capacitance, 0^, is a 

variable capacitance that depends on the voltage. The 

equivalent series circuit of figure C-2 (a) can be converted 

into the parallel circuit of figure C-2 (b). 

Since the figure of merit of the circuit is 

Cl = —!- (c-i) 
Z'fTp P5 CgJ 

then 

RsO + Q.1) 
(C-2) 

and 

(c-3) 

a1 

The approximations are valid when Q is large, and this is 

normally true. 

A more generally useful quality figure is the CdRg pro¬ 

duct, although the cut-off frequency, fc, is now quite widely 
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used to show the quality of a semiconductor junction. 

f?S Qd 
(Ç-4) 

This semiconductor junction is similar to the capacitor that 

is described in Chapter II; the semiconductor junction's 

capacitance is changed by electronic means while the capaci¬ 

tor of Chapter II was varied by hand. In figure 2-3 the 

plates of the capacitor are periodically pulled apart and 

pushed back together by hand. If a junction is forward bi¬ 

ased as in figure C-3 (b), its capacitance is similar to a 

capacitor with its plates nearly together: figure C-3 (a). 

However, if a junction Is reverse biased as in figure 

C-4 (b), its capacitance is similar to a capacitor with its 

plates pulled apart: figure C-i| (a). These two cases are 

analogous to figure 2-1(. (a) and (b); that is when the hands 

pulled the plates apart and. pushed them back together. 

In actual practice, the junction is reverse biased as 

shown in figure C-f with a sinusoidal generator placed 

across the junction. Then the capacitance varies sinusoid¬ 

ally about a constant capacitance, CQ, as shown in figure C-6. 

This is the reason for the equivalent circuit of fxgure C-2 

(b) where there is a constant capacitance, and a sinu¬ 

soidally varying capacitance in parallel with Co0 
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The capacitance, C(v), is r nonlinear function of 

voltape. A typical curve of the capacitance versus 

voltage is in figure 6-2 (a) and (b). The equation of 

C(v) is 

(c-5) 

where n = 3 for graded junction 

n = 2 for abrupt junction 

n < 2 for hyper-abrupt junction 

TTo = V0 COS (cOot -I- @o) 

= direct current bias voltage (Ref 17:77) 
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Appendix D 

Some Dual Circuits 

Appendix D contains several dual circuits. The 

derivations of the gain and bandwidth are not given 

because they can easily be derived by a dual approach 

to the expressions that are given in the text. 

Figure D-l is the series resonant form of the 

parametric amplifier. It is the dual of the amplifier 

in figure 6-1. This circuit is discussed in detail by 

Bloom and Chang. (Ref 16) 

The properties of the ideal filter are: 

—I— 2=0 @ il = u) 
U) 
~ 2 = 00 @ Ü ^ oj 
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Figure D-2 is the series resonant form of the 

degenerate parametric amplifier. It is the dual of 

the degenerate amplifier of figure 7-1* 
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Figure D-3 is the series resonant form of the 

parametric up converter. It is the dual of the amp¬ 

lifier of figure 10-1* 
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Figure D-4 is a series resonant form of the parametric 

amplifier with a variable capacitor. The author has never 

seen such a circuit discussed; it is included in order to 

show the many different combinations of elements that are 

theoretically possible in a oarametric amplifier. There 

is no other circuit in this thesis that is a dual of this 

circuit. 
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Appendix E 

Mathieu Functions of Decree 0n§ 

Se,(t; D 

(Ref 9:14) 
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Appendix F 

A Derivation of the Mathieu Equation 

From the Linear Model 

After this thesis was completed, it was felt that 

the derivation of the Mathieu Equation was open to crit¬ 

icism because a simplified model was used in the deriva¬ 

tion. The following derivation is included to support 

the previous simplified work. In other words, there was 

no direct connection between the parametric amplifier of 

the linear analysis and the parametric amplifier of the 

Mathieu Equation derivation. Consequently the parametric 

amplifier of figure F-l is used to derive the Mathieu 

Equation, 

C(t) = Co + ACcosüjpt ( F-l ) 

Co» AC 

qcct) 
(F-2) 

C, 4- C(t) 

C,C0 4- C| • AC cas Ü3pt 

C, +• Co +• AC CoS U)pt 
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C h 
-NJ ç( Co 

C| -f Co 

+ C(-AC cas ojpt 
C, + C0 

(F-4) 

°i = i- (F-5) 
VL, C,, 

= Pg, -+-^7- + (f-6) 

The properties of an ideal filter are 

2 = 0 @ -O. = co, 

2-00 _TL ^ CO, 

i'he differential equation of the parametric amplifier of 

figure F-l is 

ViSiow.t = L. ÍL + J. 
dt c, 

i dt (F-7) 

This can .be changed to 

Vi_ sin GO,t = 
i 
t-i 

R,i dQ , J_ d (F-Ö) 
L, dt L^.Ct) 
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In Chapter XII an equation similar to equation (F-Ö) was 

shown to be of the form of the Mathieu Equation. 

In this case, the pump voltage is considered to be 

much greater than the signal voltage. For this reason, 

the variable capacitor is assumed to be a function of 

the nump frequency alone. If the magnitude of the pump 

and signal voltages were of the same order, then this 

assumption would not be true. 

This parametric amplifier is the model'used to 

simulate parametric amplifier operation on the analog 

computer. 
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