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Abstract: 
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calculus of variations is formulated for a wide variety of problems 

in the theory of control. The hamiltonian function is constructed with 
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1. Background, 

We call today "system theory" a loose collection of problems and 

methods which are held together by a central theme: to understand better 

the complex systems created by modem technology. Aside from certain com¬ 

binatorial questions, most of present system theory is concerned with pro¬ 

blems in automatic control and in statistical estimation and prediction, 

with emphasis on solutions which are optimal in some sense. At present, a 

large variety of ad hoc methods are employed in systt r theory. 

Recent research has shown how to formulate sind resolve these problems 

in the spirit of the classical calculus of variations. Îhiî provides a uni¬ 

fying point of view. Eventually it should be possible to organize system 

theory as a rigorous and well-defined discipline. One example of this trend 

is the author's Duality Principle [1-3] relating control and estimation. 

Conversely, problems in system theory are stimulating further research in 

the calculus of variations. 

Let us sketch here briefly ihe historical background of the hamil- 

tonian formulation of the calculus of variations. Hiere is a long stream 

of scientific thought concerned with wave propagation and variational 

principles in Nature. It begins with Huygens, continues with the work of 

John Bernoulli and receives maturity at the hands of the great masters 

of the nineteenth century: Hamilton, Jacobi, Lie. The most articulate 

representative of this tradition in recent times was C. Carathéodory (l873_1950)* 

Beginning with his famous dissertation of 1904, Caratheodory insisted on 

the hamiltonian point of view in the calculus of variations throughout his 

lifetime. The evolution of his thinking on this subject is carefully inte¬ 

grated in his last major work [4] -- a book which is hard to obtain and 

difficult to digest. 

The theory of optimal control (under the assumption that the equa¬ 

tions of motion are known exactly and the state can be instantaneously 

measured) may be regarded as a generalization of the problem of Lagrange 

in the calculus of variations: minimization of an integral subject to side 
/ 

conditions which may be ordinary or differential equations. Caratheodory's 

work on the lagrange problem is incomplete, consisting of only two papers 

! 
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[5-6] (*ich are sketched in Chapter 18 of [14]). The problem is one of 

extreme difficulty, and has received very little attention until very 

recently. 

In [7] the present writer gave a new foraulation of the problem 
of optimal control from the hamiltonian point of view. The purpose of 

this paper is to extend this approach. We shall see that this formulation — 

which differs from Caratheodory's in essential details - explains a number 

of recent results in the theory of control and provides a very general 

fras work for further research. In particular, the so-called "maximum 

principle" of Pontryagin [8] will arise in a simple and natural way as 

part of the definition of the hamiltonian function of the problem. 

We hope to give a deeper and more detailed treatment of the subject 

in the near future. 
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2. The Variational Problem In the Theory of Control. 

We assume that the control object is a dynamical system governed 

by the differential equation 

(2.1) ta/dt s * s f(x> t)* 

Here x is a real n-vector, called the state of the system; u(t) is a 

real m-vector for each t; f is a real n-vector which is continuously 

differentiable in all arguments. 

To avoid the cumbersome phrase "the state x at time t", we 

shall refer to the couple (x, t) as a phase. The phase space is thus 
n 1 

the cartesian product of the state space X( = R ) with the set T(= R ) 

of all values of the time. 

We call the function u(t) in (2.1) an admissible control if (i) 

it is piecewise continuous in t; (ii) for each t, its values belong 

to a given closed subset U(t) of Rm. 

For any admissible control u and any initial phase (xq, to) 

there exists a unique absolutely continuous function 0 of t, denoted 

by 

0(t) 5 0u(t; V to) 

which satisfies (2.1) identically almost everywhere*and which has the 

property 

Qi(t ) = 0 (tjx. t ) = x . 

We call 0u(t; xq, tQ) the motion of (2.1) passing through xq at time 

t under the action of the control u. Sometimes we shall write 
o 

x(t) = 0(t) to emphasize the fact that the value of 0 at some fixed t 

is the state of the system at that time. 

We call x* an equilibrium state if there is some control u such 

that 0u(t; x*, tQ) = x* for all t, tQ, or, equivalently, f(x*, u(t),t) = 0. 

* "in some~regIon ~G~ of "the phase space containing (xq, tj. 
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To state the control problem In its simplest form, it is assumed 

further that physical measurements are available which provide the exact 

numerical value of the state at every instant of time. (Of course, this 

is a gross idealization from the engineering point of view.) We want to 

determine u(t) as a function of x(t) so that motions of (2.1) have 

certain extremal properties. To express u(t) as a function of x(t) 

is commonly called feedback in engineering. We denote this functional 

relationship by 

(2.2) u(t) = k(x(t), t), 

and refer to the function k as the control law. A control law is 

admissible if k(x, t) € U(t) for all t. 

(xo, tQ) be an arbitrary phase and let S be a surface in 

the phase space. Consider the following scalar functional of motions of 

(2.1): 

(2.3) V(xo, tQ, S; u) = X(0u(ti; xq, to), ^) + xq, tj, u(t), t)dt, 

where L, X are scalar functions and ^ is the first instant of time 

after tQ when the motion enters the set S. ttius X need be defined only 

on S. We call ^ the terminal time. We assume that L, X are contin¬ 

uously differentiable in all arguments. 

In terms of these notations, we can now state the 

(2.4) OPTIMAL CONTROL PROBLEM. Given any initial phase (x . t } 
-- ' o' o" 

find a corresponding admissible control u defined in the interval [t , t ] 

at which the functional (2.3) assumes its infinum (or supremum) with regard 

to the set of all admissible controls. 

Actually, for technological reasons one usually sets a slightly 

stronger objective. 

(2.5) OPTIMAL FEEDBACK CONTROL PROBLEM. Find a control law such 

that..(when (2.2) is substituted in (2.1)) the functional (2.3) assumes its 

* 



Inflam ('•»r supremum) with regard to the set of all admissible control 

lavs. 

Bellmar. 's Principle of Optimality shows that ve can always define 

an optimal control law along every optimal motion. Hence (2.4) and (2.5) 

are abstract!/ equivalent. 

Tf equation (2.1) depends on stochastic factors, however, then the 

infimum of (2.5) with respect to all admissible control laws will be usually 

lower than with respect to all admissible controls which are uniquely deter¬ 

mined by the initial phase. This is because the control law takes into 

account not only the initial state but successive states as well; the added 

information so obtained may result in a better optimum. 

Before embarking on a detailed analysis of the control problem, let 

us mention a number of typical examples which may be put into this formula¬ 

tion. 

,'¿.6) T?MENAI CONTROL. The problem is to bring the state of the 

system a« clone c.b possible to a given terminal state x1 at a given 

terminal t^e t., Then L - 0, X(x) is the distance of x from x^ 

and S -- X x t , . 

(2.7) MINIMAL-YW CONTROL. Suppose we want to reach a state 

from (x . t ) in the shortest possible time. We then set L * 1, X = 0, 
' o7 0 

and S = (x^J x T. This problem has a solution as a rule only if U(t) is 

a bounded set for all t 2 t . 

(2.8) REGULATOR PROBLEM. We assume that the system is in some 

initial phase (xq, tQ) and we wish to return to some equilibrium state 

x* in such a way that some integral of the motion is minimized. Vfe then 

usually take L and X as nonnegative. The dependence of L on u is 

needed because otherwise the problem may not have a solution. The set S 

is again X x (t.). 

(2.9) PURSUIT PROBLEM. We are given a moving target |(t). The 

problem is to bring the motion to phase (|(t), t) as soon as possible. 
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This is a generalization of the minimal-time problem; ve take 

S * t); t € T). 

(2.10) SERVOMECHANISM PROBLEM. Ihis is a generalization of the 

regulator problem. We are given a desired state |(t), t € T. The problem 

is to cause the phase of the controlled motion to be as close as possible 

t) on the interval [tQ, t^]. Ihe instantaneous distance 

betveen (x(t), t) and (j(t), t) is measured by L. The set S is 

again as in (2.8). 

(2.11) MINIMUM ENE ICY CONTROL. We vish to transfer from an 

initial phase (xq, tQ) to a final phase (x^; t^) with the expenditure 

of a minimal amount of control energy. In this case we take L to be a 

nonnegative function of u, independent of 0; S is the set consisting 

of the single point (Xj, t^; X is immaterial. 

(2.12) ISOPERBŒTRIC PROBLEMS. Suppose that the optimal motions 

must satisfy also the so-called isoperimetric constraints 

(2'15) < f"+kWu(ti v to)’u(t)’t)dt s ak’ k = 1’ " • "• 

These problems reduce immediately to the preceding ones, by replacing the 

n-v;ctor x by an N-vector whose-last N - n components satisfy the 

differential equations 

(2.1k) dxn+k/dt = fn+k(x, u(t), t), k = 1, ..., N - n; 

the initial values are xn+k(tQ) = 0 and the final values x^ft^ are 

to lie on a surface S where x^+k á o^. 



3. Relations with the Calculus of Variations. 

The classical problem of Lagrange in the calculus of variations 

is concerned with the minimization of the integral 

(5.1) / L(x(t), x(t), t)dt 

with respect to any smooth curve x(t) which (i) connects a given point 

(x . t ) with a point (x., t.) lying on a given surface S, and (ii) 

satisfies the constraints 

(5.2) g^xft), *(t), t) = 0, i = 1, ..., n - m. 

There are two ways in which the optimal control problem discussed 

above differs from the lagrange problem. First, the function L depends 

on u rather than on it. Second, the constraints are of a mixed type: 

(3.3) i - f(x, u(t), t) = 0 and u(t) 6 U(t). 

Neither of these differences is essential. Inequality constraints 

such as a * 0 can be replaced by equality constraints such as ß(a) = 0 

where ß is a smooth function which is zero if a * 0 and positive 

otherwise. Similarly, one can always express u(t) from (5-5) as a func¬ 

tion of x, x, t, introducing, if necessary, additional equality type 

constraints. Hence the optimal control problem is formally identical 

with the lagrange problem. However, the transformationsnecessary to 

establish the equivalence will be usually rather complicated. Moreover, 

because of difficulties arising from an explicit treatment of the con¬ 

straints (5.2), the theory of the lagrange problem today is far from ade¬ 

quate. 

We therefore prefer to treat directly the problem of minimizing 

(2.3) , subject to the constraints (3.5). This treatment includes of course 
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the ordinary problem of the calculus of variations (upon setting 

f(x, u, t) * u and U(t) = R11), as well as the lagrange problem (after 

suitable transfomations of the type Just discussed). 

Using the hamiltonian point of view, we need not transform the 

constraints (3.3) but can treat them directly. The principal idea is the 

following. We define a hamiltonian function not with the aid of the legrendre 

transformation (as is usual), but by a more general procedure, the so-called 

Minimum Principle. In this way the optimum control problem can be reduced 

to the solution of the hamilton-Jacobi partial differential equation. The 

existence of a solution of the hamilton-Jacobi equation is a sufficient con¬ 

dition for the solution of the optimal control problem. If the function 

V°(x, t) is smooth, this condition is also necessary. 

Unfortunately, quite often V°(x, t) does not have continuous 

partial derivatives with respect to x. In that case one cannot state 

necessary and sufficient conditions solely in terms of differential equations. 

But this is not the issue. Hie main objective is always to develop methods 

by which we can eventually discover a complete solution of the problem. These 

methods usually take the form of sufficient conditions. As a matter of fact, 

early in his career, Carathéodory took the position that: 

"The distinction between necessary and sufficient conditions seems, 

however, always a little artificial; explicit proof that certain conditions 

are necessary is of interest only in cases where one cannot resolve a problem 

at once, and it serves, above all, to limit the scope of future investiga¬ 

tions. When, on the other hand, one has a solution possessing all the pro¬ 

perties required by the theorem, it suffices to show that this solution is 

unique in order to have at the same time the proof that all the conditions 
n* which serve to determine the solution are necessary. 

It has unfortunately become very common in physical and engineering 

applications to regard the extremals supplied by the euler equations as 

the "solution" of a variational problem. There are two long-standing 

objections to this: (i) the euler equations may not exist (as when L is 

not sufficiently smooth); (ii) the solutions of the euler equations may 

cease to define a minimum or a maximum after a certain interval of time (as 

^Writer's translation from French; writer's italics. See [9, Introduction]. 
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when the extremal contains conjugate points). The haailtonian point of 

view, which aims to obtain sufficient conditions, avoids such difficul¬ 

ties at the outset by considering only these initial phases which can be 

connected by optimal motion with a phase on S, and by regarding the 

function V° = min V as abstractly defined in advance. 

The dynamic programming method of Bellman proceeds from the same 

fundamental idea, differing only in detail from the hamiltonian methods. 

For a nonrigorous but highly enlightening discussion of the relations 

between the two, see the recent paper of Dreyfus [10]. 
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4. The Hamllton-Jacobl Equation: Minimum Principle. 

lÄt us first obtain the sufficient condition. The starting point 

is the following trivial, well-known, but Important observation: 

(4.1) CARATHEODOHY IÆMMA [4, p. 198], Consider Problem (2.4). 

Suppose there is a function k(x, t), continuously differentiable in both 

arguments, and such that for all (x, t) in some region 0 of the phase 

space 

(i) k(x, t) € U(t), 

(ii) L(x, k, t) = 0, 

(iii) L(x, u, t) > 0 if u / k(x, t). 

Consider motions of (2.1) with control law defined by (2.2), l.e.. 

(4.2) dx/dt = f(x, k(x, t), t). 

tet the Initial phase (xq, tQ) belong to G. Let x(x, t) be identically 

zero on some surface S C G of the phase space. Itaen for any motion 

of (4.2) which connects (xq, tQ) with a phase on S and remains entirely 

in G 

(a) ¿be value of the Integral (2.3) is zero; 

(b) the motion 0° provides the absolute minimum of (2.3) with 

respect to any other motion of (2.1) which connects (x . t ) with S 
—-  ' o" o - - ■■ 

and remains entirely ln G. 

In short, the hypotheses of the lemma mean that at every point in 

G the integrand L has a unique, absolute minimum u° = k(x, t) with 

respect to all u satisfying the constraint (3.3). Then k is the unique 

optimal control law, and Problem (2.5) is also solved. 

Proof. Conclusion (a) is immediate, since for any motion 0° of 

(4.2) the integral (2.4) is zero by hypothesis (ii). Now let 01 be any 

other motion of (2.1) which connects (xq, tQ) with S without leaving 

G, and for which V = 0. Then by hypothesis (iii) and the continuity of 
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L, it is clear that along 01 we must have u^t) = k(0 (tj xq, to), t) 

at every continuity point of u^t), since otherwise V > 0. We would 

obtain the same motion if we let u^t) be always defined by this relation; 

in other words, 0 ^t; xq, to) = ^(t; xq, tQ). But since k is contin¬ 

uously differentiable in x, (4.2) defines a unique motion, and the proof 

of (b) is complete. 

It should be noted that t.iere may be phases in G such that the 

motion defined by (4.2) going through these phases is not optimal — this 

is due to the possibility that a motion may leave G prior to reaching S. 

Now we try to construct a lagrange function L* and a corresponding 

function k which satisfy the requirements of the lemma. 

Suppose Vo(x, t) is a scalar function which is twice continuously 

differentiable in both arguments. Then 

(4.5) / 1iV°(x,t) + f(x,u(t),t)-V°(x,t)]dt = V°(x1,to) - V°(xo,to) * 

^o 

along any motion of (2.1) which connects the phase (xq, tQ) with the phase 

(Xi, t^) on S. If we let 

(4.4) V°(x, t) = X(x, t) 

on S, then the variational problem (2.4) obtained by replacing X with 

X* = 0 and L with 

(4.5) L*(x, u, t) = L(x, u, t) + V°(x, t) + f(x, u, t)-V°(x, t) 

will be equivalent to the original problem, because the values of V and 

V* will differ only by V°(xo, tQ) which does not depend on the control 

u. 

Let p be a real n-vector, called the costate. 

We define a scalar function H by 

* The dot denotes the inner product; = òvfòt, Vx = grad^ V. 
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(4.6) H(x, p, t, u) = L(x, u, t) + f(x; u, t)*p. 

We assume that H has a unique absolute minimum for each t with res¬ 

pect to u(t) e U(t) at the point 

(4.7) u°(t) * c(k, p, t); 

moreover, c is continuously differentiable in all arguments. 

The scalar function H° defined by 

(4.8) H°(x, p, t) = min H(x, p, t, u) 
u(t) £ U(t) 

= L(x, c(x, p, t), t) + f(x, c(x, p, t), t)*p 

is the hamiltonian of the problem. 

Finally, we assume that V°(x, t) satisfies the hamilton-Jacobi 

partial differential equation 

(4.9) Vj + H°(x, V°, t) * 0 

with the boundary condition (4.4). 

If these assumptions hold, we let the coatate be defined by 

(4.10) p = V°(x, t). 

Then 

(4.11) L*(x, u, t) = V°(x, t) + H°(x, V°(x, t), t) 

will clearly satisfy the hypotheses of the carathéodory lemma, with k 

defined by 

(4.12) k(x, t) = c(x, V°(x, t), t). 
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Moreover, by the lenna^ we have also that 

(4.13) V°(x0, t0) - \) + A 4(^(4), t), t)dt 

along motions f satisfying (4.2). In other words, 

(4.14) V°(x . t ) = min V(xo, tQ, S; u) 
u 

is the absolute minimum of the integral (2.3) with respect to admissible 

controls; (4.12) is the optimal control law, and we have also solved 

Problem (2.5)» 

Hence we have arrived at the following 

(4.15) SUFFICIENT CONDITION. I«t H° be the absolute minimum of 

H = L + f-p with respect to u(t)e U(t). Suppose that the Preceding_con- 

tinuitv and differentiability hypotheses hold, and that Vo satisfies the 

ymmnton-iacobi partial differential equation vj + H°(x, Vx, t) = 0 in_a 

region oC S, and that furthermore V = X on S. Wien 

(a) V°(x , t ) Is the absolute minimum of (2.3) with respect to 

all motions which^onLct (xq, tQ) with a pha8e_on S without leaving 

Gi 
(h) the optimal control lav is given by (4.12); with this control- 

lav anv motion which eventually reaches S without leaving G is optimal. 

The introduction of the hamiltonian function H° reduces the pro¬ 

blem to one of ordinary minimization, which defines the optimal value of 

u(t) at each moment through (4.7). In order to achieve this, we brought 

in the auxiliary variable p. To make sure that the point-by-point opti¬ 

mization based on p is consistent, we eliminate p by (4.10). The con¬ 

struction succeeds whenever V° is a solution of the hamilton-Jacobi 

equation, provided V° is a sufficiently smooth function of x. 

(4.16) NECESSARY CONDITION, tet G be a region in the jghase 

space which possesses the following properties; 



(i) There Is an optimal motion from every phase In G to a 

phase on S which never leaves G; 

(ii) the mlnimua value of (2.3), denoted by V°(x, t), is 

twice continuously differentiable in both arguments; 

(iii) every point in G which is not also on S has a neigh¬ 

borhood lying entirely in Gj 

(iv)* for every phase ln G, H(x, t, u) given oy (U.6) 

has an absolute minimum H°(x, V°, t) at u° * k(x, t) with respect to 

u(t) e U(t); 

(v)* the function k defining the minimum is differentiable 

in X and continuous in t. 

Then the function V°(x, t) satisfies the hamllton-Jacobi equation 

V° + H°(x, Vo, t) = 0 in the region G. 
Xß X 

Proof. Let (x . t ) be a phase in G where the theorem is false. 
— o o 

There are then two possibilities. We consider first 

(4.17) V°(xo, to) + H°(xo, V°(xo, to), tQ) >0. 

Let NC G be an open neighborhood of (xq, tQ) which is small enough so 

that the inequality (4.17) remains true everywhere in N. It is clear that 

N exists because of (iii) and because the left-hand side of (4.17) is con¬ 

tinuous in x and t. Let 0°(t) be an optimal motion originating at 

(xq, tQ); and let u°(t) be the corresponding optimal control. Then, be¬ 

cause of the definition of H°, we have for all t such that (0°(t),t) e N 

(4.10) H(0°(t), V°(0°(t),t),t, u°(t)) k Ho(0°(t), V°(j2f°(t),t),t). 

Combining (4.17 - 10)> we have 

(4.19) -V°(0°(t),t) - 7^(^(1),1)-^^),^(1)^)= L(0°(t),u°(t),t) -c(t) 

* These conditions may be checked from the given form of L, f, and U — 

i.e., without solving the variational problem. 
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wlth € >0 as long as (0°(t), t) remains ln N. I«t > tQ such 

that (0°(t), t) € N for all t € [tQ, ^]. Integrating both sides of 

(4.19) we have 

/Nl^tbu^tht) - c(t)]dt <^1Lj2iO(t),u0(t),t)dt 
tn 0 

or, using the definition of V°(x1, and letting (Xg, tg) be the phase 

on S reached by an optimal motion 0° starting at (x^, t^), 

v0(xo, tQ) < X(xg, tg) + /t2 L(jf(t), u°(t), t)dt 

which contradicts the assumption that is optimal. 

Now we suppose that N is an open neighborhood of (xq, tQ) 

throughout which the inequality (4.17) holds in the opposite sense. There 

fore, by definition of H° 

-v£(x,t) - vj(x,t)«f(x,k(x,t),t) = L(x,k(x,t),t) + e(x,t) 

where £ > 0 throughout N. 

Hence, integrating along the unique motion t0) defined 

by (4.2) we have 

provided (0k(t¡ xo, t0), t) e N for all t e [t0, ^]. Bils contradicts 

the definition of Vo, by the same argument as above. Q. E. D. 

The essence of the arguments in this section is replacing the 

hamiltonian H by the hamiltonian H° by eliminating u with the aid of 

the minimum operation (4.8). We shall call this the Minimum Principle. 
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5. Canonical Differential Equations; Pontryagin’s Theorem. 

At this stage, the optimal control problem is re¬ 

duced to the problem of solving the hamilton-Jacobi partial differential 

equation. Following Carathéodory'? program, one can go a step further 

and show that the optimal motions must be solutions of the characteristics 

of the hamilton-Jacobi equation, which are a set of 2n-th order ordinary 

differential equations. They are the euler equations in canonical form -- 

or simply the canonical equations -- of the problem. 

In this way, the determination of optimal motions reduces to the 

solution of the canonical equations. But in order to show that a given 

motion is really optimal, one must still construct — abstractly or 

explicitly — a solution of the hamilton-Jacobi partial differential equa¬ 

tion or, what is the same thing in view of (V.l6), the function V°(x, t). 

Moreover, the solution of the canonical equations does not provide the 

optimal control law for which — see (4.12) — knowledge of Vo is essen¬ 

tial. 

Let G be a region in the phase space satisfying the hypotheses 

(i-v) of Theorem (4.16). Let 0°(t) be an optimal motion which starts 

at some phase ln G and eventually reaches a phase on S without leaving 

G. We define 

(5.1) +°(t) = V°(0°(t), t). 

Differentiating t°(t) with respect to t we have 

(5.2) dt°(t)/dt = V°t(0°(t), t) + V^0*°(t), t)-f(0°(t), u°(t), t). 

Differentiating the hamilton-Jacobi equation (regarded as an identity) with 

respect to x yields 

(5.3) V°t(x, t) + H°(x, V°(x, t), t) = 0 

throughout G. Recalling the definition of H and combining (5.2-3), we 

see that the 0°(t), \|r0(t) must be solutions of the equations 
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I 

(5.4) 

/dx/dt = Hp(x, c(x, p, t), t), 

( dp/dt = - H°(x, p, t). 

These are not yet the canonical equations because they are not 

stated in terms of a single hamiltonian. To remore this difficulty, we 

assume that the boundary of u(t) is smooth in the space R x T. 

Consider a point (xo> po> to) and the corresponding 

u° - cfx . p , t ) € U(t ) at which H assumes its unique absolute minimum. 
0 '0* 0 0 0 
Recall that U(t ) is closed. The following possibilities arise; 

o 
(1) u° is an interior point of U(tJ. Then the first derivative 

of H with respect to u must vanish at u°: 

(5.5) L (x , 
u' o' 

t ) + p *f (x , u°, t ) = 0. 
r r\ ii' r\9 C\' n ' 

(2) u° is on the boundary of U(t ). Hiere are now two subcases. 

(2-i) There is at least one point in every neighborhood of 

(x . P . t ) such that the corresponding u° is an interior point of U(t). 
' o’ o’ o 
Then (5.5) holds also at (xo, pQ, tQ) since Lu, fu, c are continuous in 

all arguments. 

(2-ii) There is a neighborhood N of (xq, pQ, tQ) such that every 

u° corresponding to points in N lies on the boundary of U(t). In this 

case we must have throughout N 

gi(c(x, p, t), t) = 0, i = 1, ..., q S m. 

Since the boundary of U(t) is to be smooth, we assume that the functions 

g1 are differentiable in both arguments and also that the determinant 

dgfo« t) 

has rank q at the point (u°, tQ). Then the well-known lagrange multiplier 

rule [k: p. 166] implies that 

(5.6) Lu(x0,u°,to) . P0-fu(x0,-°,t0) * = °- 
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vith $ 0» On the other hand, differentiating g (c(x, p, t), t) = 0 

with respect to x and p shows that 

g^(c(x, p, t), t)«cx( x, p, t) 

i = • • • / 9* 

gj(c(x, p, t), t)‘Cp(x, p, t) = 0 

Combining the foregoing two equations, we have 

(5-7) 

Hence we conclude that 

f H (x, p, t, c(x, p, t)) = H°(x, p, t) 

(5.S) \ 

hp(x, p, t, c(x, p, t)) = Hp(x, p, t) 

which follows immediately from (5»7) In case (2-il) ®nd from (5*6) in the 

other cases. 

In view of (5.8), the canonical equations (5**0 take on their usual 

form 

Avv V V + po*vV V VJ*VV p0> W s u' 

/[LU(V u°, t0) +P0*fu(v V Po> to) = 0* 

/* dx/dt = Hp(x, p, t) = Hp(x, p, t, c(x, p, t)), 

(5.9) l 
( dp/dt = - H°(x, p, t) = - Hx(x, p, t, c(x, p, t)), 

which could also be written as the identities 

/ d0°(t)/dt = Hp(^°(t), *r°(t), t, u°(t)), 

(5.10) ^ 
I d|0(t)/dt = - Hx(0°(t), t°(t), t, u°(t)). 
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The last equations constitute in effect 

(5.11) PONTKYAGIN'S THEOREM [8]. If the motion 0°(t) is optlmal 

with control u°(t), then there must exist a function ^(t) such that 

(5.10) is satisfied, and in addition the relation 

(5.12) H(0°(t), ^(t), t, u) >H(^°(t), i|r0(t), t, u°(t)) 

must hold for all u £ U(t) not equal to u°(t). 

Equation (5.12) is Pontryagin's form of the Minimum Principle. 

It is proved [8, 11] by constructing a special first variation of the 

function u°(t). (in Pontryagin's paper, the standard convention of de¬ 

fining H is followed, which is equal to minus the quantity (U.6). For 

this reason, Pontryagin speaks of the "maximum" principle. We feel the 

present choice of sign, which is motivated by the dynamic programming 

approach to the definition of V°, is more natural.) 

Actually, Pontryagin's theorem can be proved nowadays [11] with¬ 

out the strong smoothness assumptions concerning V . But in that case 

one cannot identify t0(t) with V°(0°(t), t), and there remains a gap 

between the necessary condition represented by Pontryagin's form (5.10) 

of the euler equations and the hamilton-Jacobi-carathe'odory theory which 

we have sketched above. 

Nevertheless, our theory can still be used for the effective 

solution of problems where V°(x, t) does not have continuous second 

derivatives throughout the phase space. This is illustrated in the next 

section. 
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I 
\ 

6. Solution of a Minimal-Time Problem. 

Consider the linear system (harmonic oscillator) 

’ dx^/dt = x2, 

(6.1) 
> dXg/dt - - xx + u1(t), 

with 

(6.2) ^(t)! 5 1. 

Determine a control law which takes the state of the system to the origin 

In the shortest possible time. See Problem (2.7)* 

This celebrated problem seems to have been first mentioned by 

Doll [12] in 1945 in a U. S. Patent. The first rigorous solution of the 

problem appeared in 1952 in the doctoral dissertation of Bushaw [1}]. 

Bushaw states that the problem does not fall within the framework of the 

classical calculus of variations, and he solves it by elementary but 

highly intricate direct geometric arguments. 

The hamiltonian theory developed above can be applied quite simply 

to give a rigorous proof of Bushaw*s theorem. 

We rewrite equations (6.I) in matrix form as 

(6.3) dx/dt = Fx + Gu(t) 

where 

F = 

The Minimum Principle shows that the optimal control must satisfy 

the relation 
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(6.4) u°(t) = - sgntG'^ft)] 

vrtiere sgn is a scalar function of the scalar G'p, which takes on the 

value 1 when G'p > 0, - 1 when G*p < 0, and is undetermined when 

G'p = 0. 

Since the problem is invariant under translation in time, we shall 

drop the arguments referring to the initial, time, which can be taken as 0 

for conven!-iiice. Instead of considering motions in the phase space 

(x^, Xg, t), we need to consider them only in the state space (x^, Xg). 

First we consider all possible optimal motions which pass through 

the origin. There are three of these: either 0°(t) is identically zero 

(which is trivial), or ^(t) is a solution of (6.1) with u°(t) = + 1 

or - 1. 
Let u°(t) = 1. üben the motion of (6.1) passing through the origin 

is a circular arc 7* about the point (l, O). See Fig. 1. To check 

whether this motion is really optimal, we must verify first of all that 

G't0(t) < 0 along the entire arc. Now (5.9b) in this case is 

dp/dt = - F'p (6.5) 

which is independent of x and has the solution 

cos (t - tQ) sin (t - tQ) 

(6.6) *°(t) = 

-sin (t - tQ) cos (t - tQ) 

It is clear that t°(t) ia periodic with period 2ir, therefore the largest 

interval over which G’i0(t) <0 is at most of length < tt. This is 

actually achieved by choosing ♦°(0) = («, l) so that 

(6.7) <0 for all 0 S t < 7r - €. 
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Thus the necessary condition provided by the euler equations (6.10) iß 

satisfied along the arc 7+ up to the state (2, 0). (The remaining 

portion of the arc is shown by a dashed curve in Fig. 1. ) 

Now we must establish a sufficiency condition; in other words, we 

must show that the arc y+ is indeed an optimal motion between the states 

(0, 0) and (2, 0). 

Let us define the set by 

S1 * (x; - 0.1 <*1< 0.1, x2 = 0), 

as shown in Fig. 1. We consider the problem of reaching 

time. The hamilton-Jacobi equation for this problem is 

in minimal 

= 0) 

(6.8) V° • (ï* + g) = - 1, 

which has the solution 

vjix^ Xg) = tt/2 + arctan [(l - x^/xg]. 

The value of vj for Xg * 0 is defined by its limit as Xg -» 0 from 

negative values. Then vj = 0 on as required. Moreover, the region 

G1 where V° is to satisfy (6.8) is taken as the semicircular band 

indicated by the cross-hatching in Fig. 1. 

It follows by Theorems (4.15) and (4.l6) that if we connect any 

state on 7+ with by means of a motion of (6.1) which is distinct 

from 7+ and remains entirely in G., then the value of V in (2.5) is 

greater than V°. 

But if it is not possible to reach from y faster than by 

proceeding along 7+ itself, the same is true a forteriori as concerns 

reaching the state (0, 0) on Hence we have proved: 

(6.8) The motion y+ is optimal relative to the region 

The same construction establishes the local optimality of the motion 

7~ (see Fig. l). 
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Now we let Sg = r+> l(x) * V°(x) and we consider the minimal 

time problem relative to Sg. All optimal motions (denoted by 6 in the 

figure) necessarily correspond to u° ■ - 1. Ifcey are circular arcs of radius 1 

about the point (-1, 0). Applying the euler equations the same way as 

before, we find that all optimal arcs 6" must terminate on the semicircle 

of radius 1 centered at (-3, 0), which is part of the curve F in Fig. 1. 

The arcs 6" therefore fill up a region Gg bounded by r and the 

semicircle centered at (-1, 0) which connects (2, 0) with (-4, 0). 

If we calculate the time needed to reach y+ starting from a point in Gg 

and proceeding along 6”, we get a smooth function Vg(x) which satisfies 

the hamilton-Jacobi equation (6.8). Details are left to the reader. This 

proves that all motions consisting of an arc of 6“ and an arc of 6+ 

are optimal. 

The construction can be continued in a similar fashion until it covers 

any point in the plane. The optimal control law will be 

(6.9) u°(x) = k(x) = 

+ 1 below the curve F composed of semicircles 
of radius 1, and on f+j 

- 1 above the curve T and on y". 

On T - (y+ U y") the value of u° is not determined by the Minimum 

Frmcipiej it is easily verified that the choice of u° on T - (y+ U y") 

is immaterial as long as |u^| S 1. 

The control law (6.9) is Bushaw's theorem. 

It should be noted that the function Vo, which is determined piece¬ 

wise as V°, Vg, etc., is not continuously differentiable at a point P 

on y+. The limit of V° is infinite if we approach P from below y+ 

along points which lie on the ccntinuation of and the same limit is 

finite if we approach P from above y+ along 6“. 

As a result, the euler equations (5.9) do not have continuous solu¬ 

tions along optimal motions; the conjugate vector p receives an "impulse" 

on passing through T. But the more general proof [11] of Pontryagin's 

theorem shows that relations (5*10) remain true so that 
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(6.10) u°(t) = - 8gn[G'*°(tj po, to)] 

where the Initial condition pQ for the adjoint equation (6.5) may be 

defined by 

p0 - “K) 

where k is the optimal control law (6.9). Then t°(t) vanishes on T, 

which shows that t0 cannot be interpreted as V°. 

One may use Pontryagln’s theorem (in the form Just mentioned) as a 

necessary condition to determine all possible optimal motions. But one must 

then still carry out the explicit construction given above. For (6.10) can 

be interpreted as the optimal control only if the corresponding motion actually 

reaches the origin. 
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7. General Solution of the Linear Optimal Regulator Problem. 

A class of problems which can be completely solved by the hamiltonian 

theory is represented by the functional 

(7.1) |[|||íu(t )||^ + / Íl|H(t)(<u(t!x0,t0)ll^t) + IW(»)llg(t^t)# 
zo 

where the motions ^ are defined by the linear differential equation 

(7.2) dx/dt = F(t)x + G(t)u(t); 

there are no constraints on u. 

This is a slight generalization of Problem (2.8). 

The matrices Q(t), R(t) are to be positive definite for all t. 

This assumption on R implies that 

(7.3) 2H(x,p,t,u) = ||H(t)x|||(t) + ||u||2(t) + 2p-[F(t)x + G(t)u(t)] 

has a unique absolute minimum for every (x, p, t) at 

c(x, p, t) = - R^itjG'itJp, 

so that 

(7.4) 2H°(x,plt) = !|H(t)x||Q/ V + 2p.F(t)x + HG’MpH2 . 
R (t) 

Tfoe hamilton-Jacobi equation corresponding to (7.^) has a unique 

solution given any nonnegative definite matrix A and any t^ > tQ. We 

assume that this solution has the form 

(7-5) 2V°(x, t) = l|x||p(t), 

which implies the linear control law 

*We use the notation ||x||^ for a quadratic form defined by a symmetric, non¬ 

negative definite matrix A. 
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(7.6) k(x, t) = -R^ítjG'ítJPÍtJx. 

It is easily checked that (4.9) with the hamiltonian defined by 

(7.4) has a solution of the type (7*5) if «id only if the symmetric matrix 

P(t) is a solution of the riccati equation 

(7.7) -dP/dt = F’(t)p + PF(t) - PGOOifVjG'MP + H’(t)Q(t)H(t). 

Moreover, the boundary condition 

V°(x1, ^) = ||x||^ 

(which is the concrete form of (4.4)) implies that the solution of (7*7) 

must satisfy the initial condition 

(7.8) P(tx) = A. 

Since (7.7) is nonlinear, it is not clear at once that P(t) 

exists outside of a small neighborhood of t^. However, the integral (7*1) 

may be bounded from above by the free motions of (7*2) (i.e. by setting 

u(t) = 0), which in view of (7.5) is equivalent to a bound on ||P(t)||. 

Utilizing the a priori bound so obtained in the standard existence theorem 

for differential equations shows that solutions of (7.7) exist for all 

t S t^. This conclusion is in general no longer valid if A has negative 

eigenvalues or if t > t^. 

The existence of solutions of (7.7) (and therefore of the hamilton- 

Jacobi equation) being assured, they can be expressed (2, 3, 7] with the aid 

of solutions of the canonical differential equations 

dx/dt - G^lfVjG^t) 

dp/dt 
(7.9) 

F(t) 

-H«(t)Q(t)H(t) - F’(t) 
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Purther difficulties arise, however, in studying the stability of 

(7.7) as well as the stability of the optimal motions defined by (7.6). 

Additional details on these problems may be found particularly in [7]* 
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8. General Solution of the Linear Optimal Servomechanism Problem. 

Hie problem considered in the previous section can be generalized 

In several ways. We consider here simultaneously two such generalizations. 

First, we assume that the motions, in addition to control, are 

subject to "disturbances" represented by the term v(t) in the equations 

(8.1) dx/dt = F(t)x + G(t)u(t) + v(t). 

Second, we assume that the functional to be minimized is 

(8.2) idlnCV - + /Nlln(t) - K(t)0u(t)||£(t) + l|u(t)||=(t))dt). 
0 

We call the p-vector 

(8.5) y(t) = H(t)x(t) 

the output of the system (8.1); by analogy, the vector function rjft) is the 

desired output. 

This setup is a slight generalization of Problem (2.10). A number 

of formal solutions have appeared in the engineering literature [14-15]. 

Hie hamiltonian theory provides a simple rigorous proof of the known 

formulas. 

Proceeding exactly as in Section 7> w® find that the hamiltonian 

of the problem is: 

(8.4) 2H°(x, p, t) = |h(t) - H(t)x||^t) + 2p-[F(t)x + w(t)] - ||G’(t)p||^i . 

To solve the corresponding hamilton-Jacobi equation (4.9), we assume that 

(8.5) 2V°(X, t) = - 2z(t)*x + v(t). 

Substituting, we find that 

(8.6) V°(x, t) given by (8.5) satisfies the hamilton-Jacobi equation 

defined by (8.4), with V°(x, t^ = hO^) - if and only if the 
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matrix P(t), the vector z(t), and the scalar v(t) satisfy the follow¬ 

ing ordinary differential equations: 

(a) P(t) is the solution of the rlccatl equation (7.7) with 

P(t1) « AJ 

(b) z(t) is the solution of 

(8.7) dz/dt * - [F(t) - G(t)R_1(t)G(t)P(t)]'*z + P(t)v(t) - H'itjQftJ^t) 

vrith 

(8.6) Ht(t1)Arj(t1) - zft^j 

(c) v(t) is the solution of 

(8.9) -dv/dt » |[||n(t)|||(t) - ||0,(t)z(t)||^1 ] - z(t)*w(t) 

vith 

vi^) = Unít^lÇ. 

Bie control law is linear, for it is given by 

(8.10) u°(t) * - if^tjG'OOptt) = R^ftjG'itJUft) - P(t)x(t)]. 

The control law (8.10) is unrealizable, because it involves z(t) 

which, according to (8.7 - 8), must be computed backwards in time and re¬ 

quires the knowledge of ri(t) and w(t) in the interval [to, t^J — this 

is usually not known at time tQ in practical applications. 

It should be noted that the differential equation for z(t) (minus 

the forcing terms) is the adjoint of the differential equation of optimal 

motions of Sect. J. 
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