
UNCLASSIFIED 
 

AD NUMBER: 

LIMITATION CHANGES 

TO: 

FROM: 
 

AUTHORITY 

 

 
THIS PAGE IS UNCLASSIFIED 

AD0252538

Approved for public release; distribution is unlimited.

Distribution authorized to US Government Agencies only; 
Administrative/Operational Use; 1 Aug 1960. Other requests shall be 
referred to Office of Naval Research, Arlington, VA 22203.

ONR ltr dtd 15 Jun 1977



UNCLASSIFIED 

kf th* 

ARMED SERVICES TECHNICAL INFORMATION AGENCY 
ARLINGTON HALL STATION 
ARLINGTON IT, VIRGINIA 

UNCLASSIFIED 



HOTICE: When government or other drawings, speci¬ 
fications or other data are used for any purpose 
other T.hun in connection with a definitely related 
government procurement operation, the U. S. 
Government thereby incurs no responsibility, no. any 
obligation whatsoever] and the fact that the Govern¬ 
ment may have fonulated, furnished, or in any way 
supplied the said drawings, specifications, or other 
data is not to be regarded by implication or other¬ 
wise as in any manner licensing the holder or any 
other person or corporation, or conveying any rights 
or permission to manufacture, use or sell any 
patented invention that may in any way be related 
thereto. 



? ' .

EVEnETTi
/ -o

■ ': ‘A ;■ Y -.;

'■’■• 'A''‘

^w-- -’

i

RESEARCH 

LABORATORY

a division of 

AVCO CORPORATION

A TRANSPORT HQUA TION 
FOR MAGNETOHYDRO DYNAvlIC WAVES

Marvin M. Litvak

RESEARCH REPORT 92

Controct Nonr-2524(0Cl)

August 1960

preparec'. for

DEPARTMENT OF THE N^VY 
OFFICE OF NAVAL RESEARCH



errata 

"A Transport Equation for Magnetohydrodynamic Waves" 

Marvin M. Litvak 

Avco-Everett Research Laboratory Research Report 9i! 
Avco-Everett Research Laboratory, Everett, Mass. 

In (3. 16), there is no "z" subscript on 

(4. It) is: 0 

In Fig. 1 : w", not W" ; , not kx 

Linn 14: Read ".and of not too low temperature." 

". k then is of the order of magnitude of ß"^ " 

Line 13: Read".compared to k"^.... " 

The left-hand side of (5. 8) is |^ | Ah(t)|2. 

Footnote: In the definition of H.. replace "M, " by'iS, M “ 
Ik r Tcpq 7 kpri I tog 

In (5. 11), is half of the expression given if p,q,k refor to 

the same mode. 

In (5. 15), is half the expression given. 

Footnote, line 3: Sum over k, as well as p and q. 

In Fig. 2: q, not g 
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Equation (3. 4) has " + i" on the right-hand side instead of "-i". 

Equations (3.14) are written in terms of the following non- 

dimensional quantities: 

t 
B = X magnetic field 

Do 
I C 

^ = ñ" x T7 x electric field 
Do Va A j 

= rr X fluid velocity 
Va H 

Equation (3. 18): Right-hand side is " " 

Equation (3. 15), (3.16), (3.17) should be numbered (3. 23), (3.24), 

(3.25). Equation (3. 17), renumbered,(3. 25) ,has cjci , ne t 

w, cei . 

Renumber Equation (4.28) as (4.281). 

Call the equation which follows line 8, Equation (4. 28). 

Line 11 should read: ". . . the potential of a collection of simple 

harmonic. . . " 

Line 13 should read: " is fixed; ioq is a constant. . . " 

In Equation (5. 29), x = Pt = 
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ABSTRACT 

We deal with a plasma of electrons and ions at a density of 10^ 

particles per cc and temperature 10^ to 10^ degrees K. There is a mag- 
4 12 

netic field of about 10 gauss whose pressure is about 10 or 10 times 

larger than the gas pressure. 

We limit our attention to physical phenomena occurring over lengths 

of the order of r. = l/m.c^/(47rne^) which is about one centimeter or about 
4 . 

10 times larger than the Debye length, r^, the largest characteristic 

length next to the particle mean free path, is the gyro-radius of ions which 

move at the Alfven speed, the characteristic speed of magnetohydrodynamic 

(MHD) flows. 

The mean free path for multiple Coulomb scattering, the only parti¬ 

cle collision process for these plasma conditions, is large so that diffusion 

and dissipation processes due to particle collisions are slow. However, 

experimental evidence exists which indicates high diffusion and dissipation 

rates. We attribute these processes to the diffusion and randomization of 

waves which are excited in the plasma. 

In particular, the important waves are the fast MHD waves, which 

are one of the six types of normal waves which we obtain from the Boltzmann 

equation with a self-consistent Lorentz force and no collision term. The 

fast waves were derived under the restrictions that the particle thermal 

velocities are unimportant, that the wavelengths lie between r Vm /m and 
i * e' i 

r., and that the Maxwell displacement current is small. The fast waves 

are important because they are not heavily damped, and they have phase 

and group velocities of the order of the Alfve'n speed. 

Our main effort is to derive a wave transport equation for the fast 

MHD waves which describes the motion of a wave in a non-uniform medium, 

the amplification of a wave because of the pressure of the surrounding 

medium, and the scattering of a wave by other waves. This equation resem¬ 

bles the transport equation for lattice waves in a crystal. 
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The equations for the structure of a steady MHD shock are derived 

from the wave transport equation but not solved. The shock model is 

based on the assumption that behind the steady shock is a distribution of 

fast waves whose pressure is much greater than the gas pressure. The 

waves scatter with other waves and provide the entropy increase for the 

jump of conditions across the shock. The particles become thermalized 

only some distance further back of the shock by means of damping of wave 

motion into particle motion. Estimates of relaxation times for the wave 

collision processes are made, and an estimate of the shock thickness, as 

a function of shock velocity, is made assuming that it is a few wave mean 

free paths. 
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SECTION I 

INTRODUCTION 

PLASMA CONDITIONS 

The medium that we deal with is an over-all neutral plasma consist¬ 

ing of electrons and ions and a negligible number of neutral particles. The 

density, n, is about 10^ particles per cubic centimeter. The temperature, 
1 ? ^ fi * 

T, is about 10 to 10 e. v. (10 to 10 degrees K. ). 
-3 -4 

The Debye length (shielding distance) h is then about 10 to 10 

cm. N(h), the number of particles in a cube of side equal to the Debye 
5 

length, is about 10 particles. The formulae for h and N(h) are the follow¬ 

ing: /- 

h = y kT/47me2 3 

N(h) = nh3 
/ 47re2n,/3 \ kT 

(1.1) 

where k is Boltzmann's constant. 

Because N(h) is large, the Coulomb interaction energy^between near¬ 

est electrons, the separation distance being approximately n 3 , will be 

small compared to kT. Under these circumstances the multiple Coulomb 

scattering through small angles is the only particle collision process. The 

mean free path for appreciable deflection by this process is of the order of 

hN(h)/lnN(h) which is between one and ten centimeters. 
4 

The plasma contains a large magnetic field, B , equal to about 10 
-2 -1 ° 

gauss. The gas pressure is about 10 to 10 times smaller than the mag¬ 

netic pressure B2 / Stt. The ions have a gyro-radius of about 10 2 cm. if 

they move with their thermal speed, about 10^ cm/sec. The gyro-radius is 

about 3 X 10”* cm. for ions moving at the Alfve'n speed = y Bq / 47rpo, 

the characteristic speed of small amplitude MHD (magnetohydrodynamic) 

* The conditions of density, temperature,and magnetic field need not be restricted to the values indicated here. 
For the theory to apply, only the nòn>dimensional parameters^^Vj j , <W)" , iW/nyc1)'^ , 
%/L t need be specified as small compared to one, where 3 h and L is the characteristic 

size of the apparatus, flow, etc. 



signals or waves. The electron gyro-radius based on thermal speed is 
<2 — 2 

about Kj cm. , and, based on Alfven speed, it is about 10 cm. 

We concern ourselves with physical situations in which the average 

properties of the plasma vary appreciably only over lengths that are smaller 

than the particle mean free path but comparable to the ion gyro-radius based 

on Alfve'n speed. This gyro-radius, r^ = yrmc /47me , is the largest 

characteristic length next to the particle mean free path. Theoretical inter¬ 

est in this region of plasma behavior arose mainly from the speculation 

that this gyro-radius is the scale of dissipative effects that are more impor¬ 

tant for this plasma than particle collisions. Considerable experimental 

work in this region, particularly by means of MHD shock tubes, lends 
1 6,25 

support to this speculation. 

BOLTZMANN EQUATION 

The starting point of our analysis is the Boltzmann equations for 

electrons and ions. The equations are as follows: 

\ at 

/V 
+ V* 

r\ ^ a r 

/N 
+ F 

e, i a y 1 

di 
fe,,(r,V,t)=| 

e, i 

a t collisions 

where f(r, V,t) dr d V is the number of particles whose positions lie be- 
,A ^ _ 

tween f and r + dr and whose velocities lie between V and V + dV. f is 

called the one-particle distribution function. The subscripts denote electron, 

e, and ion, i. F .= + 
e, i m 

A V * (E + X B), the Lorentz force per unit 

mass. E(?,t) is the electric'held and £($,t) is the magnetic field acting on 

a particle at f at time t. E and B are the self-consistent fields which sat¬ 

isfy the Maxwell equations which contain, as source terms, the charge and 

current due to the average motion of the particles. The Maxwell equations 

and the Boltzmann equations must be solved simultaneously so that the dis¬ 

tribution functions f . give average charges and currents which determine 
'S a ® >1 . _ 

E and B which fit the Boltzmann equations that f . satisfy. The average 
^ T A A T 9 1 

charge density is e/d V [L (?,.V,t) - fe (r,V,t)] and the average current 

density is e/d^V V (r, V,t) - fe (r, V,t)"j . 

^or the density and temperature range of interest, the right-hand 

side 1 . is the rate of change of the distribution functions 
cTt collisions 6 

due to multiple Coulomb scatterings through the small angles. The mean 
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free path for this collision process has been shown to be large compared to 

the characteristic lengths of the flow field, the magnetic field, and the 

electrostatic field. The lengths for the magnetic field, we recall, are the 

gyro-radii and for the electrostatic field, the Debye length. It can be 

shown that the relative importance of the terms of the Boltzmann equation 
18 

is given by the ratios of the corresponding characteristic lengths. From 

this we conclude that the collision term can be neglected as small compared 

to the other terms of the Boltzmann equation. The Boltzmann equation with 
24 

zero collision term is called the Vlasov equation, and we make exclusive 

use of it hereafter. 

NORMAL WAVES 

The Vlasov and Maxwell equations may be linearized by supposing 

that each particle distribution function f is the sum of a time-independent 

distribution f , usually a Maxwell velocity-distribution, plus a small am- 
o 

plitude disturbance fj, ^«lij . Terms in the equations which depend upon 

powers of fj higher than the first are omitted. The resulting linear equa¬ 

tions for f, can then be solved by Fourier or Laplace transform methods. 

Gross and Bernstein have dealt with waves in the electron distribution 

which propagate parallel or perpendicular to the uniform magnetic field. 

Considerable mathematical complication arises when arbitrary direction of 

propagation of waves, which involve both electrons and ions, is dealt with. 

We avoid these difficulties by taking moments of the Vlasov equations in 

velocity space and then use the resulting magnetohydrodynamic equations 

to obtain the normal waves and the nonlinear interaction of the waves. 

Oster has already pointed out for several cases the equivalence of the two 

methods for obtaining the normal waves of the plasma; one method consists 

in solving for the velocity distribution ^ from the linearized Vlasov equa¬ 

tion and the other method consists in solving the linearized MHD equations 

in terms of the macroscopic properties like fluid-velocity, particle density, 

and the self-consistent fields. In the first method the choice of fQ as the 

Maxwell distribution introduces temperature into the wave properties. 

Other choices of f rèquire careful examination, as discussed by van 

Kämpen J and Backus . Oster explains by showing a more general 
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solution why the "transmission gaps" at multiples of the electron gyro- 

frequency obtained by Gross and Bernstein for electron waves by the 

distribution-function method do not disprove the equivalence of the two 

methods despite the absence of such transmission gaps in the MHD moment 

method. ^ 

Considerable discussion by van Kämpen^ and Backus concerning 

the relationship between different methods of solution of the linearized equa¬ 

tions for the above-mentioned simple cases have also touched upon the 

following topics: the relationship of the Laplace transform method used by 

Landau13 to the Fourier transform or superposition of normal waves 

method used by van Kämpen for the solution of initial-value problems; 

the nature of the singular integral equation which is the dispersion relation 

for plasma oscillations and the correct choice of the path of integration for 
24 4 

this dispersion relation, obtained earlier by Vlasov , Bohm and Gross , 

Gordeev , and many others. 

Properties of normal waves are described by Gershman, Ginzburg, 

and Denisov^ mainly by means of solutions of moment equations similar to 

ones we use. These authors indicate certain discrepancies between the two 

methods, mentioned before, of obtaining normal waves. These discrepan¬ 

cies arise from the approximate treatment in the moment method of the 

particle pressure tensors, which introduce the mean thermal velocities 

into the dispersion relations. These authors describe the effects of parti¬ 

cle collisions, which we ignore, and the thermal velocities on wave phase 

velocity. Details are provided only for the cases of propagation parallel or 

perpendicular to the magnetic field. MHD waves are discussed for these 

special propagation direction for low frequencies (less than the ion gyro- 

frequency) and long wavelengths (greater than the ion gyro-radius). This 

case has been treated for general directions of propagation and infinite 

conductivity by Friedrichs . Since we deal with waves of shorter wave¬ 

length and higher frequency we cannot use the results of these authors, and 

we derive from moment equations expressions for the normal waves which 

make no assumption at first concerning the wavelength or frequency range. 

We then deal with the'case of arbitrary propagation direction of MHD waves 

with wavelengths greater than rg and frequencies less than the electron 
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gyro-frequency. 

The Vlasov equation enables us to write down the continuity equa¬ 

tions for average number-density and particle velocity for electrons and 

ions. The velocity equation contains the particle pressure tensor öjj as 

well as the magnetic pressure tensor. As mentioned earlier, the gas 

pressure is about 10 ^ to 10 ^ times smaller than the magnetic pressure. 

Hence, we neglect the pressure tensor. Because of this assumption of 

zero gas pressure, the continuity equations for number-density and parti¬ 

cle velocity, together with the Maxwell equations, form a set of simulta¬ 

neous equations with as many unknowns as equations. Without the assump¬ 

tion of zero pressure, we would have had too many unknowns and the intro¬ 

duction of additional equations from the Vlasov equations by taking higher 

velocity moments would add still too many unknowns. The Vlasov equa¬ 

tions and the Maxwell equations do form a solvable set of equations but 

complicated compared to the two moment equations and the Maxwell equa¬ 

tion. 

The equations are solved for the small-amplitude waves of the 

periodic form e1(k,x_ut)f where k is the wave-vector and w is the corre¬ 

sponding frequency. The non-linear terms of the equations are neglected 

for the while since the wave amplitudes are assumed small. A dispersion 

relation w = w(k) is derived which shows that there are six modes with com¬ 

plicated orthogonal polarization vectors of electric, magnetic and particle 

velocity fields. In order to simplify the wave properties and in order to 

describe physical phenomena of order of magnitude equal to the ion gyro- 

radius based on Alfven speed, r. = y m.c /47rne , as we mentioned before 

was of interest, we restrict ourselves to waves with wavelength of this 

same order of magnitude. Furthermore, if we restrict ourselves to flows 

with velocities of the order of the Alfven speed, which is the main concern 

of magnetohydrodynamics, we find only two of the wave modes are inter¬ 

esting. The others, for phase velocities of the order of the Alfven speed, 

have wavelengths several orders of magnitude less than r^. 

It can be shown that the effects of Landau damping can be discussed 

qualitatively by noticing for what wavelengths u t wCe i first becomes com¬ 

parable to k times the ion or electron thermal velocities, where wc i is 
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the gyrofrequency for electrons or ions, respectively. The signs Í are 

determined by the sense of polarization of the electric vector relative to 

the gyromotion. Wavelengths less than this will be appreciably damped. 

The quantitative expressions for Landau damping can be obtained only from 

the Vlasov equation itself. 

The two interesting wave modes differ not only in their dispersion 

curves but also in their damping behavior. For small values of the wave 

vector component along the magnetic field direction, compared to one 

wave moves with the Alfvén speed in all directions and the other moves 

with the slower Alfven speed based upon the component of magnetic field 

parallel to the wave vector. As the wave number increases, the phase 

velocity of the faster wave increases while that of the slower one decreases. 

As the wave number increases the slower one is more heavily damped by 

the ions; its frequency is monotonically approaching the ion cyclotron 

frequency at the same time. The fast wave is not heavily damped by the 

ions for r. 1 < k < r * but becomes heavily damped by the electrons as k 
• 1 j © 

approaches r^ ; the frequency monotonically approaches the electron 

cyclotron frequency. The electric vector of the slow wave rotates pre¬ 

dominantly with the gyromotion of the ions, while that of the fast wave is 

predominantly the opposite. These points are discussed in detail later on. 

WAVE TRANSPORT EQUATION 

We have learned from the example of electrostatic plasma oscilla¬ 

tions that wave-motion may be a more useful description of plasma behavior 

than the picture of particles in random thermal motion interacting by elec¬ 

tromagnetic forces, when we treat effects occurring over distances larger 
5 

than the appropriate cut-off distance. For the plasma oscillations this 

cut-off is the Debye length. For the faster of the two MHD waves, which 

we introduced earlier, the cut-off is r = i/m c^/47rne^ = j/m c^/kT 
/ 2 e » e 2 6 

times the Debye length. ymec /kT is approximately 10 for kT = 10 e.v. 

However, the slower MHD wave is cut off at wavelengths less than 

r^= ynvc /47rne . The physical scale-length of the order of r^ and, 

furthermore, the scale-velocity of the order of V^, the Alfven speed, 

which we are considering here, make the fast MHD wave the one most 
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likely to provide an interesting wave description, since it is not heavily 

damped and is the only one with the appropriate phase and group velocity 

range, for the wavelengths in question. 

It is shown later that if equilibrium exists between particles and 

waves, then the energy invested in fast MHD waves is about 10 times 

smaller than that invested in the thermal motion of particles. 

However, we find that a wave-packet moving in the direction of 

increasing density of a non-uniform plasma will be compressed and its 

wave energy will be increased. We also find that the waves scatter with 

other waves because the medium behaves non-linearly. If the non¬ 

uniformity occurs over a distance ^ and if the relaxation time associated 

with the change of wave amplitude due to the scattering process is r such 

that a velocity X/ T is comparable to the group velocity of the wave-packet, 

then considerable non-isentropic growth of wave energy can occur at the 

expense of the energy in the non-uniformity. In the case that the non¬ 

uniformity is an MHD shock propagating with a velocity two or three times 

the Alfven speed the wave pressure is about one-tenth the large magnetic 

pressure B^/8 ir of the plasma. This wave pressure is, therefore, about 

ten times the gas pressure. The gas pressure is then unimportant com¬ 

pared to the wave pressure. 

The comp ession 01 the wave-packet due to a density gradient in the 

plasma is examined in detail by describing the propagation of a single fast 

MHD wave of constant frequency. The non-uniformities are taken as 

stationary gradients, in a direction perpendicular to the applied magnetic 

field, of the density, average particle velocity, and magnetic field. The 

amplitude and wave-vector are functions of position in the plasma. It is 

found that the amplitude becomes infinitely large at places where the group 

velocity is zero. If the non-uniformity is a compression front or shock 

wave, then the description is made in the coordinate system moving with 

the front or shock. 

We consider the plasma as being divided into small cubes whose 

side-length L is small compared to the distance & over which the plasma 

properties vary appreciably. In each cube, then, the plasma appears 

uniform. We apply periodic boundary conditions at the -'ube faces. The 
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waves in a cube are then the normal waves of a uniform plasma, which is 

not necessarily at rest. The approximation introduced by the use of normal 

waves of a uniform plasma is that the space Fourier components of the non¬ 

uniformities are small for wavelengths comparable with those of the waves 

which v/e consider. We eventually average all effects over the volume of 

the cube. 

Because of the non-linear terms in the equations of motion, the 

fields of different normal waves in a cube interact. The non-linear terms 

can be represented as the effect of anharmonic corrections to the potential 

of a harmonic oscillator, the normal wave being the oscillator. In solid 

state physics, the scattering of lattice waves has been dealt with in a simi¬ 

lar fashion. 17 The rate of change of the amplitude of the wave with wave- 

vector k is the sum over p of the product of the amplitudes of the waves 

with wave vector p and k-p with a coupling coefficient. An approximate 

expression for the rate of change of amplitude is obtained for times long 

compared to the periods of the waves but short compared to the time r in 

which an appreciable change of the amplitude occurs. This approximate 

expression is the first term in a perturbation expansion in powers of ß the 

ratio of wave pressure to magnetic pressure B^/Stt. ß is about one-tenth 

for waves behind an MHD shock wave moving with twice the Alfven speed. 

The further approximation is made that the complex wave amplitudes are 

statistically independent, i.e., the phases are randomly distributed. This 
itT 

random phase approximation excludes a term that is at least ^ ga 

times smaller than the mean wave energy kT if the phases were correlated 

according to the wave-interaction energy at the equilibrium temperature T. 

¿g about 10" 14. The physical justification for the random 

phase approximation is that three waves which scatter once do not retain 

the phase correlations, which they produce in the interaction, by the time 

the next scattering of these three waves occurs. The effects of wave 

scattering which are omitted by the random phase approximation are shown 

in Appendix 3 to be approximately a factor (w t) smaller than the effects 

which are retained, where to is the frequency of the wave in question and 

T is the relaxation time for wave amplitude changes. It is shown that the 

phase changes at a faster rate than the amplitude so that the phases of 

-8- 



the waves most likely randomize in times short compared to r. This is 

the same as saying that, A, the mean free path for the wave, which is the 

group velocity times r, must be large compared to the wavelength, X. From 

the estimate of r that we make later, we conclude that A/X^l/ß. As men¬ 

tioned above, ß is about 1/10, so that the mean free path is large compared 

to the wavelength. If we use the descriptive language of particle collisions, 

we may say that we apply the expression for the rate of change of amplitude, 

which is valid for times short compared to r, anew each time there is a 

wave collision. We treat the collisions as statistically independent pro¬ 

cesses. We determine the rates from the amplitudes of the colliding waves 

at or near the time of the collision and not to follow several successive 
« 

collisions of a wave. 

In a way similar to treatments of lattice waves in a temperature 

gradient, we derive a transport equation for the fast MHD waves in a 
C , 17 
density or magnetic field gradient. The left-hand side of the transport 

equation is the time-rate of change of the wave amplitude of wave-vector k 

due to the motion of the wave, which transports properties to neighboring 

positions with the wave group velocity, and due to the force exerted by the 

medium in compressing the wave and amplifying it. These terms are akin 

to the convective derivative and force terms of the particle Boltzmann 

equations. 

The right-hand side of the transport equation is the rate of change 

of the wave amplitude due to wave-wave scattering, which we have already 

described. The transport equation for steady-state non-equilibrium ex¬ 

presses the balance of the three effects: the convection of properties with 

the group velocity, the amplification of the wave because of the pressure of 

• Prigigione and Henin28 consider the approach to equilibrium of a distribution of waves by means of a 
Liouville equation for waves with a cubic interaction Hamiltonian, with initial conditions on the wave distribution 
which allow the definition of extensive and intensive thermodynamic variables at equilibrium. The authors then 
show that the phase correlation of three waves approaches the equilibrium correlation in two ways: 

1) the initial phase correlations die out with a relaxation 
time which is < | times that for action. 

2) the equilibrium pliase'correlations build up always 
proportional to the action. 

The operators 1 and [ ate the contributions of the cycle and the cycle plus three 
freely propagating lines, respectively. Their eigenvalues are negative, the second operator having more negative 

eigenvalues. 
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the surrounding medium, and the scattering into and out of the wave-state 

because of waves with different wave-vector at a given position in the 

medium. 

COLLISIONLESS MHD SHOCK STRUCTURE 

We then apply the transport equation to the problem of a steady 

MHD shock wave moving perpendicular to the magnetic field lines. A 

shock wave is usually formed by the steepening of gradual compression 

fronts. The steepening of a compression front or pulse in a plasma with a 

magnetic field can be shown to occur for the same reasons that an ordinary 

aerodynamic pulse steepens. The higher pressure parts of the pulse move 

with a higher speed than the other parts of the pulse, since the character¬ 

istic speed (with respect to the still fluid) of signals depends upon the local 

properties of the medium including the added effects of the signal itself. 

For the aerodynamic case, the higher pressure part of the compression 

pulse moves at a higher sound speed relative to the still fluid than the lower 

pressure part ahead of it, the temperature and particle velocity being 

higher at the higher pressure. Therefore, the higher pressure region will 

catch up with the lower pressure region ahead of it, thereby steepening the 

front edge of the pulse and flattening the back edge. For the magnetohydro¬ 

dynamic case, it has been shown that similar effects occur with the Alfven 

speed, instead of the sound speed, and the steepening proceeds until some 

diffusion process becomes sufficiently important to transfer the required 

momentum and energy and to produce the required entropy by dissipation 
18 * 

so that a steady shock profile is attained. 

Because the particle mean free path is large compared to the ion 

gyro-radius r., a pulse will continue to steepen until its width is narrower 

than a mean free path. The strong magnetic field has reduced the electron 

(or ion) viscosity and heat conduction perpendicular to the magnetic field by 

a factor which is nearly the square of the ratio of electron (or ion) gyro- 

radius to the mean free path. 21 The reduction of transport properties 

perpendicular to the magnetic field arises mainly because of the spiraling 

• For discussion of the steepening of an ordinary longitudinal magneto-acoustic wave, see L. Davis, R. Lust, 

and A. Schlüter. 
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motion of the electrons (or ions) between collisions which decreases the 

effective mean free path and diffusion speed, each by a factor of electron 

(or ion) gyro-radius divided by electron (or ion) mean free path; the prod¬ 

uct of mean free path and diffusion speed is the important factor in both 

the viscosity and heat conduction coefficients. Ion-ion collisions seem to 

dominate viscosity effects because of higher ion momenta, and electron- 

electron and electron-ion collisions seem to dominate heat conduction 

effects. So that viscosity is reduced by the square of the factor: ion gyro- 

radius divided by ion mean free path and heat conduction by the square of 

the factor: electron gyro-radius divided by electron mean free path. * 

When the pulse width becomes comparable to the ion gyro-radius, 

the wave processes involving the fast MHD waves are estimated to be an 

important diffusion and dissipation mechanism for inhibiting further steep¬ 

ening of the pulse. Chapter VI deals with the steady state structure of the 

shock, assuming that the steepening has ended at the ion gyro-radius and 

that a fast MHD wave distribution exists on the high density side of the shock. 

Kahn and Parker have suggested that plasma oscillations pro¬ 

vide a dissipative mechanism which predicts shock thicknesses of the order 

of the Debye length. Kahn considers another but similar physical situation 

to a shock, that of the interpenetration of two ionized streams. The coun¬ 

terstreaming is stopped by the excitation and amplification of irregular 

plasma oscillations at the expense of the kinetic energy of the streams. He 

does not have any magnetic field in the plasma. Since the Debye length is 

characteristic of wavelengths of electrostatic plasma oscillations which are 

closely coupled with particle motions, one would expect this dissipation 

mechanism to produce a shock thickness of that order of magnitude. Parker 

also considers the interpenetration of two ionized but overall-neutral 

streams. He then considers two cases: the relative velocity of the streams 

is greater than or less than the electron thermal velocity. In the first case, 

the electron components of the two streams interact quickly, the electron 

streams being stopped by the conversion of their kinetic energy to electron 

r;::. "" "" 8y'° "dii o' "" --1 ^ 
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plasma oscillations. Then the ions interact wich the electron waves, and 

the ion streams are stopped in an ion plasma period. The thickness of the 

region of interaction is then of the order of the initial relative velocity- 

multiplied by the ion plasma period. This thickness is somewhat larger 

than the square-root of the ion-to-electron mass-ratio times the Debye 

length. In the second case, when the relative velocity of the streams is 

less than the electron thermal velocity, only the ion clouds interact, again 

producing dissipative effects in an ion plasma period, and again resulting 

in a thickness of interacting plasma of the order of the streaming velocity 

times the ion plasma period. This thickness is of the order of the Debye 

length. Like Kahn's, Parker's analysis does not include the effects of a 

magnetic field in the plasma. 

Gardner, et al. ® suggest that a permanent shock structure exists 

in the form of a series of magnetohydrodynamic pulses whose wavelength is 

of the order of r , the electron gyro-radius based on Alfven speed. The 

dissipation has to do with the random phasing of the ion orbits in the series 

of pulses. These authors conclude that the electrons move adiabatically 

but the ions do not and are probably heated much more than the electrons. 

Both of the shock thicknesses suggested by others are considerably 

smaller than the ion gyro-radius based on Alfven speed that we suggest here 

and we expect that these other shock structures are broadened out by the 

fast MHD wave dissipative mechanisms. 

We derive but do not solve the equations for the steady shock struc¬ 

ture. They are the continuity equations for action, magnetic pressor tensor, 

energy, momentum, and mass assuming a space-varying distribution of 

waves, and space-varying properties of the plasma, and negligible gas 

pressure and temperature, as mentioned before. These equations are 

derived from the wave transport equation. We include the effects of colli¬ 

sions among three fast waves and among two fast waves and one slow wave, 

which may be important in thermalizing the particles some distance behind 

the shock and in adjusting the momentum of the fast waves so that they do 

not escape with their energy ahead of the shock. 

Estimated solutions given elsewhere^ have shown the wave pressure 

as approximately one-tenth of the magnetic pressure, the number we have 
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quoted many times, for a shock moving with twice the Alfvén speed. 

If we consider a distribution of fast MHD waves to be limited to a 

narrow region of wave-vectors of magnitude approximately and if we 

say the shock thickness is about two average wave mean free paths, as is 

the case for aerodynamic shocks and particle mean free path, and if we say 

the average group velocity of this wave distribution must be equal to the 

shock velocity in order to keep up with the shock, then the calculated shock 

thickness fits very well the experimentally determined shock thicknesses, 

as a function of the shock velocity. The estimate of two mean free paths 

for the shock thickness is not made from the shock equations, which at 

present have not been solved, but is inferred from the fact that the mean 

free path is the distance over which dissipative effects have appreciable 

influence. Refinements of this estimate by means of the shock equations 

will be made in a later paper. 
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SECTION II 

EQUATIONS OF MOTION 

The Vlasov equations, which are the basis of our analysis, are 

a . * a , £ a \ 
+ F -“r) l 9 t 9 r e, i 

f ($,V,t) = 0 
C f 1 

(2.1) 

where r is the position of the particle, V is the particle velocity, and t is 

the time. 9 /9 r is che gradient operator with respect to position. 9 /9 V 

is the gradient operator with respect to velocity, f . (r.O'.t) is the one- 
3 3 6,1 

particle distribution function, f . d rd V is the number of electrons or 
® I 1 A A 

ions, respectively, having positions in the range r to r + dr and velocities 
A * * 

in the range V to V + dV, all at time t. 
a A 
r and V really refer to the position of a small cell of phase space 

which contains many more than one particle and over which properties can 

be smoothed out by averaging. We always deal with large numbers of parti¬ 

cles even down to the smallest scale-lengths of our problem. 
A 

Fe j is the self-consistent Lorentz force acting on the particle. 

(È +Z_ X (2.2) 
A 
F . = + e, i 

— e 
m 

e, i 
A A 

where E and B are the electric and magnetic fields which satisfy Maxwell's 

equations: 
A A 
V X B = 

4 n 
A ^ 

9B 

A 
9 E 
w 

A A 1 

^ = -5t- 
A A 

V • B = 0 
A A 

V ‘ E = 4îre(n.-n ) 
' i e' 

.a a 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

n,> i = / d V f. (r, V,t) is the average number-density of particles, 6)1 ^ 
electrons and ions, respectively at r and t. 

A 3 A r * a aA-i 

j = e J d V V J^f. (r, V, t) - fe (r, V, t)J is the average current-density 

of particles at r and t. 
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V = . d 
— is the gradient operator on position variables. 

f) r 

If we integrate the Vlasov equations over velocity space we obtain the 

continuity equation for the number of electrons and ions respectively. 

-Tr— n . + V • n . V .=0 9t e,i e,i e,i 

A /-3^ 
V . = / dJV Vf 

e, i 
the fluid velocity, which is u = 

e i is the average particle velocity. ( 
kLu i V i + me Ve T. . 

(2.7) 

Often we refer to 

m.n. + m n . 
ii e e 

m; + me 
The fluid density is p = 

If we multiply the Vlasov equation by V and then integrate over velocity 

space, we obtain the continuity equation for momentum i.e. , Newton's sec¬ 

ond law. 

n. m. ( 
i, e \ i.e <3T 

A A') A 
+ V. • v; V. 

i.e / i, 
A AA a Vi e a 

+ V-P. = + en. (E +-^- X B) 
e i, e i.e c ' 

(2.8) 

/\A A A A A 

where e(V-e)(V-Vj e) is the particle pressure 

tensor. (Pi ,ew is the flux of the i component of particle momentum (rel¬ 

ative to the average momentum), through a unit area whose normal lies in 

the j direction, i, j = x, y, z, the position coordinates. 

If we multiply the Vlasov equation by "^V or any higher rank velocity 

tensor and then integrate over velocity space, we will obtain partial differ¬ 

ential equations which relate the average quantities which we have already 

introduced with new ones. The averages of the velocity tensors are called 

moments of the particle distribution. We find that the number of moments 

always exceeds the number of equations for them so that additional relations 

among the moments are necessary to terminate the sequence of equations 

so that we have an equal number of unknowns and equations which system 

may then be solved simultaneously. 

We terminate the sequence of 'moment' equations at equation (2.8), the 

continuity equation for momentum by neglecting the pressure tensor alto¬ 

gether. The omission of the pressure tensor is not merely a matter of con¬ 

venience but has the following physical justification. The largest components 

of the pressure tensor are of order of magnitude n. kT. where k is 
i, e i,6 

Boltzmann's constant and T. is the temperature. n. kT. is about 
_2 1,6 £ 1,6 1,e 

10 times smaller than the magnetic pressure Bo/87r of the magnetic 

field in the plasma. The magnetic force term in the momentum equation is 
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estimates based upon the average properties of the plasma, are much 
A AA 

larger than V • P. . li c 
Later we consider the normal waves which are the eigen solutions of 

the linearized Maxwell and continuity equations. The omission of the 

pressure tensor will cause two errors: the wave phase velocity will be 

missing terms comparable to the particle thermal velocities and the fre¬ 

quency will be missing Landau damping. Since we are interested in wave 

phenomena and flows with velocities comparable to the Alfvdn speed the 

corrections to the phase velocity will be small. The influence of Landau 

damping is discussed qualitatively later on. The fast MHD waves are 

interesting partly because they are not heavily damped by either ions or 

electrons for wavelengths between r^ and r., which is the range 

of physical intersst, as mentioned before. 
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SECTION III 

NORMAL WAVES 

CLASSES OF WAVES 

The normal waves are the small-amplitude periodic solutions of 

the equations of motion, Equations (2. 3) through (2.8). The waves have 

the space and time dependence e^k'x-ut) of traveling disturbances of 

magnetic field, electric field, particle velocity, and number-density. We 

consider, for the moment, that we have waves in a uniform, quiescent 

plasma having a magnetic field B0 and density n0. Later, we allow motion 

of the plasma and non-uniformities of the fields. We then describe the pro¬ 

pagation of a single-wave in such a medium. However, for the present we 

discuss the different classes of waves and the details of the frequencies 

and polarizations of the waves for limited regions of wavelength and phase 

velocity, in a uniform quiescent plasma, so that the influence of non-unifor¬ 

mities and plasma motion can be better understood in terms of amplification 

and Doppler shifting, respectively, of these waves. 

It is generally recognized that in a uniform plasma with a magnetic 

field there are four vaguely-distinct types of waves: transverse electro¬ 

magnetic waves, magnetohydrodynamic waves, electrostatic charge-sepa¬ 

ration waves, and acoustic waves. The electrons or ions vary in importance 

in these waves depending upon the frequency and wavelength. The general 

normal waves are not simply related to the types listed above but are com¬ 

binations of these depending upon the direction of propagation relative to 

the magnetic field, which provides the complication of a "preferred" direc¬ 

tion in addition to that of the wave-vector. 

The magnetohydrodynamic waves are distinguished from the plasma 

waves by the fact that the frequencies of the MHD waves go to 2 ero for zero 

wave-vector, while those of the plasma waves are non-zero, and of the 

order of the electron plasma frequency. One may say that, for a given 

wave-vector, there are six modes, three plasma waves and three MHD 
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waves.* If we have a very small magnetic field so that the gyro-frequencies 

are small compared to the plasma frequencies, we would have two distinct 

branches for frequency as a function of wave-vector. The upper branch 

consists of three modes: the longitudinal plasma oscillation and the two 

degenerate electromagnetic transverse modes, which are slightly split 

apart in frequency by the magnetic field. One of these, the ordinary wave 

is unaffected by the transverse component of magnetic field. The other, the 

extraordinary wave, has some longitudinal components, as the longitudinal 

wave likewise has some transverse components, when these two propagate 

at an angle with the magnetic field. The situation with the ordinary and 

extraordinary waves is similar to that of double refraction in an anisotropic 

crystal. The magnetic field provides the anisotropic effect in the plasma. 

This branch, as we stated earlier, is characterized by high frequencies even 

for low wave-vector. Hence, this branch is predominantly electron oscilla¬ 

tion; the ion motion produces a very small correction. 

The lower branch in the absence of magnetic field, consists of a 

longitudinal wave and two trivially degenerate transverse waves, i.e. an 

ordinary sound wave and two identically zero-frequency waves, respectively. 

When there is a little magnetic field the transverse modes are non-trivial 

and are split. If the wave propagates along the magnetic field, there are 

still longitudinal waves and two degenerate transverse waves. For arbitrary 

direction of 1c all degeneracy is removed. In the region of low wave-vector 

such that the wavelength is much larger than the gyro-radii, the charged 

particles move adiabatically and the conditions for infinite conductivity are 

effectively in operation. For propagation parallel to the magnetic field the 

two transverse modes have the Alfvén speed and the longitudinal mode has 

the sound speed. When we omit the particle pressure tensor from the equa¬ 

tions of motion we will not have acoustic waves or the sound speed appearing 

at all. In this case, the longitudinal mode will correspond to the frequency 

being identically zero for all wave vectors. 

Now let us consider wavelengths that are comparable to the ion gyro- 

* The two branches, plasma and MHD, arise from the two species, electrons and ions, as is the case in crystal 
lattices with two different atoms per unit cell. The high frequency branch corresponds to the relative motions of 
the two "atoms”, and the reduced mass of the two is the mass of the vibrating system. The low frequency branch 
corresponds to motion of both "atoms” in the same direction. The pass bands may overlap for the different modes 
V. L. Brillouin, Wave Propagation in Periodic Structures, Dover Publications, Inc. (1953). pp. 14-16 
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radius. The electrons still move adiabatic ally. In this case we still have 

the zero frequency longitudinal mode, if we omit the pressure tensor. The 

transverse waves are the fast and slow waves which we will describe in 

greater detail later on. They consist of elliptically polarized magnetic field 

and fluid velocity for arbitrary direction of propagation. The electric field 

is polarized similarly to the fluid velocity but the electric field is smaller 

than the magnetic field by the ratio of phase velocity to light speed. 

When the magnetic field becomes sufficiently strong so that the 

electron gyro-frequency is equal to or greater than the electron plasma 

frequency then the MHD branch and the plasma wave branch do not have 

easily-distinguishable properties. In this range, the electron Alfven speed 

(based on electron mass) is comparable to the light speed; the ratio of 

electron Alfven speed to light speed is the ratio of electron gyro-frequency 

to plasma frequency. For our plasma however, this ratio is still small, 

about 10“^. 

Let us now linearize the equations of motion to obtain the general 

eigen vector equations for the normal waves. We will then solve the dis¬ 

persion relation in the approximation that me/m- « 1, that rek « 1, and 

that u/kc « 1. We then obtain the fast and slow MHD waves, plus a zero 

frequency solution corresponding to the absent acoustic-type wave. 

We substitute in Equations (2. 3) through (2. 8) for the magnetic 

field: Bq + E ei(k x-ut). for the eiectric fieid: Ê e^k’x"wt^ for the particle 

velocities: V. e^k x and for the densities: n0 + n. giik-x-wt). -yje 
i, e 1> ® 

then omit terms which involve the product of two or more of the periodic 

fields, thereby linearizing the equations. The eigen equations are then: 

-i m. w V. i, e i, e 
(3. 1) 

(3.2) 

i k- E = 4v (m - ne) (3.3) 

(3.4) 
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o (3.5) 
✓V A 

i k • B = 

A. A 
(3.6) 

There are four vector equations and four scalar equations, two 

of which are redundant. The non-redundant scalar equations give w2=0. 

Thus, there are at most, six non-zero eigen values for u2. The w eigen 

values are real and appear in positive and negative pairs because of the 

Hermitean nature of the matrix of coefficients of equations (3.1) through 

(3.6) and the time reversal symmetry of the original equations of motion. 

Using V = V. - Ve in equation (3. 1) and eliminating B between equa¬ 

tions (3.2) and (3.4), we obtain: 
A * 

e* VxBo 
’cT~ 

A 

V 
* lU* ■cXB“ * W"* 

A 

ib>eE 

¡fe x(¿ítxE)- Ê 
i4Trnttu) 

~ C1 V 

(3.7) 

(3.8) 

Upon eliminating V between equations (3.7) and (3.8), we obtain the 

final eigen vector equation: ZA E = 0 where 

A= - ( wl- Wt ) rel r i w Wc^rg1 ( kl- k,1- - ^ ) 
ÍW1- r¿ (K-k|- ji) + ¿ 

— wVe' kjkx -uVkek, wlO J (3.9) 

We have neglected me compared to m. in (3. 9). 

The roots of det ^=0 for w are real. The imaginary terms must 

multiply in pairs to give only real terms in det ¿A.or they must cancel out. 
y 

We conclude then that det Ais a polynomial in go, whose highest power is 

(u>2)k, corresponding to the six modes, three being plasma oscillations, and 

three being MHD waves. 

In the approximation that rgk « 1 we have the following matrix: 
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íh- 

"w*+ (u.'- wt>Wt,>rtl(ka-^)-i(«Wyr,1 

‘Ww.in'fU'-K’.S’) 

H.VcXI«. - ‘w“<; n'íK'-x; - ttj w‘¿' r' “f ^ +i-H<r'kA 
)4‘^W«:C fc-Ky 

- . i /. r?uj» > «‘ri- r^, 
(3.10) 

We still have a polynomial of sixth degree in w2. Two roots are already 

evident: J = 0 and irIiÍ^Í= 0, the latter being cü2 = u2pe , the electron 

plasma frequency squared. We obtain some idea of the other four roots as 

follows. When k = 0 

A — 
,¾ / . Wcif^W 

“* ( ) 

O 
T. / k-1 Wl \ U, (\-'r*ç\) 

(3.11) 

we obtain (w2)2 = 0 and 6- 1¾ Jv + Ä ^ ^ , 

the roots of the latter being (u/1)* ^ ^?e^Z for ( (-^) 44 1 • 

So we have three modes whose frequencies are zero when k = 0: these 

comprise the MHD branch. And, we obtain three modes whose frequencies 

are approximately the electron plasma frequency when ¢=0. These com¬ 

prise the plasma oscillation branch. Furthermore, we obtain two of the 

zero frequency modes and two of the plasma frequency modes from the 2x2 

sub-matrix in the upper left-hand corner of (3. 11). Hence, we expect two 

MHD waves and two plasma oscillations to come out of the corresponding 

sub-matrix of (3. 10) for non-zero k. The two MHD waves can be obtained 

approximately by now neglecting u/kc if VA/c « 1. This leaves the^ deter¬ 

minant of the 2x2 sub-matrix as a polynomial of second degree in co , the 

two roots of which correspond to the MHD waves, when VA/c « 1. This 

approximation fails when VA/c — 1. 
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Making the approximation that (u/kc; « 1 we have for the eigen vec¬ 

tor equation for the two non-trivial MHD modes: 

ta!.1 

* o 

a O 

where u>' = w/toc. ^ = ^ rt 

^,¾)2 _ (u,'*) k!Z[l + cos2© + k^cos2©]-»-^'1) cos1©* o 

(3.12) 

(3.13) 

is the dispersion relation. COS© *= ^/h- 

If we call ü>Vk# = Vph = (w/k)/V^, and set ky = 0, we have for the 

two non-trivial MHD modes: 

= uj'cose Ey 

E** O 

B* 
Vph 

cos© Ev 

= w’vft, tos© ^1 ^ ) ty 
= - 9«n0 E. 

« 

Uy= Vp^ 

uy = O-V^) Ey 

W-i - o 
(3.14) 

We now discuss some formal aspects of the eigen vector solutions 

for the MHD waves. 
2 

The approximation that k re « 1 and (u/kc) « 1 is equivalent to 

the use of the following linear equations for the wave fields: 

E + £ * 6, 

■ * « Í e + ! * i) 
A A 

= O 

A 

y* B = 4TTn0e (vt-Ve) 
c y 

(3.15) 

(3.16) 

(3. 17) 
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(3.18) 

This is easily seen from equations (3. 1) to (3.6). By means of (3.15), we 
/\ 

can eliminate E and obtain the following eqs: 

(3.19) 

where 

(3.20) 

is the six dimensional eigen-vector belonging to the eigen-value for the 

given 1^. The components of and have already been given in equa- 
* 

tions (3. 14), as has the dispersion relation giving in terms of k in eq. 

(3. 13). 

Because of time-reflection symmetry, the dispersion relation involves 
2 

integral powers of w , not of to. Hence the two signs of w are allowed and 

each corresponds to a different eigen-vector. 

In field theory it is customary to use the following conventions related 

to the Fourier expansion: 

(3.21) 

This makes, as desired, u (x, t) and B (x, t) real-valued vectors. 

According to this convention the complex amplitudes and 

correspond, in field theory, to particles moving in opposite directions, 
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the direction of k being the direction of the particle, distinguishes 

particle and antiparticle fields, 
A 

and aV"v are unrelated. How- 

ever- = k* 

However, it is more convenient to use to distinguish waves mov¬ 

ing to the right or to the left along the applied magnetic field, which we 

take along the z-axis. Therefore, we set 

(3.22) 

The complex amplitudes,for our convention, ûjj^and -pare unrelated 

and are associated with waves traveling in the two opposite z-directions. 

The sign of k is not the sign of the wave velocity in the z-direction, but 
z 

that of m, is. 
k 

For the case k r. » 1, the fast waves are transverse waves of circu¬ 

larly-polarized magnetic field and of negligible fluid velocity. If we view 

the wave in wave-coordinates, i.e. moving along with the phase-velocity, 

we will see the applied magnetic field plus the wave's magnetic field as a 

steady configuration of magnetic lines which are helices wound on elliptical 

cylinders. If the wave moves parallel to the applied field, the helices are 

circular and the electrons move along these lines (with negative phase- 

velocity) because it happens that re the electron gyro-radius is small. 

The ions move straight along the direction of the applied field through the 

wave with the negative phase-velocity. The negative phase-velocity occurs 

because we are using the coordinate system moving with the wave. If the 

wave moves at some angle to the applied fiqj.d then in this coordinate sys- 
^ Vph ^ 

tern the electrons feel an electric field, E =-*-— xB. The electrons will 
c 

drift. If we let the whole steady pattern of magnetic lines move with the 

component of phase velocity perpendicular to the applied field, we will 

compensate for the drift and the electrons will follow the helices again. 
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Still for the case of k ^ » 1, the slow waves are waves of fluid velo¬ 

city which are circularly polarized perpendicular to the applied field. The 

magnetic field is negligible for these wavelengths. With » 1, the 

dispersion relation for the fast wave simplifies to become: 

\s“;î + mk vArikzk <3'15) 

The group velocity in the x -direction becomes: 

+ m ,VA r.k 
zk A i z 

(3.16) 

For slow waves: 

“k 
m. 

lkzl 
10 + k u (3.17) 

e. 
i 

As we increase k^ and k^ proportionately, taking k^ = 0 for the 

moment, we see that for fast waves v is nearly proportional to k r. 
X z 1 

v /V. = 7 for k r. = 10 for $ at about 45° with B . 
x A z i o 

With k r. » 1, the eigenvectors greatly simplify. The magnetic 
Z 1 

vector for the fast wave is nearly circularly polarized perpendicular to the 

wave-vector. The.departure from circularity is of the order of l/kr^. The 

fluid-velocity part for the fast wave is l/kr^ times smaller than the circu¬ 

lar magnetic part and the electric part is much smaller still. For k^. » 1: 

VZ* y ( l/k r. [Fluid Kinetic Energy in Wave | _ A _ J z i 
Magnetic Energy in Wave i ^ph l ^ri 

[Electric Energy in Wave~| 
[Magnetic Ënergy in WaveJ 

1/2 V 

fast wave 
slow wave 

£h_ 
k r. 

z i 

, kr. 

fast wave 

slow wave 

With k r. » 1, the fluid velocity part of the slow wave is nearly cir- 
21 a 

cularly-polarized about Bq. The departure from circularity and the magnetic 

components are both about l/kr^ times smaller. 

Landau damping of a wave is based upon the transference of electro¬ 

static energy from the wave to charged particles caught in the potential 

troughs of the wave. That is, a particle is trapped because its thermal 

velocity nearly equals the phase-velocity of the wave. If the particle moves 
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slightly slower than the phase-velocity it will gain energy from the wave. 

The net effect is damping only if there are more particles moving slightly 

slower than the phase-velocity than there are particles moving slightly 

faster than the wave. That is, there is damping if the velocity distribution^ 

has a negative slope at a particle velocity equal to the wave phase-velocity. 

If we consider waves with frequencies much less than the electron 

gyro-frequency, the electron motion in the wa^ will be^perpendicular to 

any electric field because of the usual drift c • Then we do not 

expect the electron to be trapped in an electrostatic potential trough of the 

wave and we do not expect the Landau damping to work. 

However, the slow waves have frequencies near the ion cyclotron 

frequency for kr. » 1 and their phase-velocity is of the order of the thermal 

velocity of the ions. Also, the polarization of the electric field of the slow 

wave rotates in the same direction as the ions. Hence, ions can be trapped 

and the wave is heavily Landau damped. Similar arguments hold for the 

fast wave when its frequency is close to the electron gyro-frequency. The 

electric polarization of the wave rotates with the electrons, and the fast 

wave is then heavily damped by the electrons. 

For any frequency and wavelength wave, the amount of Landau damping 

is proportional to the number of particles having a thermal velocity equal to 

the appropriate phase velocity of the wave. This phase velocity is (-w+wc )/k 

for damping of the slow wave by ions and (u>+wc )/k for damping of the slow 

wave by electrons. This velocity is (w+uc )/k &r damping of the fast wave 

by ions and (-w+w )/k for damping of the iast wave by electrons. Instead 

of w or u in these expressions we can have any integer multiple of these 
c. c 

i fî 
frequencies. Our conclusions concerning the damping is based upon the fol¬ 

lowing facts: one, for slow waves, for kr^ ^ 1 ; two, for fast waves, 

u>¿. w for kr “2Í 1: and three, the thermal velocities are given by a Max- 
~ c e 

well dfstribution for each species so that there is an exponentially small 

number of particles having a thermal velocity different from the mean ther¬ 

mal velocity. Therefore, Landau damping is exponentially small for the 

above phase velocities differing from the mean thermal velocity. 

• Landau damping, which puts particle energy into waves for those particles moving faster than the phase velocity, 
looked at from the particle's point of view, is radiation loss by Cerenkov radiation. This radiation consists of the 

appropriate waves in the plasma. 
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SECTION IV 

THE WAVE TRANSPORT EQUATION 

AND WAVE AMPLIFICATION 

If thermodynamic equilibrium existed between fast MHD waves 

and the particles, then a negligible amount of energy is invested in the 

waves, only about 10 ^ times the particle thermal energy. The ratio 

of particle thermal energy to wave energy at equilibrium is, within a 

factor of two, the corresponding ratio of the number of degrees of free¬ 

dom which can be excited, since (l/2)kT of energy goes with each degree 

of freedom. This ratio is then N(r ), the number of particles contained 
3 e 

in a volume re , since we only count degrees of freedom for the fast MHD 

waves which belong to wavelengths greater than re> As already discussed, 

the fast waves are heavily damped by the electrons ipr wavelengths shorter 

than re; N(re)=nre3=(nh3)(—^—) = N(h)(--) ^ is about 107 

times N(h) the number of particles contained in a Debye-length cube, which 
4 

is about 10 particles, and is the ratio of particle energy to energy in 

plasma oscillations. Therefore, unless there is some amplification mech¬ 

anism to build up the waves to some non-equilibrium distribution whose 

energy is comparable to or greater than the particle thermal energy, fast 

MHD waves will not be important. 

We now describe an amplification mechanism by which the plasma 

non-uniformities give up their energy to fast MHD waves. Because the 

waves scatter with other waves, this amplification is irreversible and, 

for some cases, can account for a total wave energy of about ten times 

the particle energy behind a MHD shock wave moving with about twice 

the Alfvén speed. 

-29- 



Let us now describe a non-uniform plasma whose properties are 

not changing with time except for the fact that fast MHD waves are pro¬ 

pagating in it. We make approximations concerning the behavior of the 

plasma which are consistent only with MHD flow, i. e., we only consider 

cases for which the Maxwell displacement current is small compared to 

the current density in the plasma, and for which any charge separation 

occurs over distances of the order of a Debye length which is small com¬ 

pared to the scale-length of the flow. 

The objective of this analysis is to describe the effects of the non¬ 

uniformities of the magnetic field and of the plasma velocity, which we 

now include in order to generalize our earlier discussion of the normal 

waves, on the propagation of a single fast MHD wave-packet. We are not 

interested in the non-linear effects of waves interacting with other waves — 

this we treat in the next chapter—but in the compression of the wave-packet 

by the changing density of the plasma and in the Doppler shift of the wave- 

frequency due to ,the plasma velocity and in the changes in group velocity 

because of the changes of the plasma velocity as the wave-packet moves 

to different positions of the plasma. 

We represent the total magnetic field as Bq(x) + B(x, t). Bq is the 

magnetic field which varies with position in the plasma and is present 

regardless of the wave-packet, whose magnetic field is B(x,t). The total 

plasma velocity is uo(x) + u (x,t), the total density is PQ(x) + p (x,t)=p^,; 

the total current density is j (x) + j (x, t); and the total electric field is 
^ ^ a ^ 0 

Eo (x) + E (x, t)=E,p. We have introduced the overall plasma properties 

for the sake of convenience. The subscript "o" denotes the average 

plasma properties, which change with position in the plasma regardless 

of the wave-packet. We repeat the definitions of fluid velocity, density 

and current density 
A 

u 
A <w;V¡ + mçÿt 

X; + vn«. 
(4. 1) 

r0 + r = + »*cne 
(4. 2) 
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/A 

ÍT = 3 = 

A A 
ev\; V- ~ e^Ve (4. 3) 

We substitute these quantities into equations (2. 3) through (2. 9) 

having neglected displacement current and charge separation (n^=n ). 

Another approximation is made namely, that the scale-lengths of the 

phenomena of interest, either that of the non-uniformities or of the 

wavelengths of the waves, are large compared to the electron gyroradii 

so that m (—tj—-— + V • V V ) is small compared to either eE or 

eV A 
e X so that we may take in Equation (2. 8) 

_ o ) 

Ep + c ^ = 0 (4.4) 

This states, in effect, that the electrons make tight helices aipund the 
. -. - -.- -_- M’x^T 

V 
magnetic field lines, except for their local drift velocity c 

where E^, and are the total fields. 

We now write down the equations just for the average properties 

of the plasma in the absence of waves and then for the total fields including 

the waves. 

. A 
-/0 U-f Ak A A 

fr ( uT Vur') 

A 
V = o 

/N /V 
V X E0 = o 

a a.TT ^ 

^x Bo “ C Jo 
A 
V Bo - o 

/\ A \ 

V X E =- 
c ^ 

(4. 5) 

(4.6) 

(4.7) 

(4.8) 

(4. 9) 

(4.10) 

(4.11) 
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(4.12) VXB = ^ J 

v-ê> * o (4.13) 

We call a linear term one which is proportional to the amplitude 

of the wave field and a non-linear term, one which is proportional to a 

higher power of the wave amplitude. If we collect all of the non-linear 

terms on the right-hand side of the equations and concentrate on the lin¬ 

ear terms, and if we consider fast waves with wavelengths sufficiently 

less than r. that they are nearly all magnetic field energy compared to 

particle kinetic energy (kr^3) and electric field energy, then we use 

Equations (4. 9) to (4. 13) but ignore u and p. We have 

li- $*[kxß-|£(jA+j/B)]= (4.141 

an 
where (—5-^-) iis the time rate of change of wave magnetic field due to 

0 t n-X 
the non-linear terms which we have collected on the right-hand side of the 

equation. The non-linear terms will be considered in detail later. How¬ 

ever, to avoid complication, we do not include in them the effects of the 
/S ''X 

space variations of p , u and B under the assumption that the space 

Fourier components of p , u and B are small for wavelengths compar- 
r o o o 

able to those of the waves. 

Equation (4. 14) is the basic equation for examining the propaga¬ 

tion of a wave-packet of fast MHD of wavelengths somewhat less than r. 

but considerably greater than re = r. y/m^Am in a plasma having steady 

non-uniformities on a scale also considerably larger than r^ 

For the sake of both mathematical simplicity and physical interest, 
a a 

we take the flow uq perpendicular to Bo, the magnetic field, which is al¬ 

ways directed along the z axis but changing magnitude with x. We have a 

case of one-dimensional steady MHD flow perpendicular to a magnetic 

field. We take u always in the x-direction. All properties vary only 
o 

with x. 
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In this case, 

pu = constant (4.15) 
o o 

u B = constant (4. 16) 
o o 

E = constant (4. 17) 
yo 

Equation (4. 15) states that the mass is conserved since p u is the rate of 
^ /N /\ ° O 

mass flow. Equation (4.17) follows from V x Eq = 0, since the magnetic 

field Bq is not time-varying. liquation (4. 16) follows from V x (uq x ^q) 

= 0 which is equivalent to E + —^ x Ê = 0. We do not assume infinite 
» ^ o c ° 

conductivity, although that would result in the previous expression, but we 

do assume that the electrons move adiabatic ally, i. e., they preserve their 

magnetic moment as they pass through the non-uniformity. This is true if 

the non-uniformities vary slowly in distance of the order of the electron 

gyroradii, which is the case we have in hand. This means that the electrons 

drift with a velocity c yo/BQ. Since there is no total current-density in the 

flow direction, since ^ x has no component in that direction, the ions 

must be moving with the same velocity as the drift velocity of the electrons 

so that the fluid velocity uq = c yo/BQ; from this and Equation (4. 17) we 

deduce Equation (4. 16). Equation (4. 15) and (4. 16) imply that Bq/po = con¬ 

stant. We will use this assumption whenever necessary. We discuss in 

Chapter VI in somewhat greater detail the conditions under which ^0/PQ is 

not strictly constant. There are other conservation laws implied by our 

Equations (4. 9) through (4. 13) but these are complicated by the presence 

of the magnetic pressure tensor and energy flux tensor of the waves. We 

also deal with these equations in Chapter VI when discussing an MHD shock. 

The above Equations (4. 15), (4. 16) and (4. 17) will suffice for the descrip¬ 

tion of the propagation of the wave packet if we treat pQ, uq and Bq as 

given functions of x and solve for the wave amplitude in terms of them. 

Remember B(x, t) is the magnetic field of a distribution of fast MHD waves. 
A- A 

B(x,t) satisfies a vector partied differential equation, Equation (4. 14) with 

• H. must equal the same constant far behind the non-uniform part of the flow as it is far ahead of the non- 
uniform part of the flow. If the electrical conductivity is not very high may depart from this constant with¬ 
in the non-uniform flow. H. E. Petschek has shown that wave scattering produces a friction between electrons and 
ions which results in a sufficiently high conductivity for our plasma conditions so that can be taken as 
nearly constant everywhere for our plasma conditions. See proceedings of the A merican Physical Society Meeting, 
Gatlinburg, Tennessee, November 2-4. 
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coefficients that depend only on x. We expand B(x,t) in a Fourier series 

in time t and space y and z so that 

a. V 5 
C (4.18) 

w» *y. 

where 
ZTT 

u>= -^r n<« 

U = ?JI nY 
rt uy ’ 

i. _ M 

nu,,y>y,olS: ti.tz, * 

(4.19) 

áw,ky>¿x) = TLyLz 
ottdydz C 

-i(Nyyfkz^-wt^ 

|t-M < ï 

w-'/i < 

\z-z\i ÿ 

(4. 20) 

We will henceforth omit to mention the region of integration as indicated 

(X) is the under the triple integration of equation (4. 20). âw.hy.k^ 

vector amplitude of a single fast MHD wave of constant frequency and 

constant wave-vector components k and k . * y z 
Substituting (4. 18) into (4. 14) and using equation (4. 20), we obtain 

/> 
the following ordinary vector differential equation for ^w.ky,^ (x) 

which we call 3 . 

A A Y*uc d f I dB0\ d Up ,A A a » , WiC * dBp b 3 
-tU,a-ey ]ax+ áx (a ^ax) + ifTre/*0<*x ' 

aa 
fki('*1*1+(4.21) 

áâ_ _ i nr,. , , rA\ Uo 
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In order to demonstrate wave amplification, we solve Equation 

(4. 21), with the right-hand side set equal to zero, by an approximation 

that resembles the WKB approximation of quantum mechanics. We intro¬ 

duce a form for the solution of (4. 21) that resembles the wave solution 

for a uniform plasma except that we allow the wave-vector and amplitude 

to vary with position in the plasma. Wherever we so indicate, we omit 

terms which depend upon second derivatives of the plasma properties. 

Just as in the WKB appioximation, these terms are unimportant when 

the wave length of our approximate wave solution is short compared to 

the distance over which the plasma properties change appreciably. One 

usually finds in quantum mechanical problems that the WKB method pre¬ 

dicts large amplitudes where the approximations no longer hold, that is, 

where the wavelength becomes very long. However, we are dealing with a 

case for which the amplitude becomes infinitely’large, were it not for the 

non-linear terms on the right-hand side of (4. 21), when, at the same time, 

the wavelength becomes very short and so our approximation is quite valid. 

The points at which the amplitude becomes infinite are points at which the 

wave-packet group velocity approaches zero. This loosely resembles the 

quantum mechanical case of a classical turning point at which the particle 

has zero velocity. The WKB approximation incorrectly predicts an ampli¬ 

tude which is infinite. The exact solution of the Schrodinger equation gives 

a large but finite amplitude. However, equation (4. 21), with the right-hand 

side equal to zero, does predict an infinite amplitude. This is not the fault 

of the approximate wave solution that resembles the WKB approximation. 

The fact is that equation (4. 21) is singular in the domain of integration. 

That is, (4. 21) can be reduced to a singular second-order homogeneous 

linear differential equation, if use is made of V-B(x, t) = 0. The equation 

is singular because the coefficient of the highest derivative of the new 

equation is zero, exactly where we predict wave amplification. On the 

contrary, the Schrôdinger equation is not singular and therefore does not 

predict infinite amplitudes. The wave-packet for our case is continually 

being compressed by the surrounding medium at a place where the packet 

has come to a standstill; however, it does not turn around but merely 

grows in amplitude and shrinks in width. 
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We consider a single wave-packet travelling in one direction with 

one polarization. The steady state for waves in the plasma also consists 

of waves travelling in the opposite direction. These arise from reflec¬ 

tions from the non-uniformities. We do not discuss these reflections but 

limit our attention to the time-dependent behavior of a single wave-packet, 

Now multiply (4. 20) by a* and add the complex conjugate equation. 

(4. 22) 

We are dealing with a single fast MHD wave of constant frequency uj whose 

wavelength is sufficiently smaller than r. so that it is mainly circularly 

polarized magnetic field. Now, if we specify that â is circularly-polarize^ 

perpendicular to some vector k = k e + k e + k e , where k and k are 
xxyyzz y z 

the same Fourier parameters as before, then 

(4. 23) 

so that (4. 22) becomes 

„¿¿fcyy+hzï-wt) ,(4*24) 

+ cc. ] 
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The introduction of kx and k is quite natural. It is easy to show 

from equations (4. 21) and (4. 24) that if ^ (x) is written as 

‘Ch kt*) £(*) C^1**'*4*' *' 1 - — u-*,1,, 
Ac 

where fy.fc* can ^36 ta^en as 

(4. 25) 

real-valued or at most with constant phase, then k^fx) is the function of x 

defined by the equations: 

fë 1U = u.k, + constant 

k - (*; t kr* t k* )lz 

£ 

is the unit circular-polarization vector. 

We are dealing with a single fast MHD wave of constant frequency 

whose wavelength is sufficiently smaller than r^ so that we may use the 

approximate dispersion relation u = uq k^ + (m.c/4lTe) (^0/P0) (kz k) in 

a uniform medium. The eigen vector is then nearly circularly-polarized 

magnetic field and negligible electric-field and fluid velocity. 

If we say that ¿w,|iyi|,2/x) = £(C f * 

where h - Ky, kz ), then k corresponds, in the case of a uniform 

medium, to the wave-vector of a circularly-polarized transverse wave. 

The polarization vector is 6 and rotates as a function of x. We see 
A 

that k^ (x) is the x-component of the space-varying wave vector k about 

which the wave is always circularly-polarized. As the wave moves to 

different positions x, the wave-vector component k changes but the other 

components, k and k do not. Therefore k is changing direction and mag- 
y z . 

nitude and the circular-polarization vector £ ^ is changing correspond¬ 

ingly. The amplitude of the wave ky,fez fO is also changing with x, 

and this is described by equation (4. 24). 

The dispersion relation, equation (4. 25), has as its first term the 

Doppler shift of frequency due to the motion of the fluid uq carrying the 

wave, u is a function of x and so is k so that the amount of Doppler 

shift may vary from point to point in the plasma. The second term of 

equation (4. 25) is the un-Doppler-shifted frequency of the wave, i. e. , 

the one measured by an observer moving with the local speed of the fluid. 

The third term is the effect of the gradient of the magnetic field on the un- 

Doppler-shifted frequency. 
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Equation (4. 24) is the most important equation of this discussion. 

It contains on the left-hand side the description of wave amplification, 

which we next discuss, and on the right-hand side the non-linear effects, 

which we represent as wave scattering and discuss in the next chapter. 

Let us consider equations (4. 24) and (4. 25). The group velocity 

in the x-direction is 

., 11° _ ,. . nue. B, b kj 
v> = îiC ' + wT /• 1 ^ (4. 26) 

Then equation (4. 24) can be rewritten as 

i(V. UM1) 4 ( £ 4 K (*&) Ia'*- RHS (4. 27) 

with Im w = 0, since damping of the normal waves is not considered. 

If we define t as the time for the wave-packet to move a distance 
V 

X then 

= / 
x«+x 

V* dr*) 

and dtv = 

-(Im u>) t . 
For finite damping, (vxld-l ) has a factor e 

We show in detadl later that the wave-packet can be amplified 

exponentially with time, tv, by the gradient of velocity: . If we 

multiply equation (4. 27) by ( vx |âlz ) ^ we have 

_ d 

Vila»1 dtv 
uiM -u. I -i- ïïüi. — /t Tr*) 

rUl ' + l-wxi: +¡m (4. 28) 

when we set the R. H. S. to zero for the moment. We show later that 

( Vx lâl*- ) becomes infinitely large at places in the flow for which 

= ( 4rrV/¡~ ^ ) . kx and k also become infinitely large there, 

this case, equation (4.28) gives, approximately: 

(vxuiz) oc 

In 
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where x = xc is the point for which uq^ = ( ^0° ) • This is the 

point for which the group velocity of the wave is approaching zero, so that 

the wave packet is conning to a gradual standstill against the plasma flow 

in the opposite direction. When ) ty is negative we have a region 

of increasing density in the direction of propagation of the wave-packet 

and it is being compressed, which accounts for an exponential rise. If 

we now differentiate equation (4. 25) with respect to x, using Re w = constant, 

Im u = 0, we have 

0 
du. u 
77** 

yu c 
Hire 

1/j.áIoU 
d* I f*. + vx J*x 

so that (4. 27) becomes 

i (v.iai*) - hÿï (v.iai1) = (4.29) 
dv k dx 

If we set (R. H. S. ) equal to zero for the while to simplify the dis¬ 

cussion we see that equation (4. 29) yields: 

lai* <c (4. 30) 

We now discuss in detail the behavior of a wave-packet with a 

narrow band of frequency centered about w. We have already shown that 

the wave propagates with a wave-vector whose x-component varies with 

x because the wave packet moves into regions of different properties. The 

squared amplitude of the wave packet envelope depends upon the factor 

k/v , where k is the magnitude of the wave-vector and vx is the group 

velocity of the wave-packet. We show that k/vx can become infinitely 

large as the wave-packet moves along in the plasma. This is due to the 

continual compression of the packet by the surrounding medium at a place 

where it has almost come to a standstill. 

For given uj, k and k^, equation (4. 25) states that 
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I 

UoU) 
(x/'-ytox) 

KriX) ifrre T*z 
(4.31) 

ky i/dJîl?» 
We will take Bo/p = constant, a consequence 

u)' = Vkj, cindw'^Vkj. 
X’ • o' 

Let us always consider 

where <*> 

of equations (4. 15) and (4. 16), and neglect ^ Vcompared to w, all 

for the sake of convenience for the ensuing arguments. Bo/pQ is not 

strictly constant if there are some particle collisions to make non-zero 

electrical resistivity and gas viscosity. To elaborate upon this point is 

beyond the scope of this paper. For sufficiently small regions of x the 

derivative term in w" will be nearly constant. 

There are two interesting regions for frequency and wave-vector 
i 2 2 components. These regions are: w'* > Vkj and u" 4 Vkjwhere k^ = k^¿ + k^6 

From equation (4. 25) we see that k (x), as a function of u (x), becomes 
2 2 x 0 

infinitely large for uq = V . Figure 1 shows kv(x) versus u^(x) for the 

three cases (jj">Vkj, 

k positive. The arguments are similar for k negative and the velocities 

with opposite sign. 

For a wave with w">Vkj, for positive k^, the wave has positive 

phase-and group-velocity in the x-direction. As uq(x) approaches -V 

(V is assumed positive for the moment) k^ becomes infinitely large, be¬ 

having asymptotically as: w"/(iio + V). The group-velocity v^ approaches 

zero, being nearly equal to uq + V. The wave packet is moving against 

the plasma velocity, its group velocity is zero when its motion in the fluid 

exactly cancels the plasma velocity, uo. Hence, kx/vx behaves like: 

w" /(u + V)2. If u (x) » -V + (^u%x) (X- Xc), where x = x is the point 

at which uq = -V, then t^ = i ^ ^ and ~ ~ e“ ^ **** * 

u ( 7», ) is negative, that is, the p is increasing with x, since p u = 
Xc o o o 

constant, then we have exponential growth in time for the amplitude of 

the wave-packet, as given by equation (4. 28). 

For a wave with u" = Vkj either k^ is identically zero regardless 

of uq(x) and the group velocity is ^QM, i. e. , the packet is being carried 

by the plasma and not moving of its own accord, or kx becomes infinitely 

large for u = -V as in the previous case, and that discussion applies here. 
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Fig. The behavior of the component of the packet wave-vector 
along the direction of the plasma velocity u . 

7 o 
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Also of interest is the fact that the group velocity vanishes for u = 0. If 
- ldu,/<iO t¥ ° 

this happens, k/v ~ e ^ where x = xm is the point for which 

uä = 0. There will be exponential growth if is negative. If 

but is not zero, then k/v increases as the second power 
o 

is zero 

Xm 

Xfw 

of t . 
V 

For a wave with w* < Vkj we now have the case of the wave packet 

with positive phase velocity but its group velocity is either positive or 

negative, depending upon whether its group velocity vfyfe in the fluid it¬ 

self is greater than or less than the fluid velocity. Again k^ becomes 

infinitely large when u = -V, and the analysis is the same as before. 
^ N/ However, for the point x = xm for which k = , the group velocity 

vanishes. This case is similar to the one already discussed when u = 0. 
W/ - tv ° 

We find that K/yM ~ C 

We now return to equation (4. 27) in order to derive the left hand 

side of the wave transport equation. The derivative with respect to x is 

performed with w, k , and k constant. Let us make k , k , and k the 
r y z x y z 
independent variables. We use equation (4. 25), which relates k^ to u, to 

do this. 

îxj ' "a* L -»*L **0 

3 k* 
is obtained from equation (4. 28) so that equation (4. 27) 

becomes, after we multiply by v^, 

b'l* 1*1') ^ -f, % (*,Iai-) - V. RHS 
ciuo 3 k* duo (4. 32) 

we have neglected > a higher derivative term, 

compared to jip because we now assume that i-s much 

greater than anb that = 0. That is, we disallow 

the possibility that dtt*/olx = 0 at places in the plasma where wave-growth 

is expected, i, e. where the group velocity + V */|^ vanishes. 

Equation (4. 32) has a close resemblance to the left-hand side of 

the time-independent particle Boltzman equation. The dependent variable 
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is vjai1, a = aw.ky.^^x) . We have substituted for w as in¬ 

dependent variables so that it is convenient to define E^, ^ ^ (x) as 

>x/T) * Then x y z 

^ J âu,'k’r'fez,K>' S iffT4Lx 

2Jf 
if we use equations (4.19) and introduce kx = , vv® ^'t ^ 2/• • 

where is sufficiently small that the group-velocity doesn't change 

appreciably in a distance comparable to Lx. In that case, Hv/i* 

Remember u, as a function of k^ and x, is given by equation (4. 25). T 

Equation (4. 33) enables us to interpret E.<jj ix> as the energy-density 

spectrum function at the position x. That is, a wave-packet consisting 

of waves over a wave-vector range k,k,k tok +dk,k +dk, and 
x y z x x y y 

+ ^2 wi^ have* averaged over a very short time, an energy per 

unit volume equal to Efi (X) dk* dfe, . As the packet moves to 

different positions in the plasma this energy-density spectrum function 

will change. We must remember that kx is now treated as varying quite 

independently from x. We see a shifting of energy-density into or out 

of the range jf Efc(x) increases or decreases, respectively. 

If we define = > where i*^0 is the frequency of the 

wave of the given k in a uniform quiescent plasma, k, fa 
vrre/. z ^ 

then equation (4. 32) becomes 

2X (4. 33) 

corresponds to the time-independent particle distribution func¬ 

tion f (r,v). Equation (4. 33) corresponds to (¾ 

The first term of (4. 33) is the convective derivative which states that Na 
k 

changes because the wave-packet moves to new positions with the group 

velocity. 

The second term is like the force term of the Boltzman equation, 

except that k is the independent variable instead of v. The 'force' is 

If we were dealing with quantum mechanics, N£ would be 
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proportional to the number of quanta in the k state. Equation (4. 33) 

would correspond to the transport equation for the number of quanta in 

this state. In the absence of the R. H. S., equation (4. 33) becomes 

ij— Nft = 0 where is the time derivative along the path of the 

wave-packet in its phase-space: (¾.¾). We deal with large numbers of 

quanta and we are not concerned with quantum effects. Classically 

can be interpreted as action, the action of all the waves with wave-vector 

1 
We return to equation (4, 32) and interpret the third term by com¬ 

paring it to the corresponding term of the Boltzman equation, which we 
2< write in terms of the energy density l/2 mv -f as: 

+1/¾ (W4) - (Wf) = \t 
so that lx^ corresponds to 0 ) 

ColliVonc 

. We see then that 

which equals minus the ^ corresponds to - /-^»"V1 

fractional rate of increase of the kinetic energy due to the force t on the 

particle. Hence, - *£ duoldx must be the fractional rate of increase 

of the wave-packet energy due to the force of the surrounding medium. 

In fact it is easy to show that M is the (x, x) component of 

the average magnetic stress tensor for a wave packet consisting of cir¬ 

cularly-polarized waves of magnetic field, which is the case for the fast 

waves we are considering. The magnetic stress tensor 

where B* = ot1*' component of the average magnetic field in the wave- 

packet. Then - ^ ^ ! this is the rate of work done on 

the packet by the surrounding medium in compressing the packet against 

the magnetic pressure exerted by the packet. 

It is shown in Appendix 6 that the R. H. S. of equation (4. 27), mul¬ 

tiplied by V*yLx , which is 
T 

eue; - v* 2+ (x). 

• The left hand side of the wave transport equation, in genera), must be • ^hen this is zero this corre* 
w*v 

spends to the adiabatic approximation in quantum mechanics that any changes in the external parameters of the 
system as, for example, the volume and magnetic field, are sufficiently slow so that the number of quanta in each 
state stays the same, as the frequency and wave number of each state slowly shift. 
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when averaged over x, for |X-X I 4 l_x/z > is just the average rate of 

change of E¡£(X), the energy-density spectrum function at the point x, due 

to non-linear wave interaction. The rate is the average value in the time 

interval \ "Vz where T is very short compared to the relaxa 

tion time of the wave collision process. 

We neglect the term in equation (4. 27) ^ 

because it contains a second derivative and because it is multiplied by a 

factor which we know becomes small in regions where wave amplifica¬ 

tion is important. 

We average equation (4. 27) over x, so that it becomes 

L 9 X dx ‘ ' 9K* kx dx c* ’ * * > * VZ 

where E*(Í>/->*. is the above-mentioned average rate of 

change of due to non-linear wave interaction. Terms of order 

L* d talUol /dy have been neglected because the plasma properties 

do not vary much across a distance L^. 
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SECTION V 

WAVE COLLISIONS 

NON-LINEAR INTERACTIONS 

In deriving equation (4. 14), the non-linear terms, that is terms 

involving the second and higher powers of the time dependent fields, were 

collected on the right-hand side and called (—1) • We now investigate u L n — jt 
in detail, these terms. We also discuss the corresponding non-linear 

terms of equation (4. 9) which can be called / ■■■ — \ • 
' 9 t 'n-z 

To complicate matters these terms also contain the time-independent 

but space varying quantities, denoted by subscript "o", which are the non- 

uniform plasma properties. The non-uniformity has a scale-length r^; we 

assume that the waves which are involved have wavelengths somewhat shorter 

than this. As done in the last chapter, we Fourier analyze with periodic boun¬ 

dary conditions the fields in boxes whose sides have lengths Lx, L^, and L^, 
which are small compared to distance over which the non-uniformities vary 

appreciably. In this way, the Fourier components of the non-uniformities 

which correspond to the wavelengths comparable to those of the waves are 

small. That is, ths plasma appears uniform inside the Fourier integration 

box. We then use the normal waves of a uniform plasma to describe the 

scattering. This approximation omits effects which are of the order of 

. These effects are not the usual reflections of the waves from d In |u0| 
dx/L* 

the inhomogenities of the medium for these have been accounted for by the 

left-hand side of equations (4. 14) and (4. 9). Instead, the effects of the non¬ 

uniformities can be represented by non-linear processes which violate the 

selection rule, to be discussed later, that the sum of the wave-vectors in a 

wave collision process must be conserved. In some ways this violation is 

similar to the 'Umklapp1 processes in phonon scattering in crystals. How¬ 

ever, the violation of the \Vave-vector rule in our case is due to the lack of 

any translational invariance of the equations of motion, whereas, the 'Umklapp' 
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processes arise because of the discreteness of the crystal, i.e., translational 

invariance occurs only for lattice vector translations instead of infinitesimal 

translations, as in a uniform continuum. The amount by which the sum of 

the wave vectors is not conserved in our case must be of the order of wave- 

vectors which are typical of the Fourier decomposition of the non-uniform 

fields, which we have assumed are small compared to the wave-vectors of 

the wave field. Also this effect only applies to the x-components of the wave- 

vectors since the non-uniformity varies only with x. If kx is a typical wave- 

vector for the non-uniform fields, then our choice of Lx is to make Lxkx«l. 

kx is of the order of In |uo( , so that Lx ln l^lj« 1 * as stated 

earlier. 

Now that we have replaced the non-uniform time-independent fields by 

their average values inside the Fourier-box, we make the approximations 

made previously that the wavelengths of the waves lie between r^ and r^ so 

that A 

Ê + £-XÍB0+B} = ° 

and we also assume, as before, that for these wavelengths the Maxwell dis¬ 

placement current is small, so that we do not consider plasma oscillations 

and the phase-velocities are of the order of the Alfven speed, V^. Equations 

(2. 3) to (2. 8) become 

- (7xJ^xêzV* + u0-V^[fu = + 'K 

+ lV*-èr)*èr íí% ïk -W-'W 4 
(5.1) 

2 i. 
^ 'Í®T 

Cut'll 

+ |=- = (5.2) 

"B -L_ 

A 
Uo Jc ^Â/2 (5.3) 
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where V • = Jk 
A \(4TT?C 

yn;C* 
«f-mnoe1 

On the left-hand sides are the linear terms which have given us the normal 

waves discussed earlier. We use the left-hand side to make clear the prop¬ 

erties of the normal waves in the absence of the non-linear terms. Our aim 

is to obtain the time rate of change of the amplitude of the normal wave with 

wave-vector ic due to interactions with waves of wave-vector 'p, "î, 's • • • • 

and to use this as the right-hand side of the transport equation (4. 34). As 

already mentioned, the wave interaction is analogous to anharmonic correc¬ 

tions to the motion of a simple harmonic oscillator. Because of these effects, 

if the oscillator starts its motion in only two of its normal modes it will, in 

some characteristic time t, excite motion in several of its other modes. 

In the case of the interaction of lattice vibrations t will be the relaxation 

time which enters into the kinetic theory expression for the thermal conduc¬ 

tivity of pure crystals of large size and of not too lot temperature, in which 

the anharmonic effects would be expected to dominate^. For the plasma 

case, we obtain estimates of relaxation times t both for fast and fast wave 

interaction and for fast and slow wave interaction and apply this in the next 

chapter to ?n estimate of the thickness of an MHD shock for the plasma con¬ 

ditions we have outlined previously. Other kinetic-theoretic plasma phenom¬ 

ena, such as electrical and thermal conductivity, could be described with 

these wave relaxation times, but this is beyond the scope of this work at 

present. 

The idea of a relaxation time is introduced because the expression 

for 9 A^/9 t the rate of change of the amplitude Aß of the "k^1 wave is an 

integral equation which depends upon the amplitude of the Ic^1 wave and all 

other waves which are allowed to interact with the 1cth wave by the selection 

rules. This rate is evaluated approximately by assuming that a distribution 

of waves at time t I 0, say, is only slightly changed due to the interaction 

in times comparable to the periods of the waves. Time-dependent perturba¬ 

tion theory, in common usage in quantum theory, is applied in first and 
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second order. The rate of change of amplitude then is an integral over terms 

that explicitly depend upon the wave amplitudes at t = 0. By dividing the rate 

by the value of the amplitude at t = 0 we have what may be called 'the transi¬ 

tion probability per unit time' for transitions of the wave of the k1*1 state to 

any other wave state allowed by the selection rules on the wave-vector and 

wave-frequency. Though we deal with no quantum effects, since the number 

of quanta is always large, the expressions are very similar to those of 

quantum theory. The coefficients of the amplitudes in the integral expression 

for the rates are the matrix elements of the interaction Hamiltonian between 

the interacting wave states. The interaction Hamiltonian resembles the an- 

harmonic corrections to the potential of a simple collection of harmonic 

oscillators, the normal waves, as we have already mentioned^®. The relax¬ 

ation time we speak of is just the reciprocal of the transition probability per 

unit time. This relaxation time depends upon the assumed initial distribution 

of waves, i. e., it is not shown that there exists a relaxation time which is 

characteristic of the wave interactions regardless of the shape of the wave 

distribution in wave vector spaced One can compute relaxation times for 

wave distributions which deviate from spherical uniformity. Generally, 

there will be a different relaxation time for each spherical harmonic. 

Depending upon what property of the wave distribution is important, say, 

energy flux, the appropriate relaxation time must be chosen. Then the 

right-hand side of equation (4. 34), the rate due to wave-interaction, is repre¬ 

sented by - —( lAfcl 2 - JA| ^). |a|2 is the average of the squared am- 

plitude over a surface in k -space. This surface is analogous to the energy 
/N 

shell encountered in scattering theory because it is the locus of all k such 
that the sum of the frequencies of the interacting waves is conserved. This 

selection rule of frequency arises because the interaction occurs in times 

during which the waves go through many cycles, and only those interactions 

are important which do not depend, in time, upon the rapid oscillation of the 

waves. 

* Because of the external magnetic field the linearized collision integral is invariant only under rotations in 
k-space about the magnetic field direction. Therefore, strictly speaking, one should consider only the axial har¬ 
monics $ e1’"* j where is the azimuthal angle. A doublyinfinite denumerable 'set of orthogonal polynomials 

in the variables Os1 + V)'* and kj , with respect to the weighting function ( can be 
found, (v. p. 60 for definition of ). There is then a single relaxation time for a given orthogonal polynomial. 
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The validity of the perturbation calculation depends upon the average 

wave pressure being small compared to the magnetic pressure in the plasma. 

We call the ratio of these pressures ß . The relaxation time xg is of the 

order of magnitude of (ßu^)"1. For the perturbation to be small, 7¾ must 

be large compared to so that ß must be small, as we stated. We may 

define a mean free path Aj^ for the waves by taking the group velocity times 

7-¾. Ak then is of the order of magnitude of ( ßwk) "1 which must be large 

compared to the wavelength, which it is if ß is small. Estimates of ß based 

upon energy and momentum considerations for the case of MHD compression 

fronts and not too strong MHD shocks show ß is at most three-tenths, which 

is sufficiently small to justify the perturbation calculation. 

The condition that tr be large compared to 0^"^, or Aß large 

compared to^-^ ,a-lso justifies the use of the random phase approximation 

since the waves go through many cycles or move many wavelengths in the 

time tß, which is the mean-free time between successive collisions. The 

phase correlations between three waves which have collided once, will be 

obliterated by collisions with other waves by the time these same three waves 

collide again. Hence, we expect that any three waves which do collide will 

be uncorrelated in phase. We cannot prove this and we use random phases 

as an assumption that our observations are coarse-grained with respect to 

detection of phase correlation. Appendix 3 contains the estimate that the 

wave interaction energy, taking into account phase correlations at a wave 

equilibrium temperature T, is of the order of _L, kT/(B Z/8tt) times the 
° 

mean wave energy. This is 10“^ times the mean wave energy for our plasma 
conditions. 

Randomly-distributed phases at any given initial time characterizes 

the statistical ensemble underlying our kinetic theory of waves. The trans¬ 

port equation which we derive contains no phase interaction. We concern 

ourselves only with the behavior of the squared-amplitude of the wave. Our 

concern is the departure from or approach to, the stationary state of the 

squared-amplitude. The stationary state, we show, is that of equal wave 

amplitude over all wave-vector space. It should be noted that random phases 

• This implies that we must deal with a wave distribution which is drastically out of equilibrium with the particles. 
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do not eliminate correlations of the fields at different points in the plasma, 

at a given instant. As pointed out in Appendix 4, the random phase distribu¬ 

tion is equivalent to a normal distribution of the field components. 

WAVE SCATTERING EQUATIONS 

We now derive the rate of change of the amplitude for the wave-vector 
2 

1c. We expand 1/( 1 + p/pQ) into the power series 1 - p/p0 + (p/p0) + •.. in 

equations (5. 1) and (5.2). We then substitute the Fourier eigenvector sums, 

equations (3. 21), for p(x, t), u(£, t), and ^(¢, t) in equations (5. 1), (5. 2) and 

(5. 3). The left-hand sides of equations (5. 1) and (5.2) are as follows: 

K . \ * k* *.i) 

since y/ is an eigen solution of the linear equations, when 

written in the six-dimensional notation explained in chapter 3. The right- 

hand sides of equations (5. 1) and (5. 2) become 

i s! v>v' 
r.t r r 

(5.4) 
• • • 

r(D ^(2) 
where 'S , S ,..., are six-dimensional vectors which contain all p, 

q, r,... dependent factors resulting from the "Vx. "xez". etc. opera¬ 

tions on the field quantities. Ap(t), Aq(t), Ar(t),... are the time-dependent 

wave amplitudes. In the absence of the non-linear terms these would be 

constant. That the product of more than two amplitudes appears is due to 

the power expansion of (1 + p/p0)_1, otherwise the non-linearity is quadratic, 

corresponding to a cubic term in the Hamiltonian. 
, ,..-1- w . ..+ 

We now invert the Fourier sums by multiplying by e 

and integrating over x so that our equations become 

SKnAP(‘'V’Ä 
P.3- 
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(5.5) M,r T 
-i (Wp+^tWr-Wj,\t 

where A (¢-^-q) and A (íc-"q-í) are generalized Kronecker-deltas 

which are unity when their arguments are zero and zero otherwise. They 

express the selection rule on wave-vectors in a collision. 

s::-t-s: , s::=^s: 
Equation (5. 5) is then integrated: 

.cu 

KP*' 

.M 

W ’ 

+ 1 ShU) 
w ^ r ^ Ú 

-vAr‘iVu>'uv^ 
dt’ 

-t 

<(*' 
(5.6) 

if we have the amplitudes varying slowly with respect to the exponential os¬ 

cillating factors. The amplitudes at t = t0 are denoted by the argument "t0". 

That t = t0 is our reference for initial data is of no consequence. It is only 

essential that t-t0 is n°t comparable to times over which the amplitudes 

vary appreciably. 

Then, using equations (5. 5) and (5. 6) we find that 

lA^I * Au (t) A*'*) +- c.c. = 

I S:; S!”., A^)AiiuAr'ii.)A,'CV O Am(ß-p'-f) • 
P4P',V Km P •) r ^ T t 

P-Vf c¿ 
./ rff' + • • • 

^ C11 t to •, 
+ T„, s«p<yr Afrt'N«'/'.«) Ak'WAl’VftS.i.«, 

t . . . (5-6') 
Equation (5. 61) must be expanded still further, by means of equation 

(5. 6), so that all terms which involve up to four amplitude factors evaluated 

at time tQ are displayed. 

|AKmp = , .^Kp« S Ap «») V Û (y+a..R). 

,r" Y . 

^ cf> _(!) 4 (5.7) 
+ n.P'.V SKDSPrV 
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% Ott' 

+ Ap(t.)Ar-(^AV«UAÍíW 
P’Ti'il Pt ^ 

;(wr+«,.wj,x j 

t I Sk^r ApW A^ifo) Ar<^») Ab «•) A'*’i ^tí + í'-í) ¿í(WP^^'-^ 

+ C.C. 4- . . . 

We now apply the random phase approximation to amplitudes at t = t0. 

Any pair of amplitudes, Ap (tQ) A^, (to), averaged over the phases, is 

I A (t )1 2 A ^(p + p') Ô m , m , . We recall that A , = A | . It is 
P P P o(2) ■P’ P P’ P 

not difficult to show that the term involving X' ' of equation (5. 7) will 
kpqr 

vanish when the random phases are averaged over, making k equal to one 

of the other three: p, q, or r and the remaining two becoming negatives of 

each other. We then have: 

o>+ 

krt v 

+ I Sp> ^ +- V^IA^IAkI 

i \ \ C ( Kn+s*;r w i ni 

^ ^(s,;:, +si;*,,) (5.8) 

where we have used 2 R 
., . . V i (w -u ) f , 

Je 0 dt'}~27r Ô ( OJ - U) ) 
' o' 

0 

and we have dropped the. argument "t " in the amplitudes. 

-1 

It is shown in Appendix 2 that 
t\\ >-,(•) V /- ('> 

/ C.O» C \ /■ c,0 _ i*) \+ 
( + )UP - ~ I Jp,!'-t -V- Iw, 

(5.9) 

when k, p, and q all belong to the same modes. If q belongs to a different 

mode from k and p then 
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f cl'> „ f’ 
¿hfy Wy ( + S^ K.-r' Wf 

, (•) o> + 

V ^P,K.-y 

We also have the condition that 
~o> + 

s'" 0-k.-frV 

because the fields ^(x, t), B(x, t) are real-valued and the eigenvectors are 

chosen so that ^/_p = ^/p+* ^611 can write equation (5. 8) as follows 

Ñk = Z Aííí^tv^)2‘Tr^wrtw<v.u;fc)Mkr%[NpN^NKÍNp-»-N«|,)] (5 
10) 

where N, = 
k 

lAkl th is the action density of the k 1 state. 
to. 

quency of the wave, of wave-vector k, relative to the fluid, 

shift is excluded. 

to. ° is the fre- 
k 

i. e., the Doppler 

• Using the methods of second quantization, one may derive equation (5.10) as follows: using the free.field 
Hamiltonian and the interaction Hamiltonian as siven in Appendix 2 and the usual creation and annihilation oper¬ 
ators in the interaction representation OJ ■ we may write the time rate of chaqge of a many- 
wave state-vector yfr in momentum space as follows: 

' It <t 1^10= <tlK,H,«)]!*> = 

Us utt.t.'í- p{e'‘íH,lt,d,'l~ i +!±> /t*H,(f) 

s l„n Mkf1 &l,Vp+v«)nrS(v«,-u.fc). 
*twfN^ M^iNp^OiNty+o] 

n + a£ûi»V«~*) 

CNH,W,|t^= i «iofV 

There is an elementary derivation by Peierls ^ using the usual perturbation expression for the transition proba¬ 
bility per unit time for the four first order processes: 
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if p, q, k refer to the 
same modes 

(5.11) 

if q mode differs from 
p and k modes 

We see that, due to equations (5. 9) and (5. 10), 

• • • 

(5.12) 

if we have only three waves k, p, q interacting. This states that the rates 

of transfer of action are equal for the three states, the sign of the rate of a 

state depending upon the sign of the frequency of that state in the 

Ô ( cj + w - w, ) factor. 
P 9 k 

The rate of transfer of action is 

constant for all k, because of ô (w + w 
P q 

identically zero if N, -or 
K wk 

- Uj^). This stationary state cor 

responds to a uniform energy spectrum. Though this is a stationary state, 

it is not unique because the total momentum density of the waves is conserved, 

as shown below. The general stationary distribution is 

1 
* 

the total momentum being proportional to w, for small w, analogous to the 

motion of the whole fluid with a velocity w. Non-zero W implies energy 

flux exists for the stationary distribution. Hence, the relaxation time for 

energy conductivity cannot involve only the fast waves. 
a * 

If we consider some function of k, f(k), and sum it with N^, we have 

some total.property of the wave distribution. If f(k) = then £ f(k) Njc = E, 

wave energy-density. If f(k) = k, then 2 f(k) Nk = M, wave momentum- 

density, and so on. We later are interested in the time rate of change of 

such total quantities. 

We see from equation (5. 10) arid the symmetries implied by (5. 9) 

that for any f(k) for which the sums can be performed, 
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(5. 13) 

I 1 “ 

« It 

1 ííí'Ñii 
k 

2 ^iwc+w>'w^* 
kp,V 

We easily conclude from equation (5. 13) that enerpy and momentum densities 

are conserved. 

We must now consider in detail the scattering of specific waves. As 

we have mentioned severed, times, the fast waves are more important than 

the slow waves with regard to their ability to diffuse and to randomize by 

scattering. There are several reasons. First, the fast waves are not 

heavily damped by either the ions or electrons for the range of wavelengths 

of physical interest, i.e. , between re and r^ while the slow waves are 

heavily damped. This means that the fast wave and not the slow wave distri¬ 

bution has a chance to amplify at the expense of plasma non-uniformities at 

an exponential rate that competes favorably against the damping rate. Second, 

the velocities of the fast waves equal or exceed the Alfvén speed while those 

of the flow waves never exceed the Alfván speed. Therefore, the fast waves, 

and not the slow waves, can move along with the non-uniformities of an MHD 

flow in order to make the amplification mechanism last a sufficiently long 

time for non-isentropic compression of their wave packets. And third, the 

fast waves scatter with fast waves at a rate which we show later, is faster 

by at least a factor of (kr^ , or about ten to one-hundred, than the rate at 

which fast waves scatter with slow waves, k is a mean wave-vector of the 

wave -distribution. 

As we have written down equation (5. 10) we have not specified the 

modes over which we sum or to which Np, N^, and refer. 

Let us consider first the case of fast waves only. We obtain from 

equations (5. 1) and (5. 2) the general expression for Skpq^ , the scattering 

matrix element. We will then use approximations that rely on kz, pz, or qz 
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being large compared to r. so that only the largest terms of the general 

matrix element are retained. 

In terms of the eigen-vectors of the linear equations which are given 

in equations (3. 19) and (3. 20), 

SH; = C [«Kvir + 
+ (5.14) 

where and ^ are the polarization vectors for fluid velocity and mag¬ 

netic field, respectively. ( *Mä is the fourier coefficient of w cu,? \rPo/2 
P/Pq- ^ A. /K 

For fast waves is of the order l/kr^ smaller than £ is 

the circular-polarization vector to order l/kr¿. Hence, the largest terms 

of Skpq 
(D are 

/V Ul 
C K 

Since ikxCi = - 
k V A r.k 

A i z 
to highest order in kr^, pr^, and qr^ 

UK°u)p0 

£, plus terms of order l/kr. smaller, we have, 

^ ---- -- 
kzrz (VArO ñi 

/\ 4. A A 

Hence, ^j^pq* which appears as the kernel of the scattering equation (5. 10), 

and is defined by equation (5. 11), is approximately, to highest order in kr^, 

pr. and qr^,: 

M ~ “r at_ I l*. fxL|2 

' (VaV f Z ^ 1 ^ P (5- ‘5) 

Expression (5. 15) is completely symmetric under permutation of the indices, 

as it should be for k, p, q all referring to fast waves. We will use this ex¬ 

pression later to obtain an estimate of the relaxation time due to the scattering 

of three fast waves. 
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Now let us take k and p as fast waves and q as a slow wave. For 

krj » 1| the magnetic polarization vector is of order l/kr¿ smaller than 

the fluid velocity polarization vector which is nearly circularly-polarized 

around the z-axis, the direction of the magnetic field. Corrections to the 

circular-polarization are of order l/krj. Hence, 

(5.16) 

However, this can be simplified to highest order in kr^, pr., and qr^. 

(5.17) 

Hence, M, for the scattering equation, by equations (5. 11) and (5. 17) is 
kpq 

approximately, to highest order in kr^, pr^, and qr^: 

(Ok u>p°__ 
(5.18) 

which is symmetric under exchange of p and q indices. We use expression 

(5. 18) to estimate the relaxation time for the collisions of two fast waves 

with a slow wave. At first sight, the expression for Mkpq for three fast 

waves, (5. 15), looks to be the same order of magnitude as expression (5. 18) 

for two fast waves and a slow wave. This would mean that the relaxation 

times would also be of the same order of magnitude for the two types of 

collisions. However, we show that in (5. 18) there is a cancellation of two 

nearly equal terms leaving a difference which is l/(kr^) smaller than ex¬ 

pression (5. 15) for the three fast waves. 

RELAXATION TIMES FOR WAVE COLLISIONS 

Let us consider a wave distribution whose action N^ is a small 

deviation by an amount Nk' from the stationary distribution Nk°. That is 

♦ The total rate of change of action in the fast waves due to this mechanism is zero. However, the corresponding 
total rates of change of momentum and energy in the fast waves are not zero. The estimate of the slower relaxation 
time by a factor (kr¿ )2 applies to the relaxation of energy. 
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(5.19) Nfe = Nk + Nlt 

o A2 where N, = -. Then equation (5.10), if we neglect products of the 
K (O k0 

small deviations, becomes 

• [ n; ( n^“- n;h n,' ( n;- mí ) ( n^m^Y ' 

where U)^= UJp° 4- and Np ( Np +-N^ ) — ® 

Equation (5. 20) is of the form: 

Ñk = 
(5.21) 

where 

and 

Lh. P> 
(5.22) 

i-Ñ7 « 2 Am(f t>-ti)2-TrS(u^-M,) MKf^[NP7Nj-Aí¿)-*- 23) 
Tk M 

T is an effective relaxation time of the action of waves of wave-vector k. 

Without difficulty, we replace the sums over p, q by integrals. 

The integration in (5. 23) is performed only over a surface in p-space 

because of the ô ^ (p + q -¾) which eliminates the summation over § and 

the <5 (w +a) -u ) which eliminates one of the integrations in ^-space, p q K 
expresses the eliminated integration variable, say one of the components of 

‘p, in terms of the other two, and introduces a group velocity into the denom- 

• If we write N’k* ÍN $ (k) , equation (5.20) become. (^f » I($) 

where a x-n-S(wfto\-o»K) NP* Ntf is a symmetric kernel. 

(^,¾) = /ilij) <1JW » 8# where 84« i(k> - 

Hence, ( is a positive semi-definite bilinear form. 

1 ( $ ) = 0 is a homogeneous integral equation of the second kind. Solutions of I ( $ )sF, the inhomo¬ 

geneous equation, must be orthogonal to solutions of I ( ) = 0. 

If we consider xK ? $ - I ( $ ) , the eigenfunctions , belonging to the eigenvalues | A , 

form an orthogonal set with respect to the weighting function I , i. e. i$M.(N^$Nd3k= 3nm' 
The solutions of I ( $ ) = 0, i. e., the eigenfunctions belonging to A — 0 are the collision invariants: 

U)f »"«I kx> ky, k2. 
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inator, analogous to the density of final energy states which appears in 

scattering theory, i. e., 

Sir.- R<rf,ivO 
(5.24) 

where P Q » » and PY are the three components of p and pa = pa (pp , ) 

is the expression for pQ in terms of p^ and p^ because w ^ +W/ß_p 

for fixed 1c. 

Tk of equation (5. 22) is the relaxation time we estimate here. How¬ 

ever for the three fast wave collisions, there is a complication because part 

of (5. 22) diverges, because of the high powers of p and q contained in Mkpq* 

When we integrate over the part of the surface for which p can become 

infinitely large we find that the integrand has a second order pole. In order 

to eliminate this difficulty Nk° is assumed to have the value< A /u k only 

for k < k , a cut-off radius, and Nk° is zero for k > kc< This corresponds 

to a wave-distribution that has established wave equilibrium only for k < kc. 

Other calculations are done with a Gaussian distribution multiplying A /w k 

so that the distribution has appreciable amplitude only for k < kc. The 

results for the two assumed distributions are nearly equal. The dependence 

of the relaxation time on the size of the cut-off indicates low rates for wave 

vectors near or beyond the cut-off and high rates well inside the cut-off. 

The case of a sphere in wave-vector space of constant wave energy up 

to a cut-off, as described above, is interesting because the important wave- 

vectors lie near the cut-off surface and these have a nearly stationary dis¬ 

tribution because equation (5. 20) vanishes identically if fhe surface of integra¬ 

tion over p lies entirely within a region of constant wave energy, i. e. , lies 

entirely within the cut-off sphere. This is not exactly the case for the waves 

somewhat below the cut-off surface. Whatever scattering of these waves 

there is adjusts the low wave vector region well inside the cut-off sphere but 

• The cut-off is introduced so that the total action and higher moments of the wave distribution, which we introduce 
later will be finite. The stationary distribution is the high temperature ( or classical ) limit of the Planck distribution. 
The divergence of the integrals overt-space is associated with the ultraviolet catastrophe. The Planck distribution 
is obtained as the stationary distribution for the quantum expression for the rate of change of action, therefore, no 
cut-off is needed. However, the wave distribution will be cut-off at high wave numbers by damping into particle modes 

long before quantum effects are operative. 
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not the large wave-vector region outside the sphere. The rates of change of 

physical properties depend upon high powers of the wave-vector because the 

kernel M, of equation (5. 20) depends upon high powers of the wave-vector, 
kpC[ y\ 

on the sixth power to be precise. Together with the surface element for p 

integration and the density of states per unit frequency (the group velocity 

factor of equation (5. 24), this makes a total dependence on the seventh power 

of k for the factor which multiplies (Np0 + Nq°) in equation (5. 22) for Tk_1. 

Hence the rates associated with the wave-vector region inside the cut-off 

sphere are unimportant compared with those in the region near the cut-off 

surface. Therefore it makes sense to use Nk' as a perturbation on the nearly 

stationary distribution of waves near the cut-off surface and to use the relaxa¬ 

tion time given by (5. 22) for these wave-vectors as also the characteristic 

time for the relaxation of any deviation of the action from the true stationary 

state. 

Let us now calculate the relaxation time given by equation (5. 22) 

for the three fast wave collision process. Because of the magnetic field 

and the wave-vector £ we have two preferred directions, making the inte¬ 

gration difficult. Therefore, we first consider the case for which the wave- 

vector ic lies along the magnetic field and then find the next two terms of an 

expansion in powers of the angle that k makes with the magnetic field, so 

that we have an estimate of the angle dependence of Tk on the direction of 

When we take î along the magnetic field, k = k =0. We find that X y 
the integration, with which we replace the summation, in (5. 22) is over one 

variable p since the surface of integration is axi-symmetric about the z-axis, 
z 

and the integration over the azimuthal angle is trivial. 

The selection rules for this case state that 

Pz+ 
?X + ^x = 0 (5. 25) 
TV +<h = ° 

where m, , m , m =+1 determines the polarization for each of the fast 
k p q - 

waves. 

Figure 2 shows the surface of integration in p-space for mk = + 1 and 

k >0. We see that there are three parts to the surface. One is bounded z 
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Fig. 2 Integration surface for fast wave interaction for a wave 
propagating along the magnetic field. 
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such that p doesn't exceed kz by more than about 10%. This corresponds 

to mp = m =+1. The second part corresponds to = + 1 and mp = - 1. It 

is tangent to the first surface at p = 0. p get infinitely large for pz 

q = k /2. The third part corresponds to = - 1 and mp = +1. It is tangent 

to the first surface at p = k. p on the third part also gets infinitely large 

for p = q = k /2. All parts are axi-symmetric about the praxis. We find 

that because p gets infinitely large for the second and third parts of the 

integration surface the integrand for integration over pz has a pole of second 

order at p = k /2, which has led to the introduction of the previousle men¬ 

tioned cut-off. The cut-off radius is chosen so that the cut-off sphere is tangent 

to the bounded part of the integration surface. This cuts off most of the two 

unbounded parts. The cut-off radius for this is about This leaves 

integration over the unbounded parts, which we estimate amounts to less than 

5% of the contribution from the bounded part. 

Equation (5. 22) can be written as 
, _,3 

.3 Z Í. _lx1-O-»)1-- _. 
—  = —J *(2X-1>* LM **+ fI3 (5.26) 

a VAZ 0 

if we include integration over the bounded surface alone. The unbounded 

surfaces have the same integrand except that the square roots have the op¬ 

posite signs and the integration is not over the whole interval 0 < x < 1 but 

over the intervals 0 < x < . 04 and 0 < 1 - x < . 04, where x = PzAz. 

From (5. 26) we estimate that 

^Tk - ■njs 
(5.27) 

where ß is the ratio of wave pressure to magnetic pressure Bo /8 tt. We 

have used the fact that the total wave energy density in the cut-off sphere is 

V/r (5. 28) 

The factor of three appears on the right hand side of (5. 28) because the wave 

pressure is one-third of the total wave energy density. 

We estimate the angle dependence of (5. 22) and find that 
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U) 
1 f 3 21 2 ^ 
--« ß”^! + -j- ôjç I for <<: f where 0^ is the angle k makes wi with 

k k 
the magnetic field. This estimate is somewhat difficult to obtain unless one 

integrates along î instead of along the magnetic field. The surface of inte¬ 

gration for 1c with a non-zero angle with the magnetic field is very similar 

to the surface of integration for 1c along the magnetic field except that it has 

rotated with 1c through the angle 0^. 

We now obtain an estimate of the relaxation time for two fast waves, 

k and p, interacting with a slow wave, q. 

For qr. >1, w , the frequency of the slow wave is m qz 

q \%\ 
U) 

Cl i q 

i. e. , plus or minus the ion gyro-frequency. 

The selection rule on frequencies in this case states that we must 

integrate over two surfaces of constant frequency for the p wave, because 

is fixed by Wq is a constant independent of q. The two surfaces 

correspond to w =oj ^ + However, w ^ is much smaller than w ^ 

by a factor (kr^'^. Therefore, the two surfaces are very close together. 

The rate of change of action in the fast wave state k is given by equations 

(5. 10), (5. 11), and (5. 18). If we look at the different terms on the right 

hand side of (5. 10) we find that the MjçpqNkNp term changes sign in going 

from w = + w . to -w ., The other two terms may not because they 
q ci ci 

involve Nq which changes sign, too. The slow waves are heavily damped 

and Nq is expected to be small compared to either Np or Nk> and we omit 

terms with N . Of course, without damping, w N = w N = w, N, is the 
q q q P P K K 

stationary state for this wave interaction. In that case Nq would be large 

compared to Np and N^. Höwever the relaxation time defined by (5. 22) for 

k = k = 0 can be shown to be given by: 
X y 

I 

— y vn +xMlNp° 
2 Ia), ■ L— J Tfc ' 
4‘"Ci o * 

(5.29) 

where —v .If we approximate the difference in (5.29) by a deriva- 
I Va r¿ fez 2 

tive with respect to m, and if we use N 0 w 0 cc e'cP we find that 
p P 
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I 

¿vi 
I (5.30) 

ok1 

However, ck^Ä 1 for wave-vectors near or inside the main portion of the 

Gaussian wave distribution. The result (5. 30) gives a relaxation time for 

the two fast wave and slow wave collisions which is larger by a factor 

cj k/wci» which is (kr^) , than the relaxation time for the three fast wave 

collisions given by equation (5. 27). For fast wave colliding with a slow wave 

we estimate: 

J_ _L 
3TT 

(5.31) 



SECTION VI 

MHD SHOCK WAVE 

Let us view the structure of a shock wave in our plasma from the co¬ 

ordinate system moving with the shock. We then see time - stationary non¬ 

uniformities of plasma properties in the shock region. We have dealt with 

such non-uniformities in the previous chapters. We take the shock as pro¬ 

gressing along the x-axis, perpendicular to the magnetic field along the z- 

axis. In the shock coordinates the undisturbed fluid ahead of the shock is 

then seen streaming in the negative x-direction with the shock's super- 

Alfv^n velocity. Within the shock front the stream velocity decreases in 

magnitude monotomically to its sub-Alfve^ velocity, also in the negative 

x-direction, behind the shock. 

Let us view the situation from the standpoint of the particles of the 

plasma. The particles, both ions and electrons, which simply gyrate 

around the magnetic lines in the still undisturbed fluid are seen to have a 

drift velocity, equal to minus the shock velocity, perpendicular to the mag¬ 

netic field in the moving coordinate system. Because we have transformed 

to a system moving with the shock velocity, u , the magnetic field, B by the s 
Lorentz transformation, is nearly the same, neglecting terms of order 

(u /c) , in both systems. However, an electric field does appear, which 
S/v u A 

is £,= X B , in the moving system. The charged particles drift per- 
A ÉcX R 

which pendicular to B and E , in a cycloidal motion, with a velocity C 
s /\ 

B 
is independent of mass and charge. By using the definition of E we find the 

A 

drift velocity to be -u , as it should be, since we have made the particles s 
drift by transforming to a coordinate system moving with the opposite velocity. 

For this reason, the drift is present regardless of whether the particles have 

many or few collisions although the cycloidal motions occur only between 

collisions. 

There are other drifts of the particles, but these drift velocities depend 

upon the charge to mass ratio of the particles, including the sign of the 

charge. These drifts are due to the bending or spreading apart of the field 
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lines. Due to the bending of the lines, particles which move in the helices 

wound around the field lines on the average feel a centrifugal force due to 

the curvature of the field line. The spreading of the field lines, i. e. , the 

gradient of B in a direction perpendicular to B produces a cycloidal motion 

because the gyro-radius is smaller in a field on one side of the gyro-motion 

than on the other side of the gyro-motion in the weaker field a gyro-radius 

21 
away. 

If the shock is very weak and its thickness is large compared to the 

gyro-radius then the particles will move so that their magnetic moments are 

nearly constant. The magnetic moment is constant if space-variations of 

the magnetic field occur over distances large compared to the gyro-radii or 

if time-variations of the magnetic field occur in times long compared to 

the period of a gyration of the particles around a field line. If we call the 

component of particle velocity perpendicular to the field line Vi. we then 

have that the magnetic moment M = t ^ we define a temperature 

Tl = average ), then Ti. must be proportional to B. We show 

below that B is proportional to the density, so that is, too. 

Because the magnetic field changes slowly, the electric field acting on 

a particle must be Ê = * B where v is the particle velocity averaged 

over the gyro-motion, i. e, , the drift velocity. In other words, the Lorentz 

transformation which v'e applied for the shock velocity relative to the particles 

in the undisturbed fluid ahead of the shock also applies to the particle anywhere 

in the shock, v then is the drift velocity seen in the moving system. It is 

-u for particles of the fluid ahead of the shock and -u^ some sub-Alfven 

velocity behind the shock. If the non-uniformities are spread over distances 

large compared to the electron gyro-radius but comparable or smaller than 

the ion gyro-radius then this applies to the electrons only, as'we have done 

in Chapter III. If the ion gyro-radius has to be taken into account the accel¬ 

eration of the ions must be included, i.e. , m.( —p+-\/¿-V ) = e(£- ^ ^ 

However, if both gyro-radii are small then E + ¥. x B=0. For the geometry 

outlined above, 30 t'iat ^ + li = However, con¬ 

'll J ^_vn = O , so that 

'-sAb = o. This conclusion depends on the straightness of the 

• "I 

servation of particles states that 
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A 
field lines; we have assumed that B always points along the z-direction. 

Hence B/n is conserved. Since lx , the temperature of velocities perpen¬ 

dicular to the magnetic field, is proportional to B because is constant, 

Tl is proportional to n. Since n does not change much across a weak 

shock, Tu cannot change much either. 

For a shock wave, the magnetic moments of all the particles cannot 

be strictly constant or else there will be no entropy increase through the 

shock and the conditions in front and behind the wave are exactly the same 

and we have no shock at all. If we compare conditions on the high density 

of the shock wave with those for an isentropic compression producing the 

same density then the entropy and the discrepancy of pressure and tempera¬ 

ture between isentropic and non-isentropic compression will depend on the 

third power of the shock strength, which we measure by the non-dimensional 

number: M^-l, where is the shock Mach number, the ratio of shock 

speed to the Alfven speed for conditions ahead of the shock. For weak shocks 

then, the entropy increase will be very small and the magnetic moments of 

the particles will be nearly constant. 

As viewed from shock coordinates, the streaming of the undisturbed 

fluid into the shock front has kinetic energy which has to be partially dis¬ 

sipated, in order for thermodynamic conditions to be different between front 

and back of the shock. In the case of ordinary aerodynamic shocks, the dis¬ 

sipation is by particle collisions which randomize the particle motion and 

produce an increase of thermal energy at the expense of the fluid kinetic en¬ 

ergy. It is proposed that for an MHD shock the dissipation occurs in two 

steps: first, fast MHD waves are excited, grow at the expense of fluid 

kinetic energy and scatter each other causing a randomization of their dis¬ 

tribution and, second, the fast waves are Landau damped or produce slow 

waves which are more heavily Landau damped. Nevertheless the waves 

eventually transfer their energy to individual particles. 

The relaxation time for fast wave-fast wave scattering is shorter than 

that for fast wave-slow wave scattering and shorter than that for other 

processes which eventually involve the individual particles. These slower 

processes occur behind the shock front as a "lag" phenomenon, as for 

example, the vibrational lag in aerodynamic shocks in CO^. 
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The fast waves with large k are also heavily damped and it is expected 

that fast waves scattering on fast waves generally spreads the wave distri¬ 

bution to high values of k after many collisions. Yet, for the shock front, 

the waves are to be randomized in only a few collisions, i.e. , the shock 

front is only a few mean free paths thick. The randomization must be pri¬ 

marily that of angle of k and not magnitude of k. Hence the damping of 

the fast wave distribution due to spreading to very large k is not important 

for this shock model, though it would be for a theory of turbulence which 

requires large scale motion decaying into small scale motion. However, 

we have estimated that the relaxation times for diffusion in angle and mag¬ 

nitude of k are nearly equal. 

The primary dissipation mechanism then is the scattering of fast waves 

with fast waves. The randomness of the wave distribution, when viewed from 

a sufficiently gross scale corresponds to an increase of entropy of the fluid. 

The investment of fluid energy mainly in waves is a highly non-equilib¬ 

rium state. There are relatively few degrees of fre edom associated with 

the waves as compared with the degrees of freedom of all of the individual 

particles, as we have already shown in Chapter IV. 

The essential ingredients of the theory of wave dissipation are: one, a 

mechanism for the growth of waves by amounts much greater than that cor¬ 

responding to isentropic changes, and two, a scattering mechanism that 

changes the wave distribution in times comparable to that for appreciable 

wave growth. These mechanisms are described by the wave transport equa¬ 

tion. And, it is easily shown from the dispersion relation, equation (3.13) 

that only the fast waves have super-Alfve'n group velocities perpendicular to 

the magnetic field. This property is essential for the waves to catch and 

keep up with the compressive front, in order for the waves to be amplified 

by the compression. In short, a wave must stay in the shock fr.ont for times 

much longer than those spent by a particle. 

We now apply the wave transport equation (4. 34) to the structure of an 

MHD shock. Instead of solving for the wave distribution as a function of x 

for each k, we consider continuity equations for total properties oí the wave 

distribution by taking moments of the wave distribution, as we had done with 

the Boltzmann equation to obtain the equations of motion. 
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In a later paper we will solve these equations using transport coeffi¬ 

cients so that fluxes of properties due to waves are set proportional to the 

gradients of the overall wave properties, e.g. energy flux at a point in the 

plasma is proportional to the gradient of the total wave energy at that point 

by a coefficient which is analogous to the heat conductivity. 

Another method of solving for the shock structure is described by Mott- 
14 

Smith . He assumes, for the case of an aerodynamic shock, that the par¬ 

ticle velocity distribution is the sum of two Maxwell distributions with the 

parameters of the distributions as functions of position in the gas. He then 

uses the continuity equations which he derives from the particle Boltzmann 

equation. These continuity equations involve quantities which are conserved 

in particle collisions. He then derives a moment equation for a quantity 

which is not conserved in a particle collision. This last equation is the only 

one which introduces the rates of particle collisions. The equations are then 

solved simultaneously, yielding the shock profile, from which the shock 

thickness is easily estimated. 

We derive a similar set of moment equations. Those which correspond 

to quantities which are invariant under all wave collisions, including those 

with slow waves, can be integrated and result in the algebraic Rankine- 

Hugoniot relations. We derive, in addition, moment equations that involve 

the properties of the fast wave distribution alone. Some of these involve 

quantities which are invariant under a fast wave collision with other fast 

waves and the equations for these will involve only the rates for collisions 

of fast waves with slow waves. Other equations involve quantities which are 

not invariant under fast wave collisions with fast waves, and these equations 

will involve the rates for all of the wave collision processes. 

CONTINUITY EQUATIONS 

We derive from the wave transport equations the continuity equations 

for action, momentum, energy and magnetic stress for the fast MHD wave 

distribution. 

We take equation (4. 34) and multiply by some function of k, f(k), and 

-71- 



then sum over k. We obtain 

I V,f(^|rEe + e«t I»,1'’4"0 + S (Z^“,E») (6.1) 

For f(k) =l/wt0» *%• » • » and ^/k* , we obtain, respectively, the con- 
^ h 

tinuity equations for action, N; x-component of momentum, Mx; energy, E; 

and X -X component of the magnetic stress tensor for the fast wave dis- 

tribution. These are: 

^V«N^ 

55 (IkV,MKx'> 

Ji Í Vy E» > + R 

JX ( Vy ?ky»V 

y n Ih-i 

. N\ <JUo _ filAyV 

r' ■*« (tfIji 

(2E-\ 
V "3t fyy-i- 

duo __ 
dx 

V _- /'dPxxX 
V IT U-JL 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

where 
o 

»I Nv= E*/w 

^kXK= 

E « 

Qy = ly 

Nk 

Mv' ly^kV 

?xx ’ 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

The terms on the right-hand sides are the rates due to wave scattering. 

If we sum k only over fast waves then the rates for momentum and energy 

are due to fast waves colliding with slow w^ves. The fast waves conserve 

momentum and energy among themselves, as was shown in Chapter V. 

The derivative terms on the left-hand side are the divergences of the 

fluxes of the quantities in question, vx being the x-component of the group 

velocity, which includes the velocity of the fluid. 

• Equations (6.2) to (6.5) implicitly use the assumption that the action for a wave vanishes exponentially with 

wave number, so that surface terms in k:space vanish in the integration-by-parts in equation (6.1). 
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We return to the equations of motion, equations (4. 9) - (4.13),and 

derive continuity equations for mass, momentum, and energy for all the 

MHD phenomena, namely, fluid non-uniformities, fast waves, and slow 

waves. Appendix 5 contains a derivation of these. Because all phenomena of 

interest are included these quantities are conserved and the continuity equa¬ 

tions are easily integrated to give the algebraic Rankine-Hugoniot relations 

which must apply everywhere in the shock. These use the assumption that 

particle pressure is negligible compared to wave energy in the shock. These 

conservation relations are: 

&Uo = a' (6.11) 

UoBo=a2’ (6.12) 

(6.13) 

(6.14) 

P*x + «.Uo* + = a. 

ÍE+Fv«)u. -t-<1, 7 f0u"! + ÿu. 
u ifTT 

where Û| , Ai , A3 and are constants and 

i, = Ik(v,-u.)Ek <6-15> 
Though the quantities associated with the waves are somewhat small 

compared to those of the fluid, denoted by subscript "o", as in Chapter. IV, 

they must appear in these equations in order to account for the required in- 
* 

crease of entropy across a shock. 

We note that there are nine unknowns: u , p , B , M , E, P 
o' ' o' o' X' ' XX' %c’ 

N ,, and Q^, where q^ given by equation (6. 15), is the energy flux and 

(6.16) Qx = liK(Vx-Uo)N* 

which appears in equation (6.2). We have also used the relationship 

R<x= ÍVx-Uo)f^Kx *6,17) 

to reduce the number of unknowns, and we have omitted (6. 5). 

• The 11-theorem for the waves is as follows: entropy S ® 2.it I Nfc I. This is the classical expression for 

entropy obtained from the usual statistical mechanics of Bose and Einstein particles: S= 
- Nj jfcn Nj - C j C j ] , Cj » I (see Mayer & Mayer, Statistical Mechanics.p. 112, 

John Wiley & Sons, Inc. N.Y. (1940) ). Where ^IC' ’ *s *ar8e compared to one. The rate of change 
of entropy due to wave collisions is then shown to be: 

$= ÍTkp,* IS*.*!2' (E*tpE*V [ErE^- 
where EK= J = >0. 
Hence, the entropy always increases for arbitrary wave distribution except for the stationary distribution. 
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There are only seven equations, four of which are algebraic. An ap¬ 

proximate solution is obtained if a reasonable assumption is made relating 

two of the unknown wave properties to the other wave properties. This 

requires the introduction of transport coefficients obtained from the steady- 

state, non-equilibrium solutions of the wave transport equation. The one 

quantity which is left undetermined is the shock velocity, which is left as 

a parameter. An approximate transport coefficient has been obtained in 

the form of an average relaxation time for the wave collision processes. 

This is unsatisfactory because different relaxation times are appropriate 

for different phenomena, and the ratios of these will relate the different 

moments. 

An approximate solution of only equations (6.11) to (6.14) are reported 

elsewhere^ This solution is based upon the assumption that qx=-Uo (•**- 

This occurs for a particular numerical value of the ratio of relaxation times 

associated with energy flux and momentum flux. 

The analysis presented here is not sufficiently advanced to predict the 

actual value of the ratio of relaxation times based upon the collision me¬ 

chanisms analyzed in Chapter V. 

Nevertheless, the average relaxation time gives a wave mean free path 

Ak defined as the relaxation time times the wave group velocity V^. 

Thus I _L I 
/V — TT ß te 

which agrees with a crude estimate made elsewhere, which is based upon 

the random-walk of a wave vector of a constant frequency wave in the magnetic 

field which is perturbed by the presence of other waves. This estimate gives 

A 3 
k ^ ^ ‘ 

The random walk of the wave-number has been described as follows: 

At constant frequency the wave-number k changes by an amount Ak if the 

magnetic field through which the wave propagates changes by an amount 

AB . The change AB is due to other waves in the vicinity of the wave 

in question. Using the approximate dispersion relation U)=» k co«,© 

for fast waves with k r.>>l, we obtain 2= ~-g-neglecting the change of 
A Z 1 

the angle of k with the magnetic field. Assuming that the wave interaction 

is coherent only over a distance Vwhere is the average wave-num- 
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ber of the fast wave distribution, then the phase of the wave changes by an 

amount in tlie distance '/'optical path length' 

required to obtain an r.m. s. change of phase of about 7T/2 radians by a 

random walk with a change of phase per step is then given by: Ç= 

having set the total phase change equal to the product of the phase change 

per step times the square-root of the number of steps Aj, . Hence 

w 
ifcßo» 

- 7Ta hn. / aBo z 
k1- K ) pk. 

here ^3=-5 gv— is approximately the ratio of wave pressure to magnetic 

pressure. ^ is then defined as the mean free path of the wave. This is 

interpreted as the average distance to produce convolutions of wavelength 

size in an initially perfectly plane wave front. 

To predict the shock thickness and its dependence on shock velocity 

the following crude arguments have been presented: The shock thickness 

is approximately two mean free paths since this is about the length in which 

the diffusion and dissipation mechanism will be operative. This also happens 

to be the shock thickness in particle mean free paths for strong aerodynamic 

shocks. The wave number is then chosen so that the mean group velocity in 

the shock direction is equal to the super-Alfven velocity behind the shock. 

This sets kr^Ä where is the shock Mach number, the ratio of 

shock speed to Alfve'n speed ahead of the shock. These estimates give the 

shock thickness as approximately r-rr . This formula agrees with the 
p riA 

shock thickness data of shock tube experiments in the range of shock Mach 

numbers between two and three. â , a fairly strong function of M . , 

has been calculated elsewhere based upon \ = - uo( ^xx“ T ) as mentioned 
X ó 

previously. 
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APPENDIX 1 

Numerical Values of Characteristic Lengths, Speeds and Frequencies. 

With the following plasma conditions: 
5o 

Temperature, T, equals 10 K. 
15 

Density, n, equals 10 particles/cc. 
4 

Magnetic field, Bq, equals 10 gauss 

We have the following lengths:_ 

Debye length, h, = ^ kT/4TTne2 10-4 cm. 

Electron gyro-radius (based on Alfve'n speed), r = /m cZ/4ïïne2ÂlO 

Ion gyro-radius (based on Alfven speed), r.= (m.c /4Fne J2fl cm. 

We have the following speeds: 

Alfven speed, VA, = Bq/ yTïïm.n Cr i08cm/sec 

Electron thermal speed = ^~2kT/m c¿108cm/sec 

Ion thermal speed = /zkT/m. 10^cm/sec 

We have the following frequencies: 

Electron gyro-frequency, 60c = eB /m c^lO^sec"* 

Electron plasma frequency,60p = y4Fne/m ^1013sec"^ 
c * 7 T 

Ion gyro-frequency,UJ c. = eB /m.c 3*1 0 sec" 

Ion plasma frequency, tOp. * yÍFñe/m.^ílO10 sec"1 

-2 
cm. 
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APPENDIX 2 

Hamiltonian Formalism for Non-Linear Wave Interactions 

Equation of Motion for scattering of three waves (see Eq. (5. 5)): 

= 5,, A, 
Letting = A*« ^ 

We obtain: 

Lagrangian: L = Lq + L^ 

Free-Field Lagrangian: = ^ ~ ^ ) 

Interaction Lagrangian: L[ = ^ <tf K 

,+ + 
Q, = (P . ; S. = S . must obtain because L is real; 
' k T -k kpq -k, -p, -q, 
the original particle velocities, magnetic field, etc. are real-valued. 

(A2.1) 

(A2.2) 

(A2. 3) 

(A2.4) 

(A2. 5) 

(A2. 6) 

(A2. 7) 

J7 ,, the conjugate momentum (to (f>^ ) - 
■*L 

5¾ Wk 
Hamiltonian: H = Hq + H^ = — L 

Free-Field Hamiltonian, Hq = T 

Interaction Hamiltonian, H, = -L, = "T 7Tb ^ (b (h 
1 1 'F't 

Equations of Motion: 

4 = $kn, M = - + 

^ '4 - sr*k)4 
Since 7Tk = and the two above equations must agree 

‘iV t ^ - ¿¿(4, <-<“>4.)* 
and 

" ^-p,^ ^ spfcí+ ^ 4 = wd ^ ^h/>^ A>^ )+ 
or 'wP^M».^+5Pi-v>^= sftp^ 

and similarly Spk-<v = uT ^ mo^e different 

(A2. 8) 

(A2. 9) 

(A2.10) 

(A2.11) 

(A2.12) 

(A2.13) 

(A2.14) 

(A2. 15) 

(A2.16) 

(A2.17) 
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APPENDIX 3 

phüp 

Phase Correlation by the Non-Linear Interactions at Thermal Equilibrium 

H f Hn jyj- 

2«= TT e 
7)=1 J 

H»= t/^t+ K” Tutf ) + s„im 

T is the temperature, and \i is the coupling constant. 

Appendix 2 describes the Hamiltonian, Hn. 

The interaction energy, E^ = pkT ^ 

/i. 
2 

/ , . _ 
We compare one term of the sum in Eq. (A3.1) with the mean oscillator 

energy kT under the assumption that the interaction Hamiltonian is 

small compared to kT. 

Then, 

is approximately: 

e 6 (A3,2) 

^rfin^i(hlll(LlxlW> ï 4 liy a i*i<* <A3-3) i. X >• a 
having expanded the second exponential factor of (A3. 2) in powers of 

p/kT and then integrated over the phase angles of the complex coordi¬ 

nates and conjugate momenta. 

TT*r \tt«\ ec^ I fale16” 
Hence, this one term of the interaction energy divided by kT is approxi¬ 

mately 

jl^T (A3. 4) 

where 
-a. ^7) 
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|jlS is approximately 

^ <A3-5' 

where V is the normalization volume for the oscillators, i. e. , V contains 

N oscillators. N/V — re“3, the number of wave degrees of freedom per 

unit volume. 

If we sum over ^ and m such that the À -function of (A3. 5) is 

satisfied, we have that the interaction energy between the oscillator and 

all other oscillators is approximately 

N ÍL . *T 
■y 

We now estimate the phase correlation introduced by the interaction 

Hamiltonian. We find that 

for 

<(>„<+)- 

: lino tnat r . < 

4 (u) €- a. I ^^ s„4 1*1 ’ / 

i'n, t - jt.w, 

4- 2 Z ^ ^‘*»1 <í>«.ltoUÍ.,(W M 5y>4v*S*«W -i--,--2 
V,i>.£ Wo 1 6) 

+ 2 7 Re 4 M —-; 
^ -1 »» / ¿(•"¿♦•»„-•"„♦itl 

We now take the ensemble average of Equation -(A3. 6) with respect 

to e"Hn/kT. We find that the ensemble averages of the terms on the 

right-hand side of (A3. 6) are respectively: 

fcr 

.,. / N kl" \ / N * \ ^ 

^ y y 'V ^'ri ' 

‘T « S.,V5j;5 :2/b 

Vj 

(A3. 7) 

(A3. 8) ' 

(A3. 9) 

(A3.10) 

where ^ m is the wavelength of the nth oscillator. 
N rT 

(A3. 10) is the largest term in powers of ^ bZ/STÏ 2 ^ which is 

omitted by the random phase approximation. Aside from the factor 
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n ) (u>„«-to))' \ 

^ (t - t0 ) in (A3. 8), (A3. 8) and (A3.10) are the same order of magni¬ 

tude. Of course, tOv, (t - t0 ) is much greater than one because the in¬ 

teraction occurs over many cycles of the nth oscillator. Hence, the 

omission of (A3.10) by the random phase approximation is not justified 

by the smallness of the interaction energy which correlates phases but 

by the appearance of the Wy, (t - t 0 ) factor in (A3. 8) which term is 

retained by the random phase approximation. 

(A3. 9) is omitted by the random phase approximation. We see 

that (A3. 9) is smaller than (A3. 8) by the factor 

N Vr 
where V B*/8ir 

v ^/err 

K< u>v,(*-fc,) 2 to„Ty, ~ ^ U S¿ltrr) 

where T is the relaxation time of the non-linear interaction discussed n 
in Chapter V. 3 /3 is the ratio of oscillator (wave) energy per unit 

' 2 
volume to magnetic pressure B /87T . 

N 3 1 ! 3 ^ 
The factor ( v ) arises from the $ -function in fre¬ 

quency which eliminates one of the variables of summation (integration) 

in (A3. 6). 

(A3. 8) is approximately times (A3. 7) as it should be in 

a perturbation expansion valid for times short compared to the relaxa¬ 

tion time of the interaction. 

Rate of Change of the Phase of the Complex Wave-Amplitude 

K = I„,,e A„Aj (A3.ii) 

is the rate of change of the complex amplitude: 

An = «TV, tL&n (A3.12) 

r^ is the magnitude and 0 n is the phase. We then use first and second 

order perturbations on the initial amplitudes, denoted by superscripts 

"o", to obtain the following rate of change of the phase if we assume the 

initial phases are random: 

"7 0 lx u, (A3 m 



where ^m" ‘''v»-. This should be compared with the expression 

for tv, the relaxation time for the magnitude of the complex amplitude, 

obtained in Chapter V: 

2 1 'a (A3.14) I 

• W,JL Ç The function / Aw is TT o ^Aw) 

Aw 

for Ato f >> / , so that the 

summation in (A3.14) is limited to the surface corresponding to Aw = 0. 

However, (A3.13) is not limited to such a surface because ( sin^AwtA//^,) 

is not a S' -function. Its behavior as a function of AW for Awí» I 

enables us to write (A3.13) as a sum over n1 of '/^ corresponding to 

values of Ato ranging from 0 to ¿Aln . That is, we find that 

• j_ c(u> 
T(cj) ~U> 

(A3.15) 

if we include only the relaxation times determined by the bounded surface 

of integration described in Chapter V. The fact that ranges from 

0 to means that we are dealing with rates for waves whose wave 

vectors are small compared to the cut-off radius and these rates are 

much higher so that (A3.15) is a conservative estimate of the rate of 

phase change. It is probably higher by a factor of 10. This indicates 

rapid change of the phase, so that in the time Tn the phase goes through 

many multiples of ZTT , which motivates the choice of uniform a priori 

probability for the phase. We say that the rapid rate of-phase change 

does not depend strongly on the initial conditions for the phases. The 

terms omitted by assuming initial random phases are small. Because 

the rate of phase change is much greater than the rate of magnitude 

change, we suppose that the phases will have ample opportunity to ran¬ 

domize even if there did exist phase correlations at some initial instant. 
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APPENDIX 4 

Space Correlation Implied by Random Phases. 

Bid(Xd,t) is the i^th component of the magnetic field of the wave 

distribution to be found at the point X, at the time t. 
a Q 

Bij(X,,t) is Fourier analyzed as in Chapter III, so that 

A fjîi. A * r ^ e.-i 
Bid(Xd,t) = 

A A A 
where C is the unit circular-polarization vector transverse to k and 

is the complex amplitude. The phase of is a random variable with 

equal probability ever 0 to ZTT . This makes the m quantities Bi^ityt) , 

¿1 = 1, 2, ..., m, random variables, too. The joint probability dis- 

tribution for these m variables is denoted by P (B^, ..., Bm)* This 

is the probability that Bit B, i B, (... , - By»^. 

The expectation value of some polynomial in the m-variables, say 

is given as follows: B 6? s: 

/U.[(AV' e, ] -[P*-V.e £„] »mi-W £, j -1.1-e„ 

where "Avg. " means average over the phases of A*,, • • • i • 

It is not difficult to show that P(Bj, ...» B^) is the normal distri- 

buti°n, ¡.a. _il3TlK"l3 

m 

(ZTT) 
YD/Z [d€tlM]Vi! 

/-*ivn 

yv^ V 

AV= 46(3 a,Bp PiBp') 

= E So,p +• 
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I 
In particular, P(B) = — 

\[zñi 

irr 

E s^- z Rue>,Bt y g b£ 

Z ( Ex - R,») 

where E = IAk\* , the energy density, and 

R12 = /8.(1, 

correlation function. 

the 
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APPENDIX 5 

Conservation Laws for a Non-Uniform Plasma 

T = EoV 
T = Bq(x) ez + B(x,t) 

p = uQ (x) ex+ u(x,t) 

Pp = P0 <x) + P (x*1) 

ÊT +■ 

/ ^ Í y' \ ^ irA_Br 
Pr( IF + Wt' ^Ut) = 

a ^ L 3 8t 
V X Et » *” t 

(A5.1) 

(A5.2) 

(A5. 3) 

(A5. 4) 

A 
7. BT = O 

Yl,- * Y>* 

(A5. 5) 

IJr + V* fif U.T sr O 

(A5. 6) 

(A5. 7) 

« h 
We denote by an average over t, y, z, and x : ———- . 

\\-i\cVz , l*-$U L*/t 

= jf.a, f^«|=a. 
X tT,i ) 

(A5. 8) 
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* Tí 7T 
®r) ^ - & 

^= ¿ f 7 + f1' B<1) 
I 1 oX o I 

E- i,iA,r 

^--¾1 V¿iA*r 

A ^ A 
^w.-yu PÜ d-^- 

r°Wo dx 

'í^Uo + ~ + P*x ^ - a, 
ff,í> 

/A A 

VEt >r' Ír-J^Br, 
0 n 

it 87rí£r + BÍ) + ^.y. EtxBt + ír.Er = 0 

^ ^ ^ A ^ Á / C * ^ A ^A, ^\ 
. rK Bt + Jt-£t * (^- ETABr eK t fU-e* _ ) 

^ i- P< i = a .. 4Tr r 2 a3 

A ^ a i' ~~ ■ ■ 
-^- F V Û . # ^ , A A ^ a A a A^ 
ifTr fc<=-íuxB)xB.£x_ ^ Bxj 

ITI w frret 

~ w ( 82" )4-110¾1 , C eo B, 
Htt ^ ^ 

^Trno «fn-32 

^ - _ c B2 ^By T lA I7"/ 
^ U-rTYí f> U-rr- — ^“K '’^V (Vjr-l¿o) ¥TTr)0e ifTT 2z 

(A5. 9) 

(A5.10) 

(A5.11) 

(A5.12) 

(A5.13) 

(A5.14) 

(A5.15) 

(A5.16) 

(A5.17) 

(A5.18) 

(A5.19) 

(A5. 20) 
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-i_ o 3BV 
li-" 

Z.K 

¿z)Us 

IAkI* 

k«y) + C. •]|AkI- 

í «.ÍE+P„) ^ ^âl+ ¿AU.’^ = a» 
™ ¿f,t ) 

(A5. 21) 

(A5. 22) 
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APPENDIX 6 

Relating the Right-Hand Side (R. H. S. ) of (4. 27) to Wave Scattering 

The R. H. S. of (4. 27) is: 

ls>\ fdidydz _itot .¿{hyytfeiZ) % B (xA} 4. c.r 

' J^FlTTz e e 5t 
(A6. 1) 

where denotes the rate of change due to non-linear wave inter¬ 
action and (pfr; is the Fourier co¬ 
efficient of the wave magnetic field . We also express a/k/t) 
as a Fourier sum of normal waves in a small box with periodic boundary- 
conditions. The two Fourier expansions agree for ( IX-Sl <‘“«/fc. 

^ vr A ¿ -¿tut ifR x-«uth 
*<*,»• Z K-Jpe ^ e ^ 

k' f- 

(A6. 2) 

A 

a 

w>y>JL 

^ I'Q lZ "s 

Ukfkj) b(ki-ki) 

(A6. 3) 

('f#Ak.Wei<“V-“,V(;„-)+c.c 

_ t -w)t- 
(A6. 4) 

( ( Àk'(t) C- 

- ilM’l2 'dr 
v.ai 

Vx ( X ) = -- fx) 
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