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AN ABSTRACT 

MAPPING OP THE PAR FIELD POLARIZATION 
OP ANTENNAS BY THE STEREOGRAPHIC PROJECTION 

by 
Jerome D. Hänfling 

Adviser: Dr. J. Blass 

Submitted In partial fulfillment of the requirements for 
the degree of Master of Electrical Engineering 

The purpose of the thesis is to introduce a new method 
of mapping of far field polarization of antennas by the stereo¬ 
graphic projection. The mapping of a three dimensional field 
plot into a two dimensional one is intended to simplify the 
understanding and presentation of antenna polarization. 

The far electric field radiation from antennas is 
computed in terms of spherical components 0o and $Q and plotted 
on an imaginary spherical surface named the radiation sphere. 
The spherical components are conformally mapped onto a plane 
by the stereographic projection of the radiation sphere. The 
plane is constructed to have complex cartesian coordinates 
(w = u + Jv)j the uQ direction corresponds to vertical and 
the vQ direction corresponds to horizontal. On the plane, 
the spherical field components are separated into vertical and 
horizontal components. The resultant electric field magnitude 
and direction at each instant of time over a cycle is then com¬ 
puted and described in terms of elliptical wave polarization 
(linear and circular special cases). The wave polarization 
properties (axial ratio, tilt angle, sense) are computed by 
means of a wave polarization chart, which is a direct analogue 
to the Carter admittance chart used in transmission line cal¬ 
culations. By presenting the wave polarization at each point 
on the plane, a polarization pattern results. 

The polarization patterns of the electric dipole, 
magnetic dipole and Huygens source are computed using the 

cry 
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electric current element as a fundamental building block. The 

linear polarization patterns of the above antennas are families 

of curves on the plane. The Huygens source Is presented as a 

family of vertical lines and the electric and magnetic dipole 

as families of circles. Circular polarization patterns are 

obtained by combinations of the above antennas. The polariza¬ 

tion pattern of the turnstile antenna Is computed as an 

example which Includes all possible wave polarizations. The 

results of the computation and presentation of this pattern 

are extremely Interesting and instructive. The polarization 

loss between two antennas is also analyzed, and given by a 

general formula. 
The method of mapping polarization presented herein 

is expected to act as a visual aid and analytic tool In the 

analysis of antenna polarization and in the synthesis of 

antennas for a specified polarization. 

cry 
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I. Introduction. 

The purpose of the thesis Is to Introduce a new 
method of mapping the far field polarization of antennas by the 
stereographic projection. This treatment of polarization is 
expected to aid in the analysis of the antenna far field 
radiation and in the design of antennas for a specified polari¬ 
zation. The presentation will describe the stereographic pro¬ 
jection as a powerful visual aid and analytic tool which can 
be used in solving polarization problems and in presenting 
these solutions. 

The thesis will include the following topics: 
derivation of far electromagnetic field radiation from current 
elements, discussion of the radiation sphere and polarization, 
description of the stereographic projection of the radiation 
sphere, derivation of mapping formulas, computation and 
mapping of linear, elliptical, and circular polarization pat¬ 
terns of antennas, and analysis of polarization loss between 
two antennas using projection. 



II. Electromagnetic Radiation from Current Elements. 

Electroraagentic radiation is established from dipole 
moments as a result of the movement of electric charge in 
elemental lengths. The radiation is directed outward from 
the source by time varying electric and magnetic fields. A 
general equation for the electric field radiation as a 
function of the source current oan be derived from Maxwell's 
equations. Prom this equation an expression for the near and 
far fields of a short current element can be obtained. 

The fields associated with radiation are formally 
expressed in terms of rectangular and spherical coordinate 
systems. These systems are described in Pig. 1. Point location 
in rectangular coordinates is determined by x, y, z; vector 
direction by xQ, yQ, zQ. Point location is spherical coordinates 
is determined by r, 9, cp, vector direction by r , 9 . <p . 

—0 “O *0 
The general electric field equations for source cur¬ 

rents are derived from Maxwell's equations. Maxwell's equations 
describe the experimental results of Ampere and Faraday math¬ 
ematically in a consistent set of equations. They relate the 
electric and magnetic fields to the source excitation and are 
listed below for convenience (Ref. 7). 

? X H = e + oE (1) 

V X E = (2) 

V • B = 0 (3) 

7 • D = p (4) 

By solving these equations in terms of source current excitation 
(J) and using the concept of vector potential A (H = V x A) it 
can be shown that: 
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Pig. 1 - Rectangular and spherical coordinate systems. 
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(6) 

This is the general equation for the electric field in terms 

of the vector potèntial (Ibid). 

The near and far fields of a short current element 

can be obtained from the above general electric field equation. 

Assume a dipole moment made up of a length Al pointed in the 
z direction carrying a current (I exp Jut). It can be shown 

that if I is a function of (wt-pr) and A = JlM/4irr where M 
is the differential length of the current element, then equation 

(5) will be satisifled. It is noted that the vector potential 

will always be in the direction of the current element. 

Assuming 

I = |I| exp J(ut-Pr) 50 (7) 

A fill exp J(ut-pr) dz gQ (8) 

J 4irr 

If Al approaches a length (a) which is very small compared to 

X and r then 

(9) la exp J(ut-Pr) 
4trr A z 

the integrand being practically constant over the range of 

integration. The vector potential in the r0, 0O and $Q 

directions can then be found from the following: 

(10) 

(11) 

% - (A • ï0>*o ‘ 0 
(12) 

cry 
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The electric field may be found from equation (6) 
from which it can be seen that the electric field will be in 
the same direction as the vector potential. By substituting 
equations (9) (10) and (11) into (6): 

la cos 9 
27? (13) 

Ee * 
la sin 9 

4tt4 Mj. (14) 

(15) 

At considerable distance fr»..n the current-carrying wire, r 
becomes sufficiently large that \/r and its powers are negligible. 
This means that the electric component Er drops out rapidly 
leaving only Eq which becomes: 

, = Jatia-sln! (16) *0 4irr ' 

This result can also be obtained from 

E = -Ju>u £ (A • 0O) 0O +(A . j0)#0 J 

where 

Ia 
- * ïTr 

(17) 

(18) 

and when substituted in equation (17) becomes 

(19) 

which holds for the far electric field of a short current 

element oriented in any direction. The relationships necessary 
to solve equation (19) are listed below and described in Pig. 2. 

I = ax^ + b y + c — -o *0 -o (20) 

cry 
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§0 * cos tt cos <P xQ + cos 9 sin <p Y0 “ sin 0 zQ (21) 

$0 = -aln «P + cos <p y0 (22) 

Formula (19) for the far electric field will be used 

for many of the derivations In the remaining portions of the 

thesis. 



8 

III. Radiation Sphere and Polarization. 

The far electric field radiation from any antenna 

can be uniquely described by a gain-polarization pattern. The gain 

polarization pattern consists of a plot of the wave polarization 

and power density normalized to that of an Isotrope for each 

direction (w,<p ) from the antenna. The imaginary rpherical sur¬ 

face centered on the antenna, and upon which the field? are 

plotted, is so useful that It has been named the radiation 

sphere. The radiation sphere, wave polarization, and polari¬ 

zation pattern are discussed below. The methods of computing 

the wave polarization ellipse are also described. 

Por convenience, the radiation sphere is chosen to 

have a diameter of unity as shown in Pig. 3. The sphere 

derives its usefulness from the properties of the far field. 

Pirst the electric field is perpendicular to the radius ve-tor 

(rQ) and can be represented by a small line segment tangent 

to sphere, second the gain (power density normalized to an 

Isotrope) is only a function of d and <p and is the same for 

all spheres concentric with the antenna, and lastly the 

direction (0, 9) can be represented by a point on the sphere. 

The wave polarization is defined as the magnitude and 

direction of the electric field at each Instant of time over 

a cycle for a specific point on the radiation sphere. The 

wave polarization is, in general, elliptical, but linear, a 

degenerate form and circular are usually considered as special 

cases. When the wave polarization of every point on the 

radiation sphere is considered, the resultant field plot is 

called a polarization pattern. In general, the polarization 

pattern will be elliptical, but for certain antennas can be 

separated into linear and circular. When the gain is also 
included, the field plot will be called a gain-polarization 

pattern. 

For linear wave polarization the magnitude of the 

electric field vector varies sinusoidally from positive to 

negative values over a cycle while the reference direction 

remains fixed, as shown in Fig. 4(a) Çtef. 10). A linear 

cry 
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Fig. 3 - The Radiation Sphere. 
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Fig. 4 - Wave polarization. 
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polarization pattern will occur when the wave polarization is 

linear lor each location on the radiation sphere. This results 

In a family of curves (loci) on the surface of the sphere. 

For elliptical wave polarization the magnitude and 

direction of the electric field vector vary with time, as shown 

in Fig. 4(b). The tip of the E-vector rotates clockwise or 

counterclockwise (from some reference direction) describing 

an ellipse each cycle; the direction of rotation is called the 

sense (ibid). The convention to be used here Is shown In Fig. 5 

for an approaching wave. When the major and minor axer, of the 

ellipse are equal, the wave polarization Is called circular, 

Fig. 4(c). Wh.n the wave polarization Is circular for all 

points then a circular polarization pattern results. 

The wave polarization ellipse can be uniquely described 

In terms of the axial ratio, tilt angle, and sense. These 

quantities are shown In Fig. 5 for an approaching wave; they 

are referenced to an u, v, coordinate system which will be 

described In detail In Section IV. In order to compute the 

quantities listed, the wave polarization ellipse ban be 

thought of as produced by two linearly polarized waves of the 

same frequency or two circularly polarizad waves also of the 

same frequency (Ref. 8). The two linearly polarized waves are 

of arbitrary amplitude and time phase, but are orthogonal in 

space as shown In Fig. 4(b). The two circularly polarized 

waves are of arbitrary amplitude, of opposite sense and In 

time phase In the direction of the major axis of the resulting 

ellipse, as shown In Fig. 4(d). In this thesis, both concepts 

will be uued to compute the polarization ellipse. 

The method to be used herein for computation of the 

polarization ellipse is based on the analogy between the 

orthogonal transverse electric fields In polarization and the 

orthogonal transverse electric and magnetic fields In trans¬ 

mission lines (Ref. 11, 13). In computing the polarization 

ellipse the magnitude and phase of the ratio of the linearly 

polarized wave amplitudes Is seen to be analogous to the 

magnitude and phase of normalized admittance; the ratio of the 

left to the right circularly polarized waves is analogous to 

cry 
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the ratio of reflected to Incident waves (reflection coef¬ 

ficient) and the tilt angle to the phase of reflection 

coefflclentj the axial ratio term la taken to be analogous to 

the standing wave ratio. An example (referenced to the u, v, 

coordinates shown In Fig. 5) Is given to demonstrate the above 

view point, the formulas used are derived In Appendix I. 

The transverse wave amplitude 1^1 and |EV| and time 

phase are given. 

Ey - 0.4 - J0.1 * 0.5 /-36.6° (23) 

Ey - -0.3 + JO.85 « 0.3 /103.4° (24) 

The corresponding amplitude ratio |P| and phase 

difference (Ö) are 

E 
p « |P| « 1.8 /146.2° (25) 

P - -1.5 + J1 (26) 

P Is modified by J to make the analogy to admittance consistent, 

see Appendix I. 

JP « p - -1 - J1.5 (27) 

In order to find the axial ratio, tilt angle, and 

sense, the ratio between the left and right circularly 

polarized components (q) Is found, just as the reflection 

coefficient Is needed to compute the SWR and phase. For q less 

than 1 the sense Is right-handed or counterclockwise. If q Is 
greater than 1 the sense Is left-handed or clockwise and q' > ^ 

must be substituted In the analysis. 

q " I * ITp ' 25 = 1.66 /126.8° (28) 

q' = Î7SS /-121.8° = 0.6 /-126.8° (29) 

cry 
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IO 

AXIAL RATIO = 
O e> 

tilt anche = T 

SENSE = CLOCKWISE OR LEFT-HAWPED 

- COUNTERCLOCKWISE OR Riq-HT-HANDEO 

Pig. 5 - Wave polarization ellipse. 
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Fig. G - Waves polarization chart. 
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q' = |q'| exp -J2t (30) 

From the magnitude of (q1) the axial ratio may be computed 

1 + |q* J 1 + 0.6 
r --- -- 4 

1 - jq’l 1 - 0.6 
(31) 

From the phase of q* the tilt angle (t) is computed. 

T« j(-126.9°) « -63.4° or 116.6° (32) 

Rather than have to analytically compute the polari¬ 

zation ellipse each time, a wave polarisation chart similar 

to the Carter Impedance chart has been developed by Deschamp 

and Rumsey (Ref. 11 and 15). This chart is shown in Fig. 6. 

The small circles are lines of constant |P| while the great 

circles are lines of constant (g). The above example has been 

carried out on the chart shown. 

In Kraus (Ref. 10) formulas are developed in terms of 

the Dlnearly polarized components of the wave Independant 'of the 

transmission line analogy. As a check, the above example has 

also computed from these formulas. 

The example given in this section has been taken from 

the polarization pattern computation of the turnstile antenna 

(Section VII) for 9 - <p = 30°. 

cry 
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IV. Stereomraphlc Projection of the Radiation Sphere. 

The 3tereographlc projection of the radiation sphere 

Is used to map the antenna polarization pattern from the 

radiation sphere to a complex plane. By mapping the three 

dimensional field plot Into a two dimensional field plot the 

analysis, computation, visualization and general understanding 

of antenna polarization Is greatly simplified. The discussion 

that follows Includes a description of the stereographic pro¬ 

jection, and complex plane, and a derivation of formulas for 

the transformation of locations and directions from spherical 

coordinates to complex plane coordinates. 

The stereographic projection Is a geometrical construc¬ 

tion associating every point on a sphere (except pole 9 » » ■ 0°) 
with a unique point on a plane; for the analysis the plane is 

taken to be complex. The construction of the projection Is 

shown plctorlally In Pig. 7 (Ref. 2 and 18). The radiation 

sphere surrounds the antenna and Is tangent to the plane at 

point (0). The points on the sphere are transformed to the 

plane by straight lines from pole 0‘ through the sphere to the 

plane. The projection Is conformal, meaning that the magnitude 

and sense of angular relationships between Intersecting 

curves on sphere and the corresponding ones on the plane are 

preserved; the Infinitesimal shapes of areas about any one 

point of the sphere are preserved although they may be magni¬ 

fied or shrunk (Ref. 6). The projection transforms circles 

on the sphere to circles on the plane (straight line special 

case of circle); in particular, oircles on the sphere which pass 

through pole 0' become straight lines on the plane. The 

polarization pattern for the entire sphere may be mapped on 

the plane as a result of the properties of the stereographic 

projection. An interesting mathematical proof of the conformal 

properties of the stereographic projection can be found in 

(Ref. 1). 

The mapping of antenna polarization is accomplished 

analytically by the introduction of a complex plane, using 

Cartesian coordinates as shown In Pigs. 7 and 8 (Ref. 5). This 

cry 
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has been done to simplify computations and to reference all 

polarizations to a fixed direction, namely vertical polari¬ 

zation. The real axis (u) is chosen as vertical pointing toward 

the top of the page and the Imaginary axis (v) is horizontal 

pointing toward the left, which Is equivalent to the standard 

complex plane rotated counterclockwise by 90°. 

The projection of the u and v axe:; to the plane from 

the radiation sphere is repre ented pictorially in Pig. 7 

(Ref. 12). The great circle 0, -J$, 0, j| project’, into the 

v axis, the great circle 0, O', j projects Into the u axi 

and the great circle -J¿, +¿, +J¿ projects into a circle 

of unit radius. All of the projected points within this 

circle are in the forward hemisphere and all the points outside 

the circle are in the rearward hemisphere. Por convenient 

representation in this thesis, the polarization pattern will 

be mapped within the unit circle for one hemisphere at a time. 

The correspondence between points and vectors on the 

sphere and plane is shown in Pig. 8, by an end-view of the 

radiation sphere and a projected side-view of the forward 

hemisphere. Any point In the plane is defined by w « u + J v 

and Is located at the Intersection of straight lines parallel 

to the coordinate axes. The corresponding point on the sphere 

is located at the point (P) which is the intersection of 

orthogonal circles containing the point (?) and perpendicular 

to the coordinate planes. Any vector at a point in the complex 

plane is defined b.v components in the u0 and v0 directions. 

The corresponding vector on the sphere has components tangent 

to the two orthogonal circles at this point. 

The intention of this thesis is to map the polari¬ 

zation vectors on the complex plane by computing their components 

in the uQ and vQ directions. When every vector at every point 

ia mapped in this manner, a complete two dimensional represen¬ 

tation of the polarization pattern in Cartesian coordinates 

is obtained.fthe polarization pattern for each hemisphere is 

inside a circle of unit radios). It must be pointed out at 

this time that initially the polarization vectors could have 

been analyzed by 0O and çp0 components on the plane rather than 

cry 
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separating them into u0 and v0 components. Two nong the tdren- 

tages of the latter, are that there exists a fixed direction 

to which the resultant elliptical and linear wave polarisations 

could be referred and that it is sometimes convenient to 

compute the general equation and form of linear polarization 

loci and elliptical polarization patterns (Section VII). 

The polarization of the antenna and directional from 

the antenna has been computed in Section II in terms of spheri¬ 

cal coordinates. The location of a point on the sphere being 

given by 0 and 9, and direction of the polarization vector by 

components in the eQ and $Q directions. The point location and 

vector directions are transformed to the plane by a series of 

trigonometrical and geometrical transformations. 

The location of point P on the sphere is given in Pig. 9 

In terms of (90 - <p) (angle between great circles A and B) 

and 9 (angle between z axis and small circle D). An alternate • 

representation, which is helpful in computation, is also shown 

in terms of ß (angle between great circles C and B) and x 

(angle between y axis and small circle E). The formulas 

relating the two conventions are listed below and in Pig. 5. 

sin x 
cos 9 
cos F 

cos x = sin 9 s^n ^ 

tan X c , 9ÍH.X- 
1 + cos X 

(33) 

(34) 

(35) 

The stereographic projection of any point P (0, 9) 

on the sphere to a corresponding point P (u, v,) on the plane 

is derived from Fig. 10 using the same end view representation 

as in Fig. 8 (Ref. 12). Each point can also be considered to 

have coordinates p and x in order to simplify the derivation. 
The points are located at an angle ß with respect to the u axis 

and at a length tan x/2 from the origin 0. The u, v components 

of the points are 

u * tan % cosß (36) 

cry 
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5inx = co¿ d/cos ß 

cosx= sin& 

tan x/í - sinx /1 + cos X 

Pig. 9 - Trigonometry of polar and meridional components on 
representation of sphere. 



V = tan I sin ß 
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(37) 

By substituting the trigonometric relationships (33) (34) and 

(35) into equations (36) and (37) u and v can be expressed as a 
function of 0 and <p. 

u cos 0 
1 + sin <p sin 0 (38) 

,, _ sin 0 cos 9 
1 + sin 9 sin 0 (39) 

The transformation of vector components In the §0 and 

f0 directions on the sphere to vector components in the u0 and 

vQ directions on the plane is derived in Pigs. 11 and 12. In 

Pig. 11 the great circle and small circle which defines 0Q and 
«p0 are mapped conformally on to the plane. The location on 

the plane of the centers and radii of the circles as a function 

of 0 and <P are derived from Pig. 11. Any point P can be 

selected with vectors of magnitude A in the ©0 direction and B 
in the <po direction. The 0Q vector is tangent to the great 

circle at P and the vector is tangent to the small circle 

at P, as shown in Pig. 12. The angle between the GQ vector 

and the uQ direction and the angle between the <po vector and 

vQ direction are both equal to 0. Multiplication of the 

vector magnitude by sin 0 and coso will give the uQ and v0 

components as is derived below: 

Ee ' A §0 ; Eip * B »o 

Eq * -A cos 0 u„ + A sin 0 v 
w -0 -o 

= -B sin 0 uQ - B cos 0 vQ 

Eu = -A cos 0 - B sin 0 

Ey = A sin 0 - B cos 0 

(40) 

(41) 

(42) 

(43) 

(44) 

cry 
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Fig. 10 - Complex plane point locations from polar and 

meridional components. 
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lA 
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i + 5in 
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Pig. 11 - Stereographic projection of small and great circles. 
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W-PLANE 

Ag, 

c . U« v; Sinxj' = — = - 
f>9 

cos 9 COS * 

smd ¿in ^ 

Cos tí = \rc ♦ V7 Ut-tX/ smd-fSm^ 
i -h -Sind Sin »A 

Pig. 12 - Transformation of vectors in the 0 and 
“0 

to vectors in the uÄ and v^ directions -o -o 

<iQ directions 
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Ey (1 - I tan o ) 

Eu (| + tan o ) 
(45) 

The relations for the sin o and cos o are derived from geometry 

of Pig. 12 In order to obtain ^ and Ev In terms of 6 and <p. 

sin o cos 9 cos o 
1 f sin 9 sin e (46) 

COS 0 » sin 9 + ein e 
1 -i- sin 9 sin e (47) 

tan o cos g cos * 
sin 0 + sin !p (48) 

Prom the above equations the wave polarisât lor« can be broken 

up Into Eu and Ev components for all points on the sphere. 

Prom these vectors the polarization pattern may be computed 

and mapped with reference to a fixed direction (\¿0). 

cry 



27 

V. Mapping of Linear Polarization Patterns of Antennas. 

The linear polarization patterns of such fundamental 
radiators as the electric dipole, magnetic dipole and Huygens 
source are analyzed. These radiators will be constructed from 
the electric dipole (short current element) which will be 
taken as a fundamental building block of all antennas considered 
In the thesis. The polarization patterns have been computed 
and mapped on the complex plane using equations (46) and (47) 
when necessary. 

The electric dipole Is taken as a short current element 
at the origin of the x, y, z coordinate system. The equation 
for the far electric field when the element Is oriented In the 
z direction was derived previously and is given below In 
equation (49). The far electric field Is in the §0 direction 
which Is along the meridians or great circles. The polarization 
pattern for the forward hemisphere has been plotted on the 
complex plane as shown In Pig. 13 (a); the arrows designate 

the reference direction. The gain could also have been plotted 
by a series of vectors of varying length along the 90 direction 
or by contours of constant gain (small circles). 

When the dipole Is oriented In the x direction, the 

pattern of Pig. 13(a) would be rotated by 90° keeping the u, v 

axes fixed. The electric field for this case can be derived 

from equation (19). Intuitively, It is known that the 

polarization pattern on the sphere is invariant; it is solely 

determined by the type of antenna. When the dipole is 

oriented in the y direction, the pattern will be that of Pig. 13(b). 

Although the answers to case (b) could be derived intuitively, an 

analysis was performed to check the derivations of the pervious 

sections. The far electric field is given below in terms of 

spherical coordinates. The electric field was transformed to 

the complex plane using equations (46) and (4?)• The result 

was the same as Pig. 13(b), therefore substantiating the method 

of mapping polarization. 

Electric Dipole: 

Jmla sin 0 ô 

z íir o x 
cry 
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(a) Electric dlpole - z direction. 

lA* 

Z 

(b) Electric dipo.le - y direction. 

Plg. 13 - Linear polarization patterns of electric dipole. 

I 
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-Jubila (cos 9 cos <p 9Ä - sin 9 ®Ä) 
Xe-^ (50) 

-Jmla (cos 9 sin® 9Ä + cos * <P ) 
-ïrr-^2-2_ (61) 

The second fundamental antenna Is the magnetic dipole. 

This dipole Is usually thought of as a small circular loop of 

wire; here it will be taken as a square loop made up of four 

electric dipole current elements. Por a ?oop whose axis is 

oriented in the zQ direction, the far electric field is derived 

in Appendix II and is given below, formula (52). The electric 

field is in the ®0 direction for all points on the sphere. The 

polarization pattern is mapped in Pig. 14(a) showing the 

electric field along the small circles. It is noted that the 

far field of the magnetic dipole is 90° out of time phase with 

the electric dipole, when the source currents are in phase. 

As for the electric dipole, the polarization patterns 

for magnetic dipole axes oriented in the x and y directions 

could be deduced from the derived loci on the surface on the 

aphere. Por the dipole axis oriented in the x direction the 

pattern would be that of Pig. 14(a) rotated by 90°, (u, v) 

axes fixed. Por the dipole oriented in the y direction, the 

pattern will be that of Pig. 14(b). 

Magnetic Dipole: 

.E 
wpla k sin 0 (£c 

ïFr (52) 

-<4ila\ (sin®0 + cos 0 cos ^-¾) 
4irr (53) 

E 
tdpJa k ( cos® 0 - cos 0 sin ® $ ) 

4vr (54) 

cry 

The above equations can be derived directly from the 

duality between the electric and magnetic dipoles (Ref. 14). 



y JIT -A- 

(a) Magnetic dipole - axis In z direction. 

u. 

2. 

(b) Magnetic dipole - axis in y direction. 

Pig. 14 - Linear polarization patterns of magnetic dipole. 
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The Huygens source Is one of the fundamental sources 

in electromangetic theory. It Is an orthogonal electric and 

magnetic field In phase and acting at a point In free space. 

This source Is used as a tool In computing far fields from 

the Integration of the aperture fields of waveguides, horns, 

reflectors etc (Ref. 17). Because of its usefulness, the 

polarization patterns of the Huygens source Is of practical 

Importance as well as academic Interest. 
The Huygens source can also be thought of as consisting 

of an electric and magentlc dipole, oriented as shown in Pig. 15(a), 

with source currents in phase quadrature (Ref. 14). It will 

be considered in this way so that the fundamental current 

element may be used for the analysis. The far electric fields 

of the electric and magnetic dipole are added in terms of 

spherical coordinates. 

E 4* E e m 

Jwjil^sln 0 0O uiil2a2k (sin<*0o + cos 0 cos <p j0) x 

-47?-1-ür- (55) 

li = llj Pnd I2 * -|I2I ; I1!I * aklx2l 'I1! (56) 

g _ “Juila 
4irr 

(sin 0 + sin <p) 0O + cos 0 cos <p 

a v ¡T~" 
•1 (57) 

In appendix III the same formula is derived for orthogonal and 

in phase electric and magnetic fields (the true Huygens source). 

The mapping of the polarization pattern to the complex 

plane is accomplished by formulas (46) and (47). Omitting 

constants, the following results are obtained. 

E u (sin 0 + sin tp ) sin 0 -f sin q> 
1+ sin 0 sin sp cos 0 cos <p cos 0 cos tp 

1 + sin 0 sin <p 

(sin 0 + sin <p ) cos 0 cos <p 
1 + sin 0 sin <p~ 003 0 cos <p sin 0 sin <p 

1 + sin 0 sin s 

Eu = -(1 4 3In . sin 8) (60) 

Ev = 0 (61) 

cry 
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tu 

(a) Huygens source - parallel to y z plane. 

» 

Pig. 15 - Linear polarization patterns of Huygens source. 
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The polarization pattern of each antenna is shown 
dashed in Pig. 15(a). The resultant polarization pattern is 
a family of straight lines all oriented parallel to the u0 
direction. This can be considered an ideal result, since 
this source is sometimes referred to as plane wave source and 
what could be more plane that a family of straight lines 
(Ref. 3). The polarization patterns for orientations of the 
two dipoles parallel to the x,z plane is shown in Pig. 14(b)i 
the pattern for orientation In the x,y plane can easily be 

deduced. 
Another interesting polarization pattern computed was 

that of an electric and magnetic dipole whose axes were aligned 
and whose currents were in phase quadrature. The polarization 
pattern is a family of loxodromes (rhumb lines) on the radiation 

sphere (Ref. 2). 
An array of electric and magnetic dipoles can be 

combined to produce any non-isotropic polarization pattern by 
variations in the macnitude, phase and orientation of their 

currents. 
Using the electric dipole current element as a funda¬ 

mental building block of antennas the far field polarization 
pattern of the electric dipole, magnetic dipole, Huygens source 
and loxodromie source were derived. The analytic mapping of 
the polarization was accomplished using the formulas derived in 
previous sections. The value of this method of analysis will 
be demonstrated further in the Sections VI and VII where 
circular and elliptical polarization patterns are computed . 

cry 



34 

VI. Mapping of the Circular Polarization Patterns of Antennas. 

A circular polarization pattern occurs when for each 
direction from the antenna the wave polarization is circular; 
the polarized wave can then be considered to result from two 
orthogonal linearly polarized waves of equal amplitude, but 30 
out of time phase. The circular polarization patterns of the 
E and M dipole and crossed Huygens sources have been computed 
and mapped on the complex plane. 

The E and M dipole is comprised of an ele trie dipole 
whose axis is coincident with the axis of a magnetic dipole, 
as shown in Pig. 16. The currents of the dipoles are in phase, 
but of unequal amplitude. The equations for the far electri>- 
field which have been derived previously are listed below. 

Ee - 

sin 0 ec 
4irr 

(62) 

E = 8ln 9 *o 
m -4Ï?- 

(63) 

Prom the above equations E0 and Em are orthogonal and 
90° out of phase for all 0 and 9. When the ratio 
the amplitudes will also be equal and circular polarization of 
a left handed sense will occur for the entire sphere. The 
circular polarization pattern including gain (|E| field variation) 

is shown in Pig. 16 with the linear polarization patterns of 
each dipole superimposed, Along the great circles the 
amplitude will vary as the sin 0; amplitude variation over the 
sphere for any received polarization will be that of the 
familiar donut. 

The crossed Huygens sources consist of two sets of 
crossed electric and magnetic fields; each set 30° out of time 
phase with the other. The same effect can be obtained by sets 
of electric and magnetic dipoles as shown in Pig. 17. The 
resultant linear polarization patterns are shown in Pig. 17; 
the corresponding formulas for the electric fields are listed 
below and the derivations can be found in Section IV and in 
Appendix III. 

cry 
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Fig. 16 Polarisation pattern a , combined electric and magnetic 
aipole. 
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Eu = (1 + sin 0 sin <p ) (64) 

Ey = J(1 + sin 0 sin <p ) (65) 

Since the expressions for Eu and Ev are identical and 
30° out of time and apaoe phase for all points on the radiation 
sphere, a circular polarization pattern results. The sense is 
left handed and the pattern including gain for the forward 
hemisphere is shown in Pig. 17; the amplitude variation over 
the sphere for any polarization will be that of a cardlold of 
revolution. 

cry 
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VII. Mapping of Elliptical Polarization Patterns of Antennas. 

The methods for computing and mapping the elliptical 

polarization patterns of antennas are outlined. The polarization 

pattern of the turnstile antenna has been computed and mapped 

on the complex plane. 

The turnstile antenna Is made up of crossed electric 

dipoles ï and I whose source currents are of equal magnitude, 

but 90 out of time phase. T.ie mapped far field linear 

polarization pattern of each radiator Is shown superimposed In 

Fig. 18. It Is observed from Fig. 18 that the space angle 

between the electric field components of each dipole changes 

over the sphere. In order to compute the polarization pattern 

It Is necessary to add the eQ and £0 components of each dipole 

and then separate these vectors Into u0 and y0 components. In 

this manner there will exist two orthogonal linearly polarized 

waves of arbitrary amplitude and time phase referenced to the 

u0 direction at each point on the radiation sphere, from which 

the polarization ellipse may be computed. This procedure Is 

outlined in the following derivation starting with the pre¬ 

viously derived far electric fields associated with each dipole. 

XE = j(cos 0 cos(p0o - sin <p$0) (66) 

ZE = - sin © 0O (67) 

XE + ZE ■ - J sin * í0 + (J cos 0 cos - sin 0) 0O (68) 

B ' ^ "a 

E = - A cos o - B sin o ( 69) 

Ev = A sin o - B cos o (70) 

Eu * sin 9 + «J cos 0 cos ‘P )cos 0 "(“ J sin <P )sino. (7i) 

Ey = (- sin 0 + J cos 0 cos <p )sin o -(- J sin <p)cos o (72) 

cry 
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Fig. 18 - Linear polarization patterns of turnstile antenna elements. 
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Eu = sin © cos o + J (sin 9 sin o - cos 0 cos <p cos o) (73) 

Bv * - sin © sin o + J (sin 9 eos o + eos © cos9 sin o) (74) 

(75) 

(76) 

uft « sin 0 eos o (77) 

ub - (sin 9 sin o - eos 0 eos o eos o) « - sin 0 sin o (78) 

va « - sin 0 sin o * ub (79) 

vb » sin 9 eos 0 + eos 0 eos 9 sin o (80) 

The amplitude and phase of the Eu and Ey field com¬ 

ponents have been computed as a function of 0 and 9 and are 

tabulated in Table I. Prom these field components the axial 

ratio» tilt angle , sense and maximum amplitude have been 

computed using the wave polarization chart and relationships 

described in Section III, the results are listed in Table I. 

A calculation of the axial ratio, tilt angle and sense 

for © * 9 > 30° has been outlined in Section III. Prom the 

table the elliptical polarization pattern is mapped on the 

complex plane, as shown in Pig. 19. 

Some very interesting general results concerning the 

turnstile antenna have been derived in Appendix ÜV. First, the 

normalized maximum amplitude (0) is always equal to unity. 

Second, the absolute value of the left to right circularly 

polarized components 

1 - sin 0 sin 9 

1 + sin © sin 9 

(81) 

cry 
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Fig. 19 - Polarization pattern of turnstile antenna. 
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Third, the tilt angle (a) of the major axis with respect to the 

uQ direction Is equal to 

T tan"1(-tan 0 cos 9) (82) 

this corresponds to the direction (^) tangent to concentric 

circles about the cneter of the complex plane. Fourth, the 

axial ratio (r) Is equal to 

r " 1-(- sin 6 sin 9 (®3) 

Fifth, the constant power gain contours are concentric with the 

origin; the power density (S) varying as 

S (84) 

(Ref. 16). Lastly, the polarization pattern Includes all pos¬ 

sible wave polarizations. The turnstile antenna Is an excellent 

Instructive example of antenna and wave polarization. 

cry 
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VIII. Computation of the Polarization Loss of Two Elllotlcally 

Polarized Antennas. 

In transralt-recelve systems, the loss of signal as 

a result of polarization mismatch Is of Interest. The geometry 

of this type of system Is shown In Pig. 20. The transmitting 

and receiving antennas, for example, are turnstile antennas 

whose axes are oriented as shown. The transmitting 

antenna is assumed to be fixed with the receiving antenna 
having a variable orientation given by the angle («j. 

Since the elliptical polarization pattern of each 

antenna Is known, the amount of power transferred from the 

transmit antenna to the other In terms of the geometry can be 

determined by an analysis using the stereographic projection 

of the receive radiation sphere (Ref. 19). The formula for 

the loss of signal as a function of the type of polarization 

of each antenna and orientation of the polarization ellipses 

Is given below and can be derived from the power transfer 

considerations between the two antennas (Ref. 4 and 9). 

2 2 
£ 4rr' + (r - 1) (r1 - 1) cos 2u #05 x 

(r2 + 1) (r'Z + 1) J 

The necessary Information are the axial ratios r and 

r', the sense of rotation, same or opposite (+ and - respectively) 

and the angular separation (o) between the two major axes of the 

polarization ellipses. 

Given the separation of unity and the direction from 

the transmit antenna to the receiving antenna in terms of 9 and <p, 

then the direction from the receive antenna to the transmit 

antenna In terms of 0' and <p' may be found. The properties of 

both wave polarization ellipses are then known. It remains to 

compute the angular separation. 

A description of the analysis to find the angular 

separation (o) using the complex plane Is given below. The 

basic principle of this method Is to refer to the transmit wave 

polarization tilt angle (t) to the uo direction and the receive 

wave polarization tilt angle (t) to the direction and then 

P_1 
Po 2 

cry 
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. 21 - Derivation of angular separation (o) on complex plane, 
of receive forward hemisphere. 
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conformally transform the u0 direction to the receive sphere. 

The resultant diagram on the complex plane Is shown In Fig. 21. 

The angular separation o equals 360 -(x + £ + x') where (s) 

is the angle between the u0 and u0, directions. The figures 

and formulas describing the transformation and derivation of 

(¾) are Included In Appendix V for reference. Since they are 

complicated and difficult to explain, they have b‘ an omitted 

from the body of the thesis and no attempt Is made to explain 

them In the appendix. 

cry 
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Appendix I: Polarization Ellipse Deviation. 

E * E + E u V 

E - er f el 

er ■ R(s0 * Jïo1 

el - My. + Jv„) 

Eu = L + R, L 
E - JE 
u_ J V 

Ev - J(L - R), R - -u I 
Ev 

■ - • 'M- ^. 

p - = Hi 

q « 
4 1 ♦ p 

1 + lql r * -- for |q|> 1 
1 - kl 

ÏÏ “ q 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

cry 



51 

* 

General far field equation: 

E ' J4Îfrl [iï * So* §o + iï ‘ ?oJ exp 

r’ “ r - (rn . ro) 

-1 * I ïo* r2 = " I -o 

r3 * " § Ïq* r4 = t -o 

É ' + iï * *o s ï ’ (-0 = ï,et 

et 
K = "JHtal exp -.Ikr 

4îrr 

Treating r^ and r^ as an array and rg and r^ as an array 

E1 + E3 * KLïo‘ et exp ^1%) + i0- £t exp Jkfjj . r0)J 

E2 + E4 = K [jïo. et exp Jk(r2 . ro) + jo. et exp Jk(r4 . r0)l 

-0 * Et = C0S 0 C0S ^ §0 " 3^n ^ »0 

Y0 • = cos 0 sin <P 0Q + cos <p <p0 

(u) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

cry 



?o = I ^ B 13ln V 3ln 0 

r4 • -o = I (îo ' -0^ C I cos v sln 9 

E1 + E3 = -K2J(cos 0 cos <P §0 - sin <p $0) j^sin(^r sin <p sin 

Eg + E4 * K2J(cos 0 sin <P §0 + cos <p jQ) sin 0 cos 

4 « ka 2T8 air 
T = T2 = T 

if j £ j then Sin a * a 

E_ i jKka sin0 [{ -sirup CO80 cos <p COS0 sin<p cos <p 0 + 
A J 2 "C 

sin f -»-cos rp) «pj* JKka sin 0 <p0 

2 
s fa)|i exp-JJcrla k sin e (pQ 

h 45t 

holds within 10# for|a 
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(21) 

(22) 

e)] ( 23) 

»)] (24) 

(25) 

( 26) 

(27) 

( 28) 

cry 



Appendix III: The Hugyens Source, 

For short current element 

h m (ul. tt) C dS (nxH • e ) 
8 

I Al - ¿ dS = nxHs • dS 

By duality 

Jwe exp -Jkr(m Al • et) c dS 
H2 irr (nxEs . tt) 

m A i * M dS = nxEe • dS 
- -Ê 

e2 = (H2xr0) Ç 

ET * Ej + Eg = C dS^(nxHs). et 

nxHs = |nxH|(-z ) 

Eaxn , e* 
+ --x.r 

«.] 

-z • c, = sin © -o -t -o 

Sxn lExnl 
TTTl^o) 

-xQ • c t = - ^os 0 cos <P ©0 - sin <P î0J 

-Xq • etx.ro = - [cos 0 cob <p 20 - sin (p §QJ 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

cry 
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, -Ji& . ds ^|5Xjj| 8ln e eQ + 

I I lEx^l |nxH| » —-— 

Exn (cos0 co8<pjo+8in<p0o) ( 40) 

(41) 
*Ju|i exp -Jkr dS |nxH| 

4rr jjsin© + 8ln(p)0o +(cos© cosv) jQJ ( 42) 

This is the same result as obtained for an electric 

and magnetic dipole oriented as shown with currents 90° out of 

phase. 

Equation (40) may be used to calculate the far field 

from electric and magnetic field distributions having a ratio 

of 2 to H other than the free space Impedance. 

cry 
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Appendix IV: Turnstile Antenna General Results. 

To Find: Maximum Amplitude (G), |q|, T, r, Power Density (S) 

Given: 

E = u îUw u a u b (43) 

“ va + Jv (44) 

See formulas (77), (78), (79), (80) Section VII, (46), (47), 

Section IV i (5), ( 6) Appendix I. 

To Find: |L| + |R| « |G| 

2L c ua f Jub ’ J(va f Jvb^ * iua + vb^ * ' V i45) 

2R = ua + Jub + J(va + Jvb) -(ua - J(ub + va) (46) 

ub ' va ( 4?) 

2L « ua + vb ; 2R - ua - vb + j2ub ( 48) 

2L = sin© coso + sin ip coso + cos© cos<p sino ( 4^ 

2 2 
2L « 1 -1- sin© sine (cos ofsln o ) (sc) 

2L = 1 + sin© sine fcl ) 

2R = sin© coso - sine noso - cos© cose sino - 2Jsln© sino 

2 2 2 2 
ot} sin Q - sin e -cos Q cos e - 2Jsln© cos© cose 
ZK = ! + sin© sine 

2 2 2 
2sln Q - 1 - sin 9 sin <p - 2.1sln9 cos© cosep 

ZR = 1 + sin© sine 

1 - sin2© sln2e / 
1 + sin© sine ^ 

(52) 

(53) 

(54) 

(55) 

(56) 

cry 
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. -1 -2 sind cos9 cos* a * tan - -» ■ ■ ■ a g" 
_2 sin e » 1 • sin 9 sin * 

mi . i - glg9 »üa-A 

mi + mi - ioi *1 * 8fe ^ *1 ' I"9 ,ta< 

|0| - 1 

(57) 

(54 

(54 

(60) 

|q| exp •}& (51) 

i i 1 Sl;l9 sins 
IQ I * i - slue sin* (64 

tan 2t - i 2 ,lnf co,e SSSÍ,-r (64 
2 sin 0 - 1 - sin 0 sin t 

. -2 |an9 S3S1-,-j_ (64) 
aln^S - cosc8 - sln 9 lin e 

, -2 >11» «0»» oo»e (6S) 
1 - tanZ0 coaze 

tan 2t * i -“tJ it therefore (66) 

(67) 

2ua7 + 2v * 0 

^ = -= -tan© coS(p av u 

T = tan”1 (- tan© cos* ) 

2 2 2 Since u + V = p 

The major axis of the ellipse Is always In the direction of the 
tangent to concentric circles at some (©,* ) 

cry 
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Appendix V; Qeometry for Computing Poltrltatlon Loaa. 

tan coed 
T* * 1 slni sind " U1 

J, • - cot I - - tan^Y 

2* - tan(— 

u 

u. 
.. u2. ^ u3. 

K * sin"1 « cos’1 
P P 

„ _ slnQ* cose1 
vl' 1 + sln0' sln<p' 

u _ 0089«_ 
1' l + sin9' sine* 

P ‘ “uc + u2* 

V = 360° - (t + t' + 0 

tan X' cote 
sine 

slnii = -sine cose 

cosx = cosX cosy. 

“"e - - 

cos>. = sin©' sine* 

-e- = 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

cry 
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Fig. Al - Geometry for transformation of uQ to receive sphere. 
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