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PREDICTION OF ELASTIC CONSTANTS OF 

MULTI-PHASE hATLUALS* 

B. Paul^ 
(drown University) 

ABSTRACT 

* The energy theorems of elasticity theory are used to find upper 

and lower bounds on the elastic moduli in tension and shear for two-phase 

materials. A "strength of materials” type of approximate solution is also 

given. Co* ip arisen with experimental data for a particular alloy system 

shows good correlation for the approximate solution, with the scatter band 

bounced by the predicted limits. It is shown that the method may also be 

used for more general multi-phase systems, and to predict temperature de¬ 

pendence of the elastic constants of the composite material, .«i— 

/ 

ft 
The results presented in this paper were obtained in the course of 
research sponsored by the Office of Naval Research under Contract 
Nonr-562(l9) with Brown University. 

•a-w 
Assistant Professor, Division of Engineering 
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NOTATION 

fi Young1 a modulus 

Œ Modulus of elasticity in shear 

v Poisson1s ratio 

,..) Stress con^onents 

•••) Strain conç>onent8 

a*6 ll.iiaxial macroscopic stress and strain 

v 7olume 

ü Strain energy 

f Fraction by volume of matrix (material 1) 

A Area 

x Axial coordinate 

l»2,..,i Subscripts denoting particular phase 
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1» Introduction: 

It is taom. that the elastic modulus of a metal msy be consider- 

ebiy increased by dispersing throughout the volume finely divided particles 

of « allpying material which has a higher elastic moulus them the base 

metal. The rational design of such alloys requires some knowledge of the 

relationship between the elastic constants of the constituent matwials and 

those of the composite material. Some experimental data does exist which 

gives Young’s modulus for particular combination, of .materials, such as in 

Ref. [1) and [ 2)1. 

It is the purpose of this paper to establish some general relation¬ 

ships which will facúltate the prediction of Young's modulus, Poisson’s 

ratio, and shear modulus for a composite material which is assumed to be 

uniform «id isotropic in the large. It wUl Uso be assumed that the con¬ 

stituent. are distinct and capable of „paration by purely mechanicU mean. 

v^ege, not solid solutions). 

If 1½ end K denote respectively the elastic modulus in tension 

for the matrix «wrisl. the dispersed materiU «d the composite materiU, 

It would be desirable to find a fmKtionU relationship between these mater¬ 

iel constants and f, the fraction of matrix materiU in the alloy. Any such 

relationship est satisfy the condition that when f • 1, and E ■ E- 

when f » 0, 

Perhaps the simple« relationship satisfying these conditions is 

thst which recult, when it is assumed that both constituent meteriUs contri¬ 

bute to the composite stlffnee. In proportion to their own stiffness and 

fractional volunie. That ia: 

E ■ V * y (d 
It Will be .hewn that Equation (1) does in fact provide an upper bound on 

the elastic modulus E in those case, where both constituent matariUs have 

1 Numbers in brackets refer to 
the bibliography at the end of the pap<-r. 
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the same value of Poisson's ratio* 

Since not only the stiffness E, but also the compliance, (l/E), 

nnist agree with that of the constituent materials at the limits f • 0 and 

f “ 1, a second simple relationship of the desired type may be obtained by 

a linear interpolation between the extreme values, that is 

l/£ • U/Vf + (l/E2)(i-f) (2) 

Equation (2) has been proposed by MacDonald and Ransley [3] on different 

grounds, and provides, as will be shown, a lower bound to the equivalent elas¬ 

tic modulus E. 

In Section 2 upper and lower bounds on E will be developed on the 

basis of two well-known elastic energy theorems. In Section 3 an approximate 

solution is der i vea which in general is neither an upper or .lower bound on E 

but whicn may be expected to give realistic results. In Section U the theo¬ 

retical results will be compared with experimental data. In the following 

section formulas will be derived for the equivalent shear modulus Q of the 

conposite material, and consideration will be given to finding approximate 

values for v, the Poisson's ratio of the coaqx>site material. Conclusions 

are stated in Section 6. 

2» Lower and upper bounds on Young's modulus 

Both the matrix (material 1) and the dispersed particles (material 2) 

are assumed to be linearly elastic and isotropic anH to obey Hooke's law in 

the form (L) 

e ; etc. 

U-b; 

where similar equations may be obtained by cyclic interchange of (x,y,z); v 

denotes Poisson's ratio, and the notation for stress and strain is that of 
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Tiœoshenko [lij . It will also be assumed that continuity of displacement is 

always maintained at the interface of the two materials. 

The elastic modulus for a composite material may be determined ex¬ 

perimentally by means of a simple tension (or compression) test. It will be 

assumed that the test consists of an application of uniaxial stress which may 

be considered uniformly distributed over a volume which includes a great many 

inclusions. Such a stress distribution will be referred to as a macroscopi- 

cally uniform distribution of stress. In the immediate neighborhooo of an 

inclusion, the local non-homogeniety of the material prohibits the possibility 

of a truly uniform stress distribution. However, a suitably averaged value 

of normal stress over a sufficiently large araa must eqx^al the value of the 

macroscopic uniform stress which will be designated as c. Similarly, the 

strain distribution must be non-uniform in the small but essentially uniform 

in the large. The normal strain component (parallel to the axis of applied 

force) averaged over a eufficienUy large area will equal the macroscopic 

uniform strain denotec by t • It is the ratio of the macroscopic quantities a 

and c which is neisured in <w. ictual test, and it is their rati*- vhich defines 

the eq-xivalent elastic modulus of the composite material, i.e., 

E »o/s (U) 

The strain energy U absorbed by the specimen is given by 

U - * I» (o Í, ’x*x * °yV a i 
z i Yxy xyz Yy* ax 1 ax 

)dV (5) 

where V is the volume of the test specimen, jince a is the only non-vanishing 

component of macroscopic stress, Equation (5) may, with the help of Equation 

(U), be recast into either of the following forma: 

U » ( 1/Vki/*«)«?2 V (6-a) 

U - (l/2)(E)e2V (6-b) 

A lower bound on E may be obtained by using the theorem of least 
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worJc [h, pt 166 J , which for our purposes can be formulated as follows* 

Theorem 1. Let the tractions be conpletely specified orer the sur¬ 

face of a body, and let a/, oy°, ..., etc., be a state of stress which 

satisfies the stress equations of equilibrium and the specified boundary con¬ 

ditions. Define U° as the strain energy computed from the state ax°, 

•tc., by means of Equations (3) and (5). Then the actual strain «ergy U in 

the body due to the specified loads cannot exceed U°, i.e., 

öiü° (7.,) 

An upper bound on E may be obtained by using the theorem of minimum 

potential energy ($, p. 171] which for our purposes is most conveniently for¬ 

mulated as follows: 

Theorem 2. Let the displacement components be completely specified 

over the surface of a body (except where the corresponding coeponent of trac¬ 

tion vanishes), and let *x*, ..,, etc., be any compatible state of strain 

which satisfies the specified displacement boundary conditions. Define U# 

as the strain energy computed from the state a/,..., etc., by msans of 

Donations (3) and (5). Then the actual strain energy U in the déformée' body 

cannot exceed U*, i.e., 

a-u# (7-b) 

Lower Bound 

In order to find a lower bound on E, the tensile specimen is assumed 

to be loaded by the normal stress 0 over its two end faces and to have aero 

stress or. its lateral surface, A stress field suitable for the application 

of Theorem 1 to this problem is given by 

0 ; a T ° • T ° ■ T W _ ••• 
--V / • 

(8) 

The strain energy for this system of stress is 

0° - i C ÛV 
2 r 

T '7 f (9) 
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where the Integration is performed over the volume V, Introducing the frac 

tional volume quantity f into ¿quation (9), results in 

* 

U° - y [ (f/Ei) ♦ (l-f)/E2 J V (1°) 

Upon substitution of Equations (6-a) and (10) into Inequality (7-a), there 

results: 

_1_ 

(f/ÍQ.) ♦ (l-f)/E2 
< E (11) 

Inequality (11) shors that MacDonald and Ransley [3] have actually siven a 

lower bound or. E. 

Upper Bound 

In order to find an upper bound on E, it is noted that the tensile 

specimen elongates by amount eL, where L is the length of the specimen. A 

suitable strain field consistent with this displacement boundary condition is 

jiven by 

«> Cj* * *t* ■ -»« 1 Y,y -1 V "» Y 
Ty* tx 

(12) 

ihere m is an unspecifitd constant. Substitution of Equation (12) into Hooke's 

.aw, Equation (3) defines the following sst of stresses: 

o " • eE(l-v-2vm)/(l-v-2v^) 

o * ■ eE(v-m)/(l-v-2v^) (13) 

t '* ~ ■ T * » 0 3cy ya zx 

Equations (5), (12) and (13) may be used to formulate the strain energy as 

follows: 

«*-•*- I (■ ? Jv v 
1-v-Uvm+2m^ 

_ o )EdV 

V t 

(1-)fE^ (l-v2“Uv2m+2m^ ) 
-2- (1^)¾ ) (1U) 

\ 
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valuing Equations (14) and (6-b) in Insquality (M>) results in the fol- 

mowing upper Dound Tor ¿. 

l-Y?+2mU-2v2) E < ) 
1-^-2 V 

♦ 

l'^*2v2< 

E2(i-r) (15) 

Although Inequality (tf) 1» valid for any choice of m, the best results will 

be obtained when U* is minimised. Using the well-known fact that v<l/2, it 

is easy to see that âV/dm >0. Therefore, U* has a relative mini™» where 
oU 

dm - a, and since a* is quadratic in m with positive values for very large 

positive or negative values of m, the relative mini.» i. Uso „ abs0lute 

ntinimum and occurs at 

m . « Vo(levi)(1.2»,)(l.f)¿, 

(l*»2)(l-2v2)fE1 ♦ (levjJd-ZVjXl-fJgj 

It should be noted that in the limiting cases where f approaches 1 or 0, m 

approaches ^ or Vj, respectively, as it should. In the special case where 

»1 * »2 • v. It follows from Equation (16) that m - v. for this special 

case Inequality (15) reduces to 

(17) 

(16) 

E S ft ♦ (i f)E. 

3. Approximate solution for E 

Because of the uniformity in the large of the composite material, 

H 13 piiwslals to “»“e that the macroscopic stress and atrain are repro¬ 

duced in some average sense in a typical .mit volume which consiste of . 

single particle of material 2 imbedded in a cube of the matrix material. 

This typical cube will be assumed to be loaded over two opposite faces by the 

force P • f -s_ eem_ , 
, —•v-as a-l< rx(j, Ae 

In the spirit of strength of materials, it will be assumed that 

cross-sections nricinaTiv por**} +.-, + - t ^ 
w - «i appiisa l or ce renain plane 

and normal to the axis, end each fiber parallel to the «ás undergoes simple 
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tension ir the direction of applied force. 

A cross-section of the cube, at a distance x from an end face, 

intersects an area Aj of matrix material ard an area A., cf dispersid material, 

as shown i.. Fig, 1, S*n:e the strain is uniform orer such a cross-section, 

the normal stress on area A, will be EjS and that on A? will be E2e where s 

is the norms! strain at the cross-section. The total force on the cross- 

section must equal the total applied force F, therefore 

F - EjeAi ♦ E2tA2 - ♦ (E2-E1)A2 ] (18) 

The total elongation of the cube is given by 6, where 

» - f e(x)dx . F ( dx/fi^ ♦ (Ej-fpA, ] (iÿ) 

■o T> 

Defining E as the ratio F/6 for the unit cuoe, it followe that 

E J \ * (Ej-EiJAjfx) (20) 

For any particular distribution of the imoedded material ^(x) is a well 

defined function of k, therefore, Equation (20) gives in approximate value 

for E for any assumed distribution of the inclusion. 

In particular, if the inclusion is of a cubic shape it may easily 

be verified that Equation (¿0) predicts 

E . £j ♦ (Eg-Ei) g2/3 

Ei ♦ (£2-¾) g2/3(l-gV3) (2i) 

where g - 1-f is the fractional volume of material 2. 

It is of interest to note that if the inclusion is in the form of 

a prism of any cross-section, which extends the entire length of the unit 

volume, as shown for «example in Figure 2-a and 2-b, Equation (20) predicts 

a linear relationship between E a_»d f. The value of E is precisely the upper 
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bound given by Inequality (18) for the special case when inclusion and matrix 

both have the .«■» mo Pr»S r Qr»r> I <7 »»0+ -» r, e 4. 4-- V, _ 
---, ¿ÍÍ4.S¡ 4.a ww CAiyÖv u©u since a prismatic 

distribution of the inclusion would make k¿ - constant, and therefore Equation 

(18) would predict a uniform strain distribution throughout the volume. Fur¬ 

ther, the absence of transverse strain implies v1 - v2. Therefore, the 

assumed conditions coincide with those hypothesised in deriving the upper 

bound on E. 

Similarly, it may be verified that if the inclusion takes the form 

of a slab of uniform thickness in the direction of x (see Fig. 3), the dis¬ 

tribution of strfcos will be uniform throughout the specimen, and the value 

cf E pr««~Lcted by Equation (20) will coincide exactly with the lower bound 

given by inequality (12). 

U. Coapar1son with cxperirent 

Fig. k shows experimental data reported by Nishimatau and Ourland 

( 1] , and Kieffer and Schwart*kopf [ 2] . 

In order to predict the behavior of the alloy analytically, it is 

necessary to know the elastic constants of the constituents. The following 

values are taken from [1]» 30‘ID6 psi, psi, * . o.3, 

v2 - 0.22. Th« use of these values for ^ and E2 in Inequalities (11) and 

(15) leads to the upper and lower bounds shown in Fig. U. It should be noted 

that the upper bound differs very little from the straight line which would 

be predicted by Inequality (1/) if Vl w^ro equal to The deviation of 

the more rigorous upper bound from the straight line is in fact so small 

that it is imperceptible on the scale of Fig. U. This indicates that the 

upper bound given by Inequality (15) is quite insensitive to the influence 

of Poisson's ratio. 

T"" curve shown in Fig. U gives the approximate value for E 

predicted by the "strength of materials" type formula. Equation (21). This 
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latter equation also ignores t>e eíT-rt nr d < ts ores .ne exiect of Poisson's ratio and seems to 

corx-^laûe the experimental data quit«* well 
q t* VeUt ^ the scatter. It should 

be noted that the scatter band is bourded bv f 
oounded by the upper and lower limits pre¬ 

dicted by the energy theorems. 

5. £ouivalent shear modulus Poisson's ratio 

Analogous reasoning to that employed for determining £ could b. 

used to determine the .fuiraient «dulu. of .ltólclty ^ ^ o ^ ^ 

knowledge ,r th. constituí moduli ^ ^ Th. ^ 

^ ^ td. composite »t^iu ^ould be 

thoucut of as being subject* to a «cro«oPlcally unifa-m simple Shear stress 

T KhÍCh Pr0dUCM th* “Cr0*C0‘a°*3^ strain T. It follow, 
that analogously to In^uUitiM (11) and (IS) .one ft*. 

f/Oj ♦ (l-/)/0¡! 10 5 tai * U-fJOj 

-re both inequalities « ocrr*t Irre.^Ue. of «h. eeiu.. of , ^ , 

— uny, on. ^y fornailat. a ..tr*gth of «UrUl.. typ. 0f .„rLation 

to Q by merely replacing £« £L and £ bv n n 
J £2 ^ a' Gl ^2» r*®P*ctively, in 

Equations (20) and (21). 

Haring deUrmin* cpproximat. ralues for 0 and £. on. ..,v th* 

approximate v by th. w.u-known r.l.tlon.hip 

v - (E/23) - 1 
(22) 
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6« Conclusions 

The energy theorem of eleeticity theory he*. h..n utili,eH to 

fanuíate upper and lower bound, on th, elaetic moduli ^ t<>n,lon 

for finely di^reed twcphaa. punid, etru^tlUMd alloy,. These bound, 

are independent of the shape of the dispersed particles. 

Experimental »dues of Toung-s modulus, obtained by saurai inves¬ 

tigators, show a csrtain degree of scatter, which is, however, bounded by 

the upper and lower bounds obtained in this paper. 

An approximate value of elastic modulus, which is neithu- an upper 

nor low«- bound, ha, been derived, and at least for the particular alloy 

syst« studied this approximation fits the experimental data ury well. For 

this alloy .yet« th> effect of *1 »«d v,, on ä negligible. 

It nay perhaps be of interest to note that tne dependence of the 

lastic moduli of cousit, material* on temperature nv be determined ty 

the results of this paper if the temperature dep^benc. of the elastic con¬ 

stant* is xnown for the constituent meterieis. 

The methods of this peper may be extended to multi-phase alloys 

With mor. th» two cognant.. For exu.pl., if end ^ „fer to the .lame 

-odulu. «m fractional voluui of th. 1th component, Ina^ltl.a analogou. 

to (II) and (17) mj bo writton.• 

1 

I (V^) 1 £ - J '23) 

Similarly, Equation (20) may be rowritton aa 

1 /V m C A- 
-t ~ I 

(2Ii) 

where At(x) ia the area occupied by the ith component in the croaa-eectior of 

a unit cube located at aection x. 
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FIG. I UNIT CUBE WITH INCLUSION 

OF ARBITRARY SHAPE. 

FIG.2 UNIT CUBE WITH 

PRSMATIC INCLUSION. 

FIG.3 UNIT CUBE WITH 

SLAB-LIKE INCLUSION. 
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