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NAVORD Report 6105 12 May 1958 

Three well defined phases appear to exist In the Initiation 
of explosives. Ignition occurs first by a variety of paths such 
as friction, shear or compression of occluded gas bubble; the 
end result being to produce enough heat to Initiate combustion. 
ZTie relatively slow combustion process then goes through a 
transition step where the linear consumption rate must increase 
by a factor of about 10^. Finally, stable detonation ensues 
governed essentially by thermodynamic and hydrodynamic laws. 

The least understood phase Is the second; the transition 
phenomenon. This report attempts a quantitative treatment of 
transition based on the qualitative notions advanced by Professor 
Klstlakowsky (3) and Is part of a broad study of 
of explosives. This work was performed under Task NO 0OO-007/ 
76004/01040. 
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SENSITIVITY OF EXPLOSIVES VII 

TRANSITION PROM SLOW BURNING TO DETONATION: 
A MODEL FOR SHOCK FORMATION IN A DEFLAGRATING SOLID 

I. INTRODUCTION 

The experimental portion of the Laboratory's program of 
transition from alow burning to detonation In explosives (l,2) 
led to the following conclusions: 

1. In confined cast explosives (testa wsre carried out 
on DINA and pentollte) the bulld-up of detonation from thermally 
Initiated deflagration Is quite reliable If the explosive charge 
Is sufficiently long. The process of transition to steady state 
detonation Includes a relatively long (50 ixsec or more) Interval 
of rapid sub-detonation velocities. The length of travel be¬ 
tween Ignition and detonation often exceeds 10 cm. 

2. The pressure-time history of the region of thermal 
Initiation Is characterized by a long (seconds) delay during 
which the pressure remains below a relatively low value p0. 
Cine experimental procedure did not allow an actual pressure¬ 
time determination below p0.) Once the pressure exceeds this 

lue (usually about 0.3 kbar), however, the subsequent bulld- 
to about 5 kbar requires only an additional 4o-6o usee. 

An oscilloscope record of the pressure bulld-up Is reproduced 
In Pig. l. 

It has been suggested (3,4) that shock, or shocks, which 
may arlae during the deflagration of a solid explosive under 
confinement are the direct cause of transition to detonation. 
The hypothesis, of course, can be correct only If the shock 
forms within the confines of the explosive charge, hence. In 
most practical cases, within a reasonably short distance. The 
above cited empirical evidence furnishes a quantitative basis 
for a theoretical Inquiry of the possibility of shock formation. 
This paper reports the findings of such an Inquiry. The paper 
Is concerned only with the formation of a shock, not with Its 
effect on unbumt explosive. 

As a basis of the discussion the following one-dimensional 
physical model Is assumed (Fig. 2): 

A rigidly confined charge of a solid explosive deflagrates 
In a plane perpendicular to the direction of burning. The 
plane of deflagration separates the product gas. Region I, 
from the unbumt solid. Region II. The linear burning rate 

1 



NA'/CRD Report 6105 

la proportional to tha praaaura, S -/1 p; thla aaauaptlui. 
la fairly wall aupportad by axparlaantal avldanoa. 

Tha aodal la not mtandad to raproduoa tha oondltlona 
aaployad to obtain tna axparlaantal data (l(2) axaotly. but 
< nly to alaulata thaa In a ganaral way. 

Tha following dlacuaalon oonalata of two parta: 

1. Tha calculation of praaaura Inoraaaa In tha product 
gaa (Rugion I) dua to the deflagration. 

2. An analytical treatment of tha propagation of 
coapraaalon wavaa and a calculation of tha •llatance of 
Incipient ahock fomatlon In tha oaat aolld (Region XI). 

II. PRESSURE INCREASE IN THE PRODUCT OAS 

The product gaa la aaaiuaed to obey two relatIona: 

(1) 

T • conat (2) 

Hera T, n and V ara absolute teaparature, nunbar of aolaa 
and total aoluaa of tha product gaa raapactlaaly; t la tha 
aolar covoluaa of tha Abel ao»wt1on of state. Equation (l) 
holda wall up to a denalty of about 0.5 gm/co, corraapondlng 
to praaauraa of 5 to 6 kbar. Tha laothamal aaauaptlon la 
probably not quite reallatlc. 

Proa Eqna. (l) and (2) 

dp 

Subatltutlng 
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vhar« 5* la the initial danaltr of the solid, M the average 
■ol'-alar weight of the gaa, and V0 and no the initial voltwe 

the initial number of aolea of gaa respectively, the 
expression reduces to 

(V) 

Here A la the burning surface area, C - RT( -no/Vo) 
B - bJ*K Since noM/VQ^o la small coapaz'ed to 1/&, Eqn. 3 
integrates to 

p’po ■ 1¾ 1 (*) 
BV0^(1-B)V 

Ellalnatlng V between (3') and 4 

ft • 7$ p <E - Dp>2 

where i) • 1-B and E • C ♦ PoD, 

Hence, time necessary to build up the pressure from 
Po to p la 

At low pressures (Dp E) Eqn. 5 approximates an exponentl 
function. As t Increases, the curve becomes less steep and the 
pressure approaches asymptotically the value p • E/D. (The 
equation of state, however, as noted above. Is not adequate 
bevond 3 or 6 kbar, which Is considerably below the value of 
E/t.) 

5 
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The p«p(t) from Eqn. 5 haa bean computed.* The inte¬ 
grated Eqn. 5 la unwieldy for analytical work, but It can be 
approximated quite well by the aImple exponential p*p0«xp{k/t). 
In rig. 3 three preaaure-tlme functions are plotted: the 
experimental p-p(t) curve (transcribed from Fig. l), the p-p(t) 
from Eqn. 5 and the exponential (po*0.08 kbar, k«0.1 naec"1}. 

As In the calculations with Eqn. 5, the choice of p0 la 
arbitrary; It was used In order to fit the exponential to the 
high pressure portion of the experimental curve, since the later 
stages of p»p(t) Influence decisively the pattern of shock 
formation. 

The validity of Eqn, 5 rests on several assumptions, 
explicit and tacit, which would have to be removed, at the 
expense of simplicity. In a more rigorous treatment. The 
derivation, as presented, io heuristic. 

III. SHOCK FORMATION IN THE SOLID EXPLOSIVE 

Consider the effect upon solid explosive. Region II, of 
:he pressure rise, p-Pc>exp(k/t) (the exponential being fitted 
to the high pressure portion of the experimental curve. Fig. 3), 
of the product gaa. Compression of the solid Is assumed to 
follow the equation 

a 
I <i>’ ■ ‘1 ■ 

(6) 

where a Is a constant (5,6). 

* The following values were assumed: b • I3 cc mole”*, 
}# • 1.6 gm cc”*, M • 32 gm mole"*, T » 3000*K, 

/3 • 7 cm sec"1 kbar"1. The proportionality constant 
y 
jä«. chosen to give p»5 kbar In t-42 paec. The value 

used for the Initial present«•, p0 ■ 0.1 kbar. Is somewhat 

below the experimental p0, l.e. the pressure at which 

the osctllcaccpe starts to sweep In the experiments 
described earlier. 



Motion of the eolld-get boundary, 0, and propagation 
of coapreaslon waves through the aolld la conveniently 
represented In an x-t diagram (Pig. 4). 

According to the Rlenann analysis, u-C*• const, along 
a u-c characteristic, where u la the particle velocity 

^ m J (o/l )ât and c • \| (dp/d j)adlab. The problem Is simplified 

by the fact that, for the assumed compression relation (Eqn. 6), 
c • (c0/$•) S(t) and consequently r(t) • c(t); also, the 
characteristics In this calculation are straight lines. Since 
Uq • 0, the particle velocity Is 

u(t) - <r(t) -<r0 • c(t) - c0 . (7) 

The velocity of propagation of compression waves Is u(t)«>c(t) 
and the position of^ the boundary 

x(t) - J (c-c0)dt . (8) 
•'s 

The calculation of both u(t) and c(t) Is very simple. 
The determination of the position of the boundary at time t 
(Eqn. Ö), which necessitates the evaluation of 

J (t)dt, la somewhat laborious, but It can be carried out 

readily with the help of a desk computer.• In this calculation 
the assumed constants were p0 - 0.08 kbar, k - 0.1 usec“r 
(see Pig. 3). The cast explosive density, i# , was taken to 
be 1.6 gra/cc. The constant a - 35 kbar was'then chosen to 
give the sonic velocity of about 2.5 mm/uaec. 

The calculated u ♦ c characteristics and the boundary 
path 0 are plotted In Pig. 4, It Is seen that the region of 
Incipient shock formation Is about 12 cm from the original 
gas-solId boundary; the compression waves begin to coalesce 
when the pressure exceeds several kllobars. 

I [(p0/a)ekt«- ij The form to be evaluated Is I • ^ [tPo/aJe**'«- IJ dt. 

Substituting x3 - (p0/a)exp(kt)♦!, dt - (3/k) [x^/U^-ljJdx, 
the Integral becomes I - (}/k) [* fx\/(x3-l) 1 dx. The 

1 . 1 i 

Integrated form is (k/3) I - x*(l/6)ln / (x-1 )2/(*2*xn)/ - 

(1/3) V3 arctan (2x+l)/J~}. 

5 
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It 1» Interesting to note that a pressure-time function 
less steep than the exponential may not be sufficient to 
generate a shock within a comparable distance. If the calcu¬ 
lation is repeated assuming that the pressure rises 5 kbar in 
42 usee linearly (p - kt) Instead of exponentially, the shock 
start*6115 cm Instead of 12 cm from the boundary. Thus the 
re luirement that the pressure rise to the incipient shock 
value in about 50 usee is necessary but not sufficient for 
the shock formation within a short distance (order of 10 cm). 

IV. ADDITIONAL NOTES 

1. Compression waves which originate at the boundary 
prior to time t • 0 are so weak that they cannot have any 
effect upon the explosive (at t • 0, p • O.Otí koar, 

1.00076). Hence it appears entirely Justified to 

assume that the initial compression wave (c0 in Pig. 4) 

propagates through uncompressed explosive. 

2 Fig. ^ shows that the locus of intersections of 
positive characteristics in the compressed region shifts 
towards lower values of x and t as the pressure, and con¬ 
sequently u ♦ c, increases. Yet, an attempt to specify the 
exact coordinates x and t oí the point of incipient shock 
formation would not be realistic on the basis oí the experi¬ 
mental arrangement employed in Ref. (2), since the strength 
of the confining tube (which even in the case of experimental 
dynamic loading probably does not exceed 10 kbar) sets a 
limit to the strength of compression waves which can be formed. 
This does not mean that pressures in excess of the bursting 
pressure of uhe tube cannot exist for small time Intervals: 
additional confinement will be furnished by the inertia of 
the tube wall. This effect, however, has not been considered. 
Hence the value for the distance of incipient shock formation 
of about 12 cm must be considered a high estimate, though 
probably a good one. 

V. CONCLUSION 

The proposition that transition from slow burning to 
detonation is due to a shock which arises in the burning medium 
has been examined on the basis of experimental evidence. 
Conditions of pressure and density, which govern the propaga¬ 
tion of compression waves through the unreacted explosive, are 
such that the proposed hypothesis appears reasonable. 

6 
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