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ABSTRACT 

A linear array with general arbitrarily distributed elements is dis¬ 

cussed, A matrix relation is found between the elements of the array and 

its far zone pattern. The radiated power is shown to consist of distinct 

modes; the magnitude of each is related directly to the elements. 

The total radiated power is calculated for basic, broadside and end-fire 

arrays, in terms of the interaction coefficients. The lower bound of the 

stored energy and the Q factor of the array are found. A figure of merit for 

the array is defined. A method of analyzing a given array from amplitude 

measurements of the pattern is given. 

Two examples are given for linear arrays which produce a prescribed pat¬ 

tern. Comparison between an array with equi-spaced elements and an array 

with arbitrarily distributed elements shows that the latter requires fewer 

elements and gives better perfoxmance. 

« 
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INTRODUCTION 

From the early days of radio conununicationsf the importance of directive 

antennas was realized. The principles of wave interference, on which systems 

of directive radio are based, have been known probably for several centuries. 

However, the first thorough treatment of this subject was conducted by Fresnel 

and Huygens, who established the wave theory of light in the early part of the 

nineteenth century. 

In 1937 Wolff^ published his important method of obtaining any arbitrary 

far zone circular symmetric pattem from radiators with equidistant dis¬ 

tribution along an array axis. His theory was based upon comparison of the 

far zone field of a pair of radiators to a term of Fourier series expansion 

of the prescribed pattern. 

In 191*3 Schelkunoff^ in his remarkable article , utilized the corres¬ 

pondence between nulls of the pattern of a linear array with equidistant ele¬ 

ments and the roots of a complex polynomial in the complex plane. He derived 

different types of pattern variations by choosing the zeros and thereby ob¬ 

taining an improvement in the side lobe level over that of the uniform case. 

In 191*6 Dolph^ devised his important method of synthesizing an optimum 

pattern for a broadside array. An optimum pattern is defined as a pattern 

for which the beam width is a minimum for a given side lobe level, or on the 

other hand, the side lobe level is minimum for a given beam width. The. 

optimum pattern is obtained fron Tchebycheff polynomials, and has equal side 

lobes. 

In 191*8 Woodward and Lawson* used an infinite number of plane waves to 

show that a super-gain, as well as a specified radiation pattern, may be ob¬ 

tained from an aperture of a given size. They gave the stored energy of the 

system as a line integral in the complex O-plane. In practice, no super¬ 

gain is possible for two reasons* (a) The currents in the conducting ele¬ 

ments of the source become very large with an increase in the copper-loss. 

(b) The stored energy of the super-gain array becomes very large. Therefore 

the shape of the radiation pattern and the impedance of the aerial would be 

extremely sensitive to small changes of frequency, and manufacturing tolei>- 

ances could become prohibitive. 

The complete analysis of the problem in terms of spherical modes was 



given by Chu’’. He considered an arbitrary source confined by a sphere and 

calculated the maori mum gain - Q ratio obtainable fron a system of a given 

size. Only a finite number of spherical modes will radiate from a source of 

a given size and the remainder of them will act mainly as stored energy ag¬ 

round the source. 

After most of the material in this report had been written, a French 

thesis by Arsac^ was brought to the attention of the author« Arsac discussed 

antennas for radio astronomy ^here the ratios of the spacings between the 

elements are integers. He also discussed there some ideas regarding the 

mode theory. 
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1. Relations between Pattern and Sources 

It may be shown7 that the far zone pattern of a linear array vrith 

arbitrarily distributed similar elements is given by: 
L 

FfO,?)-A (W) (1) 
4-0 

where: FÍG,1?) - Far zone pattern of array 

- far zone pattern of a single element 

■ current (complex) in magnitude and phase of element 

X. = position of element ^ on the axis of the array. 

k * 21« - X c 
variable angles (see Fig. 1) 

(1) may be rewritten as: 

™-»-¿ 
4-0 

. ikx.cosö 
A4e ^ 

(2) 

where F(ô) is the radiation pattern of a linear array with arbitrarily dis¬ 

tributed isotropic radiators. 

Let us consider also the complementary angle /5 (Fig. 1) such that: 

Using (3) we can write (2) as: 
I* ^ , V— ikx.sinjO 

F (jd) - 4, e * 
^-0 

cos Q ■ sin (3) 

(lia) 

F(e) = 

4=0 

ikx.cosô 
A* e « (lib) 

8 
We have the following Jacobi expansions : 

4-00 

e izsinjó 

n—oo 

eH (.) n 
(5a) 

izcosô 
+00 r 
n=-oo 

.n inGT / \ i e Jn(z) (5b) 



Pig. 1. Linear Array 

Fig. 2. Pattern Symmetry 
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Taking in (¾) z4cx^ and substituting in (l;a) ire get* 

L 400 

‘ji z_ fia*' 
i-0 n—ao 

JJ ▼w 

F(^) ■ 5 eÍn^^n^iacJl^ (6) 

Since F(ji) is a periodic function with respect to /5, it can be expanded in a 

complex Fourier series* 
400 

FM- y~ 

n—oo 

f e n 
iAló 

(7a) 

(7b) 

comparing (7a) with (6) we see the relation* 

L 

1-0 
fn- AlJr.(lati) 

(8) 

(8) gives a direct relation between the currents in the elements of the 

array, their distribution along the axis of the array, and the coefficients 

of the Fourier expansion of the radiation pattern. 

From the theory of Bessel functions it is known that* 

J_n(z) - (-)\M (?) 

From (8) and (9) we get that* 

(10) 

From Fig. 2 we see that the conditions for F(jÓ), F(ô) to be symmetric with 

respect to the array axis x are* 

F(^’F(-G) F(tr - Q) ■ F(w4^) symmetric like cos 0 (Ha) 

F(jÖ)*F(tr- JÓ) F(jó-tr)*F(-JÓ) symmetric like sin jó (Hb) 

It may be shown easily that (10) is the necessary and sufficient condition 
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in (7a) for (lib) to exist. 
Since (8) must hold for every n, it may be written in a matrix fonui 

f„ 

f. n 

or in short: 

J0tk3tò) 

Jl(toco> 

J2(lDto) 

J 0°c ) n o 

[J] . A] 

^(kx^) • . . 

J2(kx1) . . . JgOo^) 
• • 
• • 

J (¿Xi) J (ta^) 

A, (12a) 

(12b) 

The matrix [j] has U1 columns but infinite number of rows because, from a 

finite number of radiators, we can get as many Fourier coefficients as desired. 

However, from a certain row on, the coefficients become negligibly small in 

magnitude• 
In case we want to get a prescribed pattern from L+l radiators, we have 

to find the inverse matrix 

A] . [J]-1^] (13) 

but then we can use only the first U1 coefficients fn of the Fourier series 

in order for Jj^ to become a square matrix. 

If we use 0 as the variable angle, by substituting (¾) into (l¿b), and 

using the above methods we get 
♦oo 

in« 
F(e) . ¿3 gn' 

n—oo 

.-n 
i g ’n 

L 

•t-o 

(lia) 

(lib) 

Another useful relation is based on the following spherical Bessel func- 
8 

tion identity given by Bauer : 

izcosô L ^ (2n+l) in jn(z) Pn(cos«) 

n»0 

(l*) 
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where 

j (¾) . yjL Jn4i/2 ’ sP^erica^ 068861 function 

P (cosO) - Legendre polynomials. 
n 

Substituting (I1?) in (l*b) with z4cxx and rearranging we get: 

F(e) 

co -Ü- 

. r (2n+l) 1% (cosO) 2__ Vn(kXi) 
n=5" i-° 

(16) 

and since F(O) has the same symmetry relations as costas is seen from (lia), 

it may be expanded by Legendre polynomials with cos 6 as the variable: 
oo 

(17a) 
00 

F(e) . y 
rSD 

(2n+l)dnPn(cos«) 

(17b) 
dn" 2 Vf* F(ö)Pn(cosö)sinOde 

9 
(17 ) is based on the orthogonality properties of Legendre polynomials : 

jT" Pn(cose)Pm(co3«) sinSdS - jig; 6m)n (l8> 

where: _ Jl m<i 

8 m>n ‘ [oi^ 

comparing (16) with (17a) we get: 

L 

¿«o 

It must be noted that expansion (17a) obeys automatically the sym¬ 

metries required by (11a) since cosG has the same symmetries. Q 

(tf) is a particular case of the more general care given by Gegenbauer 

(tf) 

izcosG ^ (^4n)in -Choose) 
r"’ s 

n (20) 

where: ^(cosô)* Gegenbauer polynomials defined10 by: 
n 



8 

oo 

(l-2zcosö 4 
^ Cn(cosö)zn 

n>0 

n 

C^(co80) - J~ 
p,q-0 

r(^) cos(p-q)ö 

r (\op» V 
p+q«n 

It must be noted that 

(cosö) ■ P (cosö) n 

Let us define the general spherical Bessel function in the fonn: 

ho 

'2: 

f» v>o 
n zv 

It must be noted that, since11 Pci) = V^* * 

¡n2Wz 

Using the definition in (23), we can rewrite (20) in the form: 
oo 

ei''»«« .2J~ (V«)in ^(i)C'(cose) 
nïô 

(21a) 

(21b) 

(22) 

(23) 

(21*) 

(2?) 

which is identical with (l1?) when ^-3/2 due to (22) and (21*). Gegenbauer 
10 

polynomials have the orthogonality properties : 

j' Cn (c08#) dS ’ ^ (26) 

Using (26), F(0) may be expanded in Gegenbauer polynomials: 
oo 

F(«) ■ 2 XI hnCn(c0S0^ 
n»0 

(27a) 

b r2(^) 2^"^ P F(0)C^(cosô) sin^^ôdô 

n it T (2V4n) \J0 

(27b) 
n 

Comparing (27) to (17) we see from (22) that: 

h2^2 - d n n 
(28) 
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Substituting (25) in (l^b) and comparing to (27a) we get* 

1 \ " XI 
A-0 

(29) 

(29) is identical with (19) for \)* I/2 due to (2]|) and (28). 

shown^that 

lim P ( V)C^(cosô)s I cosn$ 
V-0 n 

C °(cosö) ■ 1 lim\)P(^)*l 
0 ^-»0 

Since it can be 

(30a) 

(30b) 

Substituting (23) into (2?) and taking V-o, we get, due to (30), 

oo 
eizcose . y inJn(i)oos ne (31) 

n»l 

However, (31) is identical with (5b) and, (5b) is only a degenerate case of 

(25) forV^O. Also, (U¿b) is a degenerate case of (29) for ïK). 

Since are complex numbers in general, all the coefficients 

f . e . d , hV are complex numbers in general, 
n* 'V n* n 

Let us summarize the above in Table I. Numbers in parenthesis refer to 

formulaos. 

TABLE I 

variable jó variable 0 

Pattern F(jÓ) F(e ) 

function of expansion (7a) V>0 V-l/2 dee. V-O 
(27a) 

C^(cosO) n 

(17a) 

P (cos©) 
n 

(l¿a) 
ine e 

coefficient of expansion (7b) 

fn 

(27b) 

h'* n 

(17b) 

dn 

(7b) 

gn 

function of radiator 
position 

(8) 

Jn(kx ) n X 

(29) (19) (Utb). 

J (kx.) n -*• 
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2. The Radiated Modes 
In this section m shall show that the radiated power from a linear 

array consists of distinct spherical modes. It may be shown that the far 

«one electric field from a linear array is given by* 

E 
jj»l¿ 

■inr 
(32) 

where (¢,^) are the spherical coordinates. The total radiated power is 

given by: 

P 

radiation resistance. where Oj ■ 
Substituting (32) into (33) and rearranging we get: 

p -L f'2" i'f f* sin odo |r(e,lP)| 
Jo Jo 

U) 

k«"] i*it 

we shall consider 3 cases: 
Case I: Basic Array (Fig. 3a). Ann array with isotropic radiators as the 

elements. Although the array with isotropic radiators as the elements can¬ 

not be achieved physically, it is a useful mathematical tool. In this case 

we have to put in (1) I 

*(0,4>) ■ lj F(0, ^ ) - F(e) 

where ?(Q) is defined by (2). Substituting in (31:) ^ get! 

l2 / lFW|2 “in9d* 

Using the expansion of F(ô) in (l?a) we get: 

(35) 

(36) 

|«e)|; F(S) 

00 CP, 

. !•(«)* . (2n*L)(2m4l)dnd* Pn(cose) P^cosS) (37) 

n»0 m«0 
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Pig. 3c. End-Fire Array 
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Substituting (37) in (36) and using the orthogonality property in (18) we 

get* 
.2..2 

oo 
¢0 p, 

liW'rj 
y (2n+i) idr,r (38) 

n«0 

where dnis given by (19). (38) shows that the total radiated power consists 

of an infinite number of modes. 

In case of only one isotropic radiator we will have: 

|d„f -KfJn2(lat0) 

From Appendix A equation (A-8): 
oo 

y ~ (2n4l)jn^(z)»8. 

(39) 

(1*0) 

n*0 

Substituting (39) in (38) and using (1*0) we see that the total radiated 

power from a single element of the basic array is constant and is independent 

of the position of the origin. This could have been foreseen by physical 

argument. However, the distribution of the total radiated power among the 

different modes is dependent on the position of the chosen origin. The 

further the origin f*cm the radiator., the more higher order modes are radiated, 

as may be seen from spherical Bessel function curves. The total power of a 

certain mode depends on the distribution of the radiators along the axis of 

the array. 
Case Hi Broadside Array (Fig. 3b). An array mth radiators of circular 

pattern A(#)» the axis of which is parallel to the axis of the array. In 

this cases 

F(e,Y)-*(e)F(Q) 

Substituting in (31*) we get 

(1*1) 

2 2 
P .û2Jt 

S US 
1 

¿ |F(e)f a2 (e) sinôdo 0*2) 

Let us first take the simplest case of dipoles where 

A(0)*sin© (1*3) 

/ 

•■o. .. iWfcifcdlllllM“«**-'4* 
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Using the expansion in (27a) for ))•£■ we get: 

|F(e)l XI XI (2m+3)(2n+3) ^Z(cos6) ^ (cosQ) 
1 m-0 n^O 

Substituting (lili) and (li3) into (li2) and using the orthogonality properties 

in (26) ire get: 

but since 

n|)‘1V7 r(n*i)*m m 

(li^) becones : 
00 

p(d)_ S (n+l)(n+2)(2n+3) |h 3/212 <W) 

S '»«"J ^ 11 

where h 3/2is given by (29). (U7) shows that in the case of broadside are 

rays with dipole elements, the radiated power consists of infinite number of 

modes* 
By using (29) and the identity in (A-ll) it may be shown easily in (U) 

that the total power radiated from one dipole is constant and independent of 

the position of the origin* 
For the more general case of general circular pattern for each element, 

let us expand* 

*2<«> • t 
q«2 

a sinqö 
q 

m 

(1|8) is a general expansion for À2(ô) due to the circular symmetiy of the 

pattern around the element. Substituting (1*8) in (1*2) we get: 

'0 
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li. 

Taking expansion (27a) and using the orthogonality properties (26) ee get, 

almilarily to the above* 

n-0 

Taking in (!?0) and substituting in Q|9) we get* 

2tr 
a - 

q»2 

(50) 

oo 
»2p.2 C" 

V!ñ ^0q2v2^) 
00 9±!: 

(51) 

• rtf-) 

h 2 

nl 
n 

n«0 

rearranging (5l) we get* 
oo oo 

2 2 fl>H 
oo oo / %, q+1 

n»0 q*2 1 ¿ 

»here h, ¥ 
n 

^*1 *q»2 

is given in (29)e 

(52) 

Fnm (52) we see also that, in the general case oí the broadside array, 

the radiated power consists of an infinite number of distinct modes. 

By using (29) and the identity in (A-5) it may be shown fron (52) that 

the total radiated power from one element is constant and independent of the 

position of the origin. 

3aSe in* End fire Array (Fig. 3c) An array with radiators of circular 
»CLoC 

>atterrT*(e), the axes of which is perpendicular to the axis of the array. 

7 • --- ^ 
ah - / 7   

It may be shown7 that the radiation pattern of this array is given by* 

(53) 
av / % r-*- a ikXaCOsysin© 

F(e,f )-^(0) y_ V 4> 

here (9,V) are the angles in spherical coordinates. For Q - constant we 

ave a similar expression to (2), and for constant we have a similar 

«pression as (4a). However, in this case the pattern is not circularly 

lymmetric around the array axis, therefore it is a more ccmplicated case. 
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Using expansion (í-b) in (Í3) with respect to get: 

400 1¡_ 

F(ö, ^ )«*(e) y inein 

n-- co /-0“ 

(kx^sinO) (¾) 

(¾) nay be rewritten as: 

400 

where 

F(0,^f )^(0) iV'V«) 
n« - co 

A J (kx.sinô) 
J¿ n *■ 

(5¾) 

(55b) 

Taking the square of (5¾) : 

4CD 4 00 ^ 

XI XZ iVi)“e Bn'e)B“%) 
n= -ao m« - ® 

Substituting (56) in (¾) and using the orthogonality properties! 

f ei(n-m)fjiJ* 2» J8n>m 

we get: 

B 
À2(ô)sined« 

(56) 

(57) 

(58) 

(58) shows that the radiated power of the endfire arr^r consists of dis¬ 

tinct modes. However, the relations between the magnitude of each mode and 

the elements of the array are more complicated because the pattern is not 

circular symmetric around the axis of the array. 

It has been known' for quite a while that the electro-oagnetic field, 

outside the sphere surrounding the sources, consists of distinct spherical 

modes. However, in this section we have shown a direct relation between the 

magnitude of each mode and the elements of a linear array. 
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The Radiated Power 

In the following section ire shall calculate the radiated power of the 

linear array. The total radiated power may be calculated in tiro ways* 

a. Summation of the power radiated in each mode based on the equations 

given in Appendix A. 

b. Direct integration of the radiation pattern. 

Here we shall use the second, more direct method. 

Case I. Basic Array (Fig. >) 

In this case: b 

f(M) • y~ y““*008® 

JÍ-0 
From (59) we get: 

* ikxjmcos« 
l m 

i «O m=0 

(59) 

(60) 

where: »«£ -xm 

Substituting (60) in (¾) ^e get after simplification: 

B 

o o L L r1 

^ JZÕ m-0 

ikx0mcose 
î sinôdO 

Calculating the integral in (6l) 

1 / - i/ ^ V ■ 

(61) 

(62) 

(61) may be rewritten in the form: 

L L 

B SEL 
4"'»J 2-0 m-0 

Vm W 
(63) 

ihere from (62): 
sin kx, "fm 

B Äm kx 

X, - X - X Xm A m 
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I (x ) Will be called the " inte rar ti on coefficient" of the basic array. 
B J?m 

Case II: Broadside Array (F'g. 3b) 

In this case: 
L ikXjCOsô 

F(e, Y) - x(e) Y2 V 
/=»0 

From (65) we get: 

(6^) 

ikx.^cosô 

■ -‘‘-HL F(«,f)|¿ (S) ^ -r.m 

¿«0 m= Û 

(66) 

where: x ■ x-x 
1 m 

Substituting (66) in (¾) we get, after simplification: 

L L 
(67) 

PS = 

2 2 

^*1 feõ 

A A* i 
AJl m 2 

TT 0 ikXÄ_COSÖ 
X2(e) e 2,^ sinôdô 

m«0 

(67) may be rewritten as: 
Ij l 

V ïiïj £o A*A“ls '■>' Ic (X.J 
(68) 

where I (x )is the interaction coefficient of the broadside linear array 

and is given by: 

! (x ) » I / elkW0se (e)sinede 

Stratton^ gives the following integral relation .* 

^^(kRÍP^osP)» i y° elkRCOSßCOSeJm(kRsinfsine)I^(cose)sinede 

Substituting in (70) m=0 ß=0 we get the relation, 

= i r’ 

(69) 

(70) 

1 ^ eikRcos<3 p (cosö)sinöd© 
n 

(71) 
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In order to tranefonn (69) into the form of (71) we he« to expand: 

À2(e) 

00 

5" 

P. (cosô) 0^0 Çií 
8 8 

(72) 

It may be done with the help of the orthogonality properties (18) . Sub¬ 

stituting (72)in (69), interchanging summation and integration signs, and 

using (71) g©*'* 

VW ■ H ‘A(1) 
s»0 

Case III: (Endfire Array (Fig. 3c) 

In this case as in (^3): 
L 

F(e,Y) - i(e) 
ikx.sinöcos 'f 

From (71;) we get: 
L L 

,2 2/ X ^ \ a a* itacfmsinecos Y 
F(ö,f)|2 -2,2(e) Vme 1 

j¿ mQ m*0 

(73) 

(71;) 

(75) 

where: 3Cim - xr Xm 

Substituting (75) in (3!;) we getî 
L L 

2 2 oTp. 
E 1 m E j?m 

j¿ =0 m*0 

(76) 

where (kx^ ) is the interaction coefficient of the endfire linear array 

and given by? ^ 

' ikx^sinôcos'fJi (77) 

IE(XÍ“) ' 1,11 
Jc¿(0)sin0d6 

It is knovm^ that : 

Jo(z) “ 2ir 

.2tt 
eizcosVdy (73) 
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Using (78) in (77) we get* 

W • I fa 
Substituting in (70) m - 0 P -f we get the relation. 

j (kx sine) r(O) sinOdô 
0 Am 

(79) 

inJn(kH)Pn (0) ■ j J' J0(kRsine)Pn(cose)sined« (80) 

expanding i2(e) as in (72) and substituting in (79), we get,using (80). 

W=¿ V^s'^sHs.) (81) 
s»0 

I 
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ím ) 
(82) 

II, Interaction Coefficients and Gain 

Let us summarize the results of the previous section as follows: 

The total radiated power P of a linear array is given by: 
L L 

XI 
^ m«0 

The total radiated power has the same fom for all cases of the linear array!the 

only difference we have is in the interaction coefficient. 

In the general case, rfien each element has a circular pattern *($) 

which is expanded, as in (72): 

oo 

A2(e) - ^ aPs(cose) 

S-Õ 

0 5TÖ ^ W (83) 

The interaction coefficients for the braodside and endfire arrays are given 

by (73), (8l)s 

(84a) 
IS<V ■ J <'siSPS(l»S(kXiM) 

s«0 

CD 
agiSPs(°) Js(^m) 

(84b) 

where x. » x -x 
4 m 

10 
It may be shown that: 

PJ1)-1 P2n(0) (2nnl)‘ 
(8?) 

Substituting (8?) in (84) we get: 

oo 

3=0 
00 

s=0 

(86a) 

(86b) 
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In the case of basic array with isotropic radiators* 

°s*6s*|o s Jo 

Substituting (87) in either (86^ or (86b) we get* 

W * io(tacrt) 

In the case of dipole elements we have, according to (83)* 

2 2 
*(«)-sinô a0- ^ a2" “ 3 

Substituting (89) in (86) we get* 

I ’ I fio(krln)*'l2(kX4m)J 

Fran (88) and (90) we see that* 

T (d) fx ) 1 I (d)(x ) 
IE 4 ? Ö K in' 

o 
It is shown by Stratton that* 

j>> - T 

SBS —cosp 
p 

Substituting (92) in (88) and (90) we get* 
sin tafln 

VX¿n^ kx 

(d)( 

im 

2 
sinkx 6m 

- cos kx 
kx. 

sin kxxm 

kx 
Jim 

(kx rrf im 

im 

sinkx 
^2. - coskx 

kx 
im 

im 

(87) 

(88) 

(89) 

(90a) 

(90b) 

(91) 

(92a) 

(92b) 

(93a) 

(93b) 

(93c) 
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In case va have a si ngle element and therefore and since 

V0) J.>o (¾) 

■Œ. 

ve get from (86): 

IS(0) ’ ^0) 

(95) is obvious Physically, since, in case we have one radiator only, it 

radiates the same power in both cases. 

From (87), (89) and (9$) we get: 

(95) 

IB(0)-1 Is(d)(o)^(i)(o) ■ 3 
(96) 

The interaction coefficients for the basic array, and the linear array 

with dipole elements are drawn in lig. li 
In case we have the spacing between the radiators equal to multtples of 

half wavelength we have 

■ov *<v*m) ■ r f ■{U)V 
(97) 

In this case (93a) becomes: 

(r) f>fl \ 1 sin (i-m)tt c a. 

4 -h (i-Bb ~ U 

fl 

n ûàm 

and the radiated power in (82) becomes: 

(99) 

The total power radiated in this case is the sum of the porers radiated by 

each element alone. 

This is not the case in a physically realizable array of dipoles, à nee 

the zeros in Fig. b are not equally distributed for dipoles as in the case 

of the basic array. However, we see from Fig. b that if we take a broadside 

array with dipoles spaced equally at 0.721, we get approximately the property 



i* 
ijf .iw Itn 



to the fact that the interaction coef- in(99). This is due in this case 

ficient is very small between the iwo far elements. 

The gain G of an a rray may be defined as 

1.1-112 Jj|s(«>f,)|2 (100) 
o ---l- 

p 

where the denominator gives the actual radiated power, and the numerator 

gives the radiated power as if the whole radiated field around the array 

were equal to the field in the direction of the main lobe (6^¾). Trot 

(32) we see that? 

2.2 

lr(VVI 

In the case of broadside array j and from (6S): 

L 

Ç £ *0 

(101) 

(102a) 

In the case of endfire array V> - h ^ ^ and ^ (7h) 

F(’p |) - 4> II 
£-0 

Substituting (102) in (101) and assuming nonnalization x(| ) 

we gets 

(102b) 

2 2 
,2 » F 

1 
Z 
£=0 

A 1 (103) 

Substituting (82) »nd (103) in 100) we get. 

Ik H 
T L 

(lOk*) 
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In case»« have only one radiator (101,) becomes, doe to (9?): 

a 
a o 

fl0i;b) 

(10S) 

and from (96) ire get* 

aI.l of) -of) 4 (106) 

The gain of a uniform radiator is 1 and that of a dipole is 1.5. 
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$. Stored Energy and Figure of Merit 

If ire solve the total field of a radiator, we see that besides the 

radiated field, there are also non-radiated fields which represent the stored 

energy around the radiator. The reason for this is that the radiated fields 

by themselves do not satisfy Maxwell's equations. As an example, let us 

write down the field of an electric dipole : 

003 

i(ot-p) 
Em - ♦ "2 - " * Sinee 

Ç> P P 

„ A f 1 - I ) sin eei(<ßt“P) 
V ^ ^ 2 Sin 
V p P 

(107a) 

(107b) 

(107c) 

where ! r if p4cr»2iT ^ 

amplitude of dipole . X3, A ■ — P_ ■ o 
li" 

«e see from (10?) that .hen p>l the radiated field becones dominant. 

Let us put a set of dipoles in a linear array form as in Fig. 5. There 

is a certain interaction between the dipoles and we assume that after they 

have interacted each dipole will have an amplitude A¿. »e divide the space 

around the array into three ranges I, n, n, where range III includes the 

immediate space around each dipole. 

Let us denote the stored energy in each range by US][J UgiIi USIII? and 

the total stored energy will be: 

V USI* usn4 usin 
(108) 

—
 



Pig. 5. Stored Energy. 

U is stored energy in fora of a traveling wave and has been calculated by 
SI 

Chu . 

Ißt us now calculate around one dipole. Since the dipole is 

infinitely small, it may be surrounded by a sphere of radius 6-»0. The 

total electric energy around the dipole will be given by: 

sineísXo ^£ [w2t*f J ** (109) 
The field in the immediate space around the dipole includes the fields in 

(107) plus a constant field due to all the other dipoles. Substituting (10?) 

and a ccnstant field in (109) we see that, since 6-0, the result WL11 go 

to infinity as . The stored energy will be infinitely large which 

should have been expected since the dimensions of the radiator are zero. 
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However, since physical radiators have finite dimensions we can write: 

T. 

(no) 

for (1*1) radiators.USIII or UgIII ♦ 

energye 

Let us define Q factor for the array as follows: 

(HI) 

Q factor is similar to the Q of a resonance circuit. When Q is high there is 

a resonance in only a narrow band of frequencies. As Q becomes smaller, the 

resonant circuit becomes broadband. 

Since we would like the array to radiate as much power as possible for 

the same amount of stored energy, i.e. to be as broadband as possible, we 

try, in the case of the array, to make the Q factor as low as possible . 

Let us substitute in (111) both (110) and. (82). We get: 
L 

(112) may be rewritten with a coefficient C as the constant of proportion¬ 

ality for a given array: 

(113) 

Let us find now what the constant of proportionality C is. If we take in 

(113 ) only one element Ao in the array we get: 

Q * C 
1(0) 

where Q1 is ^he Q factor of one radiator by itself. 
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Fr cm (10!>) and (1¾) *e get* 

C • Q1 l(0) - 
Q 

where Q1 is the gain of each element by itself. 

Substituting (11*) in (113) we getj 

(115) 

IM 

5¾) fc) X m 

(116) 

le see that the properties of one element by itself have to be known in order 

to calculate the Q factor for the whole array of similar elements. 

Usually broadband arrays tA th maximum gain are desired. In other words 

we want Q-»-minimum and Q-♦maximum. In order to take both into account, let 

us consider the ratio From (lO^a), (116) we get* 

L 

a.<¿ 
G G1 

(117) 

15 ^ 

He .ant to minimze 3, (U7) «ay be rewritten as: 

¿N! 
-^V ■ , L ,2 KM 

(118) 

g/gj 

t ln (U8) is called " figure of merit" of the array and we want to make it 

is jornal 1 as possible • 
Although we obtained the gain 0 in the previous section for a symmetric 

¡harp beam, the definition of the figure of merit | is quite general and may 

oe used for any pattern in any linear array. In the case of a single 

element A0. ^ (u9) 

»hen a very large gain from a finite length of the array, is required, as 

. . / ., .¿w«» ■ ' ■ ■ 
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la the «se of a super-gain array, « .hall get | yery large and the array 

would not be effective (the gain per unit of stored energywiU he B”aU,) 

Suppose we have an array with U1 elements, let us find *at dis¬ 

tribution of currents ^ along the elementa gives ue mlnijauB 1» » 

complex number in genere! • 
Let us first hold the numerator in (118) constant and lock at the de¬ 

nominator. It will be maximum when all will have the same phase. Then 

let ua hold the denominator constant and look at the numerator. According 

to the identity 

2 A 2 (x+yl2 4 ¡¡dû (12°) 
2 2 

« ». that the numerator will be minimum if all the elements have equal 

amplitude. Thereforei 

f-min.^ when A0-(121) 

The figure of merit of the amy will be minimum then all the currents in 

each element of the array are equal and in phase. The array has the best 

figure of merit ifcen we have equal aperature distribution. 

In order to compare the figure of merit of arrays with differing 

number, of elements, we can define a nomalieed figure of merit euch 

(122) 

here ..^1 (- 
ON 

A basic array, having elements separated by multiples of a half wave- 

angth and with the interaction coefficient given by (98), will hate the 

ain from (I01ia)j 
2 

,1». M 

3 
(123) 



which was the case considered by Woodeaid and Laws . 

The Q factor of an array of this type will be, fron (116), 

$ ■ 91 {m) 
Since the gain of a cnifom radiator is 1. The <J factor of the whole array 

Tdll be equal to the Q factor of each element by itself. 

From (118) and (123) can see that in this particular case we have a 

new definition for the figure of merit. 

(125) 
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6 » Examples 
In this section ire shall give the results of tiro examples which have 

been calculated using the above theory# 

Example I* We want to produce the patterns 

F(jÓ) - 32 cos1* jó 
(126) 

by 5 elements (See Fig. 6). The array is symmetric, its length is fixed 

2À, and we vary two of the inner elements. Expanding (126) in a complex 

Fourier series (7a) we get the coefficients . 

(127a) 
V 

f .12 f„-8 £,-2 f 6-0 

2n+l 
(127b) 

Since the array is symmetric, let us take the origin at Ao? and since 

Jn(-x) - ( 0n Jn(x) 
(128) 

by taking 

A-laAl A^*A2 
(129) 

we get (127b) immediately. From (8), (127a) and (129) we gets 

A1J^(kx) ♦ A2J^(2ir) - 1 

A-^ikx) ♦ A2J2(2iï) * U 

(130a) 

(130b) 

A-jJjkx) 4 A2Jq(2it) * 6 - ^ Aq (131) 

Taking fr<xn the tabless 

j (2Tt) * 0.220 J (2t0 - - 0.287 J^(2i») - 0.316 (13?) 

■"
r
"

1.
—
 

..
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Fig. 6. Five Element Array 



(133a) 

We get from (130) and (132)* 

A 1.^1_ 

1 O.316J20cx) 4 0.28? J^(kx) 

A . J!>(loc) ~ 1>JI.(1°[) (13¾) 

2 0.3l6J2(fcK) 4 0.287j^(kx) 

Substituting those values in (131) we can get Aq. In Fig. 6 we have the 

results in a graphical forai) Kith kx as the variable. 

The most interesting point in Fig. 6 is kxQ^.9 where Ag-O. This is the 

point where we havei 

J2(kxQ) - ^(kxo)-0 (1¾) 

In this case of separation we can eliminate the two outer radiators. 

In Fig. 7 we have shown the coefficients of the higher terms of the 

Fourier series as calculated from (8). It may be proved easily that : 

lim 
n-OD 
n?>z 

-5VÏT 
z 
2n 

(135) 

From (135) we see that according to (8), the higher order coefficients of the 

Fourier series vanish very rapidly. In Fig. 8 we have shown the figure of 

merit £ calculated from (II8). 



32 008 r 2el1^ 18e12^ 1-12 *#• 28-1^ 

Fig. 7. Higher Order Fourier Coefficientso 
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Pig. 80 Figure of Merit» 

*r‘ 

I il » • 
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Example II» We want to approximate the pattern 

p(jö) - z10««10^) i1*) 

The pattern in (136) is obtained exactly by a binomial array of 11 elements 

(Tig. 9a). We shall try to get the same pattern by only 7 elements and a 

shorter array (Fig. 9b). 

By expanding (136) in a ccmplex Fourier series (7a) or by using (8) 

we get« 

Î f2n ■ 1°^*HV>)<12<V21'><210J2»(,) 

w-0 

it . 126 ♦ J (?«) ♦ (»4l20J6ir)4210Jo(«) 
2 o o oo w 

(137a) 

(137b) 

(138) 

Table II gives the corresponding coefficients as calculated trm the tables 

according to (137) (138). 
To get the same coefficients by a 7 element array (Fig .9b) with non- 

equidistant distribution the following equations have to be solvedl 

I f2n ■ A3 J2»(I“3>V2n(la2) <AlJ2n(lotl) 
(139) 

n^l 

I'o *T * A3Jo(lot3)<*2''o(lat2)<AlJo(lotl) 

From (139) we have to find (A^ kj and (x1J x^j x^) which will give 

the same coefficients as in (137)j we shall use semigraphical methods based 

un the curves for Bessel functions in Fig. 10 and their ratios in Fig. Ho 

In Fig. 10 we have shown the range where each element would be. The 

exact position of each element wiH be found by method of trial and error, 

starting from assumed position of the outside element A^. 

(U,0) 

' 
' 
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*.5 H A-3 A-1 j 
1 10 U5 120 210 2J 
A. /K /K _¿1 

Lq II l2 kb ^ 
52 210 120 b5 10 1 
^_¿h--# 

T—^—* 
> i ^ 

?- P-q 

^ , 

y V 

^ . 

7-y N 

i- a -L X J L-i-J LxJ LJuh 
' 2 '> 2 2 2 2 2 1 2 " 2 2 r 2 

2.5¾ 2.5 A 

--— 5A 

Fig. 9a. Binomial Array-Exaot. 

Fig. 9b. Binomial Array-Approximate. 

F(jÓ) = 210 cos10 (5- sínjÓ) 



k 

B
e
s
s
e
l
 
F
u
n
c
t
i
o
n
s
 



P
i
g
,
 
1
1
,
 

B
e
s
s
e
l
 
F
u
n
c
t
i
o
n
s
 
B
a
t
i
o
s
 



kl 

Th« first rough approximation may be made by assuming that con¬ 

tributes only to modes (2,1*)} ^ contributeB onl3r to modes (2>k¿,Ü); *3 
contributes to all the modes including the other higher modes (10, 12, 

1!*, . . . ). The position of A3Trill have to be in such a position that J^kx) 

is not too small, or, the required amplitude of A^ will be too high} 

we will get high currents with alternate signs and the figure of merit ^ 

will be very large« By choosing the position of A3 and with the above ap¬ 

proximation, we can find from Fig. 11 the positions of Ag and A^. 

It is seen easily from the corresponding matrix relations. By corrections 

to these rough assumptions, the final result may be found. It may be extended 

to more elements, although the corrections of the rough approximation are then 

more difficult. 

The results are tabulated in Table II and Pig. 9b. The error is less 

than l°/o compared to the maximum of the pattern. 

We can take the binomial array in Fig. 9a without the two outside ele¬ 

ments, to produce the pattern in (136) with less than 1 /0 error. In 

Table III we have compared the qualities of the three arrays which produce 

(136)} the first one will be the exact binonial array} the second one will 

be our non-equidistant array} the third one will be the binomial array 

without the outside elemente. 

We see fron the above example that we need fewer elements and get better 

performance in an array, if we add the distribution of the elements along 

the axis of the array as a variable of the design. Although the calculations 

are difficult at first, they may be simplified when more experience is acquired 
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Table III 

Comparison between kmy* 

F(/Ö) ■ coi0 

— 

^'■'■'■^Jigthod 

Pe rf ormance^^~-^^ 

Approximate (Error'Cl/o) 
Exact Non-Equi-Distant Equi-Distant 1 

No. of lig. 9a 9b 9a 

No. of Elements | ^ I 7 
9 

Length of Array 1 k 
3.76a 1*A 

Na-Hmim Ratio of 
Currents 

1:2¾ Islll.l; 1:25.2 

Figure of Merit ^ 0.175 0.2¾ 0.175 

Normalized 
Figure of Merit 

1.93 

_<1 

1.1*9 

__— 

1.57 
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7. Analysis of the Array 

By the analysis of an array we understand the problem of finding the 

relative magni ados and phases of currents in an actual physical array for 

which we can measure the radiation pattern. The far zone pattern may be 

measured in phase and in amplitude or in amplitude alone. The latter measure“ 

ment, of amplitude only, is the most usual one since it is much simpler to 

measure. 

Starting from (^a) we takes 

m-f~ ^ ^isir* (iw) 
¿«0 

F(jÓ) may be found by dividing the actual pattern by the pattern of a single 

element. F(jÓ) may be expanded as a complex Fourier series as in (7a) and 

then relation (8) holdss 

L 

fn • H kl Jn ^ (1Ji2a) 

If we measure both amplitude and phase in the analysis problem we can 

find f • Since the distribution of the elements along the axis of the array 

Xj£ may be measured, the only unknown in (li¿2 ) is . It may be solved as 

(Ul) equations with (Ul) unknown, and the fonnal solution may be written 

as in (13)8 

aJ » [j]“1 • fj 

When only the amplitude of the pattern is measured, the solution is 

more complicated. Rewriting (1^1) in terns of explicit quantities we gets 

F(^) - ^__ (*£ ♦ is¿ ) eUtVin'1 (143a) 

X-0 
where A., B. are real numbers. The conjugate of it iss 

F*(jö) - (Am - iBm) 043b) 
m*0 



From (Xli3) w get 8 

|r(jö)|2 - y(jö)*F#(jö) 
L L 

OM) 

g g (Am-1BB) 

where xim- |F()Ö)|2 or |?(j6)ji3 the magnitude when we measure the 

amplitude of the pattern only. Expanding |f(/5)|^ in a complex F ou-le r series« 

♦oo 

m2-lZ fn^ 
n*— oo 

and using (5a) in (1M)j comparing wiih (Ui5) we get« 

L L 

f - f R4 if 1 
n n n 

■0 m-0 

((YM *1 'Vi-wj 

Let us define« 

C ■ A.A 43-3 
£m £ m £ m 

D„ »AB. ~A6B 
Jim m £ Am 

and (l^6)becomesî 

L L 

n 
C J (kx) n ^m 

¿mO m«0 

L L 

1 ^ D. J (kx ) n im n 

(M5) 

046) 

047a) 

(M7b) 

048a) 

(-14 8b) 

A*0 m-0 
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From (HJ) we see thats 

Ci.,0M Cit ■ kl * Bl2 

* - D»i D«-° 

using the Identitys 

j (-«) . (-)“ j (*) n n 

(¾¾) 

(¾¾) 

(150) 

•nd (lit?) we get for (US) th» foilwing 

n ■ odd 

fn "O 

n- even 

D J (kx ) 
£m a im 

(iSu) 

(l5lb) 

fnR -2^7 ¿I Cf. ,n(l^«) 4 H C« 8» 
J ^ m>0 

052») 

(152b) 

* 

where ® = n 
1 n-0 

0 114O 

This particular type of real and imaginary parts of the coefficients 

of the Fourier series are due to the circular symmetry of the zittern around 

the axis of the array. 
Let us take now two measurements of The two measurements will 

differ from each other since, after the first measurement, we shall change 

the phase of the feed of a reference radiator is by I8O , There 

must be no interaction between the reference radiator and any other radiator, 

fe take s 
(l*3a) 

IV^Ï 

f - fj+if1 
“i “i \ 

Ao(1)-1 Bo(1)-° 

f -f R +if 1 aJ2^ 
^ "2 ^ ° 

- 1 - 0 0 (153b) 
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where all the other amplitudes will be found with respect to the reference 

radiator. For n ■ odd (llilb) may be rewritten aei 

L L L 

V-e H D«0 Jn(tacw> ♦ 2 H L D4. Jn(klim) ^ 
JL> 

and for n - even (l?2b) may be rewritten aes 

L L L 

f R-e c„ J (kxfl ) ♦ 2 > Za J (kx ) 4 „ ik 
n / io n J&0 / / ia n im y °n 

Uml 4 > m>0 

(1¾¾) 

£-0 

Rewriting (1¾) twice for the two measurements in (1^3) and substracting one 

from the other we get: 

n - odd 

1 - f1 - 2 rÍ 
“l ^ Z-L 

n ■ even 

¿-I 

L 

». (1) - ». io 40 
(2) ] J (kx ) 

J n £o 
(15¾) 

f R - f R . 2 fc 1 - C J (kx ) 
ng y_L io io J n 4o' 

i-1 

Using definitions (147) and substituting reference values (l53) we get* 

»io1} -»io(2) -2¾ 

„ (1) „ (2) .,, 
<*0 -cJo 2 ^ 

(i?5b) 

(156a) 

(l?6b) 

Substituting (156) in (15^) we get: 

n - odd 

i i L 
f - i -fc y 

hr 
B J (kx ) 
£ n 407 

(157a) 

' / 
/ 



n > even 

f„" - C - ¿ A-e Jn ^ 
1 ^ i-1 

d^Tb) 

Let us deflnet 

t12 (0) iFl()lS) ! 2 - |F2Mr 

12 

12 

+OD 

W- £2 
„ 12 oirVÓ 
i e n 

n»-oo 

n f - f ni 

(158a) 

(158b) 

(158c) 

from definition (1*8) and by choosing the origin at the reference radiator 

X ■ 0 (1*7) becomes: 
o 

n = odd 

i f , L 

i n 

Ju 

£ 

B_e Ja0o^) (l*9a) 

n ■ even 
■L 

r* -h a* Jn(kI« > 
«1 

(l*9b) 

Since f 32 is known by definition(1*8) and measurements, we have now stated 

in (1*9) the same problem as discussed in the beginning of this section with 

the formal solution given in (lii2b)0 



8. Conclusions 

The suggestion is made for the use of arbitrarily distributed elements 

in linear arrays. A general theory has been given in order to analyze the 

perfomance of such arrays as well as to compare their overall performance. 

In the arrays with equally spaced elements, we say that each element 

has one degree of freedom, i. e. its complex amplitude. A linear array with 

L equally spaced elements has L degrees of freedom, since we can match L 

coefficients of the Fourier series. By taking the general case of arrays 

with arbitrarily distributed elements, we add to each element another degree 

of freedom, i.e. its position along the axis of the array. Although there 

are certain restrictions on the position of the element along the axis of 

the array, the array with arbitrarily distributed elements has more degrees 

of freedom than a similar array with equally spaced elements. Therefore the 

array with arbitrarily distributed elements needs, in general, fewer elements 

in order to achieve the same perfomance as an array with equally spaced 

elements. In case we want to take the same number of elements, the per¬ 

fomance of the array with arbitrarily distributed elements is better in 

general. In order to ret more specific results we need a larger number of 

examples. ■ 
Using the above suggestions and methods of calculation , the designer 

of arrays will have more latitude in his work in order to achieve the required 

pattern and perfomance of the array. Although some of the calculations are 

rather cumbersome, more examples and more experience are necessary in ûAder 

to simplify it. I hope that this work will help in better understanding the 

general theory of arrays, as well as ir more economic design of arrays. 
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Appendix A 

From equation (21?) 'we get* 
® 

¿.z-posQ - 2 ^ (^n)inj „(2]L)Crl («osó) 

ríÕ' 

and the conjugate of it is: 

e-iz2cosO -2^ ^2^Cm ^C03®^ 

mí5 

multiplying the above we get: 
00 CD 

l(V*2)co»« .), y~J~ 

maQ n-0 

-^(¾) (*2)CnV (cM«)c! (0OES) 

Using the orthogonality in (26) ire get: 

L-z2)cosô 3^2^ . / QD 

22V-3p2N) 

^ P(2V»n) 

4ar nl 

If we substitute s, - z, - t i" *« „ 

N«) pnv(z)J2 -2-TCL0) £ 

(A-l) 

,-2. PteV-tn) 

4o1 nl 

2V 
sin 6d0 

Case I: ^ * l/2 . The integral in (A-i*) becomes: 

♦1 

j " ei(VZ2)c038 slned9 e1^! - 22)ydy. 

i(zi-z2)y 

i(zi-z2) 

41 sin(z^-z2) 
-2 -- 

.1 VZ2 

(A-2) 

(A-3) 

(A-5) 

(A-6) 

-1 
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From (A-U and (A-6) for | « g«*» usin8 the ldentity 10 i2k)' 

" (Sn^UAC’î) ’ (A‘7) L Zi-®2 

Substituting in (A-7) z1-z2*z get* 

OD 

Í(2n4l)Jn2(z) - 1 

Substituting in (A-7) z-f ** get* 

(A-8) 

^ (-)n(2n+l)jn2(i) - 
sin2z 
2z 

(A-9) 

(A-8) and (A-9) were given by Watson . 

If « substitute in (A-7) ^ £> “ are “ 66 ' 

00 (1 fm. 
y~ (2n+l)3n(«b3n(«») ■ \m -)o 1m 

n-0 

(A-10) 

Case II: For V-^ we S®1 fl ^ ^A"^* 
3/2 122 

(n4l)(n42)(2n43) ^Jn (Z)J -3 £ (A-11) 

(A-U) correspond, to (A-8) in Cas. I. Other identities corresponding to 

I may be found easily enough, by using the general identity in (A^). 
Case I may 
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Appendix B 

Kapteyn8 derived the follœing relation in Beeael functions. 

00 

X ■V(ï) 
* / \ dz 
Jv(!)r 

2 
ir 

sin(l>-V) 2 (B-l) 

r 

irhere ii and Vare general real positive numbers. no .. s 

If we take p and V to be integers, (B-l) has the orthogonality properties 

only if the difference p - Vi» an even integer. In order to ^ “rthogon- 

ality properties for all integer orters n, let us consider another integral. 

J (z) Jjz) 
n a 

(B-2) 

?rom the general identity* 

•J (-z) « (-)n J»/2) 
(B-3) 

n 

re see that Bessel functions with odd orders are odd and with even orders 

even. When n,m a„ both odd or both even, the difference ™ is even 

and the orthogonality properties of (B-l) hold, «hen n is odd and * is 

even or vice versa, the integrand in (B-2) i. an odd function and will 

(M) has general orthogonality properties for integer orders 

Of Bessel function, and using (B-l) it may be rewritten as. 

nmi+O 

n^m 

(B-l*) 

Using (B-l) we can derive orthogonality properties for spherical 

Bessel functions defined^ as* 

J 
n4 

(B-'í) 
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I 

vj, 

1' 

T/, 
ÜÜrf 

p 

From the power series for Jn(z) we can see tha 8 

¿n(-z) ■ (-)n Jn(z) 

Substituting in (B-l) 

\i . n+l/2 v ■ m+1/2 

and using definition in (B-5) we get* 

(B-6) 

(B-7) 

rip / \ * / \ a sin (n-m) 2_ 
3o Z 3"> * Z ’ (n4j/2)2-(®W2)2 (B-8) 

Using (B-6) and the same arguments as above, we can find from (B-8) 

the orthogonality property: 

r jn(z)Jm(z) dZ "2~ï 
v/-00 

where n,m are positive integers. 

For the particular case n««a-0 we know that: 

(B~9) 

, / \ sinz 
’ “T" 

and substituting in (B-9) we gets 

+00 

sin da * it 
2 

z 

(&-10) 

(B=ll) 

-oo 
11 

may be also found elsewhere . 
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Appendix C 

Let us find a direct relation between a continuous line current dis¬ 

tribution and its far zone pattern. 
From (lja) we can find the far zone pattern of a continuous line cur¬ 

rent source of length 2-1 to be* 

4jg 

F(0) - / A(x) e11“311^ dx (C-l) 

'-vC 

substituting y4ac and A(y)- ^ A(x) we get: 

F(j6) 

■£ 

*l«7) ei5,sl^d7 (0-2) 

k'f- 

Expanding the far zone pattern in a Fourier series: 

FOÔ) 

♦oo 

II'. 

_ in/Ö f e ^ • 
(C-3) 

n—co 

and using the expansion (¾) in (0-2) we get: 

f - n 
A(y) Jn(y) dy (C-4j) 

Let us assume that 

is in the form of a series: 

A(y) - aQ 6(y) 

the current distribution along the line current 2¿ 

I—y m 
m*l \y\ 

(c-o 

where 6(y) is th* Dirac delta function and represents a dipole at the 

origin. Substituting (C-1?) in (C-lj) we gets 

+k£ 
oo 

f -a / ' 6(y) J (y)dy + 
no/ n ui«! . Q 

i/-k£ 

By the definition of Dirac delta function: 

5(y) Jn(y) dy ‘ 

(0*6) 

(07) 

■kX 

1 

11 

1! 
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Taking th® line current so thati-*oo and using the orthogonality properties 

in (H)» (G“6) becomes: 
oo 

(C-8) f_ ■ » J. n o (0)+) a - 
n' 4a m n 

m^n 

by taking different n in (C-8) we get: 

f ■ a o o 
f • i a 
n n n 

(C-9) 

(C-9) gives a direct relation between current distribution (C-tf and pattern 

(C-3)* 
Similarly (C-2) may be given as: 

r<«)./^*A(y) .ljrcoa® dy ^1°) 

Expanding the pattern in Legendre polynomials: 

w 
F(«) «22(2n4l) dnPn(cos«) 

n«0 

(C-ll) 

and using expansion (iS) in (C-10), comparing with (C-ll) we get! 

a(y) õ„(r)dy 'n i'V í n lAk/ 

assuming for the current distribution the series: 

A(y) -Z_ OJy) 
(C-13) 

and substituting In (C-12) we get: 

®- r^-t- •n \ / 
i 

m*0 J-V.I 

(0-¾) 

taking the length of the line current and using the orthogonality prop¬ 

erty (B-9), we can get from (0-1^): 

<x> 

i”nd ■ / a »• ■ T 6 _ 1 an 4— m 2rwl m,n (C-ltf 



m«n 

$6 

(C-lf>) may be expressed using the definition 
of V '[o m^n 

as« 

(2n4i) d - * i a 
n n 

(C^-16) 

From (C-ll), (C-13) and (C-16) we see that for every set of coefficients 

a we have corresponding line current and a pattern as follows« 
n gp 

A(y) ■ ^ anVy) (C-17a) 

nZÕ 

ina F (ecse) 
n n 

(C-17b) 

It must be noted that (C-17a) has a finite current distribution along 

the line, while (C-!>) has a dipole with infinite current at the origin; it 

produces the dipole field fQin (0=3) as may be seen in (2). 

The same far zone pattern may be produced by infinite number of dif¬ 

ferent current distributions since the problem is not unique. Other solutions 

besides the above two might as well exist. 

In case we want the current (C-5) to give a predominate effect by a shorter 

line current, we might differentiate (C-2) p times with respect to sin/Ó and 

get* 

_ï iiLÉL-. r*£ •„ ' j ¢01¾ 

iP d(sin0)p 

(0-18) has the same fom as (C-2) if we take« 

J: dPF(¿) ’ c 
iP <l(sin^)P 

(P) 
A (y) - ^(y) (049) 

and we can comtinue with the ” new1’current and pattern as before« 
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