
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023792
TITLE: Enhancements to the eXtensible Data Model and Format [XDMF]

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the HPCMP Users Group Conference 2007. High
Performance Computing Modernization Program: A Bridge to Future
Defense held 18-21 June 2007 in Pittsburgh, Pennsylvania

To order the complete compilation report, use: ADA488707

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023728 thru ADP023803

UNCLASSIFIED

Enhancements to the eXtensible Data Model and Format (XDMF)

Jerry A. Clarke and Eric R. Mark
US Army Research Laboratory (ARL), Aberdeen Proving Ground, MD

{clarke, emark} @arl.army.mil

Abstract 0 Handle topologies of mixed element types
0 Handle additional application specific

The eXtensible Data Model and Format (ADMF) is information and description
an active common data hub used to pass meta data and 0 Map well to existing HPC codes, formats, and
value between application modules in a standard fashion. visualization tools
XDMF views data as consisting of two basic types. Light XDMF categorizes data by two main attributes; size
data and Heavy data. Light data is both meta data and and function. Data can be Light (typically less than about
small amounts of values. Heavy data typically consists of a thousand values) or Heavy (megabytes, terabytes, etc.).
large arrays of values. Support for XDMF is included in In addition to raw values, data can refer to Format (rank
the widely used visualization package ParaView, and dimensions of an array) or Model (how that data is to
computational codes like ALE3D from Lawrence be used, i.e., XYZ coordinates vs. Vector components).
Livermore National Laboratory (LLNL) and the SIERRA XDMF uses eXtensible Markup Language (XML) to
computational framework from Sandia National store Light data and to describe the data Model. HDF5 is
Laboratory (SNL). A major effort is now under way to used to store Heavy data. The data Format is stored
enhance XDMF to more directly support concepts like redundantly in both XML and hierarchical data format
Adaptive Mesh Refinement (AMR), mixed topologies, (HDF5). This allows tools to parse XML to determine the
higher order elements and parallel datasets. Discussed resources that will be required to access the Heavy data.
here are the motivations for the enhancements and the While not required, a C++ application programming
benefits of the new version. interface (API) is provided to read and write XDMF data.

This API has also been wrapped so it is available from

1. XDMF: The Need to Enhance popular languages like Python, Tcl, and Java. The API is
not necessary in order to produce or consume XDMF
data. Currently, several HPC codes that already produced

The eXtensible Data Model and Format (XDMF) HDF5 data use native text output to produce the XML
were developed at a standardized way to exchange necessary for valid XDMF.
scientific data between high performance computing
(HPC) codes and tools. Used as both a common format
for visualization of many different codes and as a vehicle
for developing coupled simulations, XDMF has been The XML format is widely used for many puoses
adapted to purposes beyond its original design. and is widelycusedeor many pureoses

Primarily driven by the need to efficiently support the and is well documented at many sites. There are
HPC codes ALE3D from Lawrence Livermore National numerous open source parsers available for XML. TheLaboratory (LLNL), CTH and the SIERRA framework XDMF API takes advantage of the libxml2 parser to
code collection from Sandia National Laboratory (SNL), provide the necessary functionality. Without going intoXDMF is undergoing a major redesign. Interested parties too much detail, XDMF views XML as a "personalizedfrom Army Research Laboratory, LLNL, SNL, and HTML" with some special rules. It is case sensitive andKitware Inc. are participating in the new effort, is made of three major components: elements, entities,Soe fc. te ar eatures requirednb the new and processing information. In XDMF, we're primarilydeSignme: oconcerned with the elements. These elements follow thedesign are:bai fo m

* Be as backwards compatible as possible basic form:
* Remain easy to represent simple topologies <ElementTagAttributeName="Attribute Value"
* Represent hierarchical relationships AttributeName="AttributeValue"
" Handle higher order elements >
" Be efficient in parallel situations CData

</ElementTag>

0-7695-3088-5/07 $25.00 © 2007 IEEE 322

Each element begins with an <tag> and ends with a are only necessary for validating parsers. For
</tag>. Optionally there can be several "Name=Value" performance reasons, validation is typically disabled.
pairs which convey additional information. Between the
<tag> and the </tag> there can be other <tag></tag> pairs 2. XDMF Elements
and/or character data (CData). CData is typically where
the values are stored; like the actual text in an HTML The organization of XDMF begins with the Xdmf
document. The XML parser in the XDMF API parses the element. So that parsers can distinguish from previous
XML file and builds a tree structure in memory to versions of XDMF, there exists a Version attribute
describe its contents. This tree can be queried, modified, (currently at 2.0). Any element in XDMF can have a
and then "serialized" back into XML. Name at or ave efeentri The a

XML is said to be "well formed" if it is syntactically Name attribute or have a Reference attribute. The Name
correct. This is if all of the quotes match, all elements attribute becomes important for grids while the Reference
have end elements, etc. XML is said to be "valid" if it attribute is used to take advantage of the XPath facility
conforms to the Schema or DTD defined at the head of the (more detail on this later). Xdmf elements contain one or
document. For example, the schema might specify that m oain ts (coputaon Domain.
element type A can contain element B but not element C. seldom motivation to have more than one Domain.
Verifying that the provided XML is well formed and/or Each Grid contains a Topology, Geometry, and zero or
valid are functions typically performed by the XML more Gri elmens opology and ze
parser. Additionally XDMF takes advantage of two more Atftribute elements. Topology specifies themajor extensions to XML. connectivity of the grid while Geometry specifies the

location of the grid nodes. Attribute elements are used to

1.2. XInclude specify values such as scalars and vectors that are located
at the node, edge, face, cell center, or grid center.

To specify actual values for connectivity, geometry,
As opposed to entity references in XML (which is a or attributes, XDMF defines a DataItem element. A

basic substitution mechanism), XInclude allows for the DataItem can provide the actual values or provide the
inclusion of files that are not well formed XML. This physical storage (which is typically an HDF5 file).
means that with Xlnclude the included file could be well
formed XML or perhaps a flat text file of values. The 2.1. Xdmfltem
syntax looks like this:
<Xdmf Version="2.0" There are six different types of Datatems:
xmlns:xi="http://www.w3.org/2001/Xlnclude">
<xi:include href="Example3.xmf'/> * Uniform - this is the default. A single array of
</Xdmf> values.
The xmlns:xi establishes a namespace xi. Then anywhere 0 Collection - a one dimension array of
within the Xdmf element, xi:include will pull in the URL. Dataltems.

0 Tree - a hierarchical structure of Dataltems
1.3. XPath 0 HyperSlab - contains two data items. The first

selects the start, stride and count indexes of the
This allows for elements in the XML document and second Dataltem.

the API to reference specific elements in a document. For 0 Coordinates - contains two Dataltems. The
example: first selects the parametric coordinates of the
The first Grid in the first Domain second Dataltem.
/Xdmf/Domain/Grid 0 Function - calculates an expression.
The tenth Grid XPath is one based.
/Xdmf/Domain/Grid[1O]
The first grid with an attribute Name which has a value of 2.1.1 Uniform
"Copper Plate"
/Xdmf/Domain/Grid[@Name="Copper Plate"] The simplest type is Uniform that specifies a single

All valid XDMF must appear between the <Xdmf> array. As with all XDMF elements, there are reasonable
and the </Xdmf>. So a minimal (empty) XDMF XML defaults wherever possible. So the simplest DataItem
file would be: would be:

<?xml version="1.0" ?> <DataItem Dimensions="3">
<!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []> 1.02.0 3.0
<Xdmf Version="2.0"> </Dataltem>
</Xdmf> Since no ItemType has been specified, Uniform has

While there exists an Xdmf DTD and a Schema they been assumed. The default Format is XML and the
default NumberType is a 32 bit floating point value. So

323

the fully qualified DataItem for the same data would be: <Dataltem Dimensions="4">

<DataItem ItemType="Uniform" 10111213
Format=-"XML" </Dataltem>
NumberType="Float" Precision="4" </Dataltem>
Rank="1" Dimensions="3"> <DataItem ItemType="Uniform"
1.02.0 3.0 Format=-"HDF"

</Dataltem> NumberType="Float" Precision="18"
Dimensions="64 128 256"1>

Since it is only practical to store a small amount of OutputData.h5:/Results/Iteration
data values in the XML, production codes typically write 100/Part 2/Pressure
their data to HDF5 and specify the location in XML. </Dataftem>
HDF5 is a hierarchical, self describing data format. So an </Dataltem>
application can open an HDF5 file without any prior This DataItem is a tree with three children. The first
knowledge of the data and determine the dimensions and child is another tree that contains a collection of two
number type of all the arrays stored in the file. XDMF uniform DataItem elements. The second child is a
requires that this information also be stored redundantly collection with two uniform DataItem elements. The
in the XML so that applications need not have access to third child is a uniform DataItem.
the actual heavy data in order to determine storage
requirements. 2.1.3. HyperSlab and Coordinate

For example, suppose an application stored a three
dimensional array of pressure values at each iteration into A HyperSlab specifies a subset of some other
an HDF5 file. The XML might be: DataItem. The slab is specified by giving the start, stride,
<DataItem ItemType="Uniform" and count of the vales in each of the target DataItem

Format=-"HDF" dimensions. For example, given a dataset
NumberType="Float" Precision="8" MyData.h5:/XYZ that is 100x200x300x3, we could
Dimensions="64 128 256"> describe a region starting at [0,0,0,0], ending at [50, 100,
OutputData.h5:/Results/Iteration 100/Part 150, 2] that includes every other plane of data with the
2/Pressure HyperSlab Dataltem.

</DataItem>
<DataItem ItemType="HyperSlab"

Dimensions are specified with the slowest varying Dimensions="25 50 75 3"
dimension first (i.e., KJI order). The HDF filename can Type="HyperSlab">
be fully qualified, if it is not it is assumed to be located in <Dataltem
the current directory or the same directory as the XML Dimensions="3 4"
file. Format="XML">

0000
2.1.2. Collection and Tree 2221

2550753

Collections are Trees with only a single level. This is </Dataltem>

such a frequent occurrence that it was decided to make a Name=Points,

Collection a separate type in case the application can Dimensions="100 200 300 3"
optimize access. Collections and Trees have DataItem Format=-"RDF">
elements as children. The leaf nodes are Uniform MyData.h5:/XYZ
DataItem elements: </DataItem>
<Dataltem Name="Tree Example" ItemType="Tree"> </Dataltem>

<Dataltem ItemType="Tree"> Notice that the first DataItem specified Start, Stride
<Dataltem Name="Collection 1' and Count for each dimension of the second DataItem.
ItemType="Collection"> Suppose, instead that we only wish to specify the first Y

<Dataltem Dimensions="3"> data value from the DataItem and the last X value. This
1.02.0e3.0 can be accomplished by providing the parametric

<DataItem Dimensions="4"> coordinate of the desired values and using the
4567 Coordinates ItemType.

</DataItem> <DataItem ItemType="HyperSlab"
</DataItem> Dimensions="2"

</DataItem> Type="HyperSlab">
<DataItem Name="Collection 2" <DataItem
ItemType="Collection"> Dimensions="2 4"

<DataItem Dimensions="3"> Format--"XML">
78 9 0001

</DataItem> 99 199 299 0

324

</Dataltem> 3. Grid
<DataItem

Name="Points"
Dimensions="100 200 300 3" The DataItem element is used to define the data
Format="HDF"> format portion of XDMF. It is sufficient to specify fairly

MyData.h5:/XYZ complex data structures in a portable manner. The data
</Dataltem> model portion of XDMF begins with the Grid element. A

</Dataltem> Grid is a container for information related to two-
The first Y value is index 1 of item 0,0,0 while the dimensional (2D) and three-dimensional (3D) points,

last X value is index 0 of item 99, 199, 299. The structured or unstructured connectivity, and assigned
dimensionality of the specified coordinates must match values.
that of the target Dataltem. The Grid element now has a GridType attribute.

Valid GridTypes are:
2.1.4. Function 0 Uniform - a homogeneous single grid (i.e. a pile

of triangles)
Function ItemType specifies some operation on the 0 Collection - an array of Uniform grids

children Dataltem elements. The elements are referenced
by $X where X is the zero based index of the child. For * Tree - a hierarchical group
example, the following Dataltem would add the two 0 SubSet - a portion of another Grid
children Dataltem elements together in a value by value Uniform Grid elements are the simplest type and
operation resulting in the values 5.1, 7.2 and 9.3: must contain a Topology and Geometry element. Just like
<Dataltem ItemType="Function" the Dataltem element, Tree and Collection Grid elements

Function="$0 + $1" contain other Grid elements as children:
Dimensions="3"> <Grid Name="Car Wheel" GridType="Tree">
<Dataltem Dimensions="3"> <Grid Name="Tire" GridType="Uniform">

1.0 2.0 3.0 <Topology
</Dataltem> <Geometry ...
<Dataltem Dimensions="3"> </Grid>

4.1 5.2 6.3 <Grid Name="Lug Nuts" GridType="Collection">
</Dataltem> <Grid Name="Lug Nut 0"

</Dataltem> GridType="Uniform"
The function description can be arbitrarily complex <Topology

and contain SIN, COS, TAN, ACOS, ASIN, ATAN, </Grid> <Geometry ...
LOG, EXP, ABS, and SQRT. In addition, there are the <GridN<Grid Name="Lug Nut 1"
JOIN() and WHERE() expressions. JOIN can concat or GridType="Uniform"
interlace arrays while WHERE() can extract values where <Topology
some condition is true. In the following examples we <Geometry ...
take advantage of the XPath facility to reference Dataltem </Grid>
elements that have been previously specified: <Grid Name="Lug Nut 2"
Multiply two arrays (element by element) and take the GridType="Uniform"

absolute value <Topology

<Datatem temType="Function" </Grid>...

Function="ABS($0 * $I)"> </Grid>
<Dataltem Reference="/Xdmf/Dataltem[l" />
<DataItem Reference="/Xdmf/Dataltem[2]" />

</DataItem> A SubSet GridType is used to define a portion of
another grid or define new attribute on grid. This only

Interlace 3 arrays (Useful for describing vectors from selects the geometry and topology of another grid, the
scalar data) attributes from the original grid are not assigned. The

Function="JOIN($, $1, $2)" Section attribute of a SubSet can be DataItem or All.

<DataItem Reference="/Xdmf/Dataltem[1J" />
<Dataltem Reference="/Xdmf/Dataltem[2]" /> 3.1. Topology
<DataItem Reference="/Xdmf/Datatem[3]" />

</Dataltem> The Topology element describes the general

organization of the data. This is the part of the
computational grid that is invariant with rotation,
translation, and scale. For structured grids, the
connectivity is implicit. For unstructured grids, if the

325

connectivity differs from the standard, an Order may be define a topology of three cells consisting of a Tet (cell
specified. Currently, the following Topology cell types type 6) a Polygon (cell type 3) and a Hex (cell type 9):
are defined: <Topology Type="Mixed" NumberOfElements="3" >

Linear <Dataltem Format="XML" DataType="Int"
" Polyvertex - a group of unconnected Dimensions="20">

points 6 0127
* Polyline - a group of line segments 3 4 4 54 6 7

9 8 9 10 11 12 13 14 15
* Polygon </Dataltem>
" Triangle </Topology>
* Quadrilateral Notice that the Polygon must define the number of
* Tetrahedron nodes (4) before its connectivity. The cell type numbers
* Pyramid are defined in the API documentation.
* Wedge
* Hexahedron 3.2. Geometry

Quadratic
" Edge_3 - Quadratic line with 3 nodes The Geometry element describes the XYZ values of
" Tri 6 the mesh. The important attribute here is the organization
* Quad_8 of the points. The default is XYZ; an X, Y, and Z for
* Tet 10 each point starting at parametric index 0. Possible

" Pyramid_13 organizations are:
* Wedge_15 * XYZ - Interlaced locations• Hee 15 20 XY -Z is set to 0.0* Hex 20

Arbitrary * XYZ - X,Y, and Z are separate arrays

* Mixed - a mixture of unstructured cells 0 VXVYVZ - Three arrays, one for each axis

Structured * ORIGINDXDYDZ - Six Values: Ox,Oy,Oz +
" 2DSMesh - Curvilinear Dx,Dy,Dz

" 2DRectNesh - Axis are perpendicular The following Geometry element defines eight
" 2DCoRectMesh - Axis are

perpendicular and spacing is constant points:* 3DSMesh <Geometry Type="XYZ">
<Dataltem Format="XML" Dimensions="2 4 3">

* 3DRectMesh 0.0 0.0 0.0
* 3DCoRectMesh 1.0 0.0 0.0

There is a NodesPerElement attribute for the cell 1.0 1.0 0.0
types where it is not implicit. For example, to define a 0.0 1.0 0.0
group of Octagons, set Type="Polygon" and
NodesPerElement="8". For structured grid topologies, 0.0 0.0 2.0
the connectivity is implicit. For unstructured topologies 1.0 0.0 2.0

the Topology element must contain a Dataltem that 0.0 1.0 2.0

defines the connectivity: </Dataltem>
<Topology Type="Quadrilateral" NumberOfElements="2" </Geometry>
> <Together with the Grid and Topology element we

<DaaIemort=" ye t now have enough to make a full XDMF XML file that
Dimensions="2 4">

0123 defines two quadrilaterals that share an edge (notice not
1 672 all points are used):

</Dataltem> <?xml version="1.0" ?>
</Topology> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>

The connectivity defines the indices into the XYZ
geometry that define the cell. In this example, the two xm rsi=" .w1xmlns:xi-- http://www.w3.orc/2001/Xlnclude">
quads share an edge defined by the line from node 1 to <Domain>
node 2. A Topology element can define Dimensions or <Grid Name="Two Quads>
NumberOElements; this is just added for clarity. <Topology

Mixed topologies must define the cell type of every Type="Quadrilateral"
element. If that cell type does have an implicit number of NumberOfElements="2" >
nodes that must also be specified. In this example, we <Dataltem

326

Format="XML" 2000 2100 2200 2300
DataType="Int" </DataItem>
Dimensions="2 4"> </Attribute>

0123 Or assigned to the cell centers:
1672

</DataItem> <Attribute Name="Cell Values" Center="Cell">
</Topology> <DataItem Format="XML" Dimensions="3">

<Geometry Type="XYZ"> 3000 2000 1000
<DataItem </Dataltem>
Format="XML" </Attribute>
Dimensions="2 4 3">

0.0 0.0 0.0 4. Information
1.0 0.0 0.0
1.0 1.0 0.0
0.0 1.0 0.0 There is regularly code or system specific

information that needs to be stored with the data that does
0.0 0.0 2.0 not map to the current data model. There is an
1.0 0.0 2.0 Information element. This is intended for application
1.0 1.0 2.0 specific information that can be ignored. A good example
0.0 1.0 2.0 might be the bounds of a grid for use in visualization.

</Dataltem> Information elements have a Name and Value attribute. If
</Geometry> Value is nonexistent the value is in the CDATA of the

</Domain> element:

</Xdmf> <Information Name="XBounds" Value="0.0 10.0"/>
<Information Name="Bounds"> 0.0 10.0 100.0 110.0 200.0
210.0 </Information>

4. Attribute Several items can be addressed using the Information

element like time, units, descriptions, etc. without
The Attribute element defines values associated with polluting the XDMF schema. If some of these get used

the mesh. Currently the supported types of values are: extensively they may be promoted to XDMF elements in
* Scalar the future.
* Vector
* Tensor - 9 values expected References
* Tensor6 - a symmetrical tensor
* Matrix - an arbitrary NxM matrix

These values can be centered on: 1. Schoeder, Will, Ken Martin, and Bill Lorensen, The

* Node Visualization Toolkit, Third Edition, Kitware, Inc., 2002.

* Edge 2. Keasler, J., "A New Vista in Scientific Data Management."

* Face Nuclear Explosives Code Developers' Conference, Lawrence

* Cell Livermore National Laboratory, December 15, 2004.

* Grid 3. Clarke, Jerry A. and Raju R. Namburu, "A distributed
A Grid centered Attribute might be something like computing environment for interdisciplinary applications."

"Material Type" where the value is constant everywhere Concurrency and Computation: Practice and Experience,

in the grid. Edge and Face centered values are defined, Volume 14, Issue 13-15, pp. 1161-1174, Nov-Dec 2002.

but don't map well to many visualization systems. 4. Edwards, H.C. and J.R. Stewart, "SIERRA: a software

Typically Attributes are assigned on the Node: environment for developing complex multiphysics applications."
First MIT Conference on Computational Fluid and Solid

<Attribute Name="Node Values" Center="Node"> Mechanics, Cambridge, MA, pp. 1147-1150, June 2001.
<Data1tem Format"XML" Dimensions"6 4"> 5. Clark, J. and S. DeRose, "XML Path Language (XPath)

500 600 600 700 Version 1.0." W3C Recommendation, the World Wide Web800 900 1000 1100 Consortium, November 1999.

1200 1300 1400 1500 6. Marsh, J. and D. Orchard, "XML Inclusions (XInclude)
1600 1700 1800 1900 Version 1.0." W3C Working Draft, 17-July-2000.

327

