
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP021722
TITLE: An Extensible, Ontology-based, Distributed Information System
Architecture

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the International Conference on International Fusion
[6th]. Held in Cairns, Queensland, Australia on 8-11 July 2003. Volume 1:
FUSION 2003

To order the complete compilation report, use: ADA442007

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP021634 thru ADP021736

UNCLASSIFIED

An Extensible, Ontology-based, Distributed Information
System Architecture

Alan I. Chao Edward Starczewski
Basil C. Krikeles AFRL/lFEA

Angela E. Lusignan 32 Brooks Road
ALPHATECH Inc. Rome, NY 13441, U.S.A.

6 New England Executive Park Edward.Starczewski(irl.af.mil
Burlington, MA 01803 USA.

Alan.Chao(2alphatech.com Basil.Krikeles(aalphatech.com
Angela.Lusignan(oalphatech.com

Abstract - The AFRL-sponsored Adaptive Sensor Fusion We will provide a high-level overview of the

(ASF) program produced a software framework, the philosophy and design of XDA with emphasis on
eXtensible Distributed Architecture (,YDA), which ontology support, followed by a description of some
facilitates the construction ofscalable, flexible distributed concrete problem domains with associated ontology-based

systems. XDA is based on a simple ontology mechanism approaches to handling them. A detailed description of the

that enables the definition and maintenance of high-level Adaptive Sensor Fusion program and XDA has appeared

object models to capture the shared semantics necessary in [1].

for interoperability. This ontology-based approach strikes 2 XDA design overview
a balance between having enough expressiveness to We use the term "ontology" in a very restricted sense
capture complex semantic interactions between to refer to XDA's approach for data definition and
components and being succinct enough for efficient, structuring with foundational support for single
cross-platform implementation. Shared object models can inheritance and aggregation. XDA has a lightweight
evolve and can be refined incrementally through mechanism for domain engineering. There is no
standard, object-oriented reuse mechanisms of requirement to define a universal ontology. XDA
inheritance and containment. XDA has been applied to encourages local solutions to the problem of domain
sensor fusion and visualization. Additionally, XDA is engineering in terms of sets of related structured data
being used to construct a database abstraction layer to types. We call these sets of data types ontologies. Each
access multiple, heterogeneous databases. XDA ontology data type within an ontology is called an entity and is
objects can be persisted and can be retrieved with defined in terms of a set of typed attributes. Partial
location transparency using an object-based query semantic overlap as well as semantic inconsistencies
language. This capability allows objects residing in between these domains may exist and when they exist
shared resources to be accessed uniformly by they are resolved programmatically. There is explicit
collaborating applications in a distributed environment. support for reuse of existing entity definition across

different ontologies using both inheritance and
Keywords: Ontology, domain model, system evolution, aggregation. Our use of the term ontology is therefore
distributed system. highly restricted and should not be confused with more

1 Introduction complex constructs such as knowledge bases.
XDA addresses the difficult problem of distributed

Achieving interoperability in a distributed application development, yet it is lightweight, simple,
environment is notoriously difficult because most systems robust, easily extensible and capable of high performance.
are designed to operate in isolation using their own By factoring out the domain semantics from the
specialized views of a problem domain. Furthermore, application layer it enables disciplined system evolution.
once such systems are built, they are typically difficult to Furthermore, XDA automatically generates an
maintain and to extend due to the complexity caused by implementation of the domain model both in terms of C++
semantic dependencies between components as well as ad and Java, making it especially easy to propagate object
hoc semantic conventions. In this paper we present an model changes to the applications. Thus, XDA ontologies
ontology-based framework (eXtensible Distributed are automatically translated to object models shared
Architecture or XDA) that addresses many of the across applications and defining the semantics of inter
problems associated with the construction of complex process communication. Objects can be transported across
distributed information systems. applications with a variety of inter process

communication technologies (such as CORBA or Web
Services). Finally, the object model supports persistence

2003 © ISIF 642

with location transparency through a vendor neutral, 2.2 Encapsulation Methodology
object oriented database abstraction layer. For a detailed
description of XDA's persistence capability see [2]. As noted in Section 2.1, XDA consists of an

2.1 Object model design and deployment encapsulation library with interfaces that are designed to
facilitate both building new components and

In broad terms, information processing for a specific encapsulating existing components. The latter is
problem domain consists of a set of applications extremely important since it provides a way to utilize
(implementing what is sometimes referred to as business existing components. Any component following this
logic) that operate on a set of structured data types standardized approach can then interoperate with other
(domain model). Processing may involve instantiating, XDA components seamlessly. The figure below illustrates
mutating, persisting, retrieving or transporting instances the architecture of an encapsulated legacy component:
of these data types. When processes collaborate they need XDA

to share at least part of the domain model. When this CORBA

sharing of semantic information is not carefully managed
it can result in tight coupling between components and in

a system that is difficult to extend and maintain. The
amount of coupling can increase proportionally to the
square of the number of applications involved. XDA
mitigates this problem with a methodology for defining a
shared object model (ontology) that is well-behaved with
respect to inheritance and aggregation thus allowing the
designers to better control coupling between components.

,'Object Figure 2. Integration of Legacy Components

High-level M Component Wrapping an existing application within XDA
ontology Off-line Encapsulation involves building a module that mediates between the

O existing application and XDA. This is illustrated as the
SeDAdapter in the figure above. In addition to configuring

Trn and controlling the existing component, the adapter also
O translates between ontology-based data and native data
00 structures that are required by the legacy component. The
* .adapter uses the XDA Programmer's API to communicate

with the XDA Encapsulation Library that supports inter
dlel M e M N process communication using publish/subscribe, file or

Modulel Module2 ModuleN database. This design insulates the adapter
implementation from all vender dependencies, including

Figure 1. Object model definition and deployment middleware and database software.
2.3 Model-on-a-model architecture

As shown in Figure 1, building an XDA-based

information system involves two broad activities: 1) A major design goal of XDA is the ability to modify
designing an object model which is appropriate for the the shared object model without having to update the low-
problem domain and rich enough to capture the semantics level transport infrastructure. XDA supports domain
required for information processing and 2) building model evolution without changes to the transport
applications that can interoperate in terms of the shared mechanism, by enforcing a strict separation between high-
domain model and that supply the needed processing level domain definition and low-level concerns such as
logic. In order to maximize interoperability, XDA defines persistence and inter process communication. Under XDA
a common set of public interfaces that are implemented by it is possible to add new entities to an ontology without
all participating applications. An application that modifying the physical database schemas. This is
implements these interfaces and is capable of utilizing the accomplished through a "model-on-a-model" architecture-
shared object model is called encapsulated. Such flexible, high-level, semantically rich domain models are
applications can be controlled at runtime in a uniform implemented in terms of a fixed, generic object model for
manner, and can be used as building blocks for transport and persistence.
constructing distributed applications. XDA includes a The figure below illustrates the "model-on-a-model"
software developer's toolkit for building encapsulated architecture of XDA.
applications.

643

ontology entity

Ontology Class A o On tooyCls nsme :stnng +entities pname : string
On ý oa Clas F 0 1 a strng dascr: string

omysion : stnng obaseEntityOnto string
...a. ackage . . st.. .g. : pbaseEntity : string

+enumerations
4 G T O ~ con e r io O nt7 o y7 an g e

Enumeration of all •"

Senumeration .J supported attribute

~nam stng tpes+attdbutes
O0/Relational Database #descr: string I pes- -a---bute-

#%GkjeS %ector<StdrgJ>
Generic Transport Objects
Fixed object model attrTypes

4INTEGER: integer
OINTEGER _SEQ: Integer attribute
#DOUBLE: integer #name string

Flat #ile CORBA DOUBLESEQ: Integer +type #lescr: string
STRING: Integer 0ontology : strg

#STRINGSEQ: integer penurmOrEntity : stringFigure 3. XDA has a model-on-a-model architecture j USERDEFINED: integer onihalifers : \ector<string>
IUSERDEFINED..SEQ: Integer #constr'ants : *ctor<string>

There is a one-to-one correspondence between #BYTE SEQ: integer ,unkOfMeasuure: string
ANY USER DEFINED: integer

Ontology Objects and Generic Transport Objects (GTOs) SEQ-_ANYUSER DEFINED: Integer

in the fixed low-level object model. The difference is that
the Ontology Objects carry the semantics associated with Figure 4. UML Diagram for Ontology
their domain model. GTOs contain no domain specific The containment hierarchy of an ontology object is a
information, and capture only the raw data and structure the ctanmen hera rc tlo o bject ise
information from the original object. Each GTO contains tree structure and can be directly compared to thea reference to its ontology, and combined with that structure of XML text. Given this similarity, XML can be

areferencetoit s c n trrodc and ia nced o the o nal used as an alternate transport format for ontology objects.
ontology it can reproduce an instance of the original However, GTO streams are binary and do not involve
object. When ontology class instances need to be ASCII conversion overhead, allowing for better
transported, they are converted to GTOs. These GTO optiizconvegies.
instances can be persisted to a database, saved to a file, or optimization strategies.
transported across platforms as byte-streams. Their object 2.5 Automatic code generation and GTOs
structure information combined with the ontology-based XDA's code generator converts ontology definitions
semantics can be used to implement efficient ontology- to fully implemented application classes in C++ and Java.
driven queries that can be used for data filtering. For each entity defined within an ontology, a C++ class

2.4 Ontology definition with corresponding header and implementation files or a

An XDA ontology is a means of describing structured Java class file is automatically generated. This generated
(hierarchical) data; there are no associated methods or code can be incorporated into the application component

predicates within the ontology definition itself. An that usesthespecifiedontology.

ontology consists of a set of entities and a set of Included in the class interface are methods for

enumerated types. Each entity contains a set of attributes mediating conversion to and from the GTO format, as
well as accessor and mutator methods for the attributes ofthat have a name and data type. An entity can be derived tecas nadtotecasspot ita

from a base entity (single inheritance), and inherit the the class. In addition, the class supports virtual

base entity's attribute set. The base entity is specified by construction of class instances from GTO objects. XDA

its name and by the name of its ontology. Supported has the capability to invoke the correct constructor for the
attribute data types include the basic types (integer, object given its GTO. This capability is used recursively
attibute, awhen objects within the containment hierarchy are
double, and string) and sequences of those basic types. constructed. It should be noted that substitutability applies

Additionally, the data type of an attribute can be user

defined or user defined sequence. When an attribute is to sequence valued attributes and sequence valued

user defined its value is an instance of another entity that attributes are in general heterogeneous. If the attribute

has been defined either within the same ontology or type is sequence of A, and if B derives from A, then the

within a different ontology. Similarly, an attribute with sequence attribute could contain instances of both B and

type user defined sequence has as a value a sequence of A. XDA guarantees that all objects within a root object

another entity. Finally, the data type of an attribute could will be constructed correctly according to their exact type.

also be a user defined enumerated type. 3 Current XDA Ontologies

3.1 XDA system ontologies

XDA uses the ontology mechanism in implementing
its own capabilities such as dynamic distributed tasking,
data querying, messaging services, and resource
management. Provided in the following sections are

644

illustrations for some of these system level ontologies and exceptional condition in a distributed system may be an
descriptions of their use within a distributed system. aggregation of conditions in a number of applications

where each individual condition is not necessarily an

3.1.1 Meta Ontology error.

XDA ontologies are self-describing in the following Detection of these conditions requires a status

sense: there is an ontology for ontologies providing the monitoring application that is capable of aggregating

definition of what an ontology is. (Shown in Figure 4) multiple messages into complex messages that give views

This meta ontology results in significant advantages of the system at a higher level of abstraction.

including uniform treatment of instance data (ontology
data are treated identically to other data for transport and 3.1.3 Task Ontology
persistence), and economy of implementation for XDA supports the execution of complex distributed
maintainability. The meta ontology; however, is special tasks through the definition of the Task Ontology (Shown
because it serves as a bootstrap ontology - an ontology in Figure 6). This ontology can be used to define
that is needed in order to define what ontology means. hierarchical tasks since the task entity is self-referential.
Nevertheless, it is still possible to enhance the meta The leaf nodes in this tree structure are jobs representing
ontology without breaking a deployed system and it is processes that run on a specific host processor. In a
possible to automatically generate code for refined CORBA environment the process name is the Naming
versions of the meta ontology. Context of the process and it can be used to connect to or

activate the process using a CORBA Naming Service.

3.1.2 System Message Ontology Each task also contains additional attributes that are used

Encapsulated applications can generate simple for scheduling task execution, setting the task priority,Encasultedappicaionscan genrat siple and storing the tasks status.

feedback messages to XDA system monitoring tools or +subtask

other components using the System Message Ontology.
When information products match a subscribing
component's criteria and are successfully published, the
XDA encapsulation layer generates a sys pub notify Task20 ask

pdescription :stringmessage. These publish notify messages provide high- -sk ring
Task2!tsk comp Otasld :str

level information about the transmitted data. These psched time: int
Staunch .time : int

messages can be used to track component subscriptions -priority Task2_PRIORlrY

and provide useful information regarding when the data . status Task2 EXECSTATUS

was published and to whom the data was published. +p,,cess-
S Task2iob . . i. proc~ess-. -

aobid string - n -me

who: string TyZDEBUGLEVEL status Task2_EXEC STATUS r---- ,:rms: stringseq
#whtt: string y _EQU GE VEL

.n

whent : string * NORMAL: Int n -
#VERBOSE Int \+Ssubscdptions

Task2 _subscription
y..s tatu-s.m-sg syspubnotlly +pub data pubtishername: sting•

Sys tatu-m +inpus L+out putstatus sys:E),EC_STATUS to whom: BYTESEQ .. inputs Task2 data spec subscription id :nt

' pulltmax int XUL.transport: int

ileel:.tkt sys:DEBUG LEVELi c :+resource .

- +products 0

Figure 5. System Message Ontology 1 Task2 product

sys -resource Qe2qury +quljey pontology : string
Each process within a distributed application enits (f-nnsyaam Ontology) I{(trnuery .n..ntty : stri•g

messages at runtime. Certain sets of these messages can _ . ¢nctde deriv ed : int

be aggregated to form patterns that correspond to complex
events having special meaning for the distributed system Figure 6. Task Ontology
as a whole. These patterns of messages are useful both in Each job contains a set of input and a set of output
order to detect exceptional conditions for the system as a data specifications. Each data specification is associated
whole, as well as to detect normal aggregate events with a distributed (shared) system resource, and a query
within the system. An example of such an aggregate event that is used for filtering the data both on the input and
is task startup, described in more detail in Section 3.1.3. output specifications. Shared resources can be files or

Exceptional conditions are particularly difficult to databases.
handle in a distributed system. For example, an

645

Finally, each job contais a set of subsrpin for ITs a
input data. The subscription set is part of XDA's peer-to- ;00 F 7 F] Wf]
peer publish/subscribe mechanism. The publisher name of execute tsk

a subscription is again the Naming Context of the execute lobx

publisher, allowing the job to connect to the publisher and execute lob y

invoke an appropriate message that sets up a subscription. executing *ob x

Each subscription is for a specific product set, containing execute lob z

a product type expressed as an ontology-entity pair with execute lob w

an associated object-based query to further refine the eLIwexecu Itng job y

products relevant to this subscription. The ability to execut nnqobz

precisely define the product set of a subscription allows executi a lob w

the task developers to finely control the bandwidth executin task
requirements of the subscriptions. Another interesting
feature of subscriptions is that they can be sensitive to Figure 8. Task startup is a complex event
inheritance and substitutability - a product set can be
configured to include derived entities.

In order to control distributed task execution, XDA 3.1.4 Query Ontology
includes a Task Manager application whose purpose is to XDA provides an object-based database abstraction
execute, monitor, and shut down tasks. As shown in the layer that decouples applications from the details of how
figure below, end-users can modify instances of the task objects are physically laid out, and eliminates vendor-
ontology though XDA graphical tools. Users can add new specific dependencies. This design combines with the
jobs to the task, change the inputs and outputs of data "model on a model" architecture and substitutability
specifications, and modify subscriptions to existing resulting in the following benefits: (1) object models can
components without rebuilding their systems. These task evolve with changes easily propagated to applications, (2)
objects are then sent to the task manager whose main applications can be updated incrementally to the latest
responsibility is to execute and monitor the processes object model changes, (3) object models can evolve
specified within the task. without affecting the database code, (4) object based

Task object queries can remain valid if object models evolve based on
inheritance and aggregation, (5) database applications can

Task Manager be replaced without making changes to XDA applications,
(6) multiple database applications can be used

/ Task execution simultaneously (for example MySQL and Oracle), and (7)
/ Results for multiple database technologies can be used

Task in execution visualization simultaneously (for example relational and object
oriented). The XDA database abstraction layer has been

,, -.. implemented in terms of JDBC, ODBC, direct SQL and
I Jthe object-oriented database ObjectStore.

B XDA queries are expressed in terms of the high-level
ontology definition of the problem domain rather than the
low-level database schema. This is more meaningful to

Figure 7. The Task Manager orchestrates task execution the end-user since ontologies are used to define the
domain of interest. Under this design, end-user orThe Task Manager provides interfaces that permit application queries can remain valid through database

users to dynamically replace system components at

runtime. For example, a user is able to replace component implementation or vendor changes.
C by another component E without shutting downcan be applied to any sequence of

Generic Transport Objects. Since GTOs are objects, XDA
components A, B and D. queries are based on traversal paths down the containment

The Task Manager is also capable of message hierarchy of the Generic Transport Object. Consistent
aggregation to detect task-wide conditions of interest. An with the XDA strategy, the query entity is defined in
example of such an aggregate event is task startup. When terms of a Query Ontology. A UML diagram of the Query
a user submits a task for execution, the Task Manager Ontology is shown below:
activates all jobs that are in the task. It starts monitoring
these jobs for status messages. Before declaring that the
task has successfully started, the Task Manager must
receive messages from each participating job that it has
successfully started.

646

Ssysjesource Hypothesis set

+resource. . Query2Ltreepath+resource +hypotheses
#start ontology-: strdng-

Query22query .start entity : string i
..s.comptle n *selectpth 4attr.path : string

ols...enabled : tnt 0 -. tpat enctotlg tn Entity hypothesisI;~~~~~
~~ #i~ nbe n _ edontology : string

r...

#Is_resource-based : Int= 0 endentity : string

41ndex Inresource : Int = endmattrbute ndx gntS.............. pend attribute-name s I
'end attr existential -nt +location +classification

Y+where end attrlbutetype : int

IseEntity locat ion Class ifi cati on hypothesisQuery2 wiereoctause •->-- --- I•iCasicainh :i si

retenm:rg +eath *noe.mth latitude: double typo: TARGET TYPE
0..* longitude : double belief: double

+predicateparams Query2-node
s[tbtrg tag tnte Figure 11. A simple target hypothesis ontology

esg3.2 Ontology-based visualization tools
Query 2_TRAVERSALTYPE
*ENTTY: Int =0 The XDA ontology mechanism has been used in
!#EM3STS Int = 1

Ai LL: Int = 2 integrating visualization tools with heterogeneous data
sources. A simple visualization ontology for displaying

Figure 9. Query Ontology tracks in geo-spatial coordinates is given in Figure 12.

Each query contains a select path that permits the This allows us to visualize products from all fusion

selection of a contained entity or entities within the components that publish generic visualization objects.

containment hierarchy, and zero or more where clauses. This allows loose coupling between the visualization tool

Each where clause consists of a path continuing from the and the fusion system since the visualization tool only

select path that leads to an entity farther down the needs to subscribe for products that are generic

containment hierarchy, and a predicate that can be applied visualization objects. An example of a Java visualization

to an entity or attribute to further serve as a selection tool that uses the OpenMap toolkit is shown in Figure 13.

criterion.
Figure 10 shows three sample queries based on the genescysualizationobject

simple target hypothesis ontology (Shown in Figure 11). symboe d: tin
The first query uses the XDA set of standard predicates to tid : int
select hypotheses if a given location latitude falls within altitude: int

latitude : double
the interval (45 degrees, 46.2 degrees). The second query longitude: double
uses the existential traversal - hypotheses will be selected gvobatch +gVos semimajor: double

if there exists at least one classification type equal to batchidp: st semiminor: double

CAR.description: stdijng 0.2 orientation : doubleCAR. track._id : int

source : string
Standard Predicates: category : string

SELECT (MHT, Hypothesis set, hypotheses) type : string
WHERE (location-litude, greaterthan, 45.0) force id: string
WHERE (locationlatitude, gressterhan, 46.0) echelon: string
WHERE (-ocationl/atitude, less-han, 46.2) timestamp: double

Elistential Traversal:
SELECT (MHT, Hypothesis-set, hypotheses)
WHERE (classificationsf?/type, equals, CAR) Figure 12. Generic Visualization Ontology

User-defined Predicate:
SELECT(MHT, Hypothesis-set, hypotheses)
WHERE(classificationsl?, class of type, [type,CAR], [belief, 0.7])

Figure 10. Sample queries for target hypothesis ontology

647

through multiple processing paths, and it is generally
undesirable because it can result in artificially high
confidence assessments. Detecting double counting is
relatively straight forward given pedigree capability, it is
not always possible to easily mitigate its effects.

'E4

Figure 13. Ontology based visualization •'"'-.•

3.3 Ontology-based information pedigree Figure 15. Pedigree can trace the origin as well as the
consequences of info B5ation

The pedigree of a given piece of information is a
historical record of all information and processing that Although information pedigree is essential in
participated in generating the information. A more distributed systems, pedigree capability is either limited or
detailed description of XDA's approach to information missing in current systems. In the past, distributed
pedigree appears in [4]. Pedigree is an essential element systems have been proprietary, stove-pipe designs with ad
of distributed processing, for the simple reason that data hoc pedigree functionality at best. Furthermore, there has
type alone is often not adequate to ensure that a given been a concemn that full pedigree capability may adversely
process can ingest the data. For example a correlator may affect system performance due to the large amount of
consume a certain type of sensor feed but will not operate additional data needed to capture pedigree information.
correctly unless the data has been pre-processed by a As the processing streams become longer and more
certain data conditioner. Although pedigree by definition complex, and as the number of collaborating applications
consists of the historical antecedents of a given piece of increases, the amount and complexity of pedigree
information, it can also be used for forward tracing that is information increases, thus straining system resources

discovering the consequences of a given piece of including storage space, bandwidth and CPU cycles.
information, by querying the pedigree of future Utilizing pedigree information involves the application of
information for references to the current piece of potentially CPU intensive algorithms. Any information
information. In the area of information fusion, pedigree is pedigree implementation must address these issues of
used to detect, and if possible, correct double counting of scalability and runtime performance. We are using XDA's
prior information, ontology mechanism for pedigree information

representation, as well as pedigree storage and retrieval.
oaobjectrefrenice i locationrentity h

proesscaninesttheda \d or ubamle acounetingul may afetsse efrac/det h ag muto

thnsen a +la .. d n oc t on

S some entity •

ian attinbute : intD ata has C another_attribute: string a

+antecedents of \as +source

Figure 14. Detecting double counting of evidence 0..* t

infomaton or efeence tothecurentpiec of potn obll eCPUitrerencie alobjethsAn ieference o

Double counting occurs when the same piece of areference

original information influences downstream processing

648

Figure 16. Pedigree-enabled, persistence capable entity Acknowledgments
Having an efficient pedigree representation is This work was sponsored by the Air Force Research

fundamental to achieving adequate performance. One Laboratory (contract numbers 59272DS102, F30602-98-
approach to pedigree representation might be to maintain C0292, and F30602-01-C(045).
a separate data structure that contains all the pedigree
relationships. This approach has some disadvantages; the References
pedigree structure can grow very large and must be [1] B. Krikeles, A. Lusignan, E. Starczewski, A
constantly updated at runtime resulting in database access Framework for Distributed Data Fusion, 2001 MSS
bottlenecks and reduced performance. Our approach is to National Symposium on Sensor and Data Fusion, San
avoid maintaining this centralized pedigree repository. Diego, June 2001.
Instead, we provide each pedigree-enabled object with
just enough additional information to compute its [2] B. Krikeles, A. Lusignan, E. Starczewski, Object-
immediate ancestors or antecedents. Consequently, based Persistence for Distributed Fusion, 2002 MSS
pedigree information is no longer stored as an aggregate National Symposium on Sensor and Data Fusion, San
whole; it is dynamically computed rather than statically Diego, June 2002.
retrieved. However, it is important that adding pedigree
capability to an existing entity be as easy and as non- [3] B. Liskov, J. Guttag, Abstraction and Specification
intrusive as possible. Our approach is based on a special in Program Development, New York, McGraw Hill,
attribute called antecedents which is a vector of object 1986.
references to the immediate ancestors of a particular
instance as shown in Figure 16. [4] A. Chao, B. Krikeles, A. Lusignan, E. Starczewski,

Presence of the special attribute this reference Information Pedigree for Distributed Data Fusion, 2003
indicates that an entity is persistence capable. Traversing MSS National Symposium on Sensor and Data Fusion,
the information pedigree amounts to traversing through San Diego, June 2003.
the antecedents vectors. In general, an entity instance
should be persisted if it contributes to the pedigree of
another entity since traversal through an object reference
to a transient object can result in an exception. Figure 16.
displays a persistence-capable, pedigree-enabled entity
that also contains a reference to the source or process that
created it.

Once an entity is pedigree enabled any entity derived
from it is also pedigree enabled, since it inherits the
antecedents attribute. Furthermore, pedigreed objects can
exist at arbitrary positions in the containment hierarchy of
a given object.

4 Conclusion
XDA enables the construction of distributed

applications that share a common, object-based domain
definition. Use of the ontology mechanism assures loose
coupling between the components by providing high-level
definitions of the information exchanged between the
components. This approach permits the creation of
systems that are capable of evolving, with modifications
being incrementally deployed as needed. Such
modifications can be made at the domain ontology level
without affecting the lower-level transport and database
schema. Since the ontology definition of the problem
domain is no longer coupled with the database and
transport schema, significant optimizations become
possible in order to assure that such a system can meet
operational performance requirements.

649

