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Summary

This lecture is devoted to the basic physical properties and the calculation methods of the artificial
cavitation (ventilation) flows. Main attention is paid to the three-dimensional ventilated supercavities past
the disk and blunted cavitators.

Derivation of approximate equations of the axially symmetric supercavities with using the theorem of
momentum and also the asymptotic theory of slender body is presented.

The G.V.Logvinovich independence principle of the cavity expansion is stated and grounded. It
gives a simple and general method of investigating the unsteady problems.

Calculation of the ventilated cavities has some peculiarities caused by gravity effect, presence of the
cavitator angle of attack and taking account of balance between the gas-supply into the cavity and the
gas-leakage from the cavity. They are discussed here as well.

Introduction

The basic similarity parameter of cavitation flows is the cavitation number [1-4]:
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where p,, is the pressure at infinity; p, is the cavity pressure; p is the water density; V,, is the
mainstream velocity. When a body moves horizontally on the immersion depth H, we have p_=pgH ,
where g is the gravity acceleration. The supercavitation flow regime corresponds to small magnitudes
o0 <0.1. When the magnitude of ¢ decreases, the supercavity dimensions increase.

When p = const, there are three possibilities of the o reduction:

1) Increasing the mainstream velocity V. With decreasing the mainstream velocity the rarefaction
past bodies increases, and cavities are created by natural way when the pressure decreases to a value
close to the saturated water vapor pressure p,= 2350 Pascal (at the temperature 20°C). Such
supercavities are called the natural or vapor supercavities. The parameter

c :2(p<>e_pv) (2)
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is called the natural or vapor cavitation number. The natural supercavities are filled by water vapor under
pressure p.=p,. The natural cavitation regime, when o, < 0.1, is attained when the mainstream

velocity is very high: V_> 50 m/sec.
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2) Decreasing the difference Ap = p_—p  owing to decreasing the ambient pressure p, , for

example, in closed cavitation hydro-tunnels [4, 5]. The super-cavitation flows in the stream with
artificially reduced pressure are sometimes called the artificial ones, although they do not distinguish on
natural vapor supercavities by their physical properties.

3) Decreasing the difference Ap = p_ — p. owing to increasing the cavity pressure p,. This is easy

attained by blowing the air or another gas into the rarefaction zone past a non-streamlined body. Such
supercavitation regime is called the artificial cavitation or ventilation. The method of obtaining the
ventilated cavities was proposed independently by L.A.Epshtein and H.Reichardt in 1944 — 1945.

The ventilated cavitation regime ¢ < 0.1 is easy obtained at the significantly lower mainstream
velocities ¥, ~ 10 m/sec. That is why, it is widely applied in bench investigations of the supercavitation

flows. The Fig. 1 presents a typical scheme of an experimental apparatus to investigate the ventilated
cavities.

Fig. 1. Scheme of apparatus to create a ventilated supercavity

1 Main problems of artificial cavitation

It follows from the similarity theory of hydrodynamic flows [3] that the shape and dimensions of both the
natural vapor supercavity and the artificial ventilated cavity must be the same when the cavity number is
equal. However, in reality the full similarity does not fulfil due to a number of causes.

The main peculiarity of the artificial cavitation flows is a consequence of comparatively small values
of the velocity V=10 + 100 m/sec. In this case the Froude number

Fr= Ve (3)
gD

n

where D, is the cavitator diameter, has moderate magnitude.

This means that the gravity effect is considerably more for the artificial cavity when the cavitation
number is the same. It causes to the more essential deformation of the artificial cavity shape. The
floating-up the ventilated cavity tail may be essential so that it completely determines the cavity
closure character and type of the gas leakage from the cavity.

Thus, the Froude number (3) together with the cavitation number (1) is the basic similarity parameter
for the artificial supercavitation flows.



1.1 METHODS OF CREATION OF THE VENTILATED SUPER-CAVITIES

We know the following methods of creating the artificial ventilated cavities (Fig. 2):

1) Method of a gas source [6] consists in creating a gas envelope around a body by the air jet ejection
from the body nose opposite to the stream (Fig. 2, a). It is obvious that in this case the gas pressure must
exceed the pressure of the water in the nose stagnation point. From the Bernoulli equation [7], we obtain
estimation of the necessary velocity of the air V, :

v, >V, £(1+6)z28.6(1+g]Vw, (4)
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where p, is the air density. One can see that the gas jet velocity and, hence, the gas rate must be very
high.

Owing to the high velocity of the gas flow in the cavity, the cavity walls are strongly perturbed (the
cavity is nontransparent). The flow represents a strongly turbulized two-phase zone at the tail cavity part
and in the wake.

This way of the artifitial supercavity creation is not applied in practice due to its lacks.

2) L.L.Sedov scheme [7] consists in ejecting the slender water jet from the body nose opposite to
the stream with simultaneous air-supply into the stagnation zone (so called "jet cavitator", Fig. 2, b). This
flow scheme represents the inverted cavitation flow by Efros-Gilbarg with the reentrant jet [7]. The nose
stagnation point is displaced into the stream, and in the ideal case of complete recovery of the pressure in
the tail part, the body must suffer thrust

I=pSVy., ®)
where S is the jet section area; V; is the average velocity in the jet.

In real flows, it is impossible to attain smooth closure of the cavity on the body tail and complete
recovery of the pressure. Therefore, the arising thrust will be smaller. Nevertheless, this scheme is very
perspective. When ¢ — 0, we obtain the infinite Kirchhoff's cavity. In this case the body with the jet
cavitator suffers half drag in comparison with the body with the solid cavitator.

Fig. 2. Ways of creation of ventilated cavities: a — gas source; b — L.I.Sedov's scheme;

¢ — blowing past a sharp edge



3) Gas-supply past a sharp edge. The most stable and smooth surface of the cavity is observed, if the
cavity separation occurs on the sharp cavitator edge with simultaneous gas-supply to the separation place
(Fig. 2, c¢). It is possible to supply gas in any point of the body after the fully development of the
supercavity (so called "distributed gas-supply"). Experiments showed that location of the place of the
gas-supply into the steady cavity has no essential significance.

The way of creation of ventilated cavities past cavitators with the sharp edge (for example a disk) is
the most frequently used.

1.2 COEFFICIENT OF GAS-SUPPLY RATE INTO THE CAVITY

The main problem for the ventilated cavitation flows is a problem on the gas quantity necessary for
supply into the cavity to maintain the supercavity of given dimension (i.e. to attain the given o). In the
case of axisymmetric cavitator, the dimensionless coefficient of the rate is introduced [2, 3]:

§:VQD2» ©6)
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where Q is the volumetric gas rate at the pressure p, , its dimensionality is m” / sec.

Obviously, the gas-supply rate Qm must be equal to the gas-leakage rate O, . when motion is steady.
For unsteady ventilated cavities, the gas leakage from the cavity is the unknown time function depending

on the variable pressure in the cavity p, () and on the gas-leakage type. Determination of the function

out

Q,,. (1) for concrete conditions represents a basic problem of the artificial cavitation theory.

A unified theory of the gas leakage from the ventilated cavity, that allows to calculate the function
Q(0) for any values of the flow parameters, does not exist. The mechanism of the gas-leakage may be
considerably distinguished in dependence on the parameters Fr, o, ¢,. The gas-leakage rate is also

different in the cases of free cavity closure and the cavity closure on a body. Approximate estimations
were obtained for some types of the gas-leakage.

1.3 HYDRODYNAMIC SCHEMES OF GAS LEAKAGE FROM THE CAVITY

Observations show that two principally different mechanisms of the gas leakage from the stable artificial
cavities exist when the cavity closure is free [2, 3].

Fig. 3. Scheme of the portion gas-leakage

When magnitudes of the numbers Fr and o are high, i.e. the gravity effectis not considerable and
the cavity shape is close to the axisymmetric one, the cavity tail is filled by a foam which is
periodically rejected by portions in the form of toroidal vortices (so called the portion leakage or the
first type of gas leakage from the cavity, Fig. 3).

When Fr is fixed and o is small, i.e. the gravity influence is considerable, the flow in the cavity
end becomes well-ordered. The cavity ends by two hollow vortex tubes carrying over the gas from the
cavity (so called leakage by vortex tubes or the second type of the gas leakage from the cavity, Fig. 4).
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Besides the first and second types of the gas leakage from stable cavities, the third type of the gas
leakage exists owing to pulsation of the unsteady ventilated cavities [8, 9].
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Fig. 4. Scheme of the gas-leakage by vortex tubes: a — view from side, b — view from above

THE FIRST TYPE (PORTION GAS-LEAKAGE)

The first type of the gas leakage from the artificial cavities is not well studied. This is explained by that in
this case the processes at the cavity end are considerably non-stationary and multi-parametric ones. It
was shown [3, 10] that they are determined by not only the similarity parameters o, Fr but depend on
both the Reynolds number Re and the Weber number We:
_DV. W o
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where v is the kinematic coefficient of viscosity; o is the coefficient of water surface tension. They also
depend on degree of the free stream turbulence and other external perturbations:

Q=F(o.0,,Fr,Re,We,...). (8)

It was shown experimentally that decrease of numbers Re and We, i.e. increase of viscosity and surface
tension of liquid, causes to decrease of the gas leakage rate from the cavity. Some data and
hypothesises about the first type of the gas leakage are presented in the papers by L.A. Epshtein [10,
1.

Qualitatively, in this case processes may be described in the following way. Fluid particles flowing
around the axisymmetric cavitator in the radial planes collide in the cavity closure zone and create a
non-stationary unstable reentrant jet. When the reentrant jet is distorted, the two-phase medium (foam)
is formed. It partially fills the cavity and moves within the cavity in the form of a toroidal vortex. The
outer part of this vortex moves along the flow direction under action of viscous shears on the cavity
boundary. Its central part moves opposite to the stream under action of the pressure gradient. The
vortex continuously grows owing to new foam portions. The foam rejection occurs in the form of a
ring toroidal vortex or its part, or separate foam portions (see Fig. 3), when the friction forces become
equal to the reentrant motion momentum. Also, the continuous foam leakage from the zone past the rear
stagnation point exists simultaneously with the portion leakage.

In the work [10] was shown using the methods of the similarity theory that the expression for a
dimensionless period of the foam portions rejection should be in the form:

el oSl Psg, | ©)
D, ¢\Jo

where ¢, is the cavitation drag coefficient, ¢ is the friction coefficient, B, B, are the function of Re,
We.

T =
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It follows from the experimental data [12] that an evaluation of Strouhal number Sk for this process
is

hz0.315,
v

=3

Sh=

where L, is the average cavity length. The real process frequency f has values 10 +100 Hz for various
tests. It is possible to observe the portion gas-leakage with a stroboscope or using photography with the
short exposure time 10 - 10~ sec.

In the case of the flow <close to the natural vapor cavitation when the gravity effect is
insignificant, G.V.Logvinovich established the semi-empirical law of the gas-leakage [2]:

Q:waSC(ﬁ—l} (10)
o2

where y=0.01+0.02 is the empirical constant, S, is the area of the cavity mid-section.
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Fig. 5. Influence of the Froude number on Q(c):  Fig. 6. Experimental dependence O (c)

[-Fr=193; 2-165; 3-14.6; 4-12.7; 5-11.0 Fr=133

The portion type of the gas-leakage with the periodically arising and distorting reentrant jet is
characteristic also in the case of supercavitation flow around hydrofoils with great aspect ratio [6].

1.3.2 THE SECOND TYPE (GAS-LEAKAGE BY VORTEX TUBES)

When the second type of the gas leakage from the artificial cavity, the process is stationary and
completely determined by the gravity effect on the cavity. The second leakage type is the most studied
both theoretically and experimentally. As is shown in [3, 4], in this case the viscosity and capillarity
forces are not considerable. Therefore, from point of view of the similarity theory the dimensionless

coefficient of the gas-supply rate into the cavity O must be determined by the dependence:

0 =F(o,Fr). (11)
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The calculation method of Q for the second type of the gas-leakage was proposed for the first time by
R.N.Cox and W.A.Clayden [13].

Now the semi-empirical formula by L.A.Epshtein [3] is supposed the most reliable:

— 0.42¢2
= X . 12
¢ olo’Fri-25¢,) (12
Here, c,, is the coefficient of the cavitator drag when ¢ =0:
P, (13)
opliS

where F.is the cavitation drag; S, =D, /4 is the cavitator area. For the disk cavitator ¢, = 0.82.

Also, the more exact semi-empirical formulac were obtained taking into account the cavitator
immersion depth H

and density of the gas supplied into the cavity p,, for example [6]:

0271‘/7 2.75 ’ O‘Fr

(Fr—135)6"" Fr2(c*Fr —2.38cx0)"

0= = (14)
where H = H/ D, . Computations by the formula (14) give satisfactory coincidence with experimental
data when Fr=4.8+20.

The experimental dependencies Q(c, Fr) showing the influence of Froude number on the gas
leakage by vortex tubes are presented in Fig.5 [3].

The gas-leakage type by vortex tubes is characteristic also for the case of supercavitation flow around
hydrofoils with small aspect ratio.

A criterion of transition from the first type of the gas leakage to second type is given by the
empirical Campbell-Hilborne's criterion [14]:
oFr=1; Fr=5+25. (15)

Values of o Fr>1 correspond to the first (portion) type of the gas-leakage, values o Fr<1

correspond to the second type of the leakage (by vortex tubes). As the experiments show, both the
mechanisms of the gas leakage from the cavity can act at range of intermediate values of o Fr=1.

Such transient regimes of the gas leakage are very unstable.

A typical experimental dependence of the gas rate coefficient O on the cavitation number ¢ obtained

at testing a series of cones with angles from 30° to 180° (disk) is shown in Fig. 6 [3]. In this case the
value of the Froude number was Fr = 13.3. In the expressions for Fr and @, so called "universal linear
dimension" D, :Dn\/a was used instead D, to analyze the experimental data. As a result, the
relation (11) does not depend on ¢, and all the experimental points for various cones lic on the only
curve.

The right part of the graph 1 corresponds to the first portion type of the gas leakage, the left part of
the graph 2 corresponds to the second type of the leakage by vortex tubes, the middle part of the

graph 3 corresponds to the transient regime. The value ¢ = 0.081 corresponds to a boundary between the
types (15) in this graph.
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1.3.3 THE THIRD TYPE (GAS-LEAKAGE FROM PULSATING SUPERCAVITIES)

Denominator in the formula (13) must not be equal to zero. It follows from here that it is impossible to
obtain the cavitation number lower than some minimal value at any increase of the gas-supply rate into

the cavity:
o, z1.343‘/ S0 (16)
Fr

In practice, when the gas rates are very great, the cavity stability is lost and cardinal change of the
mechanism of the gas leakage from the cavity occurs [8, 9].

Fig. 7. Scheme of the gas-leakage from the pulsating cavity

Theory of linear stability of the gas-filled axially symmetric cavities was developed by E.V.Paryshev
[15]. Analysis showed that the dynamic properties of gas-filled supercavities are mainly determined by
the dimensionless parameter

c
B==x. (17)

o

The cavity has a series of fundamental reduced frequencies

kzal)/L"=27rn n=12,..., (18)

=3

where w is the circular oscillation frequency; L

(4

is the cavity length. The following value of the
parameter  corresponds to each fundamental frequency

g =1+ (19)

Supercavities are stable when 1 < § < 8, = 2.645 and unstable when > 2.645.

Thus, the similarity parameter f > 1, that is equal to ratio of vapor cavition number at given velocity
and its real value, is the basic similarity parameter for cavitation flows together with the cavitation
number (1) and the Froude number (3). The value B =1 corresponds to the natural vapor supercavitation.
When the parameter f increases, significance of elasticity of the gas filling the artificial cavity increases
as well.

The separated self-induced oscillations of the cavity are established as a result of the stability loss
when the supply is permanent. In this case the gas-supply occurs owing to periodic separation of great
portions of the cavity (air pockets) (see Fig. 7).

The instability phenomenon and arising the self-induced oscillations take place both for 3-D (in
particular, axially symmetric) and for 2-D ventilated cavities. In the work [16], a simple "kinematic"
theory of gas-leakage from pulsating cavities was proposed. It gives satisfactory correspondence to the
experiment.
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1.3.4 GAS-LEAKAGE WHEN THE CAVITY CLOSES ON A BODY

The mechanism of gas leakage from the cavity when the cavity closes on a body is very complicate and
depends on number of factors such as:

cavity perturbations: its floating-up, wave deformations, natural distortion of the free boundary;
body parameters: shape in the closure place, surface roughness, vibrations;

closure conditions: angle of free boundary inflow, presence of the liquid and gas jets, radial velocity at
the closure place.

According to the known theoretical schemes of the supercavity closure [17] the cavity may close on a
solid body in the following ways (see Fig. 8):

Riabouchinsky scheme. The cavity smoothly closes on a solid surface—closurer located in the cavity
end. In the closure place, the body diameter is D, <D, .

Joukowski—Roshko scheme. The cavity closes on a cylinder with diameter equal to the diameter of the
biggest cavity section D, .

Gilbarg—Efros scheme. The cavity closes on a cylinder with diameter D, < D, with forming the ring
reentrant jet.

The experience of work with the artificial cavity shows that the gas leakage may be compared with
the rate of fluid supplied into the cavity with the reentrant jet. Physically, this may be explained that the

fluid inflowing into the cavity acrates, mixes with the gas and rejects from the cavity as a mixture of
gas and water.

Using the momentum conservation equation, the cross section area of the reentrant jet when the
cavity closure is free is equal [7}:

c, ﬂD,f
;= TT (20)

In the case of the cavity closure on the body, the section area of the ring reentrant jet remains the same.
It was established experimentally that when the cavity closes on a circular cylinder with diameter D, ,

the gas leakage is proportional to a ratio of section areas of the middle cavity part 7D /4 and one of the

cylinder 7D} /4 :

2h

where k, is some empirical coefficient. When D, =0, we have free closure of the cavity by the first
type of the gas-leakage. When D, =D_, we obtain the cavity closure by the Joukowski-Roshko
scheme with the zero gas leakage (see Fig. 8, b).

Theoretically, we can also obtain the zero gas leakage when the cavity closes on the body by the
Riabouchinsky scheme (see Fig. 8, a) when D, <D, , if the cavity and body curvatures are coordinated
at the closure point a=¢, (Fig. 9).

Practically, it is impossible to obtain the zero gas leakage at high magnitudes of We and Re numbers.
However, it may be reduced to the minimal value caused by presence of unremovable small-scale
perturbations. Blowing or suction of fluid is applied at the closure place to realize the stable cavity
closure [18]. For example, the works [18, 19] propose a scheme of stable closure of the cavity on the
liquid jet outflowing from the slot in the closurer of the elliptic shape.
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Fig. 8. Schemes of the supercavity closure on a body: @ — Riabouchinsky; b — Joukowski-Roshko; ¢ —
Efros-Gilbarg

We have discovered experimentally the interesting phenomenon of hysteresis at the control of the
ventilated cavity closing on the body by regulating the gas-supply. This effect increases with increasing
the body surface curvature.

The control of ventilated cavity is possible, if single-valued dependence of the cavity length on the gas
supply rate exists: L, =L, (Q). If we consider neighborhood of the point of the cavity closure on
rectilinear generatrix of the body y =y, (Fig. 10), we can note that the closure angle ¢ will be increased
with increasing the cavity dimensions:

o(L)<o(Ly)y<oLy), L<L,<L,

due to increasing both the ratio D,/ y, and the relative cavity dimensions. In this case the velocity on the
cavity boundary changes insignificantly due to the cavitation number varies weakly. Thus, the gas-
leakage value O depends mainly on the local angle of the cavity closure on the body:

0= 0().

Fig. 9. Scheme of the fluent cavity closure on a body

Dependence of the gas-leakage on the cavity length Q,(L,) is schematically shown by dotted line in Fig.
10 when the cavity closes on the rectilinear generatrix of the body y=y, .

Qualitatively, appearance of hysteresis behaviour may be explained by locating an additional triangle-
shaped body on the rectilinear generatrix (it is dashed in Fig. 10). The cavity length increases with

increasing the gas-supply from the value Q,. When the cavity closes on the frontal surface of the triangle
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X, +x,, the cavity forms bigger angles of closure than at closure on the rectilinear generatrix. For
example, o(x,) is bigger than ones when the cavity closes between the points x; and x,. We have
o(x,) =a(x,) only in the point x,. Therefore, the gas rate O, for maintenance of the cavity closing in
the point x, will exceed rates when the cavity closes in the points x, +x, and equal to the rate for
maintenance of the cavity closing in the point x,. As a result, the cavity length will very rapidly increase
from L, =L, to L. =L,.

With decreasing the supply from the value Q,, when the cavity closure point is on the back side of the
triangle x, +x,;, the closure angle will be smaller than one when the cavity closes on the rectilinear
generatrix. When the cavity closes in the point x, , the rate Q; will be smaller than one when it closes
between the points x; and x,. As a result, the cavity length will decrease very rapidly from the value
L. =L, tothevalue L <L,

\j

o
=~
—
o
&
—
L
—

Fig. 10. Scheme of a hysteresis when the cavity closes on a body

Thus, a hysteresis loop appears in the graph Q(L_) that is formed when the gas supply into the cavity
increases or decreases.

The hysteresis property of the function of the gas supply into the ventilated cavity may by practically
used to stabilize the cavity closure on the body by respective designing the body shape.

2 Approximate calculation of the steady axisymmetric supercavity

As it is known, main properties of supercavitation flows are well described by the potential theory of
ideal incompresssible fluid. The respective mathematical problems are related to the class of mixed
boundary value problems for harmonic functions. The flow area is bounded by the solid and free
boundaries. The velocity distribution is given on the solid boundaries (cavitator or hydrofoil), the
constant pressure p, is given on the unknown free boundaries. For stationary problems, the velocity

constancy along the free boundaries follows from the pressure constancy:
V. =V_Al+0 =const. (22)

In this case the free boundaries are lines of flow.
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Potential models of developed cavitation flows do not describe a real flow in the cavity closure zone
where capillarity and viscosity are considerable. According to the known Brilluene paradox, existence of
a closed cavity in the imponderable flow is impossible [1]. This resulted in creation of a number of
schemes of "mathematical" closure of the supercavity: by Riabouchinsky, Joukowski-Roshko, Efros-
Gilbarg et al [17].

2.1 FORMULATION OF PROBLEM

We consider steady axially symmetric flow around a supercavitating disk in unbounded imponderable
fluid with the velocity at infinity V_ . We introduce the cylindrical coordinate system Oxr connected with

the cavitator (Fig. 11). Let » = R(x) is the equation of the cavity generatrix.

Fig. 11. Scheme of an axisymmetrical supercavity

The Laplace equation for the perturbed velocity potential ¢(x,r) is valid for all the flow area:

x> o’ ror
On the cavity surface, the potential ¢ must satisfy both the boundary condition of zero normal velocity
(the kinematic boundary condition)

2
90,9 190 _,, (23)

op 3¢ YdR
=y +Z2 = =R 24
or (w+8x)dx’ r=Re) @4

and the cavity pressure to be constant p = p. (the dynamic boundary condition). Applying the Bernoulli
equation on the liquid contour, we can write the dynamic boundary condition in the form:

2 2
901 (22 1oy 20280 _piy. (25)
or ox ox p

where Ap = p_ — p,. The third condition is the condition of the perturbations to be vanished at infinity
0 —0, x*+r’—>oo (26)

Owing to great mathematical difficulties an exact solution of the boundary value problem (23)-(26) has
been not obtained. In contrast to two-dimensional problems on supercavitation flows, it is impossible to
apply the power mathematical theory of analytical functions and conformal mapping in this case. Some
progress of applying the theory of generalized analytical functions to axisymmetric problems was
outlined last years [20].

All known results of the theory of axisymmetric cavities have been obtained by numerical methods or
by approximate asymptotic and semi-empirical methods and perturbation method as well.
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P.Garabedian's works [21] are very important and imperishable for the theory of axisymmetric super-
cavitation flows. He sought a solution of the axisymmetric problem for stream-function w(x,7)and

consider it as the plane flow perturbation. As a result, he obtained the asymptotic solution for main
dimensions of the supercavity past a disk when ¢ —0:

Aqfe.
DC:DH\/%T‘, LC:DH$, A= 11%, c(0)=c (0)1+5) ¢, (0)=0.827, 27)

where D, is the disk diameter; D, is the biggest cavity section diameter; L, is the cavity length.

A comparison of the asymptotic formulae (27) with both the experimental data and the "exact"
numerical calculations showed their high precision and physical accuracy.

2.2 APPROXIMATION RELATIONS

A combined approach using reliable physical representations, general conservation laws (such as the
momentum and energy theorems) and generalized experimental data proved to be the historically first
and most productive in practical calculations. G.V. Logvi-novich was a founder of this direction of the
super-cavitation flow investigation.

We present firstly some useful relations for the axisymmetric supercavities obtained by approximating
both the experimental data and the "exact" numerical calculations

For main dimensions of the axisymmetric cavity (the mid-section diameter D, and the cavity length L)

in the case of the cavitation number is small and the gravity influence is negligible, it was obtained semi-
empirical relations of the same structure as in (27) [2, 3]:

fo Aqfc,
D =D, |—, L. =D, = (28)
ko o]

where k= 0.9 + 1.0, 4 are empirical constants. When o is not very small, it is usually accepted A = 2.

Formulae (28) are valid not only for the disk but for any blunted cavitators. For a non-disk cavitator
D, is a diameter of the cavity separation line. For the drag coefficient of the blunted cavitators when o

n

is sufficient small, the approximate Reichardt formula is valid [1-4]:

c.(0)y=c,(1+0), O<o<1.2, (29)

where ¢, is the cavitator drag coefficient when ¢ = 0. Value ¢ ,= 0.82 was established experimentally

for the disk cavitator. For cavitators in the form of a blunted cone with cone angle 120°< f <180°, it is
possible to use the formula:

¢ =0.134+,/0.0036 3 —0.1719, (30)

that was obtained by approximating the experimental data for the disk and cones [3].

Analysis of photographs of supercavities past the blunted cavitators when ¢ is small permits to
distinguish three characteristic parts of the cavity (Fig. 11). The frontal part [ adjoining to the cavitator
has length of order of D, . It is characterized by strong curvature of the free boundary. The next main
part II occupies approximately % of the cavity length L_. Finally, the tail part III has unstable unsteady
boundaries at the moderate magnitudes of o . It is impossible to determine them using the potential
theory.
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The frontal part boundaries have great curvature and are determined by the cavitator shape. They do
not depend on the cavitation number. For the disk cavitator, the empirical "1/3 law" is usually used [2]:

L T B e G1)
R R

#n n

where R(x) is the current cavity radius, R, =D, /2 is the disk radius.

The IHM of Ukrainian NAS accumulated great experimental material on the free motion of super-
cavitating models with the disk cavitators in wide range of velocities V= 50 +1400 m/sec. = The
corresponding cavitation numbers are ¢ = 1.4 - 10* + 102 . Natural vapor cavities are formed for all the
pointed velocity range. They are axially symmetric along the whole their length, i.e. are not deformed
under the gravity effect.

For the main supercavity part past the disk, we obtained the semi-empirical formula [22}:
R*=3.659+0.847(x —2.0)-0.2360(X—2.0)>, X>2.0 (32)

where R=R/R,, X=x/R,. In this case, the experimental data was used which were obtained for

natural vapor supercavities in range of the cavitation number ¢ = 0.012 + 0.057. Results of measuring the
profile of the steady vapor cavities corresponding to various values of ¢ are presented in Fig. 12. Fig.
13 presents a photograph of the vapor supercavity closing on the jet out-flowing from the model nozzle.
The frontal cavity part at ¥ <2.0 is described by formula (31).

R%R,?
RR% [

<) Fr
0012 392 A
D021 278
0.037 151
0.044 146
0.044 107
0.05‘4 132‘

0.8
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4 r

0.2

o> X » & o

0 01 02 03 04 05 06 07 08B 08 XL,

Fig. 12. Universal contour of the axisymmetrical supercavity

Fig. 13. View of the natural vapor supercavity past the disk: D, = 15 mm, V=105 m/sec, o = 0.0204.

From the formula (32) one has the following expressions for both the cavity mid-section radius and the
cavity length:

R =—¢= [3.659+——, (33)

(34)

The functions R (c) and L (o) which are calculated by formulae (33), (34) in range of cavitation
number o= 0.01 + 0.06 are shown by solid lines in Fig. 14. The experimental data of Fig. 12 also are
plotted there. For comparison, the same functions given by asymptotic formulae by P.Garabedian (27) are
plotted by dotted lines.
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Fig. 14. Approximate dependencies R (o) (a) and L, (o) (b) calculated by formulae (33) and (34)

An advantage of approximation formula (32) is that it gives explicit dependence of the cavity shape
on the cavitation number.

We also present other approximation formulae for the main dimensions of stationary axisymmetric
super-cavities past cones and the cavitation drag coefficient of cones. They were obtained based on the
numerical calculations in "exact formulation” [23, 247

D, e, 1+500 L [L1 41-20) 1
= \ = = ——— /e, In—, (35)
D, KO 1+56.20 D, o 1+144a o
where D, is the cone base diameter.
¢, =c,+(0.524+0.6720)0, 0<0<0.25, éSa S%, (36)
er0 = 0.5+1.81(0t—0.25)— 2 — 0.25)%, %Sasé, ¢y =0/(0.915+9.50), O<a<%,

where o is the cone half-angle. When o — 0, the formulae (35), (36) transform into the asymptotic
relations by P.Garabedian (27).

2.3 ENERGY APPROACH

According to G.V.Logvinovich work [2] we use the theorem of momentum to obtain the approximate
equation for the main supercavity part. We display the check volume of liquid (Fig. 15). It has such
boundaries:

S, is a plane perpendicular to the symmetry axis and located far up-stream ;

S, is a plane perpendicular to the symmetry axis and passed through an arbitrary point of the cavity
axis before the biggest cavity section;

S, is a cylindrical surface with the axis coinciding with the cavity symmetry axis and with radius

R, —oo. Let R(x) is the radius of the cavity section by the plane S,, so that S=7mR’ is the cross-
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section area. We write the theorem of momentum for the displayed fluid volume in projection on the x-
axis:

J. p(Vw+vx)2ds—J.ijds:J.pids— J.pds—SpC—FX, 37)
S?_S Sl S] Sz—S

where F, is the cavitation drag. Integrals with respect to the cylindrical surface §; vanish, since the

perturbed velocity reduces as 1/7® when r— oo (like a flow of a dipole).

Ss
- ‘R?
- S,
8, r A ,
- Y \
Fy 7]/1 R R,
~ X
= _ e
Ve
- p
- N

Fig. 15. Scheme of application of the theorem of momentum

From the Bernoulli equation, we obtain the pressure:
[
p:pw_prvx_Epvr’ (38)
and use condition of conservation of the mass of fluid flowing through the sections S, and S, - S:
ijjds = Jp(Vw +v,)2ds.
Y

5,~$

It follows from this that

j v.ds=V._S. (39)

5,-8
Substituting (38) and (39) in the Eq. (37), we obtain the relation for cavitation drag:
2 2
Fo=tps— [ Eracs | Bras, (40)
Y2 Y2
$,-8 $,-5
where Ap=p_—p,.

If, in particular, we draw the plane S, through the cavity mid-section, then S=S, and v, = 0. Hence,

the second integral in the Eq. (40) is strictly equal to zero. It is possible to show that the first integral in
the Eq. (40) is small compared to the first term when ¢ — 0 [2]. That is why, we also cast it out
introducing a correcting multiplier k. After that, the law of the supercavitation drag may be written in the
form:

2
F.=kApS, =ko SC%. (1)
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Introducing the cavitation drag coefficient of the cavitator (13) in the Eq. (41), we obtain the formula
(28) for the supercavity mid-section radius:
C‘C

R.=R, .
ko

Experimental check and comparison with numerical calculations showed that the correcting multiplier &
weakly depends on ¢ and has magnitude in range 0.9 + 1.0. It is usually accepted & = 1 for practical
calculations.

Then, we transform the Eq. (40) to the differential equation of the supercavity section expansion.
Neglecting the first integral in the Eq. (40), we may consider the flow in the plane S, as pure radial one.

We have the boundary condition for the mean part of the slender supercavity surface
v, =V_R(x). (42)
The radial velocity of fluid at the arbitrary radius » is determined from the condition of the mass
conservation:
2 Rv, (R)=2mrv,(r),
then we obtain taking into account the Eq. (42):

’

vr(r):Vwﬂ. (43)
r

The integral in the Eq. (40) represents the kinetic energy of the flow in the fluid layer E, . It is equal to

pv; ree
E, = j Erds=mpv. (RRY Iny| _. (44)
5,

One can see that this integral value is equal to infinity, i.e. infinite energy is necessary for the radial
expansion of the cavity in the two-dimensional problem. That is why we accept two non-strict but
plausible assumptions:

1) Let, according to [1], the outer radius of the flow area R, has high but finite magnitude. In other

words, we suppose that all perturbations of the fluid motion are concentrated in a ring with the inner
radius R and the outer radius R, . This supposition is plausible, because the velocity perturbation decay

very rapidly (as 1/ #*) in the three-dimensional problem.
2) Let the logarithm magnitude
U= 1nR2_(x) (45)
R(x)

does not depend on the coordinate x. This assumption is plausible for the mean part of the slender cavity
when ¢ — 0.

Then the relation (40) may be rewritten in the form
F.=ApS+ —:‘ pVA(S'Y. (46)
74

Differentiating the Eq. (46) with respect to S, we obtain another form of the equation of the supercavity
section expansion that does not contain the cavitation drag:

9’S _ 2mAp

90 __ZFop 47
ox’ pV? “7)
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Passing to the fixed coordinate system in the Eq. (47) with the independent variable substitution x=V_¢,
we rewrite it in the form

9°S(r,t) _ 2mA
AU SELL (48)
ot p
The Eq. (48) assumes the obvious mechanical explanation:

The cavitator passes the fixed "observation plane" at the time 7=7 and makes an orifice with
diameter D, in that plane. Considerable radial velocities arise on that orifice boundaries. Then, that

orifice expands on inertia overcoming the pressure difference Ap up to its maximal diameter D, at the
time t=7+1, . After that, the orifice decreases and closes again at the time =7 +2¢,.

The time interval ¢, = L./2V_ is called "the time of the complete cavity expansion”. After the cavity

collapse, the wake remains past it where the mechanical energy transmitted by the cavitator to the fluid
disperses into heat.

The Eq. (48) allows to calculate an expansion of each cavity section separately, i.e. it is an expression
of the independence principle for expansion of the slender axisymmetric cavity sections by
G.V.Logvinovich [2].

A full cavity profile at fixed ¢t may be calculated when ¢—2¢, <r <¢. In this case x-coordinates of the
cavity sections are x(7)=V_1 , and the cavity length is equal to L, =2¢ V.

The more strict analysis of the Eq. (40) [2] permits to transform it to the following form (in the fixed
coordinate system):

K aS _
St +(5.=5)=0, (49)

where K is some correcting coefficient. The integral of the Eq. (49) is
S(H=S, +C(t—1)"'".

Determining the arbitrary constant C from the initial condition S(0)=S,, we finally obtain the law of the

r . 2/
S t
Sny=S |1- l——”] | —— .
{ ( S,/L r.j (50)

cavity section expansion:

<

Passing in the Eq. (50) to the coordinate system related with the cavitator x=V_¢ , we obtain:

[ 2V 9 Y
R(x)=R /1~;1-R3J1—‘—"J . (51)

For non-disk cavitators, the coordinate x = 0 corresponds to the plane of the cavity separation.

A comparison with experiments showed that value of the correcting coefficient is k¥ =0.85. However,
the exact enough results are obtained when x = 1.

It is easy to see that the shape of the main part of the axisymmetric supercavity represents an ellipsoid
of revolution when x =1, and one is very close to it when x = 0.85.
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Experience of calculation shows that the expressions (31), (51) must be "matched" on the boundary
between the frontal and the main cavity parts when x=x; = D, . As a result, we obtain so called formula

of the G.V.Logvinovich's composed cavity:

4 4 R2Y 2K
» x h X—x
R(.\')ZR”(]‘FR—”J s _\”ﬁ)&']. R(X)ZR(. ‘“[I‘RS J[l_z—[?_-—fll:l—} s (52)

where R, =R(x,) is the "agreement section" radius. When x; =D, , we just obtain from the Eq. (31)
that R =1.913.

The "universal contour”" of the ellipsoidal cavity is plotted by solid line in the Fig. 12. It was
calculated by the formula (52) when x= 1. A comparison with the experimental data shows good
coincidence along the whole cavity length right up to the point of the cavity closure on the body.

2.4 ASYMPTOTIC APPROACH

Great aspect ratio of supercavities when ¢ is small gives background to apply the theory of flow around
slender bodies [25, 26] to calculate them. Basing on this theory, the asymptotic theory of a slender
axisymmetric cavity was developed [27-30]. The basic mathematical tool of this theory is asymptotic
method of singular perturbations [26]. A solution of the axisymmetric boundary value problem is sought
in the form of decomposition by the small parameter €. Its value is inverse to the cavity aspect ratio.

It is well known from the theory of slender bodies that the potential decomposition near the x-axis is
[26]:

_ V. dR?

29

Inr+...

To evaluate the order of smallness of terms in the Egs. (23)-(25), we substitute there orders of
smallness for all the variables:

r~g R~g, x~1, o~¢e’lng, Ap~e.

As a result, neglecting the terms of high order of smallness, we come to the "internal" problem of the
first approximation:

d’p 199
—t+——"=0, 53
or? i r or (53)
a—(P:de—R, when r=R(x), (54)
or dx
yO2 A en r=RG). (55)
ox p

We note that the condition (26) proves to be lost in the internal problem.

We verify by direct substitution that the general solution of the Eq. (53) satisfying to the kinematic
condition (54) is:

2
(p(x):V;“dilnr+C(x), (56)
2 dx

where C(x) is some arbitrary function that may be determined by matching with the "external” solution
satisfying to the condition (26) [26].
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Substituting the solution (56) to the dynamic boundary condition (55), we obtain the equation:

2p2 ’
R
d IR+ 200 _ ZA‘Z . (57)
dx V. pV:
We introduce a new arbitrary function ¥(x) instead C(x) using the equality:
, V. d'R’
C'(x)y=—= In¥(x).
(x) 2 (x)
Then the Eq. (57) becomes the same form as the Eq. (47):
2p2
d°R In R(x) 2Ap (58)

d>  W(x) pv?’

if we consider that
Y(x)
R(x)

In

= [I = const.

Thus, both the energy theory and the asymptotic theory of slender axisymmetric cavities yield the same
equation in the first approximation.

The more strict analysis of the boundary value problem (53)-(55) permits to obtain the differential
equation

2p2 2
R° R R 2A
a—zln— 4R _ _IZ (59)
0x Yo dx py:
having the higher precision €’Ing than the Eq. (58).
In the work [30], its solution was constructed by the method of matched asymptotic decomposition.
However, the equation of the first approximation (48) is the more convenient for practical
calculations. It must be integrated when ¢ >7 with the starting conditions:

D} oS(r,t
S.n)= 4 - E)z :

=S, (60)

where S, is the starting velocity of the cavity section expansion. It is determined by the cavitator shape,

ie.by D, and ¢, and also by the model velocity V and does not depend on the cavitation number.

The Eq. (48) reminds the Newton equation of motion. The constant ¢ may have certain physical

sense of the additional mass coefficient of the expanding cavity section (so called the ring model of the

slender axisymmetric cavity [1, 30]). This assumption allows to determine the starting velocity of the
cavity section expansion [29]:

oR* | F,

ot kmup’

t=1. (61)

However, for practical calculations it is rational to determine both the constant y and the initial velocity
of the section expansion s o in such way that the semi-empirical relations (28) are fulfilled. Integrating
twice the Eq. (48), we obtain:

oS . kAp

EZSO —T(Z—T), (62)

S:S(T,r)+so(z—r)—%(z—r)2, (63)
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where k; =27/ it . Substituting the expressions (62) and (63) into obvious relations:

nD? oS(t,7+1,)

ST, t+t,)=—+%, =0,
( ) 4 ot
and taking the Eq. (28) into account, we finally obtain:
=Dy og, k= (64)

The Eq. (48) is an equation of the ellipsoid of revolution, i.e. it correctly describes the shape of the
main cavity part. To take into account the frontal part (31), it is necessary to use the condition

S(r,t)=nD} /4 (here, D, is the "agreement section” diameter) instead the first of starting conditions
(60).

Fig. 16 gives a comparison of the cavity shape calculated by formulae (52), (63) and (32) when
o=0.02.

If 0<0.01, all three curves coincide. The cavity contour approaches to the ellipsoidal cavity shape (52)
when ¢ decreases and practically coincides with the latter when ¢ < 0.01.

Fig. 16. Supercavity shape calculated by formulae: 1-(32); 2-(52); 3-(63)

3 Calculation of unsteady supercavities
3.1 INDEPENDENCE PRINCIPLE OF CAVITY EXPANSION BY G.V. LOGVINOVICH

In 50s G.V.Logvinovich proposed and grounded so named principle of independence of the slender
axisymmetric cavity section expansion. It may be treated as a partial case of the general mechanical
principle of plane sections. That principle consists in that the law of the cavity section expansion almost
does not depend on the previous and the next motion of the cavitator. That law is determined by the
instantaneous velocity of the cavitator at passing through this section plane and by the pressure difference
Ap = p.. — p. as well. The independence principle of the cavity expansion is of very importance to

research the unsteady supercavitation flows.

3.2 EQUATION OF AN UNSTEADY SUPERCAVITY

In the case of unsteady axisymmetric cavities the independence principle consists in that the law of
arbitrary section expansion about the trajectory of the cavitator center is determined by the cavitator
instantaneous velocity at passing this section V{(¢), and also the pressure difference Ap = p_ — p. that can
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depend on time at fluctuating the external pressure p_(¢) or the cavity pressure p,(f) as well. The

mathematical expression of the independence principle is the equation of expansion of the unsteady
cavity section [29]:

azigr):_mz;(f»f), W)~ L ()<& <x0). 6)

where Ap(t,t)=p..(E)+ p,(1)—p (t). Here, T <t is the time of the section & formation; x(f) is the
current absolute coordinate of the cavitator (see Fig. 17); p,(#) is the perturbation of the ambient
pressure. The hydrostatic pressure p_, can change from a section to section in case of the vertical cavity
in ponderable fluid.

X- LC(T)

Fig. 17. Calculation scheme of an unsteady supercavity

According to the independence principle, the equations of expansion of the steady cavity (48) and the
nonsteady cavity (65) are identical. The constant &k, =2x/u and the initial velocity of the section

expansion S, t):SO have the same magnitudes (64). In this case V =V (r) is the instantaneous
cavitator velocity at the time of the section & formation.

We introduce the dimensionless variables by formulae:

’ ’ ’ D ’ ’
x=D,x, L.=D,L., S=D}S’, t==2+, p=pVZp.
4

oo

The Eq. (65) for the dimensionless variables is (the primes are omitted):

2
ag—(;’t):—klAp(T,t):—kloT(T’t) (), t-1,()<t<t (66)
t
The Eq. (66) must be integrated with dimensionless initial conditions:
T oS kA4
S=7 E:%V(z-)cho, t=1. (67)

The cavitation number is a time function, if the external pressure p_(¢) and/or the cavity pressure p, ()

fluctuate. The cavitator velocity ¥ also is a time function in the general case. For example, in case of the
vertical motion of the supercaviating model under action of only cavitation drag the cavitator velocity
and the cavitator position are determined by the equations:

av - pv?
mE:—TSnCXO 1

+ Pam + ng(t)_ pc(t)

1
. , H(t)= [V (s)ds,
pri/2 5

where m is the body mass; p,,, is the atmospheric pressure; H is the cavitator immersion depth.
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Twice integrating the Eq. (66) with taking into account the initial conditions (67), we obtain the
formula:

t
S(r, r):%— L‘@[A,/cxo (t=7) = 2V (1) [ (r = ) & (ue) | (68)
T
The cavity length L () is determined for ecach moment by the equation:
S(e—L.(), t):%. (69)

An application of formula (68) has, naturally, restricted limits of applicability. However, the
experimental tests justify its adequacy for a wide range of parameters.

3.3 EXPERIMENTAL CONFIRMATION OF THE INDEPENDENCE PRINCIPLE

The experimental test of the independence principle was carried out repeatedly and always gave good
results. So, it was shown in the specially performed experiments [2] that in case of the model impact
acceleration or stoppage, the cavity sections remote from the cavitator expanded some time in the same
way as if the uniform motion continued.

Examples of calculation of the cavity shape at the variable cavitator velocity and also along the
curvilinear trajectory are given there as well. The work [30] presents results of experimental testing the
calculation of the unsteady cavity past the disk with periodically varying angle of slope. A comparison of
the experimental and calculated cavity shape at the vertical water entry of bodies is given there as well.

A number of methodical experiments on testing the independence principle was carried out at the
[HM UNAS including experiments at very high velocity of the models [31].

Fig. 18 shows a sequence of motion-picture frames of the deformation of the cavity caused by rapid
reducing the cavitator drag without changing the cavitator diameter. The experiment was performed in
the hydro-tunnel at the free-stream velocity V,_ = 8.9 my/sec, the diameter D, of the cavitator with
variable drag [22] was equal to 20 mm. In the frames, a well expressed "stepped" boundary separating
the initial and new-formed cavity parts is observed. This boundary moved with velocity V_, in full
accordance with the independence principle.

We confirmed the independence principle validity at the very high velocity of motion in the special

experiments on passage of the supercavitating model through a solid steel sheet with thickness 1.5 mm
and through a hollow obstacle filled by air as well.

Fig. 19 shows a sequence of motion-picture frames of the process of the model passage through the
thin steel sheet. The motion velocity is ¥ = 1000 m/sec, the cavitator diameter is D, = 1.3 mm. One can
see in the frames that the presence of the obstacle preventing the water motion in longitudinal direction
did not influence on the cavity development past the obstacle. This testifies that:

1) the fluid motion near the slender supercavity occurs predominantly in radial direction;

2) the adjoining supercavity sections separating by the steel sheet develop in such way as in the case
of a flow without the sheet;

3) the longitudinal gas motion together with the supercavity is absent. If not, it would cease at
passing of the model through the steel sheet. It could influence on the supercavity development just past
the obstacle.

The flow directed to the model motion direction was observed only after the cavity closure.
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Fig. 18. Supercavity shape at rapid reducing the drag: Fig. 19. Passing of supercavitating model
through the obstacle:

D, =20mm, V_ =8.9 m/sec D, =13 mm, V= 1000 m/sec

The experiment on passing of the supercavitating model through the hollow air space is especially
demonstrative one. The obstacle represented a box with the frontal and back walls made of steel sheets
having thickness 1 mm and the side walls made of glass having e thickness 10 mm (Fig. 20). In the
experiment, we used the model with the length 280 mm and the cavitator diameter D, = 3.3 mm.

A sequence of frames of shooting the experiments is given in Fig. 21. Passing through the complex
obstacle containing the air space between the solid walls excluded the transition of both the pressure
pulse and the velocity pulse in longitudinal direction. However, the cavity developed some time before
and after the hollow box as if it was absent.

The presented sequences of frames visually demonstrate validity of the principle of independence of
the cavity section expansion and, hence, adequacy of the approximate calculation method based on that
principle.

4 Peculiarities of calculation of ventilated cavities

4.1 SIMILARITY PARAMETERS IN THE ARTIFICIAL SUPERCAVITATION

It follows from the above that the basic similarity parameters in artificial supercavitation are the
cavitation number (1), the Froude number (3) and the dynamic parameter § (17). The cavitation number

magnitudes in range 10 >< ¢ < 0.1 correspond to this type of flow.

The Froude number Fr characterizes the distorting effect of the gravity on the cavity shape.
Estimations show that it is considerable when ¢ Fr <2 [2].
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Fig. 20. Sketch of the hollow obstacle Fig. 21. Passing of supercavitating model

through the air space: D, = 3.3 mm, V=550 m/sec

The parameter 8 > 1 characterizes the significance of elasticity of the gas filling the ventilated

cavity. It is the basic similarity parameter at investigation of stability and unsteady behavior of gas-filled
cavities [15]. When the parameter 3 increases, the gas elasticity significance increases as well. The

ventilated cavities are stable when 1< 8 <2.645 and unstable when B > 2.645.

In practice, it is impossible to attain simultaneous equality of all the numbers o, Fr, B for the full-

scale model and the bench testing one. That is why, investigation of scale effects (i.c. influences of
different deviations from the similarity) is of importance in modeling the supercavitation processes.

We enumerate some possible causes of the scale effect at the physical modeling of the artificial
cavitation flows.

1) Influence of the flow boundaries. The bench testing of the supercavitation flows usually are
carried out in hydro-tunnels and hydro-channels in condition of the bounded flow. It is necessary to take
into account the influence of the flow boundaries when the experimental data are recalculated to the
motion in unbounded fluid.

The influence of the flow boundaries on the supercavity shape and dimensions has been well studied.
The solid boundary closeness results in increasing the cavity dimension, and the free boundary closeness
results in decreasing them at the same value of the cavitation number.

The influence of the flow boundaries on the gas rate coefficient is of importance in the case of
ventilated cavities. It was shown experimentally that the approach to the free boundary results in
decreasing the gas-leakage rate at the same values of o and Fr [3, 10]. The influence of the cavity
immersion depth on the gas-leakage coefficient at the second type of the gas-leakage was taken into
account in the empirical formula (14).

2) Influence of the gas flow in the cavity. The experience shows that in the most of cases the
influence of gas flow within the artificial cavity may be neglected. For steady cavities, it becomes
considerable only in that cases when the gas flows in a narrow clearance between the body and the cavity
wall.  According to the Bernoulli equation the pressure in the clearance reduces, and the cavity
boundaries may be deformed negatively. In this case local deformation of the cavity wall may be
approximately calculated by the perturbation method [32].
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3) Supercavities in a bubble flow. A peculiar scale effect may arise in the case of the gas-liquid
bubble flow around the supercavitating bodies. We showed experimentally and theoretically that the
supercavities can absorb gas from the two-phase bubble flow [33].

When the gas concentration is sufficient, this process causes to the considerable gas supply into the
cavity and, as a result, to increasing the cavity dimension.

4.2 TAKING INTO ACCOUNT OF GRAVITY EFFECT
As was said above, the gravity effect on the horizontal supercavity consists in:

1) the cavity axis deformation upwards (floating-up of the cavity tail);

2) the cavity section shape deformation.

The cavity axis deformation in ponderable fluid is the main and greatest perturbation of the cavity.

Fig. 22. View of the ventilated supercavities: V_ =89 m/sec, Fr=24.5; a- 0=0.0334, b- o=
0.0644

Fig. 22 demonstrates photographs of ventilated cavities at the same Froude number and the different
cavitation numbers. The first form of the gas leakage from the cavity was observed in both cases.

In the works [31, 33] these deformations have been investigated in detail by the perturbation method.

Fig. 23. Scheme of a supercavity in ponderable fluid
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However, for practical calculations it is usually enough to evaluate the axis deformation in the first
approximation by the theorem of momentum [2]. The calculation scheme is presented in Fig. 23.

We consider the balance of the cavity length element with the radius R(x). Its momentum
anszﬁg must be equal to the buoyancy force pgQ . Thus, we have:

;) 89()
h (%) TV_RYx)

Integrating this equation along the x-axis, we obtain

h)=2]

=3

Ols)
ds . 70
Here, Q(x) is the cavity part volume from 0 to x, R(x) is the current cavity radius.

In the work [33], the simple approximate formula was obtained for the axis deformation caused
to the gravity effect:

2
hé(x):%, F;;:V—z. 71)
" gL,

Here, Fr, is the Froude number with respect to the cavity length. Formula (71) may be used in ranges
0.05<0<0.1, 2.0<Fr<3.5. Fig. 24 gives a comparison of calculation by formulae (70) (curve 1)
and (71) (curve 2) with the experimental data [30]. Different marks correspond to different experimental

conditions.
‘ 2
hg Fr 1 /

1.0 X/\/E

0.5
0.06<0<0.12
20<Fr<35
|
0 0.5 1.0 1.5 X

Fig. 24. A supercavity axis deformation in ponderable fluid

Deformation of the cavity section shape in the cross gravity field was investigated by the perturbation
method in the works [30, 32]. The calculations showed and the experiments confirmed that a liquid crest
with top directed up into the cavity is formed at the bottom cavity wall in this case. The crest height
increases from the cavitator to the tail. Sometimes, this crest is small even at the cavity end. In other
cases the crest top may attain the upper cavity wall and divide cavity on two tubes just past the mid-
section (see Fig. 25)

A criterion of the gravity effect on the supercavity was obtained by theoretical way in the work [32}:
v=ovJoFr’>15. (72)

When this condition is fulfilled, the cavity is not destroyed, and the water crest does not close up with its
upper wall even at the cavity end. With approaching the parameter v to the limiting magnitude v = 1.5,
two vortex tubes become the more expressed at the cavity end.
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A comparison with the experiment showed that the criterion (72) is the more exact than the Campbell-
Hilborne criterion (15). Indeed, we have o Fr=0.82 <1; v =3.73 > 1.5 for the experiment in Fig. 22, a.

For the experiment in Fig. 22, b, we have o Fr= 158> 1; v =9.82 > 1.5. Thus, in the first case the

Campbell-Hilborne criterion does not allow confidently to
Simultaneously, the criterion (72) determines the portion gas-leakage.

determine the gas-leakage type.

It is possible to determine the following intervals of changing the parameter v that correspond to
different levels of perturbation caused by gravity:

1) interval v =1+ 2 is characterized by high level of perturbation, when the cavity past the mid-
section transforms into the vortex tubes;

2) interval v =2 + 4 corresponds to the moderate or considerable level of perturbation. In this case
the water crest height is lower than the unperturbed cavity radius, although may be close to it.

3) interval v = 4 + 10 is characterized by weak level of perturbation. The gravity effect may be
neglected at all when v > 10.

Fig. 25. Deformation of a ventilated supercavity axis in ponderable fluid

Fig. 26 represents the calculation by the perturbation method of the cross cavity section shapes when o =
0.06, Fr = 10.0 [33]. In this case v = 1.47. The dimensionless coordinate X =2x/L, was used at the
calculation. In the sections ¥ = 0.25 and X = 0.50 the gravity effect does not yet become apparent, in the
section X = 0.75 the small compression from the bottom is appreciable. In the cavity mid-section ¥ =1.00
the section shape differs from the circular one. When X = 1.25, the deformation is considerable. On the
bottom it is close to the half of the cavity radius. The crest directed to up is well visible. The cavity is
destroyed in the next sections.
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Fig. 26. Gravity effect on the cross cavity section shape: ¢ =0.06, Fr=10.0
[-Xx =025 2-%=050, 3-Xx=075 4-X=100, 5-x =1.25
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4.3 TAKING INTO ACCOUNT OF ANGLE OF ATTACK

The transverse force F, arising on the cavitator non-symmetric about the free-stream results in the

cavity axis deformation (Fig. 27). According to the theorem of momentum, the impulse of the transverse
force on the cavitator must correspond to change of the momentum in the wake that is the same by
magnitude and opposite by direction. This means that if the force on the cavitator is directed to up, then
the cavity axis must be deflected to down (see Fig. 27) and vise versa.

Applying the theorem of momentum allows to estimate easily this bend [1]. The impulse F), # must be

equal to momentum of the cavity length unit — prr R*V_th, . Hence, we have:

() h
X)=——
! prV2R?(x)
Y
&,
Vo &
g /—Nv .
0 N (K] X
'}
h_‘___,_./
- X

Fig. 27. Scheme of a supercavity past an inclined cavitator

Integrating this equation along the x-axis, we obtain

o f s
By (x)= T | ranl (73)

= 9
Components of the force acting on the cavitator-disk inclined to the stream with the angle ¢ can be
approximately calculated by formulae [17]:

F, =F,cos’ o, F,=F,sino cos a, (74)

where F, is the disk drag when o =0. The formulae (74) well coordinates with experiment when

o < 50°. They may be applied not only for a disk but also for blunted cavitators of other shapes.

“hife) N
R, sina / M./T.— @
0 0.2 0.4 0.6 0.8 1.0 1.2 X

Fig. 28. A superavity axis deformation past the inclined cavitator: ¢ =0.08, o =33.5°

An analysis of the cavitator orientation effect on the cavity shape using the perturbation method was
given in the work [34]. As a result, the simple approximate formula was obtained to determine the
cavity axis deformation under action of the lift on the cavitator:

8F,

h(x)=-c, R, (046-0+X), c,= pV2—7;1)f , (75)
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where ¥=2x/L,. Fig. 28 gives a comparison of the calculation by the formula (75) with the
experimental data [31].

Comparing the formulae (74) and (78), we can see that the cavity axis bend caused by the gravity
increases according to the quadratic law, and one caused by the lift on the cavitator increases according

to the linear law. Therefore, it is impossible to neutralize the gravity effect using the inclined cavitator
along the whole cavity length.

In skewed stream, the cross cavity sections also are deformed. Since a projection of the inclined disk
on the vertical plane is an ellipse, then the cross cavity sections before the mid-section will be elliptic
with ratio of the half-axes

% (76)
—— =CO0S0.
R

In this case, the average radii in the middle cavity part before the mid-section are approximately equal to:
R(x)=R,(x)cosor, (77)
where R, is the radius of axisymmetric unperturbed cavity [2].

The simple formulae (71), (75) may be used for approximate calculation of both the stationary
and non-stationary supercavities (using the independence principle). They are very convenient for using
in codes for computer simulation of the cavitation flows.

4.4 EQUATION OF THE MASS OF GAS IN THE CAVITY BALANCE

The mathematical model of the unsteady ventilated cavity must include the equation of the mass of gas in
the cavity balance [15}:

dtg = min - mout » (78)

where m, (1) = p, ()Q(¢) is the mass of gas in the cavity; Q(?) is the cavity volume; p, is the density of

gas in the cavity; n1, and m,, are the mass rates of the gas blowing into the cavity and carrying away

ot
from the cavity, respectively. Owing to the water thermal capacity, the process of the gas expansion in
the cavity usually may be considered as isothermal one:

P, ()=Cp. (). (79)

where C is the constant. Taking the relation (79) into account, we rewrite the equation of the mass of gas
in the cavity balance in the form:

%{pc O001=p.[0 - 00 O (30)

where Q,, is the volumetric air-supply rate referred to the ambient pressure p_; Q,, () is the
volumetric air-leakage rate from the cavity. The cavity pressure p.(f) is assumed to change
synchronously along the cavity length.

Strictly speaking, the Eq. (80) may be applied when the parameters change not very rapidly. Really,
the pressure perturbations p,(f) extend along the cavity with the sound speed in the vapor-gas medium

filling the cavity a,. Characteristic time of changing the pressure in the cavity with length L, is equal:
TIi=L,/a,.Let the characteristic frequency of the unsteady process is f'Hz. Then, supposition about the

synchronism of changing the pressure along the cavity 1is equivalent to the inequality 7] <<1/ f. From
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here we derive estimations for both the admissible frequency of the process and the dimensionless
Strouhal number (10):

recls gpecle @81)
L’ V.’

< bl

The cavity pressure is constant in the case of the natural vapor supercavity, i.e. ¢ = const. Therefore,
the Eq. (80) becomes needless.

In practice, we usually have Q, = const. The value of the gas-leakage from the cavity Q,,, depends
on both the cavitation number and the Froude number and on a number of other factors as well [3, 6]. It is
obvious for steady ventilated cavity that 0, = Q...

The function Q,, (#) is given, and Q,,, (f) is an unknown time function in problems of the ventilated
cavities control by regulating the gas supply. As has been said yet, determining the form of function

Qout (t) for the concrete flow conditions is the most difficult problem of the artificial cavitation theory.

Conclusion

The described approximate mathematical model of the unsteady axisymmetric cavity is very convenient
to develop fast calculation algorithms and codes permitting to perform computer experiments with
dynamic display of the unsteady cavity shape and other necessary information on the computer screen
immediately during run-time. The existing methods of "exact" mumerical calculation of the unsteady
supercavities are useless for these purposes due to their awkwardness and long run-time. Accuracy of
the obtained results is established by direct comparison with experiment.

In our next lecture, results of computer simulation of the unsteady supercavitation processes of
different types will be presented.
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