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Abstract

The magnetization and giant magnetoresistance (GMR) of nanosized magnetic particles em-
bedded in a nonmagnetic metallic matrix are numerically investigated. By considering the
classical dipolar interactions, we apply a Monte-Carlo simulation technique to calculate M
vs H, GMR vs H, and GMR vs (M/M8 ) with M, the average magnetization along the nor-
mal to the layer, M., the saturated magnetization, and H, the applied magnetic field. It is
shown that the interfacial spin-dependent scattering of conductance electrons is dominant in
GMR effect and the distance between the neighboring particles is an important parameter
to obtain the GMR effect, while the size distribution only modify the shape of the curve of
GMR versus H.

1. Introduction

The discovery of the giant magnetoresistance (GMR) effect in inhomogeneous alloys of magnetic
and nonmagnetic metals [1] has attracted a great deal of attention to these materials. They
consist of nanosized particles or clusters (e.g., Co, Fe, Ni) embedded in a nonmagnetic metallic
matrix (typically Cu, Ag). The magnetic transport properties of granular metals are concerned

with the size and spatial distributions of the fine particles or clusters and the interaction between
the particles. Previous works studied the dependence of GMR on the size distributions [2] and
successfully explained some experimental results. The interactions between particles can have
a dipolar, Ruderman-Kittel-Kasuya-Yosida (RKKY), or a superexchange character, depending
on the magnetic properties of the matrix. Altbir et al. [3] found that the classical dipolar
interactions are dominant in Co-Cu systems.

2. Theory

In the present work we study the magnetization and GMR effect of the assembly of single-
domain spherical ferromagnetic particles, Each particle is a saturated single domain and its
magnetic moment fji, and the direction of its uniaxial anisotropy axis is random in space. The
particles are placed in a square array consisting of 12 x 12 cells. The diameter of the particle i
is di and the distance between two neighboring particles is ro. After considering the classical
dipolar interaction and crystalline anisotropy energy, the total energy of the system for a given
configuration {fil} of the magnetic moments is
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N

E(pi) Z[Z Eij + KuV sin2 ai -jhi"], (1)
i=1 j>i

with Eij, the energy of the dipolar interaction, K, the effective anisotropy constant, Vi, the
volume of a particle i, and aj, the angle between the direction of the crystalline axis and fi4.
For a given temperature, the reduced magnetization < m > can be calculated by averaging
m = M/Ms = I -i2iAI/(Np) over cluster configurations after thermal equilibrium has been
reached. The crucial factor for GMR in granular system is the average value < cos Oij >, where
Oij is the relative angle between the magnetic moments in sites i and j [4]. It implies that the
magnetic transport properties are primarily caused by the spin-dependent scattering process
of conductance electrons between magnetic particles. Namely, the spin-dependent scattering at
interfaces between the magnetic particles gives rise to the GMR to a greater extent than the
scattering within the magnetic particles would do [5]. In the case that the distance between the
neighboring particles does not far exceed the electronic mean free path X [6], the variation in
resistivity of a granular system with the degree of field-induced magnetic order may be simply
pictured as p = po - k < cos 0)- >, where p0 and k are constants. Assuming that there are
no correlations between the magnetic moments of particles, the magnetoresistance Ap/p can be

written as Ap/p = -(k/po) < cos 0) >2= -(k/po)m 2 . Such a quadratic dependence of Ap/p
on m is actually found by some experiments [1]. However, other experiments [2] showed that
Ap/p does not vary quadratically with m because of the size distribution of magnetic particles
and interaction between them.

For the system involving coupling between magnetic particles, the assumption, that the av-
erage value < cos 0•) >o for H = 0 is not vanished, gives

Ap/p= (< cos ý) >0 - < cosO O >)(Q- < cos ý) >o), (2)

where Q = polk is the field-independent constant.
The thermal averages of the system above are obtained using the standard MC procedure and

the Metropolis algorithm [7]. The system is assumed to have reached thermal equilibrium after
104 Monte-Carlo steps per spin. Then, we are able to get the thermal averages as an arithmetic
average over the accepted configurations (500 accepted configurations for ensemble averages),
and to calculate the < m > and GMR. Data for our MC simulation is generated and calculated
as follows. Each particle is assigned a random crystalline anisotropy (K, = 4.0 x 106 erg/cm3 )
and a random direction of magnetic moment at initial state. These particles are placed in the
magnetic field H applied along the normal to the array. The distance ro between the particles
was taken as 6.0 um (except for the up triangles in Fig. 1) which is comparable in magnitude with
A [6]. Single-domain ferromagnetic particles exhibit the phenomenon of superparamagnetism
and the blocking temperature T(°) for H = 0 of a particle of diameter d=4 nm is equal to 38 K

[8]. So we choose T=40 K close to T(°)

3. Results

First, for simplicity, we choose the same diameter di(=3 un) of all the magnetic particles, which
is the typical average size of particles for granular materials [6]. In Fig. 1 we plot the graph of
magnetization M/Mo vs H. Four different sets of data are shown that correspond to a system
of particles with random anisotropy only (squares; ro = 6 nm), a moderate dipolar system
with random anisotropy (circles; ro = 6 nm), a system with moderate dipolar interaction only
(triangles down; K,- = 0, r0 = 6 nm), and a strong dipolar system with random anisotropy
(triangles up; r0 = 3 nm). We notice that M exhibits the different field dependence, depending
on the interplay of the single-particle anisotropy and the dipolar interaction effects. E.g., for a
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Fig.l. The dependence of MM on H for T=40 K. The symbles are Fig.2. The dependenc of GMR on H for T=40 K. The symbles are obtained when
obtained when we do not consider the dipolar interaction(DI) r,=6nm, d=3nm (circles), d=2-4nm(squares), d=0-6nm( down triangles), and
(squares), or do not include the crystalline anisotropy (CA) r..=3nm, d=3nm (up triangles).
(down triangles). The circles and up triangles are obtained by
considering both the DI and CA when the r, equals 6nm and
3nm respectively.

system with random anisotropy only the magnetization reversal of the assembly of particles is
well described by both a coherent rotation of fii from the easy axes to the direction of A and
by a thermally activated process over the anisotropy barrier.

A pure dipolar system (Ku = 0) For H = 0 possesses the interaction-induced anisotropy.
Out-of-plane orientation M has a large energy due to the demagnetization effect. Therefore
in-plane configuration of fii is realized. For the free boundary conditions accepted here the
ground state is antifferromagnetic due to the demagnetization effect of the lateral boundaries.
This effect is not so strong compared with the demagnetization effect of the surface. Once again,
if a field is applied to the array the magnetic moments /i rotate coherent to the direction of Hl.

If both the dipolar interaction and the random uniaxial anisotropy of particles are involved it
is more difficult for la) to reach saturation since these effects impede the collinear ordering of Ai
and reduce the magnetization of the system. The anisotropy induced by dipolar interactions is
very sensitive to the spatial arrangement of the particles (average distance between the particles
and their size) and it is enhanced with decreasing ro. Therefore in a strong dipolar system
(triangles up; ro = 3 nm) the M is harder to be saturated in comparison with a moderate
dipolar system (circles; ro = 6 un).

In Fig. 2 we plot the field dependence of Ap/p for T=40 K. All curves are calculated in terms
of Eq. (2) with Q=5.2 after considering both the effects of anisotropy and interactions when
the system reaches the equilibrium state. To investigate the influence of the distance r0 and the
particle-size distribution on the GMR four different sets of data are shown that correspond to
particles of fixed diameter with strong (up triangles; di=3 nm, r0=3 nm) and weak (circles; di=3
nm, ro=6 nm) dipolar interactions, a narrow particle-size distribution from 2 to 4 nm (squares;
d=3 nm, ro=6 rn), and a wide particle-size distribution from 0 to 6 un (down triangles; d=3
rnm, ro=6 rin) with d is the average particle size. From Fig. 2 it follows that the GMR effect

depends crucially on the particle density. If the dipolar interaction are strong (di=3 nm, ro=3
un) all the particles are coupled to each other, and the negative GMR disappears. For a narrow
particle-size distribution from 2 to 4 nm (squares) the field dependence of Ap/p is closed to
that for the system of particles with fixed diameter and a weak dipolar interection (circles). In
this case the blocking temperature of the maximum particle Tb ;38 K, and all the particles are
superparamagnetic. This result was observed in [5]. For a wide particle-size distribution from
0 to 6 un, certain of large particles are blocked at 40 K in the region of strong magnetic fields,
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whereas the rest small particles are still in the superparamagnetic state. Then the modulus of
jApl/p is substantially reduced relative to the case
of a narrow particle-size distribution. This effect
was observed and explained in [2] for the systems -0 A. • .

with a wide particle-size distribution. So we be-
lieve that the size distribution strongly affects the

shape of the curves of GMR vs H. 0 AA A

In order to investigate in more detail the role of a : A

particle-size distribution in GMR effects, we show -0.1
in Fig. 3 the dependence of Ap/p vs M/Ms for _

a narrow (hollow squares) and wide (up triangles) r =2-4 nm

particle-size distributions. From Fig. 3 it follows 0 r,=2 6

that for a narrow particle-size distribution from 2 to-the parabolic line

4 un, the behavior of GMR vs (M/Ms) is close to -0.2

the parabolic line, whereas for a wide particle-size 1.0

distribution from 0 to 6 nm, it is deviated essen-

tially from the parabolic law. It indicates that the MIM
wide distribution of magnetic particles may explain Fig.3. The dependence of GMR on M/M, for T=40 K. The hollow

squares and up triangles are obtained by varing of r.. from

the noncompliance with the parabolic law for the 2 to 4 nm and 0 to 6 nm respectively. The solid line Is the

- [2].parabolic line.
GMR as a function of the M [2].

4. Conclusion

In conclusion, we have presented the results for the field dependence of M and GMR of a granular
magnetic film. We demonstrate that the magnetic properties of the system depends essentially
on the particle-size distribution and the average distance between the magnetic particles. To
discuss experimental data the state of single-domain magnetic particles is usually assumed to
be blocked or collective at low temperatures and to be superparamagnetic at high temperatures.
Within our MC approach, there is no need for making a priori assumptions about the particle
state. However, it is likely that the high density regime favours the collective state, and the
low density, wide particle-size distribution and strong magnetic field regime favours the blocked
state. The collective behaviour at high particle density reveals itself in the disappearance of the
negative GMR effect. A manifestation of the blocked state effects is a substantial decrease in
jApl/p for the low density and wide particle-size distribution in the region of strong magnetic
field.
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