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Abstract 

We present an efficient network algorithm for generating 
exact permutational distributions for linear rank tests 
defined on stratified 2 x c contingency tables. The al- 
gorithm can evaluate exact one and two sided p-values, 
and compute exact confidence intervals for trend param- 
eters arising from certain loglinear and logistic models 
embedded in these contingency tables. It is especially 
efficient for highly imbalanced categorical data, a situ- 
ation where the asymptotic theory is unreliable. Part 
of the algorithm can be adapted to evaluating the con- 
ditional maximum likelihood and its derivatives for the 
logistic regression model, with grouped data. We illus- 
trate the techniques with an analysis of two data sets; the 
leukemia data on the Hiroshima atomic bomb survivors, 
and data from a clinical trial of bone marrow transplant. 

1    Introduction 

Linear rank tests play a major role in nonparametric in- 
ference. The ChernofT-Savage theorem (1958) ensures 
the asymptotic normality of these tests, and indeed, for 
continuous data the asymptotic results work very well. 
By the time the sample size is around 30, there is very 
little difference between the asymptotic distribution of 
a linear rank test statistic and its exact permutational 
distribution. However this is not the case for categorical 
data. Here the rate of convergence to asymptotic normal- 
ity depends on more than just sample size. The number 
of ties in each category, the group imbalance, and the 
choice of rank scores, all affect the shape of the permuta- 
tion distribution in complicated ways, making it difficult 
to predict a priori whether the asymptotic results for a 
given data set are reliable. It is important therefore to 

develop efficient numerical algorithms to supplement ex- 
isting asymptotic results for the categorical case. These 
algorithms serve both the data analyst concerned about 
the validity of the inference in small, sparse, or imbal- 
anced data sets, and the theoretical statistician develop- 
ing new asymptotic methods and wishing to confirm that 
the theory is accurate. 

This paper develops a very fast algorithm for generating 
exact permutation distributions for linear rank tests de- 
fined on stratified 2x c contingency tables. The permuta- 
tional problem is formulated very precisely in Section 2. 
A network algorithm for solving the problem is presented 
in Section 3. A major strength of the algorithm is that its 
limits of computational feasibility increase with the de- 
gree of imbalance between the groups being compared. 
This is precisely where it is needed most, since the re- 
liability of asymptotic results decrease as the imbalance 
increases. In another paper we analyze some case-control 
data in which the total sample size is 99,960. Yet, be- 
cause of the severe imbalance between cases and controls, 
the asymptotic results differ from the exact ones. The 
algorithm developed here performs exact permutational 
inference on the data set with no difficulty whatsoever, 
despite its enormous sample size. 

The inference techniques discussed in this paper are con- 
ditional. This is true both for the exact as well as the 
asymptotic inference. Exact methods for parameter es- 
timation naturally require strong numerical algorithms. 
But it is not generally recognized that conditional infer- 
ence places a heavy computational burden on the maxi- 
mum likelihood estimation as well. A by-product of the 
algorithmic development in Section 3 is its applicability 
to the problem of estimating model parameters by max- 
imizing a conditional likelihood function and evaluating 
its first two derivatives. Without our algorithm, evaluat- 
ing the conditional likelihood, even though it only yields 
asymptotic estimates, would be almost as difficult as the 
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exact inference. 

2    Statistical Formulation 

In this section we formulate a general permutation prob- 
lem whose solution will make exact statistical inference 
possible for a rich class of linear rank tests, defined on or- 
dered categorical or binary data. The computational dif- 
ficulties encountered with the permutation problem are 
discussed, setting the stage for the development of an 
efficient numerical algorithm, in Section 3. 

2.1    Tabular Representation of the Data 

The data can be represented as a collection of s 2 X c 
contingency table consisting of 2 rows, c columns, and 
s strata. A specific collection, or three way table, of this 
type, denoted by x = (xi,X2,...x,), is displayed below: 

populations. Each observation falls into one of c or- 
dinal response categories. Thus Xjk is the number of 
stratum lb observations, out of a total of m*, falling 
into ordered category j for population 1, and x',k is 
the number of stratum k observations, out of a total 
of m't, falling into ordered category j for popula- 
tion 2. The stratum invariant scores, wi,W2,.. .wc, 
are numerical values assigned to the c ordered multi- 
nomial response categories. 

Several Binomial Populations The c columns of 
stratum ib represent c independent binomial popu- 
lations with row 1 representing successes and row 2 
representing failures. For population j and stra- 
tum k there are Xjk successes and s'j. failures in rijjt 
independent Bernoulli trials. The stratum invari- 
ant scores, W\,W3,..,we typically represent doses, 
or levels of exposure, affecting the success rates of 
the c binomial populations. 

2.2    Exact Conditional Inference 

Xl = 

X2 = 

X, = 

j                                       Stratum 1                                       | 
Rows Col.1 Col.2     ... CoU Row-Total 
Row.l 
Row.2 

Hi Xu 
xi,         ... 

mi 

Col-Total nn 7121 nci iVi 
Col-Score tui W2 Wc 

|                                       Stratum 2 
Rows Col.l Col.2     ... CoU Row-Total 
Row.l 
Row.2 

112 122 
xi,        ... 

XcJ 7/12 

ml, 
Col-Total 112 7122 7lc2 N2         i 
Col-Score Wl ty2 fc 

{                                     Stratum s 
Rows Col.l ColJ2     ... CoU Row-Total 
Row.l 
Row.2 

«1« 

*1. 

12. 

4.          ..• 
Xct m, 

< 
Col-Total ni( 712, ncs N, 
Col-Score Wl Wi wc 

Define the reference set for the ikth stratum, Ft, as all 
possible 2 x c contingency tables whose row and column 
margins are fixed at the corresponding values of the ob- 
served 2 x c table, xj: 

F* = {yt: y* is 2 x c; j^ + y'jk = n^V;; 

c c 

j=i j=i 

Define the full reference set as the cartesian product of 
the reference sets across all s strata: 

0 = Fi x F2 x ... x F, = {y: yjt € Ft, t = 1,2,... s } . 

The test statistic, T, is defined as a sum of linear rank 
statistics over the s strata: 

The above tabular representation accommodates both 
the comparison of two multinomial populations and the 
comparison of ib binomial populations. In either case we 
may adjust for possible covariate effects by stratification. 
Unstratified data may be regarded as a special case with 
s = \. 

Two Multinomial Populations The   two   rows   of 
stratum lb represent two independent multinomial 

r=ri+2ii + ...+r,, 

where each 7* can only take on the values <* of the form 

<.=E w Wß 

for some y* € Ft, and a fixed set of scores, wi,W2,.. .wc. 
By a suitable choice of scores one can obtain a very rich 
class of linear rank tests.  The distribution of the test 
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statistic, T, is derived by limiting the sample space to 
X GÖ- 

Under the null hypothesis of no row and column interac- 
tion the conditional probability distribution of 7* given 
y* € r* is 

/*(<*) = 
-y*6r»,u 

U) 
(2.1) 

where 

Then by convolution, the conditional probability distri- 
bution of T, given y 6 6, is 

/(<) = 
E^e.nun^ m t 

114=1 I mk J 
(2.2) 

where 

t=ij=i 

Notice that (2.2) is a sum of generalized hypergeometric 
probabilities and is free of all unknown parameters. This 
enables us to compute exact p-values for all the linear 
rank tests listed above. We can also compute the first two 
moments of T and thereby perform asymptotic inference 
by appealing to the Chernoff-Savage theorem. 

2.3    Parameter Estimation 

For data arising from two multinomial distributions or c 
binomial distributions, we can specify loglinear and logis- 
tic models, respectively, for the data generating process. 
Let Wjic be the probability that a subject from stratum k 
is classified as falling into row 1 and column j. Let ir'^ 
be the probability that a subject from stratum ik is clas- 
sified as falling into row 2 and column j. If the two 
rows of each stratum represent data from two multino- 
mial populations, the above probabilities must satisfy the 
constraints 

;>>,•*=;[>}* = i. 

for ik = 1,2,...«. If the c columns of each stratum repre- 
sent data from c binomial populations, the above proba- 
bilities must satisfy the constraints 

Vjk + ^t = 1 , 

for j = 1,2,...c, and ik = 1,2,... s. In either case we 
assume that there is no three-factor interaction so that 
the c - 1 odds ratios 

*  - SÜli 

j = 2,3,... c, do not depend on it. Next we model these 
odds ratios as a function of the scores. If the data have 
been generated from two stratified multinomial popula- 
tions, it is natural to derive the odds ratios from a log- 
linear model with a linear by linear row times column 
association (Agresti, 1990, page 275, equation (8.11)). 
In the present context the linear by linear model speci- 
fies the following expected cell counts on the logarithmic 
scale: 

hgirrikWjk) = aß + ßwj 

for row 1, and 
log{m'kw'jk) = ajk 

for row 2. 

If the data have been generated from c stratified binomial 
populations it is natural to derive the odds ratios from a 
logistic regression model (Cox, 1970): 

log^jr = ak + ßwj . 
rjk 

Both models yield the relationship 

log^s^-toi), (2.3) 

where ß is an unknown parameter to be estimated from 
the data. It can be shown that T is a sufficient statistic 
for ß under both the linear by linear association model 
and the logistic regression model. Moreover, the con- 
ditional distribution of T, given (yi^.-.y.) € 9. de- 
pends only on ß, other (nuisance) parameters being elim- 
inated by the conditioning. This conditional distribution 
is given by 

nm = /(QexpQft) 
£u/(«)exp(/3U) 

(2.4) 

;=i ;=i 

where the denominator of equation (2.4) is simply the 
normalizing constant obtained by summing over all pos- 
sible values of T. When /? = 0 we obtain the null distri- 
bution (2.2). 
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The conditional maximum likelihood estimate (cmle) of 
ß is obtained by finding the value of ß that maximizes 
the conditional probability (2.4) at the observed value 
T = OQ. To obtain the variance of the cmle we need the 
second derivative of the log likelihood, evaluated at the 
cmle. Both the cmle and its variance may be rapidly 
evaluated by repeated backward induction on a network, 
as discussed in detail in Section 3. We can then use 
these estimates to perform asymptotic hypothesis tests 
or compute asymptotic confidence intervals for /?. 

To obtain an exact confidence interval for ß we need 
the coefficients f(t) for all values of T in the tails its 
distribution. A network algorithm for this computation 
is described in Section 3. Once these coefficients have 
been computed, the conditional tail probabilities, T > 
OQ, or T < ao, for any value of ß, may be derived from 
equation (2.4). Exact confidence bounds for ß are then 
obtained by inverting corresponding UMP unbiased tests 
for ß, as shown in Cox (1970). For example, a 100(1 - 
a)% lower confidence bound for ß, say /?(oo), would be 
obtained as the solution to 

£/(<|/?(ao)) = a (2.5) 
t=tto 

The solution to equation (2.5) may be rapidly evaluated 
by a simple binary search because, as shown in (2.4), /(<) 
and ß are separable in the expression for f{t\ß). 

2.4    Computational Issues 

From the above discussion it is clear that a broad class 
of exact linear rank tests and parameter estimates can 
be obtained if we are able to compute truncated distri- 
butions of the form 

n = {(tJ{t)):t>ao} (2.6) 

Exhaustive enumeration of all the tables in 0 for gen- 
erating fi would be computationally explosive. Con- 
sider the simple case of a single stratum, no ties, and 
m = m' = N/2. The number of tables in the reference 
set 0 for various values of N is 

Sample Size (N) Tables in Reference Set (F) 
20 1.8 xlO5 

30 1.5 x 108 

40 1.4 xlO11 

50 1.3 xlO14 

100 1.0 xlO29 

If there were s strata, the size of the corresponding ref- 
erence set would be raised to the sth power. It is clear 
that even in the very powerful computing environment 
available today, explicit enumeration of all the tables in 
the reference set 0 rapidly becomes computationally in- 
feasible. However much recent research, for example, 
Mehtaet. al. (1984) (1985) (1988), Pagano and Tritchler 
(1983), Tritchler (1984), Streitberg and Rohmel (1986), 
and Hollander and Pena (1988), has focused on implicit 
enumeration of the tables in 0, thereby considerably ex- 
tending the size of problem for which exact inference is 

le. 

Mehta, Patel and Tsiatis (1984), and Mehta, Patel and 
Wei (1988), developed a network algorithm for implicit 
enumeration of all the 2 X c contingency tables in the ref- 
erence set F, defined for a single stratum (s = 1). Mehta, 
Patel and Gray (1985) developed a network algorithm for 
implicit enumeration of « 2 x 2 contingency tables (where 
s > 1). The present paper generalizes the earlier work 
to s independent 2 x c contingency tables, a considerably 
more difficult problem. An alternative method would be 
to treat the s 2 x c problem as a special case of condi- 
tional logistic regression and directly use the exact algo- 
rithm of Hirji, Mehta and Pate! (1988). However that 
would not exploit the special structure of the problem 
in the way that the present algorithm does. We conjec- 
ture that the algorithm presented here is the fastest one 
currently available for categorical data, with unequally 
spaced Wj scores. In another paper we perform exact in- 
ference on some rather large data sets, to illustrate how 
powerful the algorithm is, and to set up a benchmark 
against which competing algorithms may be evaluated. 

A second contribution of this paper is to provide an effi- 
cient numerical algorithm for computing the cmle for ß 
(equation 2.3) and its standard error. A previous algo- 
rithm for this problem, in the more general conditional 
logistic regression setting, was developed by Gail, Lu- 
bin, and Rubenstein (1981). Our algorithm is equiva- 
lent to theirs for data with no ties, but is considerably 
more efficient for categorical data. In another paper, we 
show that the Gail et. al., algorithm, as implemented 
in the EGRET (1988) software package, is unable to 
compute conditional maximum likelihood estimates for 
a large heavily tied data set, whereas our algorithm, ob- 
tains the required estimates very rapidly. 
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3    Numerical Algorithms 

We provide numerical algorithms for two problems; gen- 
erating the truncated permutation distribution 0, de- 
fined by (2.6), and computing the cmle for ß, say ß, 
along with its standard error, &. Both problems are 
solved within one unified framework wherein the refer- 
ence set 0 is represented as a network. We will see that 
processing the network in the forward direction yields 
fi, while processing the same network in the backward 
direction yields ß and its standard error. 

3.1    Generating   an   Overall   Truncated 
Permutation Distribution 

Our goal is to generate the truncated permutation dis- 
tribution Ü for T, the sum of linear rank statistics across 
all the strata. Our strategy will be to generate s inde- 
pendent stratum specific truncated permutation distri- 
butions of the form 

«* = {(<*./*(<*)): tk>ak}, 

at the cut-off points 

for, ib = 1,2,.. .s. Here tk,max is the maximum value of 
the random variable 7*, and is easily evaluated as part 
of the backward induction step discussed below. We will 
perform pairwise convolutions on these stratum specific 
distributions until the overall distribution is obtained. 
Thus there are two steps to be performed repeatedly; 
a distribution generation step, and a convolution step. 
These steps are described next in separate subsections. 

3.1.1    Generating Stratum  Specific  Truncated 
Permutation Distributions 

Suppose we wish to generate the truncated permutation 
distribution Qj,, for the kth stratum. In principle this 
involves enumerating all the 2 x c contingency tables 
yt € Ft, computing the value of <t = J^-i tO/Kjt for 
each one, and summing the hypergeometric probabili- 
ties of all the tables y» € ^k,tk, as shown in (2.2). We 
do this enumeration implicitly rather than explicitly, by 
representing the reference set r* as a network of nodes 
and arcs, and then processing the network in a recursive 
stage-wise fashion. 

Network Representation of Ft 
The network representation of the reference set, F*, is 
constructed in c-f-1 stages labelled 0,1,... c, where stage 
j corresponds to the jth column of a typical 2 x c table 
in F*. At stage j there exist a set of nodes of the form 
O)"»;»)' where each m;t = JQfssi Wt corresponds to one 
distinct partial sum of the first j columns of the tables 
yt € Ffc. Arcs emanate from each node (j,mß) and 
connect it to successor nodes of the form (j +1, mj+i,*). 
These successor nodes may be specified explicitly as the 
set 

c 

^•0'."»^) = {0" + 1.mj+i,t): max(m;t,mi- ^ nit) 

< "V+i.t < min(mjl + rij+i^, m*)} . (3.7) 

Starting at stage 0 with initial node (0,0), and apply- 
ing (3.7) successively to the nodes at stages 1,2,... c-1, 
we automatically end up with the unique terminal node 
(c,mjfc). In this construction each path, or sequence of 
connected arcs of the form 

(0,0)^(l,mu) (c.mt) (3.8) 

corresponds to one and only one table yt £ Ft, with 
j/jt = mjt - m,-_I,»,, for j = l,2,...c. Thus the tables 
in Ft are in one-to-one correspondence with the paths 
through the network. 

To complete the network representation we assign to 
each arc 

(i-l,m/_i,t)-*(i)mjt) 

a rank length 

rj* - u'j(mjt - m;-i,*) 

and a probability length 

^=(mit-m,.M)eXP(/?rii)        ^ 

The rank length of a complete path of the form (3.8) con- 
necting the initial node to the terminal node is defined 
as the sum of rank lengths of the individual arcs consti- 
tuting that path. Its probability length is the product 
of probability lengths of the individual arcs constituting 
that path. The distribution of Tk is then the same as the 
distribution of rank lengths of all the paths in Ft. 

Backward Induction on Ft 
We can obtain much useful information about the dis- 
tribution of Tk very quickly, by a single backward pass 
through the network Ft.   At any node (j,mjt) define 
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the sub-network, rt(j,m;t), to be the set of all possi- in T»(i,m^) by r. The rank length of r is 
ble paths from (j, nijt) to the terminal node (c, mi). In 
other words Ti(j,mjk) consists of all possible values of / \ _ V"* 
the en tries in columns (j+l,j-|-2 ....(C) of the 2xc con- r(T) - 2^r,k ' 
tingency tables in Tj whose first j columns sum to rtiji,. '=1 

Now define the length of the longest path in Tk{},mjt) and its probability length is 
by 

_L i 
LPU,mjk) =   max   { J^ r,t} , (3.10) p(r) = JJp,* . 

r»ü,mi») 
/=;+i (=i 

the length of the shortest path in rk(j,mjk) by There will typically be 8everal pathg] r e Tt(i) m.t)) 

« each having the same rank length, r(r) = u. Let c(u) be 
SP{j,mjic)=    min   { >J nt} , (3.11) the sum of probability lengths of all these paths. That 

r'ü'm>k)/=ai is, 

and the sum of probability lengths of all the paths in c^u' =: 2-r ^r' ' 
Tkij,mjk)hy {reTk(j,mjk): r(r)=U} 

TP{hmjk)=    Yl     Um.        (3.12) 
rkU,mik)l=j+l 

The values of LP, SP, and TP can be rapidly ob- 
tained by backward induction. We illustrate how this 
is done for LP. Set LP{c,mk) = 0. Now suppose that 
LP(j + l,mj+iik)\s known for every node at stage j + l. 
Move backwards to stage j, select a node (i, m^t), and 
compute 

LP{j,mjk) =   max  {rJ+1|t + LP{j + l,mj+lik)} . 
RU,mjk) 

(3.13) 
Repeat this process for every node at stage j and then 
move back one more stage. Proceeding in this manner 
we reach stage (0,0) having evaluated the LP values for 
all the nodes of the network. The other nodal quantities 
may be obtained similarly. 

Processing Tk in the Forward Direction 
Starting with the initial node (0,0), we process the net- 
work in the forward direction, stage by stage, in such a 
way that by the time we reach the terminal node, (c, mi), 
we will have generated the desired truncated distribu- 
tion üii. First we introduce some notation. At any node 
Oim;'t) define the sub-network, Ti(j, mjt), to be the 
set of all possible paths from the starting node (0,0) to 
ij,mjk). In other words, tk{j,mjk) consists of all pos- 
sible values of the entries in columns (1,2,...,;) of the 
2 x c contingency tables in F* whose first j columns sum 
to m;i. (Notice that this set differs from Tk{j,mjk), 
which specifies the last c-; +1 columns of these tables.) 
Denote a generic path, 

(0,0H(l,mi»)->•••-(;>,») 

We now provide a recursive procedure for processing 
the network in the forward direction. Suppose we have 
reached stage j of the network in such a way that at each 
of its nodes, (j, mjk), we are carrying a set of records 

AO","»;*) = {(".c(«)): " = r(T),u + LP{j,mjik) > at, 

T€Tk{j,mjk)} . 

The following five-step algorithm is i.sed to update these 
sets and thereby move forward to stage j + l. 

Step 1: Select a record («,c(u)) G h{j,mjk). 

Step 2: TVansmit a copy of this record to each succes- 
sor node {j + l,mJ+i j;), where the successors are 
identified by (3.7). 

Step 3: At each successor node, (/ + lifty+i,»), trans- 
form the transmitted record to («*,c*), where u* = 
« + ri+lit, and c* = c(u)pj+i<k. 

Step 4: Insert (u*,c*) into A(j + l,mj+i}k) as follows: 

1. Uu* + LP{j+l,mj+itk) < at, drop this record 
from further consideration, and go to Step 5. 
Otherwise continue with the insertion as de- 
scribed below. (The value of LP is available 
from the backward induction on Tk.) 

2. If there already exists a record (u,c(u)) € 
A(j + l,mj+i<k) such that « = w", then merge 
the two records by replacing («,c(u)) with 
(u,c(u) + c*) G A(; + 1, mHiik). 

3. If no record currently in A(j + l,mj+i,i) has 
u = u*, then augment \{j + 1,111^4.1,1) by 
adding (u, c(u)) to it, as a new record. 
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The technique of hashing (Sedgewick 1983, page 
201) is used to search for matches and either merge 
or augment records in A^ + l.mj+i^). This ensures 
an optimum trade-off between efficient use of avail- 
able memory and fast search. 

Step 5: Return to Step 1. 

The above 5-step algorithm continues until every record 
in A(j, mjt) has been processed. Then another node at 
stage j is selected, and all its records are processed in 
accordance with the above 5 steps. When all nodes at 
stage j have been exhausted, repeat Steps 1 through 5 
for stage j + l. Starting with A(0,0) = {(0,1)} and mov- 
ing through stages 0,1,...c- 1 by repeatedly carrying 
out Steps 1 through 5, we process the entire Ft network, 
ending up at its terminal node with the set of records 
A(c, mjt). These records are really the same as the de- 
sired truncated probability distribution Qt, except that 
the probability lengths, c(u), have to be normalized by 
dividing by their sum. That is, 

/*(«*) = 
c(<t 

Euc(«r 

3.1.2 Pairwise Convolution of the Stratum Spe- 
cific Truncated Distributions 

We restrict our discussion to the convolution of fl) with 
1)2- The resultant distribution may be convolved with 
Ü3 in exactly the same manner. We can go on with this 
pairwise convolution until we obtain fi. 

First sort the records of ^i in ascending order of ti, and 
the records of fi2 in descending order of <2- Set t = 1, 
j = 1. Now proceed with the following 3-step algorithm: 

Step   1:    Select  record t from Oj.     Denote it by 
{t\,f\{t\))- Select record j from ü-i. Denote it by 
(<J

2,/2(<;2)). 

Step 2: If 
s 

it=3 

set j = j + 1, and return to Step 1. But if 

Step 3: Set i = i + 1, and return to Step 1. 

There are many ways to perform the convolution at 
Step 2, if the inequality (3.14) holds. We use hashing 
to club records having the same value of i\ +1^. The 
details are similar to Step 4.2 of the 5-step algorithm for 
forward processing of Fit. A considerable efficiency gain 
is achieved because we need not consider records from 
^2 located at positions j or below. The inequality (3.14) 
ensures that they can never contribute to the final set 
of records in fi, since the maximum to which they could 
be augmented is less than OQ. This is analogous to the 
record elimination achieved at Step 4.1 of the 5-step al- 
gorithm for forward processing of Ft. 

3.2   Evaluating ß and its Variance 

To obtain /?, the cmle for ß, we must maximize the loga- 
rithm of the likelihood (2.4). Then the second derivative 
of the log likelihood, evaluated at /?, yields the desired 
variance. But direct evaluation of the log likelihood is 
not an easy task, given the complicated expression for 
the denominator of (2.4). In fact if one attempted to 
evaluate this denominator directly, it would require the 
enumeration of all the s 2 x c tables in 0. This would 
make the asymptotic inference as computationally com- 
plex as the exact inference. Fortunately there is an easier 
approach that works well up to extremely large sample 
sizes. Notice that the denominator of (2.4) is the same as 
rP(0,0), summed over all the strata. We can easily set 
up recursions like (3.13) for TP, its first derivative, TP', 
and its second derivative, TP", and rapidly evaluate all 
three quantities during the backward induction 

of Ft. For example, 

TP'{},mjk)=    £   Pi+1,*[TP(i+l,majtt)+ 

TP'(j + l,mj+l,k)] 

It is easy to show by successive differentiation of the log- 
arithm of (2.4) that the second derivative of the contri- 
bution to the log likelihood of the fcth stratum is 

[rp(o,o)]-2[rp'(o,o)]2 - [TPM] ITP"M] 

*1 +'2 + Z^h.maz < «0 1 (3.14) 
(3.15) 

k=3 
Evaluating (3.15) at the cmle of ß, summing across 
strata, and equating the resultant second derivative to 

convolve record i from Qi with each of the first j -1   zero, yields the desired asymptotic variance. 
records from J^ 
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4    Concluding Remarks 

The following technical features of the network algorithm 
were responsible for its extraordinary success: 

• The network representation takes advantage of the 
categorical nature of the data by requiring only as 
many stages as there are discrete categories. 

• The number of nodes in the Ft network is deter- 
mined min(mib, mj.). Thus the greater the imbalance 
between the two row sums, the smaller the network, 
and the easier the processing. 

• The preliminary backward induction pass through 
the network provides valuable information about 
the 'future' for each stage of the forward process- 
ing. This enables us to generate a truncated per- 
mutation distribution directly at the forward pass, 
rather than generating the full permutation distri- 
bution and then truncating it as needed. In effect, 
substantially fewer records are carried along at each 
stage of the forward pass, as records not satisfying 
the LP criterion get eliminated. 

• The network representation enables us to generate 
the distribution of each T* recursively in a stage- 
wise forward pass through the network. During this 
forward pass paths having the same rank length up 
to some node are 'clubbed' together. We thus deal 
only with paths having distinct rank lengths up to 
each node, rather than all the paths up to that par- 
ticular node. 

• The backward induction step enables us to rapidly 
evaluate the denominator of (2.4), and its first and 
second derivatives. This greatly facilitates the con- 
ditional maximum likelihood inference. 
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