COMPONENT PART NOTICE

THIS PAPER IS A COMPONENT PART OF THE FOLLOWING COMPILATION REPORT:

To order the complete compilation report, use AD-A152 547.

The component part is provided here to allow users access to individually authored sections of proceedings, annals, symposia, etc. However, the component should be considered within the context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:

AD#: P004 685 - AD-P004 734
AD#:
AD#:
AD#:

This document has been determined for public release and unlimited distribution is authorized.

DTIC FORM MAR 85 463

OPI: DTIC-TID
A DESIGN GUIDE FOR DAMPING OF AEROSPACE STRUCTURES

J. Soovere
Lockheed - California Company
Burbank, California

M. L. Drake
University of Dayton Research Institute
Dayton, Ohio

and

V. R. Miller
Air Force Wright Aeronautical Laboratories
Flight Dynamics Laboratory
Wright-Patterson Air Force Base, Ohio

VV-1
A DESIGN GUIDE FOR DAMPING OF AEROSPACE STRUCTURES

J. Soovere*, M.L. Drake**, and V.R. Miller***

ABSTRACT

The effectiveness of polymeric damping materials in controlling resonant vibration problems has been established through many successful applications. The area of these applications range from aircraft structures to jet engine structures. An effort is underway to develop a viscoelastic damping design guide for use by designers. This paper provides a brief outline of this effort.

1. INTRODUCTION

Aerospace structures and equipment mounted in these structures are required to operate under a wide range of dynamic loads. When structural resonances are excited, the dynamic loads can produce excessive vibration levels in the structures and equipment. These vibration levels can be significantly reduced by increasing the damping in the dominant modes through the application of viscoelastic damping technology.

The above vibration problems are often encountered following some initial in-service exposure. The high cost of subsequent structural changes has made the application of viscoelastic damping technology both attractive and cost-effective in solving these problems. In many instances the reduction in resonant vibration response has been quite dramatic (Figure 1), exceeding that possible with stiffening for the same weight increment [1]. The need for greater accuracy and reliability has extended the application of this technology to guidance systems, optical systems, and circuit boards to name a few. It has been used to reduce the vibration in stiffened aircraft structures and jet engine parts, the cabin noise in the aircraft, the noise emitted by diesel engines, and the noise transmission in buildings. The use of viscoelastic (passive) damping is also expected to increase in space applications, in conjunction with active damping, since the inherent damping is very low in aerospace metals and high modulus graphite/epoxy composites. These latter materials are being used in increasing quantities in space structures.

Vibration testing and data analysis capability has increased dramatically in recent years. The resonant frequencies and damping in structures can now be determined much quicker and with a greater accuracy. The dynamic loads and vibration environments encountered by aerospace structures and equipment are reasonably well known. Damping materials covering a temperature range from -65°F to 1500°F have been developed. The theory [2,3] for simultaneously curve fitting the measured modulus and loss factor for improved accuracy and consistency has been developed for these materials. The basic Ross-Kerwin-Ungar [4] analysis methods for application of viscoelastic damping to beams

* Lockheed-California Company
** University of Dayton Research Institute
*** Air Force-Wright Aeronautical Laboratory

VV-2
and plates and the subsequent work by many authors [5,6] have been
complimented by the development of finite element methods [7,8] which enable
the damping technology to be applied to more complex structural designs. Many
successful applications of the viscoelastic damping technology have been
reported in the literature. Consequently, it should be possible to anticipate
resonant vibration problems and apply the damping technology at the design
stage. This approach would not only reduce the cost relative to a subsequent
design change, but could also result in a lighter design (Figure 1). This
need is becoming more evident as limits of current technology are being
approached.

To fully capitalize on this viscoelastic damping technology, it is first
necessary to bring all of the pertinent information together in a damping
design guide. For a wide appeal, the design guide must be suitable for use
by designers. This paper provides a brief outline of such a program,
performed in three phases, over a period of 34 months. The program will be
completed in July 1984.

2. TECHNOLOGY SURVEY

A technological survey was conducted, primarily in the United States, to
identify the aerospace companies, government agencies, research institutes,
and individuals active in the field of viscoelastic damping technology. A
questionnaire was developed to identify the scope of this activity. An
eighteen percent response was obtained to the mailed questionnaires. The
results indicate a wide field of application (Figure 2) for the damping
technology, primarily for vibration control, followed closely by noise control
and fatigue suppression (Figure 3). The data in these figures have not been
normalized since many of the respondents were involved in more than one field
of activity. The classifications of the individuals involved in this activity
is indicated in Figure 4. The research and development (R&D) and the manage-
ment columns combined represent 93 percent of the individuals active in the
field. Consequently, most of the design and production activity is also being
supported by the R&D engineers. This result indicates a need for greater
dissemination of the damping technology, a primary objective of the damping
design guide.

3. DAMPING DESIGN GUIDE FORMAT

The damping design guide has been organized into three volumes.

Volume 1 is intended to be a reference volume summarizing the work
performed to date on the application of damping technology and the allied
fields. It also contains a bibliography of the published articles in these
fields and an assessment of future needs.

Volume 2 is intended to be the user oriented design guide. This volume
contains a brief introduction to vibration and damping, and a general dis-
cussion on how to identify potential vibration problems and how to select the
appropriate damping treatment. One chapter will feature design
equations/nomograms for predicting the dynamic response of common structural
members, both with and without damping treatment. This will be followed by a
chapter on worked examples based on successful applications of damping technology. The worked examples are divided into the major fields of application, each introduced by a summary of the problems encountered in that field and followed by a single example for each type of problem.

All of the worked examples and analysis methods have been obtained from literature. The worked examples include a comparison of predicted and measured results such as illustrated in Figures 5 to 7 for circuit boards [9], bolts [10] and exhaust ducts [11], respectively, to name a few. Finite element methods, and results of finite element analysis, involving application of damping, are also included. A typical finite element model of a turbine blade [12] damped with a surface glass treatment is illustrated in Figure 8. A total of 234 elements were used to define the damped blade. The cross-section of the blade (Figure 8b) consisted of fifteen elements for the blade and twelve elements each for the nickel and glass layers. The analysis was performed at temperatures of 800, 925 and 1000°F (427, 296 and 538°C). The peak damping was obtained at the temperature of 925°F (see Figure 9) in the first mode.

This volume also contains a brief summary of other case histories available in literature for which complete information is not available. The purpose is to broaden the scope of application beyond the worked examples. Measured damping levels in typical aerospace structures and materials are included for use in the analysis when measured damping data on the actual structures are not available.

Volume 3 contains the damping material data required by the designer. The damping material modulus and loss factor are presented in the form of the reduced temperature nomogram [13] (See Figure 10) which is accompanied by a data sheet, Table 1, containing other pertinent information. The use of this standardized data format is explained in the introduction of this volume. The organizations from which these damping materials can be obtained are also listed in this volume.

The damping application can be designed using Volumes 2 and 3. These volumes are intended for use in loose-leaf binders to permit updating of the design methods, in light of experience gained, and of the damping materials which are subjected to change from the normal market pressures.

4. CONCLUSIONS

A design guide is being developed to encourage and permit the application of viscoelastic damping technology at the design stage. It is recognized that designers will require assistance from dynamicists in the initial use of Volumes 2 and 3 of the design guide until they become familiar with dynamics and viscoelastic damping. They will also require help with finite element analysis, dynamic loads/vibration levels/test specifications, and test methods/data analyses required to verify the performance of the damping treatments, which are usually the responsibility of the dynamics engineer. The widespread use of this relatively specialized, but essential technology is, therefore, dependent upon the assimilation of this technology by dynamics engineers outside the R&D classification. The damping design guide, it is hoped, will speed up this process.
REFERENCES

10. R.C. PELLER, General Dynamics Corvair Division Report, Damping in Mirror Mounts and Composite Structure.

12. Same as Ref 7.

FIG. 1 LIFE EXTENSION OBTAINED WITH ADDITIVE DAMPING ON EXISTING HARDWARE

FIG. 2 APPLICATION OF DAMPING TECHNOLOGY

FIG. 3 PURPOSE FOR USE OF DAMPING TECHNOLOGY
FIG. 4 CLASSIFICATION OF INDIVIDUALS ACTIVE IN THE APPLICATION OF DAMPING TECHNOLOGY

FIG. 5 REDUCTION IN CIRCUIT BOARD VIBRATION WITH ADDITIVE DAMPING
FIG. 6 INCREASE IN LOSS FACTOR OBTAINED WITH DAMPED BOLTS

FIG. 7 EFFECT OF DAMPING ON HELICOPTER EXHAUST DUCT VIBRATION
FIRST MODE RESPONSE
FULL GLASS COATING

FIG. 9 FIRST MODE BLADE RESPONSE WITH FULL GLASS COATING AT THREE TEMPERATURES
FIG. 10 TYPICAL REDUCED FREQUENCY DAMPING MATERIAL NOMOGRAM

TABLE 1 TYPICAL DAMPING MATERIAL DATA SHEET

<table>
<thead>
<tr>
<th>MATERIAL MN</th>
<th>MANUFACTURER</th>
<th>THE SOUNDOAT COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX LOSS FACTOR (\eta_p)</td>
<td>2.14E4</td>
<td>MODULUS (E)</td>
</tr>
<tr>
<td>MODULUS AT (T_p)</td>
<td>08 PSI 1.3E2</td>
<td>PASCALS</td>
</tr>
<tr>
<td>MAX MODULUS</td>
<td>1.94E5</td>
<td>PSI 1.3E5</td>
</tr>
<tr>
<td>MIN MODULUS</td>
<td>3.77</td>
<td>PSI 2.0E4</td>
</tr>
<tr>
<td>MAX SURVIVAL TEMP LONG TERM NA</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>MAX SURVIVAL TEMP SHORT TERM NA</td>
<td>°C</td>
<td>FOR MINUTES</td>
</tr>
<tr>
<td>ULTIMATE TENSILE STRENGTH NA</td>
<td>PSI</td>
<td>PASCALS</td>
</tr>
<tr>
<td>DENSITY</td>
<td>0.30 LBS/IN^3 0.03 G/CC</td>
<td></td>
</tr>
<tr>
<td>POISSON'S RATIO</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>MAX ALLOWABLE STRAIN LEVEL NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFECTS OF CONTAMINANTS</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>EFFECTS OF RADIATION</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>OUTGASSING</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td>THERMAL CONDUCTIVITY</td>
<td>NA BTU/IN^2/HR °F KAL/SEC METER °C</td>
<td></td>
</tr>
<tr>
<td>CONFORMABILITY</td>
<td>EXCELLENT</td>
<td></td>
</tr>
<tr>
<td>SUPPLIED AS (FORM)</td>
<td>AVAILABLE AS SOUNDOIL - DAMPING MATERIAL WITH ALUMINUM CONSTRAINING LAYER</td>
<td></td>
</tr>
<tr>
<td>BONDING AND OR APPLICATION PROCEDURE</td>
<td>MIN IS SELF-ADHESIVE AT ROOM TEMPERATURE</td>
<td></td>
</tr>
<tr>
<td>CLEAN SURFACES TO BE BONDED WITH SOLVENT AND APPLY WITH MODERATE PRESSURE</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FREQ.</th>
<th>TEMP FOR (\eta_p)</th>
<th>LOWER LIMIT FOR 20-70% (\eta_p)</th>
<th>UPPER LIMIT FOR 20-70% (\eta_p)</th>
<th>MODULUS AT LOWER LIMIT</th>
<th>MODULUS AT UPPER LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\eta_p)</td>
<td>°F °C</td>
<td>°F °C</td>
<td>PSI</td>
<td>PSI</td>
</tr>
<tr>
<td>10</td>
<td>-21 -29.4</td>
<td>-48 -43.3</td>
<td>10 -12.2</td>
<td>1.80E3 1.24E7</td>
<td>8.7E1 8.0E5</td>
</tr>
<tr>
<td>100</td>
<td>13 -10.8</td>
<td>-16 -36.1</td>
<td>61 10.8</td>
<td>1.82E3 1.25E7</td>
<td>8.4E1 5.7E5</td>
</tr>
<tr>
<td>1000</td>
<td>54 12.2</td>
<td>21 36.1</td>
<td>99 37.2</td>
<td>1.83E3 1.26E7</td>
<td>8.4E1 5.7E5</td>
</tr>
</tbody>
</table>

TEST NUMBER B1 01

\(T_o \) 10 °C -12.2

MODULUS CURVE PARAMETERS
FROM 2 063
MTRM 59 18
N 0.3
\(\eta \) 0.4
<table>
<thead>
<tr>
<th>MODULUS CURVE PARAMETERS</th>
<th>LOSS FACTOR CURVE PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAFROL 2 1</td>
<td>ETA FROL 1 3E3</td>
</tr>
</tbody>
</table>

ADDITIONAL COMMENTS

VV-10