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"Previous mathesatiocal investigations ot the origin of turbulenoe have led to the opinion that small
disturbances of a viscous, laminer flov between two wvally are always damped... I2 order to learn how
turdulenoce actually originates, I hed built at Gottingen an open channel...and observed the flcw by the
Ahlbdorn method {aprinkled lycopodiuam powvder)... VWave forms with slowly incressing emplitude were
ocoasionally observed... These wave:' of inoressing amplitude oontradicted the dogma of the stadility of
laminar motion with respeot to small disturdanoces, 8o that at first I tended to delieve that I had nct
seer this infreguent phenomencn ocompletely right.*

*We nov applied ourselves to the theoreticl treatment, snd, to antioipate a little, we found,
coatrary toc the dogms, an instabdbility of the small disturbances.®

Prandtl's arguscont was later refined by Linc (1954,1955), but we shall follow essentially the original
derivation here., An inviscid wave 19 assumed to exist in the boundary layer, and visoosity to sot only in
s narrow region oear the wall. To simplify the amalysis, U(y) %s taken to be serc in this region. With
this asawmption, the 2D ¢‘mensionless, parallel-flov x mcmentum eq.etion simplifies to

. .2
Toe-Folq (5.8)

ty
whers the terms vOU and -2u/ 3% Lave been drepped. Outsids of the wall visoous region, Eq. (5.8) reduces
}\5 .. gg . (5.9)

The disturdance veloocity u consists of two parts: an invisoid part u, that satisfiss Bq. (5.9), snd a
visgousr part that satisfies the difference between Eqa. (5.8) and (5.9). It is the total velooity uew,
¢ u that setisfies the no-slip boundary comdition. lmzno.

e P " (.10)
Ot ox S )
The solution of By, (s5.1n) for « real is
uy(y) o ~u(0) expl=(1=1)(«/2) 2yJaxp(a(rz—~a) , {5.11)
vhers tha bdoundary conditions
w(0) » u (0) « u (0) and uly): v (y) as y » =~ (5.12)

have deed applied.

The additiosal luagitudinal disturdanoce velooity Uy Whisk 18 needed to satisfy the no=slip
ocondition, induoes, through the ocoatimuity equation, u additional normal disturbance velooity

ve(y) = = O(m.,/-r)d: . (5.13)

which ytelds, upon substitution of M. (5.11),
vo(y) » (1-1) w (0)[1/(2.8) V2] (axpl=(1-1) (.02} V)t bamp[1(13-.0)) . (5.18)
Outside of the viscous regiom (y~) v, is independent of y asd », 15 sero. Pros Bg. (5.10),
() & ~(1=0){1ug (0/(2 )V 2 jexpi 1 ax-uai] . (5.18)

The eonsequences of l% (5.15) for the Reynolds stress are as foliews, 72> an iaviaci¢ aeutral
disturdanee, u and v are 90° out of phase [see lqn, (2.50a) and (2.500)) and T 18 urre. Bowever, fer say
other disturdance u and v are ocorrelated, sad there 1s a Beyoolda strese. umu,umeumhofm
vall viagsows layer, it ean esoatrileute mothing te ! there. However, v, Jeraists for some distanse outaide
of the vall layer, and stace 1t 1o ahifted 135® with respeet to u, n will preduse a Reynelds stress.
This Reynolds strese must equal the Reysalds atress set up by the ¢iaturdases inm the vielaity ef the
eritioal layer, and whieh, ia the adessse of viscoaity, would extend te the wall., Ve have alreedy Gerived
s formula for this stress is Section 3.t (Rq. (3.8)).

The formsula for the Reynolds stress at the edge of the vall viseous region can M cerived frea By,
(5.15). We find

' @ =tayvy> o (UD/AB Y 0 (3.16)
If e retio 1 /ev)> 1s forued, ve bave

L P s (V2aAmVE (3.17)

A goneral expressien for ' ie the vall vissous region san be edtained from Ree. (5.11) and (5.18),
ond this expreseiss weuld give the 1ssresse of T frem sers &l the wall to the value givea by By, (5.17) at
the odge of the viseows regisa. Seveier, By. (3.17) estadiishes the esssatial result that ' 15 pestitive,
ond thus viseseity asts as Taylsr thought it weuld, and duilds wp » Beyzclde siress 1o Bateh the faviscid
Reyselda stress, or, 18 Tayler's previss view, peruits the sementus »7 the disturdanee to o atocrded at
the wall, Acosrding to B¢. (S.Ta), with a peajtive strese emergy vi.l be tramsferved frem the messn flev
to the ciaturbanes. Consequeatly, the wall viseous regien, whieh is forned to satisfly the ae-slyp
boundary conditios feor the disturbanse, has the offest of sresting o Beyaelds stress vhieh edte te
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Az ¢ note of ceution, it must de recelled thst the preceding analysis rests on the negleot of U in
the wall visocous region. Therefors, we can expect the results to de valid oaly et high values of R, when
the wall visoous region ia thin comparsd to the boundary-layer thiocknesa, end when the oritical layer is
outside of the wall viacous region.

6.  NUMERICAL NESULTS - 2D BDOUNCARY LAYERS

In this Seotion, we shall present a number of numerical results which have been chosen to illustrete
important espects of the theory, as wcll as to give en idea of Lhe numerical magnitudes of the quantities
we have been discussing in the previous Sections.

6.1 Blasius boundary layer

The Blasius bdoundary layer, bsocause of its simplicity, has recoived the most attention. The unifors
externsl flow veena that not only is the boundery-layer self aimilar, dut thers is only e aingle
parameter, the lleynolda numbder. As there ia no inflection point in the velooity profile, the orly
instadility is viacous fnatedility. Thus we are adle to atudy thia form of inatadility without the
competing influence of any other mechaniss of instability.

The first result of importance 1s the parallel-flow neutral atadility ourve for 2D waves, which i»
shown {n Fig. 6.1 88 three seperate oyrves for: {(a) the dimensionless fraquency F [Eq. (2.60)]; (b) the
dimenaionless wavenusber i besed on L~ (Bq. (2.57)); and (c) the dimensionless phase velocity ¢ based on
U;. BNormel modea for which F,2end ¢ 1ie 0on the curves are nesutral; those for which F,q and o 149 ¢n
the i{nterior of the curvea ere unstedble; everyvhere e¢lse the norsal sodes ere damped. The neutrel-
stability curvea are a convenient meens of ideantifying et each Reynolds nuabder the F,a and o bands for
vhich s wave is unstadle. Figure 6.1a also oontains two additional curves whioh give the frequencies of
the maximua apatial emplification rate and of the saximum asplitude retio lllo. vhere lo is the asplitude
st the lover-branch neutrel point of the frequency in queetion Both saxime are vwith respect to frequency
at constant Reynclds numbder. We have used o in Pig. 6.1a to denote =i, the spatial amplificatios rate in
the streamwise direction, and will oontinue to 6o 80 in the resainder of thia doocusment. The oorresponding
vavenusbders for the additiocnal ourves are given in Fig 6.1b. The ratio of wavelength to boundary-layer
thickness 18 2-/, ¥y:, and y., the y [Bq. (2.59)) for which U » 3,329, ia equal to 6. ). Consequently, the
unstadle vaves at R = 1000 heve wevelengths between 5.555(16.84°) and 10,4 {492 ¢ 1, l’ooruu to Fig.
6.ic, the unatable phase velocitics et this Reynmolds nusber are detween 0.2020; end 0.33501%.

¥e must keep in mind that the nsutral ourves of Fig. 6. bave been calouleted from the quasi-parallel
wesry, which does not distinguish between flow variadles or location in the doundary laysr. All of the
nob-parailel neutral curves calculsted by Gaster (1978) define a slightly grester unstadle zome, with the
grestest differencea coming et the lovest Reynolds number2 es might de expected. The difficulties
involved in making eoccurete sessurements of wave growth ot low Meyoolds aumbers bave 80 far precluded tbe
experimental detersimmtion of what can be regarded az sn unequivocally ®correot® aesutrel-stability ourve
for any flow variadle,

The next quentity to exemine is the dimensionlees spatiel amplificstion rete s dased on L’ mnis
smplification rate 1s shown in Fig 6.2 for 2D waves as a function of the diseasionless fregquesay F st the
tvo Beynolds nusbers R « 600 and 1200, Frow the defimitioa of the aspliificetion rete ia Bg. (2.27), the
fraciienal change {n amplitude over ¢ distanqe equal to one boundary-leyer thickness 18 vy:. Thus the
soet unatedle usve of frequeacy ‘ -.0.33 2 107" at B » 1200 grows by 3,08 over ¢ houadary-layer thickmeas.
The amplification rate S3sed 0a . /U,, } o /R, gives the fraviiossl wave crowih over a uait increseat ia
M. Thus Lhis same vave grovs by ':th over an imcreasat in Be of 10,000,

T™he saziaus aspiification retes and ' __, vhere the maxiss are with respect to frequeacy {(or
vaveaumber) at coapteet Reyaslds nnm. &re mu ta Fig. 6.3 as fuactions of Beysolds nuader, The
asplificetion rete °, which gives the wvave growth per unit of Rersolés seaber, peaks at the low Beyxnldas
susbor of R o 63 T sapiification rete &, whioh 1s proportiocssl to the veve growtd por boundary-layer
inickpass, <eas mot peak vatil B s 2780 [calewleted By Kimmersr (197))]. The disensioasl asplifiocatica
rate 1e preporticasl) te & for o fixed uait Reynolds auaber. Figure .) shovs thst the 3eclise ia the
dinensisaal asplificatioa rate wilh inereeiing s-Reynclds susder 15 alpoet scuaterscted 0y the isoressase ia
the beundary-layer thicknens. Visocouws 1nstadility, A eharastarized by o, persiasts Lo estresely high
Seynolég susbera. Hovever, (I the pessure of visoousd 1nstadbility (s talea 10 De the wave grewth over a
fized x incresent ar expressed dy 5, thea by this oriteriea the maxinus viseous {astadility eocwrs at low
beynslda ouaber,

The logaritha of the smpiitude ratis, Adg, is showa ia Pig $A for 20 vaves as ¢ funotios of B for
a auaber of frequeacies 7. The savelepe eurve, vhich givea the sazinus saplitude ratic possidle ot amy
Beymolés ausbder, 15 alse sbown in the figure aloag with Lhe ecerrespeading fregueancias, IU is this Lype of
dlagres that 1s wsed 1o engissering ctudies of boundary-layer tremsition Vhea lali/Ay), whieh 18 oflea
cslled the 3 faeter, resches scae predeterained value, say aine a8 suggested by Selith and Cuaderens
(1954}, or ter as suggested by Jaffe, Oknaurs and 3aith {1970), Lresaitiea 13 seasidered 1o take plaece, or
at jeast to start,

The distridution of the legariths of tae aaplitude ratte with frequeney §s shous 1a Pig. 6.3 for
ssveral Reysolds auabders., This figure Lllustrates 25a Filteriag setied 37 the Doundary lagor. The
tansous aerreviag of the basdvidth of »=sisble frequensiss and the large imerense i asplitude retie

Degaslidn sunber Lacrensss NeARs Mst aa iritial waifore power apectrun of Lmetadilitly waves teade
& apestrud at high Beymelés swmbere Lhat has & the aest amplifisd fiegueany. The faset
Pig. 6.5 gives the daaduidth, dofined 20 the froguensy reags dver vhieh e saplitude retis i3 wilkie
of the ponk value, 20 & Nunstiva of Neyacliés mmber.

)
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and, in asoerd viia Lhe 3tondard agtaties, 18 dinsasisns) ¢isplacenset thichness.
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The Squire theorer (Seotion 2.,4,1) has told ua that it ia a 2D wave that firat becomes unatable,
Furthermore, a* any “eynolds number it ia a 2D wave that has the maximus amplification rate and also the
maximum amplitids, retio. Thus the envelope curve of asplitude rstio when all odlique wavea are considered
as well aw 2D waves 18 still as shown in Fig. 6.8 However, for a given frequency the 2D wave is not
necessarily the sost unstable, as is shown in Fig. 6.6. In this figure, the spatial asplification rate 7,
caloulated with | = 0, 1a plotted against the vave angle | for three frequenciea at R = 1200, At this
Reynolds number, the maximue smplification rate occurs for ¥ = 0,33 x 1077, Above this frequency, 2D
vaves are certainly the moat unstedle. However, belowv about F s 0,26 x 10‘. an oblique wave is the moat
unstable, and the wave angle of the maximum zmplification rate inoreases with decreasing frequenocy.

In the calculations for PFig. 6.6, the complex wavenumder was obtained aa a funotion of the apanwiae
vavenumber :  with ¢y » 0 and the frequency real and oanstant. Thua the complex group-velooity *
can be ruddy obdtsined from W ‘' (a -tan ¢}, and the reaults are given ia Fig. 6.7 for 7 x 10" = 0,20
and 0.30. The resl part of ¢ 12 1imited to leas than 10°, and %y oan be eitiur plus or minua. It 1a
svidect that at the maxismum of ¢, where W""r is real, i must be zerc. With the groupe-velooity angle
known, the aoou‘-ney of the aimple relation Kq. (2.35) for aa a funotion of  can be cheoked. We choose
F « 0.20 x 10" and v= 45° 1n order to bave ; real. Table 6.t givea k, ths_wavenumder; ', the

. 3
amplification rate parallel to ;(both of thess are caloulated as an eigenvalue); " (V), the ocomponent of 7 i
in the x direction for the apecified y; and 7 (0), the amplification rate in the x direction fori = 0 aa ¥
caloulated from Bq. (2.81c), the spatial-theory replacecent for the Squire tranaforsation derived fros Ig. 3
(2.35), but with , replaced by 7. In the iatter caloulation we have used 3 = 9.65°%, the value obtained ¥
with = 0, The transformation works very well; the small discrepanciea from the correcty s 0 value are 3
due to ;. being s weak funotion of V iastead of oconstant as assumed in the derivation é
Table 6.1 [Effect of | on ampliffication rate and test of é
trenaformation rule, 7 s 0.20 x 1077, R = 1200, v = AS°, 3
5 K Tm10d e(¥)xt0d  o(o)mr0d

eigenvalue transformeticn 3
0.0 0.1083 3.201 3.201 3.201 S
9.7 0.1083 3,156 3.111 3.201 E

15.0 ¢.1083 3.170 3.062 3.200

30.0 0.1083 3.368 2.916 3.203
85,0 0.1083 3.0713 2.139 3.208 <
€0.0 0.1082 8.95% 2.070 3.207 H
75.0 0.1083 7.601 1.967 3.2)6 k

Ve observe ia Table 6.} that the real Squire transformatiosa, which is the 1 (]) eatry for is i, is in
error by 140§, whereas the oorrect tramsforsatios is inm -rnl- by ouly 0.15. VWhen the sase caloulation is ‘
repested for the other frequency of Pig. 6.7, 7 » 0.30 x 107", for whish ty o «2.48° sty o 45° tnotesd of b
c° aa for the frequency of the Tadle, equally good results are obdtained for (0) frea the Lremaformstioa ;
Bovever, k {3 Po loager coastast, but imoreasea with J; for ;= 75° it 1s 0,08 larger thaa ot{ s 0°, 3
Nayfeh and Pudiye (1979) provide a forsuls for thia changs. b

In Fig. 6.8, 1a(A/Ag) 18 given at several Beynolds nusbars for 7 » 0.20 x 10°% as calculated with the
irrotationslity comdition, Bq. (2.62), applied to the vavesusbder veotor. The abecisss is the initial wave
angle st R s 900. The change i the wave adgle fros & » $00 to 1900 §s 1.7° for the wvave that has as
iajtial vave angle of [T YT figure shows that the greater aaplificetion rats of oblique vaves 1a the
Lostability region mear the lover dresch of the mevtral curve tracslates isto an amplitude retio that is
4reator than the 2D valus, Novever, ia(i/d,) for aa odlique vave is sever sore then 0.35 greater than the

20 valee. Figure 6.0 aloe shows that Just &8 Lhe frequessy danduidth aarrcwa with lnereasing 3, »0 does i
ths dandvidth $a spenvise wavenusber. Although at the lower Beysolds auabders the respoasse extends Lo i
large vave anglea, at R o 1900 the amplitude ratio 48 dowa to 1/e of $te 2D value ot . s 37°, and oa the
envelops curve Lhie aagle will be atill amaller. Por uu.hs the 1/ amplitude for 7 » 0.60 ¥ 107" at
the envelope-curve Reynolda ausber (R s 900) cccurs at, » 29”; for F » 0.30 3 10”7, at , ¢« 26" Gven

B0, It is necessary whes thinking about wave amplitudes ia Lhe boundary layer to keep 1in miss that toth a
froquency Sasd asd spaswise-vavesusber dand guast be coasidered, met just a 2D wave.

3o for ve have only besa conaidering the aigeavaluss and not the sigenfuaetioss. The eigsafumetions
glve Lhe pepaldility of penetrating further {ato the physios of faatadility, and ve shall take thes up
sriefly at tais pojat. Ligenfurotions are readily odtaised with aay of the cwrreat suserical sethods, tut
were 4iffieult te compute vwitlh the 0ld asysptotie theory. The first ajgeafunetions vere obtained by
Jokliahting (193%), and the good agreenwat of the neasurencats of Sohubaver ond Skramstad (1937) with
these ocaleviations vas a Xey lactor 4a ecotablishing the validity of the 1inear stabiliity theory. The
prodies v 18 sofe one of finding & reascnabdic waj to preseat the great sass of susericel dats that can
te osnpuied, and te satrest wefwl fafersatior fres this data. 500¢ progress 4es dees aade ia the latter
directien by Name, Willlase and Passl (1980). Per €¢ifferent saplituéea of 2D waves, these suthors
Mlculsted streanline patieas, codtenrs of constamt total verticity, Meysclds stress aad sll terss of the
lesal apetiil casrgy Malanee,

rigure 4.9 gives the saplitude of the sigealuoetion § of I‘Q streanvise veleeity flwstuation u st R o
800, 1400 and 1600 fer the 2D vavy of froqueaey F » 0.30 x 30", The correspanding phases are gives ia
Fig 6.1C. &a may be seen froe Fig 6.1a, thede Seymsids mumbers are, respoctively, Just Delew the leower
branch of the asutral-stability surve, aser the naximus of J, ulum'w'”omofmuutm
retic. The sigeafusstion sernalisation of Pigs. €.9 and 6.10 16 $(0) o (2°'7%,0). The eligeafunstions
have 0ot besa resarealised teo, Say, & Senetast peak aspliivds 49 1a often done, 18 order to caphssise that
ia the guwasi-peraliel theory the moreclisaties 1s scmpletely arditrary. Mething san Do learusd o8 to the
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effeot of the variabdility of the eigenfunotion with Reynoldas numbder on the weve smplitude within the
fragevork of this theory. Attempta bBave been made to do thia, and plauaible looking results obdtained, dut
this spprosch ia without theorstical justificatioa. It has already been pointed out in Section 2,2 that
the meaningful quantity for the amplitude modulstion is the produot of A(x,) and the eigenfunction, and
this produot, which has a fized value regardless of the norsalization of the eigenfunotion, oan only be
caloulated from the nonparallel theory.

For the wave of Fig. 6.9, the oritical layer 1a at sbout y » 0.15 and varies only slightly with
Reynolds number. Thus the looation of the smplitude peak, whioh 18 s strong funotion of R, is only
coincidentally at the critical point. As R inor s, the vi layer near* the vall deocomes thinner as
exzpected. The ocharacteristio phase ohange of approximately 130° in the outer part of the boundsry layer
hea nothing to do with the 180° phase ohange at the oritical layer in the invisoid sclution {Bq. (3.99)],
but 1s » kinematfical oonsequernce of s wave with gero amplitude st both the wall and at y +=. At sc@me ¥
greater than the y of maximum amplitude, where visoosity has little influence, the slope of the
atreaslines relative to the phase velocity has a maximsusm. Thus the velosity-atreastube area relation
changea 8ign, and at a)l y > Vg the u fluoctuation from thia effect is opposite in aign to the fluctuation
that arises from the wavy motion in & monotonically innreasing velocity profile. At some y), > LY thease
two effecta can exactly balance for & neutrsl iaviscid wave, and almost balance for mu‘m. viaocous
waves. For the iatter, as ahown in Fig. 6.10, there is a nearly 180° shift 1n the phase of 4. The fact
that the phuse can either advance or retreat in this region was first noted by Hams ot al (1980), and its
aignificance, {f any, is unknown,

It was shown in Section 5.1 that the kinetic energy c’ s 2D imstadility wave {a produced by the ters
:dU/dy, where 1 1ia the Reynolds streaa built up by the sotion of visocoaity. BReynolds ~tress diatridutions
have been given by Jordinson (1970) and Kimaerer (1973), anong others. The energy production ters is
shown in Pig. 6.1 for the frequency and three Reynolds numbers of Pigs. 6.9 sad 6.10. The peak
production doea not ocour at the oritical layer at amy of the three Reynolds mumbders. Ve see that ensrgy
production 1a by no means limited to the region between the wall snd the oritiocal layer, sa might de
expected from the simpie theory of Section 5. At R a 1200, where the amplifioation rate is near ita
ssximum, there is aigaificant enmergy production over about half of the doundary-layer thickness, In these
examples, the Beynclda stress is positive exoept for the slightly dampled wave at R = 800, where there is
a small begative ocontribution over the outer 703 of the boundary layer. The damping at R = 300 is Gue to
viacous disa‘pation, not to s megative production ters. HNex=s et al (1980) give an example at low Reynolds
number whers the production terms 1s negative over the entire boundary layer.

6.2 Falkner-3kan boundary layers

The 1nfluence of pressure gradient on boundary-layer atability oas be atudied ocozveniently by means
of the lalkner-skan family of self-similar boundary layers, wbere the Nartree parsmeter 8, [ig. (2.62))
BOrves a3 & pressure-gradiest parameter. The rangs of 8, is fros -0.19883774 (separation profile) through
0 (Blasius profile) to 1.0 (2D atagnstion-point profile). Exteasive nuseriocal ocaleulstions for Palkner-
Skan profil-s have been cerried out by Waszsan, Okasure and 3sith (1968; see alsc Obremski ot al. (1969)),
and by Kiimmerer (1973), Pigure $.12, taken from Mack {1978), gives tha iafluence of % oa the B-faotor
envelope surve, It 1a clear that a favorable preasure gradieat (a, > 0) atabilizes the doundary layer,
and an adverse pressure gradieat (8, < 0) destabiliszes tt. The stroag imetadility for sdverse pressure
gradients 1a osused by an faflection point 18 the veloeity profile that soves avway fres the wall as?’
becomes more negative. The adverse presaure gredieat Falkner-3kas douadary layers sre particularly
tastructive bdecause Lhey provide ws with exaaples of doundary layers with Doth visccus and iaflectiomal
inetadiliry.

A

T™he asplification rete U 1s unsuitable for astudyiag iaflectiomsl tmstadility, whioch ia basisally am
1oviscid phenomenca, &5 it $s sero at R -~ regardless of whethar the Soundary jayer 13 stable or wastable
in the imwiscid limit, The calvaletions of Kuemerer (1973) imclude both Jand ) and show thet the mazimws
smplificetion rete soves fro3 R o 2780 for the Blasius deundary layer to B~ a0 \ dooreases fres
soro. Whes . 182 8=, whiak oceurs befere 5. resches the separation velue, we Csa say that the
boundary layer “ sominated by iaflestin~zgl ifnstadility, Ia these cases, viceosity asts risarily te demp
out the disturbances just &b savisio.ed By the sarly iavestigsters. Vhea ve take uwp coapressible boundary
layers 18 Part B, we shall escouate’ anolbor exasple whsre the deaminsant inetability ehcoges fres visesws
to iaflestions] a3 a parameter (Lhe resstiress Nask mmbder) varies.

The froquenciea along the ervelepe ourves of Pig. 6.12 1re given 1a Fig. 6.13. Ve say ebserve that
18 boundary layera with faversdle prodavre gradieata, vhere viseous 1a9tability Lo the oaly seuree of
inetability, 1t 18 lov frequency weves which are Lhe meet asplified Oa the cestrary, for boundary lapere
vilh adverse pressure grediects, where iafleetions)] 1mstadbility is demivast, it 1 Righ-frequensy waves
which are the most amplified.

Ia » mtural disturbaseey savireamest, & vide spostrun of eersal nedes 847 de expeeted to exist ia the
boundary layer. It 1a helpful Lo kaow the sharpness of Lhe response 18 eatinsting vhea the diaturdanes
smplitude 59 lorge casugh te (aitiate Lremmition 4 meeswre of this quastity 1o givea ia PFig 613, where
s froqueney basduidth of the 2D waves sleag the eavelepe surve, 0xpressed as s frastie’ of the sent
aeplified frequensy, it sheun fer the Palbasr-Skas fonily. This Ganduidth 15 mot ideatisr. Lo the oae 12
the 1000t of Pig. 4.5, 02 It gives ealy Lhe Frequency reage 1005 1042 the oeat 2aplifl 4 Frequeney for
which the amplitude retie 1» withia 1/ o the pask valua. The Fllleriag setics of the Mswedary lager L9
agsis evidesnt fa the asrreuing of the Danduwidth with inercasing Deynclids suader for a givea dousndary
layer, and ve 0oe that the pere uastable sdverse presaure-grocdiost douadary layers dave the slreagest
filtering setion.

6.3 Nea~sinilar boundery layere
™e sslf-cigiler boundary legore are weful fur iilwmiretiag desie iastability sechanisns, 9t is

prosties doundary lagere sre svd=siniler. 4 ceaputer code Lo perfora stability eald
statlar boundary lagere 1o sere ssdplisated thea for self-cinmilar Sountary loagers, bud

s b
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different profiles. The atability caloulations themaelvea sre the same as in any Reynolds numbder
“ dependent boundary layer. The eigeavalues are calculated as a function of Reynolds number, and thea can
be sudsequently used to calculate K faoctors, or for say other purpose, exaotly as 1f the boundary layer
were self-similar. Suoh ocaloulations have deen done on a routine basia e least as far back as the paper
of Jaffe, Okamura and Saith (1970).

6.4 EBoundary layers with msass transfer

Suotion stabilisea a boundary layer, and blowing destadilizes $t. This result was eatadlished by the
eariy i{nveatigators, and extensive stadility caloulations wvere carried out with the asymptotic theory.
Suction can stadilize s boundary larer with or without an infleotion point, The stadility mechanisa ia
aimilar to the sotion of a presaure gradient. Suotion gives a ®fuller® velooity jrofile, just as does & 3
favorabdle preasure gradient; dlowing gives a velooity profile with an iaflecticn point, just as does an
adverse presaure gradient, CZuction 19 the prisary method prorceed for laamimar flov ocatrol o ajroraft,
where it has been investigated saialy in oonaiotion with thres-dimemsiomal boundary layers, A suasary
scoount of early work on this aubject may de found in the book of Schliohting (1979). Nore receat work ia
primarily associsted with Plfenninger, and a ausmary acoount of the vaat body of vork oa thia audjeet
oarried out by him and hia co-vorkera aay be fouad 12 the Lecture Notea of ar AGARD/VEK] Special "ourae
{Prenntinger (1977)]).

3.23
necessity of calling up s different velooity profile at each Reynolds number, or of interpolating between i
g

6.5 Doundary layers witk heating and cvoling

Neating ac air boundary layer destadiliszes it, and cocling atadiliszes '*. The proper calculatioa of
this effect requirea the ocompresaibie atability theory which is givesn ia Part &k in exnssple for s low-
speed boundary layer ssy be found ias Seotioa 10,3

st

for a water boundary layur, the effect §s the opposite, and heating the vall bas beon extensively
studied as a means of stadilisetioa This mechanisa of stadilisatioa ia scolely through the offest oa the
viscosity, and sap be studied with the incoapressible atability theory provided ealy that the vissosity is
takst to be a funotion of tempersture. The imitial work on Lhis swudjest was by Vassasa, Okaawre and Smith
» (19680).

.

6.6 Ligenvalus spectrus

AN .

An arbitrary disturbance caanet be represented by a single sersal sode, or by 8 asperpoaition ef
soraal Bodes. These 50408 represest oaly a singly seader of an ealire eigeavalue spestirun, and it i3 this
spectrus that la required for an arbitrery disturbense. It sas bo preved thet for & bounded sheer flaw,
such a» plone Polseuille flev, the eigsavalus apeetrud 15 Gloerete and fafimite [Lis (1961)). That is,
for a given vavenusber aid Doysclids aumber, there 15 s iafinite diserete seguense of ssmples frequeasies
vhose eigeafunctions astiafy the boundery esatitions. [Eash eleseat of the sequesses comstitutes & weda.
T'is 10 the nore precise Besaing of the ters mode; vhat we have eslled the msraal sedss all deloag te the
ficet, or least atadle, of these Bore gomersl medes. Te ¢istinguish bdetuwses the twe uweeges of the ters
B0ds, ve shall refer to the €iserels 2equence a5 Lhe viscows sodes. Oaly the firet visesus aode san be
uastatle; all of the others are desvily dasped, whieh §8 the reascs viy they are uaimpertant {a alsest al}
prastical stabdility prodiesa. Caleulatiess of the dlacrete tonpers] oigesvelve speetrua of plane
Poiseuille flov bave beea carried out by Oresch and Salves (1968), Orssag (1971), eag Nesk {1976). i

PR Y G N

It vas loag Melieved that the eigesvalue spootrus of bovadery-layer flows 15 alse diserete. Bawever,
a caloulation by Jordiansea {(1971) fer a ajngle valuwe of a1 snd B wasovered ealy o finite diseretie spestirua
for the DBlasiua deundary layer. These c¢aloulatiens were 13 sefe orrer sugericslly, det s latur
tavestigstica by Nack (1974), wvhieh werbed out the correet Lompors! spostrum, oeafireed the ceatlusien of
Jordinsca, As abown $a Fig. 8.15, at 1 » 0.179, B » 500, the ease eonnidered by Jordinsca, there sre
oaly aeves viseeus sedes. MNede ! 18 amplified; Nedea 2-7 are atreagly dasped. 1ls Fig. 6,15, the
elgeavalaes are shous ia comples ¢ space, rether than - speoe, m-,.-uw-mowu.num
12 this predlea. 4

Although the nuaber of ¢lacrete 20400 10 & funelics of deth vavenuabder and Doyaslds nuader, the
avabder remains fiaite ond cenparetively asell. It ves shews by Rack (1976) oo the dasta of svaerissl
e328pi00 vild flalte-wietd shannele 1a viich the upper bevsdary goeved to y - =, sad with pelyesaial
‘ veleeity profiles of verious orders, that detdh the ssei-iastatte Clow isterval and the coatismity of e
velestly rofile ul the ogge of the bdowadery lager, are respeasidle fer the mea-existoesss of the fafisite
pars of the dinersie apsetrus of Sounded flows. U ¢ flatte diserete aspectrua 10 atill uaalkle te
represest o8 rditrary Al terdasve, vhere ore Lhe alssing cigeavalwee?

It 15 0 85t WBOCENEE CECUFTERse 1B Sigeavalus Predless Lo have cdiy & Flaile €lacrete speeirve. The
resslning perl of (50 speetrus 15 1004 & continusus 0postirus. As otasple Lo Lhe faviseld stabilily
agwatica, whieh has & GONtiouows SpOtrus asecuiated wilh the alagmlarity ot the eriticsl lagers % wes
alreagy sugpeeted b7 Jerdiases (1971) that e Ciscrete viesows Apostrun 19 Suwpplensntied by & eomimweue
spestrus aleng Lhe o, * ! amis e proef by Lis (1961) et & vicosus ooetimmens Spuetral UBEmel akist
fur o bownded flov Goes ool apPly t2 aa wabounded flow. Maek (1976) supperied Jerdinses’s expestatioes by
eessns of a fou suseriesl caloviaticas of contlinuoud-9pocirua ¢ipeavialuee, 804 alse shouwed thatl the
coMimeus *peetrun 15 alvagye Guaped dosavse of he restristion o, ¢ -/l Imnulmn‘mn L)

§ atedy of 10y coaticuous 2p0eirus was sudocguintly cerried oy Sresed ond Balves (1978), whe are
resssasidls Fr elarifyisg saty espestis of Wis predies. uomwmumtm
sust be sestionsd. Jesults Per Lhe Gloerele spatial spestrun of the Blasise domadery ) ve BO0S

gives %y Cormar, Nousten sad Bese (1976).




324

7. RARMOEIC POINT SOURCES OF INSTABILITY WAVES
7.1 Osneral remarks

In the previous Seotions, we have been considering the behavior of the {adividual norsal-sode
solutions of the limsarized, quasi-parallel stability equations. This prim.iry attestios to the mormal
acdes has been the usual vourse in sost theoretical and experimectal work on toundaryelayer stabdility. The
fundamental stability experiments of Schubsuer and Skramstad (1987) in low-apaed flow, and ¢l Kendal
(1967) 1n Righ-speed flov were both designed to produce a particular norsa)l mode. Sven the much used ¢
aethod of trsmsition prediotion 1a dased on the amplitude retic of the soet saplified normal mode. In
sost aetual flow situstions, however, & speotrum of iastability wavea ia presest. If the bousdary layor
were truly parallel, the sost unstable 80de would eveatually be the dominan: one, and all of the other
a0des would de of msgligible tmportance. As boundary layers found 1n practice are aot parallel, the
ohanging Reyzolds suaber means that the 1deatity of the most unstable aode also changes as the wave syatem
R0ves dovnstrean, and 2o single mode caa grov indefimitely. Diaturdar e emergy will always be distributed
over & finite bandwidth, If the modes all come fros s single source, or are othervise phase related, thea
interference effects will cause the evolutioa of the widedand amplitude to further depart froa the
asplitude evolulioca of & aingle norsal mode. This differemcs weas vividly demonstrated 1ia the experiment
of Caster and Orant (1975), where the saplitude at the cemter of a wave packet produoed by a fulsed poisnt
source ohanged little with facreasing distsnoe from the source, even though the amplitude of the most
smpiified norsal mode vas increasing seversl times.

The wave-packet probdlem wss trested first by Criminale and Kovaanay (1962) and by Gaster (1968).
Neither the straight wave fronta of the former, mer the caustio of the latter, were observed
experiseatally, because ia each case spproximetions that were needed to produoce swserieal results turasd
out not to be velid. Later, Gaster (1975) odtaimed results in good agreemest with experiseat by replscing
the method of steepest descent used earlier by direst mumeries! lategratioan. Ne was alse abdle to
domonstrate the validity of the method f stespest descent for & 2D wave packet ia a striotly parsslel
flov by exaet caleulation of the mecessary eigenwalues (Gaster (1981),1982s)). Pimally, he showed how to
extead Lhis method o & growisg boundary layer [Seater (19414,192820)), vhere the mean fiow Gownstrean of
the scuroe ia & fuaetios of Beyaclds nuabder.

In this Section, ve shall ezamime & simpler prodlea than the wave pachket, mamely the staticeary wave
pattere pimduced by » harsocaic point sourcs. This wave sotioa has ihe 3480 Dusder 3f space dimensions as
a 1D wave pecket, Sut {5 really & 2D wave propagatioca predies thst is closely related te Jaster's 2D vave
packets. The propagetion space Bere is 1,3, the pland of the fi0ow, rather tham x,t aF ta the latter
prodlen. The fact that the wave Betica 15 two ¢imesnisia) nabes 1t poasidle to odtatn detailed swmerical
rosuits both by sumerisel istagration ead by Gester’s (1981a,19820) cxtession of the sethod of stespent
descent for a growing bevadary lager (Mack asd Zardall (1983)). Ia the poist-sewres prodlsns, 2o attempt
1a 8ade to f1ad a complets mathesatisul 3oivtivn  lnstead It 15 merely sssumed, felleving Gaster (1978),
that the sowres produoss & costinuens Spuetrus of the loast stab’e aereal nodes. Peor & pulsed 20 (lime)
0ures, the spestrud 1is over frequensy; for a pulaed 30 (paist) & wree, Lhe spostrum 18 over freguenny ead
Spanvise waveaunder; for 2 ML " _«16 POLRL Souree, Lhe apeelrum s over spanvise vavesusher. I3 18
uowally, dut ast alvays, sssuned Lhat the speoirel Geasilies are saifors (“white meine® speetra).

The selutien fer a darsonie poist source 1s odtained dy evaluating the integral for the senmples
saplitude over all pesaible spanvise vaveauabers. The nest stiraightforvard aethed 1o te use direat
aunerieal imtagratiea; a secend methed fa to evaluate Lhe Jategral rayaptetieally By the methed of
steapust desoett aa wad ¢oae fer parsilel flevws 9y Cubocl and Stewartaen {19804,19800), and, in nure
éotail, oy Bayfed {1980a,19800). Jeas suserical Pesul}o For Blastus flov were oited by Codeei and
Stevartoca (19800), Dut vithia the fremewerk of the ¢ aethed of transition predietioan. Only the
cxpessatial tera of the amplitude was ovelusted, and the saddle-peist eaidition was the cae fer parsllel
flow,

Buperiseats oa the Merecaie poist seures RMeve beon carried owt by Gilev, Kachasev aad Keslov (1961),
sod Zy Rock and Rsadsll (193)). 1a thess enperisesis, esteasive bot-w
Fhate wvére 8440 18 the Gouastireas o0d Spaawise direstiess 1a &
(1901), » Pourior amaiysis of the dele Jicléed Lhe oblique sersal 908, DUt B0 A0EPAriscms xith theery
vere Sode. Ome aignificsst resuit was Lhe L3
ohoun 18 Pig. V.. 4L Jeast Lhree ¢intinet regioas san

ovey
at the cadler limn. 4 regien of ¢ ‘eave curvelure gredually estesds sulvard s cassapads Lhe eatirs oulve
portios of Lhe veve pattera, whiiec 'ho dinple spressds, flattess and flanlly disappoars. A1) of theoe
fostures are Guplicaled 1a Lhe vove ' .iiers ealoulateds by aunerical Satagretion

Pigwe 1.) shous thet there 15 & sasious 108li2stich of eosh constast-phese 1180 thet L0 Bush
thes the aanly’4 weve 0agle of wasteble sereel sedes. Thia feeture fullews ¢lreetly fros the sethed
ecomet here e saddio-paimt ssndition 118110 the DepmalGe-aumber Gapendest BARLOUS
10 40%:23% Tais rectrietiog vas 00ted 10 sapudiished caleuiations by Nesk sad by Padhye ané Bayfed
(privede cobnmnieetion), o well an 3y Cobeoet end Bievartees (19000).
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The integral over all spanvise wvavenumbders for u:o.dxnuloul vl%clty fluctuation v, (the sudecript
t dehotes time dependence) from a souroe of frequenoy . loceted at x,,z. 18

ultx®,2",t% . up(-lu.t.)[c.(r‘.)up(i((a.u..l.))dﬂ.. (1.1)

where ;'(:-.) 1a the (complez) amplitude distridution function of dimenaions velocity x length, the

frequency ias resl, .

b
TS IY A PR TL PR PO (1.2)

ia the tise-independent part of lb' phuo: snd the vu.nlbor.oo.vounu -. and .“.. sre compiex., The
eigenfunctions are ignored s0 that u, 18 independant of y , and u, oould equally well be considered as any
other flow variadle. This integral will bDe evaluated below by direst anumeriocal integration, amd by an
sdaptation of Guster’s (1981a,1982b) ssymptotic metbod,

7.2 Buwmerical integration

Yo place the souroce st :: s 0, drop the time faotor, and define Lde dimensiosless variabdblas

e, g% 00},
1. D:t.l,. . te. u;-'/J' . (1.3
us \l'lll. . g ?u.lu' »

1

vhere n' 15 the time-independent part of o:. and .rohrnu veloeity s the fresetress wvelooity ﬂ,’

We Bave chosen th- faverse wkit Reysolds nusber - /U, ss the reference leagth 30 that £, a2 vell as

will sstisfy the irrotationality eendition 1n the siaplest ferm, 8q. (2.35,. #iid thaese chojtes, the
tinensicaless £ ard § are the wsual X and 3 Deynolds nunders. The ressce for the serralisstic eomstast I
2= $u the defizition of g will appesr in Seetion 7.8, Vith the definttions of Rqs. (7.2), 8q. (7.1)

doocnes F

u(f,8;7) o (uz-)f.atg)m(u{a:l.lna.! c (1.4) ;

Vits 80 « 0, the phase 1s .‘. [
(U8 .j:' @ .. (19)

£
Vo take ! to be res] for coavesniesce, which means thet we are goiag 1o sum over spatisl aorsal sodes of
the Lype ve have doen using sll sloag. If we write

rlI"QUIOg.. {T.4e)

,‘ a
x,-f e, -“.[e,a . (1.60)
L]

muummuunnmdum' *

o8 (mf a(3exp(or, donat sl M) (1.7
a
&ad
w(2,8) o (V/5)f gillespl-1ilatni  o0e(it)e} . (1.79)

Ve have tahes sdventages of Lhe sysaetry 3a I of g}), 1 . end ¢, Lo restriet the intervel of iskagreties
te the pesitive 1 azis. Oguatiens (1.7) ere the epdeifie l‘nouuo te be eveluwated Oy swaorissl
tategration It is cenvesient to presesti the nuserical reavite in terss of the peal, or cavolepe,
amplitede

a0 o (2o AHVE t1.50)
aad the leea) phase

“e,0) o welluyre,) . tv.oe)

Both of Lhese quadtitics oon Do Eeaswred euperiseetnlly.

The cunerical 1ategraties of Bya. (1.7) procoeds as Mellovwe! ¥1th Lhe dinsnsienless frequwessy F
ogual te Lhe froquesey of Lhe soures, tHe Phede iategrels 1. and i, of B (7.60) sre ovalsated as
fusetions of § with seastast § for & Dasd of spasise vevessllors rrie 10e oigeavalues i{8;2.0). The
Pourior coeine 18tagrols are evaleatod at csougd § statinns at cash £ Lo reselve the wave patters
25801~ odligque "eves are Gsaped, vwith Lbe Ganpiag rete iseressing vwith lLeeressing obliguitly.
Consoyastly, the integruls of By (V.7) will alvape ocawrge fur £ ) £ IF large conugh valuss of ! are
weed A8 208,10 18 and g(]) Lo Lhe Peurieor contae tresefers of u, (8). Ia partieuler, 2Cgif) s Y,
Weau, 188 & xuulurapu.mmmuu-,,

7.3 Mother of stespost Gsperet
™he aethed of suaerienl iategretion 15 Mreightlferverd, st

cigesvalvee fer good resajutisn of Lhe weve patiera. 4 €ifferest to svalmsie the iatagrel of
By (TA) copuptetionlly 87 the Sethed of stonpest Gnseeat,
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osrtain resulta to be odtained with fower caloulastions, and also has the advantage that the dominant wave
st each £,2 aeems to correapond direotly to what is observed.

Equatfon (7.4}, with g(f) = 1, is written
u(f,t) = 51.: (llzn).{oxp[(l-!.)@(ﬁ)]dﬁ g (7.9)
where C is the contour of steepast descent in t.lfc complex 3 plane, and
(3-2,) ¢ %';u;am . 132, . (7.10)

;]
The 1isit R ‘~1is taken with R/(f-8,) tsld ocnstant. The ocondition for the saddly point £o 18

‘dwﬁ s« 0, (7.11)
which is equivslent to the two real conditions ,
x
j’:‘\,(‘a:'./aa),a a -1 , (7.128)
x
s la/af)gat w0 . (7.120)
L]

These integrals are evaluated with the complex ? held oconstant, so that we are dealing with spatial waves
that astisfy the generalized irrotationality oondition of kinematio wave theory.

The saddle-point conditions of Eq. ‘7.12) are of the same type as introduced by Gaster (1981a,1982d)
for 8 2D wave packet in a growing boundary layer. Usually the saddle-point method i{s applied to prodiems
where the wave-propagation medius (hers the boundary layer) is indapendent of £, but Gaater demonstrated
the correctness of the present procedure when the medium ia a funotion of £. In a striotly parallel flow,
the boundary lsyer mects the more restrioted requirement of £ independence, and the saddle-pnint
conditions sisplify to

(038), = ~2/(2-1,) , (7.13a)
Wy e0., (7.13v)

For a constant-frequency wave,
(3 08) 0 =(n/ 3RV xdoli) 2 «tan o, (7.18)

where : {s the complex angle of the group-velocity vector, and we ses that the parallel-flow saddle-point
condition 1s equivalent to requiring the group-velocity angle to be real. Consequently, the odserved wave
pattern in a parsllel flow conaiats of vaves of constant complex spanwise wasvenumber ge aoving along
group-velocity trsjectories in the real £,f plane. This saddle-goint condition hasa been applied toa
growing boundary layer by Cebeci and Stewartaon (1980a,1380b) and by Neyfeh (1980s,1980d). Thia procedure
can yi. .. satisfactory resulte in s restrioted region of tbe £, plane, dut cannot be valid everywhere as
the correct asysptotic representation of Bq. (7.9) is in terms of Eq. (7.12) saddle points rather than £g.
(7.18) saddle pointa. The "rays® defined by Bq. (7.12) sre not physical raya ia the uaus) sense, Foras
cosplex [, that satisfies Eq. (7.12), R 1a complex at all !)l exoept at the final, or observation, point,
The tujootory that is traced out ia the £,8 plane by uu.rnu Bq. (7.12) at succesaive £32 for the
same (? ),. has a different (Pq) at each point. In a parallel flow, a single normal mode defines as
entire rny. here & airgle norsa. :o‘o defines only a single poinmt,

Vith ¢ expanded in s pover series in “Bo' and with only the first nonsero ters retained {(assusing
it Sa the second derivative), 3. (7.9) becomes

u s (1/727)expl (-2 M},)]fuvtuz(o’v a;’).,(l-l Wito)?ley; . (1.15)
Ve write -
C20r53), o bexpling) (1.168)
©
e ® Slulp(lﬂ.) . (7.160)

where 8 is the path leagth msasured fros the saddle point, and ug 18 its fnclination With the contour C
seleoted to pass through Eo from left to right st the ocoastant anlo g ® =ia/2, the final result i»

u(g,8) o [(1/27)(2-2,)D1" 2exp((8-2,) (], ) Joxp(1(n/0erg/2)] . (.41
leplacing 5. £, Sand 2oy D, B, 5 snd B, vhere the reference length ja L% or 2q. (2.57), we obtagsa
u(R,®) o (2/90) Y 2aap(arg o 1) (1.18)

wirere 2
D ze‘[ﬂozws')a 15 (1.19)
e® 2o, REJeRe B ) WA ex/N 82, {7.20e)

L
xy v 2f dimis e o ()0 (7.200)
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and "'d is the argument of the cosplex integral in Bq. (7.19). We continus to use £ for thas s-Reynolds
number,

3 ﬁ"F%

In these varisbles the saddle-point oconditions are

2f Gare) nen s -t (1.218)

®

R
f (3a/3R) RdR w O (7.21d)
R

With the parsllel-flov saddle-poin conditions of Eqs. (7.13), Bq. (7.18) 1a st11l velid, but D and 8,
have different meanings. With <5/38° constant,

D= (R2-R) (022 (1.22)

i

it v

and “, 18 the argument of -2‘?/'.*;!2 rather than of its integral,

For a given R snd £, a doubls iterstion prooedure 1s needad to find the plax go that setiasfine
Bq. (7.12). As each f{teration involves the recaloulation of siganvalues snd 3°4/3 _52 from l. to R, the
computational requirements srs large. If only R s given, then an itsrstion of al for a ssquance of ﬁ,.
will produce the wave pattern st that R with such less computation, but the speoific £ at whioch the
amplitude and phase are calculsted will not be kmown in advance, Or, both ﬁ, and g‘ can be specified, and
R advanced unti]l ths integrsl in Eq. (7.120) changes sign. This will not always happen, but when it does,
a ssddle point and ita locition in the R,& plane are obtairned without iterstion

e

Because of the itsration requirement, the ssddle~point method 1s lesss suitad then numariocsl
integration to the dotailad calculstion of the antire wave pattarn, dut it can sors readily produocs
results st just a few locations. Its grsatest sdventage, howsvar, is that along ths csnteriine (3 s 0)
the amplituds and phase can be obtained st a apecified R without iterstion, and s singls integration pase A
from R, to R produces resuits at all intersediate R st which eigenvalues are calculated. This is poasidle k
because the saddle point is st ! = O all slong ths centsrline, and only Bq. (7.19) has to be used, and not
£q9s. (7.12), Vs can alec note that there 1a no rasal saving by uaing the spproxisate Rq. (7.22) in plsce
b of 2q. (7.19), because “,7:1° has to be calcoulated in any cass, and only the nuaericsl integration of

this derivative {a sliminated.

7.4 Superposition of point sources

¥s can 19sgine sources of inatability waves to ocour not just #s sizgle point sources, bdut s
sultiple point aources snd as distriduted sources, For ssvarsl discrete sources, the formulss of the
preceding Secticn apply, and we just have to add the contridutions from the various sources. We ocan use
this same approach for distribuced souroes: The distriduted source ia represented by discrete, olosely
spaced, infinitesimal point souroces. In this Seotion, we apply this idea to line sources.

Ve replace the funotion ;'(:.) in Eq. (7.1) with a more genersl funotion

s, @ 8 & e, @ o0 9 "

g ax8) -amn_(-,.:,m.u-.) ' (7.23)
where u:, the source strength, has the sass dimensions as u:. and : {8 ths arc length slong the aouroce.
We sudstitute Eq. (7.23) into Bq. (7.1) without the tims factor, use ths definitions of Rq. (7.3}, end
arrive ot

Lu(R,8) o (1/2-)u.f.f.,ru-?)u;u-)as (7.2%)

o "7, ane .

(:8,8) -fm . UBY,) . (1.28)
x

{ finite-langth source which extends froa si ol (2,.8,), to 82 » (2,,8,), vill produce ot 2,0 the valocity

tor tge gontribution to u st 2,8 of sn infiniLsaisal line souroe at !‘,I,. In 3q. (7.23%), u = U:IU:. L e
u
I

[l

[P -
g u(,tj (u.'Z“J U.Q,‘.[((,S)up(h)d_ﬂ » (7.2%)
sl
whare the ' integretion proceeds along the line souroce.

As ths staplest possidle example, ve spply Ba,. (7.25) to a 2D inafinite-longth line source, 1.0, a
source ubloh extends from f-< to «= at a coastant R, VWith g(%) s 1, so that all oblique norsal modes
Bave the sase fnitial amplitude and phase, we obtain

wt) » 072 fu,, f emtscar (1.26)

The integral over 1, must ccaverge because the [ integral is just the poimt-source sol tiom Bq. (7.3). &
physical iaterpretstion of Bq. (7.26) 1s that 84. (7.3) can be regarded as either the distridution of u
with respest to L ot the olservetioa station £ €ue to o single source at £.,0, or 3 the variatiz. of u st
the sisgle odservation poiat £,0 as the poiat sowree st §, soves from §,-~to § <+, Comsequently, if
the point-source solutisn 15 weighted by u, sad integreted vith reepect to £, the resultant asplitude and
phase st 4o that produeed by az infiaite-length spaswise liae seures.

At G, the phase fumction 1 resuces to 1(B-1,) sat By. (1.26) beccmes

3
o o#
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", nn-{..clJ cos(“(8-8,)]6} . (1.21m)
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We recognize the ? integral as the Dirac S-function:
cos[f(8-2,))df = 27 £(2-8,) , (7.28)

Therefore, u(f_,f) = u_ as {t should, snd we see the reason for the factor 2r in the definition of the
function g in Eys. (7.’) snd (7.23). Thus when applied to an infinite-length line scource of constant
asplitude A, and of constant phaae, Bq. (7.25) must yield the amplitude ratio Ay of a 2D norsal aode,
Thia proporty pf the point-sourae molution ot{o{. & oconvenient check on numeriocal reaults. Furthermors,
1f ug = Agsin(f 9.) (standing wave) or A _exp(ii s,) (trayelling wave), Kq. (7.25) will give the amplitude
rstio of an oblfqua normal mode of spanwise wavenumber ﬁ,. Applications of Eq. (7.25) to finite-length 2D
snd oblique line sources have been given by Mack (1984a).

7.5 MNumerical and experimental results

The wave pattern behind a harmonic point source of frequenoy ¥ = 0.50 x 10" located at 1_ = A85 has
been worked out in detail by Mack and Kendall (1983). Ve shall quote a few resulta here, $I;urc T.2
gives the centerline amplitude distridution downstream of the source aa caloulated by numerioal
integration from Bq. (7.7) with Q(R) =z 1. The asplitude distribution of the 2D normal mode 1a shown for
comparison, where A, has been chosen Lo equal the amplitude at R = 630. The initial steep drop in the
amplitude is rever near the lower branch of the 2D neutral-stability curve, bdut this first ainimua is
folloved by a broad second sinimum before the suatajned amplitude grcvth ge'.s urder vay, The peak
asplitude ocoura at the upper-dranch location of R = 1050. However, the magnitude of the peak amplitude
is less than half of the normal-mode amplitude. The reduction in amplitude is due to the sidevays
spreading of the wave energy in the point-source probles.

The wave energy also spreads {n the y direction decause of the growth of the boundary layer. This
effect 1s not inoluded in the caloulation because of the use of parallel-flow eigenvalues, even though the
correct Reynolds-number dependent eigenvalue have been used. In the point-source vave-packet prodles,
Gaster (1975) fcund that the boundary-layer growth oould not be ignored, and he introduced a correotion
based on a simple crm argument, With the aasumption that the wave energy is proportional to the square
of the amplitude, A° would be oonstant in the absence of damping or upuﬂof} on or sideways spreading.
This a gument asuggests that the amplitude fros Eq. (7.7) de multiplied by I~ to correct for boundary-
layer growth, and the result is shown in PFig. 7.2. This correction i1s aizeable, and if correot cannot be
neglected.

A characteristic foature of experimental phase measuresenta on the ocenterliine is that if the phase is
extrapolated backvarda to zero the appsrent location of the source is downstream of the actual souroce
location. Pigure 7.3 demonstrates why this is so, The phase initially risea at a slower rate, and it is
osly after an adjustment in the region vhere amplification atarts that the phase then increases at the
faster rate of the measurssents,

The centerline amplitude distridution has also been calculated from Eq. (7.18) of the zxtended
saddle-point method. Starting st about R = 650, the saddle-point results are virtually identiocal with
those obtained froe numerical integration in bdboth smplitude and phase. Kven the parallel-‘low saddle-
point method giviv a good result to about the region of maximum amplitude, after vhich there is a slight
departure. Conseguently, Rq. (7.18) gives us & way to obtain the centerline amplitude acourately
everywhere excep. quite close to the source with only a little msore caloulation than is needed to obdtain
the norsal-sode lIAo.

The important question uwov 18 whether or not the asplitude distridution of Fig. 7.2 hes anything to
do with an experimentally determined amplitude. The answer is given in FPig. 7.4 (Maock and Kendall
(1983)). Por the same conditions as the caloulations, a bot-wire anemcometer was moved downstreas in a
Blasius boundary layer. At esch Reynolds number station, the maxisum fluctuation sampislude in the
boundary layer was detersined by a vertical traverse of the hot wire. The sourcé strength vas well within
the renge for which the response at the hot wire Caried linearly with the source asplitude. The amplitude
ia rig. 7.8 13 the actusl measured asplitude expreased ss a fraotion of the freestrean velocity., The
level of the calculated amplitude has been sdjusted acoordingly. The oaloulated amplitude increases sore
rapidly than ia the experiment, but the Gaster correcticn for boundary-layer growth makes the two
amplitude distridutions identiocal up to about N s 890, whers the measureaments depart sHruptly fros the
theory. This disagreement was traced to a favoradle pressure gradient oa the flat plate that started
precissly at the point of departure. The good agreement in this one exasple of the caloulation with the
GCaster growth correotion and the Jeasurement ip the tero preseure~gradient region, while hardly
conolusive, does suggest that when desling with wave motion over sany vavelengths, the growth at the
boundary layer osnmot be meglected.

The off-centerline wave pettern is of oconsiderabdle ocomplenity, a8 shown by Gilev et al (1981). The
peak amplitude ooccurs jaitially off oenterline, and it is ocaly vell dovastream of the souroce that it is
found on the ocenterlims, 4 typioal ocaloulated spenviss amplitude and phase distri: . fcu is showa in IMg
7.5. The ocomplex svolution of the phase that appears in Pig. 7.1 is reproduced quite olosely by Bg.
(7.7), but the cslcuiated off-centeriine ampiitudc iz less exact. Indoed, the naddle-poinmt method, evenr
18 1te sxtended form, falls to give off=centeriine saplitude peaks of sufficient magaitude, and only
sgrees wall with the suserical-istegration results after these peaks have disappearcd. The parallel-flow
saddle-point nethod fails badly in caloulatiag the off-conteriine wave pattera. The difficulty of
correstly computing the amplitude with tha presest methods 1s prodadly related to the complicated mature
of the eigeafuactions, whioh in much of the wave patters bear little resesblance to coaveaiiocsal asorsal-
scde eigeafunctions, Iz order for ampiitude saloulations te agree as wall with experimest as do the phase
caleulatisns, it will be neosssary %0 imelvde the aigenfusetions im the saleulatioms. However, svea vwith
thia iimitativa, the mumerical-integretioa sethed ¢oes remarisdly well im reprodusing the nesssured wave
pattern, and provides saother oxample of the wiility of limesar atability theory im dealing with poimte
souroe prollens.
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§ PART B. COMPRESSIBLE STABILITY THEORY

8. FPORNULATION OF COMPRESSIBLE STABILITY THEORY

8.1 Introduotory remarxs

The theory of the stability of a ocompressidle lamivar boundary layer differs sufficiently froa the
inooapresaible theory to warrsnt being treatad as a zeparate subject. The basio approach and many of the
1desa 2re the same, and for this reason the inaompressidle theory can be regarded as an indispenssble
prelude to the study of the compressible theory. For example, all of the material ia Sections 2.2, 2.3
and 2.6 spplies also to the compreasidle theory. The motivation for the study of the atability of
compressible boundars layers is the probles of tranaition to turbdulence, Jjust a&s it ila for the

L inocapressidle heory. Hovever, the relation of stadility to transition is even more of an open question
than at low speeds. EKxperiments have been performed that firmly establish the existence of {natadility
waves {0 supersonio and hyperscnic boundary layera [Laufer and Yrebalovioh (1960), Kendall (1967,1975)],
but there are none that really desonstrste when, and under vhich oiroumstances, transition is &-tually
caused by linear instability, A series of stability experimenta with “nmaturally® ocourring trensition in
wind tunnela has been oarried out dy Demetriades (197T) and Stetson et &l. (1983,198)), but many of their :
observations have yet to be reoconc‘led with theory. Mention must alzd be made of the remarkadle flight
experiment Uy Dougherty and Pisher (1980) that is probadly the beat evidence to date that transition in a
low-disturdsnce eanvironment st supersonic speeds is cauaed by laminar instabdility. FPor further

information on the intricscies of transition ct supersonio and hypersonioc snheeds, we reocoamend a study of
the report by Morkovin (1969).

The first stteapt to develop a compreasible stadility theory was made by Kuohemann (1938).
Viscoaity, the mean temperature gradient &nd the ourvaiurs of the velooity profile were all neglected. 3
The latter tvo sasaumptions later proved to have been too reatrioctive, The most important theoretiosl
investigation to date of the atability of the compreasidle boundary layer was oarried out by Lees and Lin
L (15%6). They developed an asyaptotic theory in close analogy to the incompresaidle asymptotic theory of

APy

Lin (1988), snd, in addition, gsve detalled conalderstion to s pureiy invisoid theory. The Rayleigh
theoreas vere sxtended to compressidle flow, and the eoergy sethod vas used as the basia for a disousaion
of wavea moving supersonically with respeot to the freeatrsas. The quaatity D(.DU), where D = d/dy. was
found to play tbe same role in the inviacid compressible theory as does DU in the incospressible theory.
As & consequence, the flst-plate oompressidle boundary layer ia unstabie to purely inoviaoid waves, gquite
unlike the incompressible Blasfuc doundary layer vhere the instabilicy 1s viscous in origin

The cloae sdherence of Lees snd Lin to the insomspressidle thecry, and the inadequacy of the
ssyaptotic theory except at very lov Maoh numbdera, meant that some major differencea between the
incompressible and compressible theoriea were not uncovered until extensive caloulations had been carried
out on the dasis of s direot sumerical solution of the differential equations., In the incompreasidle
theory, it is possible to make substantial progress by ignoring three-dimensicaal wavea, because a 2D vave
vill alvays have the largest smplitude ratio at sny Reyoolds nusber. This is po longer true above sbout a
Maoch number of 1.0, A second notsble difference is that in the incompressible theory there ia s unique E.
relstion betveen the vsvenumbder and phaae velooity, vhereaa in the compresaidle theory thero ia an y
infinite sequence of vavenuabera for each phaae velocity vhenever the mean flov relative to the phaae &
velooity ia supcrsonic [Maok (1963,1964,1965,1969), Gill (1965)]). These sdditional solutions are oalled 1
the bigher modes. They are of practiocal faportance for bouudary layers because {t {a the first of the
additional solutions, the second mode, that ia the sual unstable sccording to the iavisoid theory. Adove
about My = 3, 1t is also the most unstadle at almost all finite Reynolds numbers.

Subsequent to the work of Less and Lin, s report of Lees (1947} presented neutral-stability ourves
for jnsulated-wall flst plate boundaury layers up to M, = 1.3, and for ocooled~vall boundary layers at N, s
0.7. This report also inoluded the fasous prediction t cooling the wvall aota to stabilise 'he boundery
1syer. However, this precdiction must be conaidersbly modified because of t25 existence of the higher

A R

e
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nodes. These B0des require for their sxistence oaly a region of supersonis relstive flov, and thus cannot i
_ be elimirated by ccoling the vall. Indeed, they are adtually deslabiiisad by cooliog (Meck (1965,1969)). %
8.2 Linearised parallel-flow stadility equatioms %
¢ ? A ocomprebensive acooust of the coapresaidle ziability theory must start with the derivation of the %
5 goveraing equations from the Ravier-3tokes squations for & visoous, heat coaduoling, perfect gas, wvhick in ™
E dimensional fora are - - e z
p: "W [1%] 0y =
i -8 1 1 s
LR R R (8.1a) 3
b] § =
BT LN -0 3
AR ) C (8.15)
. -8 -
I TERY cOFm 0 o0 O 20 oC
V'.ag. + u} " ‘l.( J";} . U.U . (8.10)
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Again asterisks denote dimensionel quentities, overbsrs time-dependent quantities, and the summation
conventjon hee been adopted se in Section 2. Tre equations are, respsctively, of mosentus, oontqwny.
energy snd l}‘t.. The quantities whioh did not appear a.n the 1noonpruublo.oquuou are T, the
temperature; * , the coefficient of thermal oonduonvﬁn R, the gas oonstant; q,, the specific heat et
constant volume, whioh will be assumed constent; and . , the cosfficient of second visoosity (s 1.5 x bulk
visoosity coefficient).

The stsbility equations ars obtained from the Navier-Stokes equations by the same prooedure that was
used for fnoompressidble flow fn Seotion 2.1. First, ell quantities ere divided into mesn flow eand
fluotuation terms. With primes used to denote fluctuations of the transport coefficient,

u. - u. o u. . ,. . ’. o ,I .

.. . *etert, (8.3)
-® [ ] e -® [ ] " s ] [ ] e

w 8. ¢, s v B ’ A B ®, .

vhers the firet varisble on eech RHS is » steady mesn-flowv quantity, and the second ie sn unstesdy
fluctuation.

Next, the equetione sre lineariszed, the meen-flow terms ere sudtrected out, end, finally, the
parsiiel-flow assuaption is I'd.. The resulting equations are then made dimensionless with respect to the
local freestress velooity 0;, e reference length L, snd the rnut:ou.uluu ‘r all state Vlril‘l‘l
({ncluding the pressure)., DBoth viscosity coefficients ere referre. toi;, snd » ie referred to o i),
whei‘e o, ia the specifioc hest at constant preeeure. The trensport coefficients ere funotions only of
t.lml?\ll‘., 80 that their fluctuations oan de written

-t s (du/dT)", v a (4s/61)9, M e (8W/4T)0 . (8.4)

Therefore, ., snd . in the following equetione, along with ., are meen-flow quentities, not
fluotuations. The dimensionless, linearized x-mcmentum equation is

N, dv u L)
' (1‘_!- * b‘:; * de M “Z!z) - Kz Ax
™
2 2 " 2 .2
1,, ¢ 4 y ) f
&kﬁ‘.. -:‘;0,(-~~"2-'4--‘;v+—-v—¢‘¥)
' X ¥ ax u‘l“y i3 G} 4
:2\: .vzv :Zv d;. dT J
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3¢ )("2 ¢ wmay ' e * 4T dy ('dy * ):)
4 &t du &
e 4. G, ddldy, (8.50)
4T dy‘ dy 1y de dy dy
The y-sonentus egustion is
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T™he contisuity equation 1s
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Jr v dv | dw dp i ar (8.5¢)
at x tas ity g ti gty = 0.
The energy eguation is
(e dr o du v av
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gy Yty tar Ydy a7 ‘dy : oel
The equation of stats is
peEr/. & 8T, (8.51)

Previously undefined gquantitiss whioh appear in these equations arp ‘l ..tba local Naoh number at ths edgs
of the boundary laysr; 1, the ratio of specifio hsats; and e o i )( ¢ ths Prandtl nusber, which i{s s
function of tempersturs. BSquations (8.5) are the oonpuuibl’l oounterparts of ths incomprsssidle
stadbility equations (2.5), and are valid for a 3D disturbanoe in & 3D meen flow. It should dbe noted that
unliks most compressibls stability analyses, Kq. (8.5¢), the snsrgy equation, is valid for a variable
Prandt]l number. Ths constest Prandt]l number form is recovered by replacing * with L in the three terms
in which 1t oocurs.

Ths doundary conditions at y = 0 are
u(0) = 0, v(0) = 0, w(0) « 0, #(L; » 0, (8.6s)
The boundary conditions on *hs vslooity fluctustions are the usual no-slip oonditions, and the bdoundary
condition on ths tespsrature fluctuation {s suitabls for s gas flowing over & 30lid wall. Por almost «ny
frequency, it is not possible for the wall to do other than to remain st its mean tssperature. The only

exception 1s for a stationary, or nsar stationary, crossflow disturbance, when 9(0) = 0 1s replacsd dy
DH0) = 0. The boundary conditions at y * - are

u{y), v(y), wly), p(y), “(y) are dounded as y - - . (8.60)

This boundary oondition {3 less restrictive that requiring ail disturbanoces to be sero at i{nfinity, dut in

supersctic flow waves may propagats to ({nfinity and we wish tc {nolude those that do 80 with constant
aaplitude.

8.3 Normal-mode equations
Ve Dow specialize the disturdances %o normal modes as ia Seotion 2.3:
fu,vonepor, 017 o 1803),93),00y),8(3) ,M7) . 8(x) 1Tonpls fudse s~ £)] ,  (8.7)
vhere we bave adopted the Quasi-parallel form of the ocomplsr phase function, Ths norsal modes may grow

sither temporally or spatially or botk, depending on whether . or k, or both, are coaplex. The
discussion {n Section 2.3 applies to the coapreasidls theory juat as well as to the {nccapressidle thuory.

When £qs. (8.7) are substituted tnto 2qs. (8.%), and the sams licear combinations of the x and 3
sopentum equatioas forwed as in Seotion (2.3) for the veria’lss

e e B,

:; . j' - ;*ﬂ N (.'.)

ve obtain & systam of equations whioh are the cosprensibly counterparts of qs. (2.36). The momeatus
equation ia the direction parallel to the wavesumber veotor Kk 18
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The momentum equation in the direotion norsal to k 10

v (401 VetMa ) T o ( IDM=FDU)P] = ; (iR - (12412)7]

1 dy R . . . 2 .
o R Ldr 07 D9 o F (0BesD?0R o (G5 08 o Uk DT ) (iD6D0)] (8.90)
oy
The continuity equation ies
1 (1DecWa )P +p(D¥e13G) ¢ Dp ¢ 0 0 . (8.94)

The ensrgy equation s

L1 (\DekMen) o DT 0] & = (y = 1) (D¥+Lid)
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o 3 [(D0exDW) iDa + (DM-rDO) Du)) (8.9¢)
The oquuolaﬁ;f state 1s

Bat/ o T . (8.91)

To reiterate, in these equations the eigenfunctions of the fluctuations are funotions only of y and are
denoted by a oaret or a tilde; the mean-flov velocities U and ¥ are also functions of y, as are the other
sean-flov quantities: density, (s« 1/T), tesperature T, viscoeity coefficients .. and’ , thermal
oconduotivity oocefficient - , and Prandtl nusber. The specifio heats are constant. The reference velocity
for U and ¥ {a the same 88 for R and M, and the refersnce length for y is the same &8 in R

8.« First-order equations
8.1 Righth-order systes

Equations (8.9) are the basic equations of the compreseible stadility theory, but are not yet ina
fors suitable for numerical coaputation, For this purpose ve need a systes of first-order equatioas as in
Section 2.5.2 . Vith the dependent variablee defined by

Z‘llﬂor', z.‘,-u,. 131',
3o 8, e 0, A (8.10)

L’ln.-:‘ﬁ. 1‘1011,
Equations 2. 9) car be written as eight first-crder differential equatioms
By (y) = 'U") (0, (11,8, £0.11)
-1

and the faot that this reduction is possible provee that Eqe. (8.9) constitute ab eighth-order systen.
The lengthy equatiocns for the matriz elemente are 1listed {n Appemdix 1,

The bouadary conditioas are

,(0) » 0, x,(o) « 0, 24(0) » 0, L0 e 2, A
(8.12)
Ly I4(y) L(n ., 2,(y) bounded as y - .

8.4.2 3tixth-order syetea

Quations (8.11) ean Do selved by the ssne mumerical techaiquss as used for the fourth-order systea
of Lthe {ncoupreesidle theory. However, the faet that there are 16 real equations and four fadepeadent
solutiocns means that the computer Lime reguired te saloulate aa cigeavalwe e iroressed by several tises.
It 1o therefors 1aportaat Lo kaew 47 L 12 poaaible Lo Bake use of o systenm of lesser order, as ia the
1206apressidle theory whare the Jriginal sisth-order syotes could do redioed to fourth order for the
¢otoraimtiion of eigoavalves. Ue note that for a 2D wave 1a a 2D deusdery layer, the zystee already is of
oaly sizth erder, 85 there caa b 0o Welolity ceapossat, cither meas or fluctuating, 1a the 2 ¢irectioa
1s there an azaet reduation aveiisble frem oighth to aisth srder? The answar, uafertumately, as seatiocned
oy Duan and Lia (1939) and explicitly demenstrated by Reshotke (1962), is mo.

The theery of Duas and Lia (1993) achieved the redustion Lo aikth order by am oréder of sagaitude
srguaent valid fer lorge Reynsids sumbders. The setivatioa wes to put the equations 12 a fera where aa
tuproved 2D asyupietis theory eould o applied Ko oblique waves ia a 20 boundary layer. Nowever, asither
this thesry, aor ¢irest smderieal ssluticas of the Dwae-Lin sisth-erder aysten of eguatiocss,
give adoquate suserioal results adove & ilovw supereeaie Nash suabder.

i
:

Yo say cdeerve frea the cosffistoat satrix of By. (B.11) 1isted 1a Appondiz t that the ealy ters that
esuples the Firet aix eguations to the last twe is This eeofficicat e0ges frea the last ters of the
energy squation (8.9e), 18 one of four diosipation torns. IL 18 Lhe product of Lhe gradient of th
sean veloeity soraal Lo k and the gradieat of the Flustuation velesily in the same direetion, It wad
progossd by Nask (1969) o eimply set this tere equal 1o sere, 088 wie the resultast sizth-erder systen
for the calenlation of sigeavelues. The sunerical ovidenss, ot ¢iscwannd further ia Sestisa 104, 1s that
onoept ssar the oritiss)] Reymslds susber this apprenination gives applifisatien retes vwithis a fou peresat




5 of those obtained from the full eighth-order system, and is most eccurete et higher Mach numbers.
i3
% 8.6 Uniform mean flow

£

In the freestresmn U = U,, WaWy, Tal,unl,rs 1/04, 011 y derivetives of mean-flow quentities
are xero, and Eqs. (8.11) reduce to o system of equetions with constant coefficients. In spite of the
grester complexity of these equations compered to those for incompresaidble flow, ve are still eble to
arrive st analytical solutions. The lengthy derivation is given in Appendix 2 [Maock (1965e)). The exect
freestream solutions are the ones to use to caloulste the initial values for & numerical integretion of
Eqs. (8.11), but they do not lend themeelves to a reedy physiocel interpretetion. For this purpose, we
examine the 1imit of large Reynolds number. The characteristic values simplify to

4,2 = 3 Li2eZad(wgeni -2, (8.130) ;
‘3,0 0 [ARCgeng - V2, (8.13b) i
‘56" 3 (4010 eoMy =0 11/2 (8.130) %
'7,8° ‘34 (8.130) ;

We csn now identify our solutions es, in order, the invisoid solution, the first viscous velocity
solution, s viscous tempereture solution, which i{s new end does not appesr in the inoompressidle theory, ]
and the second viscous velocity solution, We shall only use the upper signs in wvhet follows, as these are i
the solutions wrich enter the eigenvalue prodles. :

The components of the chareoteristic veotor of the invisoid solution are
“(1) T ‘2.1.2)112 .

(8.14a)

I N T TR UV RO, (8.14D)

R T I R VR A (8.1%0)

| T R} R M L R (8.124)

The oormalization has been changed to ooriespond to the incompressidle solutions of E3. (2.50). It can be
ooted that these expressions are oorrect wvhen wve set H, = 0.

The components of the c(harsoteristic vector oorrcsponding to the first visoous velooity solution are

4,3 ., (8.158) :
MO PRV RS UL (8.15b) :
Vo, 430, (8.150)
| | This solution is identiocal to the ‘3 inoompressible solution only {a the limit of large Reynolda oumbers.
The ocomponents of the charaoteristioc veotor oorresponding to the viscous temperaturs solution are ‘
: 1,9 0, (8.16a)
: 4,9 o 0 ggeny- V2 mV2 (3.16b)
W9 w0, 3, (8.160) ;
The componants of the chareocteristic vector corrvsponding to the seocond visoous velooity solution are z
Mo, Mo, 4Mao, &Mso, (8.110) i
LT e, (8.170) %
T O L T R N L (8,170)

This solution 1s exact and is the same spezwise viaoous weve sclution as in {noompressidle flow.

¥e may odbserve that the visocus veloeitly scluticas heve oaly fluoctuations of veleooity, not of
pressure or tempereture. The velocity fluctwatioms ia the 3,8 plane are in the direction of K for the
firet solutioa, and are sorsal te k for the second solution which 18 pericdie caly ia tiee. The visoous
teaperature solution has ne velooity fluctuatiens in the _l,l.'lllt‘ or pressure fluctuations. VYe say
regard these Solutions es the responses to sources of w, v and v, sad to saphasize thia faet the
respective sclutions have deen normalined Lo make these quantities uajty, The second viscous veloeity
solutioa still has the iat.rpretation of a sorsal vortioity wave, as {a inecspreaaidble flow, but this uave

canpot eXist a5 » pure m0de 1a Lhe boundary layer (Squire mode) besause of the agy disaipstion term that
oouples the latter two of Bqe. {4.11) to the first sixz equaticaa.

9., COMPRRASINE INVINCID THEORY

9.1 Isviseid squations

1a ccapresaidle flow, oves flat-plate boundary layers have iaviscid iastability, and this ifmstability
1screases with {noreasing Nash sumbder. Therefore, the imviseid theory 13 sueh sore useful ia arriviag at
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an understanding of tiis inatadility of cospressible boundary layers than it is st low speeds, Indeed the
initial detailed numerioal working out of the viscous theory [Mack (1969)] was greatly facilitated by the
inaight offered by the inviscid theory. In the 1imit of infinite Reynolds number, Egs. (8.9) reduce to

ple(ubet¥eulat o (1DUeEDN)]  w - tlaer @ (BAM2) . (9.1a)
1XaGeB-u)® = ~DB/YIE (9.1v)

1(ats BM=wiw + (aDM-3DU)® » O , {9.10)

$OH0e M=) o (DOei) ¢ D ¢ 20, (9.14)
Fl1(100 M=) & DT 0] = =(r=1)(DPedi) (9.10)
pabooe T (9.10)

We noto that the v momentusm equation, Eq. (9.1c), and the energy equation, Eq. (9.1e), are decoupled froam
the other equations. Therefore we can eliminate iu and P from the latter to arrive at the following two
first-order equations for ¢ and §:

{30+~ )DY s (aDUesDM)¥ o 161 2682)(T - Hf(uﬂodu-w)/(uzoﬁz)}(ﬁlvlf) (9.2a)
DIB/TMYZ) o =1, (uDetW=u)? . (9.2v)

These equations are the 3D compresaible ocounterparts of Eqa. (3.12). The boundary conditions are
%0) a0 , $(y) is bounded as y * =, (9.3)
The inviscid equations can be written in a simplified form if we introduce the Mach number

Moo (10schel)ly /(12021 /20172 (9.4)
For a temporal neutral yave, M 1s real and is the local Mach mumber of the mean flow in the direotion of
the wavenumber veotor ¥ relative to the phase velooity - /k. 1In all other cases, M is complex, but even
30 we shall refer to it am the relative Mach numsber. In terms of M, Eqs. (9.2) simplify to

D(#/(: Verk=c) ] » 11-H0) (B/THE) (9.58)

DB o -1 2( )8/ (e W) (9.50)
We observe that theae equations are identioal to two-dimenajonal equations (2s 0) when written in the
tilde variables of Eq. (2.317). Therefore, invisoid instadility is governed by the mean flov 1in the
direotion of k, just as for incompressible flowv. Rither Eqs. (9.5) or (9.2) can be uaed for aumerical

integration, but the latter have the advantage that ¢ 1s & botter dehaved funotion near the critical point
than 18 /( Usr¥=l),

fquation (9.5a) is the familiar linearized pressure-area relation of one-dimenaional Zlov. The
quantity #/(:Uer ¥We.} 15 the amplitude fubction of ths atreamtube srea ohange. The other flow varisdles
can be written i{n a similar manrer as

we (oo ¥ (nuu 3 opf v )) (9.6a)
IL—4 1 Y ' \aU-
. 1fo7 E"— - (=1t -—\p( = 31 , (9.60)
-
v
Pl 7 - %—-cm g (9.60;
S
weiw Stoo, (9. 60

where ve have used the tilde veriadlen for ajsplicity, UWhen the second terss of these sQuations are
written with § in place of #/(iB-.), they can be readily reeoguized 3s the linesarised momsat'm equetioca,
the 1seatropic teapereture-pressure relatica, and the fsentropio deusity-pressure relstion, reapsotively.
The first tersa are ia the nature of scurce tarsa, 8ad arise fros the combdimation of & vertical
fluctuation valoeitly and o nead shear. DBecauses Bq. (9.64) 10 s equation for the vertisal vortisity
compoaest 1w, oaly the source ters is presest.

A saaipulation of Bys. (9.1) lesds to & eingle seccad-order squation for §;
DU (30= ) 00~1509)/ (1)) = (220, I)(30-0)0 0 O , (9.7)

™his squatioa, whieh in 20 fors wvas used by Laes and Lia (1984), 18 the 1D ccapressille coumterpart of the
Pagleigh equation. A second-order equation for ¥/(ilew) follows direstly free M. (981

DAL/ (aD=)] o BLAIR/(1-08) JIB(O/ (aBea) ) = 320 1)(0/(a8)) 0 0 . (9.9)
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The correspon.ing equation for P i»
%P - Dl1n(H2) 1D = (1%¢2)(1-HP)P » O . (9.9)
9.2 Uniform mean flow

In the freeatream, Eq. (9.9) reduces to
02 - (e B)(1-HR)p = 0 . (9.10)
The sclution which satisfies the boundary condition at infinity is
p/mf . 1[(uu«‘\l-»)/(uaodz)”%clp(-(nz‘:?)‘/2(1-51;")”21] . (9.11)

which agrees with Eq. (8.1%¢). Equations (9.11) and (8.1Ad) provide the initial values Tor the numericel
integration.

The freeptreas sclutions say de olnungg into three groupe: subeonic vaves with w2 ¢ 1; sonic
vaves with Mf = 1; and saupersonic waves with My > 1. Neutrel supereonic waves are Nach veves of the
relative flov, and can exist as either outgoing or inorming waves. True instability wevee, which must
satisfy the boundary condition at y = 0 as well as infinity, are elmost all subsonic, but eigenmodes which
are auperscnic waves of the outgoing family in the freeetream have been found for highly cocled boundary
layera [Mack (1969)]. A combination of incoming and outgoing wavea parmits the boundary condition at y =
0 to be satisfied for any comdination of :, - end ~, as pointed out by Lees and Lin (1346), It ie when
only one family of waves 13 present thret we have an eigenvalue problea. The combination of both families
18 the basis of the forcing theory presented in Section 11,

9.3 Some smathesatical results

The detajled atudy of the two-dimeneionel inviacid theory carriad out by Lees end Lin (1946)
eatablished a numbdber of izportant resulte for temporal waves. Lees end Lin classified all instability
vaves as aubsonic, sonic, or supersonic, depending on whether the relative {rssairsas Mach nusber ﬁ, is
lsss than, egual to, or greater than one. Their ochief results are:

(4} The mecessary and sufficient condition for the exiatence of e pgutral subsonic wave is that there ie
scle point Y, > ir the boundary layer where

b-ov) = 0, (9.12)

and y, 1s the point at whioh U s 1 - 1/N,. The phese velooity of the nevtrel wave is o , the mean
velooity at y,. This necessary oondition ie the gensralizetion of Rayleigh'e condition for incoapressidle
ficw that there muat de a point of infleotion in the velocity profile for e neutrel weve to exist. 7The
point y,, wbich plays the ease role in the compressible theory as the inflestion poiat ia the
incoepressible theory, i» called tbe generalized inflection point. The proof of sufficiency given by Lees
and Lin requires M to be everywhers subsonic,

{11) A aufficient condition for the exiatence of ez yoatabla wvave e the pres¢nce of s gesnereliszed
inflection point at some y > Yo+ where y, ia the point at which U ¢ ' - 1/M,. The proof of chis oondition
also reguires M to be subeonic,

(1i1) There 13 a neutral scnic wave with the eigeovalues 1 s 0, o s 9y s 1 = /N,

{1v) 1t %% ¢ 1 everywners 1in the boundary layer, there is s unique wevenuaber i, correeponding to o, for
the neutral su.sonic wave,

Less end Lin odtained these resulte by o direct exteasion of the methode of procfl used for
{nconpreesible flov. The necessery ocondition for e zeutral sudasonio weve was derived fros the
disooatimuity of the Reyaclds tress : » - Cuv> ot the critical point Yo 40 1n focompressidle flow, :
1a constant for & neutrel inviscid vive eRospt possibly et the critical poiat. For -y . 0,

C(7g00) =i(y,~0) v (*/1)[DL-DUI/DO) <¥E> . 19.13)

Baustion {(3.13) 1s the same as Bq. (3.9) ia the imocapressible theory ezcept that D{ DU) sppears ia place
of DU, Simoe * fe Berc at the wall snd in the frecstream by the Douadary conditions for s eubsoale
vave, it fellove that D(, vu) lrt bgaur‘ht Yoo Vo 2ay olso aste that {or & neutral supersonio vave,
whore ¢ < ¢, a8d ! (g ¢0) o (/2)(NF-1) fros the fresatreas soluvions, the diecomiizulty st the
eritical poiat avat equal this value ! and ibe phass valocity asust be other thes U,

4% thia point we cen exemine the aumerical cossaquences o' the finding that nsutral and unatadle
veves depend o the exiotesve of a gomeralised iaflestion poist. Yor the Blasius bousdary layer, U e
negative everywhere sxcept ot y s 0. Nowvever, for a soapressidle doundary layer os an {niulated flat
plate, D( DU) ia alvays serc somevhere (3 the Dousdary layer. Comswqueatly, &)l such bouddary layers ais
usateble to iaviseid weves., Pigure 9.1 shdve that Sy tho 802z veloeity at the generalised 1aflection
puint aad thus the phase veloeity of the aswtral subsemie wave, imerease) wild inarsasing freesiraan Mash
ssmber N, 1ia sscordenee with the owtward soveaest of ihe gomsralised iafiestica peiat. If we reesll fres
Jecvtion § that ioviscld Lastadility Lloeredses for the adverss pressure-gradiest Falkmer-Skan prefiles a8
the iaflectica peist soves svay fres the wall, we ean expest 1a this i1astasce Lhat iavissld Lnetability
vill isereass vith Laeressing Nach auaber. Figure 9.1 alse insludes both Sqs the rhase veleeity of a
ssuirel suaie vave, and the phase veleaity fer whieh N s -1 at the wall, In the ezaet suserieal seluticas
of the mmp-lqor oquations vhish were uned for Fig. 9.7, the wall ¢ tasulated and the frecstireaa
teaperaters T; 15 sharssteristic of wisd-tunasl ecaditisns. The stagnetiss tempersturs is bheld constamt
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nt.°311°l until, with increasing M,, 1‘; drops to 50°K. For higher Mach nuabers, ‘l‘; is held conatsnt at
507K,

For a wave to be subsonic relative to the freeatreas, and hence have vanishing amplitude at y - even
when neutral, ¢ must be greater than Oge It £a often asid that only aubeonic waves are oconsidered in
atability theory, Dut this atatement ia not entirely correot. It 1s true that the neutral aubaonioc wave
vith eigenvalues 1,,0, can Only exist when 0y > 1 = 1/Ky However, thia does not rule out ssplified and
damped vaves with o < 1 = 1/M,, Or even neutral supersonic wavea with a ¢ different from 0, Examples cf
auch wavea have been found, all of which satisfy the boundary conditions et infinity and ao are aolutions
of the eigenvalus prodblea. For «, # 0, the amplitudes of outgoing asplified and inooming damped waves
vanish at infinity regardleses of téo value of of for peuiral waves, the amplitude will oanly be bounded at
infinity when o < c,. What does turn out to be true ia that the most unstable wavea are always subsonic.
Furtheraore, for one class of weves, the amplified first-mode waves, the phase velocily is alwaya between
o, and c,.  This result has importent consequences.

9.8 Nethods of solution

The methods for obtaining solutions of the inviacid equations for boundary-layer profiles have been
patterned -ncs oorreaponding methods in inocompressible flow, Leea and Lin (1936) developed pover-series
solutions in .“, and also used the gensralizations of Tollmien'a incompressible solutions

$(r) = (r-y )0 (5y,) (9.1%)
0,(0) o 2y(r-y5) + (F2/00%) (DG DO)) 0, (P)10ly-y ), ¥ > ¥g. (9.14n)

For y <y, In(y-y.) » lo y-y,,~1° as for 1aconpreasible flow. The leading teras of Py snd P, are DU,
and T,/DU, rnmcunly. 20 ihn. 0‘ and 02 are normalized here in a different sanner than in Section 1.1,
These solutions have been worked out in more detall by Reabotko (1960). Both ¢ and @ hcve the same
analytioal behavior as in incompressible flow. VWhat i3 new here ia the tempersture fluotuation, which,
according to Reshotko, has the bebavior

E 2 9/7(y-yy) o (1/00) (D(-D0) ] 2n(p-F,) ® ... (9.19)

Hence, even for a neutral subsooic wave, where [D(. DU)), » O and ¢ and O are both regular, S haa a
singularity at

Two methods have been devised for the numerical integration of the inviaoid stability equations. The
first method {Less and Besbotxo (1962)) transforms the aecond-order limear equation into a first-order
nonlinsar equation of the Ricoati type. This equation is sclved by rumserical integration except for the
regior around the critical poirt, where the power aseriea in y-y, are uaed. The second method {Mack
(1965%s) ia a gensralizatica to compressibic flew of Zsat's {1958) methosd. This method has already been
deacribed 1a Section 3.2. For neutral and damped solutions, tha contour of {ptegratior is indented under
the singuiarity, Jjust as <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>