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THE POSITIONING PROBL4 -

A DRAFT OF AN INTERMEDIATE SUMMARY

. .. . / eohia Yeminit

USC/Iaf0orZtion SoiOCIes titute

"" AN JINFORMAL INTRODUCTIOi ~However, while the formulation of the problems is
simple, the matheaticaZ and algorithmic

lbs postiouing problem arises whe t is necesary inmriaacie5 of deriving solutions are perplexing.

t*o locate a set of gaoraphioally-distributedobjects using Measurements of the distanGeS between To develop some insignt into the problems, let us

some object pairs. In a Paicket Radio Network, for consider a few simple exaMles. The Simplest
instance, any two network members that an talk to positioning problem of interest is to lo1ate three
aon other may use a simple time-stamping melanism points using distance Mea3Ur*Mnt3. BY means of
to measure the distance between them; a distance simple trigonometry, thi may usually be done
measurement protocol may then be developed. The easily. However, let us consider a degenerate
problem is wether and how the distance sei le Fre 1). Beoause he system s ve y
measurents can be used to determine the sensitive to errors, a small error in the
5eograpnical location with respect to a given measurement may produce a large error in the
system of aoordi=1te. computed position. Some of the questions to be

addressed are as follows: Why is the degenerate
A knouledge of the preise location of each network triangle sonitive to errors? Hov can we determine
node is crucial to the opermtlon of Distributed whether or not oth er ystes are sensitive?
Sensors ,etwork s. The data collected and
interpreted by different senore may be correlated
and Integrated only if we know their prteise .
location. A polition-ooati4n system may be -
invaluable to the operation of a fleet or Vehicles,
each equipped with a Packet Radio Unit. For ?igure 1. A Degenerate TriAngular System
example oitoring the location of a fleet of
security veniolee, aircraft, a tank division, or a Positioning systems say be constructed by a simple
i, toc of =sissles could all be assited by a procedure of pasting triangles together, and such

postlon-ooating sYYste. Clearly a postionn systems may be positioned !y solving the trisngles
system would !e an important service to Paoket froM Which they are constcOted. For nstan3e.
a4diO Network useM. consider the system of points depicted in Figure 2.

It is pouslble to Loaste the point in the orer
A ft1 prvulea wust be solved before a good numbered. HocWver, the Sase systM admits a few
psitoninit system my bea devolowed solutions (the nusne of uhich Vrows eiponeotialy

with the '-mber Of nodes). If we had some further
1. iff ?Cent ealgorithu to deter-loe the Information about the positions of the objects, nov

1* Lation of objects by using distance could we use it to Identify the true solution? For
s'surement. 3nould Do developed. Instance, It one code 13 known to ae a vinicle

.oving on a certain -Oad. tany of the fdasiblio. conditicns under uhicti a solution exists or soLutions that satisfy the Istanoe constraints c!an
.oes iat exist should be Identified. be eliminated, because they assig the vei.ale to a

; po2tion not on the road. How should t t
. Caonditions under which there exists a eliinaton be erracted?

unique solut ion stouIld be eatabliSbed.

4. Conditions under unioh rvI exists a
fiit number 3fsolutions snu e
identified. It should also to understood7
how to tranform nen solution Into another.

5. Conditicns under which the solution is
mnlenutI ye to Mall VeAW2UreQ t etfore

Shudbe establiafhed.

6. lgt bounds Upon t.he &ccuracy Of the
so1ltion shoulid be detersined.

7. !I-conditioned protltaas ihult t7g- . AfinultdPstoigase
icentifled. T". a njulaaed Posit'oninn iyatem
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In particular, if a new measurement were given contains a subsystem that may be solved
(Figure 3), now can we find the right solution independently. Namely, any incremental

Samong all possible ones? (A few solutions May match Construction algorithm must decide whether or not a
the measurements to within a given error.) We have givn positioning system is primitive (i.e.,
shown that this '.ast dec1sion problem belongs to constructible but having no constructible

the class of difficult combinatorial decision subsystems). The last proolem seems to be a
problems--the so-called NP complete problems. The difficult combinatorial problem which we suspect to
last statement also proves that the existence be NP complete (though we do not yet onow how to
proolem (i.e., Does a solution exist?) is NP prove this).
complete. If the last conjecture is true, then the problem of

constructing solutions to the positioning problem,

a new Meae men-t using an incremental algorithm, is NP complete.
This unfortunate result does not imply that "brute

' force (i.e., iterzi ye algorithms) should be
preferred. It is reaonable to believe tnat most

""/ actual positioning problems my be bett er solved oy
means of an intelligent incremental algorithm. The

/ $precise meaning of "most" is Yet to be defined.

Numerous other challenging and interesting related
3 problems exist. While we will not maice a

.. 'J comprehensive presentation, we will *xamine soMe of
the problems formally, oxpose the difficulties, and
present some partial solutions we have developed.

2 This report is an extended stumary of our present
state of knowledge. A more detailed report is now

being Prepared.
F, ure 3. 1 Triangulated Positioning SysteM with

an additionaL . eurement 1. THE PRORLE

The positioning problem oan be descrilbd 1s

Not all Positioning 31.'ems ay be solved with the follows&
-id of triangles. In fact, for a system possessing
a sufficiently 'a.&e number of nodes, it is always 1. P Z% (P 1 , Pat . a set or points In

possible that the position of the nodes can be p
located only by solving for the location of all
points slmUtaUeusl3Y. Such ufortunate systems

require an enorwus aount of computation. For a 2. A Set Q! distUame eaurMents etveen some

simple example, consider the hexagon af Fipre 4. Pairs of points. Foh nesaur nt datum

:t 1s impossible to solve the Location of Its nodes consists of the Identity of the pair ? and

ising an Incremental algorith; a11 =sJt be wolvd ?V the amasur-d uistanos and in

at Once. 1
estiL e of the easurI0eet error 4

3. Position .oor~djutas for at 1@0st three
ioints. say P1 0 Pat P34 to be oalle the

We snall cell the set of points P, together Vita
the distance Zeasursdents IA.) an the '3330
truIangl, a ki&.4L. _

Fiture 4. A Kositioning Systea whdtl may only
06 solved 3iultanously A L Z i the pOint system 1s a set ,f

coordinates that Sa&tisfe$ the distance ClnstrMI.ts
end t31gn to tte aseo triangle its actul

ForTUnXtely *ngh, such prLmitive systeS (tlose leordirates. The set of all feasible posit!Cns

parts cannot be positoned unless the whole system will be called the A = , of the positioninq

is) See to e rere. Niny positioning systCes problee. The psitIonin 6  Prole :ons2st3 2f

aoul te solved using an Incre.ental p1ocess ZwnUcti ctsaraoterzling the Solution set namely,
simplifies the soLutton aliorith-1 and increases its
speed an accursoy). :cveuver, in algorithm that 1. *3 the solution set eopty? e
iould zonstruct the isat ion of a given point

-yste= by -onstru ctinq 3ubsystess first sbouli be 2. )0os the solutIon set atntain x conSlnu

thle C.o entitry COnstructiaif UaM3. :n of Solutions3. or Is3~ a ilso-ete set' :a
partic ular. oucn an algorlth should oe able to it a finite set? ' -
_eole %ether or not a given posLtionlng sysMe
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3. If the solution set is finite, what are all for several centuriesol the solution to most
the feasible tolutions? (n fundamental questions of rigidity are far from
nnq i knowu. Recently interest in this age-old problem

has been renewed (WHITELY 77,,8], and some
4. What is the error in the position due to signifioant contributions produced.

propagation o mea.suremet errors? (1 C t ig
anali) 211Caatrzto frgdt

5. What is the sensitivity Of the solution set The first problem, i.e., that of characterizing
to measurement errors? (, rigidity, has a few solutions, all of which employ

l ocal infinitesimal ohracterizations. Loosely
-.'.. . pevlking, a structure 13 rigid if it does aot admit

, ." n what Follows we ezamine ~s p a s to relative motions of its parts, that is, if the oalysa wat the difflcult problieM posed above, motions which it admits are trivial (1.0.,.so mranslations and rotations). Therefore the study
Note that in the squel we restrict ourselves to of rigidity is a study of possible motions. A
the problem of oositiaoing points relative to each rigid structure corresponds to a positioning
other, i.e., with respect to any coordinate system problem with a discrete solution sat. An

. of our 3noice. This leaves us three degrees Of infinitesimally rigid structure corresponds to an
freedom (two for translation and one for rotation) error-inseasitive solution.
and the orientation for our choice of the
coordinate system. With the aid of the third item There are two aPproaohes to motions of structures:
on the input list (section 1.1) it is Possible to It is possible to consider the velocity vectors of

*'" .position the point system absolutely once it has the nodes or the relative angular motion of edges
been positioned relative to an araltrary coordinate attached to a common node. Accordingly, it is
system. possible to develop two notions of infinitesimal

rigidity. Another possible approach is to consider
• "2 . aSOME4RIC RESULTS the stresses in ths structure resulting from

applying external forces. Rigidity may be defined
We associate with the point system a graph whose as the ability of the structure to resolve roroes.

vertices represent points And whose edie. represent It is possible to show that both the aoove
distance ceasurements. We call this g rSph the ?PProanahs are equivalent GLUC 75, UaITELX 77,

z•a= £j flS and say that a given property ofTS)

a point system is -mhinAtLrjn when it can be =U4 1
epressed in terms of the measuments graph only. 0j ku i
A - - is a raph together with a spping of I. Charaoterl:ation of rigid structure3 Uich
edges Into positive real numbers which u call
1lW . A positioning system y be considered as n Ifinitso~ualy rigid.

,. a p i n -j o i n t d b a r s t r t u r e . I . e . , a t r u s s. A i f n t s m l y r g d t u c r e - I

Prooelos of uniqueness of (I.e., structure of the An intiluteitly ric id trutue s le
solution set) for the positioning problem translate ri d, ou not vce ver. It is posietn
into pbls rigidity o rr trtr to e rid (.e, adt
Problems of a 3olution's sensitivity to errors f r w at its pars yet
translate Ito e4hdt Infinittet=a parurataiona (I.e.,.translate so ptootu ot" Infinitesl4 typiall *XAMPL
of tno respective truss (i.e., admissibility Of of an error-rigid rigid struture i3 te
I infinitesimal f'lexr1n of the truss). Problems of
:cntruatn.g a solution to the positioning problem d..e te triail, ic Viur ,

- ~ correspond to oonstruction of the truss. Therefore 'Me diffioulty In solving tMis preblem "s
we 3n use methods adtt e not psses extethatve po-l3 tr
to both 3tr,3otwres anxi trusseshasd ntpsss xaniet

global aaysis, whaile loCl analysis 11

2.1 R~3:DI~Vael developed.

The resuite in this are a fll into tttee classe, a. ChA*'aoterizAtoi of rigidity with reSpet
so discOntinou m.otion3 S Uch as

'-, I. A number at i1ffe*rnt ,haraOteritations of refl*0t1ons.

ai nfiitimal rigidity error sensitvity)te pair of ao trials In
An -t~ to deteri e wet'er or rot e Figure 5(a) below. Ti*e tw triangles tay.A .. ln al |ortIn o btm unsthrn ot a te Po1sitcned with respect to esao atner in
livon solut'on of the positionIng pobleei" s sensitlve to dasuremnt errrs, two ds1tin.t ays. The two resultin1t scrture3 are rigid 14o -lot ad4it .on

". ;Lan*trIvial notions' but admit relative
3. A ininatoriei anfar-ctrl atin f plane;arts. ter strctu

r.gidity in terms of a property of the ref,

underl ying Z04sUreMent3 g raph-
'A partial List of researchers Intereate-3 in t. e

*| W h' the r jr 3 of sLir".tural rigidity has proMblemn ldes Pascal, 5uler, Caucny, ,4axeA.
attracted athm aticiaA3. etreemrs, aod aronitects .yley. ilexadrov, end others.
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admit a core complex form of discrete The characterization of error sensitivity

movement of their Interma parts., e.g., in terms 'of infinitesiml rigidity is too

Th rbe f hrceiig iiiywt of JU Z= error sensitivity a given
The ~o~m o cnaaotrl-n8 rg~d y ithstructure possesses.

----- ",respect to disorete motions is diff'icult ,
.- for we not only have to address a problem 2.Dvlpsnivtymaueinerso

__ ' of global analysis, but also face dirfrcuit the distane measurements data, not the
.. pr.obems of oi noriLa topology. pai cuar solution tey yield.

---- In addition to the difficulty involved in

sensitivity. Apriort It is even possible
' for a given system of meaur ement data to

-.- possess same rigid and some nonrigid
, i solut.ions. Figure 6 depicts two solutions

-- '""' i I of the Sam.e positioning problem, one rigid

".'

-- d th ote iniieial lxbe

. Figure 5(a)

.12amtoa secltoivfisreeteyhrcerztono rrrsnstvt

mh eeat of tins of infiitesimal rigidity is too n poWrat4 L*t.

preroufoi fgidritt oforiho to emosenn stitr or vit detglv.

lOhte creris kitfhnstrotrel oY rssse.
-- '. r wnt of o e igorss a e leer 2..l, eiM Gensurs in tem3s= jof'

* '~~~,pofcglbal analysio , ut aiis fnace e wif~uth tedsac esreet aa o h

:muoietstonfi ofnolroi. 4 tig, ptcalor o ui2.1 thIey yed

novel llittt to tootl whether- aive r4 *3ble40 !ution of the positionill Probtl m 3Tih aiti tt ot the diffiu ltty olvedi ty
s" ininltolimily rtll, I.e.. Inswasltiv to arrom. spsd to to Wapror rlltiv on eaureztls f

.- rligir sml, ttir, n. t Wolio bohid IMO1 pagA#4h* Idea behind the rlijdlty tstlig e~o!tbA is frAQ tilatlfc to difficltoral are founed 4n sme
s/ lizplo: trT to 11va for in adis~ible aslilcmimt eaIuemt dt mey the ajo idea f
of' InfiniteJxAM Vsolouts that rlazen te autim 13 tit sm ch tpallons os tsa v (*dao) an

s_ i tructure. it is necessary to "Ins fteir thm bttqe* (nodes) are rigid Pk-r a- oat tny tic e of
effects of a veloolty asigent3 Over & $44 Of Plat set iy for Ist iev fsrlen
basic t~l circuits of the underlying1 Ussullt $ ll tet 64s13 r11d for fll plat Ildl; t
In ardor to ? s the problem to til 2014W.3 of t is A t Ifpnotsess sIly rigid ban soe nrei gntid

Lier yte f qatos olutio"s. Fipir * Sde uct w u os V

I. 9oiollsh meeuieo of irror rnbtvity l em, it lie to prebIM3 .e rliity for--is i

__ ii i  al orlt =, to r. ie S enst v ty . Se l se -- an y latult vye e ;* tt tl~nS tur ft t.
adtoerprisniely, to i ezbs.

'. II
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underlying graph is a full graph are rigid for
almost any planno imbedding. On the other hand, The theorem above is a significant tool for
some graphs will produce fleible structures for handling positioning problems, namely, it makes it
ajsost any plane imbedding (e.g., a circuit on rour possible to infer properties of structure and
nodes is almost always flexible, except when one of derive answers to the problems of positioning by
the edges is assigned a zero length or when all 5IgML. = nasuremant or-Aph g=. The results
four points are colinear). The problem is: JA 11 that we derive will be true for almost all
pU J la Z& = A AL gk whose assignments of distances to edges of the

ombasdis J Ar= ltrueta2 This question measurement graph, which greatly simplifies the
has been the major problem of the theory of study of the positioning problem.
rigidity. To further appreciate the power of the result let
We shall define a critical combinatorial property us note in passing that the theorem does not
of graphs which we call (plane)Stiffnss. First generalize eve to three dimensional structures.
we asa+ciate with a graph Z3 t (V,E) a nuler That is, it is possible to have a sufficient number
( aVI-161-3, measuring the overall excess of well distributed constraints and yet ha s a

of unknowns over constrints. (Each vertex structure with a continuum of solutions no ?atter
contributes two unknown coordinates, and each edge what lengths are assigned to the edges. Figure T
constrains the two vertices incident unto it below depicts a typical system. The combinatorial
through a single equation for the distance. Nots characterization of rigid structures in spaces of
that we discount three degrees of freedom to dimensions greater than two 1 an Open Problem.
account for possible external, motion, i.e.,
translation and rotation.) The quantity f(G)
measures the overall fr21gos 2L ±nL&CMLL Am nt
of the graph.

The quantity r(l) May be used to expresa the
, , ;operty of stiffness, i.e., of having a uffioimt

. nber of constraints to prevent relative motions
of different parts of a graph. Loosely speaJing, a
Sr.Ap t is Stiff if it is poss40le to reMove soa

edOUdAU edges So that the remaining graph has 0
daqLr"s of internal freedom. and non of its
s30riphb US an excess of contMinta (i.e.. a
itatlve Internal freedom). Formally, a graph

SLUL ir it ha sp aning subgab
Ve(V'> i~e.GI is generated by removing

"a esivs constr e oa from a) such that

~. W~O (.e., GI tLU 0 digreae of inttro&

PFIure 7. A counter extple to a 3-,,mea.ioaal
, ie 01 is Say sub ' p of n' then rigidity taer-ms

MO) k 0. (i.e.. V' does not po1ses

* L~iern~ly o ce~tre~ied sop'aha).2.3 LmNITlZOI OFf rM RIGIDITYrIMhOAM~

2.2.2 Th e isidity tout"re The rigidity theorem gustaetee that a strutur
-aSed on a Stiff iraph Vill aleost alIAYS 'e rigtii.

T,he wit imorunt ft'sol Of the geomtrc theory UHVver, it i3 POsible to Usign Iength to *d;%5
of Posittnvi i Of a Stiff grtapn suCU that t18 resulting s't1uctur9

adItsU iofiteit2iai .'lexig14 at ds, therefore

bt iome an eru;. tncreasi+-4 mechanism, One such
1] A dMA & du structure 13 the 1etenerate triangle of Figure 1.

ACP-4. tr m laIty- another Is Pascal's hetagon depicted in Fiure .

A" . This hexa on is stiff and thus r'gid for 2lmst all
plane Inbs-idirS. However, the hexagon is
infinitesLbally rlexible whenever ,and only if) it.s

(Her Ae "AZht *2L14 is u3ed kn the topological aodes lie on a conic section. 7h1i b1arre result,
enge. iJ.., the, ut of r1iid plane ifteddinga of a due to (Cr FTCn 18131, t . been 1'dI3oovert1

"ifr ;jtph is opi Ad 0.ense in the srace ' lndaoandent~y 0V zany researehars C ZIcludit:i
., io'1 lurtner -%plies that for any ourselves). "he preo follows frm a sl=ple

Borst prosaUlity 2suurv an the space of all aplicat1on of a celebrated theOrem of asal.
isoeddinss, oontinuns wtth respect to Lebsegue
Usesure, the set of non rgid isoaeddings of a stiff An even worzse zse Is that of a 3tiff frCPh
iricih IS Of ".PsUr# ?."A admitting a continuc . .:otion :I.e.. in I~mbedaing

of the 3tir graph that "1 oat even L3tal.w
3CLUW 71. i, = ?J~c 5, WHTLI 75. ROTH-4SS~fOU 181 rigld). Such a structure s Iepitted tn Figure J.

"5,
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ovrosr14d, te sltin st o he apo4 o h osrcto rbe.

ma4tv oiinigpolmtusisacttnu

or-ouin.3. UTRA4N WSLFG&

'o 44uvsc n U ~sv tred wt h usinta e ol ~et dr o ti

1,4igi stutr ie, amcaim) hn 40.nI' L U " MAir eU It

metiuloslyaddd brs Mt id mt tnstsiotne erie noess" nd qfftian coditons t~o
Wto rus rgnlAtms.s~ita y g stfns otr fml atu rp rpris

stndwt or4,4m n iz sloe ,pit Tsza au*, 2 i-3ca gon ;ofto

are uxibd nly to hol "on ofure 8.1ha foa ' ;r xalisof tffgip

bar toehr

I. CONSIMTORflIur OF A C1.sib2 . A stru t-otur a t tifiapsdas4i

HAin o~rOseen~d the tfcrs ind li*tai of ttl & p rst* tIto the s~ltr tiff pjrsp3.

3tifes wovil ousud tiforam Inore 4. i C 3tBhCEi.D O '3 & sf irsptIadS 7
to pdVLa etods fo r#09nii. stiffnesse Andt a T e rt~ qi luhthat uSOPuIuli It~ ItO sdrCs n nt3

* ~ ~ o uo;i strctures int stf subpats. .tarn M0&O i5 ,1 anJdA It thel1 sL 14 UIn t5
CGCetio i '.boss batrt teher. (ild i~ 13 otari th1 drv eosav eds1t*' odiiun



spanned by V1 is stiff, then so are the Thr exs granmn whs oe
subgraphs spanned by V' u Vi. :knbitrarily lai d e = n ti

5.If v is a vertex of degree two in a graph prv tiseulusdcieaapeseodo
en is stiff itt the sUb! ph 0? G construct counter examples. Start with a flexible

formed by removing v is ItifT too. graph, say a four-bar mechanism. Add nodes and
edges to increase the degrees, preserving the

The above results are a amle from a larger class flexibility. This process is demontrated in
of results, Ill of which serve to establish tools rijgUe 12.
-Or a "divide and conquarO approach to the
stiffness problem. For instance, we would like to The above process serves to Show that:
determine whether a given graph can be torn into
stiff subparts wtiioh say later be used to 2. T e 2 = A a

.4. synthesize the original graph. Figure 10 4epicts a - are ti
4 typical configuration, corresponding to result (3)

in the above list. Figure 11 depicts another Thus, two of the classical seasures of ,onnectivity
possible configuration which admit tearing. this are not related to stiffness. Let us now consider
time a particular instance of (4). the strongest Meesure of ionnectivity,

vertex-conneotivity.
3.1.2 Stiffness and connectivity

We have seen in the previous section that a stiff
*.LooselY 3peaxing, stiffness is a property of graphs graph is at least 2-connected. it is easy to

wnicn has to do with the density of edges, i.e., it construct 2 and 3-connected graphs wnich are not
is a Measure of how well ditfereit nodes are stiff. But vith Ik-conneoted graphs, It > U, the

" attached to each other. It is only natural to problem is no longer simple. indeed any
expect that such a property should bear relation 1o 4-connected graph Must have a miniMaI degree which

lassial Masures of ed0e-density. is at least 4. Thus the total nuaber of %dgea n is
at least twice the ,aumber of nodes. Therefore the

:I here are three maJor classical Measures Of overall number of internal degjres of freedom
td%0-density: nods degrees., 2inial d.ge cut-set, f(O)32n-e-.3 is not greater than -3. Not only is a
Min i al vertex out-set. Here me explore the 4-Connected grA over-conatrained, but the
relations aon these tre Properties
stiffness.

Figure 10. fwin velta4 s ut-t-

: i urq ,1. Tearl,q aling a stICfP vertex aut-**t

.4.

:e4

.4,s

-' " '~ * "• "" ••" •'•A. .
_,.,... ..--/- - .. ,..,...... .... .. ie c.u. .. t-., .. ...s.,e.t . .. .



connectivity implibs that the edges must be well 3. CONSTRUCUION PROBLe14S
distributed. Intuitively one would expect that a
4-connected graph is stiff. A postion-locating algorlthm is essentially a

\ otprocess that starts with some set of points '4ose
-ot 3o. It is possible to construt 4-connected relative positions are known and gradually attachesand even 5-connected graphs which are fleXible, MeW Sets Of points Whose relative positions areTwo such examples are depicted in Figures 13 and computed with respect to the original nucleus.

4.. Such a rocess may be viewed as a (possibly
parallel) solidification of Parts Of the

the process we applied to derive these two SeaSUrement graph into bodies.
surprising graphs cannot be applied to produce 6-
(or mort) connected graphs which are flexible. We To be able to describe incremental construction

."'* do not know at all nether s3uh graphs even e t. processes we need to introduce a suitablt
The problem is open: formalis. In the follcwing we Shall describe such

a formalism, then apply it to develop and 1mplemnt
3. Ua threa nmber~ jj jU k-onoe contrUctio0 algorithm.-

2ranhJA siff?3-. Stiff hypergraphs
At this point, however, t"e problem is mainly of an a
a cademic hintrs, condectiviny c reqres A O H = <V,.7> consists Of a set ofacdmcItrsfra"odto tihrqie vertices V an a set of edges E. An OdgO is Isuch edig cogtvty seems to a Of no
practical significance. subset of vertices (not necessarily just two, &s in

graphs). We shall use this genralized notion of
.o summarize, we have seen that the relation i edge to describe a set of vertices whse

*-.. cetween stiffness and xessures of connectivity (if relative positions are known. An edge is said to
there is any) are not simple, contrary to the be inijenn upon a given vertex if it contains the
%priori intuition wtkch leads us to elplore the4e verteX. A vertex is said to be Incident upon a
relations.

%': ?11jur* 12. Construtir~ng flexible Irsolul Vit

.*

iw't2 Ct tucin fexb e ;rap A withe fi~lure &3 acnncedfexbe r

arbitrary node degrees 004CofatilV-p

* Flure 5-onnetedflexible grapa

'*,i

I .. . . . . . . . . . . . .



given edge if it is contained in this edge. We of hypergraphs in the previous stages. In short,
shall consider only hypergrapts for which the an incremental oonstruittion algorithm is a proOess
interseotion of any two ed;'es contains at most one that traes a chain in the partial order of
point. welding.

To develop a visual intuition of the prooes.-ea to We define a w to be an operator that takes a
" e discussed, one should ,-asider hypergraphs as a hypergraph and Produces a welding of it. An
g generalization of structures. Rather than in remental construction algorithm is thus a
considering pin-jointed bars, we consider process of successive applications of wlders.
pin-jointed meta s3heets of an aroitrary shape and
number of pins (each metal sheet corresponding to We have developed software to represent and
an edge of the hypergraph and each vertex a struotures and hyperr s. No types
correspondiog to a joint). To draw further on the of welders have been imlemented and same simple
analogy, we shall use t ter = as an construition algorithm tried. We posmas the
alternative to an edge; the ter n will e tools which are necessary to develop
employed a3 an alternative to qrt . position-locatig algorithms of increasing

sophistioation.

Lot dI denote the degree of the i-th vertex (i.e.,

the number of edges incident upon it). Lt d

4enotoe the degree of the i-th edge (i.e., the REP CE5
numoer of vertices incident upon it). The III
of te hypergrapn H is defined to be the number

1(" .ro) d, . w.qa(n) Is the total num- 1. siaow, U,. and 3. Roth. 1971. *The
,. rigidity of graphs.* 1. El. Preprinat,

fe v .Univesity of Wyoain, Laramie.!)or of edges (Yeertio3).

Z. Bolker, 9. and HI. Crapo. 19T8. *Row to
---- brahe nuoer t(U) Zn -d() i called e brace a one story building." EniJxrn-An

±akza, £qp gQ ii It 1s easy to verify that guAflm Au]l.gS
'Or a graph H the definition of rOA) above 9

degenerate to tthe n'umber of IntermaI dagrue of 3. Crofton, N. 1878. "o 3elf-strtied
troodomu defi.ned in previou3 sectios. frameworks of six joints.0 R i=C#tZA at 2MULUM CIUL U=1 LU t. 1 3-16.
The notion of sntlfness 3an be Snertli:ed to
hyper~rApnS Sa follows. A hypeigra4p H is said to a. 0luck, H. 1915. "Almost all SirW.y
3e stiff 1ff it cantains a 3a0nning hyporArso U" connected cloned surfacea are rti i.* In
sUon that Sprit%*r-VerIa4 Not&$. 436, otrio

1. f~ , 0 Topololy, Hiietberg, 225-239.

2. for any aubhypesitrea i ol t' (Mi) 1 0 S. Laimn, 0. 1970. 0On graos and rtlidity of
01an# skeletal structuIre.* &LM 2L

Lot As5 IntrOduce a partial order over %1pargrafi, £LU1i ALUW"U XUA '~ A ()m. 3 o.
util' we call X*&g. A ":yperst'eph ,' Is said to

~e uiin~ ofa ~perapL ~fC4O lg of~ ~ 6. Rodenrt, [. 19TS. *Structw'l rigidity in
the Piane.' Pvreprtt 00t-510, Voivetsity doa -Lilon of edr&e, In 9 wbich san a atiff

Iis Possible to sr~w tuat stiffness 7.prsdo bilteley, W. 1976. 'niieiay rigid
4nder ueolng. Heorover, seb .%YprV%;k'1 PondenSed poLy*dra.0 Privrint, Chaplain Regs.al

, a iue vH) % -eldltg w ich is itaxuvel (cnnot to welded Coi le, St. .sert u ebee.
any sore).- if AMN designates the nsen weldit4 8 ineo. .tT w 113 Itouto
or vis nyperrun 1. thAn f(HUI)) defines t hieey .e7 ad '73 ltouto

gtto structural ometry.* 1, 1. 114. 11,
~ ~u~ti~aof . I ca heshon tat reorint. aroups so Researche. Topologis

rwq 3uuneh *uaity iff H 1 stiff, In V"101h Strucura.e. Uversity 44 4antreal,

An Incremental tonstruction aorlt*= s a Prcsss
that Starts with a given positioning4 problem and
develops a solutiOn bY jg2duAI1y increasing '-Ie
sets of points eoao -elative itcat on3 are "noun.
At each stage, the state of 'he comutation ay to
described as a hyperijrtph un ose edges :ofl51t or
losts of points Urove relative positions are already
knownm. Such A !bYPerrap 13 nSce3sarIly I weldIng
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