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ERRORS IN LIGHTNING DIRECTION FINDING BY AIRBORNE CROSSED LOOPS 
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ABSTRACT 

Analytical and computer approaches are presented for predicting the site 
errors of airborne crossed loops used for lightning direction-finding.    This 
type of azimuth error is caused by distortion of the incident field due to 
induced skin currents.    Computer code results are presented for a T-39 and a 
C-130 aircraft used in flight-testing a commercial cussed-loop system.    Another 
type of bearing error, caused by non-vertical lightning channels,  is analyzed 
for the case where both detector and lightning source are above a conducting 
ground plane.    Also discussed is the 180-degree ambiguity and its resolution 
by an electric field antenna. rs 
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AIRBORNE CROSSED LOOPS may be used to sense the 
azimuth of lightning discharges as an on-board 
aid in the avoidance of thunderstorm regions. 
However, the loops can be susceptible to serious 
site errors in lightning direction-finding, 
depending on the geometry of the aircraft and 
the loop location on it (1, 2, 3)*. These site 
errors are caused by scattering (re-radiation 
due to induced eddy currents) of the incident 
magnetic wave field by nearby conducting sur- 
faces (the skin of the aircraft).  These eddy 
currents produce a secondary magnetic field that 
results in a total magnetic vector of generally 
different (distorted) orientation from the inci- 
dent orientation. The crossed-loop detector is 
"misdirected" when it senses the distorted 
orientation and indicates an erroneous bearing. 
(The term "misdirection" was used earlier in 
this sense, and may have been coined by A. Som- 
merfeld (13).) Another consequence of the site 
error is that it disturbs also lightning ranging 
systems that use relations between magnetic 
amplitude and distance, since the amplitude as 
well as the direction is distorted by the scat- 
tering effect. 

Two approaches, analytical and numerical, 
are presented for analyzing and predicting the 
site errors of airborne crossed loops.  In both 
approaches we assume that the aircraft is small 
compared with the radiation wavelength (magneto- 
static limit), and solve Laplace's equation to 
obtain the scattered magnetic field vector, for 
arbitrary azimuth angles of incidence of the 
wave from the lightning radiation source.  The 
site error arises from the fact that the indi- 
vidual orthogonal magnetic field components are 
changed by different factors. The error anal- 
yses presented here and in Refs. (1) and (2) do 
not appear to have been published previously. 

In the analytic approach, fuselages, wings 
and tails are modeled by ellipsoids. An impor- 
tant analytical result is that large errors in 
lightning direction-finding can occur (e.g., of 
the order of 20°) even in the case where the 
instrument is symmetrically located, e.g., cen- 
tered on a long fuselage. The error can be 
still larger if the instrument is mounted near 
the nose or tail, or near edges.  (See Ref. 3.) 

In the numerical approach, the aircraft 
geometry is modeled realistically, and numeri- 
cal solutions are obtained using a 3-D computer 
code. Computational results are presented for 
two actual aircraft, a T-39 Sabreliner and a 
C-130 Hercules. These aircraft have been used 
in flight tests to evaluate a commercially- 
available crossed-loop system for severe 
weather avoidance (4, 5, 5). The predicted 
errors (of the order of 10° for the T-39 and 
20° for the C-130) are consistent with flight- 
test results for the particular mounting loca- 
tions chosen. The calculations indicate that 
other locations would reduce the error. 

By a combination of theory and experiment, 
one may determine correction factors for site 

Numbers in parentheses designate references at 
the end of paper. 

errors affecting crossed loops, for any given 
airplane geometry. The results of this deter- 
mination would suggest optimum locations for 
the placement of the loops on the aircraft. 
The correction factors need be determined only 
once. If this is done, the site errors can be 
completely eliminated by suitable adjustment of 
the electronic amplification. 

Also discussed are azimuth errors due to 
non-vertically-polarized lightning channels, 
and the 180-degree ambiguity inherent in 
crossed loops. A non-vertical (or "slant") 
lightring channel will cause a crossed loop to 
determine an erroneous direction, if the loop 
and lightning channel are at different alti- 
tudes.  The effects of loop altitude above a 
conducting ground plane (as opposed to light- 
ning altitude) on azimuth (or bearing) errors 
do not appear to have been considered in the 
literature. An analytical formula Is derived, 
generalizing results obtained for zero loop 
altitude (9, 10) to the case of finite altitude. 

The use of an electric antenna in conjunc- 
tion with the loop to resolve the 180-degree 
ambiguity by correlating the phases of the elec- 
tric and magnetic vectors is an important prob- 
lem, and is considered in the Appendix.  It is 
clear that low signal-to-noise ratios or unin- 
tentional phase shifts in the electronic ampli- 
fiers can produce 180-degree errors. 

ANALYTICAL APPROACH 

Evaluation of the scattering of incident 
electromagnetic waves is generally a difficult 
problem, even for perfectly conducting bodies 
of simple shape, e.g., spheres (7). If we 
assume that the radiation wavelength is larger 
than the dimension of the airplane, the problem 
is simplified because Maxwell's equations are 
replaced by the Laplace equation of magneto- 
statics. This approximation is valid for fre- 
quencies below the first aircraft resonance, 
i.e., for frequencies below about one MHz (8). 
In the magnetostatlc limit, the boundary condi- 
tion at the aircraft surface is that the mag- 
netic field be tangent to the surface (zero 
normal gradient, a Neumann boundary condition). 
That is, the magnetic field is excluded from 
the interior of the aircraft by the induced 
skin currents. This boundary condition is jus- 
tifiable based on the fact that the skin depth 
(given by 66/VT in mm for copper, where v is 
the frequency in Hz (7)) is only 0.3 mm at the 
frequency 50 kHz of Interest here, and is there- 
fore less than typical aircraft skin thicknesses 
(at least one mm). 

In magnetostatics the magnetic field vec- 
tor at any point may be expressed as the 
gradient of a scalar potential function $, 
where $ satisfies the Laplace equation in the 
region exterior to the airplane, has a vanish- 
ing normal derivative on the airplane surface, 
and asymptotically approaches a linear form 
(constant gradient) at infinity. 

For analytical purposes (as opposed to the 
numerical approach discussed later for realistic 
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geometries) it is convenient to model the air- 
craft by i single geometric form.  Since the 
Laplace equation is separable in ellipsoidal 
coordinates, a versatile 3-D form that can be 
defined by one coordinate of a 3-parameter 
ellipsoidal coordinate system is the tri-axial 
ellipsoid. Here solutions are expressed in 
elliptic integrals, that need special tables or 
computer programs for numerical evaluation. 
However, if we specialize the ellipsoid to a bi- 
axial (rotatlonally symmetric) prolate spheroid 
or to an elliptical cylinder, simpler solutions 
expressed in terms of trigonometric functions 
(arc tangent) are obtained.  In many cases these 
simplified mathematical models are sufficient to 
study conditions on the edges of the wings and 
on the tail (using the elliptic cylinder) and 
conditions on the fuselage (using the prolate 
spheroid). When we specialize to a circular 
cylinder the difference in the induced surface 
fields due to the separate orthogonal components 
of an incident field vector (the cause of the 
site error) is still significant, as will be 
shown. However, if we specialize further to a 
sphere this difference vanishes because of the 
extreme symmetry of the sphere (see e.g. Table 
1). Therefore, the sphere has no site error and 
cannot be used to model the misdirection effect 
of an airplane body. 

Consider an ellipsoid representing an air- 
plane or a part thereof. Figure 1 shows the 
ellipsoid projected onto the x-y plane of a 
cartesian coordinate system.  It is aligned with 
the 3 axes, and has semi-axis lengths a, b, and 
c along the x, y and z axes, respectively.  (The 
z axis is not shown.) Ue assume that the top of 
the airplane body points in the +z direction, 
and that the incident magnetic field is parallel 
to the x-y plane. The incident wave propagates 
with angle of attack 6Q with respect to the 
y-axis as shown, and with the magnetic field 
lines perpendicular to this direction. One can 
consider the magnetic field distortions at sev- 
eral points, such as A, B, C, and D in the fig- 
ure. These can represent for example positions 
along the centerline on top of a fuselage or 
vertical stabilizer and rudder ("tail fin"), or 
along a wing or horizontal stabilizer and ele- 
vator. 

Later we will consider the axially symmet- 
ric case in which the y-axis is the axis of 
rotational symmetry. Thus we consider the 
solution to be a superposition of the two pri- 
mary solutions: One is the "transverse" case 
where 8o"0°, the incident field being in the x- 
direction, perpendicular to the axis of sym- 
metry. The other is the "axial" case where 
6o-90°, in which the incident field Is in the 
y-directlon, parallel to the axis of symmetry. 

Before considering the spheroid, let us 
first consider the limit in which b becomes 
infinite. The ellipsoid then elongates into a 
long cylinder or wire parallel to the y-axis 
and of constant elliptic cross-section, as 
shown in Fig. 2. 

CIRCULAR CYLINDER (c=a) 

Here we treat the circular cylinder, where 
c*a and b=<">, first in the axial case where 
8o-90°. In this case the field is parallel to 
the cylinder axis, and the solution becomes 
trivial. The field is excluded from the interior 
by a solenoidal sheet current in the surface, in 
the azimuthal direction about the axis. This 
current produces an internal field that cancels 
out the incident field, but the current produces 
no external field. Hence there is no distortion 
in the axial case, 9Q-90°. 

Next we treat the circular cylinder in the 
transverse case, where 9o=0°. Figure 3a shows 
the field ("flow") lines in this case. The 
solution of Laplace's equation that satisfies 
the boundary conditions at infinity and on the 
surface is the potential function 

B -(r + a /r)-cos* o (1) 

where r denotes the cylindrical radial coordi- 
nate, a denotes the cylinder radius, B0 denotes 
the magnetic field magnitude at infinity (large 
r), and if is the azimuthal angle about the cyl- 
inder axis (M> along the direction of ff0). It 
may be readily verified that the potential 
defined by Eq. (1) satisfies Laplace's equation 
in cylindrical coordinates: 

, 2+r 9r+ 2,2  U 

3r r 3I(I 

One boundary condition is that as r becomes 
large, <t> approaches 

(2> 

A **** -B r cosii» • -B x 
o     T    o 

(3) 

fepresenting the potential of the constant field 
0 along the x-direction. On the surface the 

other boundary condition is that the normal com- 
ponent of the gradient vanishes, that is, 

|* - +B (1 - V> *>** it o 2 (4) 

(1) vanishes for all <i/  when r-a. Thus Eq. 
satisfies both boundary conditions. 

The radial and azimuthal field components, 
Br and B.^, are given by the components of the 
gradient, 

ST 
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7^--Bo<1 + 7>-8in* 
whose planes are parallel to the z-axls and the 

(6)    direction of attack (i.e., shewed with respect 
to the cylinder axis, as shown in Fig. 2). 

The distorted field of interest is obtained by 
considering the x-component Bx at r=a, namely, 

(B )    - B    costfi -B , sin it x r ii a y 

- B   + B (2sin2*- l)(a2/r2) o       o 

B    + (2sin t - 1)B 
0 o (7) 

where the first term on the right-hand side of 
Eq. (7) represents the undisturbed field, and 
the second term represents the distortion 
caused by the cylinder. 

Thus, the perturbation field (addition to 
the incident field) goes from -BQ on the "side" 
looking into the magnc-ic field, to +B0 on the 
"top" of the cylindei (where the dot in Fig. 3 
represents the probable position of the crossed 
loop), as t|i increases from 0 to ir/2. Assuming 
the crossed loop to be normally positioned (at 
the dot position) on "top", it senses a total 
field value 2B0, that is, the incident value 
enhanced by a factor 2. 

Now we are in a position to calculate the 
misdirection at angle of attack 8 . On top of 
the cylinder Bx is enhanced by a factor 2, 
while By remains unaffected. Hence we have 

B        B     , 
f - tue - 5§L- . _ taneo 
x ox 

(8) 

as the definition of the apparent angle of inci- 
dence, 8, and therefore 

ELLIPTIC CYLINDER 

In the more general elliptic cylinder case 
(cj'a), the two principal fields are agaia in the 
x-directlon (8o«0°, transverse), and the y- 
direction (8o-90°, axial). Again as in the cir- 
cular cylinder, the axial field gives risa to no 
perturbation.  In the transverse eise, however, 
the field lines arc perturbed as shown in Fig. 3, 
whore in Figs. 3b and 3c the lines are topologi- 
cally similar to the circular case, Fig. 3a. 
Figure 3b (c<&) can represent a flat wing, with 
the crossed loop (large dot in the middle) sens- 
ing relatively little field distortion. Figure 
3c (oa) can represent a tail fin, where the 
crossed loop (large dot oa the edge) senses & 
large distortion. 

It can be shown that for all cases in Fig. 
3 the misdirection is given by 

MD = e - 8 " arc tan (R tane ) - 3   (10) o o    o 

where the "ratio-factor" R is defined by 

a 
a+c (11) 

Thus, R reduces to 1/2 when c-a as in Fig. 3a, 
and Eq. (10) reduces to Eq. (9) for the circular 
cylinder. At the middle of a flat wing (Fig. 3b) 
where c«a, R reduces to approximately unity so 
that the distortion is minimal. On the edge of 
a tail fin (Fig. 3c) where c»a, R becomes small 
and e becomes zero (due to the dominance of Bx 
which becomes large), independent of eo- Thus 
the distortion is equal to -eo and becomes large 
at angles near 90° (except at 90°). 

HD 5 8 8 - arc tan(=- tan8 ) - 8 
o        *    o    o (9) 

is the amount of misdirection or bearing error 
at angle of attack 8Q. 

From Eq. (9) we deduce that the bearing 
error is zero (i.e., 8»80) when 8o»0 and when 
8o-90°. The maximum error is -19.5° (or +19.5°) 
occurring when 8Q is 54.7° (or Its supplement 
125.3°). This follows from the vanishing of the 
derivative of MD with respect to 80. The varia- 
tion of bearing error with angle 6Q given by 
Eq. (9) Is shown in the "needle limit" column of 
Table 1. These results are consistent with ADF 
loop antenna calibrations shown in Ref. (3). 

At arbitrary angle of attack 80, the axial 
field component gives rise to skin currents 
flowing arlmuthally around the cylinder, while 
the transverse field component gives rise to 
longitudinal currents, in the +y directions on 
the two x-sides of the cylinder. Thus the 
resultant skin current flow-lines are ellipses 

PROLATE SPHEROID 

A prolate spheroid is a reasonable model 
for a fuselage of finite length.  In this case 
(referring to Fig. 1, where y is now the axis of 
rotation), the radii are related by a-c, as in 
the circular cylinder, but b is now finite. 
Hence the results depend on the aspect ratio 
t-a/b, which is less than unity for a prolate 
apherold (and greater than unity for an oblate 
spheroid). The incident direction angle 80*0° 
if the direction of incidence is parallel to the 
long axis, and 8-90° if the direction of inci- 
dence is perpendicular to the long axis. 

It can be shown that the ratio-factor R in 
Eqs. (10) and (11) is now replaced by GR (see 
Eq. (IS) below), where G is defined by 

22*1  2?   ? 2 ** 
C(y.t) - (b -y ) /(bZ-yZ + tV)     (12) 

where t-a/b, and y is the y-dlstance of the 
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surface point from the mid-point; and R may be 
defined by 

R(t) - 0.5 (1 - 2t + N)/(l - N) 

with N defined by 

(13) 

2s     \i-sy 

and s - (1-t ) 
given by 

2^ 

(14) 

Thus the misdirection angle is 

MD = 8 - 9 » arc tan (GR tane ) 
o o e_ (15) 

where G and R are given by Eqs. (12) and (13). 
Note that G denotes the cosine of the tilt angle 
g of the tangent-plane with respect to the hori- 
zontal plane. Note also that G-l for y»0 (the 
crossed loop is centered on the fuselage). 

As the aspect ratio varies from the "needle" 
limit t-*0 (an infinitely-long circular cylinder) 
to the opposite limit t+1 (sphere), the factor R 
varies from 0.5 to 1.0. Assuming the crossed 
loop to be centered on the fuselage (G-l), the 
misdirection angle MD»A6 is tabulated as a func- 
tion of 60 in Table 1, for values of t-0, 0.1, 
0.2, 0.5 and 1.0.  (The corresponding values of 
R are 0.5, 0.5207, 0.5591, 0.7100 and 1.0.) 
Note that KD-0 if 6o"0° or 90° in all cases, and 
has a maximum magnitude for 80 somewhere between 
0° and 90°. 

As the aspect ratio t increaaes the largest 
MD magnitude decreases from its value of 19.5° 
for an infinitely-long circular cylinder. Thus, 
if the crossed loop is centered on an F-106 
Delta Dart, which may be approximately modeled 
by a prolate spheroid with aspect ratio t-0.1, 
the largest MD magnitude is predicted to be 
18.4° by Table 1, and occurs at 60-55°. If the 
aircraft is a C-130, characterlzable by t 
between 0.1 and 0.2 (but assuming t-0.2) the 
largest MD is 16.4°, occurring at 6-55°. As t 
increases further (as the fuselage becomes 
thicker compared with its length), the maximum 
MD decreases toward zero, while the correspond- 
ing 60 moves slowly toward 45 . In all cases 
the errors increase if the loop position is 
moved off center toward the nose or tail. 
Reference (2) presents further tabulations of 
Eq. (15) for off-center positions, such as A, 
B, C, and D in Fig. 1. 

REALISTIC NUMERICAL MODELS 

For detailed realistic geometries, computer 
methods must be employed. Our 3-D computer 
model numerically solves the Laplace equation, 
in integral form, by a method of moments, sub- 
ject to the boundary conditions of uniform field 

at infinity, and zero normal gradient at the 
aircraft surface. The aircraft surface is 
approximated by a large number of small quadri- 
lateral "panels" or "patches", as illustrated in 
Figs. 4 and 5.  (Our code was adapted from a 
fluid-flow code due to J. L. Hess.) It should 
be noted thai: the problems treated here are 
equivalent to the problems of erior compensation 
encountered in the calibration of low-frequency 
ADF antennas for aircraft (3). 

In the light of data obtained in 1977 and 
1981 by the Air Force in flight tests of a 
Stormscope crossed loop (4, 5, 6), we applied 
our computer code to obtain a preliminary 
assessment of the possible influence of site 
errors. The 1977 tests (4, 5) involved a T-39 
Sabreliner, with the instrument installed near 
the leading edge of (and on the underside of) 
the right wingtip. The model portrayed in Fig. 4 
shows the wing modeled reasonably realistically, 
while the fuselage, whose detailed structure 
should be unimportant in this case, is modeled 
crudely. The 1981 tests (6) involved a C-130 
Hercules, with the instrument located under the 
fuselage near the tail and close to the cargo 
door. The detailed structure was modeled numer- 
ically as illustrated in Fig. 5. In this case 
we require realistic modeling of the fuselage 
and tail structure. 

We consider first the T-39 results, and then 
those for the C-130. 

T-39 MODEL - The panels in Figs. 4a and 4b 
are labelled by letters A-H, denoting various 
sections, with A and B on the fuselage, and C-G 
on the wing and H on the wingtip. Each section 
has 12 panels, with Nos. 1-6 on the upper sur- 
face and Nos. 7-12 denoting image positions on 
the under surface (with 7 under 6, 8 under 5, 
..., and 12 under 1). The Stormscope instrument 
position is on Panel G-ll, as indicated. 

Some selected preliminary results are as 
follows, indicating panel location, maximum mis- 
direction, and angle of incidence at which this 
occurs. For each section we give the optimum 
location. 

+11° at 135° (bottom of fuselage 
at midwing) 

(no good location, vertical plane) 
+16° at 30° (top of wing, behind 

leading edge) 
+18° at 5° (bottom of wing, behind 

leading edge) 
+8° at 15° (top of wing, adjacent 

to leading edge) 

A-9: 

B: 
C-3: 

C-10: 

D-2: 

D-ll: +12° at 5° (bottom of wing, 

E-ll: +5* 
adjacent to leading edge) 

at 15° (bottom of wing, 
adjacent tc leading edge) 

E-2-  +10° at 160° (top of wing. 

F-5: 

F-10: 

adjacent to leading edge) 
+3° at 110° (top of wing, ahead 

of trailing edge) 
+3° at 25° (bottom of wing, behind 

leading edge) 
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G-10: +4° at 80° (adjacent to wingtip, 

G-3: 

6-11: 

6-2: 

H: 

bottom, behind leading edge) 
+6° at 115° (adjacent to wingtip, 

top, behind leading edge) 
-7° at 170° (Stormscope location, 

bottom, leading corner of 
wingtip) 

+10° at 95° (mirror of Stormscope 
location, top surface) 

(no good location, vertical plane) 
The foregoing represent optimum locations 

(where the misdirections are minimal). The mis- 
directions are larger at other locations. 

The following conclusions may be drawn. 
The optimum fuselage location is underneath, at 
midwing position. The optimum locations on the 
wing (and in fact on the whole airplane) are 
near the wingtip and away from the fuselage, 
either on top and ahead of the trailing edge, or 
underneath and behind the leading edge. The 
actual Stormscope location used was a reasonable 
choice (in the absence of data on site errors) 
but could have been improved. The reported 
bearing discrepancies (5) are consistent with 
the computed maximum misdirection near the wing- 
tip, of the order of 10°. 

It should be mentioned that these figures 
apply to an incident field lying entirely in the 
horizontal plane. The presence of a vertical 
field component would be associated with a 
slanted lightning channel.  In this way the 
error due to slant would be coupled with site 
error. It if straightforward to include the 
vertical component in the calculations, i.e. to 
study the site errors associated with slanted 
channels. 

C-130 MODEL - The geometry of the C-130 was 
simulated as illustrated in Fig. 5. The loca- 
tion of the Stormscope, just aft of the cargo 
door, is indicated in Fig. 5 by a darkened 
panel. Some detailed small structures such as 
engine pods have been omitted in this prelimin- 
ary work on the assumption that such small 
structures are sufficiently remote from the par- 
ticular location of interest that their contri- 
butions should be negligible. 

At the Stormscope location the maximum 
bearing error or misdirection (MD) is predicted 
to be approximately 20 . This error is experi- 
enced for incident lightning wave direction 55° 
(left or right) from the forward direction. 
Although the instrument was located on a flat- 
tened area, which would be expected analytically 
(ellipsoid model) to result in a smaller MD, the 
nearby tail structure has a strong influence on 
the MD. With the tail structure omitted, the 
calculation predicts an MD value of about 12°. 
Restoring the tail structure raises the MD to 
20°. Lower values of the MD are predicted at 
other locations on the aircraft (e.g. of order 
4° just ahead of the cargo door). The calcula- 
tions are still in progress and further results 
will be reported. 

The overall agreement between the analyti- 
cal calculations (e.g. using cylinder and 
ellipsoid models) and the numbers obtained from 
the computer model is satisfying. However, it 

is evident that more detailed Information can be 
obtained with the computer model calculations. 
The analytical calculations are limited to simple 
analytical shapes, whereas with the computer 
model one can treat more realistic airplane 
shapes. 

NONVERTICAI LIGHTNING CHANNELS 

In this section we consider the error in 
magnetic direction finding due to the effect of 
nonvertical orientation of a radiating lightning 
channel, modeled by a radiating dipole tilted 
away from the vertical. This effect has been 
analyzed previously (9, 10), but only with the 
crossed loop detector at ground level. This 
situation results in important simplifications. 
The more general case, where the detector is not 
on the ground but airborne, does not appear to 
have been considered in the literature. We deal 
here with the more general case, where both 
source and observer are above a conducting 
ground plane. The magnetic crossed-loop detector 
is considered to be otherwise perfect (no per- 
turbations due to the aircraft, etc.). The "mis- 
direction" due to induced skin currents was 
treated in the previous section. 

Referring to Fig. 6, we consider the detec- 
tor to be at altitude h above the ground plane 
(mounted on an aircraft). The lightning radia- 
tion source is represented by a dipole of vector 
dipole moment ?, located at altitude H above the 
ground plane. Define a cartesian coordinate sys- 
tem, wherein the ground plane is represented by 
the x-y plane, and the dipole is centered on the 
z-axis at a vertical height z-H above the ground 
plane. The detector is located In the x-z plan«:, 
at a height z»h above the ground plane, and at 
horizontal distance x-D from the z-axis (for 
y»0). Thus, the coordinates of the source and 
detector in this system are (0, 0, H) and 
(D, 0, h), respectively. Let Rj denote the dis- 
tance from the dipole to the detector, and let 
R2 denote similarly the distance from the dipole 
image (at depth H below the ground plane) to the 
same.detector. Then Rj and R£ are given by 
Rf-D*+(H-h)' and Rj-D'+OW: Let the dipole 
be arbitrarily oriented, with components Px, P„ 
and P.. We can then compute the magnetic j-ielo" 
as the superposition of contributions from the 
3 separate vector dipolesaof moments ?xi, P J, 
and Pxk, where 1, j, and k denote unit vectors 
in the x, y and z directions. 

According to Hertz' solution of Maxwell's 
equations, the electric and magnetic fields due 
to a radiating dipole may be expressed in terms 
of a dipole moment vector function (11, 12). If 
we denote the Hertzian time-dependent function 
by ?(t-R/c), the vector potential t may be writ- 
ten as 

j t  (t-R/c) (16) 

where the argument denotes the retarded time at 
distance R from the dipole, and the dot denotes 
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differentiation with respect to the time. Here, 

the units adopted are Gaussian and ? is expressed 

in emu, i.e., abamp-cm, with R in cm.  (In MKS 

units, an additional factor y /4ir appears on the 

right side, where u is the magnetic permeability 

of free space, 4nxl0  henry/meter; then ? is 

expressed in ampere-meters, with R in meters.) 

Now the magnetic field intensity B is given 
by 

curl A(R) - (R/R) x (dA/dR) (17) 

since A is a function of R only. Differentiation 
yields 

dA 
dR 

L L 
„2  Re (18) 

where the second term results from the dependence 
of the time-like argument on R, and we obtain 

B - M(R) x it (19) 

with 

»<R)4(i4)^t8?" (20) 

so that o = 1/R3 and 6 = 1/cR2. 
In terms of our cartesian coordinates, let 

\  - M^i ♦ MlyJ + Mltk 

(21) 
Rx - Di - (H-h)k 

Rj - Di + (H+h)k 

where 1, j and k denote unit vectors in the x, y 

and « directions; and M. and H- denote M.(R.) of 

the original dipole, and M2(R2) refers to its 

image, respectively. In this case, the compo- 

nents of *2, ?2 *
re "I*1««* t0 those of fy  f- 

by: 

P, - -P.  = -P   P. - -P.  = -P 
2x    lx    x    2x    lx    x 

P, - -P, = -P P, - -P. i -P   (22) 
2y    ly    y 2y    ly    y 

P, - +P, = +P P, - +Pn 2 +P 
2z    lz    z 2z    lz    z 

where we identify the unsubscripted variables 
with the original dipole.  It follows from Eqs. 
(19) and (21) that, at the observer's position, 
the magnetic field of the original dipole is 
given by 

B\ - [-(H-h)Mly] i 

+ [(H-h)Mlx + D M^] j (23) 

+ [-D Mly] k 

while the magnetic field due to the image is 
given by 

t2 -   [0M0M2y] i 

+ [-(H4h)M2x + D M2z] j (24) 

+ [-D M2y] k 

Hence, the sum of the two fields is: 

f - tx + l2 

" l(M2y " Mly)H + (M2y + V*1 £ 

♦ [-(M2x - Mlx)H - (M2x + Mlx)h   (25) 

+ (M2z + Mlz)D> * 

+ t-(M2y + Mly)D] k 

For a vertical dipole, all components of ft. 

and M2 vanish except for M. and M, . Then 5 

has only a y component, and there is no misdirec- 

tion. When B has an x-component also, the mis- 

direction angle is given by the arc tangent of 

-B /B (Fig. 6b). Consider the ratio -B /B , 

obtained from Eq. (25): 

B   -(M, -K, )H - (It, +M, )h 

B  -CM,» - 0*» ♦ 55^55 <26> 
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Using Eqs. (20) and (22), we may rewrite Eq. (26) 
as: 

B   p H + q h x „ IX JL. 
B   pH + qh + pD y  rx   nx   rz 

where 

(27) 

Q 5 
(o^ - a^P + (ß2 - ß^P 

■      """ • • 

(oj + C^JP + (62 + eL)p 

(31) 

(1/R2
3 - 1/R^P + (1/R2

2 - l/R^JP/c 

(1/R2
3 ■•  /R^P + (1/R22 + 1/RJVP/C 

(a, + o,)P, + (ß, + ß,)P. 1'  x 1' x 

Py - (a2 + ai)Py + (ß2 + Bl)Py 

Pz - (a2 + 0l)Pz + (ß2 + ßl)Pz (28) 

In the case of harmonic radiation, of angu- 

lar frequency 10, we may replace P by juP in Eq. 

(31), so that Q is given by the conr .ex quantity, 

with k=u/c: 

<x " <a2 " "l)Px + (fJ2 - ßl)Px 

qy " (a2 ~ al)Py + (fJ2 " *i)p. 

and where P , P , P , P , P , P refer to the x  x  y' y z      z 
original dipole components. Divide through 

numerator and 

we may write: 

numerator and denominator by p D, and note that 

P - -£ P, x  P  ' p -Vp 
X    P 

(xx - x2) + jk(xx - x2) 

(xj + x3) + jk(x2 + x2) 

a+Jb_ 
a' + jb7 

where 

(32) 

x - 1/R    (xx - 1/R^  x2 - 1/R2) 

3   3 
a =xx-x2 b "  k(x1 - x2) 

P .    ..  P .. 
P-~^P,   P--^P y  P  '    y  P 

(29) •' ■ xi + 4 V - k(x2 + x2) 

so that 

P,-f P. \-T p 

where P , P , P are the original dipole moment 
x  y  z •   • • 

vector components, and where P and P are the 

time derivatives of the vector magnitude P. 

Then Px/p,. Py/p,» ^P,» 
and %f*z »>««>»«» 

using Eqs. (28) and (29): 

n - iüL.  + **'>  4. JUb' - ba') 
H  - -    « -  _ 2      2      2 

(a*)'* o>'r   wr + o>'r 

■ Re Q + J Im Q 

Finally, the ratio -B /B may be written: 
* y 

(33) 

p   P 
-JL  I 
P " P rz       z 

q   P 

--Q-51 p«   *z 

p  p 
11. _i 
p  p 

1   p 

p*   ?z 

(30) 

P 

tan (MD) 
7     1+Gp* 

(34) 

where MD is the misdirection angle and where 
C is a geometrical factor: 

where 

D (35) 
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If the detector is on the ground plane 
(h=0), the problem simplifies greatly, and we 
have a^-o2 and ßi»&2» 

so that Q"0> Then G 
reduces simply to G»H/D, and we have 

D P 
 z__ 

1  DP z 

(36) 

which is identical to the result given by Uman 
et al (Ref. 10 - see plots), re-expressed in our 
terms, for a detector on the ground plane. An 
equivalent result was also given earlier for this 
case by KalakowsVy and Lewis (9). 

If the ground plane is completely noncon- 
ducting (no image), then the case of the detector 
at altitude h above ground also simplifies 
greatly.  In this case 
Q--1. Then 

a.   and S vanish, and 

B 
ia±i!x 

1 DP z 

(37) 

APPENDIX.  USE OF ELECTRIC ANTENNA TO RESOLVE 
180-DEGREE AMBIGUITY 

A simple way of seeing how correlation of 
the phases of the electric and magnetic vectors 
can be used to resolve the ambiguity is the fol- 
lowing. 

Consider one loop of a narrowband crossed- 
loop system aligned with two sources, one in 
"front" and one in "back". In Fig. A-l, the plane 
of the loop is perpendicular to the plane of the 
paper and is aligned with the sources (upper dot 
- front, lower dot - back). The sources are 
assumed to be electric dipoles in the same plane 
as the detector, but oriented perpendicular to 
the plane of the paper. Four sets of vectors 
are shown, at (a), (b), (c) and (d), with E, H, 
and P in each set denoting, respectively, the 
electric vector, magnetic vector, and direction- 
of-propagation vector, respectively.  Sets (a) 
and (b) correspond to radiation from the front, 
while sets (c) and (d) correspond to radiation 
from the back. Let signs be associated with E 
and H, such that E pointing upward and downward 
denotes a positive and negative amplitude, 
respectively. While H pointing right and left 
denotes also a positive and negative amplitude, 
respectively (readily convertible into loop volt- 
age signs). The four possibilities may be tabu- 
lated as follows: 

i 

E H Source 

That is, H is replaced in Eq. (36) by the "net 
altitude," H-h. 

A geometric interpretation of Eq. (36) (or 
(37)) is obtained by rewriting Eq. (34) in the 
form, assua&ng Q-0: 

(D + H f)  Bx 
z 

P 
+ H -X B (38) 

This expression implies that the "misdirection," 
in the plane of the observer and perpendicular 
to B* at the observer, passes through the point 
whose x, y, z  coordinates are -(Pj./P_)H, 
-(Py/PjJH, and zero. This point (indicated by 
the letter I in Fig. 6a) is alto the intercept 
of the extended Hue of the dipole with the z-0 
plane. This simple geometric interpretation for 
a detector on a conducting ground plant was 
pointed out by Kalakowsky and Lewis (9). 

The correction factor for finite aircraft 
altitude is given by the ten Qb in Eq. (35). 
Assuming a frequency of 50 kHz (Stormscope cen- 
tral frequency), a lightning distance 15 km 
(-D). a lightning altitude 3 km (-H), and air- 
craft altitude 3 km (-h), we obtain from Eq. 
(33) the approximate value -1/3 for Re Q. Thus, 
for this case the geometrical factor G is 
reduced to about 2/15 compared with its zero- 
altitude (h-0) value of 3/15. 

a) - 
b) + 
O - 
d) + 

front 
front 
back 
back 

It is evident from the table that E and H have 
opposite signs if the source is in f.ont, while 
they have the same signs if the source ie in 
back. It is not difficult to apply the same 
pic-^edure to the second loop. 

Thus it is readily seen why electrical noise 
can produce 180° errors. If the signal-to-noise 
ratio is too low or the electronics is ineffec- 
tive, electrical noise pulses of the wrong sign 
can overwhelm the electric field amplitude and 
make it appear, say, negative whan it should be 
positive, at>d vice versa. Similar errors may be 
caused by unintentional phase shifts in the sig- 
nal amplifiers. 
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Table  1 - Misdirection (Bearing Error) of Crossed Loop on 
Spheroidal Fuselage (MD - 9 - fl v* 60)* 

Incident Angle 
80 (degrees) 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
00 
85 
90 

Needle 
(Cylinder) 
Limit 
t-0.0 
R-0.5 

0. 
- 2.50 
- 4.96 
- 7.37 
- 9.69 
-11.88 
-13.90 
-15.70 
-17.24 
-18.43 
-19.21 
-19.4? 
-19.11 
-18.00 
-16.05 
-13.19 
- 9.43 
- 4.92 

0. 

t-0.1 
R-0.5207 

0. 
- 2.39 
- 4.75 
- 7.05 
- 9.26 
-11.34 
-13.26 
-14.96 
-16.39 
-17.48 
-18.16 
-18.35 
-17.94 
-16.83 
-14,94 
-12.22 
- 8.70 
- 4.53 

0. 

t-0.2 
R=0.5591 

0. 
- 2.20 
- 4.37 
- 6.48 
- 8.50 
-10.39 
-12.11 
-13.62 
-14.87 
-15.79 
-16.33 
-16.40 
-15.93 
-14.83 
-13.07 
-10.61 
- 7.51 
- 3.90 

0. 

t-0.5 
R-0.7100 

0. 
1.45 
2.86 
4.23 
5.51 
6.68 
7.71 
8.57 
9.22 
9.63 
9.76 

60 
12 

9 
9 
8.30 

14 
68 
95 

2.02 
0. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

9 • sensed angle; 0O ■ incident angle; t « aspect ratio 
major axes; R = misdirection factor, £q.(13). ratio of minor to 

magnetic field 

Fig. 1 - Ellipsoid model (large dot indicates 
crossed-loop detector positions) 
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Fig. A-l - Resolution of the 180-degree ambigu- 
ity 
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'magnetic field 

lines ( B0 ) 

Pig. 2 - Elliptic or circular cylinder (dashed 
lines indicate current flow planes) 
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(b) Case c<a 

(c) Case c>a 

Fig. 3 - Tr«n«ver«e field lines «round circular 
»ad elliptic cylinder« (large dot indicate« 
detector position) 
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Fig. 4a - T-39 computer model, topside view 
(letters and integers indicate panel locations, 
mirror of Stormscope detector located on Panel 
G-ll directly under Panel G-2) 

REM via 

! 

sioc via 
SIDE OF FUSEUSt (SECTION I! 

(inoelftf vnwnlM n Mil »J tapitda) 

Fig. 4b - T-39 computer model, other views 
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STORMSCOPE 
LOCATION 

Fig. 5a - C-130 computer model, general under- 
side -view  (dark panel indicates Stormscope 
detector location) 

Fig. 5b - C-130 computer model, underside view 

57-15 



X 

■■■■■ ■    - ■,..-..-.:-■        .      . 

detector 

(a) x-y-z coordinates 

dipole 
(Px.Py.P2) 
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e* 
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mage 
dipole 

detector 
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\misd1rection 
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(b) x-y PI ane 

dipole/ 
image 
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Fig    6 - Nonverticl dipole and iMge in con- 

gro££)  * PlÄM (d'"Ct0r •*<«> *bove 
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