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N.C. 77230

A METHOD FOR DETERMINING THE APPROXIMATE

RESONANCE FREQUENCY OF A STRUCTURE

SURROUNDED BY A COMPRESSIBLE FLUID

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured and used

by or for the Covernment of the United States of America for

governmental purposes without the payment of royalties thereon oI

BACKGROUND OF THE INVENTION

(1) Field of the Invention

This invention relates to methods for determining the

approximate resonance frequencies of underwater structures, and

is directed more particularly to such a method as is more
efficient than current harmonic sweep methods and more accurate
than modal finite element /boundary element methods, the latter

being based on an assumption of fluid incompressibility.

(2) Description of the Prior Art

Usually when modeling a structure in water, one 1is
interested in either 1) how the structure behaves in a certain
frequency range, OY 2) at what frequency one obtains a desired

mode shape. This invention is concerned with the latter. The
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classical approach is to perform an in-water modal analysis--toT
determine the in-air resonance frequencies. After displaying the
mode shapes, one determines a mode shape of interest, and
therefore a resonance frequency of interest. One then performs
an in-water harmonic analysis by first estimating a coarse
frequency range and then refining the range to capture the
resonance frequency within a desired tolerance. For large models
this is a very time consuming process.

There is thus a need for a technique for determining the
resonance frequencies of such structures in a more efficient
fmanner.

The behavior of complex fluid-loaded structures typically is
modeled using one of the following methods: 1) mathematically
describing the structure and surrounding fluid with finite
elements, that is, regional subdivisions of the structure in each
of which the behavior is described by a separate set of assumed
functions representing the stresses or displacements in a given
region; 2) describing the structure with finite elements and the
fluid with boundary elements, that is, two-dimensional elements
located on the wetted surface of the structure, such elements
describing the acoustic loading of the structure; and 3)
describing the structure with finite elements and the fluid with
a combination of finite elements and infinite elements, that is,
elements used in conjunction with finite elements to define the
exterior fluid. These infinite elements allow the domain of a

finite fluid element to extend to infinity in one or more
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directions by mapping an infinite domain into a finite domain. -
For all three methods, the fluid-loaded behavior is generally
determined using a harmonic, i.e., forced, analysis involving
computations at each frequency over a specified range of
frequencies. Since the in-water resonance frequency, that is,
the frequency at which the input reactance vanishes and the input
resistance is small, is not known a priori, this procedure can
involve multiple frequency sweeps. Some finite element programs
do offer a fluid-loaded modal analysis, but the use of finite
e2lements to model the fluid implies many additional degrees of
freedom in the system of equations. See The Finite Element

Method, by 0.C. Zienkiewicz (McGraw-Hill UK, London, 1977), 3rd

ed. A combination of finite and infinite elements to model the
fluid results in fewer additional degrees of freedom, but, at
present, in-fluid modal analysis is not offered in the major

i

codes possessing infinite elements. As with infinite elements,

|
|

modeling the fluid with boundary elements does not result in any
additional degrees of freedom for the fluid, which is desirable.
However, because this method is based on a frequency-dependent
influence matrix to describe the fluid, either one must make the
assumption that the fluid is incompressible, in which case the
fluid influence matrix is approximated by its low frequency
limit, see "Solution of Elasto-Acoustic Problems using a
Variational Finite Element/Boundary Element Technique," by J.P.
Coyette and K.R. Fyfe, in Numerical Techniques in Acoustic

Radiation, edited by R.J. Bernhard and R.F. Keltie, NCA-Vol. 6




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

(ASME, New York, 1989), or one must know the in-water
eigenfrequency a priori in order to accurately compute the fluid
load. The fluid influence matrix is a complex, frequency
dependent, symmetric matrix that represents the mass loading
(imaginary part) and damping (real part) effects of an extexrior
or interior fluid on the vibration of a structure. In the case
of an enclosed interior fluid, the real part of the influence
matrix is zero.

The usual procedure for determining the resonance frequency
of structures, using boundary elements to represent the fluid, is
as follows:

1) Perform an in vacuo eigenvalue analysis using a finite

element model to determine the frequencies and modes of the

structure in question. The eigenvalue equation is:
[K] "'(-l)l'z [M] ¢1:O (1)
where [K] is the stiffness matrix, [M] is the consistent mass

matrix, w? is the set of eigenvalues, and ¢; is the set of
orthogonal eigenvectors. This equation is written for elastic
structures, althoggh the structure can also be piezoelectric or
magnetostrictive.

2) Use boundary elements to compute the influence matrix
over a selected frequency range to attempt to encompass the in-
fluid resonance frequency of interest. Usually, a coarse

frequency resolution is used initially since the in-fluid

frequency is not known a priori.
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3) Compute the forced fluid-loaded behavior of the
structure by performing a harmonic analysis using mass and
stiffness matrices (computed by a finite element program) and the

influence matrix. The harmonic equation is
(K] -0, Ml +jw (2 (w) ] u=F, (2)

the frequency of excitation, Z(w) is the influence matrix, {u} is
the vector of computed nodal displacements, and {F} is the vector
of specified applied forces. The derivation of this equation may
be found in "A Coupled Finite Element/Boundary Element Approach

for Predicting the Performance of High-Powered, Low-~Frequency

gprojectors with Two Applications (U)," by R.E. Montgomery, C.M.
‘Siders, and T.A. Henriquez, Journal Underwater Acoustics, Special
Issue on Transducers, January 1991, and in "Numerical Solution of
Acoustic-Structure Interaction Problems," by H.A. Schenck and
G.W. Benthien, Naval Ocean Systems Center Technical Report 1263,
April 1989. If [Z] is computed using a nodal boundary element
code, then it is brought into the eqguation unmodified. If it is
computed using a "patch" boundary element code, then the third
term in Equation (2) becomes: Jjo[X][Z(w)][X]T, where [X] is a
matrix that translates between field variables at the centroid of
a patch and the equivalent variables at the nodes.

4) Examine the computed nodal displacements to determine
if the behavior of the structure at any frequency in the selected
frequency range matches the behavior desired mode. If the

desired mode is not present in the frequency range, a new
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frequency range must be chosen and the user must go back to.step-
5. If the displaced shape of interest is present in the
frequency range that was run, proceed to the next step.

5) The approximate in-fluid resonance frequency is the
frequency at which the structural displacement is a maximum. To
determine this frequency, one must examine the displacement at a
node that is significant for the mode of interest. Specifically,
one must not select a node whose displacement is zero Or nearly
zero for the mode of interest.

6) Refine the approximation of the in-fluid resonance
frequency by choosing a smaller frequency step in a shorter range
of frequencies about the frequency identified in step 5, and
recompute the in-water displacements.

7) Repeat steps 2-6 until the resonance frequency 1is
determined with the desired accuracy.

The above computations can be lengthy and time consuming
inasmuch as step (6) can require repeated choices or
approximations of in-fluid resonance frequencies about the
frequency identified in step (5). To shorten such computations,
knowledge of the approximate in-water frequency is required
(usually not known). The above procedure can provide an accurate
calculation of the fluid-loaded behavior of the structure;
however, it can be computationally prohibitive for realistic
structures for which the fluid-loaded resonance frequency is not

known a priori.
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There is thus a need for a method for determining the
resonance frequency of a structure surrounded by a compressible
fluid, wherein the compressibility of the fluid is a factor and
wherein the in-water resonance frequency can be computed based

upon a known frequency of the structure.

SUMMARY OF THE INVENTION

It is, then, an object of the invention to provide a method
for using boundary elements in a fluid-loaded modal analysis that
eliminates the need for a priori knowledge of the in-water
eigenfrequency, and that does not require the assumption of
incompressibility.

With the above and other objects in view, as will
hereinafter appear, a feature of the present invention is the
provision of a method for determining the approximate resonance
frequency of a structure surrounded by a compressible fluid, the
method comprising the steps of: (1) using a finite element
model, performing an in-vacuo eigenvalue analysis to determine
in-vacuo frequencies and mode shapes of the structure; (2)
selecting one of the mode shapes as an in-vacuo mode of interest,
along with an attendant eigenfrequency thereof; (3) using a
boundary element program, computing an influence matrix at the
eigenfrequency of the selected mode of interest; (4) combining
the computed influence matrix with structural stiffness and mass
matrices from a finite element program, and using the modified

matrices, computing eigenvalues of the structure, as well as




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

eigenvectors; (5) selecting from the computed eigenﬁectors>a-
computed mode having substantially the same displaced shape as
the in-vacuo mode of interest; (6) determining the eigenfrequency
of the selected computed mode; (7) determining any difference

between the computed eigenfrequency of the selected computed mode

and the in-vacuo eigenfrequency of the selected in-vacuo mode of
interest; wherein (8) if the difference is equal to, or less
than, a selected tolerance, the computed eigenfrequency of the
computed mode is the approximate resonance frequency of the
structure surrounded by compressible fluid; and (9) if the
difference is greater than the tolerance, repeating step (3)
substituting the computed eigenfrequency of the selected computed
mode for the in-vacuo eigenfrequency for the in-vacuo mode of
interest, and thereafter, repeating steps (4) - (9), substituting
in step (3) a most recent computed eigenfrequency of the selected
computed mode for the previously used computed eigenfrequency of
the selected computed mode.

The above and other features of the invention will now be
more particularly described with reference to the accompanying |
drawings and pointed out in the claims. It will be understood
that the particular method embodying the invention is described
and shown by way of illustration only and not as a limitation of
the invention. The principles and features of this invention may
be employed in various and numerous embodiments without departing

from the scope of the invention.
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FIG. 12

FIG. 13

which 1s the

FIG. 14
FIG. 13;
i FIG. 15

ﬂprojector of

FIG. 16

14,

FIGS. 1-

BRIEF DESCRIPTION OF THE DRAWINGS

Reference is made to the accompanying drawings in which is
shown an illustrative embodiment of the invention, from which its
novel features and advantages will be apparent.

In the drawings:

11 are charts illustrative of numerical values

'determined in Examples #1 and #2 set forth in the specification;

is a graph illustrative of numerical values

determined in Example #1;

is a side elevational view of an acoustic projector
structure under study in Example #2;

is a sectional view of the acoustic projector of

depicts an axisymmetric finite element model of the
FIGS. 13 and 14; and

depicts a 3-D model of the projector of FIGS. 13 and

DESCRIPTION OF THE PREFERRED EMBODIMENTS

\
The objective of the inventive method is to compute in-fluid
1jmodal frequencies using boundary elements to describe the fluid,
without assuming the fluid to be incompressible. This approach
eliminates both the hit-and-miss of the harmonic boundary element
procedure described above, and the necessity of meshing a portion
of the infinite fluid domain, as in the finite element approach.

As stated before, the reason this is not possible with the usual
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influence matrix requires knowledge of the in-fluid frequency of
the mode of interest. Of course, in the absence of the
experimental measurements, the designer does not know this
frequency. What is known, or is readily ascertainable, is the in
vacuo frequency of the mode. 1In the method described below, the
in vacuo frequency is used as the starting point of an iterative
eigenvalue analysis.

The equation for a standard in-vacuo finite element

eigenvalue analysis is as follows:

[K] -,% [M] ¢,=0 (3)

where w, and ¢, (i= 1 to n) represent the eigenvalues and
eigenvectors, respectively, of the in- vacuo structure. For the
examples presented herein, the stiffness matrix is assumed to be
real; that is, there is no structural damping. Structural
damping can be included, leading to a complex eigenvalue
analysis, but its effect on the eigenvalues is usually small.
The idea of the present analysis is to include the fluid
loading in the eigenvalue equation. As stated hereinabove, the
real part of the influence matrix [R], describes the radiation
damping, and the imaginary part divided by the radian frequency
describes the added mass of the fluid. The radiation damping and

mass can be added to the structural stiffness and mass matrices,

10
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however, choosing a specific angular frequency, w, we have the

following relation:

((IK] + Fogl) - w2 (M] [X‘_:)”o)l)}{cbi} - {o} (4)
0
For simplicity, we can rewrite as:
lik'1-02m 1o, = {of (5)
where
[(K']=[K] +jw,[R(w,)], (6)
and
M7 = [(M] + [X(w,)] 7)
(&)

Note that [R(w,)] and [X(w,) ]/w, each comprises a matrix of

‘constants; therefore Equation (5) is a mathematically valid

eigenvalue equation. (The form of an eigenvalue equation

requires that (K] and [M] not depend on w.) Nevertheless,
Equation (5) only represents the physical behavior of one in-
fluid eigenvector. That is, if w=w, for some i, and [Z(w)] is
computed at w,, then Equation (5) will give the correct
eigenvector corresponding to the eigenvalue w;. There are (n-1)
other eigenvalues and eigenvectors, but none of them has the
correct fluid loading since [Z] is computed at the frequency
corresponding to mode i. For this reason, one can only use this

method for determining one in-fluid eigenvalue at a time. For

11
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practical design problems, this is not a serious limitation - -
because the designer is generally only interested in one mode.

The problem remains of finding the value of the
eigenfrequency for the particular mode of interest. To do this,
we begin with the only information that is available, that is,
the in-vacuo eigenvalue of the mode of interest. We compute the
influence matrix at this frequency, modify the mass matrix (and
the stiffness matrix if desired), and solve the resulting
eigensystem. If the modes remain uncoupled under fluid loading,
we will find that there is a mode in the set of in-fluid
eigenvectors that matches the shape of the in vacuo mode of
interest. We then obtain the frequency corresponding to this
mode, recompute the influence matrix at this freqguency, and so
on, until two consecutive in-fluid eigenvalue computations match,
for the mode of interest, within a specified tolerance.

This new procedure for determining the fluid-loaded
resonance frequency of a structure is as follows:

perform an in-vacuo eigenvalue analysis using a finite
element model to determine the in vacuo frequencies, and mode
shapes. This step is the same as step 1 in the above described
prior art method. gelect the mode of interest, i, and 1its
eigenfrequency. The in vacuo eigenfrequency of interest is
designated f,.

Compute the influence matrix, [z}, at £, using a boundary

element program.

12




10

11

12

13

14

15

16

17

18

19

Solve a modified eigenvalue problem using the mass_and-#
stiffness matrices from a finite element program and the computed

influence matrix. The equation used here is:

K" ] -2 M 11 /=lof (8)
where
[K']l=[Kl+jo Re[(w,)], (9)
and
) In(Z(w
(M7]=[M]+ [ °)], (10)
('L)O
and w, = 27f,. "Re" and "Im" represent the real part and
imaginary part, respectively, of the complex [Z]. In Equation
(8), the structural mass matrix has been modified to include the
entrained fluid mass (radiation mass), and the structural
stiffness matrix has been modified to include the radiation
damping. 1In practice, the effect of radiation damping on the in-

fluid eigenfrequency is much smaller than that of the radiation
mass, so that the stiffness matrix can be left unmodified. With
this simplification, the complex eigenvalue problem, Equation
(8), becomes purely real.

Examine the computed eigenvectors to determine which mode
has the same displaced shape as the selected in vacuo mode of
interest. The computed frequency of the selected mode is

designated f.

13
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Compare f and f,. If the difference is less than a

fspecified tolerance, then f is the approximate fluid-loaded

resonance frequency. If the difference is greater than the
specified tolerance, then set f=f and return to computation of
the influence matrix and repeat the steps thereafter.

The procedure outlined above is based on complex
eigenfrequency computations, which require significantly more
computation time than real eigensolutions. However, for most
problems, the in-fluid eigenfrequency is determined primarily by
the added mass of the fluid, so that the effects of the radiation
damping can be ignored. In this case, [K’]=[K] and the
eigensolution becomes purely real. The differences between the
in-water resonance frequencies with and without radiation damping
will be examined hereinbelow.

At this point, an operator may be concerned with the number
of iterations required to determine the in-fluid eigenfrequency.
If the procedure requires a large number of iterations, it might
be faster just to perform a harmonic frequency sweep over a very
wide frequency range. This is a valid concern, but it turns out
that at low ka, where ka is the non dimensional wave number (we
are restricted to low ka for mode preservation, at least in
theory), the solution converges very quickly. 1In fact, the first
iteration in the modified eigensolution, that is, the solution
for which the [Z] matrix is computed at the in vacuo frequency,
results in a reasonable estimate of the in-fluid eigenfrequency.

The reason for this can by understood by studying the classical

14
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problem of the fluid loading on a piston in an infinite baffle. °°

The added mass of. a piston on an infinite baffle is given by:

X, (w) mp,a’H (2ka)

= (11)
Mp w k2a2
where a is the radius of the piston, p, is the density of the
medium, k is the fluid wave number, and H, is the first order
Struve function. For ka<<l, this becomes:
3
M, - 8poa” (12)
3
s0 the added mass is constant for small values of ka. Moreover,

as ka increases to values near one, the added mass of Equation

(11) changes slowly, as shown in FIG. 12. The implication of

this is that for low ka, the added mass of the fluid computed at
the in vacuo eigenfrequency is not very much different from the
correct added mass computed at the in-fluid eigenfrequency. The
in-fluid frequency is always lower than the in vacuo value, so we
are headed in the direction of lower ka. This concept will be
demonstrated for a realistic underwater projector hereinbelow.
The modified eigenvalue procedure described above has been
applied to several problems. In each case the ATILA (Analyse de
Transducteurs par Integration des equations de LAplace) finite
élement and the CHIEF boundary element codes were used. The
modified modal analysis was implemented in two ways. In both

implementations, the CHIEF code was used to generate the fluid

influence matrix. In the first implementation, the stiffness and
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mass matrices were computed by ATILA and written to an external ..
file. Thisifile and the file created by CHIEF were read into an
external program where they were combined and solved using
standard LAPACK modal routines. Both real and complex
eigensolutions (the latter included radiation, but not
structural, damping) were performed, but the use of the external
program was limited to very small problems because of computer
memory. In the second implementation, the CHIEF influence matrix
was brought into ATILA, and used to modify the mass matrix. Then
a standard ATILA modal analysis was performed. The reason for
modifying only the mass matrix is that the ATILA code performs a
real eigenvalue solution.

Two examples will be presented here: a water-loaded
spherical shell, and a mechanically driven projector in water.
In the latter case, the method has been applied to both a two-
dimensional (2-D) and a three-dimensional (3-D) model. Results
will include in vacuo and in-water eigenfrequencies and modes,
and the harmonic response with and without radiation damping. In
addition, the error introduced by assuming incompressibility of

the fluid will be presented.

EXAMPLE 1
The first example is a water-loaded spherical steel shell,
the geometry of which has been chosen to match that of Junger and
Feit in "Sound, Structures, and their Interaction" by M. C.

Junger and D. Feit (MIT Press, Ccambridge, MA) 1972. The behavior
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of the shell is assumed to be axisymmetric. The ratio of the
thickness to radius of the shell is 0.01, the Poisson’s ratio is
0.30, the ratio of structural to fluid density is 7.67, and the
ratio of plate speed in the shell to sound speed in the fluid is
3.53. In "Sound, Structures ..." there are presented a
transcendental equation and a table of results for undamped
eigenfrequencies, neglecting flexural effects. The modes of the
shell are characterized by a value of n=0. For the n=0 mode,
only one real eigenfrequency exists; this is the breathing mode.
For each mode n>0 there are two eigenfrequencies. The two sets
or branches of modes represent two different types of behavior.
The n=2 modes of the lower branch are characterized by
predominantly radial motion, while the n=1 modes in the upper
branch have more tangential motion.

The axisymmetric ATILA finite element model of the spherical
shell comprises 64 eight-noded quadrilateral elements, with each
node having two displacement degrees of freedom. These elements
represent the complete axisymmetric equations of motion, so that
flexural effects are included. This model was used to compute
the in vacuo eigenfrequencies and modes. The corresponding
boundary element model consists of 64 line elements which
coincide with the external boundary of the finite element mesh.
The CHIEF code generates a 3-D mesh from the 2-D geometry, using
a specified number of rotational symmetry blocks, nblks, and
solves the equation set in three dimensions. In this case, the

number of rotational symmetry blocks is 100. Because the
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resulting influence matrix is computed for the full 3—D»meéhr it
must be scaled by the factor nblks/(2w) so that it represents the
fluid impedance per radian, making it compatible with the
axisymmetric finite element matrices.

FIG. 2 provides the in vacuo eigenfrequencies from "Sound,
Structures ...", which is incorporated by reference herein, and
those from the ATILA finite element model, for the first few
modes of the lower branch and the first mode of the upper branch.

All frequencies are rounded to the nearest hertz. The percent

|differences petween the two sets of results are computed relative

lto the analytic result. The fact that the two sets of

frequencies are in such close agreement indicates that for this
thickness-to-radius ratio and frequency range, flexural effects
are negligible, and that the structural finite element model
accurately represents the elastic behavior of the sphere.

FIG. 3 provides the undamped in-fluid eigenfrequencies from
"Sound, Structural ..." and those from the modified modal

analysis implemented in the ATILA code, for the first three

nonzero eigenfrequencies of the lower branch (ka~1.1 to 1.6), and
the first eigenfrequency of the upper branch (ka-4). The
radiation damping is neglected for both sets of results. The

differences are again computed relative to the analytic result.
This part of the analysis was limited to low order modes to avoid

the need for a finer numerical mesh. In FIG. 3 the largest
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difference between the undamped in-water modal frequendiesAEOr
the modified finite element/boundary element (FE/BE) method and
the analytic method is 4.0%.

The number of iterations required to reach convergence to
within one hertz for the results in FIG. 3 varied between four
and seven. Had the convergence tolerance been specified as a
percentage of the eigenvalue, it is assumed that roughly four
iterations would have been required for any of the modes. This
result was obtained without using any of the various techniques
available for speeding up the convergence process, for example,
the bisection method. The low number of iterations 1is,
rherefore, somewhat surprising, especially as the mode ordexr and
ka increase. As ka increases, the variation of the added mass
with frequency becomes more significant, so that the initial
estimate would be expected to be worse, requiring more iterations
pefore convergence. For realistic problems, this discussion is
moot because the modes are not likely to be preserved at such
high values of ka.

The differences shown in FIG. 3 are not entirely a result of
the in-fluid modal method. A more appropriate test is to compare
the results of the modified modal method with the results of a
harmonic analysis using the same FE/BE model, since the peak in
the harmonic response of the numerical model is what we are
trying to determine. FIG. 4 presents this comparison under the
conditions that the harmonic response is computed using only the

imaginary part of the complex influence matrix. The percent
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differences are computed relative to the harmonic results.'
Comparing FIGS. 2, 3, and 4 we see that the differences between
the in-water eigenfrequencies obtained from the analytic and
FE/BE models are primarily a result of the differences in the way
the fluid and the fluid/structure interaction are described. The
fact that the in vacuo eigenfrequencies are in close agreement
(FIG. 2) indicates that the structural models are equivalent. In
any case, a difference of 4% is not considered to be significant.

The error caused by neglecting the effects of radiation
damping can be determined by comparing the peaks in the harmonic
response computed using only the imaginary part of the influence
matrix with those computed using the complex influence matrix
(see FIG. 5). The percent differences are computed relative to
the latter results. The most significant effect of radiation
damping is on the lowest mode, for which the resonance frequency
is lowered by 1.5%. For the higher modes, the effect is
indiscernible for all practical purposes.

Having shown the accuracy of the iterative in-water method,
there remains one point of interest relative to the spherical
shell problem. It is stated above that if finite elements are

used to describe the fluid, one must contend with a large number

lof additional equations in the eigenvalue solution. It is also

pointed out that an in-water eigenvalue solution previously was
not possible with poundary elements, unless one assumed
incompressibility. We will now guantify the error introduced by

the assumption of incompressibility, for the spherical shell in
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water. This assumption implies that there is no radiation
damping, and that-the added mass of the fluid is computed at
ka=0.

FIG. 6 compares the results of the iterative in-water modal
technique with those obtained when ;he fluid influence matrix,
(2], is computed at ka=0, i.e., at w=0. For the modes in the
lower branch, we see that the differences in the computed
eigenvalues are between 3% and 7%, and that the eigenvalues from
the incompressible solution are higher than the values obtained
from the iterative technique. For the breathing mode, however,
the error in the incompressible value is 66%, and it is lower
than the correct value. The differences in the magnitude and
sign of the error between the two branches can be explained by
studying FIG. 13. Focusing on the n=2/lower mode, we see that
the added mass at ka=0 is lower than the value at ka=1.1 (the
value of ka corresponding to iterative eigensolution). Since the
added mass is too low, the computed eigenfrequency is too high.
The same is true for modes n=3 and n=4, although the eigenvalue
error is progressively lower sine the error in the added mass
decreases with increasing mode order. If we now consider the
added mass of the n=0/upper mode (breathing mode) in FIG. 13, we
see that the value at ka=0 is much greater than that at ka=4.5
(the ka value at the true in-water eigenfrequency) . This leads

to an incompressible eigenfrequency that is much lower than the
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true value. These results demonstrate that while the
incompressibility approximation may be satisfactory at very low

ka values, the error increases as ka increases.

EXAMPLE #2

The second example is a low frequency projector 20 that
operates by mechanically driving two opposing flexural disks 22
(see FIGS 14 and 15). The disks 22 have a linearly varying
thickness, with the greatest thickness being at the center. A
circular piston 24 drives a finite area at the center of each
disk 22.

The behavior of the projector 20 was described first with an
axisymmetric finite element model (using the ATILA code) to
determine the appropriate boundary conditions and the general
character of the operational mode, which corresponds to the
fundamental mode of a circular plate. Then a 3-D model was
developed to study the influence of parasitic modes, i.e.,
undesirable modes that might interfere with the mode of interest.
For both models, the fluid loading was described using the CHIEF
boundary element program. At the time of the original analysis,
the method described herein was not available. Therefore, the
in-water behavior of the projector was determined using a
harmonic analysis with an applied force at the center of the
disks. For the mode of interest the flexural disks vibrate in
the fundamental mode of a circular plate, which has significant

accession to inertia (large added mass) under fluid loading. The
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esult is that the in vacuo modal frequency is greatly reducedf
lwhen the projector is submerged. Therefore, a broad frequency
sweep and a great deal of computation time were required to
determine the in-water resonance frequency using the harmonic
method. This problem led to the conception of the idea for the
in-fluid modal method for finite element/boundary element models.
The axisymmetric finite element model of the projector is
shown in FIG. 16. 1In addition to the axial symmetry, there is a
plane of symmetry through the center plane of the housing. The
mechanical structure, comprising the disks, housing, and
compliant pad, is modeled with eight-noded quadrilateral
elements. Each node has two translational degrees of freedom.
For this 2-D representation, the boundary element model is
generated using line elements, with a one-to-one correspondence
petween the structural and boundary elements. The CHIEF code
then generates a 3-D model for the computation of the fluid
influence matrix. Because CHIEF cannot combine both rotational
and planar symmetry, the [Z] matrix was computed for a
rotationally symmetric geometry with no planar symmetry. The
computed matrix was then reduced to account for planar symmetry.
The results for the in vacuo and in-water eigenfrequencies
and the in-water harmonic resonance frequencies are presented in
FIG. 7. The in-water ka values are also given. Mode 3 has been
omitted from the results because it is a mode of the housing, and
we are interested in the disk modes. In FIGC. 7, we see that the

in-water eigenfrequencies computed with the modified modal method
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are véry close to the peaks in the harmonic response computed ;
with a purely imaginary influence matrix. The effect of
radiation damping on the harmonic response peaks is demonstrated
by comparing these harmonic response peaks to those computed with
the complex influence matrix. For the mode of primary interest
in this study (mode 1), the effect is negligible, while for mode
5, there is a 1.6% difference between the two results. It is
surprising to note that the modes are preserved in water for ka
values at least as high as 7, but this likely is a result of the
axisymmetry of the model. The nonaxisymmetric modes are
eliminated, thus reducing the possibility of modal coupling.

The results presented thus far have demonstrated the
accuracy of the modified modal method for a spherical shell and a
flexural disk projector. It remains to show that the proposed
method is also efficient. FIG. 8 presents the progression of the
iterative eigenvalue calculation for the axisymmetric projector
model. These results were obtained without any schemes for
improving the convergence efficiency. For each of the first four
disk modes, the procedure begins with the in vacuo modal
frequency (column 2). For mode 1, only two in-water eigenvalue
calculations are required. Modes 2 and 4 each require three
iterations. Mode 5 converges to within 2 Hz after three
iterations, but then begins to jump back and forth between two
values. This problem would be eliminated by any of the available
convergence improvement schemes, even the simple bisection

method. The first and last columns of FIG. 8 give the starting
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and ending mode numbers for the four modes of interest. Note -
that the eigenvector that was fifth in the list of in vacuo
modes, becomes the sixth mode in water. This switching of modal
order is always a possibility because the in vacuo eigenfrequency
of a higher mode whose motion is predominantly radial can be
lowered more by fluid loading than that of a lower mode whose
motion is mainly tangential. This is why it is very important to
examine the eigenvectors, at least after the first in-water
eigenvalue computétion. For most problems, the largest change in
the influence matrix occurs in the first iteration, so the modal
order does not usually change after this step.

The full 3-D model of the flexural disk projector is shown
in FIG. 17. This model has two planes of symmetry. Only the
fundamental disk mode of the projector (mode 5 for the 3-D model)
was studied using this model, because more elements would be
required for higher values of ka. FIG. 9 provides the in vacuo
eigenfrequency and the in-water eigenfrequencies and resonance
frequencies for the fundamental mode. Note that the in vacuo
eigenfrequency computed using the 3-D model is slightly higher
than that obtained with the axisymmetric model. This is not
unexpected since the two models have different mesh densities.
The in-water modal frequency computed with the modified modal
method is 43 Hz, while the peak in the in-water harmonic response
is at 41 Hz (using either the imaginary or complex influence
matrix). This difference is thought to be a result of the large

number of equations in the eigensystem. While the difference

25

b




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

corresponds to an error of nearly 5%, in practical terms 2 Hz is.
not significant. FIG. 10 shows the progression of the iterative
procedure for mode 5.

In FIG. 10, note that the in-water eigenvalue converges
after only two iterations. FIG. 11 compares the CPU time
required for two in-fluid eigenvalue computations to the time
required for a typical harmonic frequency sweep, both performed
in ATILA on a DEC 3000/400 Alpha workstation. It is assumed
(conservatively) that the first harmonic sweep is done over ten
frequencies, and that the in-water eigenvalue lies within the
first range of frequencies selected. The harmonic sweep requires
over six hours of CPU time, while the modified modal method
requires only one-half hour. If one is not so fortunate, one
could spend days finding the peak in the frequency response.

The computation of in-water modal frequencies of FE/BE
models using an iterative eigenvalue computation has been shown
to be both accurate and efficient. The results have been
compared to those of a closed-form solution for a spherical shell
and those of a standard harmonic analysis for a 2-D and a 3-D
FE/BE model of a flexural disk projector. For smaller numerical
models, for which a harmonic analysis is not inordinately time
consuming, the main advantage of the method is to eliminate the
guess work in isolating the in-water eigenfrequency of a
particular mode of interest. For large models, the method
additionally provides a tremendous savings in computation time

compared to the standard harmonic method. Furthermore, it has
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been demonstrated that while the error introduced by negleétiné'“
radiation damping is small, the error arising from the assumption
of fluid incompressibility can be quite significant. |

There is thus provided a method which is significantly
faster than the prior art approach set forth hereinabove,
eliminates the guesswork involved therein in locating the
appropriate fluid-loaded resonance frequency, and retains the
compressibility of the fluid, through the frequency dependence of
the influence matrix.

It is to be understood that the present invention is by no
means limited to the particular steps herein disclosed and/or
shown in the drawings, but also comprises any modifications or

equivalents.
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| N.C. 77230

A METHOD FOR DETERMINING THE APPROXIMATE

RESONANCE FREQUENCY OF A STRUCTURE

SURROUNDED BY A COMPRESSIBLE FLUID

ABSTRACT OF THE DISCLOSURE

A method for determining the approximate resonance frequency
of a structure surrounded by a compressible fluid includes the
steps of: (1) performing an in-vacuo eigenvalue analysis to
determine in-vacuo frequencies and mode shapes of the structure;
(2) selecting one of the mode shapes as an in-vacuo mode of
interest, (3) computing an influence matrix at the eigenfrequency
of the selected modevof interest; (4) combining the computed
influence matrix with structural stiffness and mass matrices from
a finite element program, and using the modified matrices
computing eigenvalues of the structure, including eigenvectors;
(5) selecting from the computed eigenvectors a computed mode

having substantially the same displaced shape as the in-vacuo

imode of interest; (6) determining the eigenfrequency of the
:selected computed mode; (7) determining any difference between
;the computed eigenfrequency of the selected computed mode and the
lin—vacuo eigenfrequency of the selected in-vacuo mode of
interest; wherein (8) if the difference is equal to, or less
than, a selected tolerance, the computed eigenfrequency of the

computed mode is the approximate resonance frequency of the

A&




structure; and (9) if the difference is greater than the
tolerance, repeating step (3) substituting the computed
eigenfrequency of the selected computed mode for the in-vacuo
eigenfrequency for the in-vacuo mode of interest, and thereafter,
repeating steps (4) - (9), substituting in step (3) a most recent
computed eigenfrequency of the selected computed mode for the
previously used computed eigenfrequency of the selected computed

mode.
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