# UNCLASSIFIED

# AD NUMBER

# ADC957159

# CLASSIFICATION CHANGES

TO:

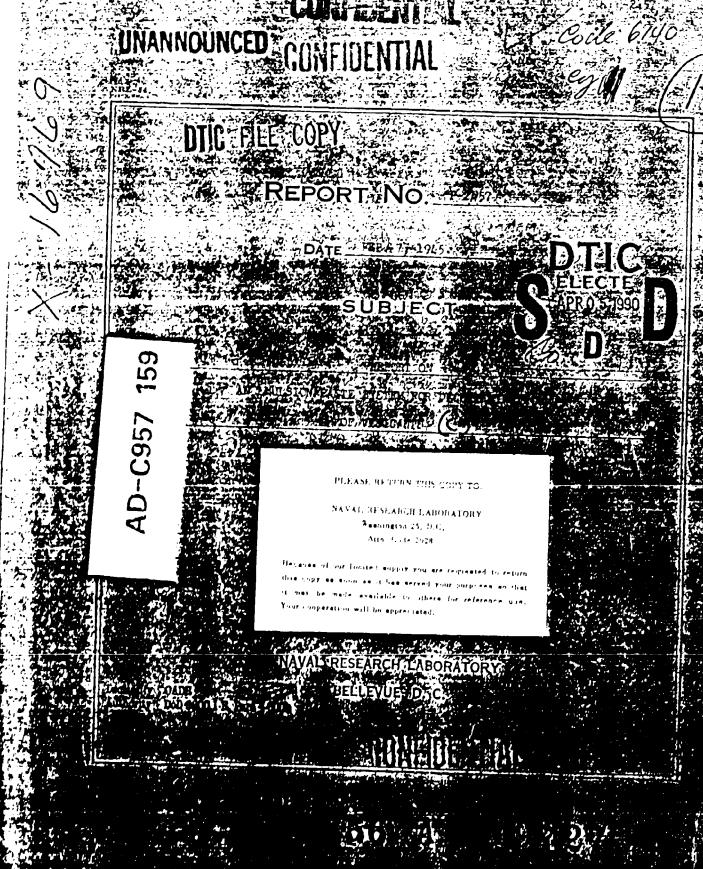
# unclassified

FROM: confidential

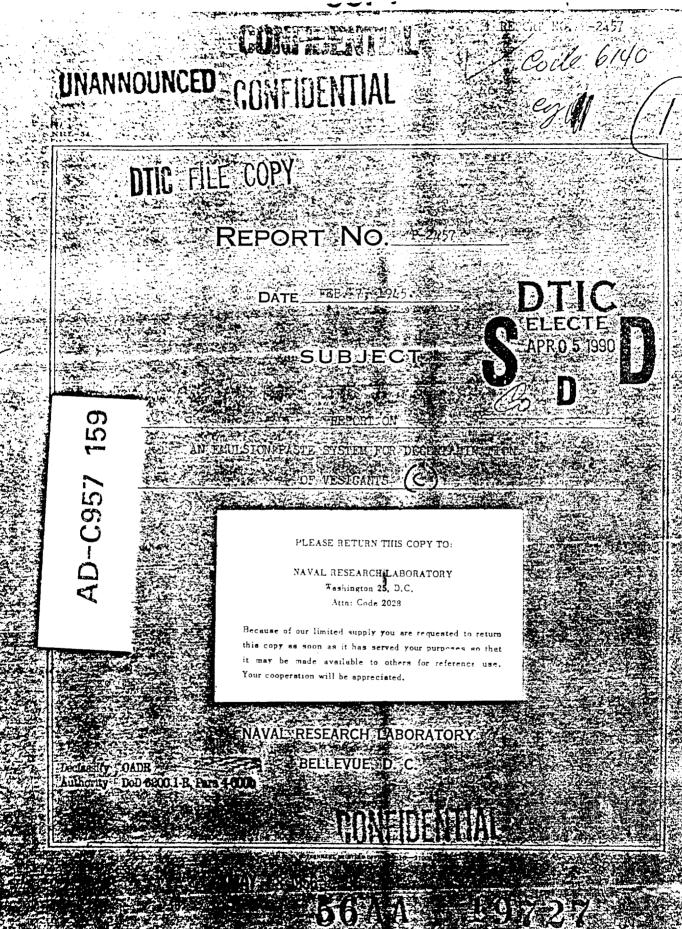
# LIMITATION CHANGES

TO:

Approved for public release, distribution unlimited


FROM:

Controlling Office: Naval Research Lab., 4555 Overlook Ave., SW. Washington, DC 20375-5000.


# AUTHORITY

NRL ltr, 15 Oct 2003; NRL ltr, 15 Oct 2003

# THIS PAGE IS UNCLASSIFIED



Brown Antiparties and a second and



| 7-2003 11:03 | From-5227 Reports | 202 404 817                                | 5 T-182 P.011/016 F-537                       |          |
|--------------|-------------------|--------------------------------------------|-----------------------------------------------|----------|
|              | ·                 | B C DIA                                    | BORY ALTO                                     | •        |
|              |                   | MACT WEDDAY                                | · · ·                                         |          |
| February     | 1945              | · · · · · · · · · · · · · · · · · · ·      | NRL Report No. P-2457<br>NRL Problem No. P-60 |          |
|              |                   | NAVAL RESEARCH LABORATORY                  | DECLASSIFIED: By authority of                 |          |
|              |                   | Anacostia Station<br>Washington 20, D. C.  | Cial MADZIA                                   | ~        |
|              |                   | CHEMISTRY DIVISION<br>Protective Chemistry | Thered by MAL Code                            | <u>כ</u> |

Report on

### AN EMULSTION PASTE SYSTEM FOR DECONTAMINATION OF VESICANTS

by

E. R. Poor J. E. Johnson

Approved by:

W. C. Lanning, Head, Protective Chemistry

Borgstrom, Superintendent

A. H. Van Keuren, Rear Admiral, USN, Director, Naval Research Laboratory.

umber of Pages: ext: 17 ables: XX

> APPROVED FOR PUBLIC RELEASE - DISTRIBUTION UNLIMITED

# CONFIDENTIAL

### ABSTRACT

A new decontamination system for vesicants has been developed, which consists of a chloroamide dispersed in an emulsion of water in Perclene (tetrachloroethylene). This paste system was investigated in detail to determine the effect of varying its composition and the conditions of use on its effectiveness as a decontaminant. The improved NDRC potassium cleate paste was examined and both paste systems compared to TCE/RH-195 solution. TCE/RH-195 was found to be the most efficient and the easiest to use of the three systems for the decontamination of H in deck paint.

# CONFIDENTIAL

### CONFIDENTIAL

÷.

# CONFIDENTIAL TABLE OF CONTENTS

# Text

-<del>1</del> -4

÷

CONFIDENTIAL

### Page No.

| INTRODUCTION<br>Authorization                                                     | 1<br>1<br>1<br>2 |
|-----------------------------------------------------------------------------------|------------------|
| EXPERIMENTAL                                                                      |                  |
| PART I. DEVELOPMENT OF AN EULSION PASTE FOR DECONTAMINATION                       | •                |
| A. Screening Tests of Emulsifying Agents                                          | 2                |
| B. Factors Affecting the Efficiency of Emulsion Pastes                            | · ,              |
| for the Decontamination of H                                                      | 4                |
| C. Decontamination of H in Various Natorials.                                     | 8                |
| D. Decontamination of Other C. W. Agents                                          | 10               |
| E. Other Considerations Regarding Emulsion Pastes                                 | 11               |
| PART II. COUPARISON OF THE EMULSION PASTES WITH OTHER DECONTAR INATING<br>SYSTEIS |                  |
| A. Decontamination Efficiency                                                     | 13               |
| B. Storage Requirements                                                           | 14               |
| C. Preparation and Application                                                    | 15               |
| D. Other Considerations                                                           | 15               |
| E. Summary of Comparison of Systems                                               | 15               |
| SURMARY AND CONCLUSIONS                                                           | 17               |
| RECOM ENDATIONS                                                                   | 17               |
| Appendix A Tables I to XIX                                                        | 5.               |

### INTRODUCTION

### Authorization

ł

ų,

1. This work was authorized under Bureau of Ships Project No. 397/44. Problems proposed for study were given in Bureau of Ships letter S-S77-2(Dz) Serial 811 dated 17 December 1940.

### Statement of the Problem

2. This is a continuation of the study of the decontamination of C. W. Agents, with special emphasis on the development of a paste system containing a large proportion of water.

### Known Facts Bearing on the Problem

3. The present Navy standard decontamination system for shipboard use is a 10% solution of RH-195 in tetrachloroethane (TCE/RH-195). The objectionable characteristics of this solution have been discussed in previous reports from this Laboratory. They include its toxicity, corrosiveness and injurious effect on various materials such as paint, clear plastics, rubber and cellulose acetate butyrate doped fabrics.

4. A paste system developed by the NDRC, which consists essentially of Perclene (tetrachloroethylene) potassium oleate and S-461 or S-210, has some advantages over the TCE/RH-195 system. This Perclenc/potassium oleate/chloroamide paste was discussed in detail in NRL Report No. P-2211. This report also mentioned the preliminary work at this Laboratory on a promising emulsion paste containing Perclene, an emulsifying agent, a chloroamide and a large proportion of water.

### Theoretical Considerations

5. For shipboard use it would be desirable to have a decontamination system requiring the storage of as small an amount of materials as possible. One means of accomplishing this might be the substitution of water for all or part of the solvent, retaining a chloroamide as the active ingredient. Preliminary examination of water systems indicated that an emulsion applied as a paste (too fluid an emulsion would run off vortical surfaces quickly) offered promise. The emulsion should contain a paint penetrant, preferably one which will dissolve certain chloroamides to some extent.

6. To decontaminate most efficiently, it was felt that the emulsion should be of the water-in-oil type so that the chloroamide-bearing paint penetrant could come in contact with the contaminated surfaces. Furthermore, previous work indicated that some water-in-oil emulsions would stick to vertical surfaces, whereas oil-in-water emulsions tended to run off quickly. The emulsion chould be fairly stable so that it will not break readily when applied to a vertical surface and allow the paste to run off.

### CONFIDENTIAL

の一字英は話を読い

7. In the preliminary work toward development of an emulsion paste a suitable water-insoluble solvent was needed. Perclenc (tetrachloroethylenc) was selected as the most likely solvent to use on the basis of certain desirable characteristics found in earlier work. One disadvantage of Perclene as compared to TCE is that Perclene is much more volatile than TCE at ordinary temperatures. It was felt that incorporation in an emulsion would increase the contact time of the Perclene with the painted surfaces, thereby increasing the efficiency of the solvent.

### Previous Work Done at this Laboratory

8. Previous work done at this Laboratory related to this problem has been presented in NRL Report No. P-1914, "The Use of RH-195 for the Decontamination of HS and M-1", dated 8 October 1942; .TL Report No. P-2125, "A Study of Perelene (Tetrachloroethylene) as a Solvent for use in the Decontamination of Airplanes", dated 29 July 1943; and NRL Report No. P-2211, "Chloroamide Paste Systems for Decontamination of Vesicants" dated 31 December 1943.

### EXPERIMENTAL

'n

PART I. DEVELOPMENT OF AN EMULSION FASTE FOR DECONTAMINATION

### A. Screening Tests of Emulsifying Agents

9. It was desired to make an emulsion of water-in-Perclene into which a chloroamide could be incorporated. Therefore, an arbitrary series of requirements for candidate emulsifying agents was set up as follows:

(1) The emulsifying agent must make a water-in-oil type of emulsion in which Perclene is the continuous phase.

(2) The emulsifying agent must make an emulsion which will adhere well to vertical surfaces.

(3) The emulsion must be stable when chloroamides are dispersed in it.

(4) The chloroamide-containing emulsion must be prepared easily by stirring the ingredients by hand with a paddle.

(5) The emulsifying agent should preferably be soluble in Perclene, and this solution should be stable under various conditions of storage.

(6) A somewhat viscous emulsion would be desirable because it would require less chloroamide powder to make a suitably thick paste.

Much of the preliminary work consisted of screening the emulsifying agents on the basis of these requirements. Additional factors were expected to influence the selection of the best emulsifying agent from those which satisfied these six requirements.

### CONFIDENTIAL

- 2 -

こので、このないのないないで、

### (1) Preliminary Tests

10. Over 100 surface-active agents were tested as follows: One gram of the surface-active agent was mixed with 20 grams of Perclene and the mixture examined for solubility of the agent in Perclene. Water was then added in 10 ml. increments, usually up to a total of 50 ml., and the mixture stirred after each addition with a Hamilton Beach high-speed stirrer. The mixture was then examined for (a) emulsion formation, (b) type of emulsion, (c) stability of the emulsion, and (d) thickening action. The results are tabulated in Appendix A, Table I.

11. Those agents which gave no emulsion were dropped, as were a number which gave O/W emulsions. None of the O/W type showed evidence of appreciably thickening the emulsions. Of those agents which gave water-in-oil emulsions, a number were eliminated because the emulsions broke quickly.

### (2) Preparation of Hand-Stirred Emulsions Containing Chloroamides

12. The 25 agents which survived the screening tests were examined further by a procedure similar to that described above, except that hand stirring only was used. At the same time emulsions were prepared with the addition of S-461 powder. In no case did the addition of S-461 decrease the ease of emulsification or stability of the emulsion. In some cases the addition of S-461 improved the speed of emulsification. From observations based on these experiments, the emulsifying agents were divided arbitrarily into three classes: most promising, intermediate and least promising. This was the basis for the classification shown in Appendix A, Table II. In the most promising class were eight emulsifying agents, all of which were long chain fatty acid esters of sorbitan, mannitan or mannide, and all were products made by the Atlas Powder Co.

(3) Decontamination Tests on Dock Paint

13. Emulsion pastes were mode up using the eight most promising emulsifying agents with S-461, RH-195 and S-210, according to the following formula:

- 20 g. Porclone
- l g. Emulsifying Agent
- 30 g. Tap water
- 5 g. S-461, RH-195 or S-210

14. Decontamination tests were made in the following manner: Two-inch square steel panels previously painted with zine chromate primer and two ceats of deck paint were contaminated with 2 drops (0.05 g.) of H spread on and allowed to stand for one hour. The decontamination paste was then liberally applied and left for one nour, then washed with water under the tap, the panels blotted and dried and tested at 35°C with Congo Red-S-328 test paper, in conjunction with sodium carbonate filter paper. The paper test times were recorded in minutes and all tests which were still negative after 45 minutes were recorded as negative.

15. The results obtained for the decontamination of deck paint with the emulsion pastes are given in Appendix A, Table III. Satisfactory decontamination was obtained with all pastes except S-461 and RH-195 with mannitan triricinoleate, RH-195 with mannitan diricinoleate and S-210 with Span 40 and Span 60.

CONFIDENTIAL

In general, pastes made with S-461 were most viscous, less viscous with S-210, and the RH-195 pastes were thin. Mannitan diricinoleate and mannitan triricinoleate emulsions were the loast satisfactory with all three chloroamides. They gave poor emulsions which broke and dried out on the panols, especially with RH-195. Arlacel A was somewhat better, but not as good as the remaining five emulsifying agents. Span 40, Span 60 and mannitan monolaurate made the thickest pastes when used in the above formulation. It was later learned that the manufacture of derivatives of mannitol had been suspended. The mannitan derivatives were in general no better than those of sorbitan. Therefore, only a few additional experiments were made with mannitan esters.

# B. Factors Affecting the Efficiency of Emulsion Pastes for the Decontamination of H:

16. Because of the promise shown by the emulsion pastes in preliminary tests, a study was made of the effect of changing the proportions and ingredients. At the same time the decontamination efficiency for H under various conditions was studied.

### (1) Effect of Varying the Perclene/Water Ratio

17. The first tests were made with a Perclene/water ratio of 20/30 by weight. In another experiment emulsion pastes of S-461 were prepared in which the amount of water was increased to give a ratio of 20/50. This data is included in Appendix A, Table III. These pastes decontaminated about as well as did similar 20/30 pastes. The increased water content made the pastes more viscous.

18. In another experiment four S-461 emulsion pastes were prepared using a 20/80 ratio of Perclene/water. The emulsifying agents used were Arlacel C, Span 80, Span 60 and Span 40. These pastes decontaminated H satisfactorily as shown in Appendix A, Table III. However, increasing the Perclene/water ratio to 20/80 made it more difficult to prepare the emulsions by hand. The emulsions were less stable and allowed water to separate.

19. The Perclene/water ratio was varied also in other experiments. It was found that a smaller proportion of water gave less viscous emulsions which tended to run off vertical surfaces. A larger proportion of water gave unstable emulsions which were more difficult to prepare by hand stirring. As a result of these experiments a 20/50 ratio of Perclene/water by weight was chosen as most likely to give good results.

### (2) Effect of Varying the Amount of Emulsifying Agent

20. Pastes with a Perclene/water ratio of 20/80 were prepared using 5% S-461, RK-195 or S-210. The amount of emulsifying agent, Span 40 or Span 80, was varied from 1%, 5% to 10% of the weight of Perclene. These pastes were tested for decontamination of H in deck paint. All the S-461 and RH-195 pastes decontaminated H completely. The data for the S-210 pastes is given in Appendix A, Table 1V.

CONFIDENTIAL

Nu - 2

のないのないの

21. There was no significant difference in decontamination efficiency due to variation in percentage of emploifying agent. The emulsions made using 1% Span 40 or Span 80 were difficult to propare and broke quickly. The 5% and 10% emulsions were satisfactory excrete for the RH-195 pastes which were less stable. The 10% emulsifying agent emploitions where the most viscous, the 5% somewhat less viscous and the 1% were quite to the This effect was noted in other experiments in which the amount of emulsify the gent was varied from 5% to 10% and the Perclene/ water ratio was 20/30, 20/50, 20/65 and 20/80. On the basis of these and other experiments, a 10% solution of emulsifying agent in Perclene was considered to be the most satisfact

### (3, Choice of Chloroamide

As a result of a number of preliminary experiments some of which have already been described, the characteristics of RH-195, S-461 and S-210 in the emulsion pastes had been noted. The RH-195 and S-210 used had been micronized. The emulsions containing S-461 were stable and the decontamination efficiency was good. S-210 emulsion pastes were not as viscous as those made with S-461 and did not decontaminate quite as well, although they were stable. RH-195 emulsion pastes were thin, unstable with "leaking" of water, and were not suited for application to vertical surfaces. When applied to horizontal panels decontamination was usually obtained.

23. Of the chloroamides listed above, S-461 gave the best emulsion pastes However, S-461 is casily ignited and decomposes spontaneously after ignition. A number of other chloroamides and mixtures of S-461 with materials designed to inhibit the decomposition of S-461 on ignition were tested for use in emulsion pastes. Attempts were made to prepare 20/50 type emulsions containing 5% by weight of Span 20 (sorbitan monolaurate) or Span 80 (sorbitan monooleate) in Perelene and containing the chloroamides or mixtures listed below in the amount of 10% of the final paste:

- (a) S-330 (micronized) made good stiff emulsions with both Spans, with no sign of breaking after 3 hours.
- (b) S-222 made good, fairly stiff emulsions which were still quite good after 3 hours.
- (c) S-300 emulsions made with Span 80 broke within a few minutes. They were readily re-emulsified, but were thin and broke quickly. S-300 emulsions made with Span 20 were much better than with Span 80, although they "leaked" some after an hour and were definitely thinner after three hours.
- (d) S-145 amulsions began to break after about one hour. Span 20 was better than Span 80.
- (c) RH-851 emulsions with Span 20 had broken slightly within an hour; with Span 80 they broke quickly and bocame quite thin.

### CONFIDENTIAL

1

- 5 -

Contract GUNERAL MARKING

- (f) S-436 reacted vigorously with Span 80 with the evolution of heat. However, stable viscous emulsions containing S-436 were prepared using Span 20.
- (g) S-461/Infusorial earth mixtures in Perclene prevented emulsification.
- (h) Infusorial earth prevented emulsification.
- (i) S-461/Bentonite mixtures prevented emulsification.
- (j) Bentonite prevented emulsification.

24. Of those listed above, S-330, S-222 and S-436 made the best emulsions and were tested for the decontamination of H in deck paint. The results are given in Appendix A, Table V. Except for S-330 pastes made with Span 80, none of these pasts decontaminated satisfactorily. The pastes made with these chloroamides "skated" over the panels where liquid mustard was still standing and did not mix well with the H. This is in contrast to S-461, S-210 and RH-195 pastes, which seemed to absorb liquid H readily, adhering as well to the places where liquid H was still standing as where liquid H was not present.

### (4) Substitution of Sca Water for Tap Water

25. The emulsion pastes studied thus far were made with tap water. Because it would be desirable to be able to make these pastes with sea water as well as fresh water, some emulsions were prepared using a "synthetic" sea water. Emulsion pastes prepared with sea water, Perclene, S-461 and mannitan monolaurate, Span 40, Span 60 or Span 80 were thin and broke quickly. They were unsetisfactory for application to vertical surfaces, but when applied to horizontal deck paint panels decontaminated H satisfactorily. Sea water emulsion pastes made with S-436 had fairly good physical properties, but decontaminated H poorly as did similar S-436 emulsions made with tap water.

26. It was found possible to make fairly satisfactory emulsion pastes with sea water by adding polybutene or other stabilizers in addition to the emulsifying agent. In the event that emulsion pastes should be considered practical for use, suitable modification could doubtless be made to allow the use of sea water in the formulations.

### (5) Length of Time of Application of Emulsion Paste

27. **L**11 previous trials for decontamination of H in deck paint were made by leaving the paste on fer one hour. S-210 pastes using both Span 20 and Span 80 were used to decontaminate H in deck paint, the paste being left on for 20, 40 or 60 minutes. The results of these tests are given in Appendix A, Table VI. It is apparent that 20 minutes is not sufficient time and 60 minutes gives somewhat better results than 40 minutes. On the basis of these results it was judged that a 60-minute application should be used.

### CONFIDENTIAL

Ť.

### (6) Effect of Temperature on Preparation and Decontamination

28. Pastes were made using Span 20 or Span 80, Perclene, S-461 and water as follows: (1) ice water, (2) tap water at room temperature, and (3) tap water at 70°C. Water at all three temperatures was easily emulsified. There was a slight difference in the viscosity of the pastes, the hot water pastes being less viscous than the cold. The emulsion pastes made with ice water were kept at 4°C, these made with room temperature water were kept at room temperature, and these made with 70°C water were kept at 45°C for one-half hour. There was no observable change in these pastes during that time.

29. The decontamination of H in deck paint at low temperatures was tested as follows: Deck paint panels were contaminated at room temperature and left for 45 minutes, then placed outdoors (11°C) for 15 minutes and finally kept at 3°C for 15 minutes before the paste was applied. The pastes were 20/50 type with S-210 and were prepared from (1) 5% Span 20 solution in Perelene kept at 3°C for 6 days, (2) 10% Span 20 solution in Perelene kept at 3°C for 10 days, and (3) 5% Span 80 solution in Perelene kept at 3°C for 18 days. The water used was at 3°C. There were no significant differences in the case of preparation or stability of these pastes compared to pastes prepared from similar materials previously brought to room temperature. The pastes prepared at 3°C were applied to the H-contaminated panels and left at 3°C for one hour, then the pastes were removed and the panels tested at 35°C. All results showed complete decontamination under these conditions.

### (7) Sequence of Addition of Ingredients

30. It was found that S-461 emulsion pastos could not be prepared by first mixing the S-461 with water, then adding the Perelene solution of the emulsifying agent. Emulsifying agents tried were Span 40, Span 60 and Span 80. Emulsion pastes containing S-210 and RH-195 could be prepared by mixing the chloroamide and water first. Emulsion pastes of all three chloroamides were successfully prepared by adding the ingredients in the following order: Perelene solution of Span, water, chloroamide; or Perelene solution of Span, chloroamide, water. The latter procedure was the casiest to use. It was concluded that the best method of preparing the emulsion pastes was to wet out the chloroamide in the Perelene solution of the emulsifying agent first, and then add the water with vigorous stirring.

### (8) The Use of Other Solvents

31. Although Perclene was a desirable decontamination solvent in many ways, certain tests indicated that Perclene was more volatile than desired, even when used in the emulsion pastes. For this reason several other solvents were examined.

32. The characteristics of the solvents were as follows:

Hoxachlorobutadiene (Hooker Electrochemical Company) is non-inflammable, b.p. 210-220°C., m.p. -19 to -22°C., and is not easily hydrolyzed by water or mild alkalies. Emulsion pastes made with this solvent were physically satisfactory and did not harm deck paint appreciably.

CONFIDENTIAL

- 7 -

Hexachloropropene is non-inflammable and has a high boiling point and a low melting point. It likewise was readily emulsified and did not harm deck paint.

Chloropropane Liquid 170 (Hooker Electrochemical Company) is noninflammable and has a boiling range of 160° to 260°C and does not freeze but becomes quite viscous below -50°C. Good emulsion pastes were made with this solvent which did not harm dock paint.

Butyl laurate is a relatively non-inflammable, high-boiling solvent with a melting point of less than -10°C. Emulsions made with this solvent were not very stable, although there was no indication of a reaction between chloroamide and solvent.

33. The results of decontamination tests with pastes made using these solvents are given in Appendix A, Table VII. None of the emulsion pastes containing these solvents decontaminated deck painted panels very well. Shurries of chloroamides mixed with these solvents did not decontaminate well either. Determinations of the solubility of chloroamides in hexachlorobutadiene and hexachloropropene (Table VIII) indicated that the failure to decontaminate was probably not due to lack of solubility of the chloroamides in these solvents.

34. Several other solvente were tried, but they did not perform well in the pastes. Tetrachloroethane made good emulsion pastes, which, wever, completely stripped the paint from the test panels, so that no tests were made for completeness of decontamination. It was concluded that Ferelene was the best solvent of those tried for use in these emulsion pastes in spite of its volatility.

(9) Conclusion

35. As a result of the studies outlined above, the following ingredients, proportions and procedure were selected for the preparation of the emulsion type decontamination pastes:

| Ingredient               | Parts by   | Weight |
|--------------------------|------------|--------|
| Perclone                 | 18         |        |
| Span 20 (sorbitan monol: |            |        |
| or Span 80 (sorbitan mo  | onooleate) |        |
| S-461 or S-210           | 7          |        |
| Water                    | 50         |        |

The paste is prepared by mixing the chloroamide with the Perelene solution of the emulsifying agent and then adding the water with stirring. This paste is then applied to the contaminated surface and left for one hour, after which it is flushed off with a stream of water, using brushes if necessary.

### C. Decontamination of H in Various Materials

(1) Wet Dock Paint

36. In the tests of the emulsion pastes for the decontamination of H described thus far, steel panels painted with deck paint were used exclusively.

CONFIDENTIAL

- 8 -

あいましょう 気を行うす

The panels used were dry. Further tests were made to determine whether the emulsion pastes would decontaminate deck paint wet with fresh water or sea water. After the H had been left on the panels for one hour, they were wet down with fresh water and sea water respectively, and then the omulsion paste was applied. The pastes adhered very well to the wet panels and did not harm the paint. The paper test times are given in Appendix A, Table IX. It is evident that decontamination of H in dock paint was successful under these conditions also. It may be noted here that the emulsion pastes did not have any harmful effect on deck paint, wet or dry.

### (2) Airplane Paints

37. Decontamination tests were made for H on both M485 and DuPont 71 Line lacquers over zine chromate primer on steel. These panels were contaminated with H and decontaminated with the pastes in the same manner as were the deck paint panels. The results of the tests on M485 lacquer are given in Appendix A, Table X. The M485 paint was considerably softened so that some of it was removed during the removal of the paste. The DuPont 71 Line panels were decontaminated completely by the emulsion paste treatment even after 20 minute application, and were apparently unharmed by the treatment.

### (3) Doped Fabrics

38. S-461 and S-210 emulsion pastes using Span 20 or Span 80 were used to decontaminate H in doped fabrics, both cellulose nitrate and cellulose acetate butyrate types. The results are given in Appendix A, Table XI. The cellulose nitrate doped fabrics were decontaminated but the cellulose acetate butyrate fabrics were not. No harmful effect was noted on either type of coating. The experiment was repeated on cellulose acctate butyrate panels, except that the pastes were left on for two hours. Slightly better results were obtained. To determine the effect on the tensile strength of fabrics contaminated with H and decontaminated with the pastes, or fabrics treated with the pastes only, measurements were made on the suries listed in Appendix A, Table XII. Each contamination and decontamination treatment was made three times at three day intervals. Where H was used, it was left at least one hour before applying the pastes. The tensile strength measurements (one-inch grob test) were made after two weeks outdoor exposure following the last treatment. Each figure given in the table is the average of four measurements. The data show that tensile strength of these fabrics was practically unaffected by the emulsion pastes applied with or without previous contamination with H.

### (4) Clear Plastics

39. Decontamination of H in Lucite, Plexiglas and cellulose acetate sheet was attempted with pastes of the 20/50 Perclene/water type made with S-210 and S-161. Span 20 and Span 80 were the emulsifying agents. Two drops (0.05 g.) of H was left on 2" x 2" plastic panels for one hour and the paste applied and left for one hour. All the panels were completely decontaminated except one Plexiglas panel, which gave a negative test after 24 hours. No damage to the plastics was apparent except that caused by the exposure to liquid H.

### D. Decontamination of Other C. W. Agents

### (1) Decontamination of HV

40. Enulsion pastes of the 20/30 Perclene/water type made with S-161 using 5 different emulsifying agents were used to decontaminate HV (H containing 8% chlorinated rubber) on deck paint panels. The HV was left on for one hour before application of the paste. The results of the paper tests are given in Appendix A, Table XIII. The decontamination was good and the paint was not harmed.

### (2) Decontamination of L

41. S-461 emulsion pastes of the 20/30 Perclene/water type, using 5 different emulsifying agents were used to decontaminate L on deck paint panels. The L was allowed to remain for one hour before decontamination was attempted. DT paper was used to detect any residual L after decontamination. If no positive test was obtained in 120 minutes at 35°C the test was recorded as negative. The results are given in Appendix A, Table XIII. In all cases decontamination was complete. The panels were bleached and pin-point blisters were numerous on each panel wherever L had been spread. This is the usual effect of L on deck paint.

### (3) Decontamination of Nitrogen Hustards

### (a) HN-3

42. Deck paint panels  $(2^{\circ} \times 2^{\circ})$  were each contaminated with 0.05  $\varepsilon$ . of HN-3. After one hour, decontamination was attempted by several different methods. Tests for residual HN-3 were made with sodium carbonate papers spotted with DB-3 reagent used in conjunction with a filter of sodium carbonate paper. If no positive test was obtained within 30 minutes, the tests were reported as negative. The results are given in Appendix A, Table XIV. In addition to emulsion pastes of 3-210 and S-h61, decontamination was attempted by spraying the panels with a solution of RH-195 or S-h36 in TCE. Comparison with the blank shows that all the methods used were helpful in the removal of HN-3 but that the spray of TCE/S-h36 was outstanding in its beneficial effect.

### (b) <u>H:-1</u>

13. Tests similar to those for HN-3 were made using HN-1 as the contaminant. The results are given in Appendix A, Table XV. The S-136 emulsion paste was the best decontaminating system and the spray of TCE/S-136 was good. None of the other methods were very effective, although the surface contamination was removed.

### (4) Decontamination of Lachrymators

44. Some attempts were made to decontaminate CN and BBC in deck paint. The emulsion pastes were not very effective in the removal of either of these lachrymators. The Perclone/petassium eleate/S-461 paste discussed in a provious report was very effective in removing CN but did not decontaminate BBC completely.

CONFIDENTIAL

÷,

- 10 -

E. Other Considerations Regarding Emulsion Pastes

45. The emulsion pastes were examined in regard to several other properties of importance for a decontaminating system.

### (1) Storage of Perclene/Emulsifying Agent Solutions

15. Solutions of Span 20, Span 10, Span 60 and Span 80 in Perclene were stored at 5°C., room temperature and 45°C. for 4 weeks. The results are given in Appendix A, Table XVI. At 5°C there was considerable separation of Span 40 and Span 60 from a 5% solution. The solutions of Span 20 and Span 80 showed no separation except for a slight amount of insoluble material which did not increase in amount on standing. Solutions filtered before storage did not show this slight separation.

47. Perclene solutions of Span 20 (5%) and two different samples of Span 80 (each 10%) were placed at -20°F for 24 hours. All the samples were frozen. When warmed to room temperature each molted with the separation of the Spans which redissolved easily when the mixtures were agitated. The samples were again stored at -20°F. After 48 hours the temperature was raised to 0°F. The solutions were homogeneous when examined 24 hours after raising the temperature. The samples were then stored at room temperature for 5 months. There was no separation or evidence of reaction or decomposition of the components.

48. Solutions of Span 20 and Span 80 in Porclone made satisfactory emulsion pastes after eight months storage at room temperature, which included summer temperatures exceeding 30°C at times. There was no evidence that any deterioration of the solutions had occurred.

### (2) Storage of Prepared Emulsion Pastes

49. The stabilities of emulsion pastes made with Span 20 or Span 80 and S-461, S-210 or RH-195, stored at room temperature and 45°C are tabulated in Appendix A, Table XVII. Examination of the data shows that S-210 pastes lost no active chloring when kept at room temperature for 8 weeks. S-461 pastes made with Span 20 were likewise stable for 8 weeks but these made with Span 80 began to deteriorate after 4 weeks at room temperature. Pastes made with RH-195 were somewhat less stable than these made with S-461.

50. At 45°C, the S-210 pastes did not show less of active chlorine over after 8 wocks. S-461 pastes were fairly stable for two weeks and RH-195 pastes showed considerable less of active chloring after one week.

### (3) Addition of Thickoning Agonts

51. A number of formulations for emulsion pastes were made using polybutene and aluminum scaps as thickeners. The thickeners were dissolved in the Perclone after solution of the Span. In every case the resulting emulsion was casy to prepare, smooth and gave more effective adhesion to painted panels. Decentamination of H was effective, but the dried paste films containing the thickeners were more difficult to remove completely from the panels, except where aluminum eleate was the thickener. Because of the batter adhesion, it is to be recommended that, if emulsion pastes are considered for use, a thickener such as aluminum eleate be added to the extent of 1 or 2% of the Perclene solution. Such solutions including Span 20 or Span 80 show no separation or deterioration after storage for 8 months at 5°C.

CONTIDENTIAL

Ŧ

い、「「「「「「「」」」」」

### (4) Corrosive Action of Emulsion Pastes on Metals

52. It was observed that the emulsion pastes were less corrosive to metals than was TCE/RH-195 solution. The NDRC group studying decontamination at the DuPont Experimental Station also observed this and stated that the emulsion pastes were about as corrosive as the Perclene/potassium oleate/S-461 paste. This latter system was found to be much less corrosive than TCE/RH-195 solution.

### (5) Storage of S-461 in Perclene/Span 80 Solutions

53. S-h6l powder is believed to be unsuitable for storage aboard ship because of its inflammability. Numerous attempts have been made at this and other laboratories to reduce the hazard by the addition of water, hydrated salts and inert materials such as bentonite. None of these attempts proved successful from a practical standpoint. Likewise mixtures of S-46l with as much as 60% of a noninflammable chloroamide, such as S-210 and S-436 did not inhibit the decomposition of S-h6l sufficiently.

54. Because of the stability of the emulsion pastes to loss of active chlorine, it seemed possible that S-461 might be stored in the Perclene/Span solution. Accordingly, mixtures of S-461 in Perclene/Span 80 solution were put in storage at room temperature, 45°C and 60°C. The storage tests were dropped after 3 weeks because of lack of stability of the mixtures due to loss of active chlorine. The results are given in Appendix A, Table XVIII.

### (6) Attempts to Camouflage Emulsion Pastes

### (a) Addition of Dispersible Pigments

A number of S-hól emulsions were prepared using Span 3C as the emulsifying agent and with a Perclene/water ratio of 20/30, 20/50 or 20/80. DuPont numbers TLX-LA and TLX-68 were blue pignent pastes and TLX-69 was a carbon black paste. Suitable blue-gray pastes could be prepared by mixing one of the blue pigments with TLX-69. The addition of TLX-LA made it difficult to prepare the emulsions and the resulting emulsions were less stable. TLX-68 and TLX-69 did not affect the emulsions. It has been reported by the NDRC that carbon black cannot be stored with chloroamides without loss of active chlorine. Consequently, attempts were made to store TLX-68 and TLX-69 as a dispersion in the Perclene/Span solution. TLX-68 alone showed very little separation after three weeks, but TLX-69 and a mixture of TLX-68 and TLX-69 showed considerable separation within a few days. Because of this separation, other means of camouflaging the pastes were sought.

### (b) Addition of Perclene-soluble dyes

A number of oil soluble black and blue dyes were obtained and tested as follows. One gram of the dye was dissolved in 100 g. of Perelenc. Solubility and color of the solution was noted. Emulsion pastes were then prepared using Span 80, S-h61 and a 20/50 ratio of Perelenc/water. The color of the paste, both wet and dry, was recorded. The results are shown in Appendix A, Table XIX. Hixtures of Oil Black 5115 PDR, Oil Black 24087 or Calco Oil Black 8603 with AZP Oil Blue Black B, Calco Oil Blue Goo or Sudan Blue GA 2h7459 incorporated in the pastes gave satisfactory camouflage colors. Storage of these dyes in Perelene/Span 80 solutions was satisfactory. It was concluded that the use of Perelene soluble dyes was the most satisfactory way of coloring the pastes.

CONFIDENTIAL

- 12 -

この世界医療部院

### PART II. COMPARISON OF THE EMULSION PASTES WITH OTHER DECONTAMINATING SYSTEMS

### A. Decontamination Efficiency

57. A number of experiments were carried out in an attempt to determine, for each of four decontamination systems, the relative coverage in sq.yd./gal. which would effectively decontaminate H in deck paint. At the same time observations were made regarding the ease of handling the various systems. The systems used were TCE/RH-195 solution, S-461 or S-210 emulsion pastes, Perclene/potassium oleato/S-461 paste and a modified potassium oleate paste. This improved potassium cleate paste is described in NDRC Report OSRD No. 3927, "Improved Decontaminating Systems", August 1, 1944. The NDRC (DuPont Group) found that the addition of a special wax (Aristowax 160/165) to the potassium oleate/S-210 paste considerably improved its decontaminating efficiency and made-it somewhat easier to remove than earlier pastes of this type.

58. Each of these systems would require the storage of two components. Representative formulations used were as follows:

|                         | Parts by We   | eight                                                                           |
|-------------------------|---------------|---------------------------------------------------------------------------------|
| System                  | Component A   | Component B                                                                     |
| TCE/RH-195              | l part RH-195 | 10 parts TCE                                                                    |
| Emulsion Paste *        | 1 part S-461  | 2.6 parts Perclene<br>0.3 parts Span                                            |
| K Oloato Paste          | 1 part S-461  | 3.3 parts Perclene<br>1.7 parts K Olcate                                        |
| Improved K Olcate Paste | 1 part S-210  | 0.53 parts Perclene<br>1.75 parts K Olcate<br>(28% H2O)<br>0.27 parts Ba(OH2).8 |
|                         |               | H <sub>2</sub> 0<br>0.15 parts Aristowax<br>160/165                             |

### \* Exclusive of water used for make-up.

59. Navy 20B blue deck paint on steel was the surface used in all the decontamination tests. Small panels (2" x 2" and 6" x 12") were used indoors at room temperature and outdoors at temperatures as low as  $45^{\circ}$ F. A 3-inch Navy gun and mount was decontaminated at temperatures from  $45^{\circ}$ F to  $80^{\circ}$ F. Steel panels,  $36^{\circ}$  x 72", were used in experiments, most of which were carried out in a large gas chamber at  $95^{\circ}$ F. In all cases where used, TCE/RH-195 was sprayed on the contaminated panels. In the larger scale tests both the Navy 3-gallon and the Army 3-gallon sprayer were used. The Army sprayer was the more convenient to use in applying the solution officiently to a small area. In the larger scale tests, the pastos were sprayed with the 3-gallon sprayers or applied with a paint brush. Details of some of these experiments are given in Appendix B.

### CONFIDENTIAL

60. On the basis of the data from Appendix B, it was estimated that, with most efficient usage of each system, H contamination of 0.75 oz/sq.yd. could be decontaminated safely by the application of 0.7 lb. of TCE/RH-195 solution, 1.5 lb. of S-461 emulsion paste, 1.5 lb. of K Oleate/S-461 paste, or 0.9 lb. of Improved K Oleate paste per square yard of contaminated surface. The pastes were applied by brushing in most cases. The TCE/RH-195 was sprayed twice with a 10minute interval between sprayings. The density of each system was found to be: TCE/RH-195, 13.2 lb/gal.; emulsion paste, 9.5 lb./gal; K Oleate/S-461 paste, 11.3 lb/gal; and Improved K Oleate paste, 12.1 lb./gal. From these figures was calculated the coverage in sq.yd./gal. for each system. These figures are tabulated below:

| System            | Lb/yd <sup>2</sup><br>Needed | Density<br>Lb./Gal. | Coverage<br>Sq.Yd/gal. | Coverage<br>Sq.yd./3 gal.<br>sprayer |  |
|-------------------|------------------------------|---------------------|------------------------|--------------------------------------|--|
| TCE/RH-195        | 0.7                          | 13.2                | 19.0                   | 57                                   |  |
| Emulsion Paste    | 1.5                          | 9.5                 | 6.3                    | 19                                   |  |
| K Oleate Paste    | 1.5                          | 11.3                | 7.5                    | 22                                   |  |
| Improved K Oleate | 0.9                          | 12.1                | 13.4                   | ЦO                                   |  |

From these figures, it is evident that TCE/RH-195 solution would be the most convenient to use because it will cover a larger area than that covered by a similar volume of paste.

### B. Storage Requirements

Í,

<u>.</u>...

61. Using the values for the coverage by each system obtained in the preceding paragraph, the relative weight and volume requirements necessary for decontaminating a square yard of surface would be as follows:

|                                                              | Weight                        | to be carried (Pe    | ounds)               |
|--------------------------------------------------------------|-------------------------------|----------------------|----------------------|
|                                                              | Solvent or<br>Solvent Mixture | Chloroamide          | Total                |
| Emulsion Paste, S-461<br>TCE/RH-195<br>K Oleate Paste, S-461 | 0.39 <b>*</b><br>0.63<br>1.25 | 0.14<br>0.07<br>0.25 | 0.53<br>0.70<br>1.50 |
| Improved K Oleate Paste                                      | 0.81                          | 0.09                 | 0.90                 |

\* This does not include 0.97 lb. of water needed.

|                           | 10260210                      |               |       |
|---------------------------|-------------------------------|---------------|-------|
|                           | Solvent or<br>Solvent Mixture | Chloroamide** | Total |
| Emulsion Paste, S-461     | 0.24                          | 0.34          | 0,58  |
| TCE/RH-195                | 0.39                          | 0.14          | 0.53  |
| K Oleate Paste, 8-461     | 1.00                          | 0.62          | 1.62  |
| Improved K O paste, 8-210 | 0.56                          | 0.18          | 0.74  |

\*\* Assuming density of S-210 and RH-195 is 0.5 and of S-461 is 0.4.

Relative Volume to be carried

CONFIDENTIAL

- 14 -

62. These calculations show that the paste systems would require as much or more space to store the necessary ingredient: than is the case with TCE/ RH-195. Furthermore, if S-210 were used in the emulsion paste somewhat more paste would be required per unit area. Also it should be pointed out that for a lighter contamination of H, it might be possible to apply the TCE/RH-195 more thinly. It is doubtful that the emulsion paste could be effective in a much thinner layer because the paste would dry too quickly. The improved potassium oleate paste could be used in a somewhat thinner layer because the special wax retards the evaporation of Perclene.

### C. Preparation and Application

63. The TCE/RH-195 solution is readily mixed and easily applied by spraying or with swabs. The prepared solution is stable for several weeks at moderate temperatures, but should ordinarily be prepared shortly before use. The residues should be hosed off with water, but this offers no difficulty as the residues are readily washed away.

64. The emulsion paste is readily mixed and may be applied by spraying or brushing. It is more apt to clog any spray nozzle than is the TCE/RH-195 solution, and it is more difficult to clean from the 3-gallon sprayers. The prepared paste is stable for several months at moderate temperatures, but it is not recommended that it be prepared in advance. The residues are usually readily dislodged by hosing with water but may require scrubbing with a brush in some cases. The residues are much more voluminous than for TCE/RE-195, and disposal of them will require more attention to drainage facilities.

65. The Perclene/potassium oleate/S-210 paste is easily mixed but requires more stirring than do the other two systems. The solvent mixture, before adding the S-210, will separate to some extent on storage and is difficult to remix when cold  $(35^\circ - 40^\circ F.)$ . The prepared paste will lose much of its active chloring within twenty-four hours and must be prepared fresh shortly before use. This paste also is more apt to clog the spray nozzle and is difficult to remove from the 3-gallon sprayer. The residues are more difficultly removed than for the other two systems and require scrubbing in addition to hosing with water. The residues from this paste are likewise voluminous.

D. Other Considerations

ŝ,

117

66. Both the emulsion paste and potassium oleate paste would require the addition of dyes or pigments to camouflage the white color of the pastes or paste residues. Satisfactory means have been worked out for doing this. TCE-RH-195 solution requires no camouflage. Also, caking of the chloroamide would increase somewhat the work of stirring up the pastes, as compared to the TCE-RH-195 solution.

### E. Summary of Comparison of Systems

67. The comparisons of the three best systems under discussion are summarized in Table XX. From this table it is seen that the chief disadvantages of the TCE/RH-195 solution are its toxicity, corresive effects on metals and harmful effect on plastics. The pastes are much better in these respects but suffer from

CONFIDENTIAL

lower covering power, somewhat greater storage requirements and greater difficulty in application and removal. It should be noted also that S-210, which is used in the pastes, is not in production at present although it can be manufactured on a large scale.

68. The potassium oleate paste is a better decontaminant for the nitrogen mustards than are the other two systems. The potassium oleate paste will decontaminate CN, for which the other two systems are ineffective.

### TABLE XX

Comparison of Decontamination Systems for Use on Shipboard

|                                                 | TCE/RH-195<br>Solution | Improved<br>K Oleate/S-210 | Emulsion/S-210<br>Paste |
|-------------------------------------------------|------------------------|----------------------------|-------------------------|
| Decontamination of H                            | Good                   | Good                       | Good                    |
| Decontamination of L                            | Good                   | Good                       | Good                    |
| Decontamination of IN                           | Fair                   | Fair                       | Poor                    |
| Decontamination of CM                           | Foor                   | food                       | Poor                    |
| Decontamination of BEC                          | Poor                   | Fair                       | Poor                    |
| Decontamination of wet surfaces                 | Poor                   | Good                       | Good                    |
| Decon. at high temp. (95°F)                     | Good                   | Good                       | Good                    |
| Decon. at low temp. (50°F.)                     | Good                   | Good                       | Good                    |
| Inflammability of Laterials                     | None                   | Nonc                       | None                    |
| Availability of Materials                       | Good                   | Good *                     | Good 👒                  |
| Lowest usable temporature                       | About -30°F            | About -4°F                 | About 32°F              |
| Campuflage necessary                            | .io                    | 162                        | Yas                     |
| Toxicity of vapors                              | Dad                    | Good                       | Good                    |
| Skin irritation                                 | Bad                    | Bad, if hot                | End, if hot             |
| Ease of Preparation                             | Good                   | Fair                       | Fairly good             |
| Stability of Mixture *                          | Good                   | Fair                       | Good                    |
| Ease of Application                             | Good                   | Fair                       | Fair                    |
| Ease of Removal                                 | Good                   | Requires scrub             | nued scrubbing          |
| Disposal of Residues                            | Good                   | Bad                        | Fair                    |
| Effect on deck paint                            | Bad                    | Little effect              | Little effect           |
| Corregion                                       | Pair                   | Good                       | Good                    |
| Effect on plastics                              | Bad                    | No offect                  | No offect               |
| Relative vol. of materials required             | 1.0                    | 1.4                        | 1.1                     |
| Covering power, yd <sup>2</sup> /3-gal. sprayer | 57                     | 40                         | 19                      |

\* S-210 is not in production at present date.

CONFIDE | TAL

. ........

### SUMMARY AND CONCLUSIONS

69. A now decontamination system, the emulsion paste, has been developed which consists essentially of a dispersion of a chloroamide in a viscous emulsion of water in Perclene. Water makes up 65% of the total weight of the system. The chloroamide giving best practical results is S-210. With the exception of its inflammability, S-461 is better than S-210. Span 20 (sorbitan monolaurate) and Span 80 (sorbitan monocleate) were found to be the best emulsifying agents for this purpose.

70. This system will satisfactorily decontaminate H in deck paint under various conditions. It will decontaminate L and HV readily, and will partially decontaminate HN-3 and HN-1, being as effective as TCE/RH-195 in this respect.

71. Cellulose acetate and methyl methacrylate clear plastics are readily decontaminated from H by the emulsion paste without further damage than that caused by H. Aircraft paints are fairly readily decontaminated from H, although Mu85 lacquer is softened and loosened by the paste. Cellulose nitrate deped fabric is decontaminated and cellulose acetobutyrate doped fabric partially decontaminated without damage by the paste to the coating or fabric.

72. The emulsion paste system is much less toxic, less corrosive to metals and less harmful to paint and clear plastics than is TCE/RH-195. The emulsion paste is not quite as easy to handle as TCE/RH-195 and would require slightly mere storage space. The mixed paste has about one-third as much effective covering power per gallon as does the TCE/RH-195 solution.

73. An improved modification of the NDRC potassium eleate paste has been examined and found to be about twice as efficient as the earlier potassium eleate paste. This improved paste would require more storage space than either the TCE/RH-195 solution or the emulsion paste, and is more difficult to remove after decontamination. The improved potassium eleate paste has about twice as much covering power per gallon as does the emulsion paste.

### RECOLDENDATIONS

74. None. The TCE/RH-195 solution is more efficient and is easier to handle than is any paste system thus far examined. The paste systems warrant consideration if the toxicity and deleterious effect of the TCE/RH-195 solution on many surfaces should ever make it necessary to use some other system.

| l'anufacturer<br>Arrer. Cyan.<br>Du?ont | Agent<br>Aerosol Or<br>Alkenol SA<br>Aluminum rahogany<br>sulfonate<br>Aluminur naphth-<br>enate<br>Alurinur oleate |                                                                             | TABLE I<br>Solubility of<br>Jer.<br>Agent in 10 gas.<br>Perclene<br>completely, 31001y<br>completely<br>completely on<br>heating<br>completely | of<br><b>f1-</b><br>sion                           | Emulsion<br>Type<br>0/: | Stability<br>of Buil- T<br>sion<br>bad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thicken <b>ing</b><br>Action<br>none<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| àtlas<br>DuPont                         |                                                                                                                     | solid<br>solid<br>solid<br>liquid<br>liquid<br>solid<br>solid<br>soft paste | completely or<br>heating<br>"<br>corridetely, slowly<br>completely, quickly<br>insoluble<br>disperses readily                                  | ea se ea se = = = = = = = = = = = = = = = = = =    |                         | р. ф. б. б.<br>6. б. б.<br>6. б. б.<br>6. б. б.<br>6. б. б.<br>6. б.<br>6. б.<br>6. б.<br>6. б.<br>6. б.<br>6. б.<br>7. б. | by Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Brock<br>Bro |
| Ohio Apex<br>Aessler<br>Kessler         | Rarium oleate<br>Butoxyethyl<br>stcentate<br>Butyl laurate<br>Butyl stearate                                        | solid<br>liquid<br>liquid<br>liquid                                         | <pre>vartially completely, quickly completely, quickly completely, quickly</pre>                                                               | no erulsion<br>difficult<br>difficult<br>difficult | 1 1 <sup>1</sup> 1      | <b>ba</b> d<br><b>b</b> ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | none<br>None<br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DuPont                                  | Calcium oleate solid<br>Chlorinated alkyl liqui<br>sulfonic acid<br>Cobalt naphtherate solid<br>Copper oleate solid | solid<br>Liguid<br>solid<br>solid                                           | partially<br>partially<br>slouly when heated<br>slouly when heated                                                                             | no e-ulsion<br>easy<br>no erulsion<br>àifficulty   | 11 11                   | bad<br>bad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | none<br><br>non^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

APPLIDIX A

, . . . .

.

,

.

| l <b>anufact</b> urer | Agent                                           | State                           | Solubility of<br>l gm.<br>Agent in 10 gm.<br><u>Ferclene</u> | Ease of<br>Erulsifi-<br>cation | Lmulsion<br>Type | Stability<br>of Frul-<br>sion | Thicke <b>ning</b><br>Action |
|-----------------------|-------------------------------------------------|---------------------------------|--------------------------------------------------------------|--------------------------------|------------------|-------------------------------|------------------------------|
| Vanderbilt<br>"       | Darvan No. 1                                    | solid<br>"                      | insoluble<br>"                                               | 1 (                            | •                | 11                            | 1 (                          |
| Devev & Almv          | Daxad No. 23                                    | =                               | Ξ                                                            | ) •                            | <b>)</b>         | ì (                           | ) 1                          |
| Glyco                 | Diethyleneglycolac-liquid                       | ie-liquid                       | complete                                                     | fair                           | 0/1              | fair                          | good                         |
| =                     | Diethyleneflycol                                | raste                           | completely                                                   | diffcult                       | 1                | bad                           | none                         |
| =                     | monoetnyl ether<br>Diethyleneflycol             | solid                           | completely                                                   | dificult                       | I                | bad                           | none                         |
| = :                   |                                                 | a <b>rate</b><br>quid           |                                                              | fair                           | 0/               | fair                          | Some                         |
| 2 2                   | Diglycol ricincleate<br>Diglycol stearate so    | lid                             | completely, cloudy<br>partially                              | fair                           | 0/11             | bad                           | slight                       |
| Gen.Dyestuff          | Emulphor A<br>Emulphor AG oil                   | liçuid                          | convletely<br>completely, cloudy                             | easy<br>"                      | 2/0              | fair<br>bad                   | slight<br>slight             |
| = =                   | soluble<br>Emulphor Ella<br>Emulphor ON         | "<br>solid                      | = =                                                          | 5 5                            | 170              | -<br>fair                     | none<br>slight               |
| Glyco                 | Ethyleneglycol<br>monosthyl ether<br>laurate    | liquid                          | completely                                                   | difficult                      | •                | bad                           | none                         |
|                       | Gelatin                                         | solid                           | insoluble                                                    | none                           | •                | ı                             | •                            |
| Glyco                 | Glyceryl oleyl                                  | liquid                          | complete                                                     | fair                           | 0/::             |                               | good                         |
| Kessler               | Glyceryl mono-                                  | solid                           | partially                                                    | =                              | 0/!              | good                          | =                            |
| Glyco                 | Glyceryl mono-                                  | Ξ                               | completely, turbid                                           | easy                           | 0/11             | 60                            | 2                            |
| Kessler               | ricinoteate<br>Clyceryl hono-                   | Ξ                               | <b>partial</b>                                               | fair                           | 0/               | 2                             | 2                            |
| Glyco                 | stearate<br>Clyceryl trile-<br>vulinyl tririci: | trile- liquid<br>triricinoleate | complete                                                     | difficult.                     | 0/::             | rooq                          | 1                            |

TABLE I (Cont'd.)

....

)

A STAN AND A

| Thick <b>ening</b><br>Action                                 |                              | ے<br>none<br>ب<br>slight                                                                      | none<br>-<br>some<br>-                                                       | i i                                            | good                             | good                      | good                     | good                           | good               | none                                   |
|--------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|---------------------------|--------------------------|--------------------------------|--------------------|----------------------------------------|
| Stability<br>of Emul-<br>sion                                | I                            | bad<br>- bad<br>- bad                                                                         | 50 og                                                                        | 11                                             | good                             | good                      | good                     | good                           | good               | fair                                   |
| Emulsion<br>Type                                             | •                            |                                                                                               | 0/#                                                                          | <b>₽ ₽</b>                                     | 0/品                              | 0/M                       | 0/M                      | 0/M                            | 0/m                | M/O                                    |
| Ease of<br>Emulsifi-<br>cation                               | no emulsion                  | ======================================                                                        | ut slow fair<br>eated no emulsion<br>" fair<br>if heated no emulsion         | no emulsion<br>"                               | easy                             | easy                      | easy                     | easy                           | easy               | easy                                   |
| Solubility of<br>l gm.<br>Agent in 10 gm.<br><u>Perclene</u> | insoluble                    | "<br>"<br>none or slight<br>partial                                                           | <pre>complete but slow " _if heated " _ " " partial complete, if heate</pre> | complete, if heated complete                   | complete •                       | complete                  | complete                 | complete                       | complete           | complete, turbid                       |
| State                                                        | solid                        | "<br>"<br>"<br>gel<br>paste                                                                   | "<br>solid<br>paste                                                          | solid<br>"                                     | -liquid                          | liquíd                    | liquid                   | n -ni                          | =                  | liquid                                 |
| Agent                                                        | Eimer & Amend Gum tragacanth | Hercose C High<br>Hornkem No. 3<br>Hydrocide 10-X<br>Igepal CA<br>Igepon T gel<br>Imerial. TX | Lanolin<br>Lead oleate<br>" stearate<br>" resinate<br>" ricinoleate          | Magnesium oleate<br>Manganese naphth-<br>enate | Mannitan diricino-liqui<br>leate | Mannitan mono-<br>laurate | Mannitan mono-<br>oleate | Mannitan tetraricin-<br>oleate | Mannitan triricin- | Modified sorbitan liquid<br>monooleate |
| Manufacturer                                                 | Eimer & Amend                | Horn<br>Rohm & Haas<br>Gen.Dyestuff<br>"                                                      | Mallinkrodt                                                                  |                                                | Atlas                            | Atlas                     | Atlas                    | Atlas                          | Atlas              | Atlas                                  |

TABLE I (Cont'd.)

;

ŧ

ŧ

1

| Manufacturer          | Agent                                    | State        | Solubility of<br>1 gm.<br>Agent in 10 gm.<br>Perclene | Ease of<br>Emulsifi- Emu<br>cation T | Emulsion<br>Type | Stability<br>of Emul-<br>sion | Thickenin,<br>Action |
|-----------------------|------------------------------------------|--------------|-------------------------------------------------------|--------------------------------------|------------------|-------------------------------|----------------------|
| Allied                | Nacconol EP<br>" NR                      | solid<br>"   | partial<br>"                                          | easy<br>"                            | щ.<br>М./О       | bad<br>"                      | none<br>"            |
| Glyco                 | Monoethylene- liquid                     | liquid       | complete                                              | =                                    | =                | I                             |                      |
| Wolf                  | glycol diricinc<br>Orotol N              | solid        | partial                                               | 2                                    | =                | J                             | 11                   |
| Proctor &             | Orvijs                                   | paste        | inscluble                                             | 2                                    | =                | bad                           | 2                    |
| Gamble<br>Parke Davis | Phemerol                                 | solid        | partial                                               | -                                    | =                | ι                             |                      |
| A.D. Mackay           | Potassium laurate paste                  | e paste      |                                                       | =                                    | ł                | bad                           | = :                  |
| DuPont                | " oleate<br>" salts of lin-              | paste<br>-   | =                                                     |                                      | t                | 2                             | 2                    |
|                       | seed oil acids                           | solution     | :                                                     | =                                    | ,                | =                             | 2                    |
| Beacon                | Potassium stearate paste                 | te paste     | =                                                     | <b>A</b>                             | M/0              | 69                            | at                   |
|                       | Ramapol WF                               | liquid       | complete                                              |                                      | =                | <b>=</b>                      | some                 |
| Gen.Dyestuff          |                                          | solid        | insoluble                                             | no emulsion                          | 1                | I                             | •                    |
| •                     |                                          | =            | partial                                               |                                      | , .              | poor                          |                      |
| Monsanto              | Santomerse #3                            | =            | complete                                              | -                                    | M/O              | = 1                           | slight               |
| =                     |                                          | liquid       | none to slight                                        |                                      |                  | : :                           | 1                    |
| Sherwood              | Sherosope L                              | =            | complete                                              | difficult                            | 1                | F                             |                      |
| Hel'g. Co.            | Chancenne N                              | 5            | =                                                     |                                      |                  | =                             | ŧ                    |
| 14                    | Sherosone T                              | =            | Ξ                                                     | =                                    | 1                | =                             | t                    |
| Ciba Co.              | Solvadine NC conc.                       |              | none to slight                                        |                                      | M/O              | 2                             | none                 |
| Atlas                 | Sorbide dipalm-                          | solid        | lete                                                  | fair W                               | /0               | fair                          | some                 |
| Atlas                 | itate<br>Sorbide monolaur- lig           | - liquid     | 1                                                     | easy                                 | =                | good                          | good                 |
|                       | ate                                      |              | :                                                     |                                      | :                | =                             | 5                    |
| Atlas                 | Sorbide mono-<br>stearate                | solid        | =                                                     | =                                    | •                | :                             | :                    |
| Atlas                 | Sorbitan mono- liqu<br>laurate (Span 20) | liquid<br>(C | =                                                     | =                                    | =                | 5                             |                      |

TABLE 1 (Cont'd)

ł

the states and the

| (Ţ)  |  |
|------|--|
| ont  |  |
| 9    |  |
| LE J |  |
| TAB  |  |

•

......

٩

١

| Manuíacturer               | Agent                                    | State      | Solubility of<br>l gm.<br>Agent in 10 gm.<br>Perclene | Ease of<br>Emulsifi-<br>cation | Emulsion<br>Type | Stability<br>of Emul-<br>sion | Thickeni <b>ng</b><br>Action |
|----------------------------|------------------------------------------|------------|-------------------------------------------------------|--------------------------------|------------------|-------------------------------|------------------------------|
| Ačlas                      | Sorbitan mono-                           | liquid     | complete                                              | easy                           | W/O              | good                          | good                         |
| Atlas                      | oleate (Span GU)<br>Sorbitan mono- solid | solid      | Ŧ                                                     | =                              | 3                | . 1                           | Ŧ                            |
| Atlas                      | paimitate appa<br>Sorbitan mono-         | liquid     | =                                                     | =                              | = .              | ŧ                             | E                            |
| Atas                       | ricinoleate<br>Sorbitan mono-            | solid      | -                                                     | =                              | .=.              | 1                             | 2                            |
| Atlas                      | scearace vopan<br>Sorbitan tri-          |            | Ξ                                                     | difficult                      | =                | =                             | slight                       |
| Atlas                      | laurate<br>Sorbitan trioleate            | ate "      | =                                                     | fair                           | ÷                | fair                          | some                         |
| Atlas                      | " tetralaurate                           | =<br>=     | 11                                                    | difficult                      | 1                | Jood                          | 1                            |
| Glvco                      | Sorbitol laurate                         |            | :                                                     | easy                           | M/0              | fair                          | good                         |
| Glyco                      | Soya lecithin                            | Ξ          | =                                                     | difficult                      | 1                | poor                          | slight                       |
| Glyco                      | Tetraethyleneglycol solid                | ycol solid | Ξ                                                     | easy                           | W/O              | ł                             | none                         |
| Glyco                      | monostearate<br>Tetraethyleneglycol      | .ycol "    | H                                                     | fair                           | 0/M              | poor                          | slight                       |
| <b>৵</b> ঽ৽                | distearate<br>Triton B 1956<br>" T 2004  | liquid     |                                                       | easy<br>"                      | M/O              | good<br>fair                  | good<br>none                 |
| ROAM & Haas<br>Bohm & Haas |                                          | naste      | partially                                             | difficult                      | ;                | poor                          | E                            |
|                            |                                          | liquid     | complete, turbid                                      | easy<br>"                      | M/0              | <b>8</b> 1                    | none                         |
| Eimer & Amend              | Turkey red oil<br>Tween 60               | : =        | insoluble<br>partial                                  | : =                            | 2                | 1                             | 2                            |
| Gen.Dyestuff               | Vultramine                               | solid      | insoluble                                             | no emulsion                    | ۲ <u>-</u>       | ł                             | I                            |
|                            | Zinc oleate                              | =          | partial                                               | difficult                      | I                | ł                             | ١                            |

-

### TABLE II

### Classification of Emulsifying Agents

These agents were arbitrarily divided on the basis of ease of emulsification of water in Perclene by hand stirring, and their stability in the presence of S-461.

| Most Promising                   | Intermediate               |
|----------------------------------|----------------------------|
| Arlacel A                        | Diglycol laurate           |
| Arlacel B                        | Glyceryl monoricinoleate   |
| Kannitan diricinoleate           | Mannitan monooleate        |
| Mannitan monolaurate             | L'annitan tetraricinoleate |
| Lannitan triricinoleate          | Sorbide monolaurate        |
| Sorbitan monooleate<br>(Span 80) | Sorbide monostearate       |

Sorbitan monopalmitate (Span 10)

Sorbitan monostearate (Span 60)

Sorbitan monolaurate (Span 20)

Sorb\* tan monoricinoleate

Sorbitol laurate

Triton B1956

### Least Promising

Glyceryl monolaurate Glyceryl monostearate Glyceryl oleyl triricinoleate Lead reginate Sorbide dipalmitate Sorbitan trioleate

### CONFIDENTIAL

TABLE III

;

\$

۱

.

1

# Decontamination of H in Deck Paint

The ratios 20/30, 20/50 and 20/80 refer to the Perclene/water ratio. Tests were repeated 24 hours later if positive one hour after decontamination.

|                                     |         |               |            | Faper        | Test Ti    | Faper Test Times (Minutes) |             |              |                |        |
|-------------------------------------|---------|---------------|------------|--------------|------------|----------------------------|-------------|--------------|----------------|--------|
|                                     | 20/30   | 000           | 20/30      | 30<br>105    | 20         | 20/30<br>S-210             | 20/50       | 50<br>61     | 20/80<br>S-461 | 8.5    |
| Emiler Antititer                    | 1 Hr.   | 1 Hr. 24 Hrs. | <u>1 H</u> | i. 24 Hrs.   | 1 Hr.      | r. 24 Hrs.                 | 1 Hr.       | 24 Hrs.      | 1 Hr.          | 24 Hr. |
| Arlacel A                           | neg.    |               | neg.       |              | 24<br>neg. | זירצי                      | 6<br>neg.   | neg.         |                | \$     |
| Arlacel C                           | neg.    |               | neg.       |              | neg.       |                            | neg.        |              | neg.           |        |
| <b>Mann</b> itan Diricin-<br>oleate | neg.    |               |            | neg.<br>neg. | neg.       |                            | 12<br>neg   | neg.         | ł              | ť      |
| Mannitan Monolaurate neg.           | eg.     |               | neg.       |              | neg.       |                            | neg.        |              | 1              | 1      |
| <b>Mannitan Triricin-</b><br>oleaté | 15<br>1 | neg.<br>neg.  | 2          | neg.<br>neg. | neg.       |                            | -1 <b>V</b> | neg.<br>neg. | ı              | •      |
| Span 80                             | . San   |               | 22<br>37   | neg.<br>neg. | 19<br>neg  | neg.                       | l<br>neg.   | neg.         | neg.           |        |
| Bpan 40                             | neg.    |               | neg.       |              | ۳.<br>۲    | neg.<br>neg.               | neg.        |              | neg.           |        |
| Span 6C                             | nêg.    |               | neg.       |              | 2          | neg.                       | neg.        |              | neg.           |        |
| Typical Blank                       | <br>7 7 | no            |            |              |            |                            |             |              |                |        |

### TABLE IV

|                   | Enulsion Pastes of S-210   |                                   |  |
|-------------------|----------------------------|-----------------------------------|--|
| Enulsifying Agent | % of Weight<br>of Perclene | Paper Test Times<br>1 Hr. 24 Hrs. |  |
| Spar: 10          | 1%                         | neg.                              |  |
|                   | 5%                         | 2 neg.<br>2 neg.                  |  |
|                   | 10 <i>j</i>                | 2 neg.<br>5 neg.                  |  |
| Spnn BO           | 13                         | 2 neg.<br>3 neg.                  |  |
|                   | 10%                        | 2 1.08.<br>nog.                   |  |

### Decontamination of H in Deck Paint with 20/80 Emulsion Pastes of S-210

### TABLE V

# Decontamination of H in Deck Paint

|                |                   |        | Faper Te | st Times |          |
|----------------|-------------------|--------|----------|----------|----------|
| Perclone/Jeter | Percentage of     |        | Span 20  | .ith S   | pan 80   |
| luitio         | Chloroamide       | Immed. | 24 Hrs.  | Iruned.  | 211 Hrs. |
| 20/50          | 5,1 <b>3-</b> 330 | 18     | neg.     | neg.     |          |
|                |                   | 10     | neg.     | neg.     |          |
| 20/50          | 10,6 3-330        | 1      | 6        | neg.     |          |
|                |                   | 1<br>1 | 9        | neg.     |          |
| 20/50          | 07 <b>S-</b> 222  | 1      | 2        | 1        | 30       |
|                |                   | 1<br>1 | 2<br>2   | 1<br>1   | 5        |
| 20/50          | 10% <b>5-</b> 222 | 1      | 3        | 1        | 3        |
| , -            |                   | 1<br>1 | neg.     | 1<br>1   | 3<br>3   |
| <b>20/</b> 50  | 10% <b>S-</b> 436 | l      | G        | 1        | 11       |
| , -            |                   | 1<br>1 | ም<br>8   | 1<br>1   | neg.     |
| 20/30          | 10# <b>S-3</b> 30 | neg.   |          | neg.     |          |
| , -            | • -               | 6      | neg.     | neg.     |          |
| 20/30          | 10% <b>5-</b> 222 | 1      | nej.     | 3        | neg.     |
|                |                   | 1      | 12       | 3        | neg.     |

Salar (age) the second state

### COLLIDELTIAL

•

. 1

......

{

|                       | Decontamination            | of H in Dec   | k Paint           |              |   |
|-----------------------|----------------------------|---------------|-------------------|--------------|---|
| Emulsion Paste        | Application<br>Time (Min.) | Tes<br>Immed. | st Time<br>3 Hrs. | 24 Hrs.      |   |
| Span 20/S-210         | 20                         | 1<br>1        | 5<br>2            | neg.<br>15   |   |
| <b>S</b> pan 20/S-210 | 40                         | 9<br>30       | neg.<br>neg.      |              |   |
| <br>Span 20/S-210     | 60                         | neg.          |                   |              | - |
| Span 80/S-210         | 20                         | 1<br>1        | 5<br>10           | neg.<br>neg. |   |
| Span 80/S-210         | 10                         | neg.<br>neg.  |                   |              |   |
| Span 80/S-210         | 60                         | neg.<br>neg.  |                   |              |   |
|                       |                            |               |                   |              |   |

TABLE VI

TABLE VII

|                     | Decontamination of H on Deck<br>Paper | Test Time (ILIN.)                                             |
|---------------------|---------------------------------------|---------------------------------------------------------------|
| Emulsion Paste      | Immed.                                | 24 Hrs.                                                       |
| * HCB/Span 20/S-461 | <b>~1</b><br><b>&lt;</b> 1            | 2<br>4                                                        |
| HCB/Span 20/RH-195  | -1<br>-1                              | 1<br>1                                                        |
| HCB/Span 20/S-436   | 1<br>3                                | 8<br>neg.                                                     |
| * HCP/Span 20/S-436 | 3<br>5                                | 21<br>30                                                      |
| * CP/Span 20/RH-195 | < 1<br>1                              | <pre>#HCB = Hexachlorobutadiene HCP = Hexachloropropene</pre> |
| CP/Span 20/S-461    | < 1 <1                                | CP = Chloropropane<br>BL = Butyl laurate                      |
| CP/Span 20/S-436    | <1<br><1                              |                                                               |
| * BL/Span 20/S-461  | <1<br><1                              |                                                               |

CONFIDENTIAL

J

### TABLE VIII

ارامي فالهام المتاب متقادم

### Solubility of Chloroamides in Hexachlorobutadiene and Hexachloropropane

| Solvent             | Chloroamide   | Solubility<br>GM:/100 cc. Sol'n. |
|---------------------|---------------|----------------------------------|
| Hexachlorobutadiene | 5-461         | 0.015                            |
| 11                  | RH-195        | 0.82                             |
| <b>u</b>            | <b>S-</b> 436 |                                  |
| Hexachloropropene   | <b>S-</b> 461 | 0-03                             |
| ų                   | RH-195        | 1.00                             |
| 11                  | <b>S-4</b> 36 | 5.40                             |

### TABLE IX

# Decontamination of H in Wet Deck Paint Panels

The pastes were prepared with S-461, Perclene, Water and the emulsifying agents listed.

|                      | Paper Test Times        | (Minutes)             |
|----------------------|-------------------------|-----------------------|
| Emulsifying Agent    | Net with<br>Fresh Nater | Net with<br>Sea water |
| Arlacel C            | neg.                    | neg.                  |
| Span 80              | neg.                    | neg.                  |
| Span 10              | neg.                    | neg.                  |
| Span 60              | neg.                    | neg.                  |
| Mannitan monolaurate | -                       | neg.                  |

CONFIDENTIAL

J

ý

į

### TABLE X

### Decontamination of H in ML85 Airplane Lacquer

| Emulsifying<br>Agent | Application<br>Time (Min.) | Paper<br>5-2<br>Immed. |            | me (Minuted<br>S-4<br>Immed. |        |
|----------------------|----------------------------|------------------------|------------|------------------------------|--------|
| Span 20              | 20                         | 2<br>4                 | 28<br>142  | 1.<br>1                      | 3<br>1 |
| <b>S</b> pan 80      | 20                         | 6                      | neg.<br>42 | 1 ···· 1 2                   | neg.   |
| <b>S</b> pan 20      | 60                         | 2<br>6                 | 8<br>neg.  | neg.                         |        |
| Span 80              | 60                         | 2<br>neg.              |            |                              |        |

### TABLE XI

# Decontamination of H in Doped Fabrics

いいのかが

| Emulsion Paste                  | Application<br>Time (Hrs.) | CN #Fabric<br>Immed. | CAE #1<br>Immed. | Fabric<br>24 Hrs. |
|---------------------------------|----------------------------|----------------------|------------------|-------------------|
| <b>S</b> pan 20/ <b>S-</b> 210  | 1<br>2                     | 5                    | 1<br>1           | և<br>୨            |
| <b>Spa</b> n 20/ <b>S-</b> 1,61 | 1<br>2                     | nog.                 | 1<br>1           | li<br>nog.        |
| <b>S</b> pan 80/ <b>S-</b> 210  | 12                         | neg.                 | 2<br>1           | 5<br>6            |
| <b>S</b> pan 20/ <b>S-</b> 461  | 1<br>2                     | neg.                 | 1                | 5<br>29           |

#CN = cellulose nitrate doped #CAB= cellulose acetate butyrate doped

CONFIDENTIAL

h

5

ŧ,

ą

.

| TABLE | XII |
|-------|-----|
|       |     |

. . . . . . . .

|      | alter 3 Successive Treatment | s and 2 Weeks        | Outdoor Weathering          |
|------|------------------------------|----------------------|-----------------------------|
|      |                              | Tensile              | Strength (Lbs.)             |
|      | Treatmont                    | Cellulose<br>Nitrate | Cell::lose<br>Acetobutyrate |
| 1.   | Blank                        | 113                  | 127                         |
| - 2. | Span 20/S-210 Emulsion       | 107                  | 120                         |
| 3.   | Span 20/S-461 Emulsion       | 115                  | 131                         |
| 4.   | Span 80/S-210 Emulsion       | 113                  | 117                         |
| 5.   | Span 80/S-461 Enulsion       | 106                  | 120                         |
| 6.   | H + (2)                      | 116                  | 130                         |
| 7.   | H + (3)                      | 113                  | 129                         |
| 8.   | H + (4)                      | 110                  | 129                         |
| 9.   | H + (5)                      | 114                  | 125                         |

Tensile Strength Measurement of Doped Fabrics after 3 Successive Treatments and 2 Weeks! Outdoor Weathering

\_\_\_\_

------

شد المحمي والم يتشب

### TABLE XIII

Decontamination of HV and L on Deck Paint with S-L61 20/30 Perclene/water Pastos

|                      | Paper Test Time (Min.) |             |  |  |
|----------------------|------------------------|-------------|--|--|
| Emulsifying Agent    | HV<br>Imned. 24 Hrs.   | L<br>Immed. |  |  |
| Arlacel C            | 23 neg.<br>15 neg.     | neg.        |  |  |
| Mannitan monolaurate | r.0g.                  | neg.        |  |  |
| Span 80              | nog.                   | nog.        |  |  |
| Span 40              | neg.                   | neg.        |  |  |
| Span 60              | nog.                   | neg.        |  |  |

.

٠J

÷.

1

ſ

ŧ

,

# TABLE XIV

# Decontamination of HN-3

| Decontamination System       | Paper '         | Test Times<br>24 Hrs. | (Min.)<br>48 Hrs. |
|------------------------------|-----------------|-----------------------|-------------------|
| Span 80/S-461 emulsion paste | 10<br>10        |                       | 24<br>27          |
| Span 80/S-210 emulsion paste | 10<br>10        |                       | 21<br>21          |
| Spray twice, TCE/RH-195      | 10<br>10        |                       | 24<br>27          |
| Spray twice, TCE/S-436       | 26<br>26        | neg.<br>neg.          |                   |
| Blank                        | . <u>3</u><br>3 | 10<br>10              | 20<br>19          |

### TABLE XV

| Decontaminat                     | ion of HN-1  |               |         |
|----------------------------------|--------------|---------------|---------|
| Decontamination System           | Paper        | Test Times    | (Min.)  |
|                                  | Immed.       | <u>3 Hrs.</u> | 48 Hrs. |
| Span 80/S-461 emulsion paste     | 3            | 6             | 16      |
|                                  | 4            | 6             | 16      |
| Span 80/S-210 emulsion paste     | 5            | 6             | 16      |
|                                  | 5            | 6             | 17      |
| Span 20/S-436 emulsion paste     | neg.<br>neg. |               |         |
| Span 80 emulsion, no chloroamide | 4            | 5             | 16      |
|                                  | 5            | 6             | 20      |
| Spray twice, TCE/RH-195          | 4            | և             | 11      |
|                                  | 3            | Կ             | 9       |
| <b>Spray</b> twice, TCE/S-436    | 5            | 23            | neg.    |
|                                  | 6            | 23            | neg.    |
| Blank                            | 2            | 1             | 5       |
|                                  | 2            | 1             | 5       |

CONFIDENTIAL

6

J

į

, index

### TABLE XVI

| Perclene Solutions | % Span | Separatio | on on Storage (4 | Wks.)<br>45°C |
|--------------------|--------|-----------|------------------|---------------|
| Span 20            | 10     | None      | V. slight        | None          |
| <b>S</b> pan 20    | 5      | None      | None             | None          |
| Span 40            | 5      | V.slight* | Considerable     | V. slight     |
| Span 60            |        | V.slight  | Considerable     | V. slight     |
| Span 80            | 5      | V.slight  | V. slight        | V. slight     |

### Storage of Perclene/Span Solutions

\*V. slight separation appears to be due to insoluble impurities such as sombitol.

### TABLE XVII

| Storage | Emulsifying             |                                 |                      | 30                   | :1+                  |                      |                      |
|---------|-------------------------|---------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Temp.   | Agent                   | Chloroamide                     | Orig.                | 1 Wk.                | 2 Wks.               | 4 Wks.               | 8 Mks.               |
| R.T.    | Span 20<br>" 20<br>" 20 | S-461<br>S-210<br>RH-195        | 2.80<br>1.85<br>3.01 | 2.79<br>1.86<br>3.03 | 2.85<br>1.87<br>2.98 | 2.83<br>1.90<br>2.96 | 2.82<br>1.87<br>2.62 |
|         | Span 80<br>" 80<br>" 80 | <b>S-461</b><br>S-210<br>RH-195 | 2.56<br>1.78<br>1.85 | 2.62<br>1.78<br>1.82 | 2.62<br>1.79<br>1.79 | 2.54<br>1.78<br>1.74 | 2.41<br>1.80<br>1.57 |
| 45°C    | Span 20<br>1 20<br>20   | S-461<br>S-210<br>RH-195        | 2.80<br>1.85<br>3.01 | 2.74<br>1.91<br>2.30 | 2.62<br>1.94<br>1.49 | 1.91<br>-<br>-       | 0.28<br>1.67         |
|         | Span 80<br>" 80<br>" 80 | S-461<br>S-210<br>RH-195        | 2.56<br>1.78<br>1.85 | 2.14<br>1.77<br>1.34 | 2.41<br>1.78<br>0.87 | 2.31<br>_<br>_       | 1.53<br>1.62         |

5

### Stability Of Emulsion Pastes on Storage

ł

5

1

٩

### TABLE XVIII

| Storage of S-461/Span 80/Porciene Mixtures |       |               |       |  |
|--------------------------------------------|-------|---------------|-------|--|
|                                            |       | •••••         |       |  |
| Storage Time                               | R.T.  | % c1+<br>45°C | 60°C  |  |
| Original                                   | 16.52 | 16.37         | 16.30 |  |
| 3 days                                     | 15.62 | 15.20         | 14.80 |  |
| 7 days                                     | 16.10 | 15.58         | 14.34 |  |
| 22 days                                    | 16.14 | 15.00         | 13.43 |  |

### torage of S-461/Span 80/Porclene Mixtures

ť

5

2

3

i

47

|                                                     | Color of Deete | on Panel, Dry<br>Chocolate<br>Dark blue-murit            | Cream<br>Cream<br>Dark brown<br>Lisht blue                 | Dark brown                            | Light brown                                          | Blue                                           | Light blue |                                | Light brown<br>Pink<br>Light blue               | -<br>Blue-gray<br>Light blue<br>Violet                    | Blue<br>Light blue<br>-                         | Steel gray<br>Light brown         |
|-----------------------------------------------------|----------------|----------------------------------------------------------|------------------------------------------------------------|---------------------------------------|------------------------------------------------------|------------------------------------------------|------------|--------------------------------|-------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|-----------------------------------|
| astes                                               | Color of Paste | <u>on Panel, Wet</u><br>Chocolate<br>Dark murble         | Pink<br>Brown<br>Light blue                                | Brown                                 | Light brown                                          | Blue                                           | Blue       |                                | Brown<br>Pink<br>Dark blue                      | -<br>Blue-gray<br>Blue-green<br>Purple                    | Dark blue<br>Light blue<br>-                    | Steel gray<br>Brown               |
| <u>lests of Oil Soluble Dyes in Emulsion Pastes</u> |                | 0                                                        | e Brown-purple<br>Purple-black<br>Dark blue                | -<br>Dark blue                        | Dark red<br>e Red-brown                              | Blue black                                     | Dark blue  | ł                              | Gray<br>Red-black<br>Red-black                  | -<br>Purple-black<br>Dark bluegreen<br>Purple             | Blue<br>Blue green<br>-                         | Blue-black<br>Blue-black          |
| ioluble Dve                                         | Solubility     | in <u>Perclene</u><br>soluble<br>Soluble                 | Sl.soluble<br>Soluble<br>Soluble                           | Insoluble<br>Soluble                  | Soluble<br>Sl.soluble                                | Soluble<br>Sl.soluble                          | Soluble    | Green Insoluble                | (804 Soluble<br>te Soluble<br>te Soluble        | Soluble<br>Soluble<br>Soluble                             | Soluble<br>Soluble<br>Sl.soluble                | Soluble<br>Soluble                |
| <u>16818 01 011 8</u>                               | Dyestuff       | 011 Black 38226 PDR<br>AZP 011 Blue Black B              | Aubian Kesin Black<br>Oil Black 5115 PDR<br>Alizarine Blue | opirit wigrosing K<br>Oil Black 24087 | Induline Base R<br>Bismarck Brown TSS<br>Base, 35356 | Sudan Blue GA, 247459<br>Induline Base B 24002 | e Sky B    | Calcofast Black Green<br>Toner | Oil Black B-3<br>Nigrosine Bas<br>ia Blue B Bas | lco Oil Black 860<br>lco Oil Blue 1064<br>lco Oil Blue IR | Oil Blue NA<br>Oil Blue Goo<br>chrome Alizarine | 0il Blue B5199<br>0il Black F4160 |
|                                                     | Manufacturer   | National Aniline<br>"""""""""""""""""""""""""""""""""""" |                                                            |                                       | Gen. Dyestuff<br>"                                   | 7 2                                            | 2          | Calco                          | 2 2 2 2                                         |                                                           | = = =                                           | = =                               |

TABLE XIX

ĺ

ŗ

۱

1

)

Ŕ

)

٤ Tests of 011 Soluble Dyes in

ļ

### Dedontamination Efficiency of TCE/RH-195 and Paste Systems

1. A series of decontamination experiments was made with the paste systems using 6" x 12" blue deck painted stoel panels. Each panel was contaminated on 2inch squares with H at a density of about 20 g./yd<sup>2</sup>. The temperature during the tests was  $95^{\circ}$ F. One hour after the H was applied, the pastes were brushed on, left for one hour then removed by hosing with water and brushing if necessary. The results of the tests for residual H are given in Table I.

|                              | Efficiency of Decontamina                   | ting Systems          | (Small Panel                  | <u>)</u>             |
|------------------------------|---------------------------------------------|-----------------------|-------------------------------|----------------------|
| Paste                        | Weight of Paste Used<br>Lb./yd <sup>2</sup> | Paper Immed.          | Test Time (M<br><u>3 Hrs.</u> | inutes)<br>24 Hrs.   |
| E.P. S-461<br>19 11<br>19 11 | 1.6<br>1.1<br>0.7                           | neg.<br>8<br>1        | -<br>-<br>-                   | neg.<br>ncg.         |
| E.P. S-210<br>11 11<br>11 11 | 1.7<br>1.1<br>0.8                           | 5, neg.<br>2. 2<br><1 | neg.<br>14, 28<br>4           | neg.<br>nog.         |
| K Oleate/S-461               | 0.9<br>0.6<br>1.2                           | 4<br>2<br>11          | -<br>-<br>-                   | neg.<br>neg.<br>neg. |

TABLE I

2. A series of experiments using several decontaminating systems were run in which 36" x 72" blue deck painted panels were used. Data were obtained for TCE/RH-195, the potassium oleate paste and emulsion pastes. The H contamination was about 20 g./yd<sup>2</sup> The temperature during the tests was 85 to 95°F. The tests for residual H are given in Table II.

|                    |                  | TABLE II               |                        |
|--------------------|------------------|------------------------|------------------------|
| Effic              | iency of Deconta | aminating Systems (Lar | ge Panels)             |
|                    | Application      | Weight Used            | Paper Test Time (Min.) |
| System Used        | Method           | Lb/yd                  | Immed. 3 Hrs.          |
| E.P. Span 80/S-210 | Spray            | 2.7                    | <1(5) 2 to neg.        |
| E.P. Span 80/S-210 | Brush            | 0.5                    | <1(4) 1, $<1(3)$       |
| E.P. Span 80/S-461 | Brush            | 0.1                    | 3,1,1,2 5,3,2,3        |
| E.P. Span 80/S-L61 | Brush            | 1.25                   | 2,4,6,ncg              |
| K. Cleate/S-461    | Spray            | 1.2                    | 15,20,neg.(2) -        |
| TCE/RH-195         | Spray            | 2.7                    | 5, neg.(3) -           |
| TCE/RH-195         | Spray            | 0.7                    | 9,30,20,ncg. 30,neg(3) |
| TCE/RH-195         | Spray            | 0.7                    | 7,26,ncg.(2) -         |
| TCE/RH-195         | Spray            | 0.8                    | 10,15,20,nog           |

Note: Figures in parentheses indicate the number of tests which gave the same paper test readings.

### CONFIDENTIAL

1

. )

3. Ingredients for the improved potassium oleate paste were obtained from the NDRC group at the DuPont Experimental Station. The potassium electe suspension had the following composition by weight:

| Tetrachlorocthylone (Perclene) | 67.3 parts |
|--------------------------------|------------|
| Potassium Olerte (28% water)   | 18.0 parts |
| Barium hydroxide octahydrate   | 2.75 parts |
| Aristowax 160/165              | 1.6 parts  |

To prepare the paste, 11.5 parts of S-210 were mixed with 100 parts of the above dispersion. Decontamination tests for H using the paste were made on 6" x 12" deck painted steel panels. The H contamination was approximately 20 g./yd<sup>2</sup>. The tests for residual H are given in Table III.

| Decontamination                   | of H with | Improved | d Pota        | ssium Oleate            | Paste              |
|-----------------------------------|-----------|----------|---------------|-------------------------|--------------------|
| Amount Used<br>Lb/yd <sup>2</sup> |           | Im       | Paper<br>med. | Test Time (ii<br>3 Hrs. | inutes)<br>24 Hrs. |
| 0.8                               |           | Ц,       | 4             | 40, neg.                | neg.               |
| C.9                               |           | 10,      | neg.          | neg.                    |                    |
| 0.9                               |           | ne       | g •           |                         |                    |
| 1.0                               |           | ne       | g•            |                         |                    |
| 1.1                               |           | ne       | g.            |                         |                    |
| 1.5                               |           | né       | g.            |                         |                    |

١,

CONTRACTOR

TABLE III

3

ţ

# CONFIDENTIAL

### DISTRIBUTION:

٠. ب

1

Ę

٦.

í

ł

| BuShips<br>BuMed<br>BuY&D<br>SONRD<br>ONI | <pre>(5) (1) (2) (2) (3)(for further transmittal     to ALUSNA, London)</pre> |
|-------------------------------------------|-------------------------------------------------------------------------------|
| CNO                                       | (2)                                                                           |
| CONUEA                                    | (1)                                                                           |
| CIIS                                      | (6)                                                                           |
| Tech.Div h                                | (0)                                                                           |
| Med. Div. $-1$                            |                                                                               |
| Med. Div. EA-1                            |                                                                               |
|                                           | (4)                                                                           |
| NRC, Washington, D.C.                     |                                                                               |
| BCSO                                      | (6)                                                                           |
| BAD                                       | (1)                                                                           |
| NRC, Ottawa, Canada                       | (2)                                                                           |
| mo, occand, canada                        |                                                                               |

CONFIDENTIAL

ţ

1.7.1

CONFIDENTIAL

# **Naval Research Laboratory Technical Library Research Reports Section**

DATE: October 15, 2003

FROM: Mary Templeman, Code 5596.3

TO: Code 6100 Dr Murday

**C**:

Tina Smallwood, Code 1221.1  $\frac{10}{29}/03$ 

SUBJ: Review of NRL Memo Report

Dear Sir/Madam:

Please review NRL Report 2540, 2300, 2457, 2500, 2602, and 2590 for:



Possible Distribution Statement Possible Change in Classification

hank you, emplement Mary Templeman (202)767-3425

maryt@library.nrl.navy.mil

The subject report can be:

Changed to Distribution A (Unlimited) Changed to Classification Othe Date 24 07 Sign