Reference:
 WO 195/3344

Description:

Static Detonation Committee, Fragmentation Panel:

 fragmentation theoryDate:
1943
Held by:
The National Archives, Kew
Former reference in its original AC 3348 department:

Legal status:
Public Record(s)
Closure status:
Open Document, Open Description

- WO - Records created or inherited by the War Office, Armed Forces, Judge Advocate General, and related bodies
- Division within WO - Records of Commissions, Committees and Councils, etc.
- WO 195 - Ministry of Defence and predecessors: Advisory Council of Scientific Research and Technical Development, later Scientific Advisory Council: Reports...

Wa. $195 / 3344$ $\underset{\substack{\text { Closse } \\ \text { UTHiL }}}{ }$ 1972

$\frac{1.0 .3348}{3 D / 61.67}$

sinitu jerol incon camitmer
\therefore thoser or Pragantatios by

Extramanal :c:scarch ! Io. F72/30 2)
(127.7.)

Jenuary 11 th, 1943.

BrlEish Defence Staff
1 British Embassy
Attn: Scientific Information Officer 3100 Kassachusetts Ave., NW
E. Washington, DC 20008

UNCLASSIFIED

A many of ivaburalrcii
N. F. KOT"r and r.. ll. TIIINOO',

Bristol University Extri-lurel cinoup.

SUMRARY. A tentative theory ls given to account for the men fragrant sizes of certain typos of bomb and shell, and fou tho relative numbers of large and small fragments:

1. THF HEAN FRAGIENT SIZE, The theory Given here is applicable only to casings which expand plastically before rupture. This may not be the case for brittle materials such as cist ion:

Fig. 1

He consider first fragmentation of the type occurring in the $3: 7$ inch. Ait. shell. The loge fragments rapper from inspection to be formed c. 3 showa in fife. 1 , which represents a section through part of the casing: Crocus stint on the inside, ct such points $a_{3} A_{1}, A_{2}, A_{3}: \therefore$ and spread outwards to B_{1}, $\mathrm{Ba}_{2}, \mathrm{Br}_{3}$. This type of brosk-up has been discussed in Report No: 2232 from the Dent: of Hetrilurey of the University of Shefficid, Ref: A.:C.B098. The :ridtins of typical fragments are of the order 1 cm ; the length, parallel to the axis of the shell, is considerably greeter:

At the moment of rupture, let, r be the radius of the shell casing, t its thickness ind V the velocity with which it is moving outwindseiwe

Fig. 2 suppose that rupture telsesplace e ven work-hardenitis has proceeded: to such in extent that at croce vil 11 propagatevitsolfoith the expend turco ofviess onergy than further plastic flow: Suppose that the casing then splits along tiro lines distant a apart; tho $c: n c h s$ sro wopresunted by $A B, A^{\prime} B^{\prime}$ in Tic. 2: which, like fiG: j., represcilts \therefore cross action through the shill casings. A splinter of cross rocetion AjE'A' is then fly-
Ing outwards with velocity V. Tho top surface ! D of the fracucnt will have, in addition to thu lares outward velocity v, n vojositij atieight anglo to it of amount $\frac{3}{2} v a$, whore $" \approx \sigma / \mathrm{F}$. Similarly the bottom surinco A'b' will have a dowmord velocity of tic sent anotuit, deferred to axes moving with the fraement, the motel will have vi:iotic onerey, per unit length parallel to tho axis of tit shell, count. to

$$
\because \quad \frac{1}{2} \rho t V^{2} \int_{-\frac{1}{2} \alpha}^{\frac{1}{2} \alpha} v \theta^{2} d \theta=\frac{1}{2 H} \rho t r \alpha^{3} V^{2}
$$

where p is tho density of the motel. Since, $r \alpha=a$, tines becomes

$$
\begin{equation*}
\frac{1}{24} t V^{2} p a^{3} / r^{2} \tag{1}
\end{equation*}
$$

Wo now mako the assumption that if tho suodeg (I) is exeat enough to form a new crack through the fragrant, it will do so, and the fragment will brook into two., If W is tho onorey par unit aron 2 equivod to form a crack, the energy roquirod for chis is Wt. Thus no fregmoit will bo formed with thickness a Greater than that given by equating lift to (1), which gives

$$
\begin{equation*}
a=\left[\frac{2.4 \dot{r} \cdot W}{\rho V^{2}}\right]^{\frac{1}{3}} \tag{E}
\end{equation*}
$$

For 7 we may take L valuo given by inupeci tests; according to
Southwell (Trans: Manchoster Assoc: of Engineers, lazy) this Junes from 74 to 800 it/Ibs: per sq: inch: Wo should tile a value zpiropriato to the it 'ul be vary: btittie: Wo thoroforo trio tho jowar value, fro itt/ibsj. It in noticed that tho enorny of rupture is not, in practice, proportion-
al to the area, so our val:20 will he vory :ppyoxime honeovor heating of the netal durine its expansion nay heve merject. Purtuntely, siace W occurs as whe, the value of a is not vc:y sensitive to tiac vilue of
 be of interastㅎ.

* It is of interest to compare the auch smel? inp inture vaceey for 2 birittle substence such is quart, wich frori e:zorimonts on grinding sand eppeces to be of the order $61 \mathrm{ft} / \mathrm{lbs}$. e er sq : ft. . (Mritin, Trans. Ceranic Society, $23,61,1.923$).

For r we tike $2: 2$ inches, and for V, the velocity of the fregments, $2500 \mathrm{ft} / \mathrm{sec}$. T obtein for a

$$
=0: 55 \text { inches }
$$

in good asreement mith the observed value:
For steels mere fracture is duc to shear :ie have no information from Fhich the menitude of $\# \mathrm{can}$ be estimeted:

We have not been able to find a theory to account for the average 6 lencth on the splinters in this trp: of shell. For sineils or bombs Fhich bulce out in the midale betore brenking up, the cinconsion parallel to the axis might be detemined by the sme mechanisi:, in beling the radius of curvature of an arial section of the cising.

We may use formule (2) to corperc the neen fanment sizes of bombs With different charge-meizht ratios, sizes etc:, Since, howcver, we have no theory of what deternines the lencths of the spliaters from 2 shell, we confino oursalves to : bomb which, at tia: rowent of birsting, is roughly spharical. Then we c:n the the :aen weicht of a fregment to be proportioni. 1 to $\rho a^{2} t$, and thus to

$$
\rho^{\frac{1}{3}} r^{\frac{4}{3}} W^{\frac{2}{3}} V^{-\frac{4}{3}} t
$$

If ro, t_{0} fefer to the bomb befo:2 expens:on, and r, the radias at the moment of buist is equei to εr_{0}, thon $t=t_{0} / \varepsilon^{2}$, so t at the mean frezant meight is proportionsi to

$$
\begin{equation*}
r_{0}^{\frac{4}{3}} p^{\frac{1}{3}} t_{0} w^{\frac{2}{3}} / v^{\frac{2}{3}} \varepsilon^{\frac{2}{3}} \tag{3}
\end{equation*}
$$

If we iccep tise charge constint and viry the thickess t_{0}, we expect for heavy casings that \vec{V}^{2} will bs proportionil to $1 / t_{0}$; thus the average weieht of fragnent is proportion? to $t_{0}{ }^{5 / 3}$ if ε is constent; acturily, bowevan, thick cased sinells expenci further tirn thin ones before breating up, so ve exect a rather less rapid raristion witin t_{0} than this:

2. DISTRESUTOE OF FRAGBETT TETGHS.

It we:s pointed out to the present suthows by Dr. E.L. itelch (private compunication deted 24th Sept.1341) thet the districutions of frarments - from two such different projectiles as the J" U.P: (initial fragrient velocity $4500 \mathrm{ft} / \mathrm{sec}$:) and the 3.7 " A.A.shell (frngenent volocity about $2500 \mathrm{ft} / \mathrm{sec}$) con ve fitted aporoxinatoly to the scme law. ?his law is
: the following : if $N(m) d n$ is tre numbe: of fragments with weights between mand in $+d n$, then

$$
\begin{equation*}
N(n) d n=C e^{-M / m_{0}} d M \tag{1}
\end{equation*}
$$

where $u=m^{1 / 3}$ and C añ M_{0} are constents. Foy tho sheli and the U.Pi, A_{0} has respectivajy the values (in (ounces) $i / 3$)

\%	$3: 7{ }^{\text {m }}$ shell	$3^{\prime \prime}$ U.P.
Mo	0,38	0.15

The sireerient is shotm below -

\%roz'	[hc]			W\%		
		obse	cinlo,	ohe:	cala;	
1/50-1/25		not	recover.ed	570	583	
$1 / 25-1 / 4$		152	$\therefore 54$	751	793	
1/4 -		131	$1 ; 9$	93	1.01.	
$3-4$ 4 4		193	181	6	56 0	,
$\cdots>8$		1	5			

The total number of framments is CH_{0} and the total weizh: $6 \mathrm{MO}_{0}{ }^{\circ} \mathrm{C}$, so the average roicht is $6 M_{0}^{3}$, or 0.21 ounces for the $0: 7$ 1nch shell. The distribution is very skevi, hovever, so thst thers s.re a large numoer of fragments rith weifints considerably creato: than the averace;

This observed distributior lew su:fested a theoretical emplonation. along the folloring iines : $\mathrm{mI} / \mathrm{\omega}$ is proportional to the mean inear dimension of a frasment, and if this is rintten x, it sugjests thot the number "of frugments with lengths betweer: x and $x+d:$ is ilven by

$$
C e^{-x / x_{0}} d x
$$

Such a formula can be derived for 2 rod o: line brotcen up at random in one dimension only Consider a line AE of length l, cut at rindom into $n+\ldots$ pieces; dach cut is independent of the positions of all the othors and is equaliy likely to be et any point betroen A and B: Consider then any interval ξ of cinc line. The avcreús number of cuts tinat it contained is $n \xi / l$ and the chancs tint it docs not contain ons at all. is

$$
e^{-n \xi / R}
$$

Consider then any one cut, ond let us cillcuiate the cinince that the next cut to the inght is in ap intcrval dx at a cistonece x thic is

Thus the number intervils of Ienzths betreen x and $x+d x$ is

$$
\begin{equation*}
\frac{\ell}{x_{0}^{2}} e^{-x / x_{0}} d x, \quad x_{0}=\frac{e}{n} \tag{5}
\end{equation*}
$$

 (5): We might oxpect that if a solid is broken up "at random", e. $\mathrm{C}^{\text {: }}$ by planes cut at random throush it, the distribution of fragment weichts will be given, at any rate epproximitely, by (4). Unfortunately we have been unable to prove this; a mathomiticui discussion is eiven in Section 8 :

Inspection shows, however, that for the 7.7: shell fragments of weight greater tinn about half an ounce usullily inve part of the originaj. inner and outer surfaces on then; thus we should expect that, for the heaviar fragments at any rate a distribution lav of the type

$$
\begin{equation*}
N d r=C e^{-\alpha m^{\frac{1}{2}}} d\left(m^{\frac{1}{2}}\right) \tag{6}
\end{equation*}
$$

would give a better fit than (c). It vias in fact found that for this shell and for the $4: 7^{\prime \prime} A ; A$: shell and $3^{\prime \prime} U: P$:, either formula (1) or (6) mould aive an equally good aerconent for frements of modium size, and that (6) was somewhat better for tia largest fraements:

For a detailed comparison with experiment, Dr. Payment results with model bombs are the most juitable, because they include en anaiysis of fragments down to one millizram. Ve should expect to get the most oract fit with (6), and tho groatest divorecince from (6), for vory tinin casinzs. Fie: 3 shors the fragmontation of a model boak with casini of thicionoss 0:018" filled with totivi (W. Faymen, Frezmentetion Roport IV, R.C'276): The quantity v,of which the logerithra is plotted as ordinate, is tho number of irgesments betwoon two given woiehts ra_{1} and ma, divided by the intorval $\left(m_{2} \frac{2}{2}-m_{1} 2\right)$, or $\left.m_{2}\right\}-m_{1} r^{3}$, accorcing to the method of plottinc; the abscissac aro tho mean of the extrene masses, namely ($m_{1} 1+\mathrm{m}_{2}$) or $\left.\frac{1}{2}\left(m_{1}{ }^{3}+m_{2}\right)_{2}\right)$. It wili bo soon that the fit with formule (6) is much botter then :Ith formin. (4). The weithts are hors in arnmmesi

Dischanlir voici

THIIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

