UNCLASSIFIED

NRL Report 4276
(Supplementary Pages)

\author{

SUPPLEMENTARY MATERIAL

 Compiled by Eleanor C. Pressly February 1958}

TO BE PLACED IN NR REPORT 4276
U.A.R. REPORT MO. XXI

SUMMARY OF UPPER ATMOSPHERE RESEARCH FLINGS

Compiled by Charles P. Smith, Jr.

February 1954

UPPER ATMOSPEERE RESERRCH REPORT NO. XXI SUMMARY OF UPPER ATMOSPHERE ROCKIT RESEARCH PIRINGS

Charles P. Smith, Jr.
Rocket Sonde Research Branch Radio Division I
Supplementary Material Eleanor C. Pressly
Rocket Sonde Branch Atmosphere and Astrophysics Division

February 1954
(Supplemented February 1958)

> NAVAL RESEARCH LABOFATORY Washington. D.C.

U. S. NAVAL RESEARCH LABORATORY

WASHINGTON 25, D. C.

7 April 1958

From: Director, Naval Rosessoh Laboratory To: Distribution List

Subj: NRU Report 4276; completed data sheets for

1. Enclosed are completed data sheets to replace the simplefled entries for Aerobe and V-2 rocket firings. These data sheets are to be inserted in your copy of NFI Report 4276, UUAR Report So. XXI, Summary of Upper Atmosphere Rocket Rasearch Firings," compiled by C. P. Smith, Jr., and issued in February 1954.
2. The V-2 listings are now complete. Additional data sheets for the other types of rockets will be published in the future.

UPPER ATMOSPEERE RESEARCE REPORT NO. XXI SUMMARY OF UPPER ATMOSPHERE ROCKET RESEARCH FIRINGS

Charles P. Smith, Jr.

Rocket Sonde Research Branch Radio Division I

February 1954

NAVAL RESEARCH LABORATORY
Washington, D.C.
"Uppar Atmosphere Research Report No. L," NRE Report R-2955, October 1948; articles an early V-2 firings in this writing; history, description, experimente on cosmic rays, atmos. pheric temperatures and prespures, the ionosphere, and solar spectroscopg.
 V-2 firtras; empinasis on the 100 ctober firing, Including reaults of solar sepectroncopy, preasuretemperature, and cosmic-ray experiments.
"U,A.R.RoportNo, II," NRL FioportR-3120, April 1947; Articles munymarining accompilmments during first year of upper atmonphere research; discraslons of astrophysice and atrmosporic compoittion, cosmic rays, Lonosphere, V-2 warbed, phymical characteristics of the atmonphere, talemeterln from rocifets, and radio control.
"UA.R. ReportNo. IV," NRL Roport R-3171, October 1947; artirlan on third and fourth cycles of V゙-2 firings includiag ccemalc-riny research, hifh altitude apectroacopy nid photography, ionosphere investigations, and proseure-temparature atudios.
"UA.R. Report No. V, " NRL ReportR-2358, June 1948; articlea on experinantal techniquess and apparatus employed for the fith, sixth, and seranth cycles of V-2 firings; emphasis on solar spectra obtnined, results of cosmic-rey resaarch, presgure-tempariture atudies, and whe methematical analyais of colmic-ray falascopas.
"U,A,R.ReportNo. VI, A Detector for the Dobson Oseos Epectrophotometer," H. L. Clark, NRL Report P-3353, Augut 1048
"UA,R.Report No. VII, Counting with Goiger Counterw," H, E. Newell, Ir. and E. C. Prasely, NRL Report R-S446, Aprla 1049
"U.A.R. Report No. VIII, Prediction asd Location of Rockest Impecte at White Sands Proving Ground," H. E. Newell, Jr., NRL Report P-3485, Jwie 1949
"U.A,R. Report No. LX, A Sun-Follower for the V-2 Rockete", H, L. Clark, NRL Report 3522, August 1949
WU.A.R.ReportNo. X, The Matrix "relemetering 8yatom," J.T. Mencel, N. R. Beat. D. G. Marur, and K, M. Ǔlow, NRL Roport 3535, September 1049
"U.A.R.ReportNo. XI, A Note on the Geometry of Geleer Counter Telescopes," H. E. Newell, Jr., and E. C. Pressly, NRL Report 3715, Aurus 1050

WUA,R. Report No. XX, Direct Moasureneats of Soler Extreme Ultravilet and X-Rays from Rockets by means of a Cas9, : Mn Phomphor, K. Watanibe, J. D. Purcell, and R. Tousey, NRL Report 3733 , September 1050
©UA,R. Fieport No. MII, Rocket-Borne Instrwmentation for Ionomphere Propegation Experiments," J. E. Jackson, NRL Report 1900 , Jtanary 1852
"U,A,R, Report No. XIV, Radio-Fruquacy Mases Spectrometer for Upper Air Research," J. W. Townsend, JF., NRL Report 3988, Junumry 1952
"UA.R. Report No. XV, AN/FKR-1 () Telemetering Ground Btation Improvement Program," N. R. Eest, NRL Report 3992, May 1952
"UA,R. Report No, XVI, AN/DKT-7 () Fifteen-Channel PTM Telemetering Trancmitter," D. G. Macur, K. M. Ugion, R, Lowell, and N. R. Bast, NRL Report 4016, August 1952
"U.A.R. Report No. XVII, A Solar Aspect Indicator for a Rockat," D. M. Packer and R. Tousey, NRL Report 4024, Septamber 1952

UUA.R. Report No. XVII, A Method for Determining Density in the Upper Atmosphere During Rociset Flight," R. Horcwits and D. Klettman, NRL Report 4246, October 1053
"U.A.R. Report No. XIX, A Geomagnetic Field Angular Orientation Indicator for a Rocket," D. M. Packer, NRL Repart 4247, November 1053
"U.A.R. Report No. XFI, A Lightweight Azimuth-Correcting Sun Follower," H. L. Clark, NRL Report 4267, Decamber 1058

Contents

1. FOREWORD 1.1
2. INTRODUCTION
History of the Upper Atmosphere Rocket Research Firings 2.1
The Upper Atmosphere Rocket Research Panel 2.1
The Primary Research Agencies 2.2
3. ROCKET FIRING FACILITIES 3.1
4. BALLISTIC INSTRUMENTATION
Radio Instruments 4.1
Optical Instruments 4.1
Time Standards 4.2
Range Safety 4.2
5. DATA RECOVERY
Radio Telemeter 5.1
Physical Recovery 5.2
6. ROCKET DNSTRUMENTATION
Instrument Space 6.1
Instrument Weight 6.1
Rocket Stability 6.1
Acceleration 6.2
Vibration 6.2
Pressurization 6.2
Aerodynamic Effects 6.2
Aspect 6.3
Equipment Reliability 6.3
Contaminants 6.3
7. THE AEROBEE ROCKET
Description 7.1
Characteristics - Table 7.4
Firinga - Tables
Air Research and Development Command Aerobee Firings 7.5
Applied Physics Laboratory Aerobee Firings 7.6
Naval Research Laboratory Aerobee Firings 7.6
Signal Corps Engineering Laboratories Aerobee Firings 7.7
Data Sheets
8. THE DEACON ROCKET
Description 8.1
Characteristics - Table 8.1
Firings - Tables
Naval Research Laboratory Deacon Rocket Firings 8.2
State University of Iowa Deacon Rocket Firings 8.2
Data Sheets

Cortents (Continued)

9. TEE V-2 ROCKET
Description 9.1
Characteristics - Table 9.4
Firings - Table
V-2 Rocket Firings of all Agencies 9.6
Data Sheets
10. THE VIKING ROCKET
Description 10.1
Characteristics - Table 10.4
Firings - Table
Naval Research Laboratory Viking Rocket Firings 10.5
Data Sheets
11. BIBLIOGRAPHY
Air Research and Development Command 11.1
Applied Physics Laboratory 11.7
Ballistic Research Laboratories 11.11
Naval Research Laboratory 11.15
Signal Corps Engineering Laboratories 11.27
Upper Atmosphere Rocket Research Panel 11.31
Miscellaneous 11.33
12. FOREWORD

Frontispiece - Upper Atmosphere Research Report XXI
\square
\square

SUMMARY OF UPPER ATMOSPHERE ROCKET RESEARCH FIRINGS

1. FOREWORD

The Summary of Upper Atmosphere Rocket Research Firings is a noncritical compendium of information about upper atmosphere research conducted with rocket vehicles. It is a continuing publication that will be revised periodically to expand the information already contained in it and to include the newer rocket firings. The Summary has been prepared by the Naval Research Laboratory* at the invitation of the Upper Atmosphere Rocket Research Panel and with the support of the various agencies and institutions engaged in upper atmosphere rocket research.

The detailed information about each rocket firing is contained on data sheets which have been prepared, for the greater pari, by the agency cognizant of the rocket firing. The author's activities in regard to these data sheets have been restricted to the design of the form used, and the abstracting and rearrangement of inforination wherever the need arose. In some instances additional information was inserted into the rocket entries, but only when the author felt that his sources were superior, or that the original source was lacking in completeness. All of the other material was prepared by the author either out of his experience in this field or from the numerous references listed in the bibliography.

The expandable binder and form of entries have been selected as the most convenient means of maintaining a publication of this type. Thus, newly published material can be directly inserted into the binder and the publication of material as separate reports avoided. All recipients of the Summary will be registered and new material will be forwarded to them as soon as it has been published.

The material has been grouped under eleven headings: the first six sections are mostly narrative and are of general interest, the next four sections contain descriptive material about the different rockets and the rocket data sheets, and the last section contains a bibliography of reports, papers, and articles that have been published. Numerous tables have been included as a convenient method of listing detailed information. Summarles of the various rocket firings have also been included to provide the ceader with a ready reference to the general information about each rocket firing.

The rocket entry data sheets are to be found at the end of the sections concerned with the specific types of rockets. They are identified in the upper right-hand corner of the sheet with the rocket name, number, and firing date. All the information concerning a rocket firing appears on one sheet which is imprinted on both sides where necessary. The material is separated under headings which are appropriate to the instruments discussed therein and to the data reported. The last item is a bibliography of material known to have been published concerning the rocket discussed. In those cases where it has not been possible to publish a complete data sheet, because of either a lack of information or of time, simplified entries have been made. These entries will be replaced by the complete data sheets which will be published in the fature.

All rocket firings listed are to be assumed as having taken place at the White Sands Proving Ground ($32^{\circ} 24^{\prime}$ North latitude and $106^{\circ} 22^{\prime}$ West longitude, geomagnetic latitude 41° North) unless they are identified as having taken place at another location. All times are given in the 24 -hour system and are Local Civil Times unless they are identified otherwise. The Local Civil Time at White Sands is Mountain Standard Time (GCT 7 hours).
*NRL Problem P06-07, Project No. NR 536-070

The titles in the bibliography have been listed in the title-author form to enable the reader to quickiy locate material in which he is interested. The titles are arranged chronologically in an alphabetical listing by agency. Reports have bee.، listed separately from papers and articles.

The author wishes to express his appreciation to Dr. Homer E. Newell, Jr., Head of the Rocket Sonde Research Branch, and to Mr. Milion W. Rosen, Head of the Rocket Development Branch, for their interest in this work and their many valuable suggestions. He also wishes to acknowledge the valuable contributions made by the various agencies in the preparation of their rocket entry data sheets and for providing him with liats of their publications. He also asks that the support given to him in the past will be continued in the future to help keep the Summary abreast of events. Constructive criticism will be welcomed by the author as an aid to the Improvement of future revisions.

In the various tables throughout the Summary the following abbreviations will be used.

AFCRC	Air Force Cambridge Research Center, Cambridge, Massachusetts
APL	Applied Physice Laboratory, The Johns Hopkins University, Silver Spring, Maryland
ARDC	Ais Research and Development Command, Buitimore, Maryland
BRL	Ballistic Research Laboratories, Aberdeen Proving Ground, Aberdeen, Marylani
E. U.	Boston University, Boston, Massachusetts
Col. U.	University of Colorado, Boulder, Colorado
Denv. U.	University of Denver, Denver, Colorado
G. E.	General Electric Co., Schenectady, New York
Harv. ${ }^{\text {U }}$.	Harvard University, Cambridge, Massachusetts
Mich. U.	University of Michigan, Engineering Research Institute, Ann Arbor, Michigan
NLH	National Institutes of Health, Washington, D. C.
NOL	Naval Ordnance Laboratory, White Oak, Maryland
NRL	Naval Research Laboratory, Washington, D. C.
PJJ	Princeton Universtity, Princeton, New Jersey
R.I. U.	University of Rhode Island, Kingston, Rhode Island
SCEL	Signal Corps Engineering Laboratory, Belmar, New Jersey
UAR	Upper Atmosphere Recearch
USA	United States Army
Utah U.	University of Utah, Salt Lake City, Utah
WADC	Wright Air Develojunent Center, Dayion, Ohio

2. INTRODUCTION

History of the Upper Atmosphere Rocket Research Firings The Upper Atmosphere Rocket Research Panel The Primary Research Agencies

Figure 2.1-A V-2 Rocket shortly after takeoff

UPPER AIR ROCKET SUMMARY

2. INKRODUCTION

History of the Upper Atmosphere Rocket Research Firings

The upper atmosphere rocket research program was implemented when more than 100 unassembled V-2 rockets were captured in Germany and shipped to the United States at the close of World War II. More than gixty of these rockets were assembled, tested, and fired in a program that began early in 1946 and which continued through 1952.

The early fruitful results of the V-2 program demostrated that upper atmosphere research utilizing rocket vehicles had a promising future. It was soon realized that there was a need for a moderate sise rocket to complement the V-2, and development work was begun on the Aerobee. It was patterned atter the WAC CORPORAL, an earlier meteorological sounding rocket, and the first units were test fired during the latter part of 1947. The Aerobee enjoyed immediate success and has come to be used extensively by the major rocket instrumenting groups, more than 100 having been fired so far. A recently activated program will extend the usefulness of this rocket by increasing its potential altitude.

The Vicing development project originated when it became clear that there would be a continuing need for a very high altitude rocket with a large payload capacity. A survey of needs and manufacturing capabilities showed that the $V-2$ would be prohibitively expensive to reproduce, and that its optimum capabilities could not satisfy the future needs of some phases of upper atmosphere research. Thus, the Viking development program was instituted and the first rocket of this series fired in 1949. Although the Vikins propulsion system does not represent any great improvement over that of its predecessor, its structural design is far superior. The improved mass ratio of this rocket has enabled it to outperform the V-2 consistently. The engineerirg development of this rocket is still in progress.

A considerable boon to upper atmosphere rocket research is the ability to launch rockets from shipboard at diverse geographic localions. This was demonstrated for the first time when 2 V-2 was fired from the flight deck of an aircraft carrier, the U.S.S. MIDWAY, near Bermuda during 1948. It was confirmed when a series of Aerobee firings were conducted aboard the U.S.S. NORTON SOUND in equatorial waters of the Pacific Ocean during 1949. Another group of Aerobees were fired from this same ship in North Pacific waters in 1951; and a Viking was fired in equatorial waters shortly thereatter.

The shipboard firing techniques were further extended when Deacon rockets were first launched from icabreakers in North American waters in 1952. Although the Deacons' maximum altitude would be about 20 miles when fired from sea level, their optimum altitude can be extended when they are carried aloft by large balloons and then fired. Such firings have attained altitudes in excess of 60 miles during the first trials and again in 1953. Although the Deacon is small and can carry only relatively light instrumont loads, it is performing valuable service in the study of ccsmic radiation and atmospheric pressure, temperature, and density.

The Upper Atmosphere Rocket Research Panel

Before firing the first V-2 rocket, the U.S. Army Ordnance Department invited the heads of several scientific organizations to instrument these rockets in the interest of upper atmosphere research. A group of representatives from these organizations met shortly thereafter to consider the project and to coordinate their work. This group organized itself into the V-2 Upper Atmosphere Rocket Research Panel, which later
became known as the Upper Atmosphere Rociset Research Panel when the Aerobee became available as a research vehicle.

The Panel consists of persons actively engaged in the several phases of the upper atmosphere rociket research program and its present membership represents many years of experience in rocket research and instrumentation. The current nembership is as follows:

Dr. L. A. Delsasso	Aberdeen Proving Ground Ballistic Research Laboratories
Erot. W. G. Dow	University of Michigan Engineering Research Institute
*Dr. M. J. Ference	Signal Corpa Finginearing Laboratories, Meteorological Branch
Dr. C. N. Green	General Electric Company, Aeronautical and Fingineering Systems Divisions
Mr. G. K. Megerian (Secretary)	General Electric Campany, Aeronautical and Ordnance Systems Divisions
Dr. M. O'Day	Air Research and Developraent Command, Air Force Cambridge Research Center
Dr. W. H. Pickering	California Institute of Technology, Gugenheim Aeronautical Laboratory
Dr. H. E. Newell, Jr.	Naval Research Laboratory
Dr. J. A. Van Allen (Chairman)	State University of Iowa, Department of Physics (formerly with The Johns Hopkins University Applied Physics Laboratory
Dr. F. L. Whipple	Harvard College Observatory
Dr. P. Wyckoff	Air Research and Development Command, Air Force Cambridge Research Center

3. ROCKET FIRING FACILITIES

3. ROCKET FIRING FACILITIES

Most of the upper atmosphere rocket research fisings have taken place at the White Sands Proving Ground, New Mexico, which is operated by the U.S. Army Ordnance Department. The firing range is about 100 miles in length and has an average width of about 20 miles. It occuples the Tularosa Basin which is situated between the Sacramento and the San Andres mountain ranges north of El Paso, Texas. The U.S. Air Force and the U.S. Navy also operate rocket firing iacilities at the White Sands Proving Ground to supplement the services provided by the U.S. Army.

This area is particularly suited for the type of operations in which it is engaged. The basin provides an unobstructed view from the launching points to the terminus of the firing range, and the mountains alford locations for the ballistic instruments. The climate is very favorable and results in a large number of clear and cloudless days throughout the year. This contributes much to the success of the optical instruments used there.

The U.S. Navy maintains a converted Seaplane Tender (AV-11), the U.S.S. NORTON SOUND, which can be used for upper atmosphere rocket firings in all navigable waters throughout the world. This ship has been utilimed for one Viking and several Aerobee rocket itrings in Pacific and Alaskan waters. It affords a means for studying geographical variations of upper air phenomena.

4. BALLISTIC INSTRUMENTATION

Radio Instruments

Optical Instruments
Time Standards
Range Safety

4. BALLISTIC INSTRUMENTATION

Rockets are tracked by both radio and optical instruments to obtain trajectory and attitude information. The radio instruments, radar and doppler, provide only trajectory data; whereas, the optical instruments, cameras, theodolites, and telescopes, can provide both trajectory and attitude data. Time standards are broadcast throughout the firing range in order to provide a means of synchronizing all events. Range safety is maintained by means of a radio control system that permits emergency rocket fuel cutaff to be effected. The cutoff is operated in conjunction with information obtained from tracking instruments. The characteristics of the ballistic instruments are summarized in Table 4.1.

Radio Instruments

The radars in use at White Sands are basically the same as radars used elsewhere except for slight modifications. The range display system has been altered to accommodate the increased range at which the radars must operate, and two synchronized radars are operated concurrently to insure the receipt of date. Transponding beacons are carried in the rockets because their echo producing surfaces are too small to reflect good tracking signals except at short ranges. The data are recorded in the form of range and azimuth and elevation anglegversus time.

The doppler, or DOVAP, system utilizes a transmitter located south of the launching area which broadcusts a continuous signal carefully controlled in frequency, a transponder in the rocket, and four ground station receivers. The transmitter radiation is received by the transponder in the rocket, doubled in frequency, and the signal rebroadcast. The signal frequency is doubled to prevent interference between the transmitters and receivers. This rebroudcast signal is received by the ground receivers and beat against the suitably doubled frequency arriving at the receivers directly from the ground transmitter. The beat difference between the two frequencies is the doppler frequency due to the rocket velocity in the transmitter-rocket-receiver path. The doppler signals are transmitted by wire line to a central location where they are displayed on cathode ray tubes and photographed by a synchronously driven camera.

Integration of the doppler frequency as a function of time from 2 known location (the launching point at takeoff) gives, when multiplied by wavelength of the doubled signal, the distance in feet from the transmitter to rocket to receiver at any desired time. This known distance defines an ellipsoid of revolution the foci of which are the transmitter and receiver. When similar distances are known for three receivers, three ellipsoids are defined at any instant of time and simultaneous solution of the three equations will give the position of the missile at that instant of time.

Optical Insiruments

The rocket is photographed with accurately caltbrated optical systems and the photographs used to obtain rocket trajectory and attitude information. The rocket image positions on the photographs are measured with respect to the optical cunters of the photographs. These position measurements are converted into rocket angular displacements with respect to the optical axes of these accurately located instruments. Since the directions of the optical axes are accurately determined, the direction of the rocket from the instruments can be determined. Information from two or more of each of the various types of optical instruments, and their positions both with respect to the rocket firing
point and each other, uniquely determine the rocket positions with respect to the firing point.

The rocket's attitude is determined from data obtained by two or more similar optical instruments by additional image measurements which are related to the rocket's trajectory. The rocket image projections and longitudinal axis tilis are measured in the photographic plane and are converted into angles expressing the rocket's attitude in the desired planes. Thus, these values may either be expressed in terms of three mutually perpendicular planes established by a tangent to the rocket's trajectory or established by the launching point.

The cameras, Bown-Knapp and Ballistic, are fixed in direction and are located both to the sides and rear of the expected rocket trajectory. The Bowen-Knapp cameras photograph the rocket at intervals and are aimed to obtain the lower portion of the powered flight. The Ballistic cameras photograph the rocket on a fixed plate and are aimed to obtain the upper portion of the powered flight. The Bowen-Knapp cameras can be used to obtain attitude data as well as trajectory data.

The theodolites, Askania, Mitchell, and Tele-theodolites, photograph the rocket on motion picture film and are located at various atations throughout the firing range. These ingtruments have restricted fields of view and track the rocket in filight. The elevation and aximuth angles of the instruments are displayed on dials which are photographed concurrently with the rocket. The rocket's final diaplacement angles, as measured from the photographs, are added to or subtracted from the dial readings as is necessary. The Tele-theodolite records can also be used to obtain attitude data as well as trajectory data.

The telescopes are mainly used to determine rocket attitude data, but are sometimes used to obtaln ordinate data at long ranges. They track the rocket in 1 ight, since they have highly restricted fields of view, and photograph it on motion picture film. There are several such instruments located in the firing range at widely separated points.

Time Standards

Standurd time signals are generated and broadcast throughout the firing range of radio and alsc distributed to some points by wire line. The basic time signals are a 100 -cycle square wave, a two-cycle signal, and a seven-pulse binary code signal. The 100-cycle atgnail is initiated by a switch that is actuated as the rocket begins to rise from the launching stand. The two-cycle algnal is superimposed on the leading edge of the 100 -cycle square wave and begins when the rocket has moved sufficiently (about four inches) to break a wire secured to one of its fins. The time signals are coded, with respect to takeoff (zero time) by suppresing one of the two-cycle pulses at each tensecond interval. The weven-pulse binary code is transmitted only by land lines at each ten-second interval after takooff. These time signals can be recorded on ballistic and data records to synchronize flight data.

Range Safety

All of the upper air rocket research vehicles being fired at the White Sands Proving Ground are potentially capable of ranges which enable them to tall outside of the firing range boundaries and even in populated areas. They are tired on an almost vertical erajectory which has the twofold effect of attaining the highest possible altitude and restricting the range. There are, however, three possible causes which may affect the trajectory: (a) component failure in the controlled rocket, (b) excessive winds at high altitudes which may tilt the arrow-stabilized rocket into the wind, and (c) a structural
failure in either the arrow-stabilized or controlled rocket which can upset its aerodynamic stability.

A control receiver is carried in each of the rockets whereby rocket thrust can be terminated in such an emergency via a ground radio transmitter. This control can take the form of either a command broadcast by the transmitter, or interruption of the transmitter signal. The former method is termed command cutoff, whereas the latter method is termed fail-safe cutoff. Most rockets carry an FM control receiver which is operated by either method through the broadcasting of, or the termination of, audio tones. A second system uses a radar beacon which initiates the fuel cutoff action by changing the radar interrogation rate. This system is usually operated in a fail-safe status. If the rocket dispersion is sufficiently large that thrust termination will not be sufficient to keep it in the firing range, then the explosives normally used for recovery blowup can be detonated. Thus, the rocket's aerodynamic form is destroyed, resulting in large aerodynamic drag forces, and thereby diminishing the horizontal range.

Data used as 2 basis for determining whether emergency fuel cutoff is needed are obtained from three sources: (a) sky screens, (b) radar, and (c) the impact point computer. The sky screens are essentially theodolites which view the rocket through a pair of crossed rods which are driven closed by an electric motor, beginning at rocket takeoff. If at any time, the rocket crosses these rods it is considered unsafe. Horizontal velocities derived from radar tracking data are plotted; these velocities are compared against the present position of the rocket and the remaining time it will be in flight. The rocket is also tracked with two sets of high-powered binoculars; the angular and elevation positions of these binoculars and the rate of change of their positions are electrically measured and fed into a computer. The computer continously predicts the point of impact of the rocket were its thrust terminated at that instant.

TABLE 4.1
WHY'TE SANDS PROVING GROUND BALLISTIC INSTRUMENT CHARACTERISTICS

TRAJECTORY DATA
 Optical Instruments

Askania Theodolites
Initial data form: Azimuth and elevation angles from stations.
Rate of data: 1.2, or 4 points per sec.
Instrument range: 40 to 50 miles.
Accuracy: $1 / 5000$.
Stations required: Two or more.
Type of data reduction: Triangulation.
Final data form: \mathbf{X}, \mathbf{Y}, and Z coordinates vs time.
Tele-Theodolites
Initial data form: Azimuth and elevation angles from stations.
Rate of data: 1, 2, or 4 points per sec.
Instrument range: '75 to 100 miles.
Accuracy: 1/5000.
Stations required: Two or more.
Type of data reduction: Triangulation.
Final data form: X, Y, and Z coordinates vs time.

TABLE 4.1 (Continued)
Mitchell Theodolites
Initial data form: Azimuth and elevation angles from stations.
Rate of data: 12 to 16 points per sec.
Instrumeni range: 20 miles.
Accuracy: 1.0 mil .
Stations required: Two or more.
Type of data reduction: Triangulation.
Final data form: X, Y, and Z coordinates vs time.
Ballistic Cameras
Initial data form: Azimuth and elevation angles from stations.
Rate of data: 1 or 3 points per sec.
Instrumeni range: Upper portion of powered flight trajectory, from about 20,000 $\mathbf{f t}$ altitude.
Accuracy: 2.0 sec of arc.
Stations required: Two or more.
Type of data reduction: Triangulation.
Final data form: X, Y, Z coordinates vs time.

Bowen-Knapp Cameras

Initial data form: Artmuth and elevation angles from stations.
Rate of data: 30 points per sec.
Instrument range: Lower portion of powered flight trajectory. 7 inch lens - 43° vertical, 7° horisontal; 12 inch lens -25° vertical, 4° horivontal.
Accuracy: 7 inch lens - 1/5000; 12 inch lens $-1 / 10,000$.
Stations required: Two or more.
Type of aata reduction: Triangulation.
Final data form: X, Y, and Z coordinates va time.

Radio Instruments

Radar

Initial data form: Azimuth and elevation angles and range from station.
Rate of data: Continuous.
Instrument range: Dependent on rocket-borne transponder.
Accuracy: Angular data - approximately 2.0 mils; Range data - approximately 1/2500.
Stations required: One.
Type of data reduction: Vector resolution.
Final data form: X, Y, and Z coordinates vs time.
Doppler
Initial data form: Relative velocities to stations.
Rate of data: Continuous.
Instrument range: Dependent on rocket-borne transceiver.
Accuracy: Altitude - 50 ft at 100 miles; Slant range - 25 ft at 100 miles;
Velocity - 0.05\%; Acceleration - 0.1\%.
Stations required: Three or more.
Type of data reduction: Triangulation.
Final data form: X, X, and Z coordinates; velocity and acceleration vs time.

Beacon Triangulation
Initial data form: Relative ranges to stations.
Rate of data: Continuous.
Instrument range: Dependent on rocket-borne transponder.
Accuracy:
Stations required: Three or more.
Type of data reduction: Triangulation.
Final data form: X, Y, and Z coordinates.

ATITTUDE DATA

Bowen Knapp Cameras

Initial data form: Longitudinal axis deviations in plane of film.
Rate of data: 30 points per sec.
Instrument range: Lower portion of powered flight trajectory.
Accuracy: Approximately 1.0°.
Stations required: Two or more.
Type of data reduction: Vector resolution.
Final data form: Angular displacements in pitch and yaw planes vs time.

Tele-Theodolites

Initial data form: Longitudinal axis deviations in plane of film.
Rate of data: 1, 2, or 4 points per sec.
Instrument range: Powered portion of rocket flight.
Accuracy: Approximately 3°.
Stations required: 2 or more.
Type of data reduction: Vector resolution.
Final data form: Angular displacements in pitch and yaw planes vs time.

Telescopes

Initial data form: Longitudinal axis deviation in plane of film and roll displacements.
Rate of data: 16 readings per sec.
Instrument range:
Accuracy: Pitch and yaw data to approximately 3.0°, roll data to 14 rpm .
Stations required: Two or more.
Type of data reduction: Vector resolution.
Final data form: Angular displacements in pitch and yaw planes and roll vs time.
5. DATA RECOVERY
Radio Telemeter
Physical Recovery

5. DATA RECOVERY

Upper atmosphere data are obtained during rocket flights by means of radio telemeter systems, or by the physical recovery of instruments and records after the flight has been compleied. Radio telemeter systems have been the primary data source in most rocket firings because of the many difficulties encountered in attempting physical recovery.

Radio Telemeter

The radio telemeter systems in general use may be classified into the following categories:*
(a) AM-FM amplitude modulation - frequency modulation,
(b) FM-FM
(c) PAM-TM
(d) PWM-PM
(e) PPM-AM
frequency modulation - frequency modulation, pulse amplitude modulation - frequency modulation, pulse width modulation - phase modulation, pulse position modulation - amplitude modulation.

The FM-FM and the PPM-AM systems have been almost exclusively used in the upper atmosphere rocket research program. The characteristics of these two systems are summarized in Table 5.1. Most of the Aerobee rocket firings have utilized the FM-FM system, whereas the PPM-AM system has been the major system employed in the V-2 and Viking firings. However, a miniaturized version of the PPM-AM system has been used in some of the later Aerobee firings.

TABLE 5.1
CHARACTERISTICS OF THE TELEMETERNGG EQUIPMENT

Designaticn	Type	Frequency (Mc)	Power nutput	Channol:	Signal Inpui	$\begin{aligned} & \text { Suapie } \\ & \text { Rate } \\ & \text { (Sac-1) } \end{aligned}$	Syatom Accuracy (\%)	Calibret:.nn (In Flight)	Equipenat Woight Includiag Batteriea (Lb)
PXTA-501	PPM-AM	1025	$0.75 \mathrm{~K}^{+}$	23	Voltage	180	3	Interam	150
AN/DKT-2(XN-1)	PPM \cdot AM	1025	$3.5 \mathrm{Kw}{ }^{\dagger}$	30	Voltage	312	1	Internal	130
AN/LXT-2(XN-2)*	PPM -AM	1025	$3.5 \mathrm{Km}{ }^{\text {+ }}$	30	Voltage	312	1	Internal	130
AN/LET-70	PPM-AM	227.5	10 - ${ }^{+}$	15	Voltage	312	1	Exterasl	38
APL FM-FM	FM-FM	225	15 *	6	Voltage	Continบous.	2-5	None	6**

[^0]A rocket-borne telemeter system essentially consists of an encoder, a modulator, and a transmitter. The data are presented to the encoder in the form of a signal voltage which is varied according to the intelligence it represents. In the case of the FM-FM

[^1]system, the signal voltage controls the frequency of an audio subcarrier oscillator, and in the PPM-AM system it controls the duration of a pulse generated by a blocked multivibrator. Data are multiplexed into the modulator by virtue of the simultaneous operation of several subcarrier oscillators (at different audio irequencies) in the FM-FM system, and by the sequential sampling of a number of blocked multi-vibrators in the PPM-AM system. In the event that several sources of slowly changing data are available, they may be mechanically commutated into each of the encoders or telemeter channels.

The transmitters, either the amplitude-modulated or frequency-modulated type, are operated at frequencles above 80 Mc . These frequencies provide two advantages for rocket work: (a) they are noncritical with respect to transmission through the ionosphere, and (b) the physical size of antennas are small. The early Aerobee FM-FM system operated at a frequency of about 80 Mc and utilized a probe antenna at the rocket nose; later a notch antenna (in a tail fin) was used and the transmitter frequency shifted to about 225 Mc . The newer Aerobee PPM-AM system also operates at about 225 Mc and utilizes a tail fin notch antenna. The Viking and V-2 PPM-AM systems have always operated at a frequency of 1025 Mc and used a turnstile-type antenna mounted cutboard on a tail fin. The higher power radiated by this system makes it necessary to employ a pressurizing plastic dome, enclosing the antenna, to prevent power loss due to corona discharge.

The telemeter ground stations are located along the horizontal path of the rocket in order to provide a more favorable transmission path for the telemeter signals. The received signals are photographically recorded from video display systems, in the case of the PPM-AM system, and a galvanometer-optical arrangement in the case of the FM-FM system. The records are printed by an owalid process, which provides a satisfactory and inexpensive method for quickly obtaining record copies. The telemeter record is synchronized with the firing operations by also printing the time standard signals on the record. The over-all accuracy of the systems can he determined from known callbration voltages which are introduced into each of the channels at the airborne unit at intervals during flight.

Physical Recovery

In those cases where it is not possible to convert data into a suitable form for telemetering it is necessary to rely on the physical recovery of data bearing media. The two most important problems to overcome in this instance is pretection of the data recovd and then finding it.

A rocket will strike the ground with a velocity in excess of 2000 ft per sec if its aerodynamic form is not destroyed during deacent. Severance explosives are employed to separate either the nose (in V-2 and Viking firings) or the tall (Aerobee rocket) at an a fittude of aboat $\frac{10}{10}$ milleg. Thus the gerodynamic form is destroyed and the rocket is rendered unstable, which results in the developingit of large aerodynamic drag forces. Under such conditions a rocket will strike the earth with a velocity under 200 ft per sec. Adequately protected records mar then be recovered with relative ease in they remoln attached to a findable part of the rocket.

Lower terminal velocities can be realized when parachutes are employed to lower the instruments. Recent parachute recoveries have been remarkably successful and terminal velocities under 100 ft per sec are being realized. In this instance the parachute and instrument container are separated from the rocleei with explosives and the parachute deployed when there is sufficient dynamic pressure to inflate it.

The three most serious considerations regarding record protection are brought about by shock, heat, and light. The use of very heavy materials for encasing the records comes close to solving all three of these problems; however, if the record is subject to long exposure to sunlight, the heat damage is mosi difficult to protect against. In many
instances the protecting material is likely to interfere with the experiments, as such is the case when nuclear research emulsions are involved. In some cases it is possible to use less protecting material and to install the object in a portion of the rocket where experience shows the least amount of damage is likely to be sustained.

Rocket impacts are located by means of tracking instruments and ground and air search. If the object to be found contains a radar beacon it is possible to obtain very good information about its probable point of impact. Without such equipment it is necessary to rely on optical 'fixes', sound ranging, or the Impact Point Computer to provide such information. In the early days sound ranging depended upon human listening posts equipped with stop watches; however, this has since been substituted for by the Signal Corps (Geophones) sound ranging set GR-3. The impact point computer provides impact data on the basis of the rocket's position and resolved velocities at burnout. Coordinated ground and air search teams can produce early results if the impact information is sufficiently good to fix the impact within a mile or so, and the rocket has not been torn apart too badly.

6. ROCKET INSTRUMENTATION

Instrument Space Instrument Weight
Rocket Stability
Acceleration Vibration
Pressurization
Aerodynamic Effects
Aspect
Equipment Reliability
Contaminants

UPPER AIR ROGKET SUMMARY

6. ROCKET INSTRUMENTATION

The major problems associated with the instrumentation of rockets are as follows: space, weight, stability, acceleration, vibration, pressurization, aerodynamic effects, aspect, equipment rellability, data recovery, and trajectory data. The first nine items will be briefly discussed in the succeeding paragraphs and the last two items are discussed in other Sections of the Summary. Reference to Tables 7.1, 8.1, 8.1, and 10.1 will provide the reader with a summary of the characteristics of the Aerobee, Deacon, V-2, and Viking rockets.

Instrument Space

The most limiting factor is that imposed by the relatively small volumes and the space configurations available in the rocket for instruments. Therefore, the instruments must be carefully tailored to meet these conditions. Independent instrument design cannot be tolerated and it is essential that diverse equipments, which have conflicting requirements, must be carefully coordinated into a practical research assembly.

Instrument Weight

Aside from motor efficiency and fuel capacity, the most important contribution that can be made toward attaining the optimum rocket altitude is that of keeping the instrument weights small. This is, of course, directly opposed to the desire to make each rocket carry the maximum instrument load that it is capable of carrying. The solution to this problem can be approached in two ways: all equipment that does not make lasic contributions to the data gathering ability of experiments must be eliminated, and the construction materials selected must be as light as strength considerations will permit them to be. Additionally, all equipment should be operated from a common power source whenever possible; i.e., vacuum tube illaments and high voltage dynamotors should be operated from the same battery source. Further, each battery should be taxed to its maximum capacity to avoid carrying useless battery weight.

Rocket Stability

A rocket is statically stable when its center of gravity $\left(\mathrm{C}_{\mathrm{g}}\right)$ lies between the nose tip and its center of pressure (C_{p}). It is neutrally stable when the C_{g} and C_{p} coincide, and it is statically unstable when the C_{g} lies between the C_{p} and the tail end. It is desirable to establish a margin of static stability for each rocket that is greater than an established minimum value (smallest allowable distance between the rocket's Cg_{g} and C_{p}). This margin is usually stated in terms of the maximum allowable aft position for the rocicet's C_{g}, and is essentially determined by the weights of the instruments and their locations.

In the V-2 rockel, the Cp_{p} is about 171 inches above the burner base* and the C_{g} should be placed at about 236 inches; consequently, the minimum acceptable margin of stability is about 67 inches. Since the weight of the uninstrumented $\mathrm{V}-2$ is about 6500 pounds with a C_{g} at about 160 inches, it is necessary to add about 2500 pounds of weight with a Cg_{g} at 434 inches in order to obtain a final rocket Cg_{g} of 236 inches. Because of this very large weight requirement, more than one half of the $\mathrm{V}-2$ payload usually consists of nonproductive weight. The practical minimum payload for an Aerobee rocket is about

[^2]120 pounds with a Cg at 64 inches. There is no practical minimum payload specified for the Viking rocket, because it has an acceptable margin of stability with as little as 100 pounds of instruments installed in the nose or instrument sections.

Acceleration

Sustained linear accelerations developed during powered flight can cause the effective weights of objects in the rocket to increase many times. Thus, an object weighing but one pound under static conditions can have an effective weight of 14 pounds in a boosted Aerobee, several times this value in Deacon rockets, and about 7 pounds in V-2's and Vikings. Consequently, rocket structures must be designed to carry many times the apparent instrument weights. This condition must also be considered in the design of the instruments themselves.

During coasting flight all objects in the rocket are weightless because they are freely falling bodies. Although there are no structural or ingtrument strength difficulties involved, other problems arise. Fluids are not likely to remain at the botioms of their containers, or, instruments that are dependent upon the existence of a gravitational feld will not perform properly. Thus, it may be necessary to create an artificial gravitational field by spinning the instrument or imparting a spin to the rocket.

Vibration

In general, vibration conditions do not appear to be very serious. However, they can be very severe during ignition and burnout of the rocket motor. During these periods, the propeliant ratios can become sufficiently unbalanced to cause explosive burning conditions. Vibration becomes insignificant during coasting flight. In most instances, the standiard aircraft vibration specifications for equipment appear to be adequate.

Pressurization

The amblent air pressure decreases by one order of magnitude for each ten miles of altitude. Thus, unpressurized equipment must be capable of operating in a near vacuum. During both ascent and descent a critical pressure interval is traversed wherein corona discharge and arcing can talke place in unpressurized equipment employing potentials of several hundred volts. Corona discharge can consume a considerable portion of the power available at an antenna and pressurizing may be necessary to insure the uninterrupted receipt of signals radiated by the antenna. Unpressurized fluids may begin to boil under low pressure conditions and have serious consequences, such as causing electrolyte to percolate out of a battery.

Aerodynamic Effects

Instruments protruding into the rocket air stream are subject to aerodynamic heaing and drag. The heating is due to air friction and conduction through the air from the boundary layer. The boundary layer temperature can rise to near incandescence at high speeds, which is exemplified by the nominal rule fixing this temperature as being about fifty times the Mach Number squared. The most serious consequences will occur on objects having small heat capacities. It is not sufficient to consider only melting and soitening points of materials used in the air stream, but, in the instancs of an antenna enclosure, it is also neceasary to select a material that will coalesce rather than carbonize. Carbonization would tend to shield an antenna and to short circuit electrical equipment.

The effects of aerodynamic drag are not too serious because they can be evaluated prior to completing the design of the equipment. Atter this has been taken into consideration, and the equipment designed to have the required strength, the most serious effects are likely to be with respect to upsetting the rocket's stability. Thus, it may be necessary to install x dummy of the equipment on the opposite side of the rocket to balance the drag forces. It is always a good practice, and sometimes necessary, that streamlined fairings be installed around openings in the rocket skin and objects outside the rocket. In the event that an object, such $2 s 2$ whip antenna, must be extended from the rocket, it may be necessary to foid it along the rocket skin during the period of maximum drag.

Aspect

During powered flight, stability is imparted to a rocket by aerodynamic forces and alded by control systems in some cases. When the fuel is spent, the control forces cease and the aerodynamic forces diminish and gradually vanish as the rocket rises through the fast thinning atmosphere. Since all stabilizing influences are removed, the rocket can spin, tumble, and precess. And, since most instruments have directional characteristics, this creates one of the most vexing problems in rocket instrumentation. Post-filght stabllization systems are under development, but they are not yet wholly satisfactory.

This problem has been partially solved for solar spectroscopy by pointing controls that direct the instruments, but this measure is not applicable to all experiments. Thus, it becomes necessary to obtain rocket attitude information in order to evaluate data gathered by these instruments. Gyroscopes have not been satisfactory for this task because uncertainties are introduced by the drift of their axes during sustained accelerations, and little is known of their reliability when they are in a free fall condition. Further, if the rocket is too active with regard to attitude motion, they are likely to tumble and become worthless. Motion pictures of the horiron can be quite helpful, but frequently, it is possible to determine only zenith angles and roll rate rather than roll position. Photoelectric indicators are used which determine the rocket's attitude relative to the sun; however, it is sometimes not possible to determine whether the rocket is coasting with its nose pointing up or down. In addition, the photographic and photoelectric techniques are not useful during night firings. It is possible to obtain rocket zenith angles with respect to the earth's magnetic lines of force with a magnetometer, but this method does not define roll position.

Equipment Reliability

Instruments designed for rocket installation must be highly stable in operation, self calibrating, and simple in design. Stability is required because the opportunity for equipment adjustment ceases many hours betore firing time and very critical instruments will probably drift during this interval. The demand for telemeter channels is usually so great that it is not possible to monitor all phases of equipment operation; therefore simple calibration schemes are necessary whereby it can be determined whether the equipment functioned properly during filght. Simplicity is mandatory because it eases the demands on space and weight and considerably improves the equipment reliability relative to the reliability of complex systems.

Contaminants

At very high altitudes the vapor pressures of various contaminants in a rocket, such as propellants, hydraulic oils, and other miscellaneous materials, will exceed the ambient pressure. Thus, foreign gases may be propagated into the openings of pressure gag composition sampling devices, and other instruments. Such events are quite capable
obscuring data or even causing Ealse measurements. There are only two mothods of combating this condition; they conalst of either sealing the rocket completely or of sepprating the instrument from the rocket. Both of these solutions are difficult to accomplish and have not yet been successfully used.

7. THE AEROBEE ROCKET

Description

> Characteristics - Table

Firings - Tables
 Air Research and Development Command Aerobee Firings
 Applied Physics Laboratory Aerobee Firings
 Naval Research Laboratory Aerobee Firings
 Signal Corps Engineering Laboratories Aerobee Firings

Data Sheets

Figure 7.1-The Aerobee Rocket

UPPER AIR ROCKET SUMMARY

7. THE AEROBEE ROCKET

The Aerobee is a vertically launched sounding rocket designed to carry a 150 -pound instrument load to an altitude of about 70 miles. It resembles a conically tipped cylinder 10 feet long, with a 15 -inch maxdmum diameter, and has three equally spaced fins at the after end (cf. Figure 7.1). The rocket is directed by a launching tower during its initial stage of flight and is arrow stabilized* thereafter, as it has no movable surfaces or internal controls. Propulsion is in two stages; first by a solid propellant booster rocket that falls away when spent and, then, by a liquid propellant suataining rocket motor that is spent at an altitude of about 18 miles. 'The major characteristics of the Aerobee are given in Table 7.1 and the Aerobee firings are summarized in Tables 7.2, 7.3, 7.4, and 7.5.

Instrument Space and Structure

The Aerobee consists of three major sections (cf. Figure 7.2): a nose section, a tank section, and a tail section. All instruments are installed within the pressurizable nose section with the exception of very small objects which must be placed within the tail section. The removable nose cone provides 4.8 cu ft of instrument space within a cone-ogive-cylinder configuration that is 87 inches long and has a maximum diameter of 15 inches. An additional 1.5 cu ft of instrument space can be provided by a 15 -inch long cylindrical nose cone extension which ls also pressurizable.

The instruments are installed on a structure that fits inside the nose section and which is attached to the rocket body by four mounting pads at the forward end of the tank 'section. Instruments are mounted on the rocket skin only when they are both light in weight and need access through the skin. Moderate weight instruments can be installed at the nose tip.

The tank section contains the pressurizing gas tank, the oxydizer, and the fuel tanks. The tail section houses the propellants' feed 'burst' diaphragms, the fuel severance fitting, and the rocket motor. Three sockets are provided at the after end of the rocket airframe to recelve three plugs fitted on the forward end of the booster which attach the booster to the rocket.

Electrical Wiring and Antennas

Electrical connections and r - transmission cables are routed from the forward to the after sections via three external shrouds mounted on the rocket's tank section. External circuits from the blockhouse for the control, monitoring, and auriliary powering of upper air instruments within the rocket are connected through a receptacle in the forward end of the tank section. The connector is disengaged by a device that is operated by upward motion of the rocket in the launching tower. There are no electrical circuits associated with propulsion equipment in the rocket.

Propulsion

Initial propulsion is obtained from a solid propellant rocket booster that is attached to the after end of the rocket. The booster is electrically ignited by a signal originating

[^3]in the blockhouse. After the booster is spent it falls away under the influence of aerodynamic drag and the rocket continues in flight propelled by its sustaining motor. The booster provides the additional impulse necessary to enable the rocket to attain a velocity sufficient to stabilize it aerodynamically before it emerges from the launching tower.

The regenerative-type rocket motor burns 2 mixture of red-fuming nitric acid and an analine-furfyrol alcohol solution. The propellants are injected into the combustion chamber by a pressurizing gas where they ignite spontaneously. There are no external controls associated with the propulsion system other than an external trip on the pressurizing gas regulator valve. This mechanical trip is actuated when it engages a projection in the launching tower as the rocket is propelled by the booster. When the regulator has been tripped, gas begins to flow into the propellant tanks and causes the retaining diaphragms in the motor feed unes to rupture. These 'burst' diaphragms keep the propellants from entering the combustion chamber prior to booster firing. Ordinarily the propellants are allowed to surn untll one of them has been exhausted. Combustion can be terminated at any time by means of a command wia the radio cutoff receiver which stops the flow of fuel to the rocket motor. This is accomplished by severing the fuel feed line with primacord and allowing the fuel to flow into the tail section.

Launching Tower

The launching tower is 143 ft long and is provided with a tripod base. An adjustable jack is mounted under one of the base legs to permit adjustment of the tower tilt, which will compensate for the effect of winds on the rocket's trajectory. Three cadially mounted rails, within the tower, engage riding lugs on the rocket akin to direct the rocket during the interval of time that it is moving in the tower. A forked lug on the rocket booster prevents the rocket assembly from rotating in the launching tower.

Destgn, Development, and Firing Services

The Aerobee rocket was jointly developed by the Douglas Aircraft Corporation and the Aerojet-General Corporation under the esponsorshlp of the U.S. Navy Bureau of Ordnance and Office of Naval Research. The project was under the sclentific direction of The Johns Hopkins University Applied Physics Laboratory. The rociket is prepared and fired by personnel of the U.S. Naval Ordnance Misaile Test Facility for the Naval Research Laboratory and the Signal Corps Engineering Laboratory. This facility also provided the same services to the Applied Physics Laboratory during the time it was active in this program. The Aerobees fired for the Air Fiesearch and Development Command are handled by a crew of the Holloman Air Force Base. Supporting services are provided by the White Sands Proving Ground.

Figure 7.2 - The Aerobee Rocket, cross-sectional view

TABLE 7.1

CHARACTERISTICS OF THE AEROEEE SOUNDING ROCXET

DMENSIONS

Total Length
Bonster Length Diameter Fin Span

WEIGHTS

Airirame
Propellants
Payload
Gross at Launching
Booster Airframe
Propellant
Booster Gross
INSTRUMENT SPACE
Nose Section

Apex ancle

Height
Maximum diameter
Volume
Static lcad
Material
Nose Extension
Height
Diameter
Volume
Static load
Material
Other
ANTENNAS
Used

Others Possible
PERFORMANCE
Maximura Altitude
Time to Zenith Flight Duration
Time Above $18.6 \mathrm{mi}^{\mathrm{F}}$

```
242 in. (less booster)
    75 in.
    15 in.
    62 in.
    \(295 \mathrm{lb} *\)
    623 lb (helium pressurized)
    150 lb (nominal payload)
    1088 lb
    315 lb
    260 lb
    575 lb
```

Generally pressurized, cylinder topped with approximately conical shape, detachable

$$
20 \mathrm{deg}
$$

88 in .
15 in.
4.8 cu ft

350 lb (maxinaum allowable)
0.04 in. spun aluminum

Generally pressurized, cylinder, detachable
15 in.
15 in.
1.5 cu ft

350 lb (maximum including nose payload)
0.04 in . aluminum

Very small unpressurized volumes in motor section

One notch in each of three fins. Slots or midbody.
Wires from each of three fins to regulator section. Probe and tolded dipole at nose tip. Slots in nose section.

Whips on body.

70 mi (150 lb payload).
173 sec
$\$ 50 \mathrm{sec}$
252 sec

TABLE 7.1 (Continued)

TrIGHT CHARACTERISTICS Acceleration

Duration of Acceleration
Maximum Velocity
Maximum Dynamic Pressure
Skin Temperaiure Rise Vibration Cbaracteristics Aspect Behavior

14 g during bcost (120 lb payload).
2 g after boost to 5.8 g at burnout.
2.5 sec (duration of boost).

45 sec (duration of sustaining motor).
4500 ft per sec
i1 lb per sq in.
$165^{\circ} \mathrm{C}$ on nose cone (estimated).
Not measured. Some severe ciases repurted. No control system. Arrow stabilized by fins. Spin rates up to 2 rps possible.
Angie oi attack up to 15° during powered flight, larger later. Tumbling possiole.
*Includes weight of the propulsion unit.

TABLE $\% .2$
AIR RESEARCH AND DEVELOPMENT CCMMAND AEROBEE FIRINGS

ARROBEE ROCKETS	DATE		$\begin{aligned} & \text { TMME } \\ & \text { (LCT) } \end{aligned}$
USAF-1	2 Dec	49	1520
USAF-2	15 Dec	49	1010
USAF-3	14 Mar	50	1343
USAF-4	26 May	50	1243
USAF-5	2 Jun	50	1007
USAF-6	20 Jun	50	0838
USEEP-7	12 Oct	50	1236
USAF-8	2 Nov	50	0829
USAF-9	12 Dec	50	1126
USAF-10	28 Mar	51	1614
USAF-11	12 Apr	51	1026
USAF-12	18 Apr	51	1139
USAF-13	29 May	51	1246
USAF-14	7 Jun	51	1711
USAF-15	25 Jul	51	0926
USAF-16	7 Aug	51	0936
USAF-17	30 Aug	51	1540
USAF-18	13 Sep	51	9437
USAF-19	20 Sep	51	0931
USAF-20	17 Oct	51	
USAF-21	30 Jan	52	1345
USAF-22	19 Feb	52	
USAF-23	29 Feb	52	
USAF-24	22 Apr	52	1028
USAF-25	1 May	52	0842
USAF-26	51 May	52	0815
USAF-27	18 Jun	52	1050
USAF-28	30 Jun	52	0732
USAF-29	26 Aug	52	1153

ALTITUDE
(MLLES)

EXPEREMENTS

59.7 0.2
15.4
57.5
56.7
57.0
66.0
41.0
18.0
38.0
2.3
55.0
44.3
51.9
47.0
47.0
44.0
72.0

0
55.5
70.0
57.0
16.2
62.0
63.0
2.0 Solar radiation (R.I.U.); solar radiation, sky brightness (AFCRC)
42.9 Solar radiation (R.I.U.)

Solar radiation, temperature, photography Solar radiation, pressure, temperature, photog raphy

Sky brightness (AF(JRC)
Temperature, pressure (Mich. U.) Photography (WADC)
Airglow (Col. U. \& Denv U.)
Pressure, temperature (Mich. U.)
Airglow (AFCRC)
Solar radiation (Col. U.)
Biological (Aero-Med. Lab. WADC)
Ionosphere (B. U.)
Solar radiation, airglow (AFCRC)
Sky brightness, photography
Ionosphere (B. U.)
No UAR experir.ants
Pressure, temperature (Mich. U.) Biological (Aero-Med. Lab. WADC)
Ionosphere (R. U.)
Ionosphere (utain U.)
Sky brightness (AFCRC)
Sky brightnest (AFCRC)
Ionosphere (B. U.)
Solar radiation (Col. U.)
Biological (Aero-Med. Lab. WADC)
Solar radiation (Denv. U.)
Sky brightness (AFCRC) Ionosphere (Utah U.)

TABLE 7.2 （Continuedu）

AEROBEE ROCKETS	DATE	$\begin{aligned} & \text { TIME } \\ & \text { (LCT) } \end{aligned}$	ALTITUDE （MILES）	EXPERLMENTS
USAF－30	10 Oct 52	0724	38.0	Solar radiation（Denv．U．）
USAF－31	22 Oct 52	0735	62.0	Pressure，temperature（Mich．U．）
USAF－32	6 Nov 52	0856	47.0	Sky brightness（AF＇CRC）
U8゙ぎ－33	12 Dec 52	1238	55.0	Solar radiation（Col．U．）

TABLE 7．3
APPLIED PHYSICS LABORATORY AEROBEE FIRINGS

$\begin{aligned} & \text { AEROBEE } \\ & \text { POCKETS } \end{aligned}$	DAEE	$\begin{aligned} & \text { TIME } \\ & \text { (LCT') } \end{aligned}$	ALTITUDE （MLLES）	EXPPERIMENTS
A－1，2，3	－	－	－	Dummy firings，no UAR experiments
A－4	24 Nov 47	1020	34.7	Cosmic radiation
A－5	5 Mar 48	1551	73.0	Cosmic radiation
A－6	13 Apr 48	1441	71.0	Magnetic Iteld
A－7	26 Jul 48	0947	70.0	Photography
A－8	1 Ncv 48	1715	56.5	Cosmic radiation；solar radiation（NRL）
A－9	1 Mar 48	－	－	Dummy firing，no UAR experiment
A－10	17 Mar 49	－	65.0	Cosmic radiation；magnetic field（NOL） （lat． $11^{\circ} \mathrm{S}$ ，long． $88^{\circ} \mathrm{W}$ ）
A－11	22 Miar 48	$\begin{gathered} 5730 \\ (G C T) \end{gathered}$	35.0	Cosmic radiation；magnetic field（NOL， APL）（lai． $11^{\circ} \mathrm{S}$ ，long． $88^{\circ} \mathrm{W}$ ）
A－12	24 Mar 48	$\begin{gathered} 1514 \\ (G C T) \end{gathered}$	3.7	Cosmic radiation；magnetic field（NOL） （lat． $11^{\circ} 16^{\prime} \mathrm{S}$ ，long． $82^{\circ} 08^{\prime} \mathrm{W}$ ）
A－18	17 Jun 49	04．50	88.0	No UAR experiments
A－14	23 Jun 49	1621	55.0	Cosmic radiation，solar radiation
A－15	15 Jan 50	$\begin{gathered} 2348 \\ (G C T) \end{gathered}$	45.0	Cosmic radiation（Geomag．1at． $58{ }^{\circ} \mathrm{N}$ ）
A－16	18 Jan 50	$\begin{aligned} & 2317 \\ & (G C T) \end{aligned}$	50.0	Cosmic radiation（Geomag．lat． $50{ }^{*} \mathrm{~N}$ ）
A－17	12 May 50	0530	54．7	Cosmic radiation
A－18	17 Aug 50	0845	83.0	Composition
A－19	22 Jan 51	1555	55.0	Composition
A． 20	25 Jar 51	0800	68.0	Solar radiation
A－21	6 Feb 51	1020	61.0	Photography

TABLE 7.4
NAVAL RESEARCH LABORATORY AEPOBEE FIRINGS

AEROBEE ROCKETS	DATE	$\begin{aligned} & \text { TIME } \\ & \text { (LCT) } \end{aligned}$	ALTITUDE （MILES）	EXPERIMENTS
NRL－1	5 Aug 48	1837	60.0	Solar radiation，pressure，לemperature
NRL－2	28 Jan 49	2317	60.0	Cosmic radiation，solar radiation，pressure， temperature，ionosphere
NRE－3	1 Feb 49	1138	9）	Solar radiation
NR，L－4	14 Feb 50	1614	54.4	Cosmic radiation，pressure，temperature
NRL－5	14 Jun 49	1903	68.0	Solar radiation
NRL－6	3 Aug 50	1652	3.7	Solar radiation

TABLE 7．2．1
AIR RESEARCH AND DEVELOPMENT COMMAND AEROBEE FIRINGS

$\begin{aligned} & \text { 럴 } \\ & \text { 4 } \end{aligned}$	
思	
$\begin{aligned} & \text { M }{ }_{4}^{4} \\ & \text { an } \end{aligned}$	
$\begin{aligned} & \text { 思 } \\ & \text { 苞 } \end{aligned}$	

TABTE 7.2.1 (Continued)

AFROBEE ROCKETS	MODEL	DATE	TIME	PLACE	$\begin{aligned} & \text { ALTITUDE } \\ & \text { ABOVE } \\ & \text { SEA LEVEL } \end{aligned}$	EXPPERIMENT
USAF-63	RTV-A-1a	14 Mar 56	0145	Holloman	66 mi	Nitric oxide attempt to recombine atomic 0
USAF-64	RTV-A-1a	11 Apr 56	1305	"	66 mi	Sodium cloud - ionization
USAF-65	AJ10-34	8 May 55	0754	"	89 mi	Eolar radiation
USAF-66	AJII-6	16 May 56	0840	"	105 mi	Rocket periormance
USAF-67	AJ10-34	13 June 56	1351	"	85.6 mi	Ionosphere
USAF-68	AJ10-34	18 June 56	1342	"	85 mi	Ionosphere
USAF-69	AJ10-34	21 June 56	1148	\cdots	91 mi	Fonosphere
USAF-70	AJ10-34	26 June 56	1126	"	69 mi	Ionosphere
USAF-71	AJ10-34	30 July 56	1756	"	80 mi	Day airglow
USAF-72	RTV-A-1a	3 Aug 56	0556	"	1.5 mi	Solar spectrum and atmospheric composition
USAF-73	AJ10-34	1 Nov 56		"	(223,000 ft)	
USAF-74		1 Nov 56		"		
USAF-75		13 Dec 56		"		
USAF-76		2 Feb 57		"		
USAF-77		9 Apr 57		"	$(200,000 \mathrm{ft})$	Micrometeorites
USAF-78	AJ11-6	18 June 57		"	$(107 \mathrm{mi})$	Ionosphere
USAF-79	AJI1-6	25 June 57		"	(126 mi)	Ionosphere
USAF-80	RTV-A-1a	16 July 57		"	(80 mi)	Micrometeorites
USAF-81		18 July 57		"	No sustainer	Micrometeorites
USAF-82		6 Aug 57		"	(93 mi)	Sunfollower
USAF-83		19 Aug 57		"	(111 mi)	Sodium studies
USAF-84		21 Aug 57		"	(95 mi)	Nitric oxide studies

Altitudes in () are approximate

Supplament

TABLE 7.4 (Continued)

AEROBEE

ROCKETS DATE \quad\begin{tabular}{c}
TLME

(LCT)

ALTITUDE

(MILES)
\end{tabular}

TABLE 7.5
SIGNAL CORPS ENGINEERING LABORATORIES AEROBEE FIRINGS

AEROBEE ROCKETS	DATE	$\begin{aligned} & \text { TLME } \\ & \text { (LCT) } \end{aligned}$	$\begin{aligned} & \text { ALTITUDE } \\ & \text { (MILES) } \end{aligned}$	EXPERIMENTS
SC-1	9 Dec 48	1538	56.9	Composition (Mich. U.)
SC-2	2 Jun 49	0810	48.7	Composition (Mich. U.)
SC-3	6 Dec 49	1132	40.3	Composition (Mich. U.)
SC-4	21 Jul 49	0901	47.3	Composition (Mich. U.); solar radiation (NRL)
SC-5	20 Sep 49	1003	36.4	Composition (Mich. U.); solar radiation (NRL)
SC-6	3 Mar 50	1736	45.0	Temperature
SC-7	6 Dec 49	1716	37.3	Composition (Mich. U.)
SC-8	14 Jul 50	0139	43.0	Temperature
SC-9	21 Feb 50	1754	30.5	Composition (Mich. U.); solar radiation (NRL)
SC-10	16 Oct 50	2100	50.0	Temperature
SC-11	25 Apr 50	1811	61.8	Composition (Mich. U.)
SC-12	17 Oct 50	$2130{ }^{\text { }}$	53.2	Temperature
SC-13	27 Oct 50	0830	49.8	Composition (Mich. U.)
SC-14	11 Dec 50	2106	52.1	Temperature
SC-15	11 Dec 50	1004	0	Temperature (Mich. U.)
SC-16	12 Dec 50	0210	48.3	Temperature
SC-17	19 Dec 50	1152	50.9	Composition (Mich. U.)
SC-18	8 Jun 51	2311	41.5	Temperature
SC-19	7 Jun 51	1818	4.0	Temperature (Mich. U.)
SC-20	1 Nov 51	0245	41.0	Temperature
SC-21	26 Sep 51	1706	42.8	Composition (Mich. U.)
SC-22	2 Nov 51	1735	51.0	Temperature
SC-23	14 May 52	1815	47.3	Density (Mich. U.)
SC-24	19 May 52	1907	56.0	Temperature
SC-25	24 Sep 52	2050	73.0	Temperature
SC-26	20 Oct 52	2045	69.0	Temperature
SC-27	17 Feb 53	2350	66.0	Temperature
SC-28	24 Apr 53	0319	-	Temperature
SC-29	11 Dec 52	1647	65.0	Temperature, density (Mich. U.)
SC-30	24 Apr 53	1230	69.0	Density (Mich. J.)

TABLE 7.5 (Continued)

AEROBEE ROCKETS	MODEL	DATE	$\begin{aligned} & \text { TME } \\ & \text { (MST) } \end{aligned}$	PLACE	ALTITUDE ABOVE SEA LEVEL		EXPERPAENTS
					(mi)	(Km)	
SC-31	RTV-A-12	29 Sep 53	1350	WSPG	36	58	Temperature and densly (Mich. U.)
Sc-32	XASR-SC-2	31 Aug 53	2210	WSPG	66.7	107.4	Temperature, winde (Mich. U.)
SC-33	XASR-SC-1	4 Sep 53	2235	WSPG	71	114	Temperature, rinds (Mich. U.)
SC-34	XASR-SC-1	9 Aug 56	0853	WSPG	53.1	85.5	Composition (Mich. U.)
SC-35	XASR-SC-1	10 Aug 56	0022	WSPG	53.4	85.9	Composition (Mich, U.)

Agency: Air Research and Development Command
THme: 1520 MET
Altituda: 59.7 miles.

UPPER AR INETRUMENTS

Solar Radiation: Soft X-Ray detectors ualng photographic emulsions and metal foll tilters. (Alr Force Canbridge Research Centor.)
Pressure-Temperature; Boundry layer temperature atudies using temperature sensing elements on tall cone, forward fuol tank aidit, and nose cone. (Boaton University.)
Other: Earth photography with color ILIm. (W.P.A.F.B. Equipment Lalboratory.)

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon, 6 channel PPM-AM system.
Physical recovery: Separation of nose cone from rocket body by prima cord and lowering with parachute. Test of parachute operation observed with tensiometer and cameras mountad on rocket.

BALLESTIC INSTRUMENTS

Firing Range
Theodolites: Stven Askanias at HAFB
Cameras: Two radar bore sight cameras.
Telescopes:
Radar: Two x-byod stations and one SCR-584 with beacon triangulation station.
Doppler: None
Impact location: AFCRC beacon triangulation mystam.
Airborne
Beacon: AFCRC multipurpose beacon
Doppler: None
Redio-cutoif: AFCRC multipurpose bencon for fall-sate fuel cutoff.
Aspect: Modified GSAP cameras for horison photographs.

ROCKET PERFORMANCE

Firing Angle:
Time of booster separation: 2.4 sec.
Altitude of boostor saparation: 987 ft .
Velacity at booster separation: 1016 ft . per sec.
Time to burnout: 44 sec.
Altitude at burnout: 14.2 milea
Velocity at burnout: 3400 ft . per घec.
Time to zenith: 165 sec.
Altitude at zenith: 59.7 miles
Time to blowoff: Near zenith
Altitude at blowoff: Near zenlth
Flight duration:
Impact coordinates: 21.3 miles north
Payload weight: 159 lbs.
Unfueled rocket weight: 465 lbs.
Unfueled rocket C.G.: 132.9 Inches
Groals welght at takeoff: 1085 lbs.

BALLNETIC DATA

Theodolites: Data from four HAFB Askanias to about 50 sec.
Radar: Beacon operative to 127 aec. with 33% of data valid.

DATA RECOVERY

Telemeter: Cood telemeter date from beacon system to 127 sec .
Physical Recovery: Parachute recovery failed, nose cone not located until July 1950.

EXPERDTENTAL DATA

Solar radiation: No data, X-Ray dotector loils ruptured.
Premarert-Temperature:
Anpect Camoran: No data, film damaged beyond use.

COMTIENTS

Rocket performance: In general, the rocket performance was good and the illght stable. Parachute performance: The parachute was found to have been ahreplded.

REPORTS AND PAPERS

Boston University Upper Atmosphare Research Laboratory, Contract W28-099-ac-305, Progreals Report No. 11
Baird Asectiates Inc., Contract W10-122we-23, Interim Report No. 3.
Holloman Air Force Bage Report No. MHTKi-133, 16 December 1951.
"Panel Report No. 23," Minutes of Meeting of the Upper Atmosphare Rocket Research Panel on 14 Feb. 1050.

Agency: Air Research and Development Command
Time: 1010 MST
Altituile: 0.2 miles.

UPPER ALR INSTRUMENTS

Preasure-Tomperature: Four thermionic tonication gauges and two alphatron type ganges with automatic range seeking circuits. (University of Michigan.)

DATA RECOVERY DNSTRUMENTS

Telemoter: AFCRC multipurpose beacon, 6 channel PPM-AM system.
Physical recovery: Ground command separation of noze cone from rocket body by prima cord and lowering by 10 ft . diameter ribion parachuta.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Seven HAFB stations.
Cameras: Two HAFB ribbon frame cameras, and two radar bore sight cameras. Radar: Two X-band stations and one SCR-584 with beacon triangulation atations. Impact Location: AFCRC beacon trianculation syrtem.

Alrborne

Beacon: AFCRC multipurpose beacon.
Radlo cutoff: AFCRC multiparpose beacon for fall-mafe fuel cutotf.
Aapect: One Sperry attitude gyro and one modified GSAP camera. (Univeratty of Michirean.)

ROCKET PERFORMANCE

Firing angle:
Time of booster apparation: 2.72 sec .
Altitude of booster meparation: 1876 ft.
Velocity at booster separation: 979 ft . per sec.
Time to burnout: 2.72 sec.
Altitude at burnout: 1276 ft .
Velocity at burnout: 980 ft . per sec.
Time to zenith:
Alititude at zenith: 2 miles
Time to blowoff: 3.44 sec .
Altitude at blowoff: 1970 ft .
Flight duration:
Impact coordinates: Nose cone - about 1000 ft . from launching tower.
payload weight: 149 lbs.
Unfueled rocket welght: 454 lbs.
Uniueled rocket C.G.: 133 in.
Gross weight at takeoff: 1076 lbs.

BALLISTIC DATA

Theodolites: Position coordinates 1.98 to 2.98 sec .
Cameras:
Radar: Radar bore sight camera used for visual observation. Beacon reply normal during the short flight.

DATA RECOVERY

Telemeter: Operation normal.
Physical recovery: Parachute falled to operate.

EXPERIMENTAL DATA

Pressure-Temperature: No useful data obtained.

COMMEATS

Rocket exploded whortly after leaving tower.
Special noee cone used: 96 in . total length -58 in ogive and 38 in cone.

REPORTS AND PAPRRS

Progreas Report No. A6, by W. G. Dow and N. W. Spencer, 10 Jan. 1950.
Univeralty of Michigun, Contract AF19(123)55.
Elilioman Alr Force Eave Roport No. MTHT-133, 10 Dec. 1051.
"Panal Report No. 23," Mixatce of Mnating of the Upper Atmouphere Rocket Resoarch Panol on 14 Fcb. 1950.

Agency; Alr Research and Devolopment Command Time: 1343 wsT
Altitude: 2.0 miles.

UPPER ARR INSTRUMENTS

Solar radiation: Solar inwolation - radiation sensing elements (thermistors) with fixed angle of view. (Rhode Ieland Univeralty.)
Photographle X-Ray film detectors on nose cone and tall mection. (Air Force Cambridga Research Centor.)
Sky brightneas: Photomultiplior tubes with Heht filters. (Air Force Cambridye Research Center.)

DATA RECOVERY DNSTRUMENTS

Tolemeter: AFCRC multipurpoct beacon, 8 channel PPM-AM syatem.
Physicul recovery: Nose cone soparation trom gain body and lowering with parachute.

BALLUSTIC LNETRUMENTS

Firiny Range

Theodolitas: Seven HAFB Agkania stations,
Cameras: Two ribbon frame, one 16 mm ., one 35 mm. , and two radar bore sight cameras, one etill camera.
Radar: Two X-band atations and one SCR-584 with boacon triangulation stations.
Impact location: AFCRC boscon triangulation syatem.

Alrborne

Beacon: AFCRC multipurpose bascon.
Radio cutoff: AFCRC multipurpose beacon for fall-mafe fuel cutoff.

ROCKET PERROORMANCE

Firing Angle:
Trime of boostor separation: 2.4 sec.
Altitudo at boomter separation; 1134 ft .
Velocity at booster separation: 924 ft . per sec.
Time to burnout: 4.75 sec .
Altitude at burnout: 3460 ft .
Velocity at burnout: 1040 ft . per sec.
Time to yenlth:
Altitude at zenith: 2.0 miles
Time to blowoff: 4.2 sec .
Altitude at blowoff: 2892 ft .
Fisght duration: Nome limpact at 45.8 sec .
Impact coordinates: About 1000 ft . from tower.
payloud welght: 228 lbs.
Unfueled rockat weight: 527 lbs .
Wnfueled rocket C.G.: 119.5 in .
Grous weight at takeoff: 1145 lbw .

BALLUSTYC DATA.

Theodolltes: Velocity from 0.6 sec , to 7.8 sec .
Cameras: Yaw Irom radar boresight camera 1.0 sec , to 7.6 sec . Impact location:

DATA RECOVERY

Telemater: Approximately 50% of data recorded during filght.
Physical rocovery:

EXPERIIIENTAL DATA
Solar insolation: Satisiactory instrument operation, no data due to low altitude. Sky brightness: No significant data.
Soft X-Rays: No significant data.
COMMENTS
Rocket performance: Low altitude due to premature fuel cutoff.
Experiments: All equipment operation satisfactory, low altitude prevented any significant measurements.

REPORTS AND PAPERS
Quarterly Report No. 8, Rhode Ysland State College, (Contract W28-099 ac-377), 30 Jan. 1950.
*Quarterly Report No. 9, Rhode Island State College, (Contract W28-099 ac-377), 30 April 1950.

* Preliminary Report on AMC Aerobee Round 2, Air Force Cambridge Research Laboratory, 25 April 1950.
Holloman Air Force Baze Report MTHT-133, 10 Dec. 1951.
"Panel Report No. 24," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 20 April 1950.
*In theve two reporta USAF Aerobee 3 is designated as AMC Aerobee Round 2.

IDENTIFICATION

Agency: Air Research and Development Command
TIme: 1243 MST
Altitude: 42 miles.

UPPER AIR INSTRUMENTS

Solar Radiation: Solar insolation, radiation sensing thermistors with fixed viewing angles and bolometers with lithium flouride windows. (Rhode Ieland University.)

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon, 6 channel PPMM-AM system. Hughes Alrcraft Co. telemetering equipment.
Airborne Recorder: Tufts College 10 channel data recorder.
Physical Recovery: Ground command separation of nose cone from main body and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Five HAFB Askania stations.
Telescopes: Two stations.
Cameras: Two radar bore sight cameras.
Radar: Two X-band stations with one SCR-584 and beacon triangulation stations.
Other: One $\mathrm{K}-24$, one 16 mm . color motion picture, one 35 mm . motion pleture, and one still camera.
Impact Location: AFCRC multipurpose beacon triangulation system.

Airborne

Beacon: AFCRC multipurpose radar beacon.
Radio cutoff: AN/DRW-4 FM control recelver.
ROCKET PERFORMANCE
Firing Angle:
Time of booster separation: 2.57 sec .
Altitude of booster separation: 1275 ft .
Velocity at booster separation: 930 ft . per sec.
Time to burnout: 45 sec . (approximately)
Altitude at burnout: 15.9 miles
Velocity at burnout: 3000 ft . per sec.
Time to zenith: 136 sec .
Altitude at zenith: 42 miles.
Time to blowoff: Circuit falled.
Altitude at blowof:
Filght duration: 380 sec .
Impact coordinates: 14 miles North and 10 miles West of the launching tower.
Payload weight: 256 lbs.
Unfueled rocket weight: 556 lbr .
Unfueled rocket C.G.: 134.6 in .
Gross weight at takeoff: 1156 lbs .

BALLISTIC DATA

Theodolites: Trafectory data 0 to 33.77 sec .
Telescopes; Data 0 to 8 sec .
Radar: Trajectory data 0 to 380 sec.

DATA RECOVERY

Telemeter: AFCNC multipurpose beacon and Hughes Aircraft Co. telemeter operation normal. Physical Recovers: Nose separation-parachute system falled to operate, recovery effected by tail cone separation system.
Airborne Recorder: Recorder recovered, good recording during time it operated.

EXPERIMENTAL DATA

Solar Insolation: Tentative value of 2 gram calories per square centimeter per minute obtained.

COMMENTS

Physical Recovery: At the time the separation signal was given only the fall cone anplosives detonated, consequently the parachute was not deployed.
Rocket Structure: Two extensions used on nose cone.

REPORTS AND PAPERS

"Report on the Launching of USAF Aerobee 4," Holloman Air Force Base, N.M., 10 July 1050. Quarterly Reports Nos. 1 - 9 Rhode Island Univezsity (Contract W28-U94 ac-377).
Holloman Air Force Base Report MTHT-133, 10 December 1851.
"Panel Report No. 25," Minutes of Meeting of the Upper Atmeapiore Rocket Researen Panal on 13 and 14 June 1950.

Agency: Air Research and Developinent Command
Time: 1007 MST
Altitude: 15.4 railes.

UPPER AIR INSTRRUMENTS

Sky brightness: Photoelectric multipliers and narrow band filters.

DATA KECOVERY INSTRUMENTS

Telemeter: AFCRC misitipurpose beacon.
Airborne recorder: 10 channel data recorder (Tufts College).
Physical recovery: Separation of nose cone from rocket body with prima cord and loweriag by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Astania stations.
Cameras: Two $\mathbb{K}-24$, one 16 mm . color motion picture, one 35 mm . motion picture, two still, six Mitchell 35 mm . motion picture, three Fairchild 35 mm . motion pictur \dot{s}, and two radar bore sight cameras.
Telescopes: Two stations.
Radar: Two X-band stations and one SCR-584 with beacon triangulation stations.

Airborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AN/DRW-4 FM control receiver.

ROCKET PEAFORMANCE

Firing angle:
Time to booster separation: 2.4 sec .
Altitude at booster separation: 924 ft .
Time to zenith: 98 sec .
Altitude at zenith: 15.4 miles
Flight duration: 34.5 sec . (nose), 200 sec . (rocket).
Payload weight: 256 lbs .
Unfueled rocket weight: 552 lbs .
Unfueled rocket C.G.: 110 in .
Gross weight at takeoff: 1174 lbs .

BALLISTIC DATA

Theodolites: WSPG Askania tracked rocket 0 to 122 sec ., HAFB tracked nose 0 to 3.9 sec. Cameras: No information furnished.
Telescopes: One station tracked 0 to 180 sec ., other 0 to 130 sec .
Radar: Good beacon signals to nose impact.

LATA RECOVERY

Telemeier: Gcod operation while sose was alo t.
Physicai recovery: Nose damaged, parachute not deployed.
Airborne recorder: Satisfactory operation.

COMMENTS

Experiment: Equipment operated staisfactorally, no data due short duration flight. Rocket performance: Rosket guide lug became disengaged from rall in tower and rocket rotated 15 degrees as evidenced by rail markings on nose cone. Nose cone failed structurally in extension section and it broke off by 2.8 sec ., the rocket continued in flight without the nos.3. The nose cone reached a maximum altitude of about 2 miles 20 sec . after takeoff.

REPORTS AND PAPERS

"Report on the Lauaching of USAF Aerobee Round No. 5," Holloman Air Force Base, 27 July 1050.
Report No. MTHTT-133, Holloman Air Force Base, December 1951.
"Panel Report No. 25," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 31 and 14 June 1950.

Agency: Alr Research and Development Command THIme: 083B MST
Altitude: 57.5 miles

UPPER AIR INSTRUMENTS

Presgure-temperatura: Two alphatron gauges to measure ambient conditions (University of Michigan).

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon, 6 channel PPM-AM system.
Airborie recorder: Ten channel data recorder (Tufts College). Modified camera to photograph gyro (University of Michigai).
Physical recovery: Separation of nose cone from rocket body and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Askania stations
Cameras: Two K-24's, one 16 mm . motion picture, one 35 mm . motion plcture, two still, six 35 mm . Mitchell, and three 35 mm . Fairchild stations.
Telescopes: Two stations.
Radar: Two X-band stations and one SCR-584 with beacon triangulation stations.
Impact location: AFCRC beacon triangulation syatem.
Alrborne
Beacon: AFCRC multipurpose beacon.
Radio cutoff: AN/DRW-4 FM control recelver.
Aspect: Sperry attitude gyroscope (University of Michtgan).

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booste: geparation:
Velocity at booster separation:
Tlime to burnout: 45.8 sec .
Altitude at burnout: 16.3 miles
Velocity at burnout: 3680 ft . per sec.
Time to zenith: 160 sec .
Altitude at zenith: 57.5 miles
firme to blowoff: 160 sec .
Altitude at blowoff:
Flight duration: 700 sec . (nose cone).
Impact coordinates: 15.5 miles down and 4.5 miles Weas of line of firing.
Payloud weight: 231 lbs.
Unfueled rocket welght: 497 lbs .
Unfueled rocket C. G. : 129 in .
Gross welght at takeoff: 1086.5 lbe .

BALLISTIC DATA

Theodolites: Trajectory data 0 to 48 sec .
Cameras: No information furnished.
Telescopes: Tracked 0 to 527 sec .
Radar: Approx. 75% coverage, trajectory data.

DATA RECOVERY

Telemeter: Good operation until zenith, no data thereafter.
Physical recovery: Nose instrumente in good condition, rocket body also recovered in comparatively good condition.
Airborne recorder: Satisfactory operation.

Pressure-temperature: Temperatures computed from pressure data up to 43.5 miles with a probable error of plus or minus 15 degrees. Values generally lower than NACA standard.

REPORTS AND PAPERS

University of Michigan Report No. A-9, Cantract AF19(128)-55, October 1951. Report No. MTHT-133, Holloman Air Force Ease, December 1951.
"Panel Report No. 26," Minutes of Metting of the Upper Atmosphere Rocket Research Panal on 7 and 8 September 1950.

Agency: Air Resaarch and Development Command. Time: 1236 MST.
Altitude: 56.7 miles.

UPPER AIR INSTRUMENTS

Temperature: Seven clusters of densing elements distributed on rocket skin (Boaton Univaraity). photography: Two Jerome type B-2 cameras to photograph the earth to zenith, and one K-15 A camera: to photograph the earth during parachute dencent (Photo. Lab., WADC).

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multtpurpose beacon.
Physical recovery: Separation of nose cone from rocket body with prima cord end lowering by parachute. Strain to be measured in parachute awivel (Boston University).

BALLISTIC DATA

Firing Range
Theodolites: Five Askania stations.
Cameras: Two $\mathrm{K}-24$'s, one 16 mm , motion picture, one 35 mm . motion pleture, two atill, seven 35 mm . Mitchell, and four 35 mm . Fairchild.
Telescopes: Two stations,
Radar: Two X-band and one SCR-584 with beacon triangulation etations.
Impact location: AFCRC beacon triangulation syatem.

Alrborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fail safe fuel cutofr.

ROCKET PERFORMANCE

Firing angle:
TMme to booster separation: 3.0 sec.
Altitude at booster separation: 1569 ft .
Velocity at booster separation: 972 ft . per sec.
Time to burnout: $458 \mathbf{s e c}$.
Altitude at burnout: 16.1 miles.
Velocity at burnout: 3850 ft . per sec.
Time to zenith: 162 sec .
Altitude at zenith: 56.7 miles.
Time to blowoff: 182 sec.
Altitude at blowoff: 55.9 miles.
Filght duration: 738 sec . (nose cone).
Impact coordinates: 24 miles down and 4 miles West of line of firing.
payload weight: 179 lbs.
Unfueled rocket weight: 478 lbs .
Unfueled rocket C. G. : $125,8 \mathrm{in}$.
Gross weight at takeoff: 1.096 lbs.

ballistic data

Theodolites: No information, furnished.
Camerus: No information furnished.
Teleacopes: One telescope tracked 0 to 95 sec., other tracked after burnout.
Radar: Trajectory data for complete trajectory, beacon intermiltent during nose cone separation.

DATA RECOVERT

Telemeter: Excellent operation except for short period during nose cone separation. Physical recovery: Nose cone in very good condition, one parachute shroud line severed at ejection, cameras in good condition.

EXPERRIMENTAL DATA

Temperature: Good reaults obtained. Photography: No information furnished.

COMMENTS

Rocket modifications: Forward 21 in . a nowe mevered by prima cord at time nowe cone severed to expose camera lens.

REPORTS AND PAPERS

"Repurt on Launching of USAF' Aerobee Round No. 7," Holloman Air Force Bere Sertail EHOOA 319.1/8, 27 December 1050.
Report No. MTHT-133, Hollomen Air Force Bane, December 1051.

IDENTIFICATION

Agency: Air Research and Development Command.
Time: 0929 MST.
Altitude: 57 miles.

UPPER AIR INSTRUMENTS

Sky brightness: Quartz apectrograph and pounting control to study sky light emission apectrum (University of Denver and University of Colorado).

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Phybical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and five Aakania stations.
Cameras: Two ribbon frame, two $\mathrm{K}-24$ 'घ, one 13 mm . motion picture, ane 35 mm . motion pleture, six 35 mm . Mitchell, three 35 mm . Falrchild, one stlll, and two radar bore sight atatione.
Telescopes: Two atations.
Redar: Two X-bund atations and one SCR-584 with beacon triangulation stations. Impact location: AFCRC beacon triangulation system.

Alrborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fail mafe fuel cutoff.

ROCKET PERFORMANCE

Firing angle:
Tlme to booster separation: 2.85 sec .
Altttude at booster separation: 1660 ft .
Velocity at booster separation: 970 ft. per aec.
Thme to burnout: 45.5 sec .
Altitude at burnout: 16.7 miles.
Velocity at burnout: 3700 ft . per sec.
Time to zentth: 160 sec .
Altitude at zenith: 57 miles.
Time to blowoff: 178 sec,
Altitude at blowoff: Near zenith.
Flight duration:
Impact coordinates: 50 miles range (nose cone).
Payload weight: $1^{1 / 5}$ lbs.
Unfueled rocket weight: 476 lbs .
Unfueled rocket C. G. : 127.5 in .
Gross weight at takeoff: 1094 lbs .

BALLISTIC DATA

Theodolites: No information furnished.
Cameras: No information furnished.
Telescopes: No information furnished.
Radar: Trajectory data 0 to $182 \mathrm{sec} .$, system operation intermittent thereafter.

DATA RECOVERY

Telemeter: Good data untll nose separation, intermittent thereafter.
Physical recovery: Spectrograph film cassette intact, sepctrography and nose cone not badiy damaged. Parachute only partially effective due to fallure of many cross members.
Rocket main body not located.

EXPARTMENTAL DATA
Siky brightneas: Equipment operated satiafactorily, but no mpectral data obtained. COMMENTS

Rocket performance: Roll rate 1 RPS, large precession angles and erratic motions, horirontal at meadth.
Experiments: Erratic angular motion of rocket resulted in unagtiafactory apectrograph exponuren. Polnting control unable to operate properly under such fight conditions.

REPORTS AND PAPERS
Quarterly Report No. 11, Univerelty of Denver, Contract No. W19-122 ac-16, 31 January 1851. Upper Air Report No. CL-4, Univermity of Colorado, Contract No. W19-122 ac-9, 1 March 1951.
*Pointing Cositrol Denign, Vol. 1, Uniaxial," Upper Air Laboratory, Univeraity af Colorado, Contract No. W10-122 ac-9, Special Report No. 1, 30 November 1949.
Progresm Report No. 10, Upper Air Laboratory, University of Colorado, Contraci No. W19-122 ac-9, 31 October 1950.
Repart No. MTIIT-133, Holloman Air Force Base, December 1951.

Agency: Air Research and Development Command.
Time: 1126 MST.
Altitude: 66 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Five thermionic ionization gauges and two alphatron pressiure gauges (University of Maichigan).

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Airborne recorder: 16 mm . motion picture camera photographing meter panel.
Physical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and five Askania stations.
Cameras: Two ribbon frame and two radar bore eight stations.
Telescopes: Two stations.
Radar: Two X-band stations and one SCR-584 with beacon triangulation itations.
Impact location: AFCRC beacon triangulation syntem.
Alrborne
Beacon: AFCRC multipurpose beacon.
Radio cutof: AFCRC multipurpose beacon for fall wafe fuel cutoff. Aspect: Sperry F4A gyroscore and roll photocell (Univerwity of Michigan).

ROCKET PERFORMANCE

Firing angle:
Tlme to booster separation: 3, 0 sec.
Altitude at booster separation: 1000 ft .
Velocity at booster separation: 1520 ft . per sec.
Time to burnout: 46.3 sec .
Altitude at burnout: 17.8 miles.
Velocity at burnout: 4150 ft . per sec.
Time to zenith: 185 sec .
Alititude at zenith: 66 miles.
Time to blowoff: 187.5 sec .
Altitude at blowoff: ijear zentth.
Filght duration: 513 sec . (nose cone).
Impact coordinates: 42.5 miles down and 5.3 miles west of line of tiring (nose cono).
Payload weight: 184 lbs.
Unfueled rocket weight: 455 lbs.
Unfueled rocket C. G. : 135 in.
Gross weight at takeoff: 1108 lbs.

BALLISTIC DATA

Theodolites: No information furntshed.
Cameras: No information furnished.
Telescopes: Coverage by one station 0 to 72 sec ., roll reporteu 15 to 46 sec .
Radar: Trajectory 0 to 513 sec.; good data to zenith, intermittent thereafter.

DATA RECOVERY

Telemeter: Good data to nose separation, intermittent thereafter.
Physical revovery: Nose severly damaged, parachute did not function properly. Recorder film recovered.
Airborne recorder: Excellent operation.

WXPERUMENTAL DATA

Presgure-temperature: Data quentionable becaute of poor rocket aspect, complete analyala not cittempted.

COMMENTS

Rockot performance: Unatable after burnout, excenaive yew.

REPPORTS AND PAPEERS

University of Michisan Progreas Report No. Ab-A7, by N. W. Bpencer and W. C. Dow, Univorwity of Michigan Contract No. AF19(199) 65 , March 1951.
Roport No. MTHTT-133, Holloman Alr Force Bane, Decumber 1981.
"Panol Report No. 27," Minutey of Meeting of the Upper Atmosphere Rockat Reatearch Panel on 31 January 1051.

Asency: Atr Rawearch and Development Command.
Tirme: 1014 MST.
Altitude: 41 mllea.

UPPER AIR INSTRUMENTS

Sodium chloride experiment: Dispersal of finely divided NaCl into the atmosphere at an altitude $\alpha 100 \mathrm{Km}$.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Phywical recovery: Separation of nome cone from rocket body and lowering by parachute.

BALIISTIC INSTRUUMENTS

Firing Range
Theodolltes; Two Mitcholl atations.
Cameras: No information.
T'eleacopes: One mation.
Radar: Two X-band wations and one SCR-584 with beacon triangulation atatione.
Impact location: Beacon trianqulation yyitom.
Alrborne
Beacon: AFCRC multipurpose bescon.
Radlo outoft: AFCRC multipurpose bencon for fall alafe fuel cutoff.

ROCKET PERFORMANCE

Firing angle:
THme to booster separation: 2.5 wec.
Altitude at boonter eeparation: 1152 ft .
Velocity at boonter separation: 020 ft . per sec.
Tlime to burnout: 41.6 euc.
Altitude at burnout: 14,2 miles.
Velocity at burnout: 3145 ft . per sec.
Tlme to zenith: 142 mec.
Altitude at zonith: 41 miles.
Thine to blowolf: 221 wee.
Altitude at blowoff: 21.6 mileg.
Fitght duration: 880 sec. (nose cone).
Impact coordinatew: 24 miles range.
Payload welght: 202 lbw.
Unfueled rocket welght: 481 lbs.
Unfueled rocket C. G. : 116 in .
Gross welyht at talrooir: 1102 lbs .

BALIISTIC DATA

Theodolites: No information furnished.
Cameras: No information.
Teloscopes: No Information furnished.
Radar: No trajectory data - poor film record. Slignal grood on upward leg, weak through renith, and intermittent after nowe cone separation.

DATA RECOVERY

Telemeter: Good signals on upleg of trajectory, weak through zenith, intermittent for a time after spearation, and then good to impuct.
physical recovery: Cood recovery, parachute operation normal.

EXPERIMENTAL DATA

Sodium chloride experiment: NaCl not ejected due to fallure in detonator circuit.

COLMENTS
Rocket performance: Early motor burnout.
Rocket modiftantions: Motor operation delayed by 2 sec . with special trip mechanism.
Launching oparations: 40 fi . extension added to tower and used for first time. Total tower length - 150 ft.

REPORTS AND PAPERS
*Proliminary Report on USAF Aorobee 10 (GRD-2)," Air Force Cambridge Remaarch Center, 11 February 1052.
Report No. MEHTH-133, Holloman Air Force Base, December 1951.
"Panol Report No. 28," Minutes of Meeting of the Upper Atmowphere Focket Remearch Panel on 25 Aprll 1061.

Agency: Air Research and Development Command.
Time: 1026 MST.
Altitude: 18 miles.

UPPER AIR INSTRUMEN'S

Solar radiation: Solar ultra violet spectrograph and monochromatic camera directed with a bi-axial pointing control.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCTRC multipurpose beacon
Physical Recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and four Askania stations.
Cameras: Two ribbon frame, two $\mathrm{K}-24$'s, one 16 mm . motior picture, one 35 mm . motion picture, six 35 mm . Mitchell, three 35 mm . Fairchild, and two radar bore sight stations.
Telescopes: Two stations.
Rader: Two X-band stations and one SCR-584 with beacon triangulation stations. Impact location: AFCRC beacon triangulation system.

Alrborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fall safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.6 sec.
Altitude at booster separation: 1000 ft .
Velocity at booster separation: 1000 ft . per sec.
Time to burnout: 30.6 sec .
Altitude at burnout: 7.8 miles.
Velocity at burnout: 2025 ft . per sec.
Time to zenith; 96 sec.
Altitude at zenith: 18 miles.
74 me to blowoff: 150 sec .
Altitude at blowoff: 7.0 miles.
Flight duration: 270 sec.
Impact coordinates: 8 miles range (nose cone), 10 miles range (rocket body).
Payload weight: 254 lbs.
Unfueled rocket welght: 550 lbs .
Unfueled rocket C. G. : 110 in .
Gross weight at takeoff: 1171 lbs .

BALLISTIC DATA

Theodolites: Coverage by two stations 0 to 84 sec.
Cameras: No information furnished.
Telescopes: Coverage by one station 0 to 172 sec .
Radar: Trajectory data 0 to 270 sec . Good aignal to separation, intermittent thereaiter.

DATA RECOVERY

Telemeter: Good signal to separation, intermittent thereafter.
Physical recovery: Nose cone in relatively good condition. Parachute badly damaged by excessive opening shock. Rocket body disintegrated.

EXPEMMENTAL DATA
Solar radiation: No data due to low zenith altitude, information on pointing control operation poor due to failure of telemeter commutator.

COMMENTS

Rocket performance: Promature termination of propulation due to oither fatlure of preasurizing syintem or premature fual line severance.

REPORTS AND PAPERS
Report No. EHO-24, Holloman Air Force Bace, 31 May 1951.
"A Monochromatic Solar Camora for Rockei Inatallation," Upper Alr Laboratory, Univeruity of Colorado, Contract No. W19-128 ac-9, Roport CL-1, 30 June 1950.
Progrens Report No. 11, Upper Alr Laboratory, Jniverwity of Coloxido, Contract W10-182 ac-9, 31 January 1051.
Progrese Report No. 12, Upper Alr Laboratory, University of Colorado, Contract W10-122 ac-9, 30 April 1951.
Roport MHTH-133, Holloman Air Force Beac, Decomber 1951.
"Panel Raport No. 28," Minutes of Meeting of the Upper Atmosphero Rocket Reseurch Pamel on 25 April 1951.

Agency: Air Research and Development Command.
Time: 1139 MST.
Altitude: 38 miles.

TJPPER AIR INSTRUMENTS

Biological: Experiment by Aero-Medical Labotatory, WADC.

DATA RECOVERY INSTRUMENTS

'Telemeter: Six channel Bendix FM-FM systern.
Physical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firirg Range
Theodolites: Five stations.
Cameras: No information.
Telescopes: One station.
Radar: Two X-band stations and one SCR- 584 with beacon triargulation stations. Impact location: AFCRC beacon triangulation system.

Airborne

Beacon: Cxlahoma C of A \& MA beacon. Racilo cutoff: AN/DRW-4 FM control receiver.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.4 ses.
Altitude at bonster separation: $1423 \mathrm{f} . \mathrm{i}$.
Velocity at booster ceparation: 938 ft . per sec.
Time to turncut: 45.2 sec .
Altitude at burnout: 14.4 miles.
Velocity at burnout: 2880 ft . per sec.
Clime to zenith: 135 sec .
Altitude ziterith: 38 miles.
Time to !umaif: 140 sec .
Altitude . towofi: 35 miles.
Flight duration: 425 gec . (nose cone).
Impact cocrdinates: 40 miles range (nose cone).
Pqyload weight: 256 lbs.
Unfueled rocket weight: 556 lbs.
Unfueled rucket C. G. : 106 in .
Gross weight at takeoff: 1178 lbs ,

BALLISTIC DA*A.

Theodolites: Coverage by two Askania stations 0 to 49 sec .
Cameras: No information.
Telescopes: Coverage 0 to 80 sec .
Radar: Trajectory data 0 to 94 sec , at sec. intervals, and 230 to 415 sec , at 5 sec . intervals.

DATA RECOYERY

Telemeter: No information furnished.
Physical recovery: No comments an nose cone furnished. Parachute badly torn.

EXPERIMENTAL DATA

Biological: Significant data obtained.

Rocket performance: Spurto in rocket exhaust notad between 43.6 ancic 44.2 sec.
Rocket moditisations: Special telemeter di-pole antenna mounted on nose tip. Extra nowe cone axteailon unsd to accommodate a ${ }^{5} 4 \mathrm{ft}$. canopy type parachute.

REPORTS AND PAPERS

Fisport No. MHTTH-133, Holloman Air Force Eane, Dscember 1951.
"Panel Report No. 28," Minutes α Meeting of the Upper Atmomphere Rocket Research Panel on 25 April 1851.

Agency: Air Research and Development Compand.'
Time: 1246 MST.
Altitude: 2.3 miles.

UPPER AIR INSTRUMENTS

Ionosphere: Oblique incidence propagation experiment. (Boston Univ.)

DATA RECOVERY INSTRUMENTS

Telerneter: AFCRC multipurpose beacon.

Physical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute. Shock forces in the parachuted swivel bolt to be measured by strain gauge (Boston Univ. and Equipment lab. , WAPFB).

BALLISTIC DATA

Firing Range

Theodolites: Two Mitchell and eight Asicania stations.
 picture, six 35 mm . Mitchell, three 35 mm . Fairchild, and two rader bore aight stations.
Telescopes: Two stations.
Radar: Two X-band stations and one SCR-584 with beacon triangulation stations.
Impact location: AFCRC beacon triangulation system.

Airborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fail bafe fuel cutaff.
Other: Rocket propulsion performance instruments.

ROCKET PERFORMANCE

Fring angle:
Time to booster separation: 2.3 sec.
Altitude at booster separation: 1170 ft .
Velocity at booster separation: 936 ft . per sec.
Time to burnout: Premature cutoff at 2.3 sec .
Time to zenith: 20 sec.
Altitude at zeni:h: 2.3 miles.
Flight duration: 51 sec .
payload weizht: 147 lbs .
Unfueled socket welght: 443 lbs ,
Unfueled rocket C. G.: 147 in .
Gross weight at takeoff: 1065 lbs .

BALLASTIC DATA

Thuodolites: Position and velocity data from Askanias 0 to $5 . y \mathrm{sec}$.
Cameras: No information furnished.
Telescopes: Intermittent coverage by one station 2 to 43 sec .
Kadar: No information furnish ${ }^{-1}$.

DATA RECOVERY

Telemeter: Good records during flight.
Physical recovery: Instrumentation and nose recovernd.

EXPERIMENTAL DATA

Ionosphere: No data were obtained due to rocket failure.

COMMENTS
Rocket performance: Abnormally short flight result of fuel Hne meverance due to fallure in radlo cutof system. Propulsion instrumentation fuictioning properiy, no useful date obtcined due to short burning time. Rovikat nowe cone broke off by 4.6 sec. subsequent to revere yaw. Angle of attack 80 degrees by 6.0 sec. and tall section broke awey from racket body.
Rockat modificafion: Circumferential dielectric section ineerted in nowe cone extenmion to allow nowe core to be used as a 13.56 MC . antenna, nowe broke away at this point,

REPORTS AND PAPERS
*Prellininary Field Tent Report. Project MU-1011, USAF Aerobee 19, "Holloman Air Force Base Report No. EHO-37, 12 July 1951.
Boston Univermity Progress Report No. 8, Contruct AF10(122)-36.
Technical Note No. 11, Boaton Univeraity Upper Aimowphere Re』earch Labotatory, Contract AF'33 (038)12942.
Report No. MHTH-133, Holloman Air Force Base, Decevuber 1951.
"Panel Report No. 29," Mirutom of Moeting of the Upper Atmomphere Rocket Pomerch Panel on 14 and 16 Aurust 1951.

Agency: Air Research and Development Command
Time: 1711 MST
Altitude: 55 miles

UPPER AIR INSTRUMENTS

Solar radiation: X-ray photographic detectors with metallic foll filters (AFCRC).
Sodium chloride experiment: Ejection of finely divided NaCl at high altitudes ard ground based phototube detectors with filters to make comparative observations on nights prior to and suivsequent to ejection.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC mulipurpoze beacon.
Physical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSTRUMNNTS

Flring Range

Theodolites: Three Mitchell and seven Askania stations.
Camerss: Two X-24, one 16 mm . motion picture, one 35 mm . motion picture, six 35 mm . Mitchell, three 35 mm . Fairchild, and two radar bore sight stations.
Telescopes: Two stations.
Racar: Two X-band stations and one SCR-584 with beacon triangulation stations.
Impact location: AFCRC beacon triangulation system.

Airborne

Beacon: AFCRC multipurpose beccon.
Radio cutoff: AFCRC multipurpose beacon for fall sate fuel cutoff and command nose severance.
Rocket perforiuance: Rocket propulsion system parformance measuring instruments.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.43 sec .
Altitude at booster neparation: 1242 ft .
Velocity at booster sepuration: 996 ft. per sec.
Time to burnout: 44.6 sec .
Altitude at burnout: 16.1 miles
Velocity at burnout: 9875 ft . per sec.
Time to zenith: 167 sec .
Altitude at genith: 55 miles
Time to blowoff: 17: sac.
Altitude at blow fif:
Flight duration: 1040 sec. (nose cone)
Impact coordinates: 22.5 miles down and 16.5 miles West of line of firing (nose cone)
payload weight: 155 lbs.
Uniueled rocket w6lght: 460 lbs .
Unfueled rocket C.G.: 127 in .
Gross weight at twkeoft: 1082 lbs.

BALLISTIC DATA

Theodolites: Position and velocity 0 to 49 sec .
Criveras: No information furnished.
Telescopes: One station tracked to burnout.
Radar: No informatica furnished.

DATA RECOVERY

Tele:seter: lio intormation furnished.
Physical recovary: Nose cone and X-ray detectors recovered in good condition.

EXPERLMENIAL DATA
Solar radiation: No evidence of X-rays ahown by detectors.
Sodiun chloride: Inconclusive evidence of increase of sodium activity in the night sky.
COMOMENTS
Rocket periormance: Normal propulation operation Indicated by performance instruments. Momentary closure of beacon command relay at boostor ignition and again at 1.0 aec.

REPORTS AND PAPRHRS
"Prellminary Fheld Teat Report, Project MXX'-1011, USAF Aerobee 14," Holloman Air Force Bane Roport No. Exanolo, 10 July 1051.
Roport No. Mifiry-133, Holloman Alr Force Elase, December 1951.
"Panel Report No. 29," Minute of Meeting of the Upper Atmosphere Rocket Rescarch Panol on 14 and 15 Auguat 1951.

Agency: Air Research and Development Command TIme: 0928 MST
Altitude: 44.3 miles

UPPER ATR INSTRUMENTS

Sky brightness: Photomultiplier tubes with narrow band interference filters and two GSAP 16 mm . motion picture cameras (AFCRC).

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipur, se beacon six channel PPM-AM system.
Pliysical recovery: Separation of nose cone from rocket body by prima cord and lowering by parachute.

BALLISTIC INSXRUMENTS

Firing range
Theodolites: Two Mitchell and seven Askania stations.
Cameras: I'wo $\mathrm{K}-24$, one 16 mm . motion pleture, one 35 mm . motion picture, $\mathbf{s i x} 35 \mathrm{~mm}$. Mitchell, three 35 mm . Fairchild, and two radar bore sight stations.
Telescopes: Three stations.
Radar: Two X-band stations and one SCR-584 with beacon triangulation stations.
Impact location: AFCRC beacon triangulation system.

Airborne

Beacon: AFCRC multipurpose baacon.
Radio cutoff: AFCRC multipurpose beacon for fall safe fuel cutoff and command nose severance.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.42 sec .
Aititude at booster separation: 1629 ft .
Velocity at booster separation: 1016 tt . per sec.
Time to burnout: 41.4 sec .
Altitude at burnout: 14.0 miles
Velocity at burnout: $\mathbf{3 2 8 5} \mathrm{ft}$. per sec.
Time to zenith: 139 sec .
Altitude at zenith: 44.3 milles
Time to blowoff: 194 sec.
Altitude at blowoff: 35.3 miles
Flight duration: 703 sec . (nose cone).
Impact coordinates: 10 miles range (nose), 11 milles range (rocket body).
Payload weight: 100.5 lbs .
Unfueled rocket weight: 487 lbs .
Unfueled rocket C.G.: 122 in .
Gross welght at takeoff: 1108.5 lbs.

BALLISTIC DATA

Theodolites: Askania position and velocity data 0 to 50.4 sec., aspect data 0.6 to 10 sec., roll data 0.95 to 4.7 sec .
Cameras: No information furnished.
Telescopes: Coverage by one station 0 to 554 sec., another 0 to 272 sec., and the remaining 0 to 124 sec .
Radar: Complete trajectory data. Signals good to separation and intermittent thereafter.

DATA RECOVERY

Telemeter: Good record throughout filght.

DATA RECOVERY (Continued)

Physical recovery: Nose instrumentation in very good condition, parachute operated well. Rocket body bedly damaged.

EXPERIMENTAL DATA

Sky brightness: Unexpected large and constant light Intensities at altitudes 18.65 to 43.5 miles were again encountered. For 20 Angetrom bancwidths at L 6360 A, the intengity is $7 \mathrm{milli}-$ watts $/ \mathrm{cm} .^{-2}$; at L 6150 A milliwatts, and at $L 50103$ milliwatts. Minimum values were obtained for the following: L 55902 milliwattu; $L 53901$ milliwatt; $L 48952$ milliwatts; L 46151.5 milliwatts; L 42001 mllliwatt. Photographic evidence obtalned at 43 miles indicates the existence of luminescent clouds at higher altitudes.

COMMENTS

Rocket performance: Poor propulaion performance, zenith altitude 15 miles leas than predicted.

REPORTS AND PAPERS

"Preliminary Field Teat Report, Project MX-1011, Misnile No. 15," Holloman Alr Force Baee Report NO. EHO-86, 29 Auguat 1951.
"Day Sky Brightneme Measured by Rocketborne Photoelectric Photometern," H. A. Miloy, et al., Amer. Geophys. Union Transactions, (in preme).
Report No. MTETT-133, Holloman Air Yorce Bate, December 1951.
"Panel Report No. 29," Minutes of the Upper Atmasphere Zockst Research Parel on 14 and 15 Auguat 1051.

Agency: Air Research and Development Command Time: 0936 MST
Altitude: 51.2 miles
UPPER AIR INSTRUMENTS
Ionosphere: Transponder in rocket retransmitting ground originated signal.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Physical recovery: Separation of nose cone from rocket body and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askania stations.
Cameras: Two K-24; six Mitchell, three Fairchild, one standard 35 mm . motion picture. Telescopes: Three stations.
Radar: Two X-band stations and one SCR-584 station with beacon triangulation stations. Impact location: AFCRC multipurpose beacon triangulation system.

Airborne

Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fail safe fuel cutoff.
Parachute performance: Measurement of shock forces appearing on swivel of nose cone parachute (WPAFB and Boston Univ.).

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.3 sec.
Altitude at booster separation: 1178 ft .
Velocity at booster separation: 939 ft . per sec.
Time to burnout: 43.7 sec .
Altitude at burnout: 15.1 miles
Velocity at burnout: 3566 ft . per sec.
Time to zenith: 156 sec.
Altitude at zenith: 51.9 miles.
Time to blowoff: 210 sec .
Altitude at blowoff: 43 miles
Flight duration: 782 sec (nose cone).
Impact coordinates: 15 miles range (nose cone and rocket body).
Payload weight: 153.5 lbs .
Unfueled rocket weight: 456 lbs .
Unfueled rocket C.G.: 145 inches
Gross welght at takeoff: 1077 lbs .

BALLISTIC DATA

Theodolites: Position and velocity data 0 to 55 sec.; aspect data 0.7 to 10.7 sec .; roll data 0.0 to 10.9 sec .
Telescopes: One station tracked 0 to 662 sec., another 0 to 71 sec.
Radar: Trajectory data obtained.

DATA RECOVERY

Telemeter: Good operation.
Physical recovery: Nose cone instruments in excellent condition; rocket body badly damaged.

EXPERIMENTAL DATA

Ionosphere: Altitude insufficient to penetrate E-layer some analysis possible on long distance propagation modes.

COMOHTNTS
Rocket performance: Zenith altitude 20 miles short of prediction.
Parachute performance: Some data obtained on shock, circuits falled during drop.
Rocket modifications: Two nose cone extentions used. Two mecoud delay introduced in motor ignition.

REPPORTS AND PAPERS
"Preliminary Field Teat Report, Project MXX-1011, U\&AF Aerobe 16," Holloman Air Force Bame Report No. Hiti-50, september 1951.
Progreme Report No. 9, Bowton Univeraity Upper Atmosphare Research Laboratory, Condract Ne AF19(122)-30.
Report No. MTETT-133, Holloman Air Force Base, Now Maxico, December 1951.
"Panel Report No. 29," Minutes of Meetling of the Upper Atmomphere Rocket Research Panel on 14 and 15 Auguat 1951.

Agency: Air Ressearch and Development Command Time: 1540 MST
Altitude: 17 miles

UPPER AJR INSTRUMENTS

Comments: No upper air research lustruments, test of rookat.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Physical recovery: Separation of nose cone from rocket wiri, prima cord and both sections lowered by parachutes.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Mitchell and six Askania stations.
Rader: Two X-band stations and one SCR-584 station with beacon triangulation stations.
Alrborne
Beacon: AFCRC multipurpose beacon.
Radio cutoff: AFCRC multipurpose beacon for fail safe fuel cutoff.
Rocket performance: Propulsion system pressure measurements, and fuel tank temperature.
parachute performance: 'Temperature measurements on ribbon of 50 in . nose cone drag parachute, free stream temperature in region of parachute swivel (Boston University).

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.5 sec .
Altitude at booster separation: 1210 ft .
Velocity at booster separation: 033 ft . per sec.
Time to burnout: 47.2 sec.
Altitude at burnout: 15.8 miles
Velocily at burnout: 3402 ft. por sec.
TJme to zenith: 158 sec.
Altitude at zenlth: 47 miles
Time to blowoff: 158 sec.
Altitude at blowoif: 47 miles
Flight duration: 530 sec.
Impact coordinates: 17 miles range.
Payload weight: 174.5 lbs .
Unfueled rocket weight: 452 lbs .
Unfueled rocket C.G.:
Gross weight at takeoff: 1138 lbs.

BALLISTIC DATA

Theodolites: Aspect data 1 to 10.8 sec., position data 1 to 272 sec ,, velocity data 1.4 to 270 sec . Radar: Roll data from bore sight cameras 1.5 to 0.7 sec.

DATA RECOVERY

Telemeter: Satisfactory operation.
Physical recovery: Parachute recovery falled.

COMMENTS

Rocket performance: Chemical pressurization system functioned satisfactorily.
Parachute performance: Nose cone drag parachute deployed and became separated at swivel, elight ft . nose cone parachute did not deploy. Both main body parachutes deployed, the ten ft. diameter parachute shredded and entangled in rocket tall fins. The main parachute

COMMENTS (Continued)
deployed and functioned satisfactorily, until a hole appeared in the canopy and enlarged untll the parachute collapsed.
Rociset modifications: Normal proasurizing gas storage tank replaced by a chemically activated gas generator wystem.

REPORTS AND PAPERS
"Preliminary Field Teut Report, Aerobec No. 17, Project No. MXX-1011," Rolloman A1r Forse Base Report No. MTHT-92, November 1951.
Report No. MTET-13s, Holloman Air Force Base, Now Mextco, December 1961.

Agency: Air Research and Development Command
Time: 0437 MST
Altitude: 47 miles

UPPER AIR INSTRUMENTS

Temperature-pressure: One alphatron ionization gauge to measure ram pressure at nose tip. Two alphatron ionization gages to measure cone wall pressure. One electrode assembly to determine air density by means of Paschen's law. (University of Michigan.)
Other: Boundary layer velosity indicator.

DATA RECOVERY TNSTRUMENTS

Telemeter: AFCRC multipurpose beacon.
Airborne recorder: 18 mm . motion picture camera. (Univ. of Mich.)
fhysical recuyery: Separation of nose from rocket with prima cord and lowering by parachate.

BALLISTIC INSTRUMENTS

Firiny Range
Theodolites: Two Mitchell and five Askania stations.
Radar: Two X-band stations and one SCR-584 station with beacon triangulation stations. Impact location: AFCRC multipurpose beacon triangulation system.

Airborne

Bsacon: AFCRC multipurpose beacon.
Radio cuioff: AFCRC multipurpose beacon for fail safe fuel cutoff.
Aspect: Gyroscope (University of Michigan).

GOCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.2 sec .
Altitude al: booster separation: 1115 it .
Velocity at booster separation: 942 ft . per sec.
Time to burnout: 42 sec .
Altitude at burnout: 14.2 miles
Velocity at burnout: 3400 ft . per sec.
Time to zenith: 147 sec .
Altitude at zenith: 47 miles
Time to blowoff: 157 sec.
Alitude at blowof: 46.6 miles
Flight duration: 685 sec . (nose cone)
Impact coordinates: 20 miles range (nose cone)
payload welght: 196 lbs.
Unfueled rocket weight: 494 lbs .
Unfueled rocket C.G.:
Gross weight at takeoff: 1116 lbs.

BALLISTIC DATA

Theodolites: Position data 0.6 to 33.1 sec., velocity data 1.0 to 33 sec .
Radar: Good flight signals, trajectory possible.
Aspect: Satisfactory gyroscrpe data.

DATA RECOVERY

T'elemeter: Good records.
Physical recovery: Satisfactory parachute operation, nose found in good condition eighty min. afier firing. Rockst body not found.
Airborne recorder: Excellent results.

EXPERIMENTAL DATA

Pressurc temperature: Temporatures computed from pressure data between 18.6 and 44.7 miles lower than NACA standard.
Density: Paschen's law results inconclusive because boundary layer air characteristics information insufficient.
Boundary layer velocity indicator: Some data from 0 to 30 sec .

COMMENTS

Rocket performance: Propulsion duration shorter than normal.

REPORTS AND PAPERS

"Preliminary Field Test Report, Project MX-1011 (X-8), USAF Aerobee 18," Holloman Air Force Base Report No. MTHT-122, November 1951.
Progress Report No. A9, by N. W. Spencer and W. C. Dow, University of Michigan AFCRC Contract No. AF19(122)55, October 1951.
Report No. ATHT-133, Holloman Air Force Base, New Mexico, December 1951.
"Panal Report No. 30," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 24 October 1951.

Agency: Air Research and Development Command Time: 0931 MST.
Altitude: 44 miles
UPPER AIR INSTRUMENTS
Biological: i..., deriment by Aero-Medical Laboratory, Wright Air Development Center.

EATA RECOVERY INSTRUMENTS

Telemeter: Six channel Bendix FM-FM system.
Physical recovery: Nose cone separation with prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and six Askania stations.
Cameras: Two Clark Ribbon Frame stations.
Telescopes: Two stations.
Radar: Two X-band stations and one SCR-584 station with beacon triangulation stations. impact location: Beacon triangulation.

Airborne

Beacon: AFCRC multirurpose beacon,
Radio cutoff: AFCRC multipurcose beacon for fail safe fuel cuioff.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.41 sec .
Altitude at booster \sim paration: 1174 ft .
Velocity at booster separation: 935 ft . per sec.
Time to burnout: 45.5 sec .
Altitude at burnout: 15 miles
Velocity at burnout: 3200 tt. per sec.
Time to zenith: 146 sec .
Altitude at zenith: 44 miles
Time to blowoif: 153 sec .
Altitude ax blowoff: 43 miles
Flight duration: 636 sec . (nose cone)
0
Impact coordinates: 16 miles range (nose cone)
Payload weight: 218 lbs.
Jnfueled rocket weight: E18 lbs.
Unfueled rorket C.G.:
Gross weigint at takeoff: 1140 lbs.

BALLISTIC DATA

Theodolites: Askania aspect data 0.8 to 36.6 sec .
Cameras: No information furnished.
Telescopes: Coyerage by both stations 0 to 117 sec .
Radar: Trajectory data from triangulation system to impact

DATA RECCㄷERY

Telemeter: No information furnished.
Physical recovery: Successful parachute operation.

EXPERIMENTAL DATA

Biological: Significant data obtained.

COMMENTS

Rocket modifications: Two nose cone extensions on rocket. Folded dipole antenna at nose tip.

REFORTS AND PAPERS

Report No. MTHT-133, Holloman Air Force Base, New Mexico, December 1951.
"Panel Report No. 30," Minutes of Meeting of the Uppor Atmosphere Rocket Research Panel on 24. October 1951.

Agancy: Air Research and Development Command (Boston University). Time: 1117 MST.

17 October 1951 Altitude: 71.0 miles.

Experiments: Ionosphere.

AERObee USAF-21
30 January 1952
Agency: Ais Research and Development Command (Utah University).
Tine: 1445 MST.
Altitude: 0 miles.
Experiments: Ionosphere.

Agency: Atr Research and Development Command (AFCRC*).
Time: 0749 MST.
Altitude: 0 miles.
Experiments: Sky brightness
*Air Force Cambridge Kesearch Center.

AEROBEE
USAF-23
29 February 1952
Agency: Air Research and Development Command (AFCRC*).
Time: 0740 MST .
Altitude: 55 miles.
Experiments: Sky brightness
*Air Force Cambridge Research Command.

AEROBEE
USAF-24
24 April 1052
Agency: Air Mesearch and Development Command (Boston University). Time: 1028 MST.
Altitude: 70.0 miles.

Experiments: Ionusphere

IDENTIFICATION

30 January 1952
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1445 MST
Agency: Air Force Cambridge Research Center, University of Utah

FLIGHT OBJECTIVES

Ionosphere: Vertical incidence, to measure the time delay of radio waves near the critical frequency through the ionosphere for determination of ion densities

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon

BALLISTIC INSTRUMENTS

Airborne
Beacon: AFCRC multipurpose beacon Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 152 1b
Unfueled rocket C.G.: 122 in . from nose tip

ROCKET PERFORMANCE

Peak altitude: 0 degrees

COMMENTS

Rocket performance: Missile exploded in tower

IDENITFICATION

19 February 1952
Rucket type: RTV-A-1a unbocsted
Place of firing: Holloman Air Development Center
Time of firing: 0749 MST
Agency: Air Force Cambridge Research Center, University of Utah

FLIGHT OBJECTIVES
To study OH airglow in the day sky

UPPER AIR INSTRUMENTS

Photoelectric radiometer

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Cameras: Aspect

BATJLISTIC INSTRUMENTS

Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

FLIGHT INFORMATEON

Peak altitude: 0 degrees

ROCKET INFORMATION

Payload weight: 189 lb
Unfueled rocket C.G.: 135 in . from nose tip

COIMMENIS

Rocket modifications: This was the first non-boosted Aerobee rocket Rocket performance: There was a thrust chamber explosion in the tower. payload instrumeriation was recovered intact and subsenuently flown on USAF-25.

IDENEIFICATION

29 February 1952
Rocket type: R2V-A-1
Place of firing: Holloman Air Development Center
Time of firing: 0740 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 55 miles

FLIGHT OBJECTIVES

To study OH airglow in the day sky (See USAF-22)

UPPER AIR INSTRUMENTS

Photoelectric radiometer

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Mitchell and five Askania stations
Cameras: Two Mitchell and three hand panned ballistic cameras
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 178 lb
Unfueled rocket C.G.: 125 in . from nose tip
Gross weignt at takeoff: 1102 lb

ROCKET PERFORMANCE

Time to burnout: 45.3 sec
Velocity at burnout: $3520 \mathrm{ft} / \mathrm{sec}$
Altitude at zenith: 55 miles

BALLISTIC DATA

Theodolites and Cameras: Optical data through 49.49 sec , Mitchell bold rate through 4.40 sec

DATA RECOVERY

Telemeter: Beacon worked well at low altitudes, spotty or nonexistent at higher altitudes
Physical recovery: Nose cone recovered in fairly good condition

EXPERIMENTAL DATA

No data, due to intermittent telemeter

IDENTIFICATION

24 April 1952

Rocket type: RTV-A-1

Place of firing: Holloman Air Development Center Time of firing: 1028 MST
Agency: Air Force Cambridge Research Center, Boston University Altitude: 72 miles

FLIGHT OBJECTIVES

Ionospheric propagation (See USAF-16 and -20)

DATA RECOVERY INSTRUMENTS

Physical recovery: A new ribbon type (50 in.) parachute constructed of sidicone-rubber-impregnated Fiberglass by Aerojet was used

BALLISTIC INSTRUMRNTS

Firing Range
Theodolites: Three Mitchell and seven Askania stations Cameras: Two ballistic camera stations

ROCKET INFORMATION

Payload weight: 145 1b
Unfueled rocket C.G.: 125 in . from nose tip
Gross weighl at takeoff: 1061 ib

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 45.3 sec Velocity at burnout: $4280 \mathrm{ft} / \mathrm{sec}$ Time to booster burnout: 2.71 sec Velocily at liooster burnout: $1008 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1428 ft Time to zenith: 156 sec Altitude at zenith: 72 miles

BALLISTIC DATA

Theodolites and Cameras: Optical data through 40.64 sec . Roll data (optical) through 2.95 sec.

Beacon Triangulation system: Data from 3.84 to 550.84 sec with one skip of 65 sec around peak and one skip of 40 sec later

DATA RECOVERY

Physical recovery: Instrumentation not materially damaged due to rugged construction

EXPERIMENTAL DATA

Good mode data obtained

COMMENTS

Rocket modifications: This was the first rocket to use the starting slug of 70\% furfuryl alcohol and 30% aniline
Rociset performance: The rocket made a smoother start and the flight was normal

IDENTIFICATION

1 May 1952
Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 0842 MST
Agency: Air Force Cambridge Research Center, Rhode Island University Altitude: 50 miles

FLIGHT OBJECTIVES

To determine intensity of solar radiation at the limit of the atmosphere

UPPER AIR INSTRUMENTS

Radiation measured by thermistor bolometers, with bias potential to limit sensitivity to range 1.6 to $2.1 \mathrm{gm} \mathrm{cal} \mathrm{cm}^{-2} \mathrm{~min}^{-1}$. Radiation device mounted in Colorado blaxial pointing control.

DATA HECOVERY INSTRUMFNTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Nose cone separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range

'Theodolites: Five Mitchell and five Askania stations
Cameras: Two ballistic camera stations
Radar: Two radars
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutofi: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 240 lb
Unfueled rocket C.G.: 121 in . from nose tip

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 46.60 sec
Velocity at burnout: $3709 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $84,380 \mathrm{ft}$
Time to booster burnout: 2.45 sec
Velocity at booster burnout: $947 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at booster burnout: 1210 ft
Time to zenith: 155 sec
Altitude at zenith: 50 miles
Time to nose cone separation: 215 sec
Flight duration: 548 sec

DATA RECOVERY

Telemeter: Good to 185 sec . Intermittent due to antenna nulls.
Physical recovery: Nose separation did not occur. Large chute remained in canister. Extensive damage to GRD instrumentation. Beacon destroyed.

EXPERIMENTAL DATA

The elevation arm of the biaxial pointing control did not function, hence no data were obtained

COMMENTS

Rocket performance: As predicted

IDENTIFICATION

21 May 1052
Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 0815 MST
Agency: Air Force Cambridge Research Center and Aero Modical Laboratory, Wridit Air Development Center
Altitude: 38 miles

FLIGHT OBJECTIVES

Blological

DATA RECOVERY INSTRUMENTS

Telemeter: Holloman range facilities
Physical recovery: Parachute system of loweriug nose cone. Dual parachute aystem (24 ft diameter solid canopy main parachute and ten ft diameter ribbon drag parachute).

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Five Mitchell and eight Askania stations
Cameras: Two ballistic cameras
Radar: Four radar
Beacon Triangulation system: MIRAN
Airborne
Radio cutoff: DRW-4

ROCKET INFORMATION

Fayloud weight: 287 1b
Unfueled rocket C.G.: 126 in. from nose tip
Unfueled rocket weight: 526 lb
Gross weight at takeoff: 1209 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, one degree east Time to burnout: 40.8 sec
Velocity at burnout: $2831 \mathrm{ft} / \mathrm{sec}$
Altitude al burnout: 63629 ft
Time to booster burnout: 2.62 sec
Velocity at booster burnout: $950 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1255 ft
Time to zenith: 130 sec
Altitude at zenith: 38 miles
Time to nose cone separation: 560 sec
Altitude at nose cone separation: $148,148 \mathrm{ft}$
Supplamant
Flight duration: 958 sec
Feliruary 1958

ROCKET PERFORMANCE (Continued)

Impact coordinates: Main Body - 12 mi . south, 29 mi . west from launcher Parachute - one mi. north, seven mi. west from launcher

BALLISTIC DATA

Theodolites and cameras: Optical data to 54.16 sec . Askania nose cone data from 2 min 34.76 sec to 3 min 22.76 sec . Roll data to 5.08 sec .

DATA RECOVERY

Telemeter: Unusually good. One channel lost on takeoff. Physical recovery: Successful

COMPAEMS

Rociset periormance: Normal filght - as predicted

2

IDE NTIFICATION
18 June 1952
Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 1050 MST
Agency: Air Force Cambridge Research Center, Denver University Altitude: 65.0 miles

FLIGHT OBJECTIVES
Daylight luminescence (day airglow) in the ranges 3000 A to 4500 A and 6000 A to 8000A

UPPER AIF INSTRUMENTS
Spectrographs in the ranges 6000A to 8000A and 3000A to 4500A

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Nose cone lowered by parachute

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Seven Mitchell and seven Askania stations
Cameras: Two ballistic cameras
Radar: Two radars
Beacon triangulation system: MIRAN
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon - tail safe for furl severance

ROCKET INFORMATION

Payload weight: 202 lb
Unfueled rocket weight: 467 lb Unfueled rocket C.G.: 157 in , from nose tip Gress weight at takeoff: 1089 lb

ROCKET PERFORMANCE

Time to burnout: 44.79 sec
Velocity at burnout: $4035 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $85,760 \mathrm{ft}$
Time to booster burnoat: 2.48 sec (visual)

ROCKET PERFORMANCE (Continued)

Velocity at boonter burnout: $1008 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1272 ft
Time to zenith: 170.6 gec
Aititude at zenith: 65.0 miles
Time to nose cone separation: 170.6 sec (planned for zenith separation)
Altitude at nose cone separation: 65 miles
Flight duration: 1164 sec

BALLISTIC DATA

Theodolites: Flight data (optical) to 49.59 sec. Nose cone data (optical) from 15 min .52 .59 sec to 18 min .40 .59 sec.
Cameras: Through 4.40 gec

DATA RECOVERY

Telemeter: Good for entire trajectory
Physical recovery: Excellent, equipment unharmed and operating at recovery

EXPERMENTAL DATA

No useful data obtained, because the attitude of the rockeet allowed film to be exposed to ground radiation

COMMENTS

Rocket modifications: Three $15-\mathrm{in}$. extensions were flown for the first time. This was successiul.
Rocket performance: Normal flight - as predicted

IDENTIFICATION

Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center Time of firing: 0732 MST
Agency: Air Force Cambridge Research Center Altitude: 63.0 miles

FLIGHT OBJECTIVES

Sky brightness: Day airglow in the range 4500A to 6500A

UPPER AIR INSTRUMENTS

Photoelectric photometers and interference filters, 4500A to 6E00A

DATA RECOVERY INSTRUMENTS

Telemeter: ATCRC multipurpose beacon Physical recovery: Nose cone lowered by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Mitchell and six Askania stations
Cameras: Two ballistic cameras
Radar: Three radars
Beacon triangulation system: MIRAN
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 211 lb
Unfueled rocket weight: 476 lb
Unfueled rocket C.G.: 126.5 in . from nose tip
Gross weight at takeoff: 1098 1b

ROCKET PERFORMANCE

Time to burnout: 44.1 sec
Velocity at burnout: $3875 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: $84,900 \mathrm{ft}$
Time to bocster burnout: 2.41 sec
Velocity at boozier burnout: $1002 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at booster burnout: 1248 ft
Time to zenith: 170 sec
Altitude at zenith: 63.0 miles
Impact coordinates: Nose - 23 mi at 343 degrees true from launcher Body - 7.7 mi . north, 11.3 mi . west from launcher

BALLISTIC DATA

Theodolites and Cameras: Dotical data to 51.86 sec . Roll data to 3.51 sec . Beacon triangulation system: Worked during entire flight

DATA RECOVERY

Telemeter: Fairly good
Physict recovery: Partial chute failure, severe nose cone damage

EXPERIMENTAL DATA

Poor aspect data and only fair telemetering made data reduction difficult. Data indicated a diurnal variation in day alrglow when it was compared with previous measurements.

COMHENTS
Rocket performance: Normal flifht

IDENTIFICATION

Rocket type: RTV-A-1.
Place of firing: Holloman Air Development Center
Time of firing: 1153 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 20 miles

FLIGHT OBJECTIVES

Ionosphere studies (See USAF-21)

DATA RECOVERY INSTRUMENTS

Telemeter: 1 FCRC muitipurpose beacon
Physical recovery: No physical recovery instrumentation

BALLISTIC INSTRUMENTS

Firing Range

Theoriolites: Fcur Mitchell stations and eight Askania stations
Cameras: Two ballistic cameras
Radars: Three radars
Beacon trinnquation system: MIRAN

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipuryoze beacon

ROCKET INFORMATION

Payioad welght: 140 lb
Unfueled rocket weight: 449 lL
Unfucie + rocket C.G.: 132 in . from noue tip
Grose weigit at talreoff: 1132 lb

ROCKET PERFOFMANCE

Time to burn'ut: 33.61 sec Velocity at burnout: $2686 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: $75,850 \mathrm{ft}$ Time to booster burnout: 2.24 sec
Velccity at booster burnout: $930 \mathrm{ft} / \mathrm{sec}$
Aititude at booster burnout: 1145 ft
Altitude at senith: 20 miles
Flight duration: Estimated 405 sec

BALHETHC DATA

Theodolites: Roll data from 0.96 sec to 3.06 sec Cameras: From 0.867 sec to $\mathbf{\$. 9 6 3}$ sec. No other tracking data reported.

DATA RECOVERY

Telameter: Beacon failed after 33 sec
UPPER AIR ROCKET SUMMARY

Experiments: Solar radiation.

Agency: Air Research and Development Command (WADC*).
Time: 0815 MST.
Altitude: 16.2 miles.

Experiments: Biological

*Aero Medical Laboratory, Wright Air Development Conter

> AEROBEE
> USAR-27

Agency: Air Research and Development Command (Denver University). Time: 1050 MST.
Altitude: 62.0 miles.
Experiments: Solar radiation.

> AEROBEE USAF-28 30 June 1952

Agency: Air Research and Development Command (AFCRC*).
Time: 0732 MST.

Altitude: 63.0 miles.

Experiments: Sky brightness
*Air Forca Cambridge Research Center.

AERObee
USAF-29
26 August 1952
Agency: Air Research and Development Command (Utah University). Time: 1153 MST.
Altitude:
Experiments: Ionosphere.

IDENTIFICATION

10 October 1952
Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 0730 MST
Agency: Air Force Cambridge Research Center, Denver University Altitude: 63.0 miles

FLIGHT OBJECTIVES

Daylight Iuminescence (See USAF-27)

UPPER AIR INSTRUMENTS

See USAF-27

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Nose cone lowering by parachute. New modified chutei system used.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Five Mitchell and six Asbania stations Cameras: Two ribbon frame ballistic cameras Ekadar: Two radars Beacon triangulation system: MIRAN

Airbonre
Beacon; AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon (fail safe)

ROCKET INFORMATION

Payload weight: 170 lb
Unfueled racket weight: 472 lb
Unfueled rocket C.G.: 147 in . from nose tip
Gross weight at takeoff: 1094 lb

ROCKET PERFORMANCE

Time to burnout: 45.15 sec
Velocity at burnout: $4175 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $89,090 \mathrm{ft}$
Time to booster burnout: 2.51 sec

ROCKET PERFORMANCE (Continued)

Time to zenith: $\mathbf{1 7 5 . 5} \mathrm{sec}$ Altitude at zenith: 63.0 miles
Time at nose cone separation: Approximately 480 sec
Altitude at nose cone separation: 20,000 $\mathbf{f t}$
Time of tail blowoff: 250 sec
Altitude at tail blowoff: $200,000 \mathrm{ft}$
Impact coordinates: 6.42 mi . north, 11.5 mi . west; chute -1.85 mi. north, 1.50 mi . west

BALLISTIC DATA

Theodolites and Cameras: Optical data to 24.55 sec
Beacon triangulation system: Effective 95\%. Used for recovery.

DATA RECOVERY

Telemeter: Good during entire trajectory
Physical recovery: Parachute aystem worked very well, instrumentation working when recovered

EXPFRIMENTAL DATA

No data recorded. Equipment still working on recovery. Assumption is that day airglow too weak to be recorded on film without increase in spectrograph speed and film sensitivity.

COMMENTS

Rocket performance: Normal flight - as predicted

Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center Time of firing: 0721 MST
Agency: Air Force Cambridge Research Center, University of Michigan Altitude: 62.0 miles

FLGHT OBJECTIVES

To obtain ambient pressures and temperatures of earth's atmosphere

UPPER AIR INSTRUMENTS

Alphatron pressure gages to measure ram pressure and nose cone surface pressure Fielding local Mach number. This, together with trajectory velocity and rocket aspect, yields ambient temperature and pressure by means of the TaylorMaccoll theory.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Five Mitchell stations and nine Askania stations
Cameras: Two ballistic ribbon frame cameras
Radar: Two radars
Beacon triangulation system: MIRAN
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon (fail safe for fuel cutoff)

ROCKET INFORMATION

Payload weight: 200 lb
Unfueled rocket weight: 500 lb
Unfueled rocket C.G.: 132 in. from nose tip
Gross weight at takeoff: 1122 1b

ROCKET PERFORMANCE

Time to burnout: 42.9 sec
Velocity at burnout: $3975 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at burnout: $82,930 \mathrm{ft}$
Time to zenith: 167.8 sec
Altitude at zenith: 62.0 miles

BALLISTIC DATA

Theodolites and cameras: Optical through 48.42 sec . Roll data through 3.85 sec . Beacon triangulation system: Impact location pinpointed

DATA RECOVERY

Telemeter: 95\% good
Physical recovery: Partial parachute failure, but instruments recovered in excellent condition

EXPERIMENTAL DATA

Ambient pressure and temperature derived from data recorded over the interval of 45 to 90 km

COMMENTS

Rocket performance: As jredicted

Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 0856 MST
Agency: Air Force Cambridge Research Center
Altitude: 47.0 miles

FLIGHT OBJECTIVES

Sky brightness (See USAF-28)

UPPER AIR INSTRUMENTS

See USAF-28

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Lowering nose cone

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and six Askania stations
Cameras: Two ribbon frame cameras
Radars: Two radars
Beacon triangulation system: MIRAN

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 185 lb
Unfueled rocket weight: 485 lb
Unfueled rocket C.G.: 128 in , from nose tip
Gross weight at takeoff: 1107 lb

ROCKET PERFORMANCE

Time to burnout: 43.28 sec
Velocity at burnout: $4000 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $84,730 \mathrm{ft}$
Time to booster burnout: 2.62 sec
Time to zenith: 146 sec

ROCKET PERFORMANCE (Continued)

Altitude to zenith: 47.0 miles
Time to tail blowoff: 109.1 sec

BALLISTIC DATA

Theodolites and cameras: Optical data to 48.12 sec . Roll data to 4.05 sec . Beacon triangulation system: Very good throughout flight

DATA RECOVERY

Telemeter: Good Physical recovery: Excellent

EXPERIMENTAL DATA

Experimental equipment functioned properly. Data could not be realistically interpreted because of excessive pitch and roll of the missile, as shown from film from telescope.

COMMENTS

Rocket performance: Poor performance, reason unknown

Rocket type: RTV-A-1
Place of firing: Holloman Air Development Center
Time of firing: 1239 MST
Agency: Air Force Cambridge Research Center, University of Colorado Altitude: 55 miles

FLIGHT OBJECTIVES

Solar radiation

UPPER AIR INSTRUMENTS

Grazing incidence spectrograph mounted in a biaxial pointing control

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell ard six Askania stations
Cameras: Two ballistic ribbon frame cameras
Radar: Two radars

ROCKET INFORMATION

Payload weight: 225 lb
Unfueled rocket weight: 525 lb
Unfueled rocket C.G.: 124 in . from nose tip
Gross weight at takeoff: 1147 lb

ROCKET PERFORMANCE

Time to burnout: 46.25 sec
Velocity at burnout: $3600 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $85,000 \mathrm{ft}$
Time to booster burnout: 2.9 sec
Velocity at booster burnout: $925 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnöut: 1320 ft
Time to zenith: 149 sec
Altitude at zenith: 55 miles

BALLISTIC DATA

Theodolites and cameras: Optical data to 52.12 sec . Attitude azimuth data to 6.35 sec.

EXPERIMENTAL DATA

A picture of Lyman- α was obtained from a $\mathbf{2 8 - s e c}$ exposure

COMMENTS

Rocket performance: Normal flight

REPORTS AND PAPERS

"Lyman Alpha-Line Photographed in the Sun's Spectrum," W. B. Pietenpol, W. A. Rense, F. C. Walz, D. S. Utacey, and J. M. Jackson, Phys. Rev. 90:156 (1953)
"Intensity of Lyman Alpha-Line in the Solar Spectrum," W. A. Rense, Phys. Rev. 91:299 (1953)

Agency: Air Research and Development Command (Denver University). Time: 0724 MST.
Altitude: 68.0 miles.
Experiments: Solar radiation.

AEROBEE USAF-31
22 October 1952
Agency: Air Research and Development Command (University of Michigan). Time: 0735 MST.
Altitude: 62.0 miles.
Experiments: Pressure, Temperature.

AEROBEE
USAF-32
6 November 1952
Agency: Air Research and Development Command (AFCHC*), TIme: 0856 MST.
Altitude: $\mathbf{4 7 . 0}$ miles.
Experiments: Sky brightness
*Air Force Cambridje Renearch Center.

AEROBEE
USAF-33
12 December 1952

Agency: Air Research and Development Command (University of Colorado). Time: 1238 MST.
Altitude: 55 miles.
Experiments: Solar raaiation.

IDENTIFICATION

18 February 1963
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 1042 MST
Agency: Air Force Cambridge Research Center Altitude: 73 miles

FLIGHT OBJECTIVES

Rocket performance. This was the first of two test filghts to determine and correct the cause of failure of the type experienced by USAF-29.

ROCKET PERFORMANCE INSTRUMENTS

An aspect system was flown; also accelerometers, pressure pickups, and instruments to measure the temperatures of nose cone and fins. There was a Fiber.glass covering on the nose cone and fins to reduce skin beating.

DATA RECOVERY INSTRUMENTS

Telemater: AFCRC multipurpose beacon

BALLISTIC INSTRUMENTS

Firing Range
Beacon triangulation system: MRRAN
Airborne
Beacon: AFCRC multipurpose beacon. S-band beacon to track tail cone.
Radio cutoff: AFCRC multipurpose beacon (fa.ll safe)

ROCKET INFORMATION

payload weight: 160 lb

ROCKET PERFORMANCE

Time to burnout: 32.2 sec
Time to zenith: 173 sec
Altitude at zenith: 73 miles
Time of tail blowoff: 228 sec
Flight duration: 545 sec
Impact coordinates: 12 mi . south, 18 mi . west of launcher

BALLISTIC DATA

Radar: S-band beacon successful. Operators lost signal at 41 sec , but beacon was operating.

DATA RECOVERY

Telemeter: Beacon operated successfully throughout flight Physical recovery: Cameras and other vital instrumentation in good condition

COMMENTS

Rocket performance: All equipment worked well. Rocket performance was as predicted and the Fibrrglas peeled off fins because of poor bond at high temperatures. This produced excessive roll (greater than 5 rps), but the flight was surcessful in spite of the roll.

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 0837 MST
Agency: Air Force Cambridge Research Center Altitude: 76 miles

FLIGHT OBJECTIVES

Rocket performance

ROCKET PERFORMANCE INSTRUMENTS

Camera to photograph fin, antenna, and motor flame. NRL photographic system modified by AFCRC. Two accelerometers. Steel cuffs on fins - Fiberglas on nose.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Mitchell, Askanim
Cameras: Balliatic cameras
Telescopes: Four telescope stations
Radars: Two X-band radars
AFCRC triangulation system: In use

Alrborne

Beacon: AFCRC multipurpose beacon, S-band beacon Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 159 lb
Unfueled rocket weight: 467 lb
Unfueled rociset C.G.: 130 in . from nose ip
Gross weight at takeoff: 1150 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, one degree east
Time to burnout: 33.78 sec
Velocity at burnout; $4890 \mathrm{ft} / \mathrm{sec}$

Smpolawal
Fubruary 1958

ROCKET PERFORMANCE (Continued)

Altitude at burnout: 75,135 ft
Time to booster burnout: 2.69 sec Velocity at booster burnout: $995 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1100 ft
Time to zenith: 167.8 sec
Altitude at zenith: 76 miles
Alitude at tall blowoff: 220 sec
Impact coordinates: 47 mi . at 327 degreea true from launcher

BAI.LISTIC DATA

Theodolites: Data from 0.73 sec to 39.33 sec . Roll from Mitchell from 0.93 sec to 3.93 sec .

Beacon triangulation system: Position data from 1.83 sec to 175.93 sec

DATA RECOVERY

Tclemeter: Satiafactory to 90 sec , then signal intermittent Physical recovery: Nase and body recovered

COMIMENTS

Rocket performance: Satisfactory

REPORTS AND PAPERS

"Aerudynamic Heating and Thermal Protection of the Aerobee Sounding Rocket," Aerojet General Corporatlon Report 744, 25 Feb 1954

IDENTIFICATION

Rocket type: RTV'-A-12
Place of firing: Holloman Air Development Center Time of firing: 0704 MST
Agency: Air Force Cambridge Research Center Altitude: 71 miles

FLIGHT OBJECTIVES

Sky brightness - (See USAF-28 and -32)

UPPER AIR IMSTRUMENTS

Photoelectric photometers and interference filters, 4500A degrees to 6500A. Aspect camera.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC muitipurpose beacon Physical recovery: Nose cone parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Mitchell and Askania
Cameras: Ballistic
Telescopes: One station
Radar: Two X-band radars
Beacon triangulation system: MURAN
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 189 lb
Unfueled rocket weight: 497 lb
Unfueled rocket C.G.: 128 in . from nose tip Gross weight at takeoff: 1180 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 33 sec
Velocity to burnout: $4480 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at burnout: 71,385 ft Time to booster burnout: 2.51 sec
Velocity at booster burnout: $975 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1030 ft
Time to zenith: 173 sec
Altitude at zenith: 71 miles
Time to blowoff: 264 sec
Time to nose separation: 489 sec
Flight duration: 1430 sec
Impact coordinates: 25 mi . at 325 degrees true from launcher

BALLISTIC DATA

Theodolites: Position and velocity data from 1.06 to 36.06 sec ; attitude, azimuth, and elevation from 1.46 to 12.86 sec
Cameras: Position, velocity, and acceleration from 1.006 to 2.273 sec AFCRC beacon triangulation: Position data from 7 to 525 sec

DATA RECOVERY

Telemeter: Good
Physlcal recovery: Nose and body recovered in excellent condition

EXPERIMENTAL DATA

The Fiberglas coating on the nose cone became detached and partially covered the receiving angles of the photometers. Approximately one halif of possible data were obtained. Results of eight interference filters in the visible region showed that day airglow values from this flight (0704 hours) were an order af magnitude lower than those obtained previously at times from 0900 to 1030 hours.

COMMENTS

Rocket modifications: A $0.030-\mathrm{in}$. layer of Fiberglas was bonded to the nose skin Rocket performance: As predicted

IIENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Aix Development Center Time of firing: 0857 MST
Agency: Air Force Cambridge Research Center Altitude: 71 miles

FLIGHT OBJECTIVES

Sky brightness (See USAF-28, -32, and -36)

UPPER AIR INSTRUMENTS

See USAF-28

ROCKET PERFORMANCE INSTRUMENTS

Aspect camera

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Nose cone parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Mitchell and Askania stations
Cameras: Two ballistic cameras
Telescopes: One station
Radar: Two X-band radars
Beacon triangulation system: MIRAN
Airborne
Beacon: AFCRC multipurpose beacon Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 189 lb Unfueled rocket weight: 495 lb Unfueled rocket C.G.: 128 in , from nose tip Gross weight at takeoff: 1178 lb

ROCKET FERFORMANCE

Firing angle: 3 degrees north
Time to burnout: 33.78 sec
Velocity at burnout: $4490 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $72,800 \mathrm{ft}$
Time to booster burnout: 2.48 sec
Velocity at booster burnout: $980 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1000 ft
Time to zenith: 173 sec
Altitude at zenith: 71 miles
Time to tail blowoff: 217 sec
Impact coordinates: 25 mi . at 295 degrees true from launcher

DATA RECOVERY

Telemeter: Generally fair, spotty near and after zenith

BALLISTIC DATA

Theodolites and Cameras: Optical data from 0.88 sec to $\mathbf{3 7 . 6 8} \mathrm{sec}$

EXPERIMENTAL DATA

The Fiberglas coating on the nose became detached and covered all receiving angles of the photometers, so that no meaningful data were obtained

COMMENTS

Rocket modification: A $0.030-\mathrm{in}$. Fiberglas layer u as bonded to the exterior nose skin
Rocket performance: Essentially as predicted

IDENTIFICATION

Rocket type: RTV-A-12
Place of firing: Holloman Air Development Center
Time of firing: 1210 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 84 miles

FLIGHT OBJECTIVES

Ionosphere studies (See USAF-21 and -29)

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Tail cone primer cord

BALISSTIC INSTRUMENTS

> Firing Range
> Theodolites: One Mitchell and six Askania stations
> Cameras: Two ballistic Clark ribbon frame cameras and one K-24 camera Telescopes: One
> Radars: Two X-band radars
> Beacon triangulation system: MIRAN

Airborne

Beacon: AFCRC multipurpose beacon Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 153.5 lb Unfueled rocicet weight: 462 Ib Unfueled rocket C.G.: 131 in . from nose tip Gross weight at takeoff: 1145 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, 10 mils east Time to burnout: 34 sec Velocity to burnout: $4703 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: 87,800 ft Time to booster burnout: 2.48 sec Velocity at booster burnout: $1050 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1000 ft Time to zenith: 189 gec Altitude at zenith: 84 miles

ROCKET PERFORMANCE (Continued)

Time to tall blowoff: 290 sec
Altitude at tail blowaff: $200,000 \mathrm{ft}$
Flight duration: 584 sec
Impact coordinates: 25 mi . at 325 degrees true from launcher

BALLISTIC DATA

Beacon triangulation system: Signal lost at 120 sec

DATA RECOVERY

Telemeters: Excellent

EXPERIMENTAL DATA

Good data were obtained on the 4-5 Mc upward transmission delays. No signals obtained from the 6 -Mc transmitter in rocket. A plot of electron density vs altitude from 95 km to 135 km was obtained.

COMMENTS

Rocket modifications: A. 0.030 -in. layer of Fiberglas bonded to entire external surface of nose sldn. Rocket fins leading edges had stainless steel cuffs. Three outboard antennas consisting of three wires which extended from the nose cone to the outer corner of each of the rocket fins.
Rocket performance: Zenith above that predicted

REPORTS AND PAPERS

"Blfurcation of the E Region," J. R. Llen, R. J. Marcou, J. C. Ulwick, D. R. McMorrow, D. B. Linsford, and O. C. Haycock, Phys. Rev. 92:508 (1953)
"Ionosphere Research with Rocket-Borne Instruments," J. R. Lien, R. J. Marcou, J. C. Ulwick, J. Aarons, and D. R. McMorrow, in "Rocket Exploration of the Upper Atmosphere," edited by R. L. F. Boyd, and M. J. Seaton, London: Pergamon Press, 1954, pp. 223-239
"Further Remariss on Bifurcation in the E-Layer," W. Pfister, J. C. Ulwick, and R. J. Marcou, Phys. Rev. 97:1183 (1955)

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1052 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 86 miles

FLIGHT OBJECTIVES

Ionosphere studies (See USAF-21, -29, and -38)

DATA RECOVERY INSTRUMENTS

Telemetering: AFCRC multipurpose beacon

BALHISTIC INSTRUMENTS

Firing Range
Theodoiites: One Mitchell and six Askania stations,
Cameras: Two Clark ribbon frame ballistic cameras
Telescopes: One
Radars: Two X-band radars
Beacon triangulation system: MRAN

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon (fuel severance)

ROCKET INFORMATION

Payload weight: 148.5 lb
Unfuesed rocket weight: 455.5 lb
Unfueled rocket C.G.: 130.3 in . from nose tip
Gross weight at takeoff: 1138.5 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north Time to burnout: 34 sec Velocity at burnout: $4827 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: 79,000 ft Time to booster burnout: 2.34 sec Velocity at booster burnout: $1015 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1239 ft Time to zenith: 184 sec Altitude at zenith: 86 miles Time to tail blowoff: 283 sec Altitude at tail blowoff: $200,000 \mathrm{fi}$

Smpplianent:

ROCEET PERFORMANCE (Continued)
Flight duration: 573 sec
Impact coordinates: 22 mi . at 306 degrees true from launcher

BALLISTIC DATA
Theodoiltes and Cameras: Optical data from 0.857 sec to 36.14 sec Beacon triangulation system: Data from 7.34 sec to 69.34 sec

DATA RECOVERY
Telemeter: Excellent at most beacon stations. Two buttes lost signal at 69 sec . Phygical recovery: Nose cone, tail cone, and body recovered

EXPERIMENTAL DATA
6-Mc and 4-E Mc signals obtained, but somewhat erratic. Electron density vs altitude curves obtained from the recorded data.

COMMIENTS
Rocket modifications: See USAF-38
Rocket performance: The 86 miles zenith was ten miles higher thun prediction

IDENHIFICATION

14 July 1953
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 0830 MST
Agency: Air Force Cambridge Research Center, Rhode Island University Altitude: 64 miles

FLIGHT OBuECTIVES

Solar radiation (See USAF-25)

UPPER AIR INSTRUMENTS
See USAF-25

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Nose cone blown by aneroid and primer cord, lowered by parachute. Tail cone blown by fail safe

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and five Askania stations
Cameras: Two Clark ribbon frame ballistic cameras
Telescopes: Two
Radars: Two X-band radars
Aivicorne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 249 lb
Unfueled rocket weight: 554 lb
Unfueled rocket C.G.: 122.3 in . from nose tip
Gross weight at takeoff: 1237 lb

ROCKET PERFORMANCE

Firing angle: Three degiees north, 57.5 mils west
Time to burnout: 33.63 sec
Velocity at burnout: $4190 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $72,000 \mathrm{ft}$

ROCKET PERFORMANCE (Continued)

Time to booster burnout: 2.34 sec
Velocity at booster burnout: $935 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1066 ft
Time to zenith: 160 sec
Altitude at zenith: 64 miles
Time to tail blowoff: 280 sec
Flight duration: 527 sec
Impact coordinates: 25 mi . at 321 degrees true from launcher

BALLISTIC DATA

Theodolites and Cameras: Optical data to 37.53 sec
Beacon triangulation systern: Trajectory data from 7.13 sec to 280.13 sec

DATA RECOVERY

Telemeter: Satisfactory for 250 sec
Physical recovery: Nose cone did not separate, parachute did not deploy

EXPERIMENTAL DATA

Ho data. There was no evidence of malfunction of radiation sensing equipment. But, because of optical accident to the biaxial pointing control, no data were obtained.

The azimuth eyes of the biaxial pointing control were blinded by paint transported from the nose, presumably as a consequence of higher skin temperatures and abrasive action of air caused by greater velocity achieved by the use of the newer RTV-A-1a rocket motor with booster. As a result of the blinded eyes, the rotation of the azimuth platform did not counteract the roll of the rocket.

The elevation control did function, and 42 bolometer indications were obtained. However, the maximum reading was only 85% of the solar constant. Apparently the sensing equipment did not have time to come to full response.

COMMENTS

Rocket performance: As predicted

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 0247 MST
Agency: Air Force Cambridge Research Center
Altitude: 59.4 miles

FLIGHT OBJECTIVES

To investigate atmospheric composition by means of a spectrograph which photographed emission from an electrodeless discharge through the air. In particular, the presence or absence of Na at particular altitudes was sought.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Nose cone separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and five Askania stations
Cameras: Two Clark ribbon frame ballistic cameras
Telescopes: In use
Radars: Two X-band radars
AFCRC triangulation system: In use

ROCKET INFORMA'TION

Payload weight: 239 lb
Unfueled rocket weight: 546.5 lb
Unfueled rocket C.G.: 119.2 in . from nose tip
Gross weight at takeoff: 1228.5 lb

ROCKET PERFORMANCE

Firing angle: Three dogrees north
Time to burnout: 32.5 sec
Velocity at burnout: $3890 \mathrm{ft} / \mathrm{sec}$
Altitude at burnour: $65,184 \mathrm{ft}$ Time to booster burnout: 1.95 sec Velocity at booster burnout: $940 \mathrm{ii} / \mathrm{sec}$ Altitude at booster burnout: 950 ft Time to zenith: 150.1 sec Altitude at zenith: 59.4 miles Time to nose cone separation: 380 sec Altitude at nose cone separation: $20,000 \mathrm{ft}$

ROCKET PERFORMANCE (Continued)

rime to tail blowoff: 256 sec Altitude at tall blowoff: 200,000 ft Flight duration: 1015 sec Impact ccordinates: 22 mi . at 333 degrees true from launcher

BALLISTIC DATA

Theodilites: Askania data from 0.9 to 32.5 sec
Beacon triangulation system: Position lata intermittently from 12.10 sec to 860.10 sec

DATA RECOVERY

Telemeter: Generaily good deta - intermittent near zenith Physical recovery: Excellent parachute recovery

EXPERIMENTAL DATA

No data. High voltage breakdown inside missile due to loss of pressurization at or near burnout.

COMMENTS

Rocket modifications: Two scoops roughly 1-1/2 in. in diameter and $6-8 \mathrm{in}$. long mounted like horns on the gides of the Aerobee. A 0.030 -in. Fiberglas layer bonded to the nose skin.
Rocket performance: Normal flight

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 0802 MST
Agency: Air Force Cambridge Research Center Aititude: 20 milles

FLIGHT OBJECTIVES

Sky brightness (See USAF-28, -32, -36, and -37)

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Cameras: Two specially modified $16-\mathrm{mm}$ cameras
Physical recovery: Nose cone separation and lowering by parachute

BALLSTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and six Askania stations
Cameras: Two Clark ribbon frame balilistic cameras
Telescopes: Two
Radar: Three X-band radars
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 215.5 lb
Unfueled rocket weight: 524 db Unfueled rocket C.G.: 124.2 in . from nose tip Gross weight at takeoff: 1207 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 35 sec
Velocity at burnout: $1910 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 49,200 ft
Time to booster burnout: 2.27 sec
Velocity at booster burnout: $968 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1050 sec
Time to zenith: 91. sec
Altitude to zenith: 20 miles

ROCKET PERFORMANCE (Continued)
Flight duration: 180 sec
Impact coordinates: 6.6 mi . at 355 degrees true from launcher

BALLISTIC DATA
Theodolites: Askania data from 1.03 sec to 179.63 sec . Mitchell roll data from 0.89 sec to 3.49 sec .

DATA RECOVERY
Telemeter: Good
Physical recovery: Nose cone did not separate. Rocket came in atable and was completely demolished.

EXPERIMENTAL DATA
Altitude insufficient to obtain useful data

COMMENTS
Rocket modifications: A $0.030-\mathrm{in}$. Fiberglas layer bonded to external surface of the nose cone
Rocket performance: Vehicle fallure - propulsion syatem

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1000 MST
Agency: Air Force Cambridge Research Center, University of Colorado Altitude: 62 miles

FLIGHT OBJECTIVES

Solar spectrum, Lyman- α

UPPER AIR INSTRUMENTS
Grating incidence spectrograph oriented by means of a biaxial pointing control. Range of spectrograph was from center of image to 7000A.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Parachute recovery system

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras, one K-24 came.a
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 226.5 lb
Unfueled rocket weight: 533.5 lb Payload C.G.: 66.6 ln . from nose tip
Gross weight at takeoff: 1216.5 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 32.15 sec
Velocity at burnout: $\$ 145 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $66,700 \mathrm{ft}$
Time to booster burnout: 2.16 sec
Yelocity at booster burnout: $930 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Condnued)

Altitude at booster burnout: 1100 ft
Time to zenith: 163 sec
Altitude at zenith: 62 miles Time to tail blowoff: 255 sec Altitude at tail blowoff: 200,000 ft Flight duration: 540 sec
Impact coordimates: 15 mi . at 336 degrees true from launcher

BALJSTIC DATA

Theodolites and Cameras: Optical data to 38.70 sec Beacon triangulation system: Position data from 15.10 to 510.10 sec

DATA RECOVERY

Telemeter: Beacan operated normally Physical recovery: Recovery syatem failed to operate

EXPERIMENTAL DATA

Univeraity of Colorado apectrograph and pointing control equipment operated only partially

COMMENTS

Rocket performance: Filght normal and altitude essentially that predicted

IDENTIFICATION

2 November 1953
Rocket type: RTV-A-12
Place of firing: Holloman Air Devel opment Center
Time of firing: 1132 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 75 miles

FLGHT OBJECTIVES

Ionosphere studies (See USA F-21, -29, -38, and -39)

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Tail cone separation primer cord

BALLISTIC INSTRUMENTS

Firing Range

Theodolitea: Mitchell and Aalcanfa
Cameras: Ballistic stations
Teleacopes: Three telencopas
Beacon trianculation system: In use
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 148.5 lb
Unfueled rocket weight: 455.5 lb
Unfueled rocket C.G.: 130.8 in . from nose tip
Grose welght at takeoff: 1138.5 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, ten mils east
Time to burnout: 33.8 gec Velocity at burnout: $4700 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $74,400 \mathrm{ft}$
Time to booster burnout: 2.63 sec
Velocity at booster burnout: $1010 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1400 ft (approximate)
Altitude at zenith: 75 miles
Time to tail blowoff: 328 sec
Altitude at tall blowoff: 120,000 ft (approximate)
Impact coordinates: 34 ml . at 346 degrees true from launcher

BALLISTIC DATA

Theodolites and Cameras: Optical data to 37.13 sec

DATA RECOVERY

Telemeter: Beacon operated to 29 sec , and then was intermittent

EXPERIMENTAL DATA

No data recorded because of equipment fallure

COMMENTS

Rocket modifications: A 0.030 in . Fiberglas layer bonded to nose cone surface. Three outboard antennas from nose cone to tall fins.
Rocket performance: Normal flight

IDENTIFICATION

3 November 1953
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1115 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 75.5 miles

FLIGHT OBJECTIVES

Ionosphere studies (See USAF-21, -29, -38, -39, and -44)

DATA RECOVERY INSTRUMENTS

Telemeter: New modified AFCRC multipurpose beacon flown for first time

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Mitchell and Askania stations
Cameras: Ballistic cameras
Telescopes: In use
AFCRC triangulation system: In use
Airborne
Beacon: AFCRC multipurpose beacon
Fadio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 161 lb

Unfueled rocket weight: 470.5 lb

Unfueled rocket C.G.: 137.4 in . from nose tip
Gross weight at takeoff: 1152.5 db

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 34 sec
Velocity at burnout: $4580 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $73,000 \mathrm{ft}$
Time to booster burnout: 2.59 sec
Velocity at booster burnout: $985 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 850 ft
Time to zenith: 181.5 sec
Altitude at zenith: 75.5 miles
Time to tail blowoff: 325 sec
Impact coordinates: 30 mi , at 335 degrees true from launcher

BALLISTIC DATA

Theodolites: Spotty data Cameras: Good records Tslescopes: Spotty data
Beacon triangulation system: Tracking good from 11.54 sec to 241.54 sec

DATA RECOVERY

Telemeter: Excellent records on one channel
Physical recovery: Body and beacon assembly recovered in good condition

EXPERIMENTAL DATA

No upward transmission data, but downward 6-Mc data were obtained. These data will give an electron density vs altitude plot.

COMMENTS

Rocket modifications: A 0.030 -in. layer of Fiberglas bonded to the nose cone surface. Three outboard antennas were connected from the nose cone to the tail fins.
Rocket performance: Normal flight
Experiments: New modified beacon performed satisfactorily

Hocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 0800 MST
Agency: Air Force Cambridge Research Center Altitude: 61 miles

FLIGHT OBJECTIVES

Primary purpose: To test operation under flight conditions of the AFCRC multipurpose beacon system modified for use with the MIRAN system of triangulation Secondary purpose: Other instrumentation and ;ocket tests; especially a new design notch antenna and a new design nose cone flown without a Fiberglas protective covering

UPPER AIR INSTRUMENTS

Vibrator power supply was test flown
New design beacon modulator circuit was test flown
New notch antenna mounted on fin-coaxial switch to regular slot antenna after tail cone blowoff
Nose cone of higher strength material

ROCKET PERFORMANCE INSTRUMENTS

Oxidizer shut-off valve actively connected to combustion pressure switch
Combustion chamber pressure gage
Accelerometers mounted to obtain lateral accelerations in nose

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon system (6-channel telemeter)
Camera: Aspect camera. Camera mounted to provide record of parachute recovery system.
Physical recovery: Parachute recovery

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and six Asimania stations
Cameras: Two Clark ribbon frame cameras; K-24 camera
Telescopes: Three
Beacon triangulation system: MIRAN
Airborne
Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 192 lo
Unfueled rocket weight: 500 lb
Unfueled rocket C.G.: 157.8 miles from nose tip
Gross weight at takeoff: 1183 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 31.58 sec
Velocity at burnout: $4240 \mathrm{ft} / \mathrm{se}=$
Altitude at burnout: $35,497 \mathrm{ft}$
Time to booster burnout: 2.50 sec
Velocity at booster burnout: $970 \mathrm{ft} / \mathrm{sec}$
Altitude at jooster burnout: 1147 ft
Time to zenith: 159 sec
Altitude at zenith: 61 miles
Time at nose cone separation: 460 sec
Aititude at nose cone separation: 20,000 ft
Time to tail blowoff: 209 sec
Altitude at tail blowoff: 282,000 ft
Flight duration: $\dot{i} 240 \mathrm{sec}$
Impact coordinates: 39 mi. north, 13.6 mi . west of launcher

BALLISTIC DATA

Theodolites and Cameras: Optical data available to 39.92 sec
Beacon trianguiation system: MIRAN position data intermittent from 17.92 to 348.92 sec

DATA RECOVERY

Physical recovery: Nose cone recovered in excellent condition

EXPERIMENTAL DATA

Successful flight, AFCRC multipurpose beacon system and MIRAN triangulation systems operated together satisfactorily. Other instrumentation and rocket tests were successful.

COMMENTS

Rocket performance: Early rurnout, possibly due to oxidizer shutoff valve actuation too soon, caused low zenith. Except for this the flight was normal.

IDENTIFICATION

Rocket type: RTV-A-1a
Place of riring: Holloman Air Development Center
Time of firing: 0910 MST
Agency: Air Force Cambridge Research Center, University of Colorado Altitude: 58 miles

FLIGH'T OBJECTIVES

Solar ultraviolet spectrum

UPPER AIR INSTRUMENTS

Salar spectrograph oriented to look continuously at the sun by means of a biaxial pointing control

ROCKET PERFORMANCE INSTRUNENTS

Rocket aspect equipment associated with biaxial pointing control Combustion chamber pressure

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Parachute recovery system

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras, one K-24 camera
Radars: One
Beacon triangulation system: MIRAN

Airborne

Beacon: AFCRC multipurpose beacon
Padio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 239.5 lb
Unfueled rocket weight: 548.5 lb Unfueled rocket C.G.: 125.1 in . from nose tip Gross weight at takeoff: 1231.5 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, ten mils west
Time to burnout: 34.32 sec
Velocity at burnout: $3980 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 70,000 ft
Time to booster burnout: 2.31 sec
Velocity at booster burnout: $960 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1060 ft
Time to zenith: 158 sec
Altitude at zenith: 58 miles
Time to tail blowoff: 240 sec
Altitude at tail blowoff: $152,000 \mathrm{ft}$
Flight duration: 560 sec
Impact coordinates: 39 mi , at 336 degrees true from launcher

BALLISTIC DATA

Theodolites and Cameras: Optical data to 40.48 sec
Beacon triangulation system: Data from 11.68 to 380.68 sec

DATA RECOVERY

Te'smeter: Beacon operated throughout flight; however, no signal received from $70-240$ sec due to malfunction of coaxial feed to antenna
Physical recovery: Parachute recovery failed and nose separation falled. Nose section was badly damaged - no salvagable instrumentation.

COMMENTS

Rocket performance: Flight normal-zenith 1.5 mlles short of prediction

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 0655 MST
Agency: Air Force Cambridge Research Center, University of Michigan Altitude: 57 miles

FLIGHT OBJECTIVES

To determine vehicle aspect. To determine feasibility of a stream velocity indicator. Ambient temperature.

UPPER AIR INSTRUMENTS

University of Michigan gyroscope, photographic "sun-horizon" sywwan. Velocity of air stream instrumentation consisted of an ion source generator and detector. Wind vanes.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Cameras: $16-\mathrm{mm}$ modified rocket camera
Physical recovery: 16- and $35-\mathrm{mm}$ film record of gyroscopes. Nose and tail separation by primer cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras
Beacon triangulation system: MIRAN

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 280.5 lb
Unfueled rocket weight: 589.5 lb
Unfueled rocket C.G.: 127 in , from nose tip
Gross weight at takeoff: 1272.5 lb

ROCRET PERFORMANCE

Firing angle: Three degrees north, 17 mils west Time to burnout: 34.11 sec

ROCKET PERFORMANCE (Continued)

Altitude at burnout: $66,304 \mathrm{ft}$
Time to booster burnout: 2.42 sec
Velocity at booster burnout: $922 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1066 ft
Altitude at zenith: 57 miles
Time to tail blowoff: 185 gec
Impact coordinates: 17 mi , at 305 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania to 34.84 sec
Eeacon triangulation system: Data from 10.84 to 40.84 sec

DATA RECOVERY

Telemeter: Beacon intermittent
physical recovery: Nose and tall sections recovered

EXPERIMENTAL DATA

Data were obtained, ovaluation not complete

COMMENTS

Rocket performance: Normal flight

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1025 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 57 miles

FLIGHT OBJECTIVES

Electron density of D layer to measure electromagnetic energy absorption of the ionosphere

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Parachute recovery system

BALLSTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askania stations
Cameras: Two ballistic cameras

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 196 lb
Unfueled rocket weight: 505 lb
Unfueled rociket C.G.: 136 in . from nose tip
Gross weight at takeoff: 1188 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north
Time to burnout: 30.96 sec
Velocity at burnout: $3975 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $62,948 \mathrm{ft}$
Time to booster burnout: 2.14 sec
Velocity at booster burnout: $970 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1089 ft
Time to zenith: 151.09 sec Altitude at zenith: 57 miles Impact coordinates: 15 mi . at 300 degrees true from launcher

BALLISTIC DATA
Theodolites: Askania to 44.69 sec
Beacon triangulation system: Position data from 11.09 to 219.09 sec

DATA RECOVERY
Telemeter: Good
Physical recovery: Parachute system falled, stable impact

COMMENTS
Low zenith due to early burnout. Believed caused by excessive spin rate which forced fuel to slosh in tanks.

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 0731 MST
Agency: Air Force Cambridge Research Center, Rhode Island University Altitude: 58.8 miles

FLIGHT OBJECTIVES

Solar radiation (see USAF-25 and -40)

UPPER AIF INSTRUMENTS

University of Colorado biaxial pointing control was used to orient equipment

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and ddx Askania atations Cameras: Two ballistic cameras

ROCKET INFORMATION

Pryload weight: 250 Ib
Unfueled rocket weight: 558 lb
Unfueled rocket C.G.: 129.5 in . from nose tip
Groas weight at takeoff: 1241 lb

ROCKET PERFORMANCE

Firing angle: Three degrees north, 12 mils east
Time to burnout: 34.22 sec
Velocity at burnout: $4030 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $67,982 \mathrm{ft}$
Time to booster burnout: 2.6 sec
Velocity at booster burnout: $945 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1161 ft
Time to zenith: 160 sec
Altitude at zenith: 58.8 ml
Impact coordinates: 23 ml . at 336 degrees true from launcher

BALLISTIC DAT/4

Theodolites and Cameras: Optical data to 42.38 sec

DATA RECOVERY

Phymical recovery: Tall separation falled to operate. Nose separation successful rocket recovered. Nose cone and instrumentation were scattered over about one square mille.

EXPERIMTNTAL DATA

No data. Elevation arm of University of Colorado sunseeker didn't function properly.

COMMENTS

Rockat performance: Easentially as predicted

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 1754 MST
Agency: Air Force Cambridge Research Center
Altitude: 58.9 miles

FLIGHT OBJECTIVES

An attempt to produce an artificial sodium airglow by the temporary, local enrichment of the atmosphere with sodlum vapor

UPPER AIR INSTRUMENTS

Three vaporizers containing a two-pound mixture of thermite and metallic sodium. Spectrograph, an interference-filter photocell instrument, and a skanning night sky photometer with interference filter peaked for the sodium doublet, were operated at Sacramento Peak.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon

BALLSTIC INS'TRUMENTS

Firinc Range

Theodolites: Four Mitchell and six Asmania atations
Cameras: Two ribbon trame cameras
Beacon triangulation system: MIRAN, six stations
Airborne
Beacon: AFCRC multipurpose beacon
Fiadlo cutoff: AFCRC multipurpose beacon, fall safe fuel cutoff

ROCKET INFORMATION

payload weight: 262 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tall section): 254 in .
Unfueled rocket weight: 569 lb
Unfueled rocket C.G.: 128.6 ln . from nose tlp
Gross wright at takeoff: 1252 lb
Calculated $\mathrm{C}_{m \alpha}$ at burnout: 0.345
Calculated M_{α} at burnout: $722 \mathrm{ft} \mathrm{lb/}{ }^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 34 sec
Velocity at burnout: $3900 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 70,000 ft
Time to booster burnout: 2.61 sec
Velucity at booster burnout: $800 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1100 ft
Time to zenith: 155 sec
Altitude at zenith: 58.9 miles
TAme of nose cone separation: 414 sec .
Altitude at nose cone separation: $20,000 \mathrm{ft}$
Time of tall blowof: 238 sec
Flight duration: 1014 sec
Impact coordinates: 21.5 naut mi at 323 segrees true from launcher

BALLISTIC DATA

Theodolites: Asloania data to 32 sec
Beacon triangulation system: MIRAN beacon data not reduced because of intermittent signal

DATA RECOVERY

Telemeter: Intermittent, 90% effective Phyaical recovery: Body and nose recovered

EXPERIMENTAL DATA

The first vaporizer was successfully fired at 35 to 45 miles and ejected a cloud of atomic sodlum vapor. The remaining vaporizer was to be fired at about 56 milea. However, the firing of the first burned off the firing circuit to the other and it dild not fire.

The spectrograph recorded an intense continuum in the visible from the cloud during the first 5 minutes after vaporization.

As the cloud drifted over the interference filter instrument, there was a considerable decrease in intensity of the sodium doublet. This observation showed that some of the sodium at least had dispersed into atomic form, and is perhaps the most significant single observation.

COMMENTS

Rocket performance: Normal

REPORTS AND PAPERS

"Emission from a Sodium Cloud Artificially Produced by Means of a Rocket," H. D.
Edwards, J. F. Bedinger, E. R. Manring, and C. D. Cooper, in "The Airglow and the Aurorae," edited by E. B. Armstrong and A. Dalgarno, London:Pergamon Press, 1956, pp. 122-134

IDENTIFICATION

Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 1151 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 74.8 miles

FLIGHT OBJECTIVES

Electron density measurements in the ionosphere. Spatial inhomogeneities in the ionosphere. Absorption coefficients of the D layer.

UPPER AIR INSTRUMENTS

4-Mc receivers

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon, 6-channel telemeter

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras
Telescopes: In use
Beacon triangulation system: MIRAN

ROCKET INFORMA TION

Payload weight: 178 lb
Total extension length: 25 in.
Total rocket length (nose tip to base of tail section): 252 in .
Unfueled rocket weight: 460 Ib
Unfueled rocket C.G.: 138.9 in . from nose tip
Gross weight at takeoff: 1142 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.202
Calculated M_{α} at burnout: $474 \mathrm{ft} \mathrm{lb} /{ }^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 34.3 sec
Velociky at burnout: $4500 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $74,000 \mathrm{ft}$
Time to booster burnout: 2.8 sec

ROCKET PERFORMANCE (Continued)

Velocity at booster burnout: $985 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1000 ft Time to zenith: 175.7 sec
Altitude at zenith: 74.8 miles
Time to tail blowoff: 290 sec
Altitude at tail blowoff: 210,000 ft
Impact coordinates: 45 mi . at 353 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania through burnout
Beacon triangulation system: No MIRAN data reducible

DATA RECOVERY

Telemeter: Failure during the important parts of flight

EXPERIMENTAL DATA

No scientific data were obtained due to the telemetering failure

COMMENTS

Flocket performance: Burnout velocity and altitude slightly below that predicted. Actual, $4500 \mathrm{ft} / \mathrm{sec}$ at $74,000 \mathrm{ft}$; predicted, $4700 \mathrm{ft} / \mathrm{sec}$ at $73,000 \mathrm{ft}$.

IDENTIFICATION

10 February 1055
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center Time of firing: 1538 MST
Agency: Air Force Cambridge Research Center, Univezsity of Utah Altitude: 47.3 miles

FLIGHT OBJECTIVES

Electron density measurements in the ionosphere

UPPER AIR INSTRUMENTS

See USAF-52

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon - 6 channels Delay time measuring equipment

BALLISTIC INSTRUMENTS

Firing lange
Theodolites: Four Mitchell and six Askania stations
Cameras: Itwo Clark ribbon frame cameras
Telescopes: One
Beacon triangulation system: MIRAN six stations

Airborne

Beacon: AFCRC multipurpose beacon
Radio cutoff: Fuel cutoff - fail safe

ROCKET INFORMATION

Payload weight: 178 lb
Total extension length: 25 in .
Total rocket length (nose tip to base of tail section): 252 in .
Unfueled rocket weight: 467 lb
Unfueled rocket C.G.: 141 in . from nose tip
Gross weight at takeoff: 1150 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.196
Caiculated M_{α} at burnout: $451 \mathrm{ft} \mathrm{lb} /^{0}$

ROCKET PERFORMANCE

Time to burnout: 34.22 sec
Velocity at burnout: $4410 \mathrm{ft} / \mathrm{sec}$

IROCKET PLRFORMANCE (Continued)

Altitude ci burnout: 73,30 ft Time to kooster burnout: 2.74 sec Veiocity at booster burnout: $970 \mathrm{it} / \mathrm{sec}$ Altituds at booster buinout: 132 F f Time to zenith: $138 \mathrm{~s} \in \mathrm{C}$ Altitude at zenith: 47.3 miles

BALLISTIC DATA

Theodclites and cameras: Photogiaphic data from 1 to 37 sec Beacon triangulation aystem: Mirat, data from 5 to 195 sec

DdTA RECOVERY

Tclemeter: Worked well

EXPERIMENTAI DATA

The instrumentation worked woll; however, no scientific results were obtained due to ine low peax altitude of the rocket

COMMENTS

Rocket performaice: Rucket performance was pour. Engine sputtering occurred at burnout, as diaduced rom telescops film. There has been no explanation for the failure.

IDENTIFICATION

29 March 1955
Rocket type: RTV-A-1a
Place of firing: Holloman Air Development Center
Time of firing: 0947 MST
Agency: Air Force Cambridge Research Center, University of Colorado Altitude: 70 miles

FLIGHT OBJECTIVES

Study of the solar spectrum in the 870-3100A region

UPPER AIR INSTRUMENTS

Grazing incidence, Lyot type solar ultraviolet spectrograph, mounted on a University of Colorado biaxial pointing control

DATA RECOVERY INSTRUMENTS

Cameras: Camera to record sunfollower operation
Physical recovery: Parachute recovery

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and six Askania stations Cameras: Two ribbon frame cameras Telescopes: Three Beacon triangulation system: MIRAN Radar: In use

Airborne

Beacon: AFCRC multipurpose beacon, AN/DDW-19 radar beacon Radio cutoff: AFCRC multipurpose beacon, oxidizez cutoff

RCCKET INFORMATION

Payload weight: 244 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 254 in .
Unfueled rocket weight: 551 lb
Unfueled rocket C.G.: 129.5 in . from nose tip
Gross weight at takeoff: 1234 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.287
Calculated M_{α} at burnout: $598 \mathrm{ft} \mathrm{lb} /{ }^{\circ}$

Supplement
Fabruary 1958

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 34.2 sec
Velociliy at burnout: $4320 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 69,500 ft
Time to booster burnout: 2.56 sec
Velocity at bcoster burnout: $930 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1400 ft
Time to zenith: 174 sec
Altitude at zenith: $112.2 \mathrm{~km}=70$ miles
Time to nose cone separation: 368.5 sec
Time to tall blowoff: 214.8 sec
Flight duration: 1415 sec
Impact coordimates: 26.65 mi . at 325 degrees true from launcher

BALLISTIC DATA

Theodolites and cameras: Photographic data from 1 to 38 sec Radars: S-band beacon intermittent 37 to 210 sec Beacon triangulation Bystem: MIRAN data intermittent

DATA RECOVERY

Physical recovery: Parachute recovery was successful, the equiprient was undamaged. This ts the largest Aerobee payload ever recovered by parachute.

EXPERIMENTAL DATA

Seven spectrograms were obtained in the altitude range 94 to 112 km . They covered the wavelength range 900 to 3000 A with a dispersion of $41 \mathrm{~A} / \mathrm{min}$. A large number of Fraunhofer lines wore recorded in the region 2100 to 3000A. Below 2100A, seven emalssion lines ware resolved. Lyman-alpha is present on all seven spectrograms. Lyman-beta was not detected, presumably because of insufficiont exposure. The intensity of the continuum cannot be satisfactorily evaluated due to scattered light within the instrument.

COMMENTS

Rocket modifications: Modified nose cone for camera and sunfollower installations. Rocket performance: Normal

0

REPORTS AND PAPERS

"Results of a Recent Attempt to Record the Solar Spectrum in the Region of 9003000A," A. S. Jursa, F. J. LeBlanc, and Y. T'anaka, J. Opt. Soc. America 45:1085 (1955)

IDENTIFICATION

Rocket type: AJ11-6
Place of firing: Holloman Air Development Center Time of firing: 0858 MST
Agency: Air Force Cambridge Research Center Altitude: 119 miles

FLIGHT OBJECTIVES

To test rocket vehicle performance

ROCKET PERFORMLANCE INSTHUMENTS

Gages for powerplant performance, skin temperature resistance thermometers, accelerometers, and an aspect camera

DATA RECOVERY INSTRUMENTS

Telemeter: AN/DKT-7 15-channel telemeter Physical recovery: Air Force 2-atage recovery parachute AFCKC multipurpose beacon: Six channel telemeter

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Five Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras
Beacon triangulation system: MIRAN
Airborne
Beacon: AN/DPN-19 S-band beacon, AFCRC multipurpoge beacon, cummand triangulation
Radio cutoff: AFCRC multipurpose beacon, fall safe oxidizer cutoff

ROCKET INFORMATION

Payload weight: 105 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 277.84 in .
Unfueled rocket welght: 471 lb
Unfueled rocket C.G.: 139.9 in . from nose tip
Griss weight at takeoff: 1377 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.299
Calculated $\mathrm{M}_{\alpha} \alpha$ at burnout: $198 \mathrm{ft} \mathrm{lb/{ }}^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 41.9 sec
Velocity at burnout: $5700 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $110,000 \mathrm{ft}$
Time to booster burnout: 2.9 sec
Velocity at booster burnout: $860 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1060 ft
Time to zenith: 220 sec
Altitude at zenith: 119 mi
Time to nose cone separation: 495 sec
Time to tail blowoff: 360 sec
Flight duration: 20 min
Impact coordinates: 35 ml . at 348 degrees true

BALLISTIC DATA

Theodolites and cameras: Photographic data from 1 to 18 sec Raders: To 650,000 ft
Beacon triangulation system: MIRAN, data from 34 to 100 sec and at 373 sec

DATA RECOVERY

Telemeter: Excellent through 45 sec
Physical recovery: The parachute system was used successfully

COMMENTS

Rocket performance: The rocket was a complete success, in all respects performing essentially as predicted. Maximum nose cone temperatures were $350^{\circ} \mathrm{C}$ at Statlon 52, $400^{\circ} \mathrm{C}$ at Stat: m 70 , and $430^{\circ} \mathrm{C}$ at Station 34. Two temperature gages in fin 2 (one placed on leading edge 7 in . from the rocket body and the other some $3-1 / 2 \mathrm{in}$. into the fin from that point) recorded $445^{\circ} \mathrm{C}$ maximum.

A lateral accelerometer showed a maximum acceleration of 1.5 g occurring during passage through the tower.

REPORTS AND PAPERS
See USAF-57

IDENTIFYCATION

Rocket type: AJI1-6
Place of firing: Holloman Air Development Center Time of firing: 0547 MST
Agency: Air Force Cambridge Research Center
Altitude: 38 miles

FLGHT OBJECTIVES

To test rocket vehicle performance

ROCKET PERFORMANCE INSTRUMENTS

Powerplani gages, accelerometers, skin temperature resistance thermometers

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon, AN/DKT-7 telemeter Physical recovery: Tail separation, nose separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolltes: Five Mitchell and six Askania stations
Cameras: Two Clark ribbon frame cameras
Beacon triangulation system: MIRAN

Airborne

Beacon: S-band beacon; Alr Force multipurpose beacon
Radio cutoff: AFCRC multipurpose beacon, oxidizer cutoff

ROCKET INFORMATION

Payload weight: 177 lb
Total extension length: 25 in.
Total rocket length (nose tip to base of tail section): 275.84 in . Unfueled rocket welght: 456 lb
Unfueled rocket C.G.: 143 in . from nose tip
Gross weight at takeoff: 1377 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.173

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true Time to burnout: 42 sec Velocity at burnout: $3900 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at burnout: 97,500 ft
Time to booster burnout: 2.19 sec
Velocity at booster burnout: $880 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 927 ft
Altitude at zenith: 38 miles
Time to tail blowoff: 172 sec by command
Impact coordinates: 10.3 mi . at 2 degrees true

BALLISTIC DATA

Theodolites and cameras: Photographic data from 0 to 88 and 320 to 380 sec Beacon triangulation system: No data

DATA RECOVERY

Telemeter: Good
Physical recovery: good

COMMENTS

Rocket performance: Thrust chamber burnout occurred at 23 sec . The result was reduced performance and a low zenith altitude of only 38 miles

REPORTS AND PAPERS

"Flight Analysis of Two Model A.tH-6 AerobeenHi Rockets," R. C. Much, and D. Ragusa, Aerojet General Corporation Special Report 1161, Contract AF33(600)22153

Rocket type: AJ10-27
place of firing: Holloman Air Development Center
Time of firing: 1811 MST
Agency: Holloman Air Development Center Altitude: 126 miles

FLIGHT OBJECTIVES

Spectal classiffed flight

BALLISTIC INSTRUMENTS

Firing Range

Thaodolites: Nine Mitchell and six Askania atations
Cameras: Two Clark ribbon frame cameras
Beacon triangulation system: MLRAN

ROCKIT INFORMATION

Payload weight: 112 lb
Total rocket length (nose tip to base of tail section): 247 in.
Unfueled rocket welght: 420 lb
Unfueled rocket C.G.: 130.25 in . from nose tip
Gross weight at takeoff: 1275 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.171
Calculated M_{α} at burnout: $168 \mathrm{ft} \mathrm{lb} /^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 46.3 sec
Velocity at burnout: $5950 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout; $115,514 \mathrm{ft}$
Time to booster burnout: 2.3 sec
Velocity at booster burnout: $9300 \mathrm{ft} / \mathrm{sec}$
Altitude at broster burnout: 900 ft
Time to zenith: 229 sec
Altitude at zenith: 126 miles
Flight duration: 460 sec
Impact coordinatea: 23.2 mi . at 336 degrees true from launcher

BALLISTIC DATA

Theodolites and cameras: Photographic data from 1 to 48 sec Beacon triangulation system: MRAN data from 338 to 414 sec intermittently

IDENTIFICATION

Rocket type: AJI0-27
Place of firing: Hollomian Air Development Center
Time of firing: 0630 MST
Agency: Alr Force Cambridge Research Center, University of Michigan Altitude: 59 miles

FLIGHT OBJECTIVES

To test the feaglbility of determining Mach number by means of wind vane measurements. Rocket aspect. Micrometeorite atudies.

UPPER AIR INSTRUUMENTS

An acoustic micrometeorite detector flush mounted approximately two feet back from the tip of the nose cone

ROCKET PERFORMANCE INSTRUMENTS

A small metal wind vane was installed on the front section of the nose cone. The front section of the nose was canted at 34 sec after launch and the position of the wind vane was photographed by a camera in the nose cone. Aspect was measured by two horkon aspect cameras, by a photographlcally recorded gyro and by a a Glaninn gyro with an electrical takeoff which was telemetered.

DATA RECOVERY INSTRUUMENTS

Telemeter: Bendix FM-FM telemeter for micrometeorite experiment. AFCRC multipurpose beacon.
Physical recovery: Tall separation, nose separation and lowering by parachute

BALLXSTIC INSTRUMENIS

Firing Range
Theodolites: Mitchell and Askania stations
Radars: In use
Beacon triangulation system: MIRAN

Airborne

Beacon and radio cutoff: AFCRC multipurpose beacon - oxidizer cutoff

ROCKET INFORMATION

Payload weight: 273 lb
Unfueled rocket C.G.: 117 in . from nose tip

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 42 sec
Velocity at burnout: $4230 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 85,411 ft
Time to zenith: 160 sec
Altitude at zenith: 59 miles
Impact coordinates: 20 mi . at 328 degrees true from launcher

DATA RECOVERY

Telemeter: The telemetered gyro aspect data were received well only at Sacramento Peak due to a shift of 2 Mc in the frequency of the telemeter
physical recovery: Nose cone and tall cone separation did not function; the rocket disintegrated on the way down and portions were found over a quarter mile area

EXPERIMENTAL DATA

The micrometeorite detector recorded many pulses during flight. Only a portion of the pulees have the proper form for particle impact signals. It is hoped to be able to separate the valid pulses from the spurlous ones by comparison with laboratory records.

COMMENTS

Rocket performance: Preliminary data show that the rocket started to roll and yaw during powered flight and went into a flat spin after burnout at 42 sec. The nose cone tip section rotated as planned, but no data were obtained from the wind vane camera. The three aspect systems appeared to function properly and gave aspect data in excellent agreement with each other.

REPORTS AND PAPERS

"Scientific Users of Earth Satellites," J. A. Van Allen, ed., Ann Arbor:University of Michigan Press, 1056
7th International Astronautical Congress, Rome, Italy, 1940 (In press)

IDENTIFICATION

Rocket type: AJ10-27
Place of firing: Holloman Air Development Center
Time of firing: 0850 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 46 miles

FLIGHT OBJECTIVES

To study the limb darkening effect on the sun

UPPER AIR INSTRUMENTS

University of Colorado sunfollower and University of Colorado ultraviolet spectrograph covering the range 900A to 2500A. A "jitter camera" was installed on the sunfollower boom to indicate accuracy of the pointing control.

DATA RECOVERY INSTRUMENTS

Physical recovery: Tail sepuration, nose separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolltes: Five Mitchell and six Askunia stations
Cameras: Two Clark ribbon frames
Hadar: In use
Beacon triangulation eystem: MIRAN

ROCKET INFORMATION

Payload weight: 225 lb
Total extension length: 27 in.
Total rocket length (nose tip to base of tail section): 273 in .
Unfueled rocket weight: 541 db
Unfueled rocket C.G.: 137.5 in . from nose tip
Gross weight at takeoff: 1416 lb
Calculated $\mathrm{C}_{\text {m } \alpha}$ at burnout: -0.338
Calculated M_{α} at burnout: $375 \mathrm{ft} \mathrm{lb} /^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 40.1 घec
Velocity at burnout: $4215 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $86,690 \mathrm{ft}$

Supplemant

ROCKET PERFORMANCE (Continued)

Time to booster burnout: 2.32 sec
Velocity at booster burnout: $832 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 994 ft
Time to zenith: 135 sec
Altitude at zenith; 46 miles
Time to nose cone separation: 400 sec
Time to tall blowoff: 300 sec by command
Impact coordinates: 28 ml . at 347.5 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania data from 0.92 to 43.52 sec
Beacon triangulation system: MIRAN data not reducible

DATA RECOVERY

Physical recovery: The instrumentation was lowered by parachute and recovered without damage

EXPERIMENTAL DATA

Due to the low altitude no film was exposed

COMMENTS

Rocket modifications: Modified nose cone for camera and sunfollower installations Rocket performance: The low performance was the result of burnout of the thrust chamber in flight. Because of payload and altitude requirements, high performance acid was used ($18 \% \mathrm{NO}_{2}, 1.9 \% \mathrm{H}_{2} \mathrm{O}$). A static firing under these conditions was successful. After the filght fallure it was discovered that the $\mathrm{H}_{2} \mathrm{O}$ content was only 1.6%. This error may have caused the thrust chamber burnout.

IDENTIFICATION

Rocket type: AJ10-25
Place of firing: Holloman Air Development Center Time of firing: 1800 MST
Agency: Air Force Cambridge Research Center Altitude: 63 miles

FLIGHT OBJECTIVES

To increase the amount of sodium present at various altitudes to derive: the heights at which natural sodium emits D-lines; the equilibrium ratio of iree to combined sodium; seasonal variations of the natural occurring D-lines; chemical energy available at the various altitudes; diffusion at the various altitudes; winds and turbulence.

UPPER AIR INSTRUMENTS

Two sodium vaporizers, each capable of vaporizing 1 kg of sodium over a $10-\mathrm{sec}$ period of time. A monitor camera was installed looking outward and down to catch any sodium glow, and a photocell telemetered light intensity. A spectograph and night sky recording photometer were installed on Sacramento Peak.

DATA RECOVERY INSTRUMENTS

Physical recovery: Parachute system

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Mitchell and elght Askania stations Beacon triangulation system: MIRAN

Alrborne -

Beacon and radio cutoff: AFCRC multipurpose beacon

ROCKET INFORMATION

Payload weight: 183 lb
Total extension length: 25 in .
Total rocket length (nose tip to base of tail section): 252 in .
Unfueled rocket weight: 489 lb
Unfueled rocket C.G.: 127.3 in . from nose tip
Gross weight at takeoff: 1163 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.25

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Velocity at burnout: $4390 \mathrm{ft} / \mathrm{sec}$
Time to booster burnout: 2.4 sec
Velocity at booster burnout: $930 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1200 it
Time to zenith: $168,5 \mathrm{sec}$
Altitude at zenith: 63 miles
Time to tail blowoff: 192 sec
Impact coordinates: 23 mi . at 320 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania data from 0.02 to 28.67 sec
Beacon triangulation system; MIRAN data from 6.22 to 519.22 sec

EXPERIMENTAL DATA

All instrumentation worked successfully. The first sodium vaporizer ignited at approximately 70 sec at an altitude of $190,000 \mathrm{ft}$ and the second ignited at 80 sec at an altitude of $220,000 \mathrm{ft}$. A yellow glow was visible to the eye for 28 minutes, and four spectrographs were taken from Sacramento Peak. The night sky photometer recorded high sodium emission for the rest of the night. The initial bright glow appeared to be resonance excitation, but the possibility of supplementary mechanisms will have to await a study of the photometer data. The glow was observed from Amarillo, Texas, approximately 300 miles away.

COMMENTS

Rocket performance: Normal

REPORTS AND PAPERS

"The Airglow and the Aurorae," edited by E. B. Armstrong and A. Dalgarno, London: Pergamon Press, 1955, pp. 122-134

Rocket type: AJ10-34
Place of firing: Holloman Air Development Center
Time of firing: 1058 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 86 miles

上IIGHT OBJECTIVES

To obtain an absolute intensity measurement for Lyman-alpha and to measure solar limb darkening

UPPER AIR INSTRTMMENTS

University of Colorado sunfollower and spectrograph

DATA RECOVERY INSTRUMENTS

Physical recovery: Photographic film recovered by tail separation, nose separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Ten Mitchell and six Askania stations
Cameras: Twelve ribbon frame cameras
Beacon triangulation system: MIRAN

Airborne

Bear and radio cutoff: AFCRC multipurpose beacon, oxidizer cutoff

ROCKET INFORMATION

Payload weight: 222 lb
Total extensirn length: 27 in .
Total rociet length (nose tip to base of tail section): 273 in .
Uniueled iocket weight: 541 lb
Unfusled rocket C.G.: 138.8 in. from nose tip
Gross weight at takeoff: 1396 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.258
Calculated M_{α} at burnout: $352 \mathrm{ft} \mathrm{Ib} /{ }^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation 340 degrees true azimuth Time to burnout: 40.3 sec

RUCKET PERFORMANCE (Continued)

Velocity at burnout: $4820 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $88,0 \mathrm{CO} \mathrm{ft}$
Time to booster burnout: 2.77 sec
Velocity at booster burnout: $830 \mathrm{ft} / \mathrm{sec}$
Altiture at booster burnout: 1289 ft
Time to zenith: 200 sec
Altitude at zenith: 86 miles
Time of nose cone separation: 42\% sec
Time to till blowoff: 241 sec
Impact coordinates: 39.3 mi .350 degrees

BALLISTIC DATA

Theodolites and cameras: Photographic data from 0.10 to 42.3 sec
Beacon triangulation system: MIRAN data to 240 sec

DATA RECOVERY

Physicai recovery: Nose instrumentation recovered in excellent condition

EXPERIMENTAL DATA

The experiment was about 80% successful. The pointing control lost its elevation control at 80 miles on ascent and no data were obtained above that altitude.

The intensity of the solar Lyman-alpha was measured to be 3.0 ergs $/ \mathrm{cm}^{2}$ / sec at 122 km and the half width of the line was about 0.8 A .

Because of special features of the spectrograph design it was possible to measure solar limb darkening in Lyman-alpha radiation. The averaged results indicated slight limb brightening, possibly because of an appreciable increase of intensity in Lyman-alpha radiation in the solar latitudes which exhibited sunspot activity at the time of the flight.

COMMENTS

Rocket performance: Seven percent predicted altitude
Moditications to rocket: Modified nose ogive for sunseeker

REPORTS AND PAPERS

"Lyman Alpha Intensity and Sols. Limh-Darkening from Rocket Spectrograms," Miller, S. C., Jr., Mercure, R., Rense, Wm, A., Astrophys. J. 124:580 (1956)

IDENTIFICATION

12 March 1956
Rocket type: AJ10-25
Place of firing: Holloman Air Development Center Time of firing: 1415 MST
Agency: Air Force Cambridge Research Center Altitude: 59 miles

FLIGHT CBJECTIVES

To release a nitric oxide gas cloud at approximately 100 km during daylight to attempt to produce artificial sporadic E regions. Theoretical considerations indicated that a density of 3×10^{6} elestrons per cm^{3} should be obtained in the initial gas cloud.

UPPER AIR INSTRUMENTS

'Iwo Fiberglas spheres containing a total of 18 lb of nitric oxide gas at 3000 psi with suitable solenoid valve and timer to release gas at peak. C-3 ionospheric recorder (Holloman). A 17.38-Mic pulsed radar at Sacramento Peak. Modified $\mathrm{C}-3$ ionosphere recorder in a $\mathrm{C}-97$ aircraft which was flown under the cloud.

DATA RECOVERY INSTRUMENTS

Telemeter: 225-Mc, 2-channel pulse-time telemeter
Physical recovery: Tail separation, nose separation and loworing by parachute

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and three Askania stations
Radar: In use
Beacon triangulation system: MIRAN
Dopples: Velocimeter
Airborne
Eeacon and radio cutoff: AFCRC multipurpose beacon, oxicizer cutoff

ROCKET INFORMATION

Payload weight: 244 lb
Total extension length: 42 in .
Total rocket length (nose tip to base of tail section): 259 in .
Unfueled rocket weight: 518 lb
Unfueled rocket C.G.: 147 in. from nose tip
Gross weight at takeoff: 1235 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: $-.0 .264 \mathrm{ft} / \mathrm{lb}$
Celculzied M_{α} at burnout: $740 \mathrm{ft} \mathrm{lb/}{ }^{\circ}$

Supplement
Tebruary 1958

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 32.5 sec
Velocity at burnout: $4030 \mathrm{ft} / \mathrm{sec}$
Altitude at Lurnout: $65,800 \mathrm{ft}$
Time to booster burnout: 2.51 sec
Velocity at booster burnout: $873 \mathrm{ft} / \mathrm{sec}$
Altilude at booster burnout: 1200 ft
Time to zenith: 155 sec
Altitude at zenith: 59 miles
Time to nose cone separation: 455.8 sec
Altitude at tall blowoff: $290,000 \mathrm{ft}$
Flight duration: 1600 sec
Impact coordinates: 10.8 ml . at 225 degrees true from launcher

BALLISTIC DATA

Theodolites and cameras: Photographic data to 41.7 sec
Radars: To 90 sec
Beacon triangulation system: MLRAN data to 411 sec

DATA RECOVERY

Physical recovery: Successful

EXPERIMENTAL DATA

The C-3 ionoaphere recorder at Holloman picked up reflections from the cloud 30 sec after gas release and held it frir 10 minutes. Returns were very similar to natural sporadic E.

The pulsed-radar at Sacramento reak also tracked the NO cloud for ten minutes. An initial density of 9.75×10^{6} electrons $/ \mathrm{cm}^{3}$ was reported.

The aircraft falled to get any quantitative datac.

COMMENTS

Rocket performance: Norma:

REPORTS AND PAPERS

"Fcrmation of an Artificial Ion Cloud; Photolonization of NO by Solar Lyman Alpha at 95 km ," Frederick F. Aarms, Jecome Pressman, Leonard M. Aschenbrand, Adolph Jursa, and Murry Zelikoff, J. Chen. Phys. 25:187 (1956)

Rocket type: AJ10-25
Place of firing: Holloman Air Development Center
Time of firing: 0145 MST
Agency: Air Force Cambridge Research Center Altitude: 66 miles

FLIGHT OBJECTIVES

To attempt to recombine atomic oxygen in the atmosphere at night by means of a gaseous catalyst, NO

UPPER AIR INSTRUMENTS

Two Fiberglas spheres containing a total of 18 lb of NO at 3000 psi . A photomultiplier photometer telemetered relative light intensity and there was a $16-\mathrm{mm}$ movie camera to record intensity.

Special photometers were operated at Sacramento Peak. Super-Schmidt meteor cameras of the Harvard Meteor project at Mayhill and Sacramento Peak.

DATA RECOVERY INSTRUMENTS

Physical recovery: Parachute

BALLISTIC INSTRUMENTS

Firing Rance
Theodolltes: Eight Askania stations Beacon triangulation system: MIRAN
Doppler: Velocimeter

ROCKET INFORMATION

Payload weight: 209 lb
Total extension length: 42 in .
Total rocket length (nose tip to base of tail section): 269 in .
Unfueled rocket weight: 516 lb
Unfueled rocket C.G.: 146.7 in . from nose tip
Gross weight at takeoff: 1198 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.242
Calculated M_{α} at burnout: $746 \mathrm{ft} \mathrm{lb} /{ }^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees trie Time to burnout: 32.8 sec

[^4]
ROCKET PERFORMANCE (Continued)

Velocity at burnout: $4245 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $66,000 \mathrm{ft}$
Altitude at booster burnout: 1100 it
Time to zenith: 153 sec
Altitude at zenith: 66 miles
Impact coordinates: $\mathbf{2 1 . 2} \mathbf{~ m i}$. at 311 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania data from 2 to 31.6 sec
Beacon triangulation system: MIRAN data from 6 to 154 sec

DATA RECOVERY

Physical recovery: Parachute did not operate

EXPERIMENTAL DATA

Upon release of the gas, a strong Luminous glow appeared immediately at the release point and was estimated to be of an initial intensity of $\mathbf{- 2}$ visual magnitude. It gradually grew in size while diminishing in intensity until at ten minutes after release it covered an area equivalent to that of three or four moon diameters and was no longer visible to the naked eye.

This experiment was geserally regarded as representing a major forward step in the study of the cheric.cal processes in the atmosphere by direct test with the addition of selected gases.

COMMENTS

Rocket performance: Normal

REPORTS AND PAPERS

'Syntietic Atmosphere Chemiluminescence Caused by the Release of NO at 108 km, " Jerome Pressman, Leonard M. Aschenbrand, Frederick F. Marmo, Adolph Jursa, and Murry Zelikoff, J. Chem. Phys. 25:187 (1956)

IDENTIFICATION

11 April 1956
Rocket type: AJ 10-25
Place of firing: Holloman Air Development Center
Time of firing: 1905 MST
Agency: Air Force Cambridge Research Center Altitude: 66 miles

FLIGHT OBJECTIVES

To measure ionization in the sodium cloud and observe 5890A radiation from the trail

UPPER AIR INSTRUMENTS

Two sodium vaporizers, each containing one kilogram of sodium and timer to fire vaporizers sequentially over the region of 50 to 110 km . Stanford $17.35-\mathrm{Mc}$ sporadic E detection radar at Sacramento Peak.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon Physical recovery: Tail separation, nose separation and parachute

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Eleven Askania stations
Radar: In use
Beacon triangulation system: MIRAN
Doppler: Velocimeter

Airborne
Beacon and radio cutoff: AFCRC multipurose beacon, oxidizer cutoff

ROCKET INFORMATION

Payload weight: 189 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 254 in .
Unfueled rocket weight: 498 lb
Unfueled rocket C.G.: 138.9 in . from nose tip
Gross weight at takeoff: 1176 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.228
Calculated $\mathcal{M}_{\alpha}^{\alpha}$ at burnout: $532 \mathrm{ft} \mathrm{lb} /{ }^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 32.8 sec Velocity at burnout: $4300 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 72,000 ft
Time to booster burnout: 2.3 sec
Velocity at booster burnout: $980 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 790 ft
Altitude at zenith: 66 miles
Time to zenith: 166 sec
Impact coordinates: 33 mi . at 310 degrees true from launcher

BALLISTIC DATA

Theodolites: Askania data to 32 sec
Radar: Beacon was disabled by an explosion in the nose at the time the experiment was released. Consequently radar tracking was lost.
Beacon triangulation system: MMRAN data from 8 to 76 sec
Doppler: Velocimeter data from 1.1 to 21.5 sec

EXPERIMENTAL DATA

For some unknown reason both vaporizers fired simultaneously and there was an explosion in the nose. The altitude of sodium release will be obtained from a 3-camera triangulation network which obtained excellent photographs of the cloud. The photographs are also expected to yield excellent results of high altitude winds.

The dati are still under study, and it is hoped that further information will be obtained concerning the twilight and night emission of 5890A.

COMMENTS

Rocket performance: Normal

REPORTS AND PAPERS

"A Study of Sodium Vapor Ejected into the Upper Atmosphere," J. F. Bedinger, E. R. Manring and S. N. Ghosh, J. Gcophys. Res. (in press)

Rocket type: AJ10-34
place of firing: Holloman Air Development Center
Time of firing: 0754 MST
Agency: Air Force Cambridge Research Center, University of Colorado Altitude: 89 miles

FLGHT OBJECTIVES

To photograph the solar spectrum in the region 200A to 2500A and to obtain an image of the sun in Lyman-alpha light

UPPER ALR INSTRUMENTS

University of Colorado sunfollower with a University of Colorado spectrograph and a monochromatic camera mounted on the boom

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon physical recovery: Tail separation, nose separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Three Mitchell and nine Askania stations
Cameras: Two ribbon frame cameras
Beacon triangulation system: MIRAN
Dopplers: Velocimeter
Airborne
Beacon and radio cutoff: AFCRC multipurpose beacon, oxidizer cutoff

ROCKET INFORMATION

Payload weight: 227 lb
Total extension length: 25 in .
Total rocket length (nose tip to base of tail section): 272 in .
Unfueled rocket weight: 545 lb
Unfueled rocket C.G.: 137.5 in . from nose tip
Gross weight at takeoff: 1395 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.260
Calculated M_{α} at burnout: $428 \mathrm{ft} \mathrm{lb} /^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 41 sec
Velocity at burnout: $4960 \mathrm{ft} / \mathrm{sec}$
Altitude at burngut: $85,000 \mathrm{ft}$
Time to booster burnout: 2.65 sec
Velocity at booster burnout: $793 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1074 it
Altitude to zenith: 89 miles
Time to zenith: 193 sec

BALLISTIC DATA

Theodolites and cameras: Photographic data from 0.96 to 47.96 sec
Beacon triangulation system: MIRAN data from 4 to 600 sec
Doppler: Velocimeter data from 1.80 to 28.95 sec

DATA RECOVERY

Physical recovery: Spectrograph was undamaged, but the pointing control sustained moderate damage

EXPERIMENTAL DATA

The pointing control, spectrograph, and monochromatic camera all functioned well throughout flight.

Good photographs of the sun's disk in Lyman-alpha radiation were obtained, though osclllations in the elevation servo of the pointing control resulted in a slight blurring. Considerable detail in the sun's disk was obtained.

The spectrograph yielded an excellent profile of the Lyman-alpha line. The width at half height was about 1A and the width at the level of the background was about 6A. No spectra were obtained at wavelengths shorter than 1000A. This may have been due to the diminished reflection coefficient of the grating in this region.

COMMENTS

Rocket performance: Normal

REPORTS AND PAPERS

"The Sun's Disk in Lyman-Alpha Radiation," R. Mercure, S. C. Miller, Jr., W. A. Rense, and F. Stuart, Jour. Geophys. Res. 61:571-57n (1956)

IDENTIFICATION

Rocket type: AJ11-6
Place of firing: Holloman Air Development Center Time of firing: 0840 MST
Agency: Alr Force Cambridge Research Center Altitude: 105 miles

FLIGHT OBJECTIVES

To test rocket vehicle performance

ROCKET PERFORMANCE INSTRUMENTS

Aerodynamic wind vanes on nose. Skin temperature detectors. Motor monitoring gages.

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon. $565-\mathrm{Mc}$ beacon with nose tip probe antenna. 225-Mc 2-channel pulse-time modulation system.
Physical recovery: Tail separation, nose separation and lowering by parachutt

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Three Mitchell and seven Askania stations
Cameras: Two Clark ribbon frame cameras
Radar: In use
Beacon triangulation system; MIRAN
Doppler: Velocimeter

ROCKET INFORMATION

Payload weight: 169 lk
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 282 ln .
Unfueled rocket weight: 428 lb
Unfueled rocket C.G.: 146.5 in . from nose tip
Gross weight at takeoff: 1329 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.281
Calculated M_{α} at burnout: $275 \mathrm{ft} \mathrm{lb} /^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true 'Time to burnout: 41.4 sec Velocity at burnout: $5600 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at burnout: $101,000 \mathrm{ft}$
Time to booster burnout: 2.7 sec
Veloclicy at booster burnout: $826 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 1181 ft
Time to zenith: 225 sec
Altitude at zenith: 105 miles
Impact coordinates: 42 ml . at 320 degrees true from launcher

BALLISTIC DATA

Theodolites and cameras: Photographic data from 0 to 56 sec
Radar: Radar data through zenith
Beacon triangulation system: MLRAN data from 2 to 580 sec

DATA RECOVERY

Telemeter: Good
Physical recovery: Thrust chamber not excessively burned. Tail good and fins found in apparent good condition. No indication of mechanical fallure.

EXPERIMENTAL DATA

The wind vanes on the nose survived the filight and appear to be suitable for use in subsequent filghts for determining local Mach numbers. Skin temperatures and motor performance were normal.

COMMENTS

Rocket modifications: Cylindricai tall cone, large fins
Rocket performance: The rocket engine operated at nominal thrust for approximately full duration. The rocket started yawing at approximately 25 sec and by burnout had an angle of 45 degrees to 90 degrees from the flight path. The roll rate was less than one revolution per sec. At the same time that yaw was first detected there was a distinct change in the flame - it increased in density by approximately three times.

IDENTIFICATION

13 June 1950 ô
Rocket type: AJ10-34
Place of firing: Holloman Air Development Center
Time of firing: 1351 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 85.6 miles

FLIGHT OBJECTIVES

Vertical incidence experiment, non-densities and space variations of same in E layer

UPPER AIR INSTRUMENTS

4.5 Mc receiver

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Tail separation, nose separation and lowering by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Askania stations
Cameras: Two Clark ribbon frame cameras
Radars: In use
Beacon triangulation system: MIRAN
Airborne
Beacon and radio cutoff: AFCRC multipurpose beacon, oxidizer cutoff

ROCKET INFORMATION

Payload weight: 195 lb
Total extension length: 27 in.
Total rocket length (nose tip to base of tail section): 274 in .
Unfueled rocket weight: 513 lb
Unfueled rocket C.G.: 146.3 in , from nose tip
Gross weight at takeoff: 1369 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.227
Calculated M_{α} at burnout: $200 \mathrm{ft} \mathrm{lb} /{ }^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true Time to burnout: 39.5 sec

ROCKET PERFORMANCE (Continued)

Velocity at burnout: $4730 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $96,000 \mathrm{ft}$
Time to booster burnout: 2.32 sec
Altitude ar booster burnout: 1000 ft
Time to zenith: 190 sec
Altitude at zenith: 85.6 miles

BALLISTIC DATA

Theodolites and cameras: Photographic data from 1 to 45 sec Radar: To 250,000 ft
Beacon triangulation system: MRAN data from 14 to 137 sec

DATA RECOVERY

Telemeter: Good
Physical recovery: Parachute recovered extensions only; nose separated at deployment

EXPERIMENTAL DATA

Data reduction underway

COMMENTS

Rocket modifications: Three antennas from nose to outer edge of fins Rocket performance: Zenith ten percent lower than predicted

IDENTIFICATION

18 June 1956
Rocket type: AJ10-34
Place of fir:-: $:$ Holloman Air Development Center
Time of firi:... 1342 MST
Agency: Air Force Cambridge Research Center, University oil Utah Altitude: 85 miles

FLYGHT OBJECTIVES

lonosphere (See USAF-67)

UPPER AIR INSTRUMENTS

Six-Mc transmitters

DATA RECOVERY INSTRUMENTS

See USAF-67

BALLISTIC INSTRUMENTIS

Firing Range
Theodolites: Three Mitchell and seven Askania stations Cameras: Seven Ciark ribbon frame cameras Beacon triangulation system: MIRAN

Airborna
bee USAF-87

ROCKET INFORMATION

Payload weight: 194 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 274 in . Unfueled rocket weight: 512 lb
Unfueled rocket C.G.: 144 in . from nose tip
Gross weight at takeoff: 1376 Ib
Calrulated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.235
Calculated M_{α} at inurnout: $5 \hat{0} 0 \mathrm{ft} 1 \mathrm{~b} /{ }^{\circ}$

ROCKET PERFORMANCE

s'iring angle: 87 degrees elevation, 340 degrees true
Time to burnout: 39.6 sec
Velocity at burnout: $4760 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $38,000 \mathrm{ft}$

ROCKET PERFORMANCE (Continued)

Time to booster burnout: 2.5 sec Velocity at booster burnout: $816 \mathrm{ft} / \mathrm{sec}$ Altitude at booster burnout: 1080 ft Time to zenith: 190 sec Altitude at zenith: 85 miles
Impact coordinates: 27.4 mi . at 323 degrees true from launcher

BALLISTIC DATA

Theociolites and cameras: Photographic data from 1 to 52 sec Beacon triangulation system: MLRAN data from 2 to 290 sec

DATA RECOVERY

Telemeter: Fair
Physical recovery: Good

EXPERIMENTAL DATA

Reduction in progress

COMMENTS

Rocket modifications: Three antennas from nose cone to fins Rocket perfurmance: Ten percent below predicied zenith

IDENTIFICATION

Rocket type: AJ10-34
Place of firiag: Holloman Air Development Center Time of firing: 1148 MST
Agency: Air Force Cambridge Research Center, University of Utah Altitude: 91 miles

FLIGHT OBJECTIVES

Ionosphere (See USAF-67 and -68)

IIPPER AIR INSTRUMENTS
See USAF-67

DATA RECOVERY INSTRUMENTS

See USAE-6"

BALLISTIC INSTRUMFNTS

Firing Range
Theodolites: Four Mitchell and seven Askania stations
Cameras: Twu Clark ribbon frame cameras
Beacon triangulation system: MIRAN
Airborne
See USAF-67

ROCKET INFORMATION

Payload weight: 201 lb
Total extension length: 27 in.
Total rocket length (nose tip to base of tail section): 274 in . Unfueled rocket weight: 518 lb
Unfucled rocket C.G.: 144 in , from nose tip
Gross weight at takeoff: 1374 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.242
Calculated M_{α} at burnout: $216 \mathrm{ft} \mathrm{lb} /{ }^{\circ}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true
Time to burnout: 41.7 sec
Velocity at burnout: $4910 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $92,500 \mathrm{ft}$

FOCKET 2'ERFORMANCE (Continued)

Time to bocster burnout: 2.81 sec
Altitude at booster burnout: 1000 ft
Time to zenith: 200 sec
Altitude at zenith: 91 miles
Altitude at tall blowoff: $320,000 \mathrm{ft}$
Impact coordinates: 41.5 mi . at 337 degrees true from launcher

BALLUSTIC DATA

Theodolites and cameras: Photographic data from 1 to 38 sec Radar: To 250,000 ft
Beacon triangulation system: MIRAN data from 11 to 279 sec

DATA RECOVERY

Telemeter: Fair
Physical recovery: Nose in excellent condition

EXPERIMENTAL DATA

Reduction in progress

COMMENTS

Rocket modifications: Three antennas from nose cone to fins Rocket performance: Normal

IDENTIFICATION

26 June 1956
Rocket type: AJ10-34
Place of firing: Holloman Air Development Center Time of firing: 1126 MST
Agency: Air Force Research Development Center, University of Utah Altitude: 69 miles

FLIGHT OBJECTIVES

Ionosphere (See USAF-67, -68, and -69)

UPPER AIR INSTRUMENTS
See USAF-67

DATA RECOVERY INSTRUMENTS

See USAF-67

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and seven Askania stations
Cameras: Seven Clark ribbon frame cameras
Beacon triangulation sysiem: MIRAN
Airborne
See USAF-67

ROCKET INFORMATION

Payload weight: 210 lb
Total extension length: 27 in.
Total rocket length (nose tip to base of tail section): 274 in .
Unfueled rocket weight: 526 lb
Unfueled rocket C.G.: 143.8 in . from nose tip
Gross weight at takeoff: 1382 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.279
Calculated M_{α} at burnout: $385 \mathrm{ft} \mathrm{lb/}{ }^{0}$

ROCKET PERFORMANCE

Firing angle: 87 degrees elevation, 340 degrees true Time to burnout: 40.1 rec Velocity R t burnout: $4310 \mathrm{it} / \mathrm{sec}$ Altitude at burnou.: 83,000 ft

ROCKET PERFORMANCE (Continued)

Time to booster burnout: $2.25 \mathrm{sec} \cdot$
Velocity at booster burnout: $779 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 915 ft
Time to zenith: 172 sec
Altitude at zenith: 69 miles
Impact coordinates: 25 mi . at 335 degrees true from launcher

BALLISIIC DATA

Theodolites and caneras: Photographic data from 0 to 46 sec Beacon triangulation system: MIRAN

DATA RECOVERY

Telemeter: Fair
Physical recovery: Failure of nose and tail to separate, probably due to external antennas

EXPERIMENTAL DATA
Reduction underway

COMMENTS

Rocket modifications: Three antennas from nose cone to fins Rocket performance: Zenith was 15\% lower than predicted

Rocket type: AJ10-34
Place of firing: Holloman Air Development Center Time of firing: 1756 MST
Agency: Air Force Cambridge Research Center Altitude: 80 miles

FLIGHT OBJECTIVES

Day airglow

UPPER AIR INSTRUMENTS
Spectrophotometer

DATA RECOVERY INSTRUMENTS

Telemeter: 225-Mc FM-FM telemeter
Physical recovery: Tail separation, nose separation and lowering by parachute

BALLSTIIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Askania stations
Cameras: Two Clark ribbon frames
Radar: In use
Beacon triangulation system: MXRAN
Alrborne
Beacon and radio cutoff: AFCRC muitipurpose beacon, oxidizer catoff

ROCKET INFORMATION

Payload weight: 256 lb
Total extension length: 27 in .
Total rocket length (nose tip to base of tail section): 274 in .
Unfueled rocket weight: 57 lb
Unfueled recket C.G.: 138.7 in . from nose tip
Grose weight at takeoff: 1423 lb
Calculated $\mathrm{C}_{\mathrm{m} \alpha}$ at burnout: -0.26

ROCKET PERFORMANCE

Firing angle: 87 degrees elovation, 340 degrees true Time to zenith: 185 gec Aititude at zenich: 80 miles Impact coordinates: 25 ml . at 335 degrees true from launches:

Supplamums
Tebrurry 1958

BALLISTTC DATA

Beacon triangulation system: MIRAN data from 10 to 364 sec

DATA RECOVERY

Telemeter: Good, tape recording
Physical recovery: Tail separation did not occur; parachute tore from nose at deployment. All parts found.

EXPERIMENTAL DATA
Data reduction underway

COMMENTS
Rocket performance: Cutoff at 44 sec

IDENTIFICATION

Rocket type: AJ10-25
Place of firing: Holloman Air Development Center Time of firing: 0556 MST
Agency: Air Force Cambridge Regearch Center Altitude: 1.5 miles

FLICHT OBJECTIVES

Study of solar spectrum and atmospheric : omposition

UPPER AIR INSTRUMENTS

Biaxial pointing control to aim grating spectrograph toward sun, permitting phoisgraphic recording of 1000A to 3000 A radiation at 50 to 95 km

DATA RECOVERY INSTRUMENTS

Telemeter: AFCRC multipurpose beacon
Physical recovery: Tail separation, nose separation and lowering by parachute

EALIISTIC INETRUMENTS

Firing Rauge
Theodolites: Seven Asicania stations
Cameras: Two fixed caneras
Beacon triangulation system: MIRAN
Atrborne
Beacon and radio cutoff: AFCRC multipurpose beacon, oxidizer cutoff

ROCAET INFORMATION

Payload weight: 228 lb
Totail extension length: 27 in .
Total rocket length (nose tip to base of tail section): 254 in .
Unfueled rocket weight: 535 lb
Unfueled rocket C.G.: 130.5 in . from nose tip
Gross weight at ta'seoff: 1198 lb
Calculated C_{mx} at isurnout: -0.28

ROCKET PERFORMANCE

Firing angle: $C 7$ degrees elevation, 340 degrees true
Time to esnith: 20 sec
Altitude at zenith: 1.5 miles
F"ight duration: 260 sec

BALLISTIC DATA

Theodolites: Askania to 45 sec

COMMENTS

Rocket performance: Fail safe cutoff at 4.6 sec apparently from tube filament failure

Agency: Signal Corps Engineering Laboratory (University of Michigan).
Time: 1538 MST.
Altitude: 56.9 miles.

UPPER AIR INSTRUMENTS

Composition: Thrce evacuated air-sampling bottles. with timer and pyrotechnic opening and closing devices.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of radar beacen used as single channel system. Physical recovery: Tall section separation with prima cord detonated by beacon or timer command.

BALLISTIC INSTRUMENTS

Firing range

Theodolites: Two Askanta stations.
Cameras: Two Bowen-Knapp stations.
Telescopes: Two stations.
Radar: Two modified SCR-584 S-band stations.

Airborne

Beacon: AN/APN-55 S-band transponder.
Radio cutoff: AN/DRW-3 FM control receiver for fall safe fuel cutoff.

HOCKET PERFORMANCE

Firing angle:
Time of booster separation:
Altitude at booster separation:
Velocity at booster ceparation:
Time to burnout: 47 sec .
Altitude at burnout: 16.2 miles.
Velocity at burnout: 3634 ft . per sec.
Tima to zenith: 163 sec.
Altitude at zenith: 56.9 miles.
Time to blowoff:
Alticude at blowosf:
Flight duration:
Impact coordirates:
Payload weight: 188 lbs .
Unfueled rocket weight: 469 lbs .
Unfueled rocket C.G.: 115 in .
Gross welght at takeoff: 1110 ! bs .

BMLLISTIC DATA

Theodolites: Askaniz trajectory data 0 to 47.0 sec .
Cameras: Trajectury 0 to 3 sec .
Telescopes: Tracked rocket to shorily after burnout.
Radar: Trajectory data 9 to 94 sec.

data recoveny

Telemeter: Hartial record obtained.
Physical recovery: Sampling bottles found four months after firing in fair condtion.
EXP PERIMENTAE DATA
Composition: No deta ubtained; two bottles leaked at pressures gages, and the third talled to operate.

COMMENTS

Rocket: Nose cone modified by installation of three sets of air intake and exhaust scoope lying close to skin.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," by L. M. Jones and H. W. Neill, Final Prozras: Report, Contract W-36-039 sc-32307. Engineering Research Institute, Univeraity of Michigen.
Preliminary Report, Radar Data, SCEL-WSPG, 8 December 1948, Numerical and Graphical Data on Aerobee Round No. SC-1.
Roll Data, Numerical and Graphical, propared by Ballistic Data Section, BRL, WSPG.
Preliminary Report, Bowen-Knapp Camera Observations oi Aerobee SC-1, Numerical and Graphical Data, prepared by BRL-APG.
Preliminary Report, Akkania Camera Observations of Aerobee SC-1, Numerical and Graphical Data, prepared by BRL-APG.
"Panel Report No. 19," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on E January 1948.

Agency: Signal Corps Engineering Laboratory (University of Michigan). Time: 0610 MST.
Altitude: 48.7 miles.

UPPER AR INSTRUMENTS

Composition: Three evacuated alr-sampling bottles with timer and pyrotechnic opening and closing devices.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of radar beacon used as a single channel sybtem. Physical recovery: Tall section separation with prima cord detonated by beacon or timer command.

BALLISTIC INSTRUMENTS

Firing range

Theodolites: Two Mitchell and three Askania stations.
Cameras: Two Bowen-Knapp stations.
Telescopes: Four stations.
Ratar: One modified SCR-584 S-band station.
Sound ranging: Six pickup microphones.

Airborne

Beacon: AN/APN-65 g-band rader beacon.
Radio cutoff: AN/DRW-3 FM control recelver for fail safe fuel cutoff.

HOCKET PERFORMANCE

Piring angle:
Time of booster separation:
Altitude af booster meparation:
Velocity at booster separation:
Time at burnout: 42.35 sec.
Altitude at barnout: 15 miles.
Velocity at burnout: 3518 tt . per sec.
Time to xenith: 147 sec .
Altitude at zenith: 48.7 miles.
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates:
Payload weight: 208.5 lbs .
Unfueled rocket welght: 490 lbs.
Unfueled rocket C.G.: 114.5 inches.
Gross weight at takeoff: 1137 los.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 50.1 sec., Mitchell trajectory data 12 to 41 sac. Cameras: Trajectory data 0 to 3.5 sec.
Telescopes: Attitude dita 0 to $44 \mathrm{sec} .$, roll data 3.7 to $i 8 \mathrm{sec}$.
Radar: Trajectory data 0 to 67 sec.

DATA RECOVERY

Telemeter: No data received from beacon pulse widening system,
Physical recovery: Two sampling bottles recovered in good condition, third hottle damaged at impact.

EXPEREIENTAL DATA

Composition: Samples obtained in intervals 29.8 miles to 32.3 miles, and 32.2 miles to 34.3 miles. Charcoal adsorption analyses for the ratios $\mathrm{He} / \mathrm{N}_{2}+\AA$ and $\mathrm{a} / \mathrm{N}_{2}$ showed no increase over ground level values.

COMMENTS

Rocket performance: Tail cone blowoff occurred prematurely at 76 sec .
Rocket modifications: Three sets of air intake scoops and exhausts installeci on nose cone. Nose cone modified into two sections to improve access to instrumentation, and seals improved to prevent air leakage from contaminating samples.

REPORTS AND PAPERS

"Atmospheric Phenomenu at High Altitudes," by L. M. Jones and H. M. Neill, Final Progress Report, Contract W-36-039 sc 32307, Engineering Research Institute, University of Michigan.
Preliminary Radar Data, prepared by SCEL Beacon Radar Unit and BRL, WSPG, Numprical and Graphical Data for Aerobee SC-2.
BRL Technical Note No. 34, APG; Numerical and Grephical Trajectory Data trom Askania Observations of Aerobee SC-2.
BRLL Technical Note No. 44, APG; Numerical and Graphical Trajectory Data from Bowen-Knnpp Observations of Aerobee SC-2.
BRL Technical Note No. 115, APG; Numerical and Graphical Attitude Data from Telescopes I, II, III, IV Observing Aerobee SC-2.
BRL Technical Note No. 121, APG; Numerical and Graphical Trafectory Data from Mitcholl and Askania Observations of Aerobee SC-2.
"Panel Report No. 19," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 5 January 1949.
"Panel Report No. 21," Minutes of Meeting of the Upper Atmosphere Rocket Rewearch Panel on 3 Aucust 1849.

Agency: Signal Corps Engineering Laboratory (University of Michigan).
Time: 1132 msT.
Altitucie: 40.3 miles.

UPPER AIR INSTRUMENTS

Composition: Three evacuated air-sampling bottles with timer and pyrotechnic opening and closing devices.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of the radar beacon used as a single channel system. Physical recovery: Separation of tall section with prima cord; separation of the nose cone section with prima cord and blasting caps. Nose cone lowered by parachute.

BALLISTIC INSTRUMENTS

Firing range

Theodolites: Three Mitchell and seven Askunia stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Radar: Two modified SCR-584 S-bend stations.
Impact location: Impact Point Computer.

Airborne

Beacon: AN/APN-55 S-band transponder.
Radio cutoff: AN/DRW-3 FM radio control receiver for fadl saife fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 3.9 degrees North, 2 degrees East.
Time of booster separation:
Aldtude at booster separation:
Velocity at booster separation:
Time to burnout: 44.4 sec .
Aittitude at burnout: 14.3 miles.
Velocity at burnout: 2954 ft . per sec.
Time to zenith: 137 sec.
Altitude at zenith: 40.3 miles.
Time to blowoff: 147.8 sec .
Altitude at blowoif: 40 miles.
Flight duration:
Impact coordinates: 17.1 miles North and 8.3 miles West.
Payload weight: 207 lbs.
Unfueled rocket weight: 493 lbs .
Unfueled rocket C.G.: 127.5 in .
Gross weight at takeoff: 1141 lbs .

BALlistic Data

Theodolites: Trajectory data from 0.75 to 61.4 sec ., roll data from 3.0 to 43.9 sec.
Cameras: Trajectory data from 0.2 to 3.8 sec .
Telescopes: Attitude and yaw data 0 to 142 sec .
Radar: Trajectory data from 0 to 147.5 sec .

DATA RECOVERY

Telemeter: Good record obtained of pulse widening.
Physical recovery: Sample bottles recovered by parachute in excellent condition.

EXPERDMENTAL DATA

Composition: One sample obtained in altitude inierval 31.3 miles to 33.2 miles. Charcoal adsorption analysis for the ratios $\mathrm{He} / \mathrm{N}_{2}-\mathrm{A}$ and $\mathrm{A} / \mathrm{N}_{2}$ showed no increase over ground level values. Negligible contamination from nose cone gas was obtained.

comakentrs

Rocket parfarma ce: Zenith altitude was 18.6 miles below predicted altitude for payload carried, although burning time was apparently normal. Some of this loss may be ascribed to increased drag caused by the air intake and exhaust scoops on the nose cone.
Experiments: Nose cone sealing was improved and filled with radioactive $\mathbf{C O}_{2}$ at an altitude of 18.9 males to check for contamination of air samples by leakage of gas from the nose cone.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes", by L. M. Jones and E. W. Nelll, Final Progreas Report, Contract W-38-039-8c-32307, Engineering Research Institute, University of Michigan.
BRL Technical Note 100, Numerical and Graphical Trajectory Data from Bowen-Knapp Observations of Aerobee SC-3.
Roll Data, Numerical and Graphical, prepared by BRL, BSPG.
Preliminary Radar Data, Numerical and Graphical, prepared by SCEL Ballistic Radar Unit, WSPG.
BRL Technical Note 154, APG; Numerical and Graphical Trajectory Data from Mitchell Observations of Aerobee SC-3.
BRL Technical Note 163, APG; Numerical and Graphical Trajectory Data from Amkania Observations of SC-3.
First Report of Test of Aerobee SC-\$ and 8C-7, L. M. Blanchett, Aerobee Project Officer.
"Panel Report No. 25," Minutes of Meeting of the Upper Atmospherv Rocket Research Panel on 14 February 1950.
Weather Data, prepared by Air Weather Detachment, WSPG.

Agency: Signal Corps Engineering Laboratory (University of Michigan).
Time: 0901 MST.
Altitude: $\mathbf{4 7 . 3}$ miles.

UPPER AIR NNSTRIJRENTS

Solar radiation: Two X-ray photographic film detectora with metal foll filters.
Composition: Three evacuated adr sampling bottles with timer ar.i pyrotechnic opening and closing devices.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening faature of radar beacon uned an one channel system.
Phyaical recovery: Separation of tatl aection with prima cord, and anparation of the nowe wection with prima cord and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing range
Theodolites: Two Mitchell and two Askania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Radar': Two modified S-band atations.
Impact location: Impact Point Predictor.

Arrborne

Beacon: AN/APN-55 (XEE-3) S-band transponder. Radio cutoff: AN/DRW-3 FM control receiver for fall safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 4.0 degrees North and 2.4 degides East.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 46.0 sec.
Aititude at burnout: 15.8 malles.
Velocity at burnout: 3230 ft . per sec.
Time to zenith: 145 sec .
Altitude at zenith: 47.3 miles.
Time to blowoff: 172 sec .
Altitude at blowoft: 45.2 miles.
Flight duration:
Impact coordinates: 35 miles North and 7.6 miles East.
Paylosd weight: 247 lbs.
Unfueled rocket weight: 538 lbs .
Unfueled rocket C.G.: 121.2 inches.

BALLISTIC DATA

Theodolites: Trajectory data 0 to $\mathbf{5 0} \mathbf{s e c}$.
Cameras: Trajectory data 0 to 4 sec.
Telescopes: $/$ ttitude data 18 to 42 sec.
Radar: No data, beacon failed.

DATA RECOVERY

Telemeter: No data due to beacon failure.
Physical recovery: Nose cone separation and parachute ejection did not occur, two aamples bottles recovered in good condition, third damaged; X-ray detectors recovered.

EXPMEDMENTAL DATA

Composition: Air samples obtained in altitude interval 31.9 miles to 36.5 miles. Charcoal admorption analyses for the ratios $\mathrm{He} / \mathrm{N}_{2}-\mathrm{A}$ and $\mathrm{A} / \mathrm{N}_{2}$ showed ho increase over ground levels.
Solar radiation: No data.

COMMENTS

Rocket performance: Zenith altitude 1.2 miles less than predicted.
Rocket modifications: Air intake and exhust scoops on nose cone; paracinute cartained in nose cone axteniton.

REPORTS AND PAPERS

"Atmospheric Phenomena at Fighaititudes," by L. M. Jones and E. W. Neill, Final Progress Report, Contract No. W-36-039-mc-32s07, Engineering Research Institute, 31 Octuber 1950.
Firat Report on Test of Aerobee SC-4, L. M. Blanchett, Aerobee Project Officer.
BRL Technical Note 48, APG; Numerical and Graphical Trajectory Data from Abiconla Ohwervations of Aerobee SC-4.
BRL Technical Note 68, APG; Fumerical aud Graphical Trajectory Data from Mitshell Obeervations of Aerobee SC-4.
BRL Technical Note 79, APG; Numerical and Graphical Trajectory Data from Bowen-Knapp Observation of Aerobee SS-4.
BRL Technical Note 118, APG; Numerical and Graphical Attitude Data from Telescope Observations of Aerubee SC-4.
"Panel Report No. 21," Minutas of Meeting of the Upper Atmosphere Rocket Research Panel on 3 August 1949.

Agency: SHignal Corps Engineering Laboratory (University of Michigan). Time: 1003 MST.
Altitude: 36.4 miles.

UPPER AIR INSTRUMENTS

Compoastion: Three evacuated air sampling boitles with timer and pyrotechnic opening and closing devices.
Solar rachistion: Two X-ray photographic detectors with metal foil filters. (NRL)

DATA RECOVERY INSTRUMENTS

Tolemeter: Puise widening feature of radiar beacon used as single chainel system.
Phyeical recovery: Gaparation of tail mection with primi cord; separation of nose section with prima cord and lowering by perachute.

BALLISTIC INSTRUSEFNTS

Firing range

Theodolites: Two Mitchell and elght Asisanis stations.
Cameras: Two Bowen-Knapp stations. Telescopes: Two stations. Radar: Two modiffed BCR-584 S-band etations. Impact:location: Impact Point Compater.

Alrborne

Beacon: AN/APN-55 8-band transponder.
Radio cutoff: AN/DRW-3 FM control receiver for fail safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 2.8 degrees North aná 0.1 degrees East.
Time to bocister separation:
Altitude at booster separation:
Velocity it booster separation:
Time to 'ournout: $\mathbf{4 0 . 2 \mathrm { sec } \text { . }}$
Altitude at burnout: 12.9 miles.
Velocity ad burnout: 2810 ft . per ssc.
Time to zenith: 120 sec .
Altitude at zenith: 36.4 miles.
Time to blowoff: 148.5 sec .
Altitude at blowoff: 24.7 miles.
Filght duration:
Impact coordinates: Main body- 14.5 miles North and 9.3 miles West; paraciute ; 3.8 miles
North and 0.46 miles West.
Payload weight: 242 lbs.
Unfueled rocket weight: 532 lbs .
Unfueled rocket C.G.: 122.7 inches.
Gross weight at takeoff: 1180.5 lbs .

BALLISTIC DATA

Theodolites: Trajectory data 4.2 to 88.5 sec ., attitude data 0 to 86.5 sec .
Cameras: Trajectory data 0.46 to 4 sec .
Telescopes: Attitude data 0 to 109 sec .
Redar: Trajectory data 5 to 123 sec.

DATA RECOVERY

Telemeter: Satisfactory results.
Physical recovery: X-ray detectors recovered, three air sample bottles recovered in excellent condition, one bottle had an imperfect seal.

EXPRERMENTAL DATA

Composition: A^{1} semples obtained in intervals 26 to 27.8 miles and 27.8 to 29.6 miles. Charcoul adsorption analysis for the ratios $\mathrm{He} / \mathrm{N}_{2}-\mathrm{A}$ and $\mathrm{A} / \mathrm{N}_{2}$ showed no increase over ground level values.
Solar ractiation: No data.

COMDENTS

Rocket performance: Burning ended 4.8 sec . early; zenith altitude 13.6 miles lower than predicted.
Rocket modifications: Noee cone extencion used and three sets of air scoops and exheusts installed on nowe cone.

REPORTS AND PAPERS

"Atmospheric Phenomeng at Bigh Altitucies" by L. M. Jones and E. W. Nelll, Final Progress Report, Contract No. W-36-039-sc-32307, Engineering Research Institute, University of michigan.
Preliminary Radar Data, Numarical and Graphical, prepared by SCEL Ballistic Radar Unit and BRL-WSPG tor Aerobee SC-5.
Firat Report on Test of Aerobee SC-5, L. M. Blanchett, Aerobee Project Officer.
BRL Technical Note 81, APG; Numortcal and Graphical Trajectory Data from Askania Cbservations of Aerobee SC-5.
BRL Technical Note No. 82, APG; Numerical and Graphical Trajectory Data irom Bowan-Knapp Observationa of Aerobee SC-5.
Roll Date from Aerobee SC-5, prepared by BRL-WSPG.
Ballistic Wind Data for Aerobee SC-5, prepared by 10th Weather Squadron, 2103rd Air Weather Group, WSPG.
"Panel Report No. 22," Minutes of Meeting of the Upper Atmosphere Rockni Research Panel on 26 October 1949.

Agency: Signal Corps Engineering Laboratorles.
Time: 1736 MST.
Atitude: 45 miles.

UPPER AR INETRUMENTS

Pressure-Temperature: Nine grenades with four lb . Charges. Four paotocells to detect exploaion. Grenades to be ejected and exploded at four sec. 1atervals. Temperature determination by determining velocity of sound.

DATA RECOVREY RNSTRUMENTS

Telemeter: Four chanrel Melpar FM-FM ayatem.
Physical recovery: Separation of tall section with prima cord.

BALLISTIC DNSTRUMEN'S

Firing range

Theodolites: Three Mitchell and meven Askania stations. Cameras: Three Bowen-Kriapp stations. Telescopes: Three stations.
Radar: Two modified SCR-BR4 8-band etations. Impact location: Impact Polpt Computer.

Airborne

Beacon: AN/APN-65(Xn-3) S-band transponder.
Radio cutoff: AN/DRW-3 FM control receiver for fall safe fuel cutoff.

ROCKET PERPORMANCE

Firing angle: 2.7 degrees North and 0.2 degrees East.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separakion:
Time to burnout: 45.2 gec.
Veiocity at burnout: 3100 ft . per sec.
Altitude at burnout: 14.7 miles.
Time to xenith: 145 sec .
Alitude at zenith: 45 miles.
Time to blowoff: 167.8 sec .
Altitude at blowoff: 43.4 miles.
Flight duration: 500 sec .
Impect coordilnates: 29.6 miles North and 5.4 miles East.
payload wetght: 232 ibs.
Unfueled rocket weight: 523 lbs.
Unfueled rocket C.G.: 122.3 inches.
Gross weight at takeoff: 1171 lbs.

Ballistic Dara

Theodolitea: Trajectory data 0 to 184.9 sec .
Cameras: Records from three camaras.
Telescopes: Attitude data 0 to 111 sec.
Radar: Trajectory data 0 to 81 sec.

DATA RECOVERY

Telemeter: Good record 0 to 167.8 sec.
Physical recovery: Rocket recovered in damaged condition, five grenades not ejected were exploded.

EXPERTM

Pressure-Temperature: No data obtained.

COMMENTS

Rocket pertormance: Roll rate about 21 rpm from 1.5 sec . to 20 sec ., increaning to 48 rpm at 45 sec., decreasing to 36 rpm at 95 sec .
Experiments: Inaccuracies of radar and Asicania positions too great to permit worthwhile temperature determinations.

REPORTS AND PAPRRS

"Preliminary Report, Radar Data, Aerobee Missile Round No. SC-6," SCEL Field Btation No. l.
"First Report on Slignal Corps Aerobee, Round No. SC-6, and Seventh Report under Parent Project Stgnal Corps," Ordnance Department, WSPG, 3 May 1950.
Letter of Installation for Aerobee SC-6, DA Project No. 3-36-07-051, EigC Project 745A-1, 12 Jan. 1950, SCEL, Ft. Monmouth, N. J.
*Panel Report No. 24," Minutes of Meeting of the Upper Atmosphere Rocicet Research Panel on 20 April 1950.

DENTIFICATION

6 December 1249
Agency: Signs: Corps Engineering Laboratories (University of Michigan).
Time: 1716 MST.
Altitude: 37.3 miles.

UPPER ARR INSTRUMENTS

Composition: Three evacuated air sample bottles with timer and pyrotechnic opening and closing devices. $\mathrm{C}^{14} \mathrm{O}_{2}$ contaminator technique employed.

data recovery mistruments

Telemeter: Pulse widening feature of radar beacon used as a one channel system.
Physical recovery: Separation of tall section with prima cord; separation of nose section with pyrotechnic pistons, nose cone lowered by parachute.

BALLISTIC INSTRUMENTS

Firing range
Theodolites: Three Mitchell and seven Askania stations. Cameras: Two Ballistic and three Bowen-Knapp stations. Telescopes: Four stations. Radar: Two modifted SCR-584 S-band stations. Impact location: Impact Point Computer.

Alirborne

Boacon: AN/APN-55 S-band transpoader. Radio cutoff: AN/DRW-3 FM control receiver for fail safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 4.2 degrees North and 2.4 degrees East.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 43.5 sec .
Altitude at burnout: 13.9 miles.
Velocity at burnout: 2930 ft . per sec.
Time to zenith: 133 sec.
Altitude at zenith: 37.9 miles.
Time to blowoff: 146.8 sec .
Altitude at blowoff: 37.3 miles.
Filight duration:
Impact coordinates: 12.2 miles North and 3.8 miles East.
Payload weight: 220 lbs.
Unfueled rocket weight: 508 lbs .
Unfueled rocket C.G.: 125.7 inches.
Gross weight at takeoff: 1156 lbs.

BALLISTIC DATA

Theodolites: Trajectory data from 1.2 to 37 sec . and 72.5 to 161.5 sec .
Cameras:
Telescopes: Attitude data 91 to 148 sec .
Radar: Trajectory date 0 to 146 sec .

DATA RECOVERY

Telemeter: Good record from beacon:
Physical recovery: Sample boktles recovered in excellent condition.

EXPERIMENTAL DATA

Composition: Air samples obtained in the intervals 26.4 miles to 27.9 miles, and 29.9 miles to 31.6 miles. Charcoal adsorption analyses of the samples for ratios $\mathrm{He} / \mathrm{N}_{2}-\mathrm{A}$ and $\mathrm{A} / \mathrm{N}_{2}$

EXPERIMENTAL DATA (continued)

showed no increase over ground level values. Radicactive carbon dioxide contamination teat did not operate.

COLMENTS

Rocket performance: Zenith altitude 11.6 miles lower than predicted, loss may be ascribed to shortened burning time and drag Irow' airscoops.
Rocket modifications: Three sets of air intake and exhaust scoops installed on nose cone.

REPORTS AND PAPERS

"Atmospberic Phenomena at High Altitudes," by L. M. Jones and H. W. Neill; Final Progress Report, Contract No. W-36-039-sc-32307, Engineering Research Institute, University of Michitgan.
BRL Technical Note 200, APG; Numerical and Graphical Data of Trajectory Observations, by Mitchell of Aerobee SC-7.
BRL Technical Note 198, APG; Numerical and Graphical Attitude Data from Telescope Observations of Aerobee SC-7.
BRL Technical Note 165, APG; Numerical and Graphical Trajectory Data from Askania observations of Aerobee SC-7.
Preliminary Radar Data, Numerical and Graphical, prepared by SCEL Ballistic Radar Unit, WSPG.
First Report of Test of Aerobee SC-3 and SC-7, L. MA. Blanchett, Aerobee Project Officer. Weather Data, prepared by Air Weather Detachment, WSPG.
"Pancl Report No. 29," MInutea of Meeting of the Upper Atmomphere Rocket Remearch Panel on 14 February 1950.

Agency: Signal Corps Engineering Laboratories. Time: 0139 MST.
Altitude: 43 miles.

UPPER AIR INSTRUMENTS

Pressure-Temperature: Temperature determination by measuring the velocity of sound. Rocket carried nine grensdes containing four pound high explosive charges and eight photoelectric cells to detect the explosion of grenades after ejection. Grenades ejected at eight second intervals.

DATA RECOVERY RNSTRUMENTS

Telemeter: Six channel Bendix FM-FM system.
Physical recovery: Tail section separation with prima cord.

BALLISTIC INSTRUMENTS

Firing range

Theodolites: Three Mitchell and three Askania stations.
Cameras: Three Ballistic and three Bowen-Knapp stations.
Telescopes: Three stations.
Radar: Two modified SCR-584 S-band stations.
Impact location: Impact Point Computer.

Airborne

Beacon: AN/APN-55(XE-3) S-band transponder.
Radio cutoff: AN/DRW-3(XE-1) FM control receiver for fall safe fuel cutoff.
Other: SCEL miniature FM control receiver, AN/DRW-3(XE-2) for flight test.

Other Instruments

Three wide view cameras used as check on Ballistic cameras. Sound ranging set GR3-C employed to record explosion sound wave arrival on ground. Flash detector employed at Station C to determine exact time of grenade bursts.

ROCKET PERFORMANCE

Firing angle:

Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 43 sec .
Altitude at burnout: 14.7 miles.
Velocity at burnout: 3300 ft . per sec.
Time to zenith: 140.5 sec .
Aititude at zenith: 43.0 miles.
Time to blowoff: 186.7 sec .
Altitude at blowoff: 40 miles.
Flight duration:
Impact ccordinates: 11.98 miles North and 2.84 miles East.
Payload weight: 272 lbs.
Unfueled rocket weight: 563 lbs .
Unfueled rocket C.G.: 122.7 inches.
Gross weight at takeoff:

BALLISTIC DATA

Theodolttes: Trajectory data 0 to 29 sec .
Cameras: Operated satisfactorily, no data reduced.
Telescopes: Images to 31 sec ., no data reduced.
Radar: Trajectory data 0 to 165 sec .
Other: One wide angle camera produced excellent data.

DATA RECOVERY

Telemeter: Good record 0 to 166 sec .
Physical recovery: Rocket body and nose cone fell in same area, nose badly damaged. Four grenades remained in nose, destroyed with explosives when found.

EXPERIMENTAL DATA

Temperature-pressure: Mean temperature of four layers between 19 miles and 38 miles obtained.

COMMENTS

Experiments: Not all grenades ejected although squib firing voltages applied. Good sound ranging data, but no useful results from flash detector.
Cutoff: Miniature cutoff receiver operation satisfactory.

REPORTS AND PAPERS

"Aerobee Missile Round No. SC-8," Radar Operations Report, SCEL Field Station No. 1, White Sands Proving Ground, undated.
"Preliminary Report, Upper Air Atmosphere Experiments, Aerobee SC-8"; SCEL Field Station No. 1, White Sands Proving Ground, undated.
Grenade Coordinates, Aerobee SC-8, Based on Ballistic Camera Flashes, prepared by BalItstic Research Laboratories, Aberdeen Proving Ground, Md., dated 16 October 1950.
Letter of Installations for Aerobee SC-8, DA Project No. 3-36-07-051, SLgC Project 745A-1, dated 12 June 1950.
"Panel Report No. 26," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 and 8 September 1950.

Agency: Signal Corps Engineering Laboratories (University of Michigan).
Time: 1754.5 MST.
Altitude: $\mathbf{3 0 . 5}$ miles.

UPPER AIR INITRUMENTS

Solar radiation: Three soft X-ray photographic detectors with metal foll filters.
Composition: Three evacuated air sampling bottles with timer and pyrotechnic opening and closing devices. $\mathrm{C}^{14} \mathrm{O}_{2}$ coníaminator technique used.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of radar beacon used as single channel system.
Physical recovery: Separation of tall section with prima cord; separation of nose section with pyrotechnic piston charges and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing range
Theodolites: Three Mitchell and nine Askania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Radar: Two modifted SCR-584 S-band radars.
Impact location: Impact Point Computer.

Atrborne

Beacon: AN/APN-55 S-band transponder.
Radio culoff: AN/DRW-3 FM control receiver for fail safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 4.1 degrees North and 2.3 degrees East.
Time to booster separation:
Altitude at boost ϵ r separation:
Velocity at booster separation:
Time to burnout: 40.5 sec .
Altitude at burnout: $\mathbf{1 2 . 2}$ miles.
Velocity at burnout: 2530 ft . per sec.
Time to zenith: 119.3 sec.
Altitude at cenith: $\mathbf{3 0 . 5}$ miles.
Time to blowoff: 166.6 sec .
Altitude at blowoff: 22.9 miles.
Flight duration:
Impact coordinates: 14 miles North and 2.1 miles West.
Payload weight; 196 lbs.
Unfueled rocket weight: 487 lbs .
Unfueled rocket C.G.: 128.5 inches.
Gross weight at takeoff: 1135 lbs.

BALlistic DATA

Theodolites: Trajectory data 0 to 251.6 sec .

Cameras:

Telescopes: Attitude dota 12 to 165.5 sec .; roll data 10 to 130 sec .
Radar: Trajectory data 0 to 165.5 sec .

DATA RECOVERY

Telemeter: Record from 0 to 99.4 sec.
Physical recovery: All three sample botties recovered in excellent condition.

EXPERDMENTAL DATA

Composition: No data, two of the bottles did not operate and the third developed a leak. Contaminaior failed to operate.

COMMENTS

Rocket performance: Burning period 5 sec . short and zenith altitude 29.5 miles less than predicted.
Ballistic data: Mitchell theodolites tracked parachute 173 to 185 sec.; and telescopes tracked parachute 190 to 390 sec.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitude," by L. M. Jones and H. W. Neill; Final Progress Report, Contract No. W-36-039-sc-32307, Enqineering Research Institute, University of Michigan.
BRL Technical Note 226, APG; Numerical and Graphical Trajectory Data from Mitchell Observations of Aerobee SC- .
BRL Technical Note 261, APG; Numerical and Graphical Trajectory Data from Askania Observations of Aerobee SC-9.
First Report on Teat of Aerobee SC-9, L. M. Blanchett, Aerobee Project Officer.
Weather Data, prepared by Air Weather Detachment, WSPG.
Preliminary Ballistic Instrumentation Report on Aerobee SC-9, by L. G. Smith, Major, Deputy Chief, Ord. Dept.
Roll Data, Numerical and Graphical, prepared by Ballistic Data Unit, WSPG.
Preliminary Radar Data, Numerical and Graphical, prepared by SCEL Balliatic Radar Unit, WSPG. Trajectory Data on Aerobee SC- θ.
Parachute Numerical Data from Mitchell (C and E) and Telescope (II and II) Observations of Aerobee SC-9.
"Panel Report No. 24," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 20 April 1950.

LDENTIFICATION

10 October 1950
Agency: Sigral Corps Engineering Laboratorits.
Time: 2100 MS'T.
Altitude: 50 miles.

UPPER AIR INSTRUMENTS

Temperature: Temperature determination by measuring the velocity of sound. Seven grenades containing 4 lbs. high explosive charges and eight photoelectric cells to detect the explosion of grenades after ejection. Grenades ejected at equal time intervals.

DATA RECOVERY INETRUMENTS

Telemeter: Bix channel Bendix FM-FM system.
Physical recovery: Tail section separation with prima cord.
BALLISTIC INSTRUMENTS

Firing Range

Thendolites: Three Askania stations.
Cameras: Four Balliatic and two Bowen-Knapp stations.
Telescopes: None.
Radar: Two modified SCR-584 S-bund radars.
Impact location: Impact Point Computer.

Airborne

Bencon: None.
Radio cutoff: AN/DRW-3(XE-1) FM control recelver for fail aqfe fuel cut off,
Other:
Cameras: Five wide view stationg to supplement the Ballistic cameras for photographing grenade flashes.
Sound ranging: Set GR3-C to record arrival time of grenade bursts.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at boostar separation:
Time to burnout: 41 sec .
Altitude at burnout:
Velocity at burnout: about 3285 ft . per sec.
Time to zenith:
Altitude at zenith: $\mathbf{5 0}$ miles.
Time to blowoff: 187.5 sec .
Altitude at blowoff:
Flight duration:
Impact coordinates: 17.5 miles North and 1.5 East.
Payload weight: 215 lbs.
Unfueled rocket weight: 504 lbs .
Unfueled rocket C. G.: 128.5 inches .
Gross weight at takeoff: 1127 lbs .

BALLISTIC DATA

Theodolites: Inages recorded to 38.4 sec.
Cameras: Images recorded for 5.2 sec. by Bowen-Knapp, good tmages and all grenade bursts recorded by Ballistic cameras.
Radar: Rocket tracked from skin reflection for 30 to 40 sec.
Other: Good records obtained from three cameras and sound ranging get.

DATA RECOVERY

Telemeter: Good record.
Physical recovery: All parts recovered except tail section; nose and tank sections severely damaged at impact.

EXPERIMENTAL DATA

Temperature: Mean temperatures of six layers between 27.7 and 50.4 miles obtained.

COMMENTS

Rocket performance: Cood performance although jet images not visible after forty sec. Fuel tank plerced by fragments from grenades.
Experiment: All grenades ejected and detonated at altitudes within 10% of preset program.

REPORTS AND PAPERS

"First Repnrt on Test of Signal Corps Aerobees, Rounds No. SC-10 and SC-12 and Tenth Report under Parent Project Signal Corps," Ordnance Corps, White Banda Proving Grovird, 29 Jan. 1951.

Grenade Coordinates, Aerobee SC-10, Based on Ballistic Camera Flashes, Preparad by Baliss tic Research Laboratories, Aberdeen Proving Ground.
"Radar Operations Report, Aerobee Misalle Round No. SC-10," SCEL Field Station No. 1, White Sands Proving Ground, undated.
Letter of Installation for SC-10 and SC-12, DA Project No. 8-36-07-051, Signal Corpe Project 745A-O, 7 Sept. 1950.
"Panel Report No. 26," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 and 8 September 1950.
"Panel Report No. 2'f," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 31 January 1951.

Agency: Siznal Corps Engineering Laboratories (Univeraity of Michigan).
Time: 1811 MST.
Altitade: 81.8 miles.

UPPER AIR INSTRUMENTS

Compositiou: Three evacuated air sampling bottles with timer and pyrotechnic opening and seaking devices.

DATA RECOVERY INSTRUMENTS

Tulemeter: Pulse widening feature of radar beacon used as a one channel syetem.
Physical recovery: Tall section separation by prima cord; nose cone separation by pyrotechnic pleton chargee and lowering by parachute.

BALLISTIC INSTRUMENTS

Firing range
Theodolites: Three Mitchell and elght Askenta atations.
Cameras: Three Bowen-Knapp istations.
Telescopes: Three stations.
Radar: Two modified SCR-584 S-band radary.
Impact location: Impect Polnt Computer.

Airborne

Beacon: AN/APN-55 8-band transponder.
Radio cutoff: AN/DRW-3 FM control receiver in fall mafe etatus.

ROCKET PERFORMANCE

Firing angle: 4.2 degrees North and 2.5 dagrees Eapt.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to barnout: 42.8 sac.
Aititude at burnout: 16.8 milea.
Velocity at burnout: 3832 ft . per sec.
Time to zenith: 166 sec .
Altitude at zenith: 01.8 miles.
Time to blowott: 168.5 sec .
Aititude at blowoff: 81.8 miles.
Flight duration:
Impact coordinates: Main bindy - 18.1 miles North and 4.5 miles East; nose cone $\mathbf{- 1 8 . 8}$ miles North and 5.9 miles Elast.
Payload welght: 141 lbs.
Unfueled rocket weight: 432 lbs .
Unfueled rocket C.G.: 135.2 inches.
Gross welght at takeoft: 1080 lbs.

BALLISTIC DATA

Theodolites: Mitchell trajectory data 0 to 47 sec., Askania trajectory data 31.8 to 62.3 sec .
Cameras: Bowen-Knapp trajectory daia 0 to 3.5 sec.
Telescopes: Attitude and yaw data 5.5 to 58.5 sec .
Radar: Trajectory duta 0 to 147 sec .

DATA RECOVERY

Telemeter: Partial record, pulse widening signals incomplete.
Physical recovery: Purachute functioned improperly, sample bottles badly bent at impact although had no visible peunctures.

EXPERRMENTAL DATA

Composition: No samples obtainsd because openers and sealers failed.

COMMENTS

Rocket performance: 3.5 miles loss in altitude from predicted seoms to be typical Aerobee performance. Predicted value of 65.3 miles based on drag due to nose modification as equivalent to 10 lbs. additional payloud.
Rocket modifications: Aerobee nose cone used with extension and truncated 45 inches above its base. An air tight brass cone with ejectable tip (12 in . length) was mounted in place of the truncated section with four 4 -in. standoff tubes. Three of the tubes were portod and itted with spring loaded sleeves. The four-inch gap allowed air to flush through the tubes before sampling began.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," Progreag Roport No. 17, Contract No. W-36-0s9-ac-32307, Enginyering Rosearch Inetitute, University of Michigan.
"Atmonpheric Phenomena at Eigh Altitucien," by L. M. Jones and H. W. Neill; Final Pregreas Report, Coatract NO. W-36-039-ac-32307.
Firet Report on Test of Aerobee SC-11, L. M. Blanchett, Aerobse Project Officer.
Weather Datif, prepared by Air Weather Detachment, WSPG.
BRL Technical Note 271, APG; Numarical and Graphical Attitude and Yaw Data from Telescope Observations of Aerobee SC-11.
BRL Technical Note 270, APG; Numerical and Graphical Trajectory Data from Mitchell Observations oi Aerobee SC-11.
BRL Technical Note 246, APG; Numerical and Graphical Trajectory Duta from Askania Observations of Aerobee SC-11.
Dreliminary Ballistics Instrumentation Report on Aerobee SC-11, BRL, WSPG.
BRL Technica: Note 180, APG; Numerical and Graphical Trajectory Dats from Bowen-Knapp Observatiuns of Aerobee SC-11.
Preliminary Radar Data; Numerical and Graphical, prepared by ECEL, Ballietic Radar Unit, WSPG.
"Panel Report No. 25," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 13 and 14 June 1950.

Agency: Signel Coxps Engineering Laboratories
TIme: 2130 MST
Altitude: 53.2 miles

UPPER AIR IISTRUMENTS

Temperature: Temperature determination by measuring velocity of sound. Seven grenades with four pound high explosive charges to be ejected and exploded, with eight photocells to detect explosians.

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel Bendix FM-FM system.
Physical recovery: Tall section separation with prima cord.

BALLISTIC INSTRUMENTS

Firing Rango

Theodolites: Three Askania stations.
Cameras: Four Balliatic and two Bowen-Knapp stations.
Radar: Two modified SCR-584 S-band radars.
Impact location: Impact Point Computer.

Airborne

Radlo cutoff: AN/DRW-3 (XE-1) FM control recelver in fall safe status,

Other

Cameras: Five wide view stations to supplement the Dallistic cameras in photorraphing grenade flashes.
Sound ranging: Set GR3-C to record arrival time of grenade burgts.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout:
Altitude at burnout:
Velocity at burnout:
Time to zenith:
Altitude at zenith: 53.2 miles.
Time to blowoff: 179.1 sec .
Altitude at blowoff:
Flight duration:
Impact coordinates: 11 miles North and 1.5 miles East
Paylord welght: 215 lbs.
Unfueled rocket weight: 505 lbs.
Unfueled rocket C. G.: 129 inches.
Gross weight at takeoff: 1128 lbs .

BALLISTIC DATA

Theadolites: Askania images recorded to about 35 sec.
Cameras: No Bowen-Knapp images after 4.9 gec.; good rocords from four Ballistic stations. Radar: Intermittent reflected aignal recelved for about 35 sec .
Other: Cood resulte from three wide angle cameras, no data from sound ranging racorder.

DATA RECOVERY

Telemeter: Good racorde obtained.
Physical recovery: Nose cone recovered.

EXPERHMENTAL DATA

Tomperature: No data obiained due to sound ranging failure, all grenades fired.

REPORTS AND PAPERS

"First Regort on Teat of Signal Corps Aerobees, Rounds No. SC-10 and SC-12 and Tenth Report uvider Parent Project 8igmal Corpa," Ordnance Corps, WSPG, 29 January 1951.
"Radar Operations Ropori, Asribet Masile Round No. SC-12", SCEL Field station No. 1, WSPG, undated.
Letter of Instailation for SC-10 and 8C-12, DA Project No. 3-36-07-051, 8ignal Corps Projact 745A-0, 7 Beptember 1950.
"Panel Report No. 26," Minutes of Moeting of the Upper Atmosphere Rociket Research Panel on 7 and 8 September 1950.
"Panel Report No. 27," Minutea of Meeting of the Upper Atmosphere Rocket Research Panel on 25 April 1951.

Agency: Signal Corps Engineering Laboratories (University of Michigan).
Time: 0630 MST.
Altitude: 49.8 miles.

UPPER AIR INSTRUMENTS

Composition: Three evacuated air sampling bottles with timer and mechanical openers and pyrotechnic sealers. Radioactive carbon dioxide contaminator technique used.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of radar beacon used as a single channel syatem.
Physical recovery: Separation of tafl aection with prima cord and separation of nowe cone with pyrotechnic pistons and lowering by parachuto.

BALLISTIC INSTRUMENTS

Firing Range

Thoodolites: Two Mitchell and eight Ascenia stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Five stations.
Radar: Modified SCR-584 S-band utations.

Alrborne

Beacon: AN/APN-55 S-band transponder. Radlo cutoff: AN/DRW-3 FM control recelver.

ROCKET PERFORMANCE

Firing angle: 3.2 degrees North and 1.0 degree East.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 42.7 sec .
Altitude at burnout: 15.4 miles
Velocity at burnout: $\mathbf{3 3 2} \mathbf{8 t}$. per sec.
Time to zenith: 151 sec .
Altitude at zenith: 49.8 miles.
Time to blowoff: 164.5 sec .
Altitude at blowoff: $\mathbf{4 7 . 9 \text { miles }}$
Flight duration:
Impact coordinates: Main body -24.6 miles North and 0.4 miles East; Nose cone -25.3 miles North and 3.4 milles East.
Payload welght: 156 lbs .
Unfueled rocket weight: 450 lbs .
Uniueled rocket C. G.: 133.7 inches.
Gross weight at takeoff: 1098 lbs.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 77.2 sec .
Cameras: Bowen-Knapp trajectory data 0.5 to 3.3 sac.
Telescopes: Attitude data 8 to 27.5 sec ., 35.5 to 37.5 sec ., and 63 to 75 sec.; Attitude and yaw data 7.7 to $76.2 \mathrm{sec} . ;$ roll data 0 to 164.5 sec .
Radar: Trajectory data 0 to 164.5 sec .

DATA RECOVERY

Telemeter: Good record.
Physical recovery: Sample bottles recovered in fair condition.

EXPREINENTAL DATA

Compoaition: No data - botlle sealers and contaminator failed.

COMMENTS

Rocket performance: Zenith altitude 12.7 milles loss than predicted.
Rocket modifications: Lower nose same as SC-11. The one-plece upper cone separated by a T-31-0.9-E8-800 Jato which exposed the sample bottle intake scoops.

REPORTS AND PAPER

"Atmospheric Phonomens at Bigh Altitudes," Progrese Roport No. 19, Contract No. W-30-039-sc-32307, Engincering Research Institute, University of Milichigan.
"Atmospheric Phenomena at Bigh Altitudes," Progress Raport No. 1, Contract No. DA-36-039-sc-125.
Firat Report on Test α A Aorobee SC-13, L. M. Blanchatt, Aerobee Project Oficer.
Weather Data, Prepared by Air Weether Detachment, WsPG.
BRL Technical Note 321, APG; Numerical and Graphical Trajectory Data from Askania Observathons of Aorobee 8C-13.
BRL Technical Note 368, APG; Numerical and Graphical Attitude and Yaw Data from Telescope and Aakania Oberervations of Aerobee 8C-13.
BRL Technical Note 395, APG; Numorloal and Graphical Trajectory Data of Bowen-Knapp Observations of Aerobeo SC-13.
Proliminary Rader Data, Numerical and Graphical, Prepared by ECFL Balliatic Radar Unit, WBPG.
Roll Data, Numerical and Graphical, Prepard by BRL Data Reduction Saction, WGPG.
"Panol Roport No. 27," Minutee of Meeting of the Upper Atmomphere Rocket Reaurch Pwnol on 25 April 1851.

Agency: Signal Corps Engineering Laboratories.
Time: 2106 MST.
Altitude: 52.1 miles.
UPPER AIR INǴTRUMENTS
Temperature; Temperature determalnation by measuring the velocity of sound. Seven grenades containing four pound high explosive charges to be ojected and exploded at preset intervals. Eight photocells to detect Ilashes.

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel Bendix FM-FM system.
Physical recovery: Tail section separation by prima cord.

BALLISTIC INSTRUMENTE

Firing Range

Theodolitea: Four Askania atations.
Cameras: Four Ballistic and threo Bowen-Kinapp staitons.
Radar: One modilied SCR-584 S-band station and one SCR-584 X-band itation.
Impact location; Impact Point Computer.

Airborne

Beacon: None
Radio cutofi: AN/DRW-3(XE-1) EM control recelver in iall eafe matus.
Other: Combustion chamber preasure cauge.

Other

Cameras: Four wide view stations to supplement the Ballistic cameras in photographing grenade bursts,
Sound ranging: Set GRS-C to record arrival time of grunade explosions.

Firing anyle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 45-50 sec.
Altitude at burnout:
Velocity at burnout: 3400 ft . per sec.
Time to zenith:
Altitude at zenith: 52.1 miles.
Time to blowoff: About 174 sec .
Altitude at blowoff:
Flight duration:
Impact coordinates:
Payload weight: 218.5 Lbs.
Unfueled rocket welght: 510 lbs .
Unfueled rocket C. G.:
Gross welght at takeod: 1132 lbs.

BALLMSTIC DATA

Theodolites: Askania trujectory data 0 to 33 sec.
Cameras: All grenade bursts recorded by Ballistic stations; trajectory data 0 to 4 sec. from Bowen-Knapp.
Radar: Trajectory data 0 to 48 sec. from reflection tracking.
Other: Cood record from wide view cameras and sound ranging sot.

DATA RECOVEEY

Telemeter: System falled after recording tirst three busnts. Phyaical recovery: Rocket recovered.

EXPERIEENTAL DATA

Temperature: Mean temperatures of six layers between 18.9 and 41.7 milee obecained with lower order of accuracy because of telometor fallure. Burat times obtained by an observer.

COMMENTS

Thls firing part of a group of coordinated itringa to measure upper atr temperaturea duriog "T" day experiments.

REPORTS AND PAPERS
"Radar Operatious Report, Aerobet Missile Round No. SC-14," sCmL Fiald station No. 1, WSPG, undated.
"Prellminary Balliettc Inwtrumentation Report on Aerobee \&C-14," BRL-WAPG, 20 December 1950.

Letter of Installation for 8C-14 asd SC-16, DA Project No. 5-36-07-081, Branal Corpa Project $745 \mathrm{~A}-0,14$ November 1950.
"Panel Report No. 28," Minutes of Moeting of the Upper Atmonphere Rockut Reearch Panal on 7 and 8 Septembor 1050.
"Panel Report No. 27," Minutes of Meeting of the Upper Atmosphere Rocket Research Panol on 25 April 1951.

IDENTIFICATION

Agency: Signal Corps Engineering Laboratories (University of Mickigan).
11 December 1950
Time: 1004 MBT.
Altitude: Less than 1000 ft .

UPPER AIR INSTRUMENTS

Temperature: Temperature determination in the region 18.9 to 47.3 malles by measuring angle of shock wave formed by rocket nose tip.

DATA RECOVERY INSTRUMENTS

Telemeter: Dovap transceiver used as a single channel system.
Airborne recorder: Univ. of Milch. 13 channel magnetic tape recorder.
Physical recovery: Separation of tail section by prima cord.

BALLSSTIC INSTRUMENTS

Firing Range
Theodolitas: Three Mitchell and seven Askania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Redar:
Doppler: Six stations.
Impact location: Impact Point Computer.

Airborne

Beacon:
Doppler: Dovap transceiver T-4 unit.
Radio cutaff: AN/DRW-3 FM control receiver in a fall safe status.

COMMENTS

Rocket performance: Rocket sustaining motor malfunctioned, Rocket began to pitch and yaw shortly after leaving the tower, nose cone became detached and booster separated at 3 sec . Propellants exploded at impact after short flight with a zenith altitude of about 1000 ft .

Experiment and rocket modification: A 3 ft . cylindrical section, containing electronics and a drive motor, with three piece detachable skin was attached to the forward part of the rocket. Ten equally spaced pirani gage probe rods were mounted on the cappinf; plate of this section, which extended through openings in a right circular cone. The cone was periodically driven through a 12 in . excursion by means of a double thread reversing screw. During powered flight the probe cone and exposed rods were covered with an ejectable false cone. This cone was fitted with a Jato unit, flame deflection cone, and flame ports. Shoxtly after burnout the Jato was to have been ignited to remove the false nose and expose the probe cone and gages. The probe motor would then start and drive the probe cone through its periodic excursions.

The pressure discontinulty of the shock wave formed by the probe cone is detected by the pirani gages and recorded ass 2 function of time. The shock wave angle is found from the geometry of the system and is reduced by Mach number by aerodynamic theory. This is used to calculate the local velocity of sound, in conjunction with the Dovap velocity data, and hence the temperature is determined.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," Progress Report No. 1, Contract No. DA-36-039-sc-125, Engineering Research Institute, University of Michigan.
First Report of Test of Aerobee SC-15, L. M. Blanchett, Aerobee Project Officer.
Preliminary Ballistic Instrumentation Report, BRL, WSPG.
"Panel Report No. 26," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 and 8 September 1950.
"Panel Report No. 27," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 25 April 1951.

Agency: Stgnal Corps Engineering Laboratories.
Time: 0210 MST.
Altitude: 48.3 miles.

UPPER AIR INSTRUMENTS

Temperature: Temperature determination by measuring the velocity of sound. Seven grenades containing four pound high explosive charges to be ejected and exploded at preset intervals. Eight photeelectric cells to detect flashes.

DATA RECOVERY INSTRUMENTS

Telemeter: Bix channel Bendix FM-FM system.
Physical recovery: Tail saction separation with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Four Askania stations.
Cameras: Four Ballistic and three Bowen-Knapp stations. Radar: One modified SCR-584 S-band and one modified SCR-584 X-band. Impact location: Impact Point Computer.

Airborne

Radio cutoff: AN/DRW-3(XE-1) FM control receiver in fail safe status.

Other

Cameras: Four wide view stations to supplement Ballistic cameras in photographing grenade flashes.
Sound ranzing: Set GR3-C to determine arrival time of grenade explosions,

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster scparation:
Velocity at booster separation:
Time to burnout: 45 sec .
Altitude at burnout:
Velocity at burnout: 3240 ft . per sec.
Time to zenith:
Altitude at zenith: 48.3 miles.
Time to blowoff: 174 sec .
Altitude at blowoff:
Flight duration:
Impact coordiriates:
Payload weight: 214 lbs .
Unfueled rocket weight: 504 lbs .
Unfueled rocket C. G.;
Gross weight at takeoff: 1127 lbs .

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 30 sec.
Cameras: Five ;renade bursts recorded by Ballistic stations; trajectory data 0 to 4 sec . from Bowen-Knapp.
Radar: Reflection signal tracking to about 45 sec .
Other: Good plates from wide view cameras and sound ranging set of grenade explosions.

DATA RECOVERY

Telemeter: Good record showing seven ejections and four bursts.
Physical recovery: Rocket recovered showing all grenades ejected.

Tempersture: Mean temperature of four layers between 17 and 37.9 miles were obtained.

COMBIENTS

Rocket performance: Slightly less than predicted.
Experiments: Two grenades were ejacted and did not detonate, a third one was ejected and detonated, but photocells fatled to record tit.
Other: This experiment part of a group of coordinated firings to measure upper air temperatures during " T " day experiments.

REPORTS AND PAPERS

Letter of Instaliation for SC-14 and SC-16, DA Project No. 3-36-07-051, Sisnal Corps Project 745A-0,14 November 1950.
"Rudar Operations Report, serotee Missile Round No. sC-16," SCEL Field Station No. 1, WSPG, undated.
"Preliminary Ballistic Instrumentation Report, Aerobee Missile Round No. SC-16," BRL, WSPG, 20 December 1950.
"Panel Report No. 26," Minutes of Meeting of the Uyper Atmoaphere Rocket Research Panel on 7 and 8 September 1950.
"Panel Raport No, 27," Minutes of Meeting of the Upper Atmomphere Rocket Research Panel on 25 April 1951.

Agancy: Sigual Corps Engineering Lehoratories (University of Michigan).
Time: 1152 MST.
Altitude: 50.9 miles.

UPPER AIR INSTRUMENTS

Composition: Three evacuated air sampling bottles with timer and mechanical openers and pyrotechnic sealers. Radioactive carbon dioxide contaminator technique used.

DATA RECOVERY IRSTRUMENTS

Telemeter: Pulse widening feature of radar beacon used as a one channel syatem.
Physical recovery: Tail section separation by prima cord, and nose bottle container ejected by pyrotechnic plston charges and lowered by parachute.

BALHASTIC INBTRUMENTE

Firing Range

Theodolites: Two Mitchell and aix Askania stations.
Cameras: Three Bowen-Knapp stations,
Telescopes: Four stations.
Radar: Two modifted SCR-584 S-band stations.
Impact location: Impaci Point Computer.

Alrborne

Beacon: AN/APN-55 S-band transponder.
Radio cutoff: AN/DRW-3 FM control receiver in fail safe status.

ROCKET PERFORMANCE

Firing angle: 3.1 degrees North and 0.8 degrees East.
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 46.0 sec .
Altitude at burnout: 16.6 miles.
Velocity at burnout: 3418 ft . per sec.
Time to zenith: 153.7 sac .
Altitide at zenith: 50.9 milies.
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: Main body - 34.2 miles North and 2.7 miles East; Nose section -36.5 miles North and 4.3 miles East.
Payload weight: 161 lbs.
Unfueled rocket weight: 455 lbs .
Unfueled rocket C G_{i} : 137.4 inches.
Gross weight at takeoff: 1103 lbs .
BALLUSTIC DATA
Theodolites: Askania trajectory data 1 to 51.5 sec .
Cameras:
Telescopes: Attitude and yaw cata 6 to 47 sec ., roll data 11.6 to 45.8 sec .
Radar: Trajectory data 0 to 32.2 sec .

DATA RECOVERY

Telemeter:

Physical recovery: Three air sampling bottles recovered in good condition.

EXPEREMENTAL DATA

Composition: Samples obtained in the altitude intervals 39.9 to 41.9 miles, 41.9 to 43.5 miles; 43.5 to 45 miles. Charcoal adsorption analyses show definite increase in the ratios of $\mathrm{He} / \mathrm{N}_{2}$ and $\mathrm{Ne} / \mathrm{N}_{2}$ and a delinite decrease in the ratio of $\mathrm{A} / \mathrm{N}_{2}$ over ground leval values. Radio-active carbon dioxide contaminator did not operate.

COMMENTS

Rocket performance: Zenith altitude 10.6 miles less than predicted.
Rocket modfications: See comments SC-15 on false cone ejection; ejection occurred at 85 ec. after takeoff.

REPORTS AND PAPERS

"Atmosphertc Phenomena at Eigh Allitudes," Progress Report Numbers 1, 2, and 3, Contract No. DA-36-039-sc-125, Engineering Research Institute, University of Michigan.
BRL Technical Note 405, APG; Fiwmerical and Graphical Trajoctory Data from Aakanta Obaervations of Aerobee SC-17.
BRL, Technical Note 397, APG; Numerical and Graphical Attitude and Yaw Data from Teleacope Observations of SC-17.
Roll Data; Numerical and Graphical, Prepared by BRL Data Reduction Section, WSFG.
Radar Data, Numerical and Graphical, Prepared by SCEL Ballintic Radar Unit WSPG.
First Report on Test of Aerobee SC-13 and SC-17, I. M. Blanchett; Aerobee Project Otficer.
Weather Data, Prepared by Air Weat ${ }^{2}$ Detachment, WSPG.
"Panel Report No. 27," Minutes of MEting of the Upper Atmosphere Rocket Research Panel on 25 April 1951.
"Panel Report No. 29," Minutes of Moeting of the Uppar Atmosphere Focket Research Panel on 14 and 15 Aucust 1951.

Agency: Signal Corps Engineering Lahoratories.
Time: 2311 MsT.
8 June 1951
Atitude: 41.5 miles.
Experiments: Upper air temperature.

UPPER AIR ROCKET SUMMARY

AEROBEE

DENTIIFICATION
Rockat type: XASR-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 2311 MST
Instrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 41.5 mi
Peak time: 139 sec
Burnout velocity: $3040 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: 78,500 ft
Burnout time: 45 sec
Time of blowoff: 166 sec
Impact location: 22.5 ml north, 9.4 ml west of Navy blockhouse

ROCKET INFORMATION

Modifications to rocket: Nose structure modified to mount nine 4-lb grenades rather than the usual seven. Oriflces in nose cone covere' with 0.008 -in, aluminum foil.

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Nine grenades containing 4-1b high-explosive charges, eight photoelectric cells located in the skin of the mounting ring between the extension and the tank forward skixt

Data recovery instrumentation
Telemeter: Five-channel FM-FM system
Physical recovery: Primer cord for tail cone severance
Ballistic instrumentation
Beacon: AN/APN-55(XE-3) S-band transponder; flight test of an omnidirectional array of flush-mounted linearly polarized antennas, used with beacon Cutoff: AN/DRW-3(XE-1) FM control receiver for fall-safe fuel cutoff

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED

Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wide view cameras, Bowen-Knapp cameras, S-band radar, impact point computer

GROUND-BASED DATA RECOVERY EQUIPMENT

Ground flash detectors: Wide-angie photoelectric flash-detector equipment field test. This equipment was developed by SCEL to detect times of grenade flashes from the ground.
Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves at the ground

RESULTS

Data recovery

Telemeter: Good record, except for one channel until blowoff. Nine grenade ejections and seven detonations recorded.
Tracking: Optical data to 35 sec when jet faded. Radar to 110.5 sec . Radar beacon signal failure at time of last grenade detonation. Omnidirectional array of slot antennas, installed in forward section for beacon, gave good results.
Upper air experimontal data: The sound ranging set recorded eight sound signals and the flash detector similarly recorded eight flash signals. One grenade did not function, but all others burst within 0.5 sec of expected times. Seven temperature intervals and wind observations were obtained between 100,000 and $200,000 \mathrm{ft}$. The ground flash detector equipment, which was used for the first time, operated satisfactorily.

REPORTS

Agency: Signal Corpa Engineering Laboratories (University of Michigan).

UPPIR ALR LNETRUMENTE

Tecaperature: Temperature determination in the region 18.9 to 47.3 miles by meanuring angle of shock wave formed by rocket nowe cone.

DATA RPCOVERY DTSTRUNTENTS

Telemeter: Dovap transceiver used as a single channel syatem. Airborne recordinr: Univ, of Mich. 13 channel magnetic tape recorder. Physical recovery: Separation of tail section by prima cord.

BALWETIC INGTRUMENTS

Firing Range

Theodolites: Four Mitchell and five Aakanis atations.
Cameras: Two Bowen-Knapp utations.
Telescopes: Five atations.
Radar: Two modified SCR-584 3-band stations.
Doppler: Unknown number of stations.
Impact location: Impact Point Ccmputer.

Airborne

Doppler: Dovap T-4 transceiver unit.
Radio cutoff: AN/DRW-3 FM control receiver in fall axife atatus.

ROCKET PERYORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Volocity at booster eeparation:
Time to burnout: 49.2 sec.
Altitude at burnout: 3.5 milins.
Velocity at burnout: $\mathbf{3 7 6} \mathbf{f t}$. per sec.
TYme to zenith: 38.6 sec .
Zanith alttude: 4.0 miles.
Blow ff time:
Blowoff altitude:
Flight duration:
Impact coordinates:
Payload weight: 176 lbs.
Uniueled rocket weight: 465.5 lbs .
Unfueled rocket C. G.: 131.3 inchea.
Gross weight at takeoff: 1089 lbs.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 71.6 sec .
Cameras: Bowen-Knapp trajectory data 0 to 3.4 sec .
Telescopes: Attitude datu 2 to 62.6 sec ., roll data 9.3 to 67.8 sec .
Fadar:
Doppler:

DATA RECOVERY

Telemeter:

Airborne recorder: 51 sec . of flight record recovered.
Physical recovery:

Hapraniental DATA

Temperature: No data dun to rocket fallure.

COMMONTTS

Rocket performance: Intormittent buruing, thruat cossiderably bolow normal. Failure in propellinnt foed isystem not due to promature cutoff.
Rocket modifications: Bee commente SC-15 on falise cone ofection and experiment; false cone ejection at 56.5 usc.

Rmports and papreg

 Report, Contruct No. W-36-039-sc-32s07, Frimeering Rescarch Institute, Univerulty of Winchigan.
"Atmospheric Phenomena at Kigh Altitudas," by L. M. Jowe, Progranes Report No. 1, Contract No. DA-96-039-ac-125, Epolnovily Research mentitute, Vaiveruity of Michigan.
BRI Technical Note 521, APG; Numerical and Graphical Attitude Data from Telescope Obmervations of Aerobee sC-19.
BRL Technical Note 534, APG; Nusworical and Graphical Trajectory Data from Buwa-jrmapp Obeervations of Aerobee EC-19.
BRL Technical Note 528, ApG; Numerical and Graphical Trajectory Data from Ambanla Observations of Aerobee SC-18.
Roll Data, Numerical and Graphical, Prapared by BRL, WBPG.
Final Report of Tept of Aerobee 8C-19, J. C. Pile, wrpa Project Oticer.
"Panel Roport No. 29," Minutem of Woeting of the Uppor Atmomphere Elocket Revearch Panel on 14 and 15 Auguist 1851.

IDENTIFICATION

1 November 1951
Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 0246 MST
Instrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 41.2 ml
Peak time: 136 gec
Burnout velocity: $3180 \mathrm{ft} / \mathrm{sec}$
Burnout time: 33 sec (jet fadeout)

ROCKET INFORMATION

Payload weight: 254.55 lb
Total unfueled rocket weight: 542 lb
Gross weight at takeoff: 1150 lb
C. G. total unfueled rocket: 122 in . from nose tip

Modifications to rocket: Nose structure modified to mount nine 4-1b grenades rather than the usual seven. Orifices in nose cone covered with $0.006-\mathrm{in}$. aluminum foil.

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Nine grenades containing 4-1b high-explosive charges, eight photoelectric cells located in the skin of the mounting ring between the extension and the tank forward skirt

Data recovery instrumentation
Telemeter: Five-channel Bendix FM-FM system
Physical recovery: Primer cord for tail cone severance
Ballistic instrumentation
Beacon: AN/APN-55(XE-3) transponder
Cutoff: AN/DRW-3 FM control receiver for fuel cutoff

FIRNGG RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED
Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wide-view cameras, Bowen-Knapp cameras, tracking telescope, S-band radar

CROUND-EASED DATA RECOVERY EQUIPMENT

Fround flash detectors: Wide-angle photoelectric flash-detector equipment. This equipment was developed by SCFL to detect times of grenade flashes from the ground.
Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves at the ground

RESULTS

```
Rockst performance: Normal
Duta Recovery
    Telemeter: Satiafactory
    Traclinit: Optical data to jet fadeout, radar to Impact
    Upper air experimental data: Six of the grenades oxploded, five temper:ure
        intervals and wind obmervations were obtained
```


RHPORTS

See Aerobee SC-33

Agency: Signal Corpa Engineering Laboratories.

Time: 0245 M8T.

1 Novomber 1951
Altitude: $\mathbf{4 1 . 0}$ miles.
Experimentr: Upper air temperature.

IDENTMFICATION

26 September 1951
Agency: Signal Corps Engineering Laboratories (University of Michigan).
Time: 1700 MST.
Altitude: 42.8 miles.

UPPER AIR INSTRUMENTS

Composition: Three evacuated air sampling bottles with timer and pyrotechnic opening and Bealing devices.

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse widening feature of radar beacon used as a one channel system.
Physical recovery: Tail section separation with prima cord; nose cone separation with pyrotechnic piston charges and lowering by parachute.

BALLISTIC INETRUMENTS

Firing Range

Theodolltes: Two Mitchell and six Ackenta stations.
Caineras: Three Bowen MKnapp stations.
Telescopes: Five stations.
Radar: Two modified SCR-584 8-band stations. Impuct location: Impact Point Computer.

Alriborne

Beacon: AN/APN-55 8-band tranuponder.
Radio cutoff: AN/DRW-3 FM control recelver In fail mafe status.

ROCXET PERFORMANCE

Firing angle:
Tym to boostor weparation:
Altitude at booster soparation:
Velocity at booster separation:
Time to burnout: 44.5 sec .
Alititude at burnout: 14.1 miles.
Vclocity at burnout: 3068 ft . per sec.
Thme to zenith: 134.2 sec .
Altitude at zenith: 42.8 miles.
Time to blowoff:
Altitude at blowoft:
Flight duration:
Impact coordinates: 18.1 miles North and 4.5 milles East.
payload weight:
Empty rocket weight:
Empty rocket C. G. :
Gross welght at takeof:
BALLISTIC DATA
Theodolites:
Cameras:
Telescopes:
Radar:

DATA RECOVERY

Telemeter: Satisfactory records.

Physical recovery: Three air sampling bottles recovered in good condition.

EXPERIMENTAL DATA
Composition: Samples obtained by two bottles in the altitude intervals 34.9 to 36.5 miles and 36.5 to 37.7 miles. Charcoal adsorption analyses showed gravitational separation confirming results from SC-17. Radio active carbon dioxdde contaminator operated, but no results obtained.

COMMENTS
Rocket configuration same as SC-13 and SC-17.
REPORTS AND PAPERS
"Atmospheric Phenomena at High Altitudes," Progress Report No. 5, Contract No. DA 36-039-ac-125, Engineering Research Institute, University of Michigan.
BRL Technical Note 659.
BRL Technical Note 642, Numerical and Graphical Trajectory Data from Askania Observations of Aerobee SC-21.
BRL Technical Note No. 696, Numerical and Graphical Trajectory Data from Bowen-Knapp Observations of Aercibee SC-2l.

Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 1735 MST
Instrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 51 mi
Burnout velocity: $3271 \mathrm{ft} / \mathrm{sec}$
Burnout time: 44 sec
Time of booster burnout: 2.5 sec (approx.)
Firing angle: N $53 \mathrm{mils}, E 10 \mathrm{mils}$
Impact location: 21 mi north, $2-1 / 2 \mathrm{mi}$ east of Navy blockhouse

ROCKET INFORMATION

payload weight: 173 lb
Total unfueled rocket weight: 461 lb
Gross weight at takeoff: 1090 lb
C. G. total unfueled rocket: 121 in . from nose tip

ROCKETBORNE EQUDPMENT

Upper atmosphere instrumentation: Seven grenades containing 4-1b high-explosive charges, eight photoelectric cells

Data recovery instrumentation
Telemeter: Four-channel Bendix FM-FM system Physical Recovery: Primer cord for tail cone severance

Ballistic instrumentation Beacon: AN/DPN-19(XE-2) transponder Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED

Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wideview cameras, Bowen-Knapp cameras, tracking telescopes, S-band SCR-584 radars, X-band SCR-584 radar, impact point computer

GROUND-BASED DATA RECOVERY EQUIPMENT

Ground Jash detectors: Wide-angle photoelectric flash-detector equipment Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves at the ground

RESULTS

Rocket performance: Sailiffaciory
Tracking: Aslania data to 33 sec , tracking telescopes to about 200 sec , radar to 40 gec
Upper air experimental data: Four of the seven grenades exploded. The late afternoon firing required filters on the ballistic camera lens, which caused considerable distortion. As a result the data were not within tolerable accuracy limits. Temperature data were obtained. Wind direction and velocity at four altitudes were obtained from the BRL ballistic cameras. The ground flash detector failed to detect the grenade flashes. However, the flashes were detected by the photocells mounted in the skin of the rocket. Grenade firing in the daylight was not satisfactory. However, it was decided to attempt another late afternoon firing.

REPORTS

See Aerobee SC-33

DENTIFICATION

14 May 1952
Rocket type: XASR-SC-1
place of firing: White Sands Proving Ground
Trime of firing: 1816 MST
Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan

BRIEF OF FLIGHT OBJECTIVES

To determine upper atmosphere densities and temperatures by the falling-sphere method

FLIGHT INFORMATION

Peak altitude: 46.2 mi (sphere)
Peak time: 141.48 sec
Burnout velocity: $3408 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: $70,287 \mathrm{ft}$
Burnout time: 36.73 sec
Time of booster burnout: 2.04 sec (apprax.)
Maximum acceleration: $+149 \mathrm{ft} / \mathrm{sec}^{2}$

ROCKET INFORMATION

Payload weight: 127 lb
Total unfueled rocket weight: 414.30 lb
Gross weight at takeoff: 1040.0 ib (approx.)
Total rocket length (nose tip to base of tail section): 259 in .
C. G. total unfueled rocket: 148.8 in . from nose tip

Modifications to rocket: Front end (forward of tank section) was a cylinder plus a 46 -inch secant ogive fabricated out of laminated plywood

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Sphere of $54-\mathrm{in}$. diameter containing DOVAP transponder and weighing 48.5 lb

Data recuvery instrumentation
Telemeter: DOVAP single channel system
Physical recovery: Primer cord for tail cone severance
Ballistic instrumentation
DOVAP: T7-3-8 transponder
Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

Bowen-Knapp cameras, Askania cinetheodolites, tracking telescopes, impact point computer, DOVAP, radar

RESULTS

Rocket performance: Normal. Short burning time, high spin rate.

Data recovery

Telemeter: Satisfactory operation throughout flight
Physical recovery: Sphere recovered
Tracking: Bowen Knapp, Askania, and DOVAP trajectory data, attitude data from tracking telescopes, roll data from DOVAP
Upper air experimental data: Temperature data in the altitude range 165,000 to $170,000 \mathrm{ft}$, density data in the altitude range 165,000 to $215,000 \mathrm{ft}$

REPORTS

1. Bartman, F. L., et al., "Falling Sphere Method for Upper Air Density and Temperature," in "Rocket Exploration of the Upper Atmosphere," Boyd, R.I.F. and Seaton, M. J., eds., London:Pergamon, 1954, pp. 98-107
2. Partman, F. L. and Jones, L. M., "Density and Temperature of the Upper Atmosphere as Measured by the Fralling-Sphere Method," Univ, of Mich. Eng. Res. Ins. Report \#2299-1-F, September 1955
3. Bartman, F. L., Chaney, L. W., Jones, L. M., and Liu, V. C., "Upper-Air Density and Temperature by the Falling-Sphere Method," J. Appl. Phys, 27:706712 (July 1956)

IDENTIFICATION

Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 1907 MST
Instrumenting agency: Signal Corps Englneering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 55.6 ml
Peak time: 155 sec
Burnout velocity: $3780 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: $83,680 \mathrm{ft}$
Burnout time: 40.1 sec
Velocity at booster burnout: $1043 \mathrm{ft} / \mathrm{sec}$
Altitude at booster burnout: 5872 ft
Time of booster burnout: 2.5 sec (approx.)
Time of blowoff: 192 sec
Flight duration: 520 sec
Firing angle: N 50 mils, E 9 mils

ROCKET INFORMATION

payload weight: 155.5 lb
Total unfueled rocket weight: 444 lb
Grose weight at takeoff: 1062 lb
C. G. total unfueled rocket: 119 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Seven grenades contaluing 4-lb high-explosive charges, eight photoelectric cells

Data recovery instrumentation
Telemeter: Four-channel Bendix FM-FM system Physical recovery: Primer cord for tail cone separation

Ballistic instrumentation
Beacon: AN/DPN-10(XE-.2) transponder Radio cutoff: AN/DRW-3(XE-1) FM control fail-safe radio cutoff system

Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wideview cameras, radar

GROUND-BASED DATA RECOVERY EQUIPMENT

Ground flash detectors: Wide-angle photoelectric flash-detector equipment Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade--burst sound waves at the ground

RESULTS

Rocket performance: The burning period was 5 sec short and there was a resulting giltitude loss of 13 mi

Data recovery
Telemeter: Failed after third grenade detonation when shrapnel severed the antenna cable
Tracking: Optical data to 30 sec , radar data to 271 sec Upper air expertmental data: Overexposure and fallure to photograph stars made the plates of the BRL bollistic cameras and the SCEL wide-view camera useless. As a result of this fallure and that of SC-22, daylight grenade firings were abandoned. Grenade puffs were tracked by Mitchell and Askania cinetheodolites.

REPORTS

See Aerabee SC-33

IDENTIFICATION
22 October 1952
Rocket type: XASR-SC-2
Place of firing: White Sands Proving Ground
Time of firing: 2043 MST
Instrumenting agency: Signal Corps Engineering Laboratories

MRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 69.6 mi
Peak time: 175 aec
Burnout velocity: $4200 \mathrm{tt} / \mathrm{sec}$
Burnout time: 430 gec
Flight duration: 577 sec
Impact location: North 20 mi , east 11 mi from Navy blockhouse

ROCKET INFORMATION

Payload weight: 140.5 lb
Total unfueled rocket weight: 487.0 lb
Gross weight at takeoff: 1105.0 lb
C. G. total unfueled rocket: 124 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation; Seven grenades containing 4-1b high-explosive charges, eight photoelectric cells located in the skin of the mounting ring between the extension and the tank forward skirt

Data recovery instrumentation
Telemeter: Four-channel Bendix FM-FM system
Physical recovery: Primer cord for tail cone severance
Ballistic instrumentation
Beacon: AN/DPN-19(XE-2) transponder
Radio cutoff: AN/DRW-3 radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKNNG EQUIPMENT UTUIZED

Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wideview cameras, Bowen-Knapp cameras, radar, impact point computer

GROUND-BASED DATA RECOVERY ERUIPMENT

Ground fagh detectors: Wide-angle photoelectric flash-detector equipment
Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves aif the ground

RESULTS

Rocket performance: Satlsiactory
Data recovery
Physical recovery: Normal impact, all parte were in same area Trackirg: Radar tracked to impact
Upper air experimental data: Five of the grenades exploded and four temperature intervals and wind measurements were obtaiced. The experiment was considered successful. This flight was performed as part of a "T" day operation.

REPORTS

See Aerobee SC-33

Agency: Stignal Corpm Engineering Laboratories.
Time: 1735 M8x.
Atitude: 51.0 miles.
Experimenêm: Upper alr temperature.

Agency: sigual Corpa Fagineuring Laboratories (University of Michigan). TIme: 1815 M8T. Aifitude: 47.3 miles.

Experiments: Air denoity.

Agency: Slomal Corpe Engineering Laboratories. Time: 1907 MST.
 Altitude: 56.0 milea.

Experimenta: Upper air temperature.
AmOnE
sc-24
19 May 1952

AEROME
Sc-25
24 Septomber 1952
Agency: Blgnal Corps Engineering Laboratories.

TIme: 2050 MST.

Aititude: 73.0 miles.
Experimente: Upper air temperature.

AEROAEE
SC-26
20 October 1952
Agency: Signal Corps Engineering Laboratories.
TIme: 2045 MST.
Altitude: $\mathbf{8 9 . 0}$ miles.
Experiments: Upper air temperature.

Rocket type: XASR-SC-2
Place of firing: White Sands Proving Ground
Time of firing: 2350 MST
Instrumenting agency: Signal Corps Engineering Laboratories

bRIEF OF FLIGET OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 67.5 mi
Peak time: 173.6 sec Burnout velocity: $3925 \mathrm{tt} / \mathrm{sec}$
Burnout time: 45 sec
Flight duration: 540 sec
Impact location: North 41 ml , weat 3 ml from Navy blockchouse

ROCKET DNFORMATION

Payload weight: 155.5 lb
Total unfueled rocket waight: 354.25 lb
C. G. total unfueled rocket: 123.5 in . from noge tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Seven grenades contalning 4-1b high-explosive charges, eight photoelectric cells located in the sidin of the mounting ring between the extension and the tank forward sidrt

Data recovery instrumentation
Telemeter: Four-channel Bendix FM-FM system Physical recovery: Primer cord for tail cone severance

Ballistic instrumentation
Beacon: AN/DPN-19(XE-2) transponder Radio Cutoff: AN/DRW-3(XE-2) radio cutoff recelver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED
Mitchell cinetheodolites, Askania cinetheodoiites, BRL ballistic cameras, SCEL wideview cameras, Bowen-Knapp cameras, xadaf

Supplamemt
Fabreary 1958

GROUND-BASED DATA RECOVERY EQUIPMENT

Ground flash detectors: Wide angle photoelectric flash-detector equipment Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burat solund waves at the ground

RESULTS

Rocket performance: Satiafactory

Data recovery

Telemeter: Performance satisfactory
Phymical recovery: Not required but was made
Tracking: Radar to impact
Upper air experimental data: Five of the grenadee exploded, four temperature intervals and four wind meagurements were obtained. The experiment was uccessful.

REPORTS

See Aerobee SC-33

IDENTIFICATION

24 April 1853
Rocket type: XASR-SC-2
Place of firing: White Sands Proving Ground
Time of firing: 0319 MST
Instrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 67 mi
Burnout velocity: $4076 \mathrm{ft} / \mathrm{sec}$
Burnout time: 46 sec
Time of booster burnout: 1.87 sec

ROCKET DNFORMATION

Payload weight: 158 lb
Total unfueled rocket weight: 447.5 lb
C. G. total unfueled rocket: 121.4 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Seven grenades containing 4-lb high-explosive charges, elght photoelectric cells located in the sldn of the mounting ring between the extension and the tank forward skirt

Data recovery instrumentation Telemeter: Three-channel Bendix FM-FM system Physical recovery: Primer cord for tail cone severance

Ballistlc instrumentation
Bencon: AN/DPN-10(XE-3) transponder
Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTHIZED

Askania cinetheodolites, BRL ballistic cameras, SCEL wide-view cameras, radar, impact point computer, sound ranging

CROUND-EASED DATA RECOVERY EQUIPMENT

Ground flash detectors: Wide-angle photoelectric flash-detector equipment Sound ranging equipment: Used to detect time of arrival of grenade bursts

RESULTS

Rocket performance: Satisfactory
Data recovery
Telemeter: Performance satisfactory
Tracking: Radar to 130 sec when beacon failed
Upper air experimental data: Five of the grenades exploded, four temperatures and four wind observations were obtained. The experiment was a success.

REPORTS

See Aerobee SC-33

Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground Time of firing: 1647 MST Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan

BRIEF OF FLIGHT OBJECTIVES

To determine upper atmosphere densities and temperatures by the falling-sphere method. Cosmic radiation plates in nose cone for National Institutes of Health.

FLIGHT INFORMATION

Peak altitude: 65.3 mi
Peak time: 170.95 sec
Burnout velocity: $4003 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: $93,738 \mathrm{ft}$
Burnout time: 44.3 sec
Time of booster separation: 2.53 sec
Maximum acceleration: $+149 \mathrm{ft} / \mathrm{sec}^{2}$

ROCKET INFORMATION

Payload weight: 127 lb
Total unfueled rocket weight: 417 lb
Gross weight at takeoff: 1045 lb
Total rocket length (nose tip to base of tail section): 252 in .
C. G. total unfueled rocket: 143.3 in . from nose tip

Modifications to rocket: Front end, forward of tank section was a cylinder plus a $46-\mathrm{in}$. secant ogive fabricated out of laminated plywood

ROCKETBORNE EQUPMMENT

Upper atmosphere instrumentation: Sphere of $46-\mathrm{in}$, diameter containing DOVAD transponder and weighing 41.4 lb

Data recovery instrumentation
Telemeter: DOVAP single-channel system
Physical recovery: Primer cord for tail cone severance
Ballistic instrumentation
DOVAP: Modified T7-3-8 transponder
Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTLLIZED
Bowen-Knapp cameraf, Askania cinetheodolites, Mitchell cinetheodolites, impact point computer, raiar, and DOVAP

RESULTS

Rocket performance: Normal

Data recovery

Telemeter: Satisfactory operation throughout flight
Physical recovery: Sphere and cosmic radiation plates recovered Tracking: Optical data to 47.3 sec , radar to $60,6 \mathrm{sec}$, DOVAP data from 157 to 723 sec

Upper air experimental data: Temperature data in the altitude range 115,000 to 195,000 feet. Density data in the altitude range 115,000 to $\mathbf{2 4 3 , 0 0 0}$ feet.

REPORTS

See Aerobee SC-23

IDENTIFICATION

23 April 1953
Rocket type: XASR-SC-2
Place of firing: White Sands Proving Ground
Time of firing: 1233 MST
Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan

BRIEF OF FLIGHT OBJECTIVES

To determine upper atmosphere densities and temperatures by the falling-sphere method

FLIGHT INFORMATION

Peak altitude: 76.6 mi
peak time: 186.1 sec
Burnout velocity: $4383 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: 97,989 ft
Burnout time: 45.6 sec
Time of booster separation: 2.76 sec

ROCKET INFORMATION

Payload weight: 124 lb
Total unfueled rocket weight: 413.5 lb
Total rocket length (nose tip to base of tail section): 248.5 in .
C. G. total unfueled rocket: 142.25 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Sphere of 48-in. diameter containing DOVAP transponder and weighing 49.2 lb

Data recovery instrumentaicion
Telemeter: DOVAP single-channel system
Ballistic instrumentation
DOVAP: transponder
Radio cutoff: AN/DRW-3 raw sutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQLIPMENT UTIIIZED
Bowen-Knapp cameras, DOVAP

RESULTS

Rocket performance: Normal
Data recovery
Telemeter: Data obtained
Tracking: Bowen-Knapp and DOVAP trajectory data, roll data from DOVAP
Upper air experimental data: Temperature data in the altitude range 120,000 to $213,000 \mathrm{ft}$, density data in the altitude range $\mathbf{1 2 0 , 0 0 0}$ to $\mathbf{2 6 8 , 0 0 0} \mathrm{ft}$

REPORTS

See Aerobee SC-23

Agency: Slgnal Corps Engineering Laboratories
Time: 2350 MST .
Altitude: 66.0 miles.
Experiments: Upper air temperature.
AEROBEE
SC-28
24 April 1953

Agency: Bigaial Sorps Engineering Laboratories. Time: 0318 MST.
Altitude:
Experiments: Upper alr temperature.

AEROBEE
SC-29
11 December 1952

Agency: Signal Corps Engineering Laboratories (University of Michigan). Time: 1647 MST .
Altitude: $\mathbf{6 5 . 0} \mathbf{~ m i l e s .}$
Experiments: Temperature, Density.

AERObeE
SC-30
24 April 1953
Agency: Signal Corps Engineering Laboratories (University of Michigan). Time: 1230 MST .
Altitude: 69.0 miles.
Experiments: Density.

```
Rocket type: RTV-A-1a Place of firing: White Sands Proving Ground Time of firing: 1350 MST
Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan
```


BRIEF OF FLIGHT OBJECTIVES

To determine upper atmosphere densities and temperatures by the falling-sphere method

FLIGHT INFORMATION

Peak altitude: 36 mi
Peak time: 99.5 sec
Burnout velocity: $4651 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: 80,340 ft
Burnout time: 34.0 sec
Time of booster separation: 2.40 sec
Maximum acceleration: $234 \mathrm{ft} / \mathrm{sec}^{2}$

ROCKET INFORMATION

Payload weight: 140 lb
Total unfueled rocket weight: 448.5 lb
Total rocket length (nose tip to base of tall section): 246 in .
C. G. total unfueled rocket: 130.7 in . from nose tip

ROCKETEORNE EQUIPMENT

Upper atmosphere instrumentation: Sphere of 48-in. diameter containing DOVAP transponder and weighing 19.9 lb

Data recovery instrumentation
Telemeter: DOVAP single-channel system
Ballistic instrumentation
DOVAP: Transponder
Radio cutoff: AN/DRW-3 radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTUIZED

Askania cinetheodolites, Bowen-Kanpp cameras, DOVAP, radar.

RESULTS

Rocket performance: Performance was apparently normal through burnout. At burnout the angle of attack began to increase, approaching 90 degrees in a few seconds. Thus, performance was decidedly subnormal. Sphere was ejected prematurely at this time.

Data recovery

Telemeter: Data obtained
Tracking: Askania, DOVAP, radar, and Bowen-Kinapp trajectory data, attitude date from IGOR and Askania

Upper air experimental data: Temperature data in the altitude range 108,000 to $125,000 \mathrm{th}$, density data in the altitude range 108,000 to 174,000 it

REPOR'IS

See Aerobee SC-23

DENTIFICATION

Rocket Type: XASR-SC-2
Place of firing: White Sands Proving Ground
Time of firing: 2210 MST
Instrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIIGHT INFORMATION

Peak altitude: 66.7 mi
Peak time: 180 gec
Burnout velocity: $3621 \mathrm{ft} / \mathrm{sec}$
Burnout time: 46.5 sec
Impact location: North 8.1 mi , east 6.5 mi from Navy blockhouse

ROCKET INFORMATION

Payload weight: 161 lb
Total unfueled rocket weight: 453.5 lb
C. G. total unfueled rocket: 122.4 in . from nose tip

ROCKETBORNE EQURPMENT

Upper atmosphere instrumentation: Seven grenades containing 4-lb high-explosive charges, eight photoelectric cells located in the skin of the mounting ring between the extension and the tank forward skirt

Data recovery instrumentation
Telemeter: Three-channel FM-FM system Physical Recovery: Primer cord for tail cone severance

Ballistic instrumentation Beacon: AN/DPN-10(XE-2) transponder Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKNNG EQUIPMENT UTLIZED

Mitchell cinetheodolites, BRL ballistic cameras, SCEL wide view cameras, BowenKnapp cameras, radar, impact point computer

GROUND-BASED DATA RECOVERY EQUIPMENT
Ground flash detectors: Wide-angle photoelectric flash-detector equipment
Sound rauging equiprnent: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves at the ground

RESULTS
Rocket performance: Satisfactory
Data recovery
Traciing: Good beacon signal to burnout, skip-triggering until 208 seconds, BRL cameras alisfactory

Upper air experimental data: Five of the aeven grenades exploded, four temperatures and four wind observations were obtained. The experiment was succegsful.

REPORTS
See Aerobee SC-33

DENTLFICATION

Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground Time of firing: 2235 MST fostrumenting agency: Signal Corps Engineering Laboratories

BRIEF OF FLIGHT OBJECTIVES

Determination of temperatures and winds in the upper atmosphere by the grenade method

FLIGHT INFORMATION

Peak altitude: 71 mi
Peak time: 46 sec
Burnout velocity: $4054 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: 89,976 ft
Time of blowoff: 190 sec

ROCKET INFORMATION

Payload weight: 162.0 lb
Total unfueled rocket weight: 453.5 lb
C. G. total unfueled rocket: 121.8 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Seven grenades containing 4-1b high-explosive charges, eight photoelectric cells located in the skin of the mounting ring between the extension and the tank forward skirt

Data recovery instrumentation
Telemeter: Three-channel Bendix FM-FM system
Physical Recovery: Primer cord for tail cone severance
Ballistic instrumentation
Beacon: AN/DPN-19 transponder
Radio cutoff: AN/DRW-3(XE-2) radio cutoff receiver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED

Mitchell cinetheodolites, Askania cinetheodolites, BRL ballistic cameras, SCEL wide-view cameras, Bowen-Knapp cameras, radar

GROUND-BASED DATA RECOVERY EQUIPMENT

Ground flash detectors: Wide-angle photoelectric flash-detector equipment Sound ranging equipment: Sound ranging set GR3-C for arrival time and angle of grenade-burst sound waves at the ground

RESULTS

Rocket performance: Satiafactory
Data recovery
Telemeter: Performance satisfactory
Tracking: Radar to 102.5 sec , time of last grenade when beacon tailed
Upper air experimental data: Five of the grenades exploded, four temperatures and four wind observations were obtained. The experiment was successful.

REPORTS

1. Stroud, W. G., "The Reduction of Data from the Rocket-Grienade Ekxperiment," Technical Memorandum 1570, Army Signal Engineering Laboratory, 1954
2. Walsh, J. R., Terhune, E. J., Weiland, S., and Vemner, J. H., "Description of the Instrumentation and Procedures for the Velocity of Sound (Grenade) Experiment," Engineering Report E-1140, Army Slgnal Enginerring Laboratory, 1954
3. Newell, H. E., Jr., "Hlgh Altitude Rocket Research," Academic Press:New York, 1953, pp. 133-142
4. Stroud, W. G., Terhune, E. A., Venner, J. H., Walsh, J. R., and Welland, S., "Instrumentation of the Rocket-Grenade Experiment for Measuring Atmospheric Temperatures and Winds," Rev, of Sci. Instr. 26:427-432 (1855)
5. Stroud, W. G., Nordberg, W., and Walsh, J. R., "Atmospheric Temperatures aad Winds Between 30 and $80 \mathrm{Km}, " \mathrm{~J}$. Geophys. Research 51:45-56 (1956)
6. Ference, M., Jr., Stroud, W. G., Walsh, J. R., and Weisner, A. G., "Measurement of Temperatures at Elevations of 30 to 80 Kllometers by the Rocket-Grenade Experiment," J. Meteorol. 13:5-12 (1956)
7. Weisner, A. G., "Measurement of Winds at Elevations of 30 to 80 Kilometers by the Rocket-Grenade Experiment," J. Meteorol. 13:30-39 (1956)
8. Nordberg, W.。 "A Method of Analysis for the Rocket-Grenade Experiment," Technical Memorandum M-1856, Army Signal Engineering Laboratory, 1957

IDENTIFICATION

9 August 1956
Rocket type: XASK-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 0853 MST
Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan

BRIEF OF FLIGHT OBJECTIVES

To collect and recover upper air samples for later analysis in the laboratory

FLIGHT INFORMATION

Peak altitude: 53.1 ml
Peak time: 149.5 sec
Burnout velocity: $3511 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: $86,300 \mathrm{ft}$
Burnoui time: 46.46 sec
Time of booster burnout: 2.31 sec
Imgract location: $0^{\circ} 50^{\prime} 22^{\prime \prime}$ azizuth, 28.05 mi from launcher (sample canister and parachute)

ROCKET INFORMATION

Payload welght: 221.25 lb
Total unfueled rocket welght: 488.25 lb
Gross weight at takeoff: 1169.5 lb
Total rocket length (nose tip to base of tail section): 247 in .
C. G. total unfueled rocket: 124 in . from nose tip

ROCKETBORNE MQUIPMENT

Upper atmosphere instrumentation: Three sampling bottlos, oach having a volumo of 500 cu in.

Data recovery instrumentation
Physical recovery: Parachute for candster containing three sampling bottles and radar beacon

Ballistic instrumentation

Beacon: AN/DPN-19 transponder contained in canister Radio cutoff: AN/DRW-3 radio cutoff recelver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED

Radar, AN/TPS-5, Bowen-Knapp cameras, Askania cinetheodolltes, SOTIM (sound ranging)

Supplement

RESULTS

Rocket performance: Normal

Data recovery

Telemeter: Data recovery complete
Phyalcal recovery: Parachuted canister containing three sampling botties and AN/DPN-19 beacon recovered virtunlly intact
Tracking: Complete zadar tracking of parachuted canister to impact
Upper air experimental datn: Two bottles leaked and had to be rejected, one bottio way good and contente are belng ranlyzed (bottle was opened at 85.3 km and closed at 85.5 km)

Rocket type: XASR-SC-1
Place of firing: White Sands Proving Ground
Time of firing: 0822 MST
Instrumenting agency: Signal Corps Engineering Laboratories, University of Michigan

BRIEF OF FLIGBT OBJECTIVES

To collect and recover upper air samples for later analysis in the laboratory

FLIGHT INFORMATHON

Peak altitude: 53.4 mi
Peak time: 159.0 sec
Burnout velocity: $3452 \mathrm{ft} / \mathrm{sec}$
Burnout altitude: $90,124 \mathrm{ft}$
Burnout time: 46.76 sec
Impact location: $00^{\circ} 54^{\prime} 04^{\prime \prime}, 16.530 \mathrm{ml}$ from launcher (sample canister and parachute)

ROCKET INFORMATION

payload weight: 240 lb
Gross weight at takeoff: 1179 lb
Total rocket length (nose tip to base of tall section): 247 in .
C. G. total unfueied rocket: 122.3 in . from nose tip

ROCKETBORNE EQUIPMENT

Upper atmosphere instrumentation: Three sampling bottles, each having a volume of 500 cu in .

Data recovery instrumentation
Physical recovery of parachuted canister contalining three sampling bottles and radar beacon

Ballistic instrumentation
Beacon: AN/DPN-19 transponder contained in canister Radio cutoff: AN/DRW-3 radio cutoff recelver

FIRING RANGE GROUND-BASED TRACKING EQUIPMENT UTILIZED

Radar, AN/TPPS-5, Bowen-Knapp cameras, Askania cinetheodolites, SOTLM (sound ranging)

RESULTS

Rocket performance: Normal

Data recovery

Telemeter: Data recovery complete
Physical recovery: Parachuted canister containing three sampling bottles and AN/DPN-19 beacon recovered virtually intact
Tracking: Complete radar tracking of parachuted canister to impact
Upper air experimental data: All three bottles were ; od and contents are being analyzed (bottles were opened at 85.6 km and closed at 85.9 km)

Comment: First dummy firing to evaluate initial flight bailiatics of the Aerobee. Boosted airframo, no upper air instruments.

Results: Satisfactory performance.

ARROBEE

Agency: Applied Physics Laboratory

Comment: Second dummy firing to evaluate initial flight ballistics of the Aerobee. Boosted airframe, no upper air ingtruments.

Resuils: Satisfactory performance.

AEROBEE
A. 3

Agency: Applied Physics Laboratory
31 Octobar 1047
Comment: Third dummy firing to evaluate initial flight ballistics of the Aerobee. Boosted airframe, no upper alr experiments.

Results: Satisfactory performance.

IDENTIFICATION

Agency: Applied Physics Laboratory
Time: 1020 MS ;
Altitude: 34.7 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Single geiger counter to measure primary cosmic ray flux.
D/\T/. RECOVERY IWSTRUMENTS
Telemeter: Six channel APL FM-FM system.
Physical recovery:

BALLUSTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and two Askania stations Cameras: Two Ballistic and three Bowen-Knapp stations
Telescopes: Two stations
Radar: One modified SCR-584 S-Band and one modifted SCR-584 X-band staition

Airborne

Radio cutoff: NMCA\&MA-APL FM control recelver for fall-safe fuel cutoff
Aspect: Three attitude gyros
Other: Propulsion performance instruments.

ROCKET PERFORMANCE

Firing angle; 3.9 degrees North and 2.3 degrees East
Time io booster separation: 2.8 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 34.7 sec .
Altitude at burnout: 11 miles
Velocity at burnout: 3100 ft . per sec.
Time to zentih:
Altitude at 2 mi h $\mathrm{h}: 34.7$ miles
Time to bloweft:
Altitude at isoff:
Flight duraticu: 240 sec .
Impact coordinates: 25 miles North and 13 miles East
Payload weight: 146 lbs .
Empty rocket weight: 425 lbs .
Unfueled rocket C.G.: 118.5 in .
Gross weight at talceoff: 1073 lbs.

BALLISTIC DATA

Theodelite;: Askania trajectory data 0 to 44.9 sec ., Mitchell trajectory data 0 to 33.5 sec .
Cameras: Bowen-Knapp yaw data 0 to 4.1 sec .
Telescopes:
Radar: S-band trajectory data 0 to $50 \mathrm{sec} ., \mathrm{X}$-band data 0 to 35 sec .

DATA RECOVEPY

Telemeter: More than 90% of flight recorded.
Physical recovery:

EXPERIMENTAL DATA

Cosmic sadiation: No data, equipment failed.

COMMENTS

Rocket performance: Propulsion satisfactory; Initial yaw required radio fuel sutoff Instrumentation: Aspect gyros did not uncage, no data.

REPORTS AND PAPERS

APL Buniulebee Series Report No. 95, by L. W. Fraser, December 1948
"The Agroheo Rocket - A Naw Vehicle for Research in the Upper Atmosphere," Science 108:746, 1948.
"V-2 Report No. 14:" Minutes of Meeting of the V-2 Uxpor Atmosphere Rescarch Panel of 28 Januarv 1948.

Agency: Applied Physics Laboratory
Time: 1551 MST
Altitude: 73.0 miles.

UPPER ATR INSTRUMENTS

Cosmic radiation: Single geiger counter and a geiger counter telescope to measure the average directional intensity.

DATA RECOVERY RNSTRUMENTS

Telemeter: SLx channel APL FM-FM system Physical recovery:

BALLISTIC INSTRUMENTS

Firint Range
Thoodolites: Two Mitcholl and seven Alizania stations Cameras: Two Ballistic and three Bowen-Knapp stations Telescopes: Two stations
Radar: One modified SCR-584 S-band station.

Alrborne

Radio cutoff: NMCA\&MA-APL FM control recelver for fall-safe fuel cutoff Aspect: Three sets of attitude photocells Other: Rocket propulsion performance instruments.

ROCKET PERFORMANCE

Firing angle: 4.2 degrses North and 2.6 degrees East
Time to booster separation: 2.7 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 48.0 sec .
Altitude at burnout: 17.8 miles
Velocity at burnout: 4050 ft . per sec.
Time to zenith:
Altitude at zenith: 73 miles
Time to blowoff:
Altitude at blewoff:
Fuight duration: 335 smc .
Impact coordinates: 35 miles North and 8.1 miles East
Payload welght: 155 lbs ,
Unfueled rocket weight: 431 lbs.
Unfueled rocket C.G.:
Gross welght at takeoff: 1077 lbs.

BALLISTIC DATA

Thuodolites: Trajectory data to ahout 48 sec.
Cameras: Bowen-Knapp trajectox y data to 3.9 sec .
Telescopes:
Radaz: Intermittent data 0 to 53 sec.

DATA RECOVERY

Telemeter: Total of 8 sec . lost out of 326 sec .

EXPERIMENTAL DATA

Cosmic radiation: Upper limit of primary intensity estailished for geomagnetic lattitude 41 degrees North.

COMMENTS

Rocket performance: Good performance. Zenith angle 10 degrees and roll period 1.13 sec. at burnout. Precession period about 60 sec . with a cone half angle of about 15 degreen until 260 sec . At 290 sec . the racket axis was parallel to trajectory with nose down.

REPORTS AND PAPERS

APL Bumblobee Series Report No. 95, by L. W. Fraser, December 184B.
"The Cosmic Ray Intensity Above the Atmosphere," by A. V, Gangnes, J. F. Jenkins, Jr., and J. A. VanAllen, Phys, Rev. 75:57, 1949.
"An Improved Upper Limit to the Primary Cosmic Ray Intensity at Geomagnetic Eattitude 41 North," by J. A. VanAilen, Proceedings of the Echo Yake Cosmic Ray Symposium June 2328, 1049, pp. 95-102, Published by ONR Nov. 1849.

Agency: Applied Physics Laboratory
Time: 1441 MST
Altitude: 71.0 miles.

UPPER ALR INSTRUMENTS

Magnetic field: Magnetometer to detect existence of circulating current sheets in the upper atmosphere (APL and Naval Ordnance Laboratory).

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel APL FM-FM system.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Twu Mitchell and seven Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Two stations
Radar: One modified SCR-584 S-band and one modifled SCR-584 X-band station
Impact location: Sound ranging. Hed flare smoke candle to be ignited at 240 sec.

Airborne

Radio cutof: NMCA\&MA-APL FM control receiver for fall safe fuel cutoff.
Aspect: Sixteen attltude photocells
Other: Propulsion performance instruments.

ROCKET PERFORMANCE

Firing angle: 3.7 degrees North and 1.7 degrees East
Time to booster separution: 2.5 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 44.8 sec .
Altitude at burnout: 17.7 miles
Velocity at burnout: 4125 ft . per sec.
Time to zenith:
Altitude at zenith: 71.0 miles
Time to blowofi: Breakup at 326 sec .
Altitude at blowoff:
Flight duration: 349 sec .
Impact coordinates: 17.7 miles North and 1.7 miles East
payload weight: 153 lbs .
Unfueled rocket weight: 427 lbs.
Unfueled rocket D.G.:
Gross weight at takeoff: 1073 lbs.

ballistic data

Theodolites: Askania trajectory data to about 55 sec .
Cameras: Bowen-Knapp trajectory data to 2.5 sec., yaw data 0 to 3.6 sec .
Telescopes: Attitude data 6 to 38 sec., roll rate 6.5 to 30 sec .
Radar: X-band trajectory data 0 to 18.5 sec .
Impact location: Impact 0.3 mile from. sound ranging prediction.
Other: Smoke flare falied to operate.
DATA RECOVERY
Telemeter: Good record for 326 sec .

EXPIERMENTAL DATA

Magnetic field: Decrease of earth's ifold with altitude measured; discontinuity cauned by current uheet too sunall to be detected with equipment.

COMAEENTS

Rockot performance: Thrunt normal to $\mathbf{3 8 . 7}$ eac, and feil off to $\mathbf{6 0 \%}$ by $\mathbf{4 0 . 8}$ mec, and came back to normal by 41.7 mec., then thrust was arratic until burnout. Roll increased during burnligg to a pertod of 1.75 sec.

REPORTS AND PAPERS

APL Bumblebee Bertos Report No, 05, by L. W. Fraser, The Johns Hopkins Undvornity Applied Phymics Laboratory, Dec. 1048.
"Moasuroment of the Hasth'u Magnatic Fiold at Elgh Altitudan at Whito 8mads, Now Moxico," by 8. T. Eincter, F. Maplo, and W. A. Bowon, J ef theophyn. Ron., 85:11B, 1060.
"V-2 Report No. 16, "Minuten of Meeting of the V-a ilyper Atmonphere Remearch Panel of April 28, 1048.

DENTIFICATION

Agency: Applied Physics Laboratory
Time: 0947 MST
Altitude: 70.0 miles.

UPPER AIR INSTRUMENTS

Earth photography: Two K-25 aerial cameras and two 16 mm. GSAP motion picture cameras.

DATA RECOVERY INSTRUMENTS

Telemeter: None
Physical recovery: Separation of tail section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites; Two Mitchell and eight Aslcania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Four stations
Radar: One modified SCR-584 S-band and one SCR-584 X-band station
Impact location: Seven sound ranging stations.
Airborne
Radio cutoff: NMCAgMA - APL FM control receiver for fail safe fuel cutoff and recovexy separation blowoff.

Other

Nose tip: Special nose tip formed of four plastic dielectric materials for temperature test.

ROCKET PERFORMANCE

Firing angle: 2.8 degrees North and 0.1 degree East
Time to booster separation: 2.5 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 44.5 sec .
Altitude at burnout:
Velocity at burnout: 4068 ft. per sec.
Time to zenith: 175 sec.
Altitude at zenith: 70.0 miles
Time to blowoff: 265 sec .
Altitude at blowoff:
Flight duration:
Impact coordinates: 25.5 miles North and 9.3 miles East
Payload weight: 176 lbs.
Unfueler rocket welght: 450 lbs.
Unfueled rocket C.G.:
Gross weight at takeoff: 1096 lbs.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 45 sec.
Cameras: Bowen-Knapp trajectory data 0 to 3.5 sec .
Telescopes: Good record from one telescope 0 to 160 sec.
Radar: S-band radar trajectory 0 to 37 sec .
Impact location: Ground and air search.

DATA RECOVERY

Physical recovery: Nose and tank section recovered after 10 days search

EXPERIMENTAL DATA

Earth photography: Aerographte kodacolor film in one K-25 mowod lons of color balance Super XX in other K-25 yielded excellent reaults. The Xodachrome aud Super XX tilm in the GSAP carneras completely logged.
Temperature atudies: Results of platic dielectric materials on apecial nose cone as follown: Melamine-fiberglass laminate: Good thermal resintance Silicone-fiberglass laminate: Good thermal resistance, alight tendancy to dolaminate Teflon: Exomion and flow Kel F: Erosion and flow.

COMMENTS

Rocket modifications: Two uncovered 6 sq . Inch portm cut in nowe cone as apertures for cameras.

REPORTS AND PAPERS

APL Bumblebee Series, Raport No. 95, by L. W. Fraser, the Johns Hopkins University Applied Physics Laboratory, 1848.
"Preliminary Report on High Altitude Photography," by C. T. Holliday, Photogr. Eingr. 1:16, 1850.
"Panel Report No. 18," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 29 september 1848.

DENTIPTCATION

Agency: Applled Physics Laboratory
me: 1715 MST
.citude: 66.5 miles.

UPPER AIR INSTRUMEENTS

Cosmic radiation: Three getger counters in a triangular array (housed in a lead cylinder 5 mm . thick) to supplement similar measurements in V-2 40 of the transition effects of the primary cosmic radiation in lead.
Solar radiation: Soft X-ray film detectors (Naval Research Laboratory).

DATA FEECOVFRY INSTRUMENTS

Telemeter: $D O V^{\wedge} P$ airborne trunsceiver used as a single channol sybtem. Physical recove,. . Separation of tall section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and eight Askania atations Cameras: Three Bowen-Knapp stations Telescopes: Four stations Doppler: Four atatiuns Impact location: Sound ranging.

Airborne

Doppler: DOVAP transceiver unit Radio cutoff: NMCAEMA - APL FM control recelver for fall wafe fuel cutoff. Aspect: GSAP 16 mm . motion picture camera.

ROCKET PERFORMANCE

Firing angle: 2.9 degrees North and 0.4 degrees East
Time to booster separation: 2.4 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 40.5 sec .
Altitude at burnout: 15.5 miles
Velocity at burnout: 3623 ft. per sec.
Time to zenith: 162 sec .
Altitude at zenitin: 56 miles
Time to blowoff:
Altitude at blowolf:
Flight duration:
Impact coordinates: 33.5 miles North and 8.4 miles West
payload welght: 182 lbs.
Unfueled rocket weight: 458 lbs .
Uniueled rocket C.G.: 126.7 inches
Gross welght at takeoff: 1102 lbs .

BALLISTIC DATA

Theodolites: All Askanias tracked beyond peak, five tracked to near impact; two Mitchells tracked for 100 sec .
Cameras: Insufficient light to obtain Images on all film
Telescopes: Images to 140 sec .
Doppler: Velocity, position, and acceleration data; vector velocity, and vector acceleration with magnitude, zenith angle, and azimuthal plane. Roll period.

DATA RECOVERY

Telemeter: Generally good record with some nulls due to roll
Physical recovery: X-ray detectors not recovered, parts of nose scattered over a 4 sq, mile area.

EXPERMENTAX DATA

Cosmic Radiation: Trancition effecta of primary commic radiation in 5 mm of lead moasured. Solar radiation: No data

COMMENTS

Rocket performance: Propulaion normal untll 40.5 mec. when burning ceamed, rewulting in aubnormal altitude.
Rocket modification; Wooden nowe cone replaced unual aluminum cone.

REPORTS AND PAPERS

Bumblebee Serton Report No. 95, by L. W. Trasor, Appltud Phymice Laboratory, The Johnm Hopkine Univaralty, December 1048.
*The Transition Effecte of the Primary Commic Radiation in Lead, Aluminum, and the Atmomphere," by J. A. VanAllen, Proceedinige of the Beho Valt Coamic Euy Bympomium, June 25-28, 1949, publinhed by the Oflce of Naval Revearch, November 1040.
"Eigh Altitude Remearch at the Appllod Phymicm Laboratory," by L. W. Fraser, Bunableben Series Report No. 153, Applied Phymice Laboratory, The Johnie Hopkina Undvaralty, May 1951.
"Panel Report No. 19," MInutem of Meeting of the Upper Atmomphere Rooket Reanarch Panel on B January 1049.

DENTIFICATION

Agency: Applled Physics Laboratory
UPPER ARR INSTRUMENTTS
No upper alr inetruments

DATA RECOVERY DNSTRUMENTS

Talemeter: BIx chanel APL FM-FM gystem with tent oscillator Phymical recovery: None

BALLUSTIC DNETRUMENTS

Firing and Support Ships
Cameraw: 95 mm. Mitchell (17 in . focal lonuth) mounted on MK 25 radar untenna of Mk 37 gun directors on EIring and two support shipu.
Opticul: 20×120 binoculare mounted on NK 51 gun director.
Radar: SP radar with atabilized SOM antenna, and MK 25 automatlo trackiang radar mounted on Mir 97 gun director.
Othar: 35 mm . Mitchwil cameru in Command Operations Centor to photograph data dial box givius mhip'e courwe, relative target boaring, taryet elevation, runge, level, and croun lovel anglem for MX 25 and 8 P rader syatome.

Airborne: None

ROCKET PERYORMANCE

Conmonte: Dummy firing to evaluate mhpbourd Lanching procedures and uhortered tower. Resulte: Satiesuctory

IDENTIFICATION

Agency: Applied Physics Laboratory
Location: Longitude, 88 degrees West; Latitude, 11 degrees South
Time:
Altitude: 85 miles

UPPER ARR INSTRUMENTS

Cosmic radiation: Pair of crossed wide angle geiger counter telescopes with axes inclined 45 degrees to rocket axls to measure total intensity at zenith angle 45 degrees and azimuthal distribution.
pair of geiger counter telescopes with axes mutually perpendicular with one axis parallel to rocket axis. To measure total vertical and horizontal intensity.
Single unshielded geiger counter to measure average total cosmic ray intensity.
Magnetic field: Magnetometer to meadure change in magnetic field, particularly in search of discontinuity caused by current sheets.

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel APL FM-FM system.
Physical recovery: None

BALLISTIC INSTRUMENTS

Firing and Support Ships
Cameras: 35 mm . Mitchell, 17 in . focal length, mounted on Mk 25 radar antenna of Mk 37 gun director on firing ship and two support ships.
Optleal: Mx 51 gun director equipped with 20×120 binoculars.
Radar: SP radar with stabilized SM antenna, and MK 25 automatic tracking radar mounted on MK 36 gun director.
Other: 35 mm . Mitchell camera in command operation center to photograph data dilal bax giving ships course, relative target bearing, target elevation, range, level, and cross level angles for MK 25 and SP radar systems.

Airborne

Aspect: Magnetometer and photocell orientors. Radlo cutoff: None.

ROCKET PERFORMANCE

Comment: No information reduced to determine performance detalls.
Altitude at zenith: 65 miles
payload welght: 157 lbs.

ballistic data

Cameras: Optical tracicing of Mk 37 very good with data past burnout.
Optical: Binocular-gun director combination superior to camera system.
Radar: SP radar provided range data and Mk 37 radar provided elevation and bearing data to 39.7 miles slant range, which was independent of that obtained by triangulating supporting ship data.
Aspect: Record of angles between rocket longitudinal axis and solar vector, and angles between rocket azis and local terrestrial magnetic field. These provided a unique solution which described the rocket angular motion.

DATA RECOVERY

Telemeter: Good record
Physical recovery: None attempted.

EXPERDMENTAL DATA

Cosmic radiation: Vertical intensity of charged particles above the atmosphere at magnetic equator is 0.028 particles per sec. per cm^{2}. per stearadian. Measured asymmetry can be consistent with belief that most ordinary primaries are positively charged protons.
Magnetic field: Field between 12.4 and 65.3 milles altitude decreased in accordance with simple dipole field theory. Solar daily variation minimum at time of firing and no field diacontinuity was detected.

COMMENTS

Rocket performance: This first of a.group of Live firings from shipbcard (USS NORTON SOUND, AV-11) with a shortened tower proved the feasibility of this type of operation.

REPORTS AND PAPERS

"The Cosmic Ray Intensity Above the Atmosphere at the Geomagnetic Equator", by J. A. VanAllen and A. V. Gangaes, Phys. Rev. 79:51, 1950.
"On the Azimuthal Asymmetry of Cosmic Ray Intensity Above the Atmosphere at the Geomagnetic Equator," by J. A. VamAllen and A. V. Gangnes, Phys. Rev. 79:51, 1950.
"Evidence for Ionosphere Currents from Rocket Experiments Near the Geomagnetic Equator," by S. F. Singer, E. Maple, and W. A. Bowen, J. of Geophs. Res., 50:285, 1951.
"Panel Report \#20," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 21 April 1949.
"High Altitude Research at the Applied Physics Laboratory," by L. W. Fraser, Bumblebee Serles Report No. 153, Applied Phyglcs Laboratory, The Johns Hopkins University, May 1951.

Agency: Applied Physice Laboratory
Location: Longitude, 88 degrees West; latitude, 11 degrees south
Time: 1730 GCT
Altitude: 65 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Low pressure hydrogen filled geiger counters to measure high specific ionization in conjunction with data from Aerobee A-10, also to measure production of narrow angle cosmic ray showers. Four-fold gelger counter teloacope to measure average specific ioniration, total intensity, and arimuthal distribution of radiation. Cowuter telescope identical to above but shielded with 2 cm . lead, to study sarrow showers.
Magnetic field: Magnetometer to measure altitude dependence of terreatrial magnetic field.

DATA RECOVERY DNSTRUMENTS

Teleneter: Six channel APL FM-FM system

Phyalcal recovery: None.

BALIISTIC INSTRUMENTS

Firing and Support Ships

Cameras: 35 mm . Mitchell (17 in . Local length) mounted on MK 25 radar antenna of Mk 37 gun directors on firing and two support shipe.
Optical: 20×120 binoculars mounted on Mk 51 gun director.
Radar: SP radar with stabllized SM antenna, and ME 25 automatic tracking radar mounted on Mk 37 gun director.
Other: 35 mm . Mitchell camera in Command Operations Conter to photograph data dirl box giving ship's course, relative target baaring, target elevaition, range, level, and cross level angles for Mk 25 and SP radar systems.

Airborne

Aspect: Magnetometer and photocell orientors
Radio cutoff: None.

ROCKET PERFORMANCE

Comment: No information reduced to determine performance detalls. Altitude at zenith: 65 miles
payload weight: 157 lbs .

BALLISTIC DATA

Comments: No information given concerning ballistic data result.

DATA RECOVERY

Telemeter: Record for 317 sec.
Physical recovery: No physical recovery attempted.

EXPERIMENTAL DATA

Cosmic radiation: The bulk of the ionizing radiation above the atmosphere at the geomagnetic equator carries a simple charge and has a primary specific ionization close to minimum value. These results consistent with existence of a primary radiation composed mainly of positively charged protons. The directional intensity, corresponding to an average telescope zenith angle of 45 degrees and averaged over all azimuths, was found to be 0.040 particle per sec. per cm^{2}. per stearadian at geomagnetic latitude 0.0 degrees, of which not more than 65% can be attributed to primaries, the remainder being due to ulbedo, 1.e., secondary particles originating in the earth's atmosphere whose directional dependence bears no simple relationship to the primaries that caused them.

EXPERRMENTAL DATA (Continued)

Magnetic field: A discontinuity of about 4 millitgauss was observed at an altitude of about 62 miles; which indicate3 the existence of a current layer in the E region of the Lonosphere, but is insufticient to draw detailed conclusions.

COMMENTS

Focket performance: This in seend of a group of live firings from shipboard (USS NOETTON SOUND, AY-11) with a sicutened tower.

REPORTS AND PAPERS

"The Primary Specific Ionization and Intensity of the Commic Radiation Above tha Atmosphere af the Geomagnetic Equator," S. P. Stnger, Phys. Rev. 80:47, 1950.
"Eyshence for Ionosphere Currents from Rocket Experiments Near the Ceomagnetic Equator," by S. F. Singer, E. Maple, and W. A. Bowen, J. of Geophys. Res. 56:205, 1951.
"Panel Report No. 20," Minutes of Mesting of the Upper Atmosphere Rocicet Research Panel 02 21 April 194θ.
"High Altitude Research at the Applied Physics Laboratory," by S. W. Fraser, Bumblebee Series Report No. 163, Applied Physics Laboratory of the Johns Eopikins Univeraity, May 1051.

Agency: Appled Physics Laboratory
Time: 1514 GCT
Location: Latitude, 11 degrees 16 min . South; Longitude, 82 degrees 08 min . West Altitude: 3.7 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Pair of crossedwide angle geiger counter telescopes zith axes inclined 45 degrees to rocket P xis to measure total intensity at zenith angle 45 degrees and arimuthal distribution. Pair of geiger counter telescopes with axes mutually perpendicular with one axis parallel to rocket axis to measure total vertical and horizontal intensity. Single unshielded geiger counter to measure average total cosmic ray intensity.

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel APL FM-FM system
Physical recovery: None

BALLISTIC INSTRUMENTS

Firing and Support Ships
Cameras: 35 mm . Mitchell, 17 inch facal length, mounted on Mk 25 radar antenna of Mk 37 Gun Director on firing ship and two support ships.
Optical: Mk 51 Gun Director equipped with 20×120 binoculars.
Fadar: SP radar with stabilized SM antenna, and MK 25 automatic tracking radar mounted on Mk 37 Gun Director.
Other: 35 mm . Mitchell camera in Command Operation Center to photograph data dial box displaying ship's course, relative target bearing, target elevation, range level, and cros: level angles for Mk 25 and SP radar systems.

ROCKET PERFORMANCE

Comments: Leak in gas pressurizing regulator resulted in unboosted takeoff.

EXPERIMENTAL DATA

Comments: No data obtained.
REPORTS AND PAPERS
"Panel Report No. 20," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 21 April 1949, dated 2 May 1849.

IDENTIFICA"'ION

Agency: Applied Physics Laboratory
TIme: 0450 MST
Altitude: 55 mlles.
UPPER AIR INSTRUMENTS
Comments: No upper air eaperiments.

ROCKET PERFORMANCE

Comments: Configuration of nose materially altered for an aerodynamics experiment, therefore the performance data are sot typical.

REPORTS AND PAPERS

Naval Ordnance Laboratory Memorandum 10124, Naval Ordnance Laboratory, Washington, D.C. "Eigh Altitude Research at the Applied Physics Laboratory," by L. W. Fraser, Bumblebee Series Report No. 153, Applled Physics Laboratory, the Johns Hopkins University, May 1951.
"Panel Report No. 21," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 3 August 1949, dated 1 September 1949.

Agency: Applled Physics Laboratory
Time: 1621 MST
Altitude: 55 miles.

UPPER AIR INSTRUMENTS

Cosmic radjation: Four-fold geiger counter telescope to measure average specific lonization of charged cosmic rays und their total intensity and arimuthal distribution.
Solar radiation: Quartz optics ozone spectrograph with automatic azimuthal positioning of plekuj mirror with a photoelectric sun follower. Soft X-ray film detectors (Naval Research Laboratory).

DATA RECOVERY INSTRUMENTS

Telemeter: Six channel APL FM-FM system.

Physical recovery: Separation of tall section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askanile stations.
Cameras: Two Ballistic and three Bowen-Knapp stations.
Telescopes: Three stations
Impact location: Three observers and SCEL, GR3-C sound ranging set, and Impact Point Predictor.

Airborne
Radio cutoff: NMCA\&MA - APL FM control receiver for fall safe fuel cutoff.

ROCKET PERFORMANCE

Firing Angle:
Time to booster separation: 2.7 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 42 sec .
Altitude at burnout: 14.3 miles
Velocity at burnout: 3445 ft . per sec.
Time to zenith:
Altitude at zenith: 55 miles
T'me to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 23 miles North and 5 miles West
Payload weight: 101 lbs .
Unfueled rocket weight:
Uniueled rocket C.G.: 463 lbs.
Gross weight at takeoff: 1109 lbs .

BALIISTIC DATA

Theodolites: Askania irajectory data 0 to 51 sec., roll data; Mitchell trajectory data 0 to 20 sec.
Cameras: Good data from Bowen-Knapp.
Telescopes: Attitude data 0 to 25 sec .
Impact location: Prediction from both sound ranging systems.

DATA RECOVERY

Telemeter: Good records for 293 sec. with 3 sec. lost.
physical recovery: Nose section not recovered, body located quickly.

EXPERMENTAL DATA

Cosmic radiation: No commente furnished.
Solar radtation: Intensity of surilight at 3708, 3002, 3204, and 2646 Angstroms obtained as a function of aititude.

COMMENTS

Rocket Performance: Roll CCW from tall: 8.4 RPM at 5.7 sec., 14.0 RPM at 11.0 sec., 16.2 RPM at $15.1 \mathrm{sec} .$, and 18.4 RPM at 18.4 sec.

REPORTS AND PAPERS

"The Specific Ioniration of the Cosmic Radiation Year the Plotzer Maximum at $\mathrm{L} 41^{*} \mathrm{~N},{ }^{*}$ by S. F. Singer, Phys. Rev. 77:730, 1950.
"Panel Report No. 21," Minutes of Meeting of the Upper Atmosphere Elocket Research Panel, on 3 Aurust 1949, dated 1 Sept. 1949.
"High Altitude Research at the Applied Physics Laboratory," by L. W. Fraser, Eumblebee Series Report. No. 153, The Applied Physics Laboratory of the Jobns Hopkins University, May 1951.

Agency: Applied Physics Laboratory
Time: 2345 GCT
Location: Geomagnetic latitude $58^{\circ} \mathrm{N}$ (Gulf of Alaska).
Altitude: 45 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Two triangular arrays of geiger counters surrounding brass block to measure burst production cross section, angular distribution, and multiplicity of bursts produced in brass. Vertical telescope of six geiger counter trays to measure the intensity and specific ionization of the radiation in a vertical direction. Horizontal telescope of five geiger counter trays to measure horizontal intensity.

DATA RECOVERY INSTRUMENTS

Telemeter: Two six channel APL FM-FM systems Physical recovery: None attempted.

BALLSSTIC INSTRUMENTS

Firing Ship
Optical: Two Mk 51 gun directors equipped with 20×120 binoculars to ald visual tracking. Radar: SP radar with photographic recording of data dial box and range scope. Cameras: 35 mm , Mitchell on ME 25 antenna of Mk $\$ 7$ gun director.

Airborne
Radio cutoff: None
Aspect: NOL Magnetometer orientor and photoelectric cell orientor.

Other

Cameras: Motion picture and still cameras to record launching and early portion of fisgit.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout:
Altitude at burnout:
Velocity at burnout:
Time to zenith:
iltitude at zenith: 45 miles
Time to blowoff:
Altitude at blowoti:
Flight duration:
Impact coordinates:
Payload welght: 162 lbs.
Empty rocket weight: 446 lbs.
Empty rocket C.G.:
Gross weight at launching: 1068 lbs .

BALLISTIC DATA

Comments: No comments furnished by instrumenting agency.

DATARECOVERY

Telemeter: Complete record for 253 sec . with one sec.- lost time.
EXPERIMENTALL DATA
$\&$
Cosmic radiation: Absolute directional intensity of charged particles above the atmosphere and the primary cosmic ray spactrum obtsined.

COMMENTS
Rocket modification: Hellum pressurization used. Normal nose cone replaced with a cylinder surmounted with a 13 degree (half angle) cone.

REPORTS AND PAPERS
"On the Primary Cosmic Ray Spectrum," by J. A. VanAllen and S. F. Singer, Phys, Rev. 78:818, 1950
"High Altitude Regearch at the Applied Phyaics Laborkiory," by L. W. Fraser, Bumblebee Series Report No. 153, Appliod Physics Laboratory, The Johns Bopikins University, May 1951. "Panel Report No. 23, "Minutas of Meeting of the Upper Atmomphere Rocket Research Panel on 15 Feb. 1930.

Agency: Applied Physics Laboratory
Time: 2317 GCT
Location: Geomagretic latitude $50^{\circ} \mathrm{N}$ (Off coast of Southern Washington).
Altitude: 50 miles

UPPER AIR INSTRUMENTS

Cosmic radiation: Two triangulay urrays of geiger counters surrounding brass block to measure burst production cross section, angular distribution, and multiplicity of bursts produced in brass. Vertical telescope of six geiger counter trays to measure the intensity and specific lonization of the radiation in a vorticial direction. Horizontal telescope of five geiger counter trays to measure horizontal intenstiy.

DATA RECOVERY INSTRUMRNTS

Physical recovery: None attempled.

BALLISTIC INSTRUMENTS

Firing Ship

Cameras: 35 mm . Mitchall on Mk ${ }_{2} \mathrm{E}$ antenna of Mk 37 gun director
Optlcal: Two Mk 51 gun directors equipped with 20×120 binoculars to aid visual tracking. Radar. CP zadar with photographic recording of data dial bcx and range scope.

Airborne

Radio cutoff: None
nspect: NOL magnetometer oriontor and photocell orientor.
Other
Cameras: Mction picture end otill cameras to record launchtris and early portion of alieht.

ROCKET PERFORMANCE

Firing angle:

Trime to booster separation:
Altitude to bouster separation:
Velocity at booster separation:
Time to burnoui:
Alttiude at barnout:
Velocity at burnout:
Time to zenith:
Altitude at zenith: 50 milos
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates:
Payloud weight: 162 lbs.
Empty rocket weight: 442 lbs.
Empty rocket C.G.:
Gross weight at launching: 1068 lbs .

BALLISTIC DATA

Comments: No data furnished by instrumenting agency.

DATA RECOVERY

Teiemeter: One transmitter operated satisfactorily for 288 sec , modulator of other transmitter failed at takeoff

Cosmic radiation: Data on absolute directional irtensity of charged particles ahove the atmosphere and the primary cosmic ray spectrum obtained.

COMMENTS

Rocicet modification: Hellum pressurization used. Normal nose cone replaced with a cyllnder surmounted with a 13 degree (half angle) cone.

REPORTS AND PAPERS

*On the Primary Cosmic Ray Spectrum," by J. A. Vanßllen and S. F. Singer, Phys. Rev. 78:819, 1950.
"High Altitude Research at the Appiied Physics Laboratory," by L. W. Fraser, Bumblebee Series Report No. 153, Applied Physics Laboratory, The Johns Hopldins University, May 1951.
*Panel Report No. 23, "Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 15 Feb. 1950.

Agency: Applied Physics Laboratory
Time: 0530 MST
Altitude: 54.7 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Two triangular arrays of geiger counters surrounding brags block to measure burst production cross section, angular distribution, and multiplicity of bursts produced in brass. Vertical telescope of six gelger counter trays to measure the intensity and specific ionization of the radiation in a vertical direction. Horizontal telescope of five geiger counter trays to measure horizontal intensity.

DATA RECOVERY INSTRUMENTS

Telemeter: Two six channel APL FM-FM systems
Physical recovery: Separation of tail section with prima sord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Agkanta stations
Cameras: Two Bowen-Knapp stations
Telescopes: Two stations
Radar: One modified SCR-584 S-band station
Impact location: Three sound ranging stations, SCEL GR3-C sound ranging set, and Impact Point Computer.

Airborne

Radio cutoff: ARW-37 FM control receiver for command fuel cutoff.
Aspect: NOL magnetometer orientor and photocell orientor.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation: 2.6 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 44.1 sec .
Altitude at burnout: 15.4 miles
Velocity at burnout: 3550 ft . per sec.
Time to zenith: 163 sec .
Altitude at zenith: 54.7 miles
Time to olowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 14.6 miles North and 5 miles East
Payload weight: 153 lbs .
Unfueled rocket weight: 452 lbs .
Unfueled rocket C.G.:
Gross weight at takeoff: 1074 lbs.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 94 sec., Mitchell trajectory data 0 to 54 sec.
Cameras: Trajectory data 0 to 3.8 sec .
Telescopes: Attitude and roll data for entire fight.
Radar: Trajectory data 0 to 35 sec .
Impact location: No comments furnished by instrumenting agency.
Aspect: No comments furnished.

DATA RECOVERY

Telemeter: Good signals 0 to 130 sec., then signals failed
Physical recovery: Telescoped instruments found $1 / 2$ mile South of main body impact.

EXPERDMENTAL DATA

Cosmic radiation: Data on absolute direcitonal intensity of charged particles above the atmosphere and the primary cosmic ray spectrum was obtained.

COMMENTS

Rocket performance: Roll rate 10 RPM
Rocket modifications: Hellum pressuriation used. Normal nose cone replaced with a cylinder surmounted with a 13 degree (half angle) cone.

REPORTS AND PAPERS

"On the Primary Cosmic Ray Spectrum," by J. A. VanAllen and S. F. Singer, Phys. Rev. 78:819, 1950.
"High Altitude Research at the Applled Physics Laboratory," by L. W. Fraser, Bumblebee Series Report No. 153, Applied Physics Lehoratory, The Johns Hopldns University, May 1051.
"Panel Report No. 25," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 13 and 14 June.

IDENTIFICATION

Agency: Applied Physics Laboratory
Time: 0845 MST
Altitude: 83 miles.

UPPER AIR INSTRUMENTS

Composition: Radio frequency mass spectrometer to measure the abundance ratio oll Cayem and Nitrogen.

DATA RECOVERY INSTRUMENTS

Telemeter: Two six channel APL FM-FM systems
Airborne recorder: Magnetic tape
Physical recovery: Separation of tall section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Askania stations Cameras: Three Bowen-Knapp stations
Telescopes: Five stations
Impact location: Impact Point Computer.

Airborne

Radto cutoff: NMCA\&MA-APL FM cc ireceiver for fall-safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 2.7 degrees North and 0.2 degrees East
Time to booster separation: 2.4 sec .
Altitude at bnoster separation:
Velocity at booster separation:
Time to Nurnout: 42 sec .
Altitude at burnout: 16.0 miles
Velocity at burnout: 2960 ft . per sec.
Time to zenith: $170-175 \mathrm{sec}$.
Altitude at zenith: 63 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates:
Payload welght: 182 lbs.
Unfueled rocket weight: 467 lbs .
Unfueled rocket C.G.:
Gross welght at takeoff: 1089 lbs .
BALLISTIC DATA
Theodolites: Askanta trajectory data 0 to $53-58 \mathrm{sec}$., Mitchell trajectory data 0 to 00 sec . Cameras: Bowen-Knapp trajectory data 0 to 3.1 sec .
Telescopes: Two station images to near peak, one station to 150 sec ., one station to 180 sec . Impact location: No comments furnished.

DATA RECOVERY

Telemeter: Good records for 310 sec. Physical recovery: No recovery.

EXPERIMENTAL DATA

Composition: No data.

COMMENTS

Rocket performance: Roll rate increased from 7 RPM at 9.7 sec . to 10 RPM at 39.7 sec . Experiment: Mass spectrograph falled.

REPORTS AND PAPERS

"A Report of Aerobee A-18," by A. V. Gangnes and J. W. B. Barghausen, CF 1565, Applled Physics Laboratory, The Johns'Hopidns University, Dec. 1950.
"High Altitude Research at the Applied Physics Laboratory," by L. W. Fraser, Bumblebee Sertes Report No. 153, Applied Phystcs Laboratory, The Johns Hopkins University, May 1951.
"Panel Report No. 28," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 and 8 September.

Agency: Applied Physics Laboratory
Time: 1555 MST
Altitude: 55 miles.
UPPER AIR INSTRUMENTS
Composition: Radio frequency mass spectrometer to measure the abundance ratio of Oxygen and Nitrogen.

DATA RECOVERY INSTRUMENTS

T'elemeter: Two six channel APL FM-FM systems Physical recovery: Separation of tall section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Three Mitchell and seven Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Three stations
Radar: Two modilied SCR-584 S-bund stations
Impact lccation: Impact Point Computer.

Airborne

Radio cutoff: NMCA\&MA-APL FM control recelver for fuel cutoff.

ROCKET PERFORMANCE

Firing Angle: 3.0 degrees North and 0.6 degrees East
Tlime to booster separation: 2.3 sec .
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: $41,6 \mathrm{sec}$.
Altitude at burnout: 15.2 miles
Velocity at burnout: 3690 ft. per sec.
Time to zenith: 157 gec.
Altitude at zenith; 55 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 27.1 miles North and 3.0 miles East
Payload weight: 172 lbs .
Unfueled rocket weight 463.5 lbs .
Unfuelct rocket C.G.:
Gross weight at takeoff: 1085.5 lbs .

BALLISTIC DATA

Theodolites: Mitchell obtained images 0 to 90 sec.; Askanias tracked less than 109 sec. Cameras: No information provided
Telescopes: Attitude data 0 to 52 sec , and 233 sec . to impact
Radar: Trajectory data 0 to 56 sec .; intermittent thereafter
Impact Point Computer: Position and velocity data 0 to 88 sec., tracking until breakup, good impact prediction.

DATA RECOVERY

Telemeter: Continuous record to breakup Physical recovery: Rocket recovered.

EXPERIMENTAL DATA

Composition: No data, mass spectrometer failed.

COMMENTS

Rccket performance: Booster and rocket burning times shorter than normal. Rocicat rolled thruugh 600 degrees CCW from 1.2 to 17.1 sec., and then rolled 80 degrees CW from 17.1 to 25.5 sec , no rotation observed thereaiter.
Rucket modifications: Hellum pressurization used.

REPURTS AND PAPERS

"High Altitude Research at the Appiled Physics Laboratory," by L. W. Fraser, Bumblebee Series Report No. 153, Applled Physics Laboratory, The Johns Mopkins University, May 1951.
"Psnel Report No. 28," Minutes of Meeting of the Upper Atmosphere Rocket Rasoarch Panel on 7 and 8 September 1950.

Agency: Applied Physics Laboratory
Time: 0800 MST
Altitude: 56 miles.

UPPER AIR INSTRUMENTS

Composition: Quartz optics spectrometer to measure the vertical diatribution of ozone.

DATA RECOVERY INSTRUMENTS

Telemeter: Two six chanuel APL FM-FM systems Physical recovery: Separation of tall section with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and six Askonia stations
Cameras: Three Bowen-Knapp stations
Telescopes: Four atations
Radar: Two modified SCR-584 S-band atations
Impact location: Impact Polnt Computer.

Airborne

Radio cutoff: NMCACMA-APL FM control recelver for fall-safe fuel cutoff.

ROCKET PERFORMANCE

Firing angle: 2.7 degrees North and 0.2 degrees East
Time to booster separation: 2.5 sec .
Altitude at booster separation:
Velocity at booster separation:
Thme to burnout: 44.5 sec .
Altitude at burnout: 16.9 miles
Velocity at burnout: 3720 ft . per sec.
Time to zenith: 159 sec .
Altitude at zenith: 56 miles
Time to blowoff: Breakup at 309.2 sec .
Rititude at blowoff:
Flight du ation:
Impact coordinates:
Payload weight: 132.5 lbs .
Unfueied rocket weight: 425 lbs.
Unfueled rocket C.G.:
Gross weight at takeoff: 1047 lbs .

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 80 sec ., Mitchell -0 to 50 sec. Cameras: Trajectory data 0 to 4 sec .
Telescopes: Attitude data to breakup
Radar: Trajectory data from one station to peak.
Impact location:

DATA RECOVERE

Telemeter: Good record irom takeoff to breakup Physical recovery: Not recoverod.

EXPERDAENTAL DATA

Composition: Vertical distribution of ozone measured.

COMMENTS

Rocket performance: Zenith altitude considerably less than expected for the payload carrieci. Rocket rotated CCW through 240 degrees between 1 and 3.6 sec ., 60 degrees CW between 3.6 and 6.6 sec., and then began to roll CCW.

REPORTS AND PAPERS

"High Altitude Distribution of Atmospheric Orone," J. A. VanAllen and J. J. Hopfleld, to be published.
"High Alttude Research at the Applied Physics Laboratory," by L. W. Fraser, Fumblebee Series Report No. 153, Applied Phystes Laboratory, The Johns Hoplins University, May 1951.
*Panel Report No. 27." Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 31 January 1951.

IDENTHFICATION

Ageacy: Appilied Paysiss Luboratory
TIme: 10t0 MST
Alttude: 81 milles.

UPPER AIR INSTRUMENTS

High altitude photography: (Classified).

DATA RECOVERY INSTRUMENTS

Telemeter: Two two channel APL FM-FM systicms
Physical recovery: Tail section separation with prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and six Askania stations
Cameras: Three Bowen-Kinapp stations
Teleacopes: Four stitions
Impact location: Impact Point Computer.

Atrborne

Radic cutoff: NMCAEMA-APL FM control receiver for fail-safe fuel cutofi and recovary separation.

ROCKET PERFORICANCE

Firing angle: 3.0 degreas North and 0.8 degrees East
Thme to booster separation: 2.51 sec.
Altitude at booster separation:
Velocity at booster separation:
Ticie to burnout 42.3 sec .
Altitude at burnour: 14.2 milles
Ve'scity at kurnout: $\$ 500 \mathrm{ft}$. cer smc .
Time to zenith:
Altitudc at zenith: 61 milles
Time tc blowoff: 250.7 sec .
Altituds at blowoff:
Plicht turation:
Impact coordinatins: 38.4 miles North and 8.9 miles West
prylord weight: 208 liss.
Uafuelad roeket welght: 402 lbs.
Unfueiod ri, iket C.G.:
Gyess weight at falseuk: 1114 lbs.

BALLHETYC DATA

Thecodilies: No A.akunia data, trajectory data 0 to about 42 sec .
Canderes: Trajectory data 0 to about 4 sec .
Telescopes: Atitivide data n to 60 sec . Hadur: 'Trajectory data 0 to 50 sec . Impact location: Good prediction.

DATA RECOVERY

Telemetor: Good record to 350 scc physical recovery: Camera flim recovered in good condition.

COMMENTS

Experiments: Good 2 esults obtained from cameras
Rocket periormance: Burning time slightly short, performance good, Rocket rotated 120 degrees CCW from 1.0 to 4.0 sec .; 30 degrees SW from 4.0 sec . to 8.2 sec .; began to roll CCW after 8.2 sec .

Rocket modification: Hellum pressurization used.

REPORTS AND PAPERS

"High Altitude Reasarch at the Applied Physics Laboratory," by L. W. Fraser, Bumblebee Serles Report No. 153, Applied Physics Laboratory, The Johns Hopkins University, May 1951. *Panel Report No. 27," Minutes of Meeting of the Upper Atmosphere Rocket Research Panol Meeting on 31 June 1951.

Agency: Naval Research Laboratory
TIme: 1837 MST
Altitude: 80 miles

UPPER-AIR INSTRUMENTS

Solar radiation: Ozone spectrograph
Pressure-temperature: Pirani and bellows gages at nose tip for ram pressure, and pirani gages ahead of fins for ambient pressure.

DATA-RECOVERY INSTHUMENTS

Telemeter: APL six channel FM-FM system
Physical recovery: Separation of single fin with primacord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Three Bowen-Knapp stations
Teloscopes: F'our stations
Radar: One modified SCR-584 S band station, and one modified SCR-584 X band station Doppler: None
Impact location: None
Aluborne
Radio cutoff: ADL-NLCA\&MA FiA control recelver

ROCKET PERFORMANCE

Firing angle:
Time to booster separation
Altitude at booster separation:
Velocity at booster separation; Time to burnout: 44.9 sec .
Altitude at burnout: 16.1 miles
Velocity at burnout: 3820 tt, per sec.
Time to zenith:
Altitude at zenith: 60.2 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 16.8 miles North and 1.0 miles East
Payload weight: 207 lbs.
Unfueled rocket wight:
Unfueled rocket C. G.: 119 inches
Gross weight at takeoff: 1120 lbs.

BALlistic DATA

Theodolites: One Askania obtained record 0 to 80 sec .
Cameras:
Telescopes: 10 in . telescope obtained record 0 to 100 sec .
Radar:
Impact location: Two visual fixes obtained, sound ranging within $1 / 4$ mile of actual impact.

DATA RECOVERY

Telemeter: No record from one ground station, record 0 to 200 sec. obtained from other. Physical recovery: Single fin blowoif inadequate. Spectrograph cassetie recovered in good condition, rocket badly dr.maged.

EXPERIMENTAL DATA

Solar radiation: No useable data, film jammed in flight.
Pressure-tempcrature: Tabulated data in reasonable agreement with previous data.

REPORTS AND PAPERS

Aerobee Progress Report No. 6, WSPG serial NP(WSPG)S78-1(2m)/4HE: $d p(18)-(652)$, dated 17 August 1948.

Asikenia Graphical and Numerical Data, Venus No. 1, BRL-WSPG.
"Pressures and Temperatures in the Earth's Upper Atmosphere," R. Havens, R. Koll, and H. LaGow, Naval Research Laboratory Reprint, March 1950.
"The Pressure, Density, and Temperature of the Earth's Atmosphere to 180 Kilometers," by R. Havens, R. Koll, and H. LaGow, J. of Geophys. Res., 57:59-72, March 1952.

Agency: Naval Research Laboratory
Time: 2317 MST
Altitude: 60 miles
UPPER-AIR INSTRUMENTS
Cormic radiation: Soft Gamma Ray Geiger counter bundle.
Pressure-temperature: Ram pressure gage at nose tip, amblent pressure gages at base of nose section and ahead of fins.
Ionosphere: Electrostatic field voltmeter on nose.
Solar radiation: X-ray film plate detectors with foll filters.

DATA-RECOVERY INSTRUMENTS

Telemeter: APL 6 channel FM-FM system.
Physical recovery: Beparation of tall section with primacord actuated by air pressure switch.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askania stations.
Cameras: Two Ballistic and three Bowen-Knapp stations.
Telescopes: Four stations.
Radar: None
Doppler: None
Impact location: Sound ranging stations.

Airborne

Radio cutoff: APL - HMCAEMA FM control receiver for fall-safe fuel cutoff.
Other
Spectrographic camera.

ROCKET PERFORMACE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 44 sec .
Altitude at burnout:
Velocity at burnout: 4000 ft . per sec.
Time to zenith:
Altitude at zenith: 60 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 49.4 milies North and 10.6 miles East.
Payload weight:
Unfueled rocket welght:
Unfueled rocket C. G.: 114.2 in .
Gross weight at takeoff: 1089.5 lbs.

ballistic data

Theodolites: Askania images 0 to 29 sec ., Mitchell images 0 to 9 sec .
Cameras:
Telescopes: Three stations tracked 0 to 44 sec ., had images 0 to 5 sec., remaining station obscured by clouds.
Impact location: Insufficient data to obtain location.

DATA RECOVERY

Telemeter: 8ignals erratic after 42 sec., two channels unreadable after 51.7 sec. , signals intermittent after 56.6 sec ., weak sporadic RF signals after 71.7 sec., some data recorded ai 286.8 sec .
Phyaical recovery: Rocket body recovered in fair condtion six months after firing, tall section not found. X-ray detectors damaged by long exposure.

EXPERDENTAL DATA

Ccsmic radiation: Camma ray intensity measured up to 16.7 miles.
Pressure-temperature: No data obtained due to low altitude telemeter fallure.
Solar radiation: No data, fllm damaged.

COLMENTS

Folded dipole antenna substituted at nose tip for standard probe antenna, Telemeter signal fallure attributed to internal causes.
Ungatistactory weather conditions delayed firing from 17 Jan. Second attempt on 21 Jan., after fueling and pressurizing a regulator valve leak ruptured oxidyzer burst diaphragm and fuel loak appeared at fual tilling boss. Mixture ignited at edge of burner and an emergency attempt at firing falled. Rocket repaired and a third firing attempt falled due to high winds and rocket fired during fourth attempt.

REPORTS AND PAPERS

NRL Serial 3480-521/48dly (3423CPS), Aerobee Venus 2, Request for Firing.
WSPG Serial NP(WSPG)S78-1(13-11)MHS:dp(18)-(204), Aerobee Progress Report No. 8, Conduct of Firing of Aerobee Venus 2.

WSPG Serial NP(WSPG)S78-1(2-5) JAP:jb(18)-(82s), Supplement to Aerobee Progress Report No. 8, Conduct of Firing of Aerobee Venus No. 2.

NMCAEMA, BRL-APG, Venus 2, January 28, 1949, Bowen Knapp Graphical and Numerical Data
NMCA\&MA, BRL-APG, Venus 2, January 28, 1949, Askania Graphical and Numerical Data.

Agency: Naval Research Laboratory
Time: 1138 MST
Altitude: 0 miles

UPPER-AIR INSTRUMENTS

Solar radiation: Sunfollower-spectrograph (1600 to 4000 Angstroms) and a fixed angle spectrograph (1000-3000 Angstroms). Film transporting X-ray detector with foil filters.

DATA-RECOVERY INSTRUMENTS

Telemeter: None
Physical recovery: Tail section separation with primacord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askania stations.
Camera: Two Ballistic and three Bowen Knapp stations.
Telescopes: Four stations.
Radar: None
Doppler: None
Impact location: sound ranging stations.

Alrborne

Radio cutof: AN/ARW-37 FM control recelver for command fuel cutoft,
Other
Spectro camerg; Une station.

ROCKET PERFORMANCE

Comments: Booster exploded at Ignition and severely damaged rocket which moved out of launching tower and immediately fell to ground where it exploded. Booster fallure due to fractured propellant grain.

Payload weight: 137.7 lbs.
Unfueled rocket wetght: 421.5 lbs .
Unfueled rocket C. G.: 114.2 in .
Gross weight at takeoff: 1062.5 lbs .

EXPERIMENTAL DATA

Comments: Instrumentation a total loss due to rocket fallure, no data.

REPORTS AND PAPERS

Request for Firing of Venus 3, NRL serial 3420-498/48 (3423CPS).
Aerobee Progress Report No. 9, Conduct of Firing of Aerobee Venus 3, WSPG-NUWS,

Agoncy: Naval Research Laboratory
Time: 1614 MST
Altttude: 54.4 milles

UPPER-AR INSTRUMENTS

Cosmic radiation: Wilson cloud chamber, and a soft Gamma Ray Geiger counter bundle. Pressure-temperature: Ambient pressure gages ahoad of tall fins.

DATA-RECOVERY DNSTRUMENTS

Telemeter: APL 6 channel FM-PM system.
Phystcal recovery. Tail section separation with primacord.

BALLIETIC DNSTRUMENTS

Firing Range

Theodolites: Three Mitchell and nine Asicania stations.
Cameras: Two Bowen-Knapp stations.
Telescopes: Four stations.
Radar: Two modified SCR-584 8 band stations.
Doppler: None
Impact location: Impact Point Computer; twelve sound ranging stations, and one Signal Corps GR-3 sound ranging set.

Airborne

Beacon: None, reflection tracking used.
Radio cutotf: AN/ARW-37 TM control recaiver for command fuel cutoff and recovery blowoff.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 42 sec .
Aititude at burnout: 14.8 miles
Velocity at burnout: 3500 ft . per sec.
Time to zenith: 157 sec .
Altitude at zenth: 54.4 miles
Time to blowoff: 263.4 sec.
Altitude at blowoff:
Flight duration: 500 sec .
Impact coordinates: 24 miles North and 7.2 miles East.
Payload weight: 176.3 lbs.
Unfueled rocket weight:
Unfueled rocket C. G.:
Gross weight at takeoff: 1104.8 Ibs .

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 211 sec., Mitchell irajectory data 0 to 41.4 sec . Cameras: Bowen Knapp trajectory data 0 to 2.5 sec .
Telescopes: Orientation and yaw angles 0 to 79 sec ., elevation and azimuth angles 0 to 79 sec . Radar: Tracied to burnout on sporadic signals.
Impact location: Sound ranging error $1 / 2 \mathrm{mile}$. Geophone error 1.9 mile.

DATA RECOVERY

Telemeter: Overall quality of record grood.
Physical recovery: Cloud chamber film in good condition. Nose section of rocket located within one hour of impact.

EXPERDENTAL DATA

Cosmic radiation: Film badly overexposed after first two frames. Pictures showed excessive amount of background fog attributed to over expansion of cloud chamber. Excessive expansion ratio attributed to loss of gas during launching from motion of chamber face plate. Gamma radiation intensities obtained up to 49.7 miles.
Pressure-temperature: No significant data obtained due to erratic rocket aspect.

COMMENTS

Rocket performance: Propulsion performance sub normal, burner blow-back at burnout. Roll 20 rpm at booster separation, and rose to 50 rpm by burnout. Pitching and yawing with 2 sec perion by burnout.

REPORTS AND PAPERS

Request for Firing ot Aerobee Venus 4, NRL serial 3420-123/49dlj (3423CPS)
Progress Report No. 12, Conduct of Firing of Aerobee NRL-4, WSPG serial NP(WSPG)S78-1(13-7) JAP:afw(18)(1513).

Attitude and Yaw Data from Tracking Telescope Observations of Aerobee NRL-4, Launched 14 February 1950, BRL Technical Note 221.

Trajectory Data from Askanda Camera Observations of NRL Aerobee 4, Launched 14 February 1950, BRL Technical Note No. 189.

Trajectory Data from Mitchell Theodolite Observations of Aerobee NRL-4, Launched 14 February 1950, BRL Technical Note No. 212.
*A Search for Primary Cosmic Gamma Radiation. II. Low Energy Radiation Above and
Within the Atmosphere," by G. J. Perlow and C. W. Kissinger, Phys. Rev. 84:572-580,
1 November 1951.

Agency: Naval Hesearch Laboratory
Time: 1903 MST
Altitude: 68 miles

UPPER-ARP INSTRUMENTS

Solar radiation: One fixed angle, lithium flouride aperture, ozone spectrograph, and one fixed angle, slit aperture, ozone spectrograph. Six X-radiation film plate detectors with foll filters.

DATA-RECOVERY INSTRUMENTS

Telemeter: None
Physical recovery: Tall section separation with primacord.

BALLISTIC DNSTRUMENTS

Firing Range

Theodolites: Two Mitcheil and seven Asiania stations.
Cameras: Two Ballistic and three Bowen-Knapp stations.
Teieccopes: Four stations.
Radar: None
Doppler: None
Impact location: Impact Point Computer and nine sound ranging stations.

Alrborne

Radio cutoff; AN/ARW-37 FM cont: ol receiver for command fuel cutoff and recovery blowott.

ROCKET PERFORMANCE

Firing angle:
Time to booster separation:
Altitude at booster separation:
Velocity at booster separation:
Time to burnout: 45.6 sec .
Altitude at burnout: 18.8 miles
Velocity at bourout: 4185 ft . per sec.
Time to zenith:
Altitude at zenith: 68 miles
Time to blowoff:
Filght deration:
Impact coordinates: 34.8 miles North and 3.4 miles West.
Payload weight: 142.8 lbs .
Unfueled rocket weight: 279.6 lbs .
Unfueled rocket C. G.:
Gross welght at taikeoff: 1080.2 lbs .

BALLISTIC DATA

Theodolites: Mitchell trajectory data 0 to 46 sec ., Askania trajectory data 0 to 38 sec .
Cameras: Ballistic- no data; Bowen-Knapp trajectory data 0 to 24 sec .

Telescopes:

Impact location: Incomplete sound ranging data- no prediction. Geophone data 1 mile Slouth and 1 mile West of actual lorpact.

data necoyery

Plysicai revovery: Very good recovery, four of six X-ray detectors and spectrograph film cassettes in excellent condition, in spite of two days exposure to the elements.

EXPERIMENTAL DATA
Solar radiation: Solar intensity distribution obtained down to 2100 Angstroms and the ozone distribution calculated up to 43.5 miles.

REPORTS AND PAPERS
Request for Firing of Aerobee Venus 5, NRL Serial 3420-117/49 dij (3423CPS).
Report on Firing of Aerobee NRL-5, WSPG Sertal NP(WSPG)S78-1(13-V)JAP:dp(18)-(711)
Trajectory Data from Mitchell Theodoilte Observations of Aerobee Venus 5, BRL Technical Note No. 111

Trajectcry Data ìrom Bowen-Knapp Camera Observations of Venus Round 5, BRL Technical Note No. 43.

Trajectory Data from Askania Cameria Observations of Venus Round 5, BRL Technical Note No. 38.

Ballistic Wind Data at 1903 MST on 14 June 1949, WSPG Air Weather Detachment.
"Measurements of the Vertical Distribution of Atmospheric Ozone from Rockets," by F. Johnson, J. Purcell and R. Tousey, J. Geophys. Res., 56:583-594, December 1951.
"Direct Measurements of the Vertical Distribution of Ozone to 70 Kilometers Altitude," by F. Johnson, J. Purcell, R. Tousey, and K. Watanabe, J. Geophys, Res., 57:157-176, June 1952.

Agency: Naval Rosearch Laboratory
Time: 1652 MST
Altitude: 3.7 milles

UPPER-AIR INSTRUMENTS

Solar radintion: Sunfollower-spectrograph. Three X-radiation film detectors with metal toll filters.

DATA-RECOVERY RNSTRUMENTS

Telemeter: Nane
Physical recovery: Tail section separation with primacord.

BALLETIC INETRURAENTS

Firing Range
Theodolites: Threc Mitchell and seven Askania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four atations.
Radar: None
Doppler: None
Impact location: Impact Point Computer, and Geophone set GR-8 for sound ranging.

Alrborne

Radio cutoff: AN/ARW-37 YMA control receiver for command fuel cutolf and recovery blowup.

ROCKET PERFORMANCE

Velocity at burnout: 900 ft . per sec.
Time to zenith: 35 sec .
Altitude at zenith: 3.7 miles
Flight duration: 72 sec.
Payload welght: 174 lbs.
Unfueled rocket weight: 285 lbe .
Unfueled rocket C.G.:
Gross weight at takeoff: 1078 lbs.

COMMENTS

Phyaical recovery: Inatruments and rocket severly damaged by explosion and fire at impact.
Experimental data: No results due to complete rocket fallure.
Rocket performance: Booster performance normal. No useful thrust developed by propulsion unit apparently result of fuel line rupture at takeoff. Blowup explosives not cause.

REPORTS AND PAPERS

Request for Firing of Aerobee NRL-6, NHL Sorial 3420-260a/50 dij(2s23CPS)
Aerobee Progress Report No. 14, Conduct of Firing of Venus Round 6, WSPG Serial NP(WSPG)878-1(3) ECS: $\operatorname{lhf}(18)$-(734).

Agency: Naval Research Laboratory
Time: 1000 MST
Alttude: 50.5 miles

UPPER-AIR INSTRUMEANTS

Cosmic radiation: Cosmic ray emulsions (National Institutes of Health) Cosmic Ray emulsions (NRL).
Solar radiation: One axis sunfollower spectrograph. X-radiation film detectors with foll filters.

DATA-RECOVERY DNGTRUMEANTS

Telemeter: AN/DKT-7 () $\mathbf{1 5}$ channel PPM-AM system. Physical recovery: Tatl section seperation with primacord.

BALLETTE INSTRUMENTS

Firing Range

Theodollter: Bix Ackania stations.
Cameras: Three Bowen-Kmapp itations.
Teloscopen: Four tracking and two Ipor stations.
Radar: Two modilsed 8CR-584 8 band stations and two X band atations.
Doppler: None
Impact location: Impact Point Computers (optical and radar), and GR-3 Geophane sound ranging set.

Alrborne

Zadio cutoff: AN/ARW-97 FIR control reveiver for command fuel cutolt and recorery blowoff.
Aspect: NRL photocell aupect indicator.

Other

Burcau of 8tandards Konosphere Erelght Fisding ptation.
ROCKET PERYORMANCE
Time to booster separation:
Altitude at booster eeparation;
Velocity at boonter separation:
Time to burnout: 43.5 wec.
Alttude at burrout: 13.1 milea
Velocity at burnout: 3400 ft . per sec.
Time to gonith:
Altitude at zenith: 50.5 mlles
Time to blowaff: 175.4 sec .
Altitude at blowaft: 47 millas
Flight duration: 173.4 sec . (useful flight).
mopact coordinates:
Payload weight: 247 lbs.
Unfueled rocket welpht:
Unfueled rocket C. G.:
Gross weight at takeoti: 1163 lbs.
ballegtic data

Theodolites:

Comeras:
Tolescopes:

Radar:

zmpact location:
Aspect: Photocell indicators produced complete record of aspect relative to sun and roll rate.

DATA RECOVERY

Telemeter: Firat tlight of new telemeter completeily succesaful, good record 0 to 174 tec. Phyaical recovery: whatn body recovered on 20 Yebruary. X-ray detectors damaged and cosmle ray emulsions puiverized.

EXPERDIEANTAL DATA

Solar radiation: No data, sunfollower tsacked sun throughout flight. Cosmle radlation: No data.

COMDIEANT:

Rocket performance: Exceptlonally good propulsion peiformance. Roll rate varted from 2.4 rpin at 11.6 scc . to 11.1 at 35 sec , and 8.8 rpm at 40 sec . to 10.9 at 50 sec . Stabilleed at 9 rpm by 90 sec. Varying roll rates due to reaction to sunfollowing mentecifism.
Experiments: Although the sunfollowing mechanism succesafully tracked the sun, the spectrograph was misaligned or the ecanning nochanism introctuced an error of 6 degrees.

REPORTS AND PAPERS

Project Directive for Aerobee NRL-7, NRL Serial 3420-8/52(342SVFG)
"A Solar Aspect Indicator for a Rocket," by D. Packer and R. Toumey, Upper Atmosphere
Research Report No. XVI, NRL Report 400 N, Naval Resemrch Laboratory, 5 suptember 195\%.
"The AN/DKT-7() 15 Channel PPM Telemelering Transmitter,* by N. Bent, R. Lowell, D. Mazur, and K. Uglow, Upper Atmosphere Research Report No. XVI, NRL Report 4016, Naval Reatarch Laboratory, 22 Auguat 1952.

Agoncy: Naval Research Laboratory
Altitude: 78.4 malles
Experiments: Cosmic radiation, Solar radiation.

	$\begin{aligned} & \text { AEROBEE } \\ & \text { NRL-9 } \\ & 1 \text { May } 1952 \end{aligned}$
Agency: Naval Research Laboratory Time: 0759 MST Altitude: 78.3 miles	
Experiments: Solar radiation, Cosmic radiation.	
	$\begin{gathered} \text { AEROBEE } \\ \text { NRL-10 } \\ 5 \text { Miay } 1952 \end{gathered}$

Agency: Naval Research Laboratory
Time: 0844 M8T
Altitude: 78.9 milea
Experiments: Solar radiation, Cosmic radiation.

Agancy: Naval Research Laboratory
Time: 0740 MST
Altitude: 61.5 miles
Expertments: Solar radiation.

AEROBEE
NRL-12
10 February 1953
Agency: Naval Research Laboratory
Time: 1409 MST
Altitude: 85.1 miles
AEROBEE
NRL-11
3 September 1952

Experiments: Composition, Cosmic radiation
AEROBEE
NRL-13
12 February 1058
Agency: Naval Research Laboratory
Time: 0009 MST
Altitude: 85.3 miles

8. THE DEACON ROCKET

Description
Characteristics - Table
Firings - Tables
Naval Research Laboratory Deacon Rocket Firings State University of Iowa Deacon Rocket Firings

Data Sheets

Figure 8.1 - The Deacon Rocket with a 55-foot plastic skyhook launching balloon in the foreground

8. THE DEACON ROCKET

The Deacon is a vertically launched sounding rocizet designed to carry a 50 -pound instrument load to an altitude of about 20 miles. It has no internal controls or movable surfaces and is arrow stabilized* by fins at the after end of the rocket. Propulsion is furnished by a solid propellant rocicet moior. Characteristics of the Deacon Rocket are given in Table 8.1, and summaries of firings are given in Tables 8.2 and 8.3.

The Deacon is capable of attaining altitudes in excess of 60 miles when launched from an altitude of about $70,000 \mathrm{ft}$. The rocizets are carried to launching altitude by a plastic balloon and then fired either by a timing circuit or by a pressure sensing device. This arrangement is particularly applicable for launching small instrument assemblies in various parts of the world. So far the launchings have been confined to active auroral regions in the vicinity of the north magnetic pole and to cosmic radiation and preasuretemperature measurements.

TABLic 8.1

CEARACTERISTICS OF THE DEACON ROCEET

DIMENSIONS
Tokal length
Diameter
Fin Span

WEIGETS

Payload (nominal)

INSTRUMENT SPACE

Nose Section
Apex angle
Height
Maximum diameter Volume

ANTENNA CAPACITY
Used
Others Possible
PERFORMLANCE
Maximum altitude Time of zenith Plight duration Time above 18.7 miles

FLGGT CHARACTERISTICS

Acceleration
Duration
Maximum velocity

[^5]50 lb
12.3 ft
6.5 in .
38.9 in .

Generally pressurired, approximately conical in thape, detachable.
Ogive (24 in , radius).
37.8 in.
6.5 in .

About 2.5 cu ft

Probe at nose tip.
Slots in nose tip.

About 65 miles when launched at $70,000 \mathrm{ft}$.

TABLE 8.2
NAVAL RESEARCE LABORATORY DEACON ROCKET FIRINGS

$\begin{aligned} & \text { DEACON } \\ & \text { ROCKET } \end{aligned}$	DATE	TME (GCT)	LOCATION	ALTITUDE (MILES)	EXPERIMENTS
NRL-1	5 Aug 63	2317	$\begin{aligned} & 62^{\circ} 041 \mathrm{~N} \\ & 63^{\circ} 55^{\prime} \mathrm{W} \end{aligned}$	49.2	Pressure, density, temperature
NRL-2	8 Aus 53	1701	$\begin{aligned} & 73^{\circ} 37^{\prime} \mathrm{N} \\ & 61^{\circ} 37^{\prime} \end{aligned}$	****	Pressure, density, temperature
NRL-3	9 Aug 53	1115	$\begin{aligned} & 74^{\bullet} 299^{\prime} \mathrm{N} \\ & 73^{\circ} 31^{\prime} \mathrm{W} \end{aligned}$	23.7	Pressure, density, temperature
NRL-4	11 Aug 53	1828	$\begin{aligned} & 74^{\circ} 84^{\prime} \mathrm{N} \\ & 94^{\bullet} 29^{\prime} \mathrm{W} \end{aligned}$	50.2	Pressure, density, temperature
NRL-5	3 Sep 63	0513	$\begin{aligned} & 43^{\circ} 10^{\prime} \mathrm{N} \\ & 52^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	41.7	Pressure, density, temperature
NRL-6	4 Sep 53	1551*	$\begin{aligned} & 43^{\circ} 00^{\prime} \mathrm{N} \\ & 62^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	8.5**	Pressure, density, temperature

*Balloon release time.
Balloon altitude, rocket did not fire. ** Zenith sltitude of rocknt uncertain.

TABLE 8.3
STATE UNIVERSITY OF IOWA DEACON ROCKET FIRINGS

$\begin{aligned} & \text { DEACON } \\ & \text { ROCKET } \end{aligned}$	DATE	TDME	LOCATION	ALTITUDE (MILESS)	EXPERRDMENTS
SUI-1	21 Aug 52	0125 EST**	$\begin{aligned} & 80^{\circ} 06^{\prime} \mathrm{N} \\ & 68^{\circ} 28^{\circ} \mathrm{W} \end{aligned}$	13.9**	Cosmic radiation
SUI-2	23 Aug 52	2234 EST*	$\begin{aligned} & 77^{\circ} 31^{\prime} \quad \mathrm{N} \\ & 73^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	19.3**	Cosmic radiation
SUI-3	28 Aug 52	2021 EST	$\begin{aligned} & 77^{\circ} 33^{\prime} \mathrm{N} \\ & 73^{\circ} 30^{\prime} \mathrm{W} \end{aligned}$	37.9	Cosmic radiation
SUI-4	29 Aug 52	0330 EST	$\begin{aligned} & 77^{\circ} 32^{\prime} \mathrm{N} \\ & 73^{\circ} 29.5^{\prime} \mathrm{W} \end{aligned}$	36.9	Cosmic radiation
SUI-5	29 Aug 52	1417 EST	$\begin{aligned} & 77^{\circ} 21^{\prime} \mathrm{N} \\ & 73^{\circ} 29^{\prime} \mathrm{W} \end{aligned}$	47.3	Cosmic radiation
SUI-6	81 Aug 52	1855 EST	$\begin{aligned} & 77^{\circ} 20^{\prime} \mathrm{N} \\ & 72^{\circ} 50^{\prime} \mathrm{W} \end{aligned}$	39.8	Cosmic radiation
SUI-7	4 Sep 52	0511 EST	$\begin{array}{lll} 77^{\circ} & 111 & \mathrm{~N} \\ 71^{\circ} & 13^{\prime} \end{array}$	39.8	Cosmic radiation

TABLE 8.3 (Continued)

| DEACON | DATE | TIME | LOCATION | ALTITUDE
 ROCKET | (MILES) |
| :--- | :---: | :--- | :--- | :--- | :--- | EXPERDMENTS

[^6]Agency: Naval Research Laboratory.
Time: 2317 GCT
Launching altitude: 15.7 miles.
Zenith altitude: 49.2 miles.
Experiments: Pressure, temperature, and density.

Agency: Naval Research Laboratory.
DEACON NRL-2

Location: 73 37° North, $81^{\circ} 37{ }^{1}$ West.
Time: 1701 CCT.
Launching altitude: 15.8 miles.
Zenith altitude: Uncertain.
8 August 1053

Experimente: Pressure, temperature, and denalty.

> Agency: Naval Reaearch Leboratory.
> Location: $74^{\bullet} 29$
> Time: 1115 GCT .
> Launching $73^{\circ} 31$, Weltitude: 5.5 millea.
> Zenith altitude: 23.7 miles.

DEACON
NRL3
9 August 1953

Experiments: Pressure, temperature, and denaity.

Agency: Naval Research Laboratory.
Location: 74° S4' North, $94^{\circ} 29^{\prime}$ West. Time: 1828 GCT.
Launching altitude: 14.2 miles.
Zonith altitude: 50.2 miles.
DEACON
NRL-4
11 August 1953

Experiments: Pressure, temparatura, and denalty.

Agency: Naval Research Laboxatory.
Location: $49^{\circ} 10^{\prime}$ North, $52^{\circ} 30^{\prime}$ Went.
Time: 0513 GCT.
Launching altitude: 14.0 miles (eatimated).
Zenith altitude: 41.7 milles.
Experiments: Pressure, temperature, and density.

Agency: Naval Remearch Laboratory.
Location: $43^{\circ} 00^{\prime}$ North, $62^{\circ} 30^{\prime}$ Went.
Time: 1551 CCT (balloon releace).
Launching altitude: 8.5 malles (bulloon altitude).
Zenith altitude: Rocket did not fire.

DEACON
NRL-5
3 September 1953

DEACON

Nal-6
4 September 1953

Agency: State University of Iowa.
Location: $80^{\circ} 06^{\prime}$ North, $68^{\circ} 28^{\prime}$ West. Time: 0125 EST (balloon relesase).
Launching aititude: 13.3 miles (balloon altituide).
Zenith altitude: Rocket did not fire.
Experiments: Cosmic radiation altitude dependence.

Agency: State University of Iowa
DEACON SUI-2
23 August 1952
Location: $77^{\circ} 31^{\prime}$ North, $73^{\circ} 30^{\circ}$ West.
Time: 2234 EST (balloon release).
Launching altitude: 13.3 miles (balloon altitude).
Zenith altitude: Rocket did not fire.
Experiments: Commic radiation altitude dependence.

Agency: State University of Lowa.
DEACON
SUl-3
28 Auqust 1952
Location: 77^{*} 33' North, $73^{\circ} 30^{\prime}$ West.
Time: 2021 EST.
Launching altitude: 7.2 miles.
Zenith altitude: 37.9 miles.
Experimants: Cosmic radiation.

Agency: State University of Iowa.
Location: $77^{\circ} 32^{\prime}$ North, $73^{\circ} 29.5^{\prime}$ West.
Time: 0330 EST.
Launching altitude: 6.6 miles.
Zenith altitude: $\mathbf{3 6 . 9}$ miles.
Experiments: Cosmic radiation.

[^7]DEACON
SUl-5

SEACON
29 August 1952
Agency: State University of Iowa.Location: $77^{*} 20^{\prime}$ North, 72^{*} 50' West:

Time: 1655 EST.

Launching altitude: 7.8 miles.
Zenith altitude: 39.8 miles.
Experiments: Cosmic radiation.
Agency: Iowa State University.
Location: 77° 11' North, 71° 13' West.
Time: 0511 EST.
Launching altitude: 8.1 miles.
Zenith altitude: 39.8 miles.

DEACON

Location: 77 11^{\prime} North, $71^{\circ} 13^{\prime}$ West.
Launching altitude: 8.1 miles.
Zenith altitude: 39.8 miles.
Experiments: Cosmic radiation.

Agency: Iowa State University.
DEACON
SULB
Location: 42" 26.2^{\prime} North, $70^{\circ} 22^{\prime}$ West.
Time: 1727 EST (balloan release).
Launching altitude: 13.7 miles (balioon altitude).
Zenith altitude: Rocket did not fire.
Experiments; Cosmic radiation.

DEACON
Agency: Iowa State University.
19 July 1953
Location: $43^{\circ} 04^{\prime}$ North, $65^{\circ} 07^{\prime}$ West.
Time: 0530 EST (balloon release).
Launching altitude: 13.8 miles (balloon release).
Zenith altitude: Rocket did not fire.
Experiments: Cosmic radiation.

DEACON

SUl-10
Agency: State University of Iowa.
Location: $43^{\circ} 41^{\prime}$ North, $63^{\circ} 28.5^{\prime}$ West.
Time: 1055 EST (ballion release).
Launching altitude: 13.8 nalles (balloon altitude). Zeuith altitude: Rocket did not fire.

Experiments: Cosmic radiation.

UPPER AIR ROCKET SUMMARY

Agency: State University of Iowa.
Location: 44* 16r North, 82* 09.5' West. Time: 1657 EST (ballcor release).
Luunching altitude: 14.4 miles (balloon altitude). Zerith altitude: Rocket did not fire.

Experiments: Cosmic radiaiion.

DEACON
SUL-12
Agency: Iowa State University.
Location: $58^{\circ} 32.5^{\prime}$ North, $81^{\circ} 55^{\prime}$ West.
Time: 1640 GCT (balloun release).
Launching altitude: Balloon cut down.
Zenith altitude: Rocket did not fire.
Experiments: Cosmic radiation.

DEACON
SUH-13
28 July 1953
Agency: Iowa State University.
Location: $62^{*} 30.5^{\prime}$ North, $84^{\circ} 13.5^{\prime}$ West.
Time: 1104 GCT.
Launching altitude: 10.8 miles.
Zenith altitude: 54.8 miles.
ivaperiments: Cosmic radiation.

DEACON SUH-14
3 August 1953
Agency: Iowa State University.
Location: $62^{\circ} 4^{\prime}$ North, $66^{\circ} 15^{\prime}$ West. Time: 1948 GCT,
Launching altitude: 8.0 miles. Zenith altitude: Uncertain.

Experiments: Cosmic radiation.
Agency: Iowa State University.
Location: $64^{\circ} 20^{\prime}$ North, $59^{\circ} 06^{\prime}$ West.
Time: 1651 GCT .
Launching altitude: 8.5 miles.
Zenith alitude: 40.7 miles.

DEACON
SUI-15
6 August 1953

Experiments: Ccsmic radiation.

Agency: Iowa State University.
Location: $65^{\circ} 13{ }^{1}$ North, $58^{\circ} 35^{\prime}$ West.

Agency: Iowa Stato University.

Location: 74* 23^{\prime} North, 71* 56' West.
Time: 0801 GCT.
Launching altitude: 12.9 milles.
Zenith altitude: 61.6 miles.
Experiments: Cosmic radiation.

Agency: Iowa State University.
DEACON SUH 18

Location: $53^{\circ} 06^{\prime}$ North, $55^{\circ} 05^{\prime}$ West.
Time: 1400 GCT (balloon release).
Launching altitude: $\mathbf{8 . 3}$ miles.
Zenith altitude: Rocket did not fire.
Experiments: Cosmic radiation.
Agency: State University of Iowa.
Location: $52^{\circ} 47^{\prime}$ North, $55^{\circ} 24^{\prime}$ West.
Time: 1620 GCT (balloon release).
Launching altitude: 11.9 miles (balioon altitude).
Zenith altitude: Rocket did not fire.

Experiments: Cosmic radiation.

Agency: Iowa State University.
30 August 1953
Location: 53° 08' North, $54^{\circ} 45^{\prime}$ West. Time: 2156 GCT.
Launching altitude: 13.3 miles.
Zenith altitude: 64.4 miles.
Experizients: Cosmic radiation.

Location: $44^{*} 501$ North, $57^{\circ} 13^{1}$ West.

Leunching altitude: 12.7 miles.

Zenith altitude: Uncertaln.
Experiments: Cosmic radlation.

Agency: Iowa State University.
DEACON
SUL-22
Location: 44° 45' North, $57^{\circ} 10^{\prime}$ Weet.
Time: 1247 GCT.
Launching alittude: 12.7 miles (approxdmately). Zenith altitude: 64.4 milea.

Experiments: Cosmic radtation.

Agency: Iowa State University.
Location: $44^{4} 33^{\prime}$ North, 57^{+}03' West.
Time: 1510 GCT.
Launching alittude: 12.2 miles (approximately).
Zealth alititude; 61.6 miles.
DEACON
SUH-23
3 September 1953

Experiments: Cosmic radiation.

9. THE V-2 ROCKET

Description

Characteristics - Table

Firings - Table V-2 Rocket Firings of All Agencies

Data Sheets

Figure 9.1-The V. 2 Rocket

UPPER AIR ROCKET SUMMARY

9. THE V-2 ROCKAT

The V-2 is a vertically launched rocket capable of carrying a 2200 -pound instrument load to an altitude of about 100 miles. It resembles a conically tipped cylinder with a pronounced boat tail and has a length of 46.5 ft and 2 maxdmum diameter of 65 inches; there are four equally spaced fins at the after end (cf. Fig. 8.1). Propulsive force is obtained from a liquid propellant rocket motor that is spent at an altitude of about 20 miles. It is stabilized in flight and controlled in trajectory by an internal control system. The major characteristics of the $\mathbf{V}-2$ are given in Table 8.1 and the firings are summarized in Table 8.2.

Instrumentation and Structure

The rocket consists of four major sections (cf. Fig. 8.2): a nose section, a control chamber, a mid-section, and a tail section. Upper adr instrument space is contained in the nose section, control chamber, and tail section. The removable nose section is separated into a pressurizable nose cone, which provides 4 cu ft of instrument space, and a warhead base section; which provides 14 cu ft of ingstrument space. The unpressurized control chamber is removable and is divided into quadrants, two of which are available for upper air instruments. The total volume of the control chamber is 52 cu ft. Relatively large and unpressurized volumes are available within the tall section for instruments, and in some cases small objects have been installed in the tail fins. An uapressurized region between the propellant tanks can also be utilived, but with extremely limited access.

No special racks or structures are utilized with the V-2 for mounting instruments and, except in very unusual cases, forward instrument weight causes no concern because It is usunily necessary to add counter weights at the base of the nowe section in order to establish an acceptable margin of aerodynamic stablity.* The V-2 is very heavily constructed to withstand a considerable amount of handling because it was primarily" designed as an artillery weajon.

The two remaining control chamber quadrants are devoted to the rocket controls and distribution circuits. The mid-section houses the two propellant tanks, and the tail section houses the fuel pumps, steam plant, control servos, and the rocket motor.

Electrical Wiring and Antennas

Electrical connections and r-f transmission cables are routed from the forward to the after portions of the rocket within the mid-section shells. External circuits from the blockhouse for the control, monitoring, and auxiliary powering of upper air instruments within the rocket are connected through two pull-away receptacles at the base of the rocket. These connectors are disengaged by upward motion of the rocket. Slimilar eircuits for the rocket controls and propulsion systems are connected through two receptacles in the control chamber. These connectors are electrically ejected just prior to the initiation of full rocket thrust.

[^8]
Propulsion

The regenerative-type rocket motor burns a mixture of alcohol and Lquid oxygen. These two liquids are injected into the combustion chamber by propeliant pumpa driven by a steam turblne which is powered by the rapid decomposition of concentrated hydrogen peroxide. The propulsion system is semi-sutomatic in operation and is manually controlled in stages. During preliminary stage the propeliants flow into the motor under the influence of gravity and are ignited by a pyro-technic "pinwheel" insarted into the combustion chamber through the nozzle. When a good burning pattern has been observed to develop, the steam plant is placed iato operation and full thrust is developed. Fuel cutofi can be accomplished in various ways: the motor can be allowed to burn until one of the propellants has been exhausted; the thrust can be cut back to about $1 / 3$ of tis normal value and the motor allowed to burn until propellant exhaugtion; the thrust can be cut back and then cut off; or the radio cutoft receiver can be used to cause complete cutafl.

Control and Stabiltzation

During powered flight the rocket is stabilized in the pitch, yaw, and roll axes by internal controls. Error signals from gyro pickoffs are doubly differentiated, amplified, and fed to selected solenoid control valves by an electronic raixer-computer system. For pitch, yaw, and roll corrections these valves control hydraulic servos which rntate carbon vanes projecting into the rocket jet in the pitch and yaw planes. Two trim tabs at the outboard trailing edges of the fins in the pitch plane are mechanically linked with their counterpart jet vanes. The rema'ning two trim tabs are independently operated by their own servo mechanisms. The control system also contains a method of introducing any predetermined program angle of trajectory control by an automatically timed system.

Firing Platform

V-2 rockets are not statically fired prior to flight tiring and, consequently, do not require the use of a firing pit. A calibration operation takes place prior to rocket asesembly in which the steam plant is operated, but without fuel ignition. The firing platform is installed on 2 concrete apron and a flame deflector at the platiorm base directs the rocket jet aloug the ground. The rocket may be directed in azimuth by manually rotating the firing platform prior to firing.

Design, Development, and Firing Services

The V-2 was designed in Germany during World War II. After a number of these rockets were captured and shipped to the United States, the General Electric Company was contracted by the U.S. Army Ordnance Department to assemble, test, and fire the rockets. During the later stages of the firing program, the General Electric Company provided gyros, mixer-computers, wiring, servo motors, and propellant piping to replace those German parts that had deteriorated with age. Supporting services are provided by the White Sands Proving Ground.

Figure 9.2-The V-2 Rocket, cross-sectional view

TABLE 9.1

CHARACTERISTICS OF THE V-2 ROCKET

DIMEMNEIONS

Total Length (of White Sands V-2 with

American built nose)	558 in.
Maxdmum Diameter	65 in.
Fin Span	140 in.

WEIGETS
Airtram (including fuel pumps, turbine, air ilasics, propulsion unit, and control equipment)
Propellants (average weight at launching) Payload (includes balliatics instruments, telemetering and rewearch equipment)
Grose at Leunching

6,500 lb
19,500 lb
$2,500 \mathrm{lb}$ (nominal). $28,500 \mathrm{lb}$

INSTRUMENT SPACE
 Nose Cone

Generally precsurized; conical in ahape; detachable.

Apex angle Height Base diameter Volume Static load Material

Warhead Base Eection

Height
Top diameter
Base dlameter
Volume
Static load
Material
Control Section

Helght
Top diameter
Base diameter
Volume (of 2 quadrantst)
Static load
Materlal

Other

25 deg.
50 in.
24 in.
4 cu it
0.125 in a aluminum.

Cemerally preasurized; approximately truncated cone In shape; detachable.
anterna capacity Used

Others Porsible

PERPORMANCE
Maximum Altttude
Time to Zenith
Fugbt Duration
Time Above 18.6 miles

PLIGET CHARACTMRESTICS

Acceleration
Duration of Acceleration
Maximum Velocity
Maximum Dynumic Pressure
gladn Temperature. Rive
Vibration Characterietica

Outrigger turnstiles on two fins. Outrigger wires between four fins. Trailing rods in two fins. Strips on trailing edge of two fins. Two insulated doors in control section. Wires from body to tins. Slots in apecial nose section.

Notches in four tins. Slots in body. Whips on body. Probe at nowe.

100 miles (nominal with 2200 lb payload) $\dagger \dagger$
220 sec (average)
425 mec (average) 345 acc

1 g at takeoff to about 6.6 at burnout.
68 anc (approximataly)
1600 meters per aec
13 lb per eq in.
$140^{\circ} \mathrm{C}$ on nowe cone.
Conatruction of equipenent to aircraft apecificationse appears to be adequate.
Vibration precent oniy during burning period.

Aspect Behavior
 Powered flight
 Consting flight

> Stabilized in roll, pitch, and yaw by control system.
> Not controlled; normal roll period about 10 sec, precession likeiy, tumble posmible.
*Instrumentation not normally installed on nose cone kin, loads taken by upper bulkhead
of warhead bsere section.
**Static loadn greater than this are permiseible with atructural strengthening of rocket.
†Two of the four control section quadrante mre available for research instrumente, the remaining two quedranty are employed for rocket control equipment.
††Beat probable performance; avorage performance generally poorer than thim. Altitudee up to 132 miles heve been achieved.

TABLE 9.2

V-2 ROCKET FIRINGS OF ALE AGENCIES

$\mathrm{V}-2$ ROCKETS	DATE	$\begin{aligned} & \text { TLME } \\ & \text { (LCT) } \end{aligned}$	ALTITUDE (MILES)	AGENCY	EXPERIMENTS
1	15 Mar 46				Static firing; no UAR experiments
2	16 Apr 46	1447	3.4	GE	Cosmic radiation (APL)
3	10 May 46	1415	70.0	GE	Cosmic radiation (APL)
4	29 May 46	1410	69.7	GE	Cosmic radiation (APL)
5	13 Jun 46	1640	73.0	GE	Solar radiation, ionosphere (NRL)
6	28 Jun 46	1203	67.0	NRL	Cosmic radiation, solar radiation, pressure, temperature, ionosphere
7	8 Jul 40	1230	83.5	GE	Cosmic radiation, ionosphere (NRL)
8	19 Jul 46	1211	3.0	GE	Ionosphere (NRL)
θ	30 Jul 46	1240	100.4	APL	Cosmic radiation; ionosphere (NRL); biological (Harv. U.)
10	15 Aug 46	1100	4.0	PU	Cosmic radiation
11	22 Aug 46	1015	0	ARDC	Pressure, density, ionosphere, sky brightneas
12	10 Oct 46	1102	108.0	NRL	Cosmic radiation, solar radiation, pressure, temperature, ionosphere; blological (Harv. U.)
13	24 Oct 46	1218	65.0	APL	Cosmic radiation, solar radiation, winds, photography
14	7 Nov 46	1331	0.2	PU	Cosmic radiation
15	21 Nov 46	1000	63.0	ARDC	Pressure, temperature, lonosphere, sky brightness
16	5 Dec 48	1308	85.0	NRL	Cosmic radiation, solar radiation, pressure, temperature, photography
17	17 Dec 46	2218	114.0	APL	Cosmic radiation, meteorites; biological (NIH)
18	10 Jan 47	1413	72.2	NRL	Cosmic radiation
19	23 Jan 47	1722	31.0	GE	No UAR experiments
20	20 Feb 47	1116	68.0	ARDC	Pressure, ionosphere, sky brightness, biological, photography
21	7 Mar 47	1123	101.0	NRL	Cosmic radiation, pressure, temperature, solar radiation, tonosphere, photography, biological (Harv. U.)
22	1 Apr 47	1310	80.3	APL	Cosmite radiation, solar radiation, photography
23	8 Apr 47	1713	63.5	APL	Cosmic radiation, solar radiation, photography
24	17 Apr 47	1422	88.5	GE	Pressure, temperature (SCEL)
25	2 Apr 48	0840	89.5	SCEL	Density, pressure, temperature, composition; cosmic radiation, solar radiation (NRL)
28	15 May 47	1604	84.0	NRL	Cosmic radiation, solar radiation, temperature, ionosphere, photography
27	9 Oct 47	1215	97.0	GE	Solar radiation (NRL); pressure, composition (SCEL)

TABLE 9.2 (Continued)

$\begin{gathered} \text { V-2 } \\ \text { ROCKETS } \end{gathered}$	DATE	$\begin{aligned} & \text { TIME } \\ & \text { (LCN') } \end{aligned}$	ALTITUDE (MILES)	AGENCY	EXPERIMENTS
28	8 Dec 47	1442	65.0	ARDC	Pressure, temperature, solar radiation, sky brightness, ionosphere, photography
29	10 Jul 47	1218	10.1	NRL	Cosmic radiation, pressure, temperature, ionosphere, biological (Harv. U. \& USA)
30	29 Jul 47	0555	99.8	APL	Cosmic radiation, solar radiation, photography
31	8 Dec 49	1214	81.0	ARDC	Composition, ionosphere, meteorites, solar radiation, sky brightness
32	16 Sep 49	1610	2.6	ARDC	Composition, ionosphere, meteorites, solar radiation, sky brightness, cosmic radiation, biological
33	2 Sep 48	1800	93.6	SCEL	Density, pressure, temperature, composition
34	22 Jan 48	1812	89.0	NRL	Cosmic radiation, pressure, temperature, ionosphere
35	27 May 48	0716	86.8	APL	Cosmic radiation, solar radiation, photography; composition (SCEL)
36	6 Feb 48	1015	89.0	GE	No UAR experiments
37	11 Jun 48	0322	38.7	ARDC	Pressure, temperature, composition, ionosphere, sky brightness, solar radiation
38	19 Apr 48	1254	34.8	NRL	Cosmic radiation, solar radiation, pressure, temperature, ionosphere
39	19 Mar 48	1610	3.4	GE	Magnetic field, composition, winds, temperatures (SCEL)
40	26 Jul 48	1103	54.0	APL	Cosmic radiation, photography; pressure, temperature, composition (SCEL)
41	21 Mar 40	2343	83.0	ARDC	Ionosphere, sky brightness, solar radiation, composition, photography
42	9 Dec 48	0908	67.4	SCEL	Winds, pressure, temperature; solar radiation (NRL)
43	5 Aug 48	0507	103.0	NRL	Cosmic radiation, temperature, pressure, ionosphere, solar radiation, photography
44	18 Nov 48	1534	90.3	GE	Biological (Harv. U.); solar radiation (NRL); composition (SCEL)
45	28 Jan 49	1020	37.2	NRL	Cosmic radiation, solar radiation, pressure, temperature, ionosphere, photography
46	5 May 49	0815	5.5	GE	Solar radiation (NRL)
47	14 Jun 49	1535	83.0	ARDC	Cosmic radiation, composition, ionosphere, pressure, temperature, photography, solar radiation
48	17 Feb 49	1000	62.5	APL	Cosmic radiation, photography; solar radiation (NRL); composition (SCEL); biological

TABLE 9.2 (Continued)

$\begin{gathered} \text { V-2 } \\ \text { ROCKETS } \end{gathered}$	DATE	$\begin{aligned} & \text { TIME } \\ & \text { (LCT) } \end{aligned}$	ALTITUDE (MILES	AGENCY	EXPERIMENTS
49	29 Sep 49	0958	93.7	NRL	Cosmic radiation, solar radiation, ionosphere, meteorites, pressure
50	11 Apr 49	1505	54.2	SCEL	Temperature, composition; solar radiation (NRL); biological
51	31 Aug 50	1009	84.8	ARDC	Ionosphere, meteorites, sky brightness, density, biological
52	28 Jun 51	1443	3.6	ARUC	Solar radiation, ionosphere, sky brightness, air glow
53	17 Feb 50	1101	92.4	NRL	Cosmic radiation, solar radiation, pressure, temperature
54	18 Jan 51	1314	1.0	NRL	Cosmic radiation, solar radiation
55	14 Jun 51	-	0	NRL	Solar radiation; cosmic radiation (NIH)
56	18 Nov 48	0803	77.0	SCEL	Winds, composition, temperature; cosmic radiation (APL); solar radiation (NRL)
57	8 Mar 51	2016	1.9	ARDC	Composition, air glow, sky brightness, ionosphere
58	-	-	-	-	This rocket never fired
59	20 May 52	0906	64.3	SCEL	Composition, photography
60	29 Oct 51	1404	87.6	SCEL	Pressure, temperature
61	26. Oct 50	1602	5.0	NRL	No UAR experiments
TF-1	22 Aug 51	1200	132.6		No UAR experiments
TF-2	-	-	-	-	See V-2 Rocket No. 59
TF-3	22 Aug 52	0033	48.5	NRL	Composition, pressure, magnetic field, solar radiation; cosmic radiation (NIH); sky brightness (ARDC)
TF-4	- -	${ }^{-}$	-	-	Never fired
TF-5	19 Sep 52	0849	16.8	SCEL	Temperature, composition; cosmic radiation (NIH)
GE Sp.	20 Nov 47	1647	16.6	GE	No UAR experiments

Agency: None
TIme: 1447 MST
Altitude: 3.4 miles.

UPPER ALR INSTRUSENTS

Coamic Radiation: Single geiger counter with lead shield (APL).

DATA RECOVERY RNSTRUMENTS

Telemeter: None
Recordor: Brass tape recorder (APL).

BALLISTIC INBTRUMENTS

Firing Range

Optical Instruments: None recorded
Radar: A modified SCR-584 S-Band station

Aurborne

Beacon: S-Band transponder
Radio Cutoff: AN/ARW-17. FM control receiver for command fuel cutoif.

ROCKET PERFORMANCE

F'iring angle: 0.0 degrees
Program angle: No data
Time to burnout: 19.0 sec .
Altitude at burnout: No data
Velocity at burnout: No data
Time to zenith: No data
Alttude at zenith: 3.4 miles
Time to blowotf: No blowofi installation
Altitude at blowoff:
Flight duration: No data
Impact Coordinates: 0.0 miles north, 8.0 miles east
Payload welght: No data (about 2200 lbs .)
Urfueled rocket weight: 8530 lbs.
Unfueled rocket C. G.: No data
Gross welght at takeoff: No data

BALLISTIC DATA

None recorded.

DATA RECOVERY

Recorder: Did not operate, rocket did not attain sufficient acceleration to actuate "g" switch. Physical recovery: Rocket demolished

EXPERMENTAL DATA

None.

COMMENTS

Rocket Performance: Control system fallure, broken jet vane, fuel cutoff by radio at 19.5 sec when rocket deviated 90 degrees to east. Structural fallure of fin 4 prior to cutoff. Rocket demolished at impact from explosion of unused propellants.

REPORTS AND PAPERS

Project Hermes Report of 21 Aprill 1946.

REPORTS AND PAPERS (C'ont'd)

"V-2 Report No. 3," Minutes of V-2 Upper Atmosphere Research Panel.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52A0510, General Electric Co., September 1952.

Agency: None
Time: 1415 MST
Altitude: 70.0 milles

UPPER AIR INSTRUMENTS

Cosmic Radiation: Single geiger counter and Cosmic Ray Emulsions. (APL) Other: Exposed and unexposed film for wreckage study.

DATA RRCOVERY INSTRUMENTS

Telemeter: None
Airborne Recorder: Single Chaunel wire recorder.

BALZISTIC INSTRUMENTS

Firlig Range

Theodolites: Two Mitchell and three Askania stations
Cameras: Two Bowen-Knapp stations
Radars: Two SCR-584, one SCR-784, and one AN/MPQ-2 station.

Airborne

Beacon: APN-55 S-Band transponder
Radlo Cutoff: AN/AKW-17 FM-control receiver for command fuel cutolf.

ROCKAT PERFORMANGE

Firing angle: 0.0 degrees
Program angle: 10.5 degrees
Time to burnout: 59.0 sec .
Altitude al burnout: No data
Velocity at burnout: No data
Time to zenith: Nu data
Altitude at eenith: 70 miles
Time to blowof: No blowofi installation
Alititude at blowoff:
Fught duration: 225 sec .
Impact coordinates: Range, 31.0 miles; 2.5 miles west of north
payload weight: 2200 lbs.
Unfueled rocket welght: 8190 lbs .
Unfueled rocket C. G.: 236 inches
Gross weight at takeoff: $27,850 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Mitchell - fair to good results; Askania trajectory 0 to 74 sec. Cameras: Trajectory, first $6,800 \mathrm{ft}$. of flight

REPORTS AND PAPERS

WSPG Firing Report of No. 3 A-4 Rocket Flired 10 May 1946
WV-2 Report No. 4," Minutos of Meeting of the V-2 Upper Atmosphere Research Panel on 3 June 1946.

Project Hermes Report for Month of May 1946
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52A0510, Gereral Electric Co., September 1952.

IDENTIFICATION

Agency: General Electric Company
TIme: 1410 MST
Altutude: 69.7 miles

UPPER AIR INSTRUMENTS

Cosmic Radiation: Single Geiger Counter (APL).

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 11 channel PPM/AM system.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and three Askania stations Cameras: Two Bowen-Knapp Stations Radar: Two SCR-584, and two AN/MPQ-2 stations Doppler: Four stations.

Airborne

Beacon: A.PN-55 S-Band transponder
Doppler: DOVAP transcelver
Radio Cutoff: AN/ARW-17 FM control receiver for command fuel cutolif
Other: X-Band crossjet attenuation transmitter and recelver (NRL) Attitude Gyros
Longitudinal accelerometer Routine rocket performance instruments.

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: 9.9 degrees
Time to burnout: $60.2 / 63.1 \mathrm{sec}$
Altitude at burnout: 19.2 milles
Velocity at burnout: 4100 ft , per sec.
Time to zenith: No data
Altitude at zenith: 09.7 miles
Time to blowoff: No blowofi Installation
Altitude at blowoff:
Fight duration: 348 sec.
Impact coordinates: 37.6 miles north, 13.5 miles west
Payload weight: 2200 lbs .
Unfueled rocket weight: 8696 lbs .
Unfueled rocket C. G.: Approx. 241 inches
Gross weight at takeoff: $27,800 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Askania, trajectory 0 to $348 \mathrm{sec} ;$ Mitchell, trajectory 0 to 348 sec .
Cameras: Bowen-Xnapp, trajectory 0 to 348 sec .
Radar: Beacon operation until final part of trajectory
Doppler: Data taken successfully
Impact Location: By Air and ground search
Other: No report of data.

DATA RECOVERE

Telerneter: Total recording time 280 sec., operation sporadic at times
Physical recovery: Rocket struck intact. Recoverable specimens from crater and radius of 100 yards.

EXPERMMENTAL DATA

None recorded.

COMDENTS

Rocket performance: Normal filght, rocket drift 13 miles to west possibly due to high altitude winds. Foll rate 8 rpm . Propulation terminated in two atages by rocket interrator. Ballisic instrumenta: Automatic radar tracking inferior to optical directing.

REPORTS AND PAPERS

Project Hermes Report No. 17, May 1946
WSPG tiring Report of No. 4 A-4 Fired 29 May 1046
"V-2 Report No. 4," Minutes of meeting of the V-2 Upper Atmosphere Rocket Research Panel on 3 June 1046
"Final Report, Project Hermes V-2 Missile Program;" by L. D. White, Report No. R58A0510, General Electric Co., September 1952.

Agency: Genoral Electric Company
TIme: 1640 MEST
Altitude: 75.0 milles.

UPPER AIR INETRUMENTS

Solar radiation: Solar uitra-violet apectrograph (NRL)
Ionomphere: Ion consitias by rf propagation transmitters (NaL).

DATA RECOVERY DIGTRUMENTS

Telemuter: NRL 18 channel PPM/AM syetam Phymical recovery: No blowup inmallition.

BALLTSTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitcholl and three Ambenia stations
Cameras: Two Bowen-Knapp atations
Radar: SCR-584 with T14E1 plotting board
Doppler: Four stetions.

Airborne

Beacon: APN-55 8-Band tranepondar
Doppler: DOVAP trancenver
Radio Cutott: AN/ARW'-17 FM control recelver for command fuel eutoth Other: Routine rocket performance instrumentation.

ROCKET PERFORMANCE .

Firing angle: 0.0 degrees
Program angle: 9.3 degrees
Time to burnout: $58.5 / 61.2$ sec.
Alistude at burnout: 10.1 mallem
Volocity at burnout: 4220 ft . per sec.
Tlme to zenith: 103 sec.
Altitude at zenith: 73.0 milles
Time to blowoth:
Aititude at blowoff:
Flight duration: 356 sec .
Impact coordinates: 40.0 miles north, 1.5 miles west
payload welght: 2205 llas.
Unfueled rocket welght: 9288 lbs .
Unfueled rocket C, G.: 240.2 inches
Groms weight at takeoff: $28,396 \mathrm{lbe}$.

ballustic data

Theodolites: Mitchell and Askania produced aatinfactory recudible records Other: No satiufactory records from other firing range instruments rmpact location: From theodolite fixes and adr and ground eearch.

DATA RECOVERY

Telemeter: Approx. 380 nec recorded data. Intermittent from poor antenna aspect caused by rocket roll
Phyaical rocovery: Rocket atruck intact in malt fiate adjacent to White Sands, crater filled with wator, fow eragments found.

EXPERIMENTAL DATA
Solan radiation: No data
Ionomphere: Signal recelved 70 to 170 mec from one transmilter - no data.

comments

Rocket performance: Trajectory as calculatod. No alr burst achieved although alcobol tank prescurized. Propulition terminated in two stages by rockot integrator.
Experincents: Two of three ioposphere antennas probably torn of during flight, Spectrograph pot recovered.

REPORTS AND PAPERS

W8PG Report of No. 5 A-4 Rocket Fired 13 June 1946
Project Hermse Report No. 17, June 1946
"Final Report, Project Eermea V-2 Mismile Program," by L. D. White, Report No. R58A0510, General Electric Co., September 1952.

Asency: Naval Research Laboratory
Time: 1205 yosT
Altitude: 67.0 millom.

UPPER AIR DNSTRUMEXNTG

Commic radiation: Gelger counter telescope to identify primary radiation
Solar radiation: Ultra-violot spectrograph
Pressure-temperature: Sidn temperature gages on nose, midection, and tall mection of rocket.
Stacnation proacure at nose tip. Ambient prossure in spectrograph came.
Ionomphore: Three propagation tranmitters for Ion denaity studien.

DATA RECOVERY

Tolemotor: PXTA-501, 25 channel NRL PPM/AM syatem
Physical recovery: Nose euction soparation explosives in control chamber.

BALLESTIC INETRUMENTS

Firing Range

Theodolites: Five Aekenia stations
Cameras: Two Bowen-Kcmpp atations
Tolescopen: None
Radar: Two modilied SCR-584 s-band atationa
Doppler: Four etations
Impact location: None.
Airborne
Beacou: S-band tranmpondor
Doppler: DOVAP transcelver
Fadio cutoff: AN/ARW-17 FM control recelver for commend fuel cutott
Other: Routine rocket propulition and control performance instrumenter pitch rate gyromcope. (Genaral Electric Company.)

ROCKET PERFORMUNCE

Firing angle:

Program anglo: 11.4 dagrees
Time to burnout: 66.8 sec .
Altitude at burnout: 19.4 miles
Velocity at burnout: 4075 ft . per sec.
Time to zenith:
Alttude at genith 87.0 miles
Time to blowoff: 320 sec .
Altitude at blowoll: 17.4 miles
Flight duration: 353 sec .
Impact coordinates: 41.0 miles north and 0.5 miles east
Payload welght: 2727 lbs.
Unfueled rocket weight: 9807 lbs .
Unfueled rocket C. G.:
Gross weight at taksoff: $27,850 \mathrm{lbs}$.

BALlustic Data

Theodolites: Satisfactory records from three stations
Cameras: Satiafactory records from one station
Tolescopes: None
Radar: No data, beacon failed at takeoff
Doppler: No data, record incomplete or irreducible
Impact location: Air and ground search.

DATA RECOVRRY

Tolemeter: Recordi poor 0 to 89 nec., natinfactory 89 to 232 mec. Phyalcal recovery: Nose did not moparate, rocket dectroyed at impact.

EXPPRTIDNTAL DATA

Commic Radiation: Data above 38 milen uhowincreace in counting rate Eldn Temperature: Temperature rise batwen 90 to 230 sec. obeerved ronoaphere: No date, no algnale roceived from propegation tranamitters.

RMPORTE AND PAPMR8

"Upper Atmoaphare Recearch Roport No. 1," M. A. Garuten, H. E. Nowoll, and J. W. Biry, Editory, Naval Research Laboratory Report No. R-2958, 1 October 1946.
"Roview of the Romulte of the Bollintic Rnatrumentation Program for V-2 Work," unsigned, Balliatic Remearch Laboratorien, Abordinen Proving Ground, 1046.
"F-2 Report No. B," Misuters of Moeting of the V-2 Upper Amomphore Rosearch Panol on 9 July 1946, dated 15 July 1946.
"V-2 Report No. 6," Minutas of Meating of the V-2 Uppor Atmomphore Remoarch Panel on 6 geptember 1946.
"Final Roport, Project Hermas V-2 Miedle Program," by L. D. White, Ruport No, RbaA0610, General Electric Company, Soptember 1052.

Agency: General Electric Company
THme: 1230 MST
Altituda: 89.6 miles.

UPPER AR DNETRUMENTS

Commic ratiation: Four packeges of commic ray emulations
Ionomphere: Indirect ion density measuromonts with rf propagation trawenitters (NRL)
Biological: Selected reeds. (Harvard Univargity).

DATA RECOVERY DNGTRUNENTS

Tolemeter: MRL 22 channel PPM/AM syatem.
Phymical recovery: rijection mechaniam with drag plates (aRL).

BALLTETIC RNSTRUMEENTS

Firing Range
Theodolites: Two Mitchell and two A arania atations
Cameras: Two Bowen-Xxupp atations
Touchlay Tolescopeg: One atation
Radar: Modified ECR-584 8-band radar
Doppler: Four atations.

Alrborne

Beacon: APN-55 (XXe-2) 8-band transponder
Doppler: DOVAP tranaceiver
Redito cutoff: AN/ARW-17 FII conirol receiver for command fuel cutoff and ejection
Other: X-band crosejet attenuation transmitter and recelver (NRL)
Routine rocket periormance instruments.

ROCKET PEREORMANCE

Firing angle: 0.0 degrees
Program angle: 12.4 dagrees
Time to burnost: 80.6 enc.
Autitude at burnout: 19.5 miller
Velocity at burnout: 4680 ft . per sec.
Time to menith: No data
Aldtude at genith: 83.6 miles
Time to blowoti:
Altitude at blowoff:
Fitght duration: 402 aec
Impect coordinates: $\mathbf{0 1 . 0}$ miles north, 1.0 mile east
Payload welght: 2050 lbs.
Unfueled rocket welght: 8977 lbs.
Unfueled rocket C. G.: 240.9 inches
Grose welght at takeoff: 27,850 lbs.
BALLISTIC DATA
Theodolltes: Good results from Mitchell and Askanias
Cameras: Good results from Bowen-Knapp
Telescope: Records incomplete or irreducible
Radar: Trajectory conrdinates, 0 to 402 sec .
Doppler: Very poor, weak signal
Impact location: Air and ground search.

DATA RECOVERY

Telemeter: Good ulgnal throughout trajectory
Physical recuvery: Fragments of ejection block up to 0.5 mi from rocket impact. Emulsions, seeds badly damaged, unusable.

EXPERDEENTAL DATA

Cosmic Radiation: No data, emulsions destroyed at impact
Ionosphere: No significant data, last algnal received from rocket 70 sec. after takeoff.

COMMENTS

Rocket Performsnce: Good propulsion, terminated by rocket timer, actual trajectory angle greaier than preset program angle.

REPORTS AND PAPERS

WSPG Preliminary Firing Report, A-4 Rocket No. 7, Fired 9 July 1948.
Telematering Data, DF-71393 G. E. Rocket No. 3, 9 July 1946.
"V-2 Report No. 5 ;" Minutes of meeting of the V-2 Upper Atmosphere Research Panel on 9 July 1946.
"Final Report, Project Hermes V-2 Missile Pragram," by L. D. White, Report No. R52A0510, General Electric Company, Soptember 1052.

Agency: General Electric Company
Time: 1211 MST
Altitude: 3.0 miles.

UPPER AIR INSTRUMENTS

Ionosphere: Test of ionosphere propagation transmitters (NRL).

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-E01, NRL 21 channel PPM-AM system Phyaical recovery: Ejected block with drag plates (NRL).

BALEISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and two Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: One station
Radar: One modified SCR-584 S-Band station
Doppler: Four stations
Impact location: none.

Airboanc

Beacon: AN/APN-55 (XE-2) S-Band transponder
Doppler: DOVAP transceiver
Radio Cutoff: AN/ARW-17 FM control receiver for command fuel cutoff Other: Instruments to measure rocket propulsion and control performance.

ROCKET PERFORMANCE

Firing Angle: 000 degrees
Program angle: 5.65 degrees
Time to burnout: Exploded at 28.5 sec.
Altitude at burnout:
Velocity at burnout: 1310 ft per sec.
THme to zenith: 28.3 sec .
Alttude at zenith: 3.0 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 0.5 miles North, 0.0 milles East West
Payload weight: 2105 lbs .
Unfueled rocket weight: 9167 lbs .
Unfueled rocket C. G.: 242.8 inches
Gross weight at takeoff: $28,840 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Askania trajectory data 0 to 20 sec .
Cameras:
Telescopes: No data, timing circuit falled
Radar: Trajectory data 0 to 28 sec.
Doppler: Good signals 0 to 30 sec .

DATA RECOVERY

Telemoter: Good signals 0 to 28 sec.
Physical recovery: Tail section scattered over wide area, remainder fell in one piece, ejection device did not operate due to short flight time.

EXPERIMENTAL DATA

Ionosphere: No signals received from transmitters.

COMMENTS

Rocket performance: Overheated oxygen pump bearing caused explosion Optical tracking: Heavy cloud cover obscured rocket past 20 sec.

REPORTS AND PAPERS

Telemetering Data DF-71395, G. E. Rocket No. 4.
Project Hermes Weekly Report, General Electric Company, 22 July 1946
Preliminary Report of V-2 Firing, WSPG, 19 July 1946
Report No. 685, by H. P. Hitchcocd, Ballistics Research Laboratories, Aberdeen Proving Ground, April 1949
Report No. 639, by H. P. Hitchcock and V. M. Relalis, Ballistic Research Laboratories Aberdeen Proving Ground, October 1947
*Upper Atmosphere Research Report No. 1," by M. A. Garstens, H. E. Newell, and J. W. Siry, Editors, Naval Research Laboratory Report No. R-2955, October 1946.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52a0510, General Electric Company, September 1952.

DENTIFICATION

36 July 1946
Agency: Applied Physics Laboratory
Time: 1240 MST
Alttude: 100.4 miles.

UPPER AIR INSTRUKIENTS

Cosmic radiation: Two geiger counter telescopes, and Alpha Particle emulsions Ionosphore: Indirect ton density measurements by means of rf propagation transmitters (NRL).

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 23 channel PPM/AM system
Recorder: Two steel drum recorders
Physical Recovery: Warhead separation explosives in Control Chamber.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and six Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: One station
Radar: One modified SCR-584, S-Band radar or sub-station.
Doppier: Four stations.
Atrborne
Baacon: AN/APN-55 (XE-2), S-Band transponder
Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff
Other: Single roll photocell
Routine rocket performance instruments (G. E. Co.)

ROCKET PERFORMANCE

Firing Angle: 0.0 degrees
Program ailgle: 11.3 degrees
Tima to burnout: 68.6 sec .
Altitude at burnout: 25.1 miles
Velocity at burnout: 5130 ft . per sec.
Time to zenith: 233 sec .
Altitude at zanith: 100.4 miles
Time to blowoff:
Altitude at blowoff:
Flight duration:
Impact coordinates: 68.0 miles Nosth, 9.2 miles East
Payload welght: 2500 lbs
Unfueled rocket weight: 8562 lbs.
Unfueled rocket C. G.: 244.4 inches
Gross weight at takeoff: $28,600 \mathrm{lbs}$,
ballistic data
Theodolites: Mitchell, record incomplete or irreducible; Askania trajectory data 0 to 98 sec .
Cameras: Satisfactory reducible records
Telescope: Record incomplete or irreducible
Radar: Record incomplete or irreducible
Doppler: Record Incomplete or irreducible
Roll photocells: Questionable data.

DATA RECOVERY

Telemeter: Good record to 160 sec .
Recorders: No record, not recovered
Physical recorery: Warhead not recovered, but main body recovered in fair condition.

Cosmic radiation: Maximum counting rate at 50 sec was 45 times greater than ground rate singie counter data
Ionosphere: Intermal fallure of three transmitters betwean 44 and 75 sec , no experimental conclusions.

COMEAENTS

Rocket performance: Very grod propulsion performance Experiments:

REPORTS AND PAPERS

WSPG Preliminary Report of A-4 Rocket No, 9, Fired 30 July 1946
"High Altitude Research Using the V-2 Rocket,"March 1946-April 1947, by L. W. Fraser and E. H. Siegler, Bumblebee Series Report No. 81, July 1948
"V-2 Report No. 6," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 5 September 1946
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52A0520, General Electric Company, September 1952.

IDENTIF'ICATION

Agency: Palmer Phyaics Laboratory, Priaceton Uniwersity
Time: 1100 MBI
Altitude: 4.0 milas

UPPER AIR INSTRUMENTS

Cosmic radiation: Geiger counter telescope to meanure total coamic ray intensity Two neutron counters Shielded Ionization chumber
Ionosphere: Propagation tramsmitters, low frequency ayptem on ground and high frequency transceivor in rodket.

DATA RPCOVRRY

Telemeter: PXTA.501, 28 channel NRL PPM-AM pulse sequential system Four channel tark FM-FM gyitem
Alrborne recorder: Brass tupe recorder
Physical recovery: Nose separation with TNT and primacord.

Time to burnout: $18.5 \mathrm{sec} .$, radio fuel cutoff
Altitude at zenith: 4.0 miles
Comments: Steering control falled shortly after takeoff and rocket began a large deviation from range center. One fin was torn off about the time of fuel cutoff. Unburned propellants exploded at impact.

EXPELIMENTAL DATA

Commenits; No data obtained.

REPORTS AND PAPERS

"Review of the Reaults of the Ballistic Instrumentation Program for Y-2 Woris," Ballistle Research Laboratories, Ajerdeen Proving Ground, 1946
"V-2 Report No, 8," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 5 September 1048
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R62A0510, General Electric Company, September 1952.

Arency; Alr Research and Development Command TIme: 1015 MST
Altitude: 330 teet.

UPPERE ATR INSTERMENTS

Preasurentemperature: Ion type gage to measure atagnation prossure on head of truncated cone. Four lon type gages to meanurs preasure on cone aurface (Mch. U.)
Ionosphere: Ion danaty meaturementy with programmed bl-polar probes (Mich. U.), Incidence ionomuhere propagation experiment (AFCRC)
Other: Daylight aky brightaese by phototubea with wide-band fitera (AFCRC), Atmouphere temperature and denisity in the ionowphere with ioniantion gagem in nose plece. (Mich. U.).

DATA RECOVERY INBTRUMENTS

Telemeter: NRL 23 channol PPM/AM aystem.

BALLIBIIC INSTRUMENTS

Firing Range

Theodolitem: Two Matchell and Cour Askania atations
Cameras: Three Bowen-Knappjetations
Radar: Modified SCR-584 8-Band station
Doppler: Four atations.

Arborne

Beacon: AN/APN-55 (XE-2), 8-Band transponder
Doppler: DOVAP transcelver
Radlo cutoff: AN/ARW-17 F'M control recelver for command fuel cutoff Other: Routine rocket performance instrumenta (G. E. Co.)

ROCKET PERFORMANCE

Completa failure of control ayatem ahortly after takeoff and fuel cutolf by radio command at 6.5 sec. Moximum altitude, 390 it. Flight duration of 11 dec.

BALLISYIC DATA

Complete record of data from all sources except the telescope.

DATA RECOVERY

Telemeter: Completerecords for duration of fight.

EXPERIMFNTAL DATA

All equipment apparently functioning normally, no data because of rocket fadlure.

REPORTS AND PAPERS

WSPG preliminary Firing Raport of A-4 Rocicet No. 11 fired 22 August 1946.
"V-2 Report No. 6," Minuies of Meeting of the V-2 Upper Atmosphere Research Panel on 5 September 1846.
*Atmosphere Presaure and Temperature Measurements Between the Altitudes of 40 and 110 Kdlometers," Upper Air Research Report No. 2, by Enpineering Research Institute, University of Michigan, July 1848.
Air Materiel Command, Cambridge Fiald Station, "Upper Air Research Program," Report No. 1, September 1847.
University of Mithigan, Bi-Polar Probe Experiment: Phy. Rev. 76, p. $98 \%, 1949$.
"Final Report, Projoct Hermes V-2 Misaile Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1852.

Agency: Naval Remearch Leboratory
Time: 1102 Miss
Altitude: 108.0 miles.

UPPYER AIR DNSTRUMENTS

Cosmic Radiation: Gelger counter telsucope
Solar radiution: Solar ultra-violat mpectrogrmph
Pressure-temperatura: grin temperature gages on nome tip, nose cone, control chamber, and batween fins on tall mection.
Presiure gages on tall section ahead of fins
Ionomphore: Indirect ion density measurements by radio propagation experiment
Other: Selectod Seeds (Harvard College)
Crome jot attenuation tranamiltor und receiver.

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 21 channel PPM/ AM ayatom
Alrborne recorder: NHL 10 channel neon lanup camera recorder Phymical recovery: Wurhead meparation explowives in control chaniber, NRL spring ejected block with parachute and dras plates, Daughter recovery device (U, B. Army).

BALLISTIC INSTRUMENTS

Firling Range
Theodolites: Two Mitchell and elx Askania stations
Camerav: Three Bowen-Knapp atations
Telasceopes: One atation
Radar: Modified SCR-584, 8-Band station
Doppler: Four mtationm

Airborne

Bascon: AN/APN-65, (XE-2), S-Band transponder
Duppler: DOVAP tranmeelver
Rudio cutolf: AN/ARW-17 FrM control receiver for command fuel cutoff Other: Routive rock ${ }^{-}$performance instruments (G. E. Co.).

ROCKEF PERFORMANCE

Firing Angle: 0.0 degrees
Program angle: 4.7 degrees
Time to burnout: 87.7 mec.
Velocity at burnout: 5850 ft . per sec.
Altitude at burnout: 25 milles (approx.)
Time to zenth: 227 sec.
Nititude at zenith: 108 milles
Time to blowoff: 335 sec .
Altitude at blowoff: 22 miles
Flight duration: 412 sec. (rocket breakup)
Impact coordinates: 12 miles north, 5.0 miles east
payload welght: 2200 lbe. (approx.)
Unfueled rocket weight: 9,164 lbs.
Unfueled rocket C. G.: 236.2 inches
Gross weight at takeolf: 28,059 lbs.

BALLISTIC DATA

Theodolitea: Records incomplete or irreducible Cameras: Records incomplete or Irreducible Telesceopes: Satisfactory reducible record Rudar: Satisfactory reducible record Doppler: Records incomplete or irreducible Impact location: Air and ground search

DATA RECOVERY

Telemeter: Station 1 falled at 60 sec . Station 2 record complete but tor meveral ahort intervals. Probably caused by poor rocket aspect.
Physical recovery: NRL ejection device not recovered. Warhaad not recovered. Daughter rucovery device not recovered until 22 Dec. 1947. solar spectrograph recovered in excellent condition.
Airborne recorder: Located in ejection block, nuver yecavered.

EXPERMMHNTAL DATA

Comic radiation: Telescope counting rate in free apace (leme than 2 mm . Hg preasure) one third of maximum rate. Peautrating componint 70\% of total radiation. Shower rate high.
Proanura: Promsure mewurements to 00 km conform clonely with NACA atandard and Hurvard College Obeervatory data.
givin temperature; $600^{\circ} \mathrm{C}$ rise on 0.3 mm cone at nose tip, 35° rime at bottom of warhead to $60^{\circ} \mathrm{ritec} 24 \mathrm{in}$. behind nose tip (Ekin 0.8 to 11 mm . thick cone angle 1.7 degreen). $230^{\circ} \mathrm{C}$ temperature rise on 0.5 mm control chamber elin, sking temperature rose to $45^{\circ} \mathrm{C}$ at 40 enc, and foll to $-80^{\circ} \mathrm{C}$ after 100 sec.
Solar radiation: Solar mpectrograms to 88 km down to 2260 Angatroms.
lonosphere: No data from propagation experiment due to antenna fallure.

COMMENTX

Rocket performance: Propuletion and control performance very good.
Unusual rocket modifications: Solar apectrograpli houed in fairing on a tail fin, duplicate dummy housing on opposite fin.
Balliatic Trucking: Vory poor remults, sititude of rocket obtalned from preanure data.
Phymical recovery: Tall section Installation of recovery items appeury to be optimum location, warhoad locations offer laant chance.

REPORTS AND PAPERS

WSPG Preliminary Firing Report of A-4 Rocket No. 12, Fired 10 October 1946.
"V-2 Report No. 7," Minutes of Meeting of the V-2 Upper Atmosphore Remearch Panel on 4 November 1948.
Review of the Retulte of the Ballistic Rnatrumentution Program for V.z Work, Ballistios Regearch Laboratory, Aburdeen Proving Ground, March 1046.
"Upper Atmosphere Research Report No. II," by Ei. E. Newell, Jr. and J. W. Stry, NRL Report R-3030, Decomber 1046 (Commic Radiation, Solar Radiation, PreasureTemperatures, Ionoaphere, Telemetering, Theoretical diacuasions)
"Additional Cosmic Ray Measurements with the V-2 Rocket," by S. F. Gollon, I. B. Kraume, and G. J. Perlow, Phys. Rev., 70:776-7, 1046.
Solar Ultra-Violet Spectrum to 88 Kilometers, by W. A. Baum, F. S. Johnmon, J. J. Oberly, C. C. Rockwood, C. V. Strain, and R. Tousey, Phys. Kev. 70:781-2, 1046.
"Final Report, Project Hermes V-2 Miswile Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1052.

IDHNTIFICATION

Agency: Applled Phyaice Laboratory

TIme: 1218 MgT
Altitude: 65.0 milea

UPPER AR INETRUMENTS

Commic radiation: Two geiger counter telescopes
solar radiation: Ultra Violat apectrograph
Winds: Eligh artitude wind studies with amoke puffa
Photography: $\$ 5 \mathrm{~mm}$. DoVry motion picture camera.

DATA RECOVTRY INETRUMENTS

Telometer: PTXA-501, NRL 21 channel PPM-AM cyatem
Airborne recorders: Three brass tape recorders in nose, and three steel drum recorders in control chamber.
Phymical recovery: Nome meparation with TNT and prima cord; "Daughter" ejection device in miduection.

BALLIBTIC LNSTRUMENTS

Firing Range
Theodolites: Two Mitchell and three Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: One station
Radar: Two modified SCR-584 S-Band atations
Doppler: Four stations
Impact location: None

Atrborne

Beacon: AN/APN-55 (XE-2) 8-Band transponder
Doppler: DOVAP transceiv ir
Radio cutoff: AN/ARW-17 FRN control receiver for command fuel cutoff and recovery blowoff
Gyros: One roll and one yaw
Other: Rocket propulaion and steering performance instruments. (G. E. Co.)

ROCKET PERFORMLANCE

Firing angle: 000 degrees
Program angle: 4.7 degrees
Time to burnout: 59.8 sec .
Altitude at burnout: 17.0 miles
Velocity at burnout: 3990 ft . per sec.
Time to zenith: 180 sec .
Altitude ai zenith: 65.0 miles
Time to blowoff: 930 sec.
Altitude at blowoff: 5.7 miles
Flight duration:
Impact coordinates: 16.8 miles North and 2.4 miles West
Payload weight:
Unfueled rocket weight: 9070 lbs.
Unfueled rocket C. G.: 231.5 inches
Gross weight at takeoff: 28,277 lbs.

BALLISTIC DATA

Theodolites:

Cameras:
Telescopes: No data
Radar: Trajectory data 0 to 390 sec .
Doppler: Fair data 0 to 100 sec .
Aspect: No data from gyros, angular motion data from camera.

DATA RECOVERY

Telemeter: Fair to good record 0 to 180 sec ., then fading and intermittent. Phyatcal recovery: Steel drum recorder, camera, and spectrograph recovered; rocket remalins scattered over wide area
Aurborne recorder: No data obtained.

EXPIRRMENTAL DATA

Cormic radiation: No comments furnished Solar radiation: No data, light leak in tilm cassette Winds: No reliable conclusions, due to lack of photograpkic detall.

COMATENTS

Rocket performance: Propulalon below normai.

REPORTS AND PAPERS

"Figh Alttude Rescaich Using the V-2 Rocket, March 1948-August 1947," by L. W. Fraser and E. H. Blegler, Bumblebee Series Report No. 81, Applied Physics Leboratory, The Johns Eophdns Undvereity, July 1948.
"Preluminary Raport on High Altstude Photography," by C. T. Holliday, Photog. Engr. 1:16, 1950.

Report No. 695, by H. P. Bitchcock, Ballistic Research Laboratories, Aberdeen Proving Ground, April 1949.
Report No. 639, by H. P. Bitchcock and V. M. Rekils, Ballistic Research Laboratories, Aberdeen Proving Ground, October 1947.
"V-2 Report No. 7," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 4 November.
"Final Report, Project Hermes V-2 Misslle Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1952.

IDENTIFICATION

14 November 1946
Agency: Palmer Phyaica Laboratory (Princeton Univerlaty)
Time: 1331 MST
Altitude: 0.2 miles.
UPPER AIR INSTRUMENTS
Cosmic radiation: Gaiger counter telescope Two toniastion chambers.

DATA RECOVERY INETRUMENTS

Telemeter: PXTA-501, 23 channel NRL PPM-AM syatem. Four channel Lark FM-FMaystem Recorder: Brass tape recorder Physical recovery: None.

BALLISTIC INSTRUMENTS

Firing Range

Theodolitem; Two Mitchell and three Askania stations Cameras: Three Bown-Knapp stations
Telescoper: One station
Radar: Two modified SCR-584 8-Band stations
Doppler: Four stations.

Airborne

Beacon: s-Band transponder
Doppler: DOVAP transceiver
Radso cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and recovery blowolf
Other: Routine propulaion and control performance inatruments. (G. E. Co.).

ROCKET PERFORMANCE

Comments: Rocket deviated to left shortly after takeoff and then corrected to the right and alowly changed its course to the wouth. It leveled off at 1200 ft . altitude and flew in this position until emergency fuel cutoff was effected at 31 sec .

EXPERIMENTAL DATA

Comments: No data obtalned due to rocket fallure.

REPORTS AND PAPERS

Preliminary Report of Firing of V-2 No. 14, White Sands Proving Ground, November 1948. "V-2 Report No. 8," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 Januart 1947.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No, R52A0510, General Electric Company, September 1052.

IDENTIFICATION

Agency: Air Research and Development Command Time: 1000 MST
Altitude: 85.0 miles.

UPpiri Alr instruments

Pressure-temperature: Ram pressure on truncated cone with Ion type gage, four fon type pressure gages on wide of cone
Ionosphere: Vertical Incidence ionomphere measurement comparing two signila, one near critical irequency and other tar removed. lon dennity with bipolar probe.
Sky-brightneag: Sky light intengity moasured by photocella
Voltage breakdown: Critical voltage breakdown point between electrodes.

DATA RECOVERY INETRUMENTS

Telemeter: NRL, 23 channel PPM/AB aystem.

BALLISTIC INSTRUMENTE

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Two Ballintic and three Bowen-Knapp stations
Telescopes: Two etations
Fladar: Two modified SCR-5B4 B-Band utations
Doppler: Four atutions.

Alrborne

Beacon: AN/APN-55 (XET-2) S-Band tranaponder
Doppler: DOVAP transcelver
Radio cutoff: AN/ARW-17 FW control receiver for command fuel cutofif
Other: Routine rocket performance instruments (G. K. Co.).

ROCKIT PRRFORMANCE

Firing angla: 0.0 degrees
Program angle: 3.5 degrees
Trime to burnout: 82.5 sec.
Altitude at burnout; $\mathbf{1 6 . 5}$ miles
Volocity at burnuut: 3878 it. per sec.
Time to zenith. 180 sec.
Altitude at zenith: 63 miles
Time to blowoff:
Altitude at blowoff:
Filght duration: 340 sec .
Impact coordinates: 12.6 miles north, 1.25 miles east
payload weight:
Unfueled rocket weight: 8885 lbs.
Unfueled rocket C. G.: 237.4 Inches
Gross welght at takeoff: 28,240 lbs.

BALLISTIC DATA

Theodolites: Mitchell - trajectory data 0 to 72 sec., Askania - complete tracking from one station, to 80 degrees elevation from other
Cameras: Bowen-Knapp - complete record, Ballistic - record ô burnout
Telescopes: Complete record for 35 sec .
Radar: Eoth tracked to peak, one near impact
Doppler: Good sigrals 0 to 306 sec .

DATA RECOVERY

Telemeter: Good telemeter record Physical recovery: Rocket destroyed at impact.

EXPRKRLMENTAL DATA

Pressure-temperature: Pressures and temperatures obtained from 67 to 101 km . Temperatures calculated from slope of pressure altitude curve. Barometric equation temperatures higher than NACA mean atandard.

Ionosphere: Altitude too low for desired fonosphere data from propagation experiment, good syatoms test since oqulpment performed well
Sky birghtness: Initial meanurements of scattered sky 1 ight to 35 km . Intensity approximately proportalonal to atmospheric densities at various altitudes. Ratio of intensity through blue and green wratten filters 3.5 . Blue intensity at 10 km . 0.5 watta $/ \mathrm{cm}^{2}$.
Ion Density: Good data record. Pruper interpretation indefinite. Good agreement with expected valuoa from preliminary analysis.
Voltage breakdown: Cood data to 90 km , data invalid beyond.

COMDMENTS

Rocket performance: Normal takeoff. Subnormal propulsion performunce.
Telemeter: Improved performance with new circularly polarived antenna.

REPORTS AND PAPMRS

WsPG Preliminary Report on A-4 Missile, Round No. 16, fired 31 November 1940.
Proliminary Report on Radar Tracking of the A-4 Missile, Round No. 15, fired at WSPG 31 November 1046, Balliutic Research Laboratories.
Meteroloyical Measurements for 31 November 1046, WSPG Air-Weather Section.
"Atmompherlc Tomparature and Preasure Measurements Between the Altitudew of 40 and 110 Kilometors," Upper Alr Reseurch Program Report No. 2, 1 July 1948. Engineoring

Research Institute, Univeralty of Mlchlgan, Ann Arbor, Michigan.
"Upper Air Research Program, Report No, 1 by the Navigation Laboratory, AMC, Cambridye Fleld Station, 1 Soptember 1047.
"Dynamic Probe Measurementa in the lonosphere," by A, Reliman and W. G. Dow, Phys. Rev. 76, No. 7, 987, 1849.
"Dynamic Probe Meauremente in the Ionouphere," Upper Alr Research Program Report No. 3, Engineering Research Institute, Univeralty of Bitchigan, Anm Arbor, Midchigan.
"Day sky Brightnase Monsured by Rocketborne Photoelectric Photometers," by H. A. Miley ot al, Trane., Amer. Geophys U., Program 23rd. Annual Meeting, 321, 1952.
Journal American Optical Sociaty, 37, 994, 1947.
Report No. 639, by H. P. Hotchcock and V. M. Reklis, Balliatic Resoarch Laboratories of the of the Aberdeen Proving Ground, Maryland, October 1947.
Report NO, 695, by H. P. Hithcock, Ballintic Research Laboratories of tho Aberdeen Proving Ground, Mmryland, April 1047.
"V-2 Report No. B," Minuter of Meating of the V-2 Upper Atmomphere Reasarch Panel on 28 January 1947.
"Einal Roport, Project Hermes V-2 Missile Program, by L.. D. White, Report No. R52a0510, General Electric Company, Septomber 1952.

Agency: Naval Research Laboratory
TIme: 1308 MST
Altitude: 95.0 miles.

UPPER AIR INSTRUMENTS

Cosmic radiation: Geiger counter telescope
Solar radlation: Ultra-violet spectrograph
Pregsure-temperature: Amblent presaure gages on nose and tail sections
Skin temperature gages on nose tip.
High altitude photography: Two X-25 cameras in midsection.

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-501, 23 channel NRL PPM-AM syatem
Physical recovery: Nose separation with explosives in control chamber.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Seven Asicania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two modified SCR-584 S-Band stations
Doppler: Four stations
Impact Iocation: None.

Airborne

Beacon: AN/APN-55 S-Band transponder Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and blowoff Other: Routine rucket propulsion and control performance instruments. (G. E. Co.).

ROCKET PERFORMANCE

Firing Angle:
Program Angle: 21.0 degrees - actual trajectory angle
Time to burnout: 69.0 sec .
Altitude at burnout: 23.4 mHles
Velocity at burnout: 5204 ft . per sec.
Time to zenith:
Altitude at zenith: 95 miles
Time to blowoff:
Altitude at blowof:
Flight duration:
Impact coordinates: 131 miles North (range).
Payload weight:
Empty rocket weight: 9050 lbs .
Empty rocket C. G.: 237.4 inches
Gross weight at takeoff: 28,727 lbs.

BALLISTIC DATA

Theodolites: Data 0 to 200 sec .
Camera: Bowen-Knapp
Telescope: Data 0 to 200 sec ., rocket visible to 330 sec .
Radar: No data, beacon falled
Doppler: Data 0 to 160 sec .
Impact location: Ground and air search.

DATA RECOVERY

Telemeter: Good record
Physical recovery: None.

EXPERIMENTAL DATA

Comments: No data, all instruments went off at takeoff.

COMMENTS

Rocket performance: Extraordinary range introduced by control syatem fallure, rocket extremely ungtuble after burnout.

REPORTS AND PAPERS

"Prellminary Report on Firing of V-2 No. 16, 5 December 1946," White Sands Proving Ground. Report No. 695, by H. P. Hitchcock, Ballistic Research Laboratr 'es, Aberdeen Proving Ground, April 1949.
Report No. 639, by H. P. Hotchcock and V. M. Reklis, Ballistic Research Laboratorles, Aberdeen Proving Ground, October 1847.
"V-2 Report No. 8," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 January 1947.
"Final Report, Project Hermes V-2 Missile Program," by L. D. Whtte, Report No. R52A0510 General Electric Company, September 1952.

Agency: Applied Physics Laboratory

Time: 2212 MST

Altitude: 114.01miles

UPPER AIR INSTRUMENTS

Cosmic Radiation: Two gelger counter telescopes and Alpha particle emulsions.
Artificial Meteors: Ejection of M9A1 Rifle grenades at 70, 80, \& 90 sec.
Other: Fungus Spores (National Institute of Health).

DATA RECOVERY INSTRUMEENTS

Telemeter: NRL 23 channel PPM/AM system.
Recorder: Two brass tape recorders.
Physical recovery: Warhead separation explosive in control chamber

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations. Cameras: Two Ballistic and three Bowen-Knapp stations.
Telescopes:
Radar: Two modified SCR-584 S-Band radar stations
Doppler: Four stations.
Airborne
Beacon: AN/APN-55 S-Band transponder.
Doppler: DOVAP Transciever
Radio Cutoff: AN/ARW-17 FM conirol receiver for command fuel cutoff. Gyroscopes: One roll and one zenith angle.
Other: Routine rocket performance instruments (General Electric Company).

ROCKET PERFORMANCE

Firing Angle: 000.0 degrees true
Program angle: 3.0 degrees
Time to burnout: 69.6 sec
Altitude at burnout: 25.4 miles
Velocity at burnuut: 5402 ft . per sec.
Time to zenith: 249 sec
Altitude at zenith: 114.0 miles
Time to blowoff: 439 sec
Aititude at blowoff: 9.5 miles
Flight Duration: 439 sec (time to blowoff)
Impact coordinates: 18.5 miles north and 6.3 miles east
Payload weight: 1650 lbs .
Unfueled rocket weight: 8787 lbs .
Unfueled rocket C. G. : 238.2 inches
Gross weight at takeoff: 29, 198 lbs.

BALLISIIC DATA

Theodolites: Trajectory data; Mitchell- $0-88.25 \mathrm{sec}$, Askania 0 to 71 sec
Cameras: Ballistic - camera operation good for 150 sec., sync. \& timing unsuccessful; Bowen-Knapp- one camera successful.
Telescopes: Tracked $0-100 \mathrm{sec}$, followed thereafter.
Radar: Trajectory data 0 to 368 sec, spotty thereafter.
Doppler: Velocity and position data 7.2 sec to 440 sec .
Impact Location: Ground and air search.
Other: Gyroscope roll data good.

DATA RECOVERY

Telemeter: Sarisfactory records.
Physlcal recovery: Rocket blowup did not occur but did tear apart from aerodynamic forces. Recorder, grenade camera and fungus spores not recovered. Alpha particle film recovered. Airborne recorder: No data, recorder not recovered.

EXPERMENTAL DATA

Cosmic radiation: Telescopt operated satisfactorily. No data from film. Artificial meteors: No data, experiment falled to operate.
Fungus spores: No data, spores not recovered.

COMMENTS

Rocket performance: Normal ascent, tumble during descent according to doppler signais. Rocket exploded at 440 sec .

REPORTS AND PAPERS
"High Altitude Research Using the V-2 Rocket, March 1946-April 1947," by L. W. Fraser and E. H. Seigler, APL Bumblebee Serles Report No. 81, The Johns Hopkins University Applied Laboratory, July 1948.
BRL Report No. 695, by H. P. Hitchcock, Aberdean Proving Ground Eallistic Research Physics Laboratory, July 1348.
BRL Report No. B39, by H. P. Hitchcock and V. M. Reklis, Aberdeen Proving Ground Ballistic Research Laboratories, October 1947.
"V-2 Report No. 8," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 January 1947.

Agency: Naval Research Laboratory Time: 1413 MST Altitude: 72.2 miles

UPPER AIR INSTRUMENTS

Cosmic radiation: Two geiger counter teloscopes; and nuclear research emulsions.

DATA RECOVERY INSTRUMENTS

Telemeter: PX-TA501, NRL 23 channel Prsin system.
Airborne recorder: NRL nine channel neon las ap recorder.
Physical recovery: Warhead separation explosives in control section.
"Daughter" ejection device in mid-section (Air Material Command).

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell andeight Askania stations
Cameras: One Ballistic and three Bowen Knapp stations
Telescopes: One station.
Radar: One AN/CPS-4 S band station and one AN/CPS-5 L band station
Doppler: Four stations
Impact location: None

Airborne

Beacon: AN/APN-55 S band transponder
Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and recovery blowup.
Aspect: Photocells and roll gyroscope.

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: 8.25 degrees at 58 sec .
Time to burnout: 60 sec .
Altitude at burnout: 20.5 miles
Velocity at burnout: 4600 ft . per sec.
Time to zenith:
Altitude at zenith: 72.2 miles
Time to blowoff: 300 sec .
Aititude at blowoff:
Flight duration:
Impact coordinates: 24.6 miles North and 4.8 miles West.
Payload weight: 2286 lbs.
Unfueled rocket weight: $9,140 \mathrm{lbs}$.
Unfueled rocket C.G.: 240.9 inches.
Gross weight at takeoff: $28,355 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Mitchel data 0 to 60 sec .
Cameras: Bowen-Knapp - satisfactory operation; Ballistic - images to burnout
Telescope: Tracked beyond zenith
Radar: Data 0 to 300 sec .
Doppler: Falled at 220 sec., periodic interruptions from rocket roll.

DATA RECOVERY

Telemeter: Satisfactory operation
Airborne recorder: Good record
Fhysical recovery: Recorder in excellent condition; "Daugiter" not recovered in apite of exceilent tracking of its internal beacon.

EXPERIMENTAL DATA

Cosmic radiation: Data obtained on penetration of 2 and 4 cm . of lead. Soft radiation obsorved as about 15% of total, may be ascribed to primary electrons.

COMMENTS

Rocket performance: Propulsion below normal. Steering syetem error introduced roll beginning at 40 sec . which reached 60 rpm .

REPORTS AND PAPERS

"Upper Atmosphere Research Report No. IV," by H. Ei, Newell, Jr. and J. W. Slry, NRL Report No. R-3171, Naval Research Laboratory, October 1947.
"V- \langle Report No. 8," Minutes of Meeting of the V-2 Upper Atmomphere Research Panel on 4 F'ehruaxy 1947.
Report No. 695, by H. P. Hitchcock, Aberdeen Proving Ground Balliatic Research Laboratories, April 1949.

Agency: General Electric Company
Time: 1722 MST
Altitude: 31.0 miles.
UPPER AKK RYTTRUMENTS
Comments: No upper air research instruments in this rocket.

DATA RELOVERY INSTRUMAENTS

Telemeter; PXTA-501,23 channel NRL pulse sequential nystem; and 28 channel Hermes PWM-FM syatem.
Physical recovery: None.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations
Cameras: Two Ballistic and three Bowen-Knapp stations
Telescopes: One station
Radar: One modified SCR-584 S-Band station
Doppler: Four atations
Impact location: None.

Airborne

Beacon: AN/APN-55 (XE-2) S-Band trangponder
Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutofl
Other: Rocket propulsion and control performance instruments.

ROCKET PERFORMANCE

Firing angle: 000 dagreea
Program angle: 7 degrees
Time to burnout; 59.0 sec .
Altitude at burnout: 14.6 miles
Velocity at burnout: 2300 ft . per sec.
Time to zenith: 118 sec .
Altitude at zenith: 31 miles
Time to blowoff:
Aititude at blowoff:
Flight duration: 239 sec.
Impact coordinates: 102 miles North, 12.4 miles Nest
Payload weight 2200 lbs .
Unfueled rocke weight: 9140 lbs .
Unfueled rocket C. G.: 241 inches
Gross welght pt takenff: $28,355 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Mitchell trajectory 0 to 239 sec., Askania trajectory data
Cameras: Bowen-Knappdata satisfactory; Ballistic cameras for test only,
Telescopes: Trajectory data until after peal
Radar: Trajectory data 0 to 239 sec.
Doppler: No data
Impact location: By optic 1 fix and search.

DATA RECOVERY

Telemeter: Sporadic during cutoff and when rocket was broadside and rolling, good in latter: part of flight.
Physical recovery: Nothing recovered, remaining fuels exploded at impact.

COMMRNTS

Rocket performance: Takeott irregular, roll began ahortly after. Propulation normal to 40 asc., then far below normal. Holl rate increased to 80 RPM.

REPORTS AND PAPERS

Report on A-4 Rocket No. 19, Project Hermes Report No. 55204, General Electric Company. Preliminary Report of Firing of V-2 No. 19, White Sands Proving Ground.
Report No. 695, by H. P. Hitchcock, Ballistic Research Laboratories, Aberdeen Proving Ground, Aprill 1949.
"V-2 Report No. 8," Minutes of Meeting of the V-2 Upper Atmosphene Research Panel on 28 January 1947.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1852.

Agency: Air Research and Development Command Time: 1116 MBT
Alttude: 68.0 miles.

UPPER AIR DNSTRUMENTS

Presture-temperature: Ram premsure at nose tip with fon gage and prossure on cone with four Ion type gages (Univ. of Michigan).
Yonosphere: Vertical incidence propagation transmitters (AFCRC). Bipolar probe measurement of ton current thow (Univ. of Michigan).
Sky brightness: Photomultiplier tubes with Eilters (AFCRC).
Blological: Rye seeds, cotton seeds, and fruit flies.
Other: Voltage breakdown measurements AFCRC).

DATA RECOVERY DNSTRUMEANTS

Telemeter: PXTA-501 channel Nor. QPM-AM syatem
Physicil recovery: Separation of forward portion of rocket with TNT and prima cord. (New Mexico School of Mines). Blossom, ejection of cannister and lowering by parachute (Cambridge Field Station).

BALLISTIIC INSTRUMENTS

Firing Range
Theodolites: Two Mitcholl and six Ascania stations Cameras: Two Ballistic and three Bowan-Knapp stations Telescopes: One station Radar: Two modified SCR-584 S-Band stations Doppler: Four stations
lmpact location: None.

Airborne

Beacon: AN/APN-55 (XE-2) S-Band transponder.
Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control recelver for command fuel cutole
Aspect: Four AAF K-25 cameras in midsection (WPAFB)
Other: Routine rocket propuision and control performance instruments. (G, E. Co.).

ROCKET PERFORMANCE

Firing angle:
Program angle:
Time to burnout: 58.0 sec .
Altitude at burnout: 17 miles
Velocity at burnout: 4062 ft , per sec.
Time to zenith: 180 sec .
Altitude at zenith: 68 miles
Time to blowoff: 285 sec .
Altitude at blowoff: 40 miles
Flight duration: 419 sec .
Impact coordinates: 13.4 miles North and 14.4 miles West
payload welght:
Unfueled rocket weight: 8390 lbs.
Unfueled rocket C. G.: 243.1 inches
Gross weight at takeoff: $28,455 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Satisfactory Mitchell and Askania operation
Cameras: Satisfactory data from two Ballistic and three Bowen-Knapp stations
Telescopes: Satisfactory images 0 to 100 sec .
Radar: Fair tracking to impact, poor 180 to 240 sec . telemeter interference with beacon
Doppler: Good data 0 to 285 sec .

DATA RECOVERY

Telemeter: Good record 0 to 260 sec . intermittent thereafter from roll
Physical recovery: Nose separation failed, rocket exploded at impact. Parachute recovery very good. Aspect cameras not recovered.

EXPERIMENTAL DATA

Ionosphere; Propagation transmitters falled after burnout, no data. Bipolar probe data in good agreement with expected electron density values, interpretation of data in doubt.
Presgure-temperature: Preasure data from 55.3 to 66.5 miles. Temperature lower than NACA standard.
Sky brightness: Satisfactory equipment operation, data poor after 40 sec . due to rocket roll Biological: Seeds recovered and files still alive.
Voltage breakdown: Data questionable.

COMMENTS

Rocket performance; Excellent performance 0 to 27 sec., at this time pitch motion disturbance occurred. Roll begain at 37.3 sec . and increased to 1 r.p.s. by burnout. Combustion chamber pressure began to drop at 55.5 sec . Jet vane 3 did not operate normally.
Ballistics: Optical instruments hampered by sun's position, haze, and clouds.

REPORTS AND PAPERS

Preliminary Report of V-2 Firing No. 20, ORDBS White Sands Proving Ground, dated 24 Feb. 1847.
Report on A-4 (V-2 Rocket No. 20), Prepared by Physical Science Laboratory, New Mexdco College of Agriculture and Mechanic Arts for Balliatic Research Laboratories, Aberdeen Proving Ground.
Telemetering Report, A-4 Rocket No. 20, Prepared by Physical Science Laboratory, New. Mexico College of Agriculture and Machanic Arts, for Naval Research Laboratory.
*Atmospheric Pressure and Temperature Measarements Between the Altitudes of 40 and 110 Kilometers," Üpper Air Research Program Report No. 2, Engineering Reseurch Institute, University of Michigan, Contract W33-038 ac-14050(15710).
Upper Air Research Program Report No. 1, Air Material, Command, Cambridge Field Station, 1 September 1947.
"University of Michigan Bl-Polar Probe Experiment," Phys. Rev. 78;887, 1949.
"Dynamic Probe Measurements in the Ionosphere," Upper Air Research Program, Report No. 3, Engineering Research Institute, University ot Michigan.
Report No. 695, by H. P. Hitchcock, Ballistic Research Leboratorles, Aberdeen Proving Ground, April 1949.
"Panel Report No. 20," Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 21 April 1949.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1952.

Agency: Naval Research Laboratory
Time: 1123 MST
Alittude: 101 miles

UPPER AIR INSTRUMENTS

Commic radiation: Two geiger counter telescopes (NRL)
Prescure-temperature: Ram pressure gage installation at nose tip. Nose cone pressure gages at base of nose section. Tail section pressure gages abead of fins. Slidn temperature gages on nose cone (NRL)
Solar radiation: Solar spectrograph (NRL)
Ionosphere: C. W. propagation transmitter (NRL)
Btological: Selected seeds (Harvard)

DATA RECOVERY INSTRUMENTS

Telemeter: AN/DKT-1, 23 channel pulse sequential system
Airborne recorder: NRL 20 channel neon lamp camera recorder
Physical recovery: Separation of forvard portion of rocket with TNT, and separation of tall section with Prima-cord

BALIISTIC INSTRUMENTS

Firing range

Theodolites: Mitchell, C \& E Stations; Askania, C, F, G, N, O, \& P Stations
Cameras: Ballistic, D \& R Stations; Bowen-Knapp, U, V, \& W Stations Tracking telescopes: C Station
Doppley: B, F, G, \& K Skations
Radar: Two modifled SCR-584 S-band radars

Alrborne

Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17, 3-channel command fuel cutoff, 2-channel command blowup Beacon: APN-55
Other: Roll photocells: 3 photocells at 120 intervals
Gyro: Roll gyroscope
Vibration: Three vibration plckups, one along the longitudinal axis and the remaining two along the pitch and yaw axis, respectively

ROCKDT PERFORMANCE

Firing angle: 0°
Program angle: 7° from the vertical
Time to burnout: 63 sec
Altitude at burnout: 18.5 miles
Velocity at burnout: 5120 ft per sec
Time to zenith: 220 sec
Altitude at zenith: 101 miles
Time to blowoff: $327-330 \mathrm{sec}$. Breakup at 406 sec
Altitude at blowoff: Breakup of rocket at 28 miles

Flight duration:

Impact coordinates: 36 miles norith, 1.8 miles east
Payload weight: 2365 lb
Unfuelod rocket weight: 8180 lb
Unfueled rocket C. G.:
Gross weight at takeoff: $28,030 \mathrm{lb}$

BALLISTIC DATA

Theodolites: Mitchell, Trajectory 0 to 54.38 sec ; Askania, Trajectory 0 to 79.75 sec (Data from 30.75 computed from one instrument only)

Cameras: No data
Tracking telescope: No data
Doppler: No data
Radar: No data
Roll photocells: Roll 0 to 406 sec
Gyroscope: Roll 0 to 406 sec
Vfbration: Vibration in the plane normal to the rocket's main axis was too small to be measured by this installation. Vibrations along the principal rocket axis were recorded between 42 and 57 cycles. The peak vibrational velocities ranged between 1.06 and 1.82 in. per sec. The vibration was not continuous in character, and it seems that it was in the nature of shocks originating with the propulsion unit. The upper limit at which vibration could be observed was limited by sampling character of the telemeter.

DATA RECOVERY

Telemeter: Good record to 225 sec and sporadic signals from this time onward.
Recorder: A complete record of the fight was obtained and this data used in preference to the telemeter record.
Physical recovery: All recovery items were returned in good condition, despite the fact that the rocket did not break up until it was well within the atmosphere. The items were widely scattered in the White Sands region, some of which were recovered only after several days of search. The material did deteriorate somewhat from this exposure.

EXPERIMENTAL DATA

Considerable showers of nonelectronic origin were noted. Of 887 events recorded in flight, 275 of them wate not associated with showers. Of these (above the atmosphere) 25% were absorbed in 6 cm of lead, assumed to be nonprimary electrons; 59% penetrated 12 cm of lead; the remaining 16% were absorbed in 16 cm of lead. The ratio of total radiation to that of free space at sea level was 11.5. The ratio of the hard component to that of free space at sea level was 9.0
Pressure-Temperature: Pressures were measured and temperatures calculated to an altitude of 70 km . The temperatures began to lag behind the NACA estimated mean temperatures at 40 km . At 55 km the temperatures were different by 30°; at 70 km the calculated temperatures were 50° lower than estimated. The estimated accuracies are within plus or minus 10°. Skin-temperature rise on the $1 / 16-\mathrm{in}$. aluminum nose section was $100^{\circ} \mathrm{C}$. Ambient pressures measured on the tail section from ground level to 180 km were rather close to the predicted value, the figures comparing within experimental error.
Solar radiation: The spectra showed 12 lines of Sil of great intensity. A strong line of C I was found at 2478 A . Other lines were identified as definite VI, VII, Cr II, Mn II, CoI, and A1 II; probable Na I, Ni I, Ni II, CrI, CoII, Be I, and A1I; possible, Pi I and CuI. There appears to be regions of general absorption between 2 B36 and 2893 A and between 2442 and 2472 A .
Ionosphere-Propagation Experiment: The measurements give evidence as to the presence of a D-layer as a sharp drop in signal level at the critical frequency was noticed above 60 kilometers. This altitude is in general agreement with the previous estimates of the location of the D -layer.

Biological: Ten plants were grown from the recovered seed. Eight were normal and two showed pollen sterility approaching 50%. There is some suggestion that 2 lethal mutation had been induced; however, both the slightly reduced germination and increased sterility of these two plants could have been caused by exposure to high temperatures.

COMMENTS

Rocket Performance: The flight appeared to be quite normal. The impact was three degrees east of predicted azimuth. The performance of the power plant wa.s quite satisfactory, although it was slightly below predicted performance. The rocket attained a roll period of approximately 40 sec and did not exhibit an unusual amount of yaw after burnout.
Experiments: All of the experiments performed quite well. Perhaps, the vibration experiment should have been provided for better data recovery. The information from this experiment should only be used as a guide as it is possible that considerable vibration exists at higher frequencies.

REPORTS AND PAPERS

Project Directive, NRL Serial S78-1(119)(1320), 1320-492/46, dated Oct. 29, 1946
WSPG Preliminary Report, EBDetchmendy/1s/164, dated March 11, 1047
Trajectory of A-4, Round Number 21, based on Mitchell phototheodolite observations prepared by Missile Ballistics Branch, BRL, APG
Trajectory of A-4, Round Number 21, Graphical and Numerical Data, based on Askania phototheodolite observations, prepared by Missile Ballistics Branch, BRL, APG
MeteorologicalMeasurements for March 7, 1047 WSPG Air-Weather Section
"Pressures and Temperatures of the Atmosphere to 120 Kllometers" by N. Best, R. Havens, and H. Lagow, Phys. Rev., 71: 915-6, June 15, 1947
"Further Cosmic Ray Experiments above the Atmosphere" by E. H. Krause and S. Golian, The Phys. Rev., 71: 918, June 15, 1947
"Upper Aimosphere Research Report No. IV," by H. E. Newell, Jr. and J. W. Siry, Eds., NRL Report R 3171, Naval Research Laboratory, October 1947
"Photography from the V-2 at Altitudes Ranging up to 160 Kilometers," by T. A. Bergstralh, NRL Report No. R-3083, Naval Research Laboratory, April 1947

Agency: Applled Physics Laboratory
Time: 1310 M8T
Altitude: 80.3 miles.

UPPER ALR INGTRUMENTS

Cowmic radiation: Two geiger counter telescopes and alpha particie emulsions
Solar radiation; Ultra violet spectrograph (APL); and one ultraviolet spoctrograph (Yerkes Obzervatory).
High altitude photography: 16 mm . GSAP motion pleture camera.

DATA RECOVERY INETRUMENTS

Telemater: PXTA-501 23 channol NRL PPM-AM syatem
Alrborne recordern: Three brame tape recordere
Physical recovery: Separation of forward portion of rocket with TNT and prima cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolltes: Two Mitchell and elght Askanla atations
Cameras: Two B allistic and three Bowen-Knupp atations
Telescopes: Two stations
Radar: Two modified SCR-584 S-Band stations
Doppler: Number of stations not known
Impact location: None.

Airborne

Beacon: AN/APN-55 (XE-2) S-Band transponder
Doppler: DOVAP tranacelver
Radio cutoff: AN/ARW-17 FM control recelvor for command fuel cutofl
Aspect: Roll photocell and gyro, and zenith angle gyro.

ROCKET PERFORMANCE

Firing angle: 000 degrees
Program angle: 5.6 degreen
Time to burnout: $57.0 / 60.5 \mathrm{sec}$.
Aititude at burnout: 19.9 milles
Velocity at burnout: 4457 ft . per sec. max. at 60.5 sec .
Time to zenith:
Altitude at zenith: 803 miles
Time to blowoff: 344 sec .
Altitude at blowoff: 23.5 miles
Fifght duration:
Impact coordinates: 25 miles North and 3.5 miles East
Payload weight: 2200 lbs.
Unfueled rocket weight: 8800 lbs .
Unfueled rocket C. G.: 235.4 inches
Gross welght at takeoff: 28,095 lbs.

ballistic data

Thoodolites: Mitchell trajectory data 0 to 65.6 sec., Askania trajectory date 0 to 98 sec ,
Cameras: Trajectory data from three Ballistic atations, data from one Bowen-Knapp station
Telescopes: One tracked 70 sec., another throughout flight
Radur: No data, beacon failed
Doppler: Date 0 to 344 sec .
Impact location: Air and ground search
Aspect: Roll data from gyro, photocell in good agreement.

DATA RECOVERY

Telemeter: No comments furnighed
Recorder: Both recorders not receovered
Physical recovery: Film and camera not recovered.

EXPERIMENTAL DATA

Cosmic radiation: No comments furnished
Solar radiation: Spectograms between 30 and 50 miles obtained from APL spectrograph; Yerkes spectrograph failed.

COMMENTS

Rocket performance: Propulsion cutoff in two stages by rocket timer.

REPORTS AND PAPERS

"High Altitude Research Using the V-2 Rocket, March 1946 - April 1947," by L. W. Fraser, and E. H. Selgler, Bumblebee Series Report No. 81, Applied Physics Laboratory, The Johns Hopkins University, July 1948.
"The Ultra-Violet Spectrum of the Sun from V-2 Rocketa," by J. J. Hopfield and H. E. Clearman, Jr., Phys. Rev. 73:877, 1948.
"Preliminary Report on High Altitude Photography," by C. T. Holliday, Photogr. Engr. 1:16, 1950.
Report No. 695, by F. P. Hitchcock, Ballistic Research Laboratories, Aberdeen Proving Ground, April 1950.
"V-2 Report No. 10," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on May 7, 1947.
"Final Report, Project Hermes V-2 Missile Progrum," by h. D. White, Report No. R52A0510, General Electric Company, September 1952.

IDENTIFICATION

Agency: Applied Physice Laboratory
TIme: 1713 MST
Altitude: 63.5 miles.
UPPER AIR INSTRUMENTS
Cosmic radiation: Two geiger counter telescopes
Solar radiation: Ultra-violet spectrograph
High altitude photography: One modifled K-25 camera.

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-501, 23 channel NRL PPM-AM system Airborne recorder: Neon lamp photographic recorder Physical recovery: separation of nose by TNT and prima cord.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and eight Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Two stations Radar: Two modified SCR-584 S-Band atations
Doppler: Four stations
Impact location: None.

Alrborne

Beacon: AN/APN-55 (XE-Z) S-Band transponder
Doppler: DOVAP transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and recovery blowoff
Aspect: Roll photocell and gyro, and one zenith angle gyro.

ROCKET PERFORMANCE

Firing angle: 000 degrees
Program angle: 5.2 degrees
Time to burnout: $57.0 / 60.0 \mathrm{sec}$.
Altitude at burnout: 19.5 miles
Velocity at burnout: 3825 ft . per sec.
Timg to zenith:
Altitude at zenith: 63.5 miles
Time to blowoff: 323 sec .
Altitude at blowoif:
Flight duration:
Impact coordinates: 10 miles North and 0.7 miles West.
Payload weight:
Unfueled rocket weight: 8840 lbs .
Unfueled rocket C. G.,: 238 Inches
Gross weight at takeoff: $2^{\prime}, 460 \mathrm{lbs}$.

BALLLSTICS DATA

Theodolites: Mitchell trajectory data 0 to 64.7 sec., Askania data 25 to 90.3 sec .
Cameras: Bowen-Knapp - satisfactory, Ballistic data 28 to 63 sec .
Telescopes: No information furnished
Radar: Tracked for 320 sec ., partial data because cameras jammed
Doppler: Data C to 90 sec ., signals noisy and intermittent thereafter
Impact location; No information furnished
Aspect: Roll photocell - no data; Gyro data good - roll period 9 sec.

DATA RECUVERY

Telemeter: No information furnished Physical recovery; Good recovery of camera, spectrograph, and recorder Recorder: Falled to operate.

EXPERIMENTAL DATA

Cosmic radiation: No information furnished
Solar radiation: No information furnished
High altitude photography: No results, camera began operating five minutes before takeoff.

COMMENTS

Rocket performance: Propulsion cutoff in two stages by rocket timer.

REPORTS AND PAPERS

"High Altitude Research Using the V-2 Rocket, March 1948 - April 1947," by L. W. Fraser and E. H. Seigler, Bumblebee Serles Report No. 81, Applied Physics Laboratory, the Johns Hopkins University, Iuly 1948.
Report No. 695, by H. P. Hitchcock, Ballistic Research Laboratories, Aberdeen Proving Ground, April 1949.
"V-2 Report No. 10," Minutes of Meeting to the V-2 Upper Atmosphere Research Panel on 7 May 1947.
"Final Report, Project Hermes V-2 Missile Program," by L. D. White, Report No. R52a0510, General Electric Company, September 1952.

Agency: General Electric Company
Tima: 1622 MST
AJtitude: 88.5 miles

U.'PER AIR INSTRUMENTS

Pressure-temp: \AA,ture: Nine high explosive ejection charges for temperature measurements by flash and sound ranging. (SCEL)

DATA RECOVERY INSTRUMENTS

Talemeter: 28 channel Hermes PWM-FM system
Physical recovery: Ncne

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askanla etations
Coneras: Two Ballistic and two Bowir-Knapp stations
Telescopes: Two stations
Radsr: Two modified SCR-584 S-Band stations
Doppler: F'our stations
"mpact location: Catabridge Field Station Beacon Triangulation system.

Alroorne

Beacon: Ionosphere unit (Cambridge Fiela Station)
Dopplar: DOVAP tiansceiver
Radin cutoff: AN/ARW-17 FM control receiver for command fuel cutcif Other: Routine rociset propusion and control performance instruments.

Other:
Proseure: 23 differential gages distributed along length of ram-jet diffuser cone.

ROCEET PERFORMANCE

Firing angle: 000 degrees
Program angle: 8.5 degrees
Time to jurnout: 66.0 sec .
Atitidue at burnout: $20 . e$ miles
Velocity at burnout: 4710 ft . per sec.
Time to zenith: 221 sec.
Altitude at zenith: 88.5 miles
Time to blowoff:
Altitude at blowcif:
Flight duration: 395 sec .
Impact coordinates: 44.8 miles North and 6.6 miles West
Payioad weight: 2200 ibs.
Unfueled rocket weight: 9061 lbs .
Unfuelen rocket C. G.: 239.4 inches
Gross weight at takeoff: $27,776 \mathrm{lbs}$.

BALLISTIC DATA

Theodolites: Satisfactory data
Cameras: Satisfactory data
Telescopes: Satisfactory data
Ra ar: Very good data, some interference with beacon by telemeter
Doppler: Good signals 'received
Impact location: Ground and air search.

DATA RECONERY

Telemeter: Record intermittent at times but good during critical period Physical recovery: Yone.

EXPERLMENTAL DATA

Temperature-pressure: No data, only one ejection charge exploded.

COMMENTS

Rocket performance: Maximum velocity lower than predicted, attributed to roll which began at 57.5 sec.

Experiments: Ram-jet diffuser test succeasful
Ballistic instruments: Better than 2verage results
Rocket modifications: Normal warhead repiaced with supersonic ram-jet diffuser cone.

REPORTS AND PAPERS

"Preliminary Information on V-2 Rockel No. 24, to be fired 17 April 1947," White Sands Proving Ground, dated 11 April 1947.
"Report of V-2 Firing No. 24, 17 April 1947," White Sands Proving Ground, dated 21 April 1947.
G. E. Data Folder No. 85529, Telemetry data A-4 Rocket No. 24, Ceneral Electric Company, dated August 1947.
Trajectory of A-4 No. 21, based on Mitchell Photo Theodolite Observations, Ballistic Research Laboratories, Aberdeen Proving Ground.
Report No, 6G5, by H. P. Hitchcock, Balliatic Research Laboratories, Aberdeen Proving Ground, April 1849.
"V-2 Report No. 10," Milnutes of Meuting of the V-2 Upper Atmosphere Resuarch Panel on 7 May 1847.
"V-2 Report No. 14," Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 January 1948.
"Final Report, Project Hermes V-2 Missille Program," by L. D. White, Report No. R52A0510, General Elactric Company, September 1952.

Time of firing: 0640 MST
Agency: University of Michigan for SCEL Altitude: 89.5 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Twelve grenades (SCEL). Four polonium alphatrons to provide pressure measurement from atmospheric pressure to 5 mm Hg (Mich. U.). Four Pirani gages - pressures from 5 to 0.01 mm Hg (Mich. U.).

Composition: Three evacuated air-sampling bottles with associated timer and pyrotechnic openers and sealers
Cosmic radiation: Two Geiger counter telescopes (NRL)
Solar radiation: One solar spectrograph (NRL)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 23-channel PPM-AM system
Airborne recorder: Three heliograph cameras in fins of tail section
Physical recovery: Warhead and tail separation with primer cord and TNT. Forward separation at base of instrument compartment.

BALLISTIC INSTRUMENTS

Firing range
Theodolites: Three Mitchell and seven Askania stations
Cameras: Three Bowen-Knapp and two ballistic stations
Telescopes: Four stations
Radar: Two modified SCR-584 S-band stations
Doppler: Four stations
Airborne
Beacon: AN/APN-55 S/band transponder
Doppler: T-4 Dovap transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and recovery blowup
Other: Routine propulsion and control performance (G. E.)

ROCKET INFORMATION

Payload weight: About 2200 lb Unfueled rocket weight: 9742 lb
Gross weight at takeoff: $29,100 \mathrm{lb}$

ROCKET P: RORMANCE

Firing angle: Vertical
Program angle: Seven degrees (radar)
Time to burnout: 69.3 sec
Velocity at burnout: $4682 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $123,000 \mathrm{ft}$
Time to zenith: 220.3 sec
Altitude at zenith: 89.5 miles
Time to tail blowoff: 298 sec
Altitude at tail blowoff: 71.5 miles
Impact coordinates: 47.3 mi . at 357 degrees from launcher (radar) 55 mi . north (heliograph) estimated

BALLISTIC DATA

Theodolites: Askania camera operations normal 0 to 69 sec , Mitchell-trajectory data 16 to 372 sec , uncorrected after 67 sec
Cameras: Bowen-Knapp operations normal. Ballistic - good photographs, poor synchronization
Telescopes: Poor images Station I from 0 to 70 sec , spectro record 0 to 100 sec Station II, Station IV tracked throughout flight, poor images
Radar: Trajectory data from 0 to 372.5 sec (automatic track) 372.5 to 476.5 sec (manual track)
Doppler: Trajectory data from 8.5 to 298.0 sec from triplets K FB, FGB, and FGK
Aspect: Heliograph attitude and aspect graphical data from 0 to 370 sec

DATA RECOVERY

Telemeter: Pressure measurements: Channels 16 through 21. No data on channels 18 and 19. Bottle opening and closing signals on channel 23 - channel inactive - no signals.
Physical recovery: Air-sampling bottles thrown clear on impact and recovered in excellent condition.

The three heliograph cameras were recovered in a more or less battered condition; a cursory examination indicated useful information from all units.

EXPERIMENTAL DATA

No air samples - pyrotechnic openers failed to fire.
Although some of the pressure gages operated, because of the large instrumental errors and the incompleteness of the data, the calculations of piessure and temperature were of little value. Six of 12 grenades were observed to be ejected.

COMMENTS

Rocket pertormance: Excellent, no roll
Other: Three attempts to launch $\mathrm{V}-2,25$ were made in the year preceding the final successful attempt

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," L. M. Jones and H. W. Neill, Engineer'ing Research Institute, University of Michigan, Final Progress Report, Crintract W-36-039 sc-32307, Oct. 31, 1950

Time of firing: 1604 MST
Agency: Naval Research Laboratory
Altitude: 84 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Stagnation pressure. Ambient pressures on nose cone and tail section.
Cosmic radiation: Geiger-counter telescope (vertical component of soft radiation) Solar radiation: Two solar spectrographs Ionosphere: Radio propagation transmitters Other: Roll and pitch gyroscopes, K-25 aerial cameras (2), 16 -mm GSAP (4)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PXTA-501 23-channel pulse sequential system Airborne recorder: NRL 8 -channel neon lamp film recorder Physical recovery: Nose separation by TNT. Tail separation by primer cord.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Two ballistic stations
Telescopes: Two stations
Radar: Two SCR-584 S-band stations
Doppler: Four stations

Airborne

Beacon: S-band APN-55
Doppler: In use
Radio cutoff: AN/ARW-37 command cutoff and blowoff

ROCKET INFORMATION

Unfueled rocket weight: 9827 lb
Unfueled rocket C. G.: 242.5 in .
Gross weight at takeoff: $29,492 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Time to burnout: 64.2 sec Velocity at burnout: $4^{17} 60 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: $114,880 \mathrm{ft}$ Altitude at zenith: 84.0 miles

BALLISTIC DATA

Theodolites: Mitchell - one station tracked 46 sec , the other tracked 200 sec , Askania - four stations tracked almost to impact, two stations to 172 sec and two stations to 50 sec
Cameras: Bowen-Knapp - gatisfactory operation. Ballistic - images to 5 sec after burnout.
Telescopes: Satisfactory operation, 4.5-in., telescope shows forward part of rocket smoking at 70 sec
Radar: Radar beacon failed after 50 sec , radars tracked to 53 sec
Doppler: Good signals until 64.2 sec
Impact location: Visual - air and ground search

COMMENTS

Rocket modifications: Pressurized dome installed over telemeter antenna Rocket performance: Rocket flew off course, 40 degrees east of north from takeoff to impact (east of Alamogordo). Explosion in rocket at 64.25 sec while still under thrust. Blowoff impossible at this time under normal circuit conditions. Warhead was separated during descent and never found. Afterbody in very good condition after impact; however, fins did not separate from tank section even though primer cord was detonated.

IDENTIFICATION

Time of firing: 1215 MST
Agency: General Electric Company
Altitude: 97.0 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Skin temperature measurement equipment at six locations on specially constructed nose cone and also on instrument compartment door. Absolute pressure gage for measuring pressure.
Composition: Three air sampling bottles in the opening and closing devices (U . of Michigan)
Solar radiation: Ultraviolet spectrograph (NRL)

ROCKET PERFORMANCE INSTRUMENTS

Special plated and polished nose cone, with imbedded thermistors for measuring skin temperatures, was attached to missile

DATA RECOVERY INSTRUMENTS

Telemeter: 28-channel General Electric PWM-FM telemetry system Physical recovery: Separation of nose section with TNT and primer cord

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and three Askania stations
Cameras: Two ballistic stations and more than one Bowon-Knapp station Telescopes: At least two stations
Radar: Two modified SCR-584 S"-band stations
Doppler: Locations not given
Airborne:
Beacon: Modified AN/APN-55 S-band transponder
Doppler: Dovap transceiver
Hadio cutoff: Two ARW-1/ FM control receivers for command fuel cutoff and recovery
Other: Rocket propulsion and control performance instruments (G. E.)

ROCKET INFORMATION

Payload weight: 2200 lb
Unfueled rocket weight: 9107 lb
Unfueled rocket C.G.: 240.1 in .
Gross weight at takeoff: $28,772 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0 degrees
Program angle: Seven degrees
Altitude at burnout: $120,000 \mathrm{ft}$
Time to burnout: 63.5 sec
Velocity at burnout: $5020 \mathrm{ft} / \mathrm{sec}$
Altitude at zenith: 97,0 miles
Time to tail blowoff: 84.5 sec
Altitude at tail blowoff: $232,000 \mathrm{ft}$
Impact coordinates: 27.5 mi . north, 16.5 mi . east

BALIISTIC DATA

Theodolites: Operation satisfactory
Cameras: Satisfactory Bowen-Knapp operation
Telescopes: Operation satisfactory
Radar: Operated satisfactorily to 84.4 sec
Doppler: Operated satisfactorily to 84.4 sec

DATA RECOVERY

Telemeter: Solid signals received for 64 sec , except for a one-half sec break, Modulation disappeared at 64 sec and unmoculated signal continued until 84 sec at time of warhead blowoff.
Physical recovery: One air-sampling bottle recovered. Spectrograph recovered in near-perfect condition.

EXPERMNENTAL DATA

Excellent records obtained from temperature measuring equipment for period covered by telemetry records.
Pressure gage functioned normally during period covered by telemetry records, and excellent records were obtained.
Solar radiation spectrograms obtained before blowoff extended down tu 2600A; although of good quality, not much was added to data obtained previously.
Very significant supersonic heat transfer data obtained as result of yemperature instrumentation.

COMMENTS

Rocket performance: First 50 sec of flight entirely normal. At this time missile turned sharply to the leff, reaching and holding an courbe approximately 30 degrees from the original heading. There was an internal explosion at 83.5 sec .
Other: No clues as to reason for premature warbead blowoff

REPORTS AND PAPERS

Report on A-4 Missiie No. λ^{r}, Includtng Skin Temperature Mersurements to Mach No. 5, R. P. Haviland, General Electric Report. No. 55256, 22 April 1248
Supersonic Convective Heat Transfer Correlation from Skin Temperature Measurements on a V-? in Flight, General Engineering Lab, Generai klectric Company, 21 June 1948
(Continues)

Atmospheric Temperature and Pressure Variation with Altitude for Flight of A-4 Missile No. 27, W. W. Fischer, TR 55257
Supersonic Convective Heat Transfer Correlations from Skin-Temperature Measurements During Flights of V-2 Rockets No. 27 and No. 19, W. W. Fischer, G. E. Report 55258, July 1949

IDENTIFICATION
8 December 1947
Time of firing: 1442 MST
Agency: Air Research and Development Command
Altitude: 65 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: One ion type pressure gage to measure ram pressure on truncated cone. Four ion type pressure gages on side of cone. One Pirani type pressure gage on side of cone. One Pirani type pressure gage a few inches forward of No. 1 fin . Aspect camera for pressure gage interpretation. (Michigan U.)
Skin temperature measurements: AC resistance bridge with commutator to measure temperature change in nickel temperature-sensing elements distributed along rocket skin (Boston University)
Solar soft x-ray studies: Densitometer packets with x-ray type photographic film behind filters of varying thicknesses of evaporated aluminum (of the order of a few microns) which are opaque to visible light
Vertical incidence ionosphere propagation experiment: Synchronized ground and rocketborne equipment to measure delay time of low-frequency pulse traveling through the E layer by comparison with travel time of undelayed high-frequency signal (AFCRC)
Oblique incidence ionosphere propagation experiment: Ground-transmitted signal travels over very long path. Receivers both in rocket and on ground. Rocket transmitter retransmits signal received in rocket to ground receiver. Measures attenuation of wave passing downward through E layer reflected from F layer (Boston University).
Aspect project: Four still cameras and three motion picture cameras to record data of rocket aspect; cameras are housed in containers to be lowered by parachute on ejection (WADC and FILRAD)
Sky brightness project: Twelve photomultiplier tubes installed on warhead doors, with one door on east side and one door on west side (AFCRC)

ROCKET PERFORMANCE INSTRUMENTS

Heliograph altitude recorder: Heliograph recorders installed in Fins II, III, and IV for cinematographic record of apparent position of sun and horizon as seen from rocket fins (SCEL)
Beacon triangulation system: Track rocket by electronic triangulation system (A FCRC)
Voltage breakdown: Three sets of electrodes at varying spacing mounted on surface of rocket nose cone

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PPM-AM telemetering system - transmitter with frequency of 1025 IIIc was located in control compartment of missile
Physical recovery: Separation of warhead from body of missile. Separation of four aluminum cylindrical containers approximately 11 inches in diameter and 13 inches in length. These canisters are lowered to earth by an 8 -foot nylon ribbon chute.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and four Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two S-band radars were used

Airborne

Beacon: Ionosphere beacon in warhead. A radar beacon, AN/APN-55 (XE), located in tail section of rocket.
Radio cutoff: Two ARW-17 radio receivers at 40.780 Mc located in control compartment for fuel cutoff and warhead blowoff
Other: Routine rocket periormance (G. E.)

ROCKET INFORMATION

Unfueled rocket weight: 9485 lb
Gross weight at takeoff: $29,050 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees
Time to burnout: 65 sec
Velocity at burnout: $3939 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 16-17 miles
Time to zenith: 180 sec
Altitude at zenith: 65 miles
Time to tail blowoff: 300 sec (approximate)
Altitude at tail blowoff: 22.4 railes
Flight duration: 340 sec to v/arhead impact (estimated)
Impact coordinates: Approximately 28 mi north of firing site and $1 / 2 \mathrm{mi}$ east

BALLISTIC DATA

Theodolites: Mitchell to near peak, Askania to impact
Cameras: Ballistic film plates good. All Bowen-Knapp camera operations satisfactory.
Telescopes: Telescope I tracked to impact, but had intermittent jams. Warhead blowofi was photographed. Telescope II losi rocket prior to peak.
Radar: Both radars tracked rocket for approximately 315 sec . They indicated that the rocket drifted slightly to east after blowoff.
Beacon trianguiation system: Tracking beacon worked satisfactorily after canister separation
Aspect: Data from the three aspect cameras mounted in the mid-body clearly show the motion of the rocket in roll, pitch, and yaw. A slow roll with a period of approximately 80 sec was indicated, and this was substantiated by the action of the lonization gages. The aspect camera information shows rather irregular motions in both pitch and yaw.

DATA RECOVERY

Telemeter: A good telemetering record was obtained until approximately 310 sec , which was shortly after the warhead blowoff

Physical recovery: Rocket body was minus warhead and tail fins at impact; com. ponents scattered on violet impact. Two aspect canisters found in rocket midbody at impact. Blossom parachute minus canister located approximately 15 miles from rocket impact. Canister smashed by impact. Fourth parachute from aspect canister found, minus canister, approximately 22 milles from impact. One $16-\mathrm{mm}$ movie camera from aspect canister found $1 / 2$ miles south of rocket impact. One heliograph, in good condition, found approximately $1 / 2$ mile south of rocket impact.

EXPERIMENTAL DATA

Sky brightness experiment: Scattered light measurements made with interference filters that were peaked at $4280,4720,5350,5670$ and 6150 A obtained from ground to 35 km verified magnitude of intensities and correlation with atmospheric density as obtained from previous flight
Solar soft x-ray studies: Two packets installed in rocket; one recovered, but foll was missing, eliminating results
Skin temperature experiment: Temperature-time curves obtained. Test flight of equipment; low accuracy.
Voltage breakdown: Data were obtained only in the altitude interval of 12 km to 22 km . Density data computed in this interval was in agreement with known densities within experimental err After fuel burnout no data were obtained due to some failure.
Pressure and temperature experiment: Pressure data obtained from 46 km to 100 km . Temperatures computed by means of barometric equation are consistently lower value than the NACA mean standard.
Oblique incidence ionosphere propagation experiment: Rocket flight too low for penetration into E layer; some propagation patterns obtained for very long path
Vertical incidence ionosphere propagation experiment: Equipment worked well; data obtained only for lower part of E layer because of low altitude

COMMENTS

Rocket performance: Exceptionally stable flight. Held calculated course, but failed to obtain calculated maximum altitude.

REPORTS AND PAPERS

WSPG Report of V-2 Firing No. 28, ORDBS 471.94 (a), 15 December 1947
Telemetering Report, A-4 Rocket 28, prepared by Physical Science Lab., New Mexico College of A. \& M.A. for BRL, Aberdeen Proving Ground, Contract N173 S-11218 December 3, 1947
"Upper Air Research Program," Report No. 1 by the Nayigation Laboratory, AMC, Cambridge Field Station, 1 September 1947
"Atmospheric Pressure \& Temperature Measurements Between the Altitudes of 40 and 110 Kilometers," Upper Air Research Program Progress Report No. 2, 1 July 1948, Engineering Research Institute, University of Michigan, Contract W33-038-ac-14050
"Upper Air Research Program," Report No. 3 by the Upper Air Laboratory, ERHU, AMC, Cambridge Field Station, 1 April 1949
Final Report No. P-2106-11 for Blossom Series, W. F. Gould, The Franklin Institute Laboratories for Research and Development, 1 March 1950, Contract AF19(122)-33

REPORTS AND PAPERS (Continued)

"Dynamic Probe Measurements in the Ionosphere," A. Reifman and W. G. Dow, Phys. Rev. 76:987 (1949)
"Day Sky Brightness Measured by Rocketkorne Photoelectric Photometers," H. A. Miley, et al., Trans, Am. Geophys. Union (in press)

Time of firing: 1218 MST
Agency: Naval Research Laboratory Altitude: 10.1 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Pressure gages on tail section ahead of fins
Cosmic radiation: Geiger-counter telescope
Ionosphere: Ion probe at nose tip. Generating voltmeter (electrostatic field) at midsection.
Other: Simulant agent experiment - Camp Detrick, Indiana, seed containers in control chamber - Harvard College Observatory

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PXTA-501, 23-channel pulse sequential system Airborne recorder: NRL 13-channel neon lamp photographic recorder Physical recovery: Warhead separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and six Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two modified SCR 534's
Doppler: Four stations

Airborne

Beacon: AN/APN-55 (XE)
Doppler: Dovap transceiver
Radio cutoff: AN/ARW-37 command cutoff and blowoff
Other: Roll, pitch, and yaw gyroscopes in control chamber consolidated vibration pickup in control chamber. Three GSAP 16 mm cameras on tail fins. Prism flame spectrograph on tail fin. Range safety sky screens

ROCKET INFORMATION

Unfueled rocket weight: 9522 lb Unfueled rocket C.G.: 241.8 in. Gross weight at takeoff: $28,187 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Five degrees
Time to burnout: 32 sec

rocket performance (Continued)

Velocity at burnout: $1525 \mathrm{ft} / \mathrm{sec}$
Siltitude at burnout: $24,800 \mathrm{ft}$
Time to zenith: 76 sec
Altitude at zenith: 10.1 miles
Flight duration: 138 sec
Impact coordinates: 1.4 mi. north, 0.96 mi . east

BALLISTIC DATA

Theodolites: Trajectory data from 0 to 138 sec
Cameras: Trajectory data throughout field of view of camera
Telescopes: Altitude data from 0 to 138 sec
Radar: Trajectory data from 0 to 138 sec
Doppler: Velocity and position data from 39 to 136 sec
Impact location: Optical and radar bearings at impact
Other: Vibration: Frequencies detected between 36 and 40 cps . At 40 cps peak acceleration $1,17 \mathrm{~g}$ - probable error $\pm 20 \%$. Vibration only during powered fligit.

DATA RECOVERY

Physical recovery: No recovery. The rocket struck intact with about half the propellants aboard. The explosion destroyed everything.

EXPERIMENTAL DATA

No new data were obtained from this firing due to the low peak altitude

COMMENTS

Rocket performance: Shortly after takeoff the rocket attained yaw to the east. Propulsion cutoff was initiated at 32 sec when it was determined the rocket would land outside the range if allowed to continue in powered flight. Faulty control system. First firing from new launching position. Bearing to impact, 38 degrees east of north.

Agency: Signal Corps Engineering Laboratory (University of Michigan). Time: 0640 MST
Altitude: $\mathbf{8 9 . 5}$ miles
2 April 1948
Experiments: Pressure-temperature, composition. Cosmic radiation, solar radiation (NRL).

Agency: Naval Research Laboratory

15 May 1947
Time: 1604 MST
Altitude: . 84.0 milles
Experiments: Conmic radiation, Solar radiation, Pressure-temperature, Ionosphere.

Agency: General Electric Company
15 May 1947
Time: 1215 MBT
Altitude: 97.0 miles
Experiments: Solar radiation (NRL). Composition (Univ. of Mich.).

V-2
 NO. 28

Agency: Air Research and Development Command
8 December 1947
TIme: 1442 MST
Altitude: 65.0 miles
Experiments: Pressure-temperature (Univ. of Mich.). Solar radiation, Sky brightness, and Ionosphere (AFCRC). Ionosphere (Boston U.).

V-2
NO. 29
Agency: Naval Research Laboratory
10 July 1247
Time: 1218 MST
Altitude: 10.1 mlles
Experiments: Cosmic radiation, Pressure-temperature, Ionosphere. Simulant Agent (Camp Detrick). Biological (Harvard Univ.)

IDENTIFICATION

29 July 1947
Time of firing: 0555 MST
Agency: Applied Physics Laboratory, Johns Hopkins University Altitude: 99.9 miles

UPPER AIR INSTRUMENTS

Cosmic radiation: Single Geiger counter in nose extension. Four pulse ionization chambers (APL)
Solar radiation: Ultraviolet solar spectrograph (APL)
High altitude photography: K25 camera

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PXTA-501 23-channel PPM-AM system Physical recovery: Warhead blowoff by radio command

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and eight Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two modified S-bend stations
Doppler: Four stations
Airborne:
Beacon: AN/APN-55 S-band transponder
Doppler: Dovap transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command blowoff and cutoff Aspect: Two gyroscopes

ROCKET INFORMATION

Unfueled rocket weight: 8533 lb
Unfueled rocket C.G.: 226.2 in .
Gross weight at takeoff: 27,023 lb

ROCKET PERFORMANCE

Firing angle: 1.5 degrees
Program angle: Approximately one degree
Time to burnout: 62.5 sec
Velocity at burnout: $4982 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $119,800 \mathrm{ft}$
Time to zenith: 224.5 sec
Altitude at zenith: 99.9 miles

ROCKET PERFORMANCE (Continued)

Time to tall blowoff: 361 sec Altitude at tail blowoff: 239,000 ft Flight duration: 361 sec
Impact coordinates: Four mi. west, 200 yd south of launcher

BALLISTIC DATA

3 eodolites: Mitchell - trajectory data from 0 to 63.62 sec, A skania - trajectory data from 0 to 73.25 sec
Cz _eras: Bowen-Knapp - records for first 2000 ft , ballistic - images 0 to 62.5 sec
Telescopes: Very good tracking
Radar: Beacon intermittent throughout flight, strong at summit; complete tracking from one radar from 0 to 300 sec
Doppler: Excellent signals at all stations with numerous interruptions Impact location: Visual and ground search

EXPERIMENTAL DATA

Ultraviolet spectrum obtained to 2600A. Burst producing component of cosmic rays measured up to 160 km . Counting rate rose to $49 / \mathrm{sec}$ at 19.8 km , then rate fell off, reaching plateau from about 55 km to 161 km with average rate of $22.4 / \mathrm{sec}$. Primary flux 0.12 particle $/ \mathrm{sec} / \mathrm{cm}^{2} /$ steradian.

COMMENTS

Rocket modifications: Extension at nose tip to houne Geiger counter (Bakelite cylinder)
Rocket performance: Rocket inclined 1.5 degrees north on launcher. Trajectory angle near vertical, program was not introduced.

REPORTS AND PAPERS

"Exploratory Cosmic Ray Observations at High Altitudes by Means of Rockets," J. A. Van Allen, Sky and Telescope 7:171 (1948)
"Cosmic-Ray Bursts in the Upper Atmosphere," H. E. Tatel and J. A. Van Allen, Phys. Rev. 73:87 (1948)
"Synopsis of Ballistic Measurements of the A4 Rockets Launched from November 1943 to July 1947," H. P. Hitchcock, Report No. 695, BRL-APG, April 1949
"The Cosmic-Ray Counting Rate of a Single Geiger Counter from Ground Level to 161 Kilometers Altitude," J. A. Van Allen and H. E. Tatel, Phys. Rev. 73:245 (1948)
"The Ultraviolet Spectrum of the Sun from V-2 Rockets," John J. Hopfield and Harold E. Clearman, Jr., Phys. Rev. 73:877 (1948)
"The Cosmic-Ray Intensity Above the Atmosphere," A. V. Gangnes, J. F. Jenkins, Jr. and J. A. Van Allen, Phys. Rev. 75:57 (1949)

IDENTIFICATION
Time of firing: 1214 MST
Agency: Air Research and Development Command
Altitude: 81 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature:
Skin temperature experiment: Nickle temperature-sensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flushmounted thin steel diaphragms distributed along rocket skin (B. U.)
Emission spectrum experiment: High-powered pulsed transmitter operating in the neighborhood of 1.4 Mc to create electrostatic field resulting in emission glow (A FCRC)
Oblique incidence lonosphere propagation experiment: Ground-transmitted gignal travels uver very long path. Recelvers both in rocket and on ground. Rocket transmitter retransmits signal received in rocket to ground receiver. Measures attenuation of wave passing downward through E layer reflected from F layer. (B. U.)
Vertical incidence ionosphere propagation experiment: Synchronized ground and airborne equipment to measure delay time of low-frequency pulse traveling through the E layer by comparison with travel time of undelayed highfrequency aignal (AFCRC)
Luxembourg experiment and artificial airglow: Intermittently pulsed "disturbing" transmitter; pulsed transmitter to radiate "wanted" signal; phototube detectors with filters and caneras. There is some evidence that glow is localized in immodiate vicinity of rocket. (Tufts College, Utah U. and AFCRC.)

Other:

Acoustical studies: One condenser and one crystal microphone to measure meteoric impacts and acoustic noise (Temple U.)
Phototube experiment: Six multiplier phototubes and associated filters and circuits wore located in Zone C of the warhead; they were mounted in groups of three near doors on opposite sides of warhead (AFCRC), Project No. 67 (Aero-Medical Lab., WPAFB)
Solar radiation: Soft x-ray study - a number of packets, each containing photographic film with a stepped-wedge type aluminum filter, were placed on surface of warhead, missile body, and fins (A FCRC)

ROCKET PERFORMANCE INSTRUMENTS

Beacon triangulation studies: System used to obtain an accurate trajectory. Airborne 470-493.5 Mc beacon transmits range pulses to four ground stations, (A FCRC).

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PPM-AM telemetering system; 30 channels, transmitter type AN/DKT-2 (XN-1); BRL telemetering equipment (doppler) used as single channel

DATA RECOVERY INSTRUMENTS (Continued)

Physical recovery: Separation at peak altitude by radio command to ARW-37 cutoff receiver
Blossom IV-D nose section to be separated from missile body by means of four pistons actuated by an explosive charge (FILRAD, WADC)
Parachute recovery: Parachute system consists of a red 80 -ft nylon ribbon main canopy and a 16-ft nylon ribbon drag parachute (FILRAD, WADC)

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: One Mitchell and four Askania stations Cameras: Two ballistic and three Bowen-Knapp stations Telescopes: Four gtations Radar: Two modified S-band radars Doppler: Four stations

Airborne
Radio cutoff: One ARW-37 radio receiver operating at 54.5 Mc was located in control compartment for use in fuel cutoff and parachute ejection
Other: Routine rocket performance instrumentation

ROCKET INFORMATION

Unfueled rocket weight: $10,211 \mathrm{lb}$
Gross weight at takeoff: $29,695 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees from vertical
Time to burnout: 64.6 sec
Velocity at burnout: $4410 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 20.1 miles
Time to zenith: 204.5 sec
Altitude at zenith: 81 miles
Flight duration: 346 sec to impact
Impact coordinates: Main body -37.8 mi . from the launcher on azimuth of 357 degrees 46^{\prime}; warhead - about 2 mi . north of main body

BALLISTIC DATA

Theodolites: Sketchy Askania data available after burnout untul approximately 100 sec, Mitchell data obtained from about 45 to 106 sec and at intervals earlier
Cameras: Bowen-Knapp images for 13 sec . Ballistic - images infrequent because of clouds.
Telescopes: Tracked over peak and through separation
Radar: Good signal until 160.5 sec and from 183 sec until 219.5 sec; sporadic thereafter
Doppler: Good signal received until 80 sec

DATA RECOVERY

Telemeter: NRL telemetering system signal was good until warhead separation, at which time synchronizing pulse disappeared
(Continuss)

DATA RECOVERY (Continued;
Physical recovery: K-25 camera was damaged, but film usable. Warhead, minus parachute, was in badly damaged condition.

EXPERIMENTAL DATA
Soft X-ray study: Packets on main body of rocket severely damaged upon impact; packets on warhead, though recovered, damaged to extent that no data were obtainable
Skin temperature: Excellent curves of temperature vs time for heating effects due to frictional dissipation between various points on the missile and adjacent air molecules
Oblique incidence propagation experiment: Excessive interference, poor data
Vertical incidence tonosphere propagation experiment: Intermittent operation, no satisfactory results
Acoustical studies: Acoustical noise related to progress of flight; about 66 pips were attributed to meteoric impacts
Phototube experiment: This experiment, as indicated by the telemetering records, performed very well and yields some important data on sky brightness studies
Emission spectrum: Discharge not sufficiently diffused to produce desired spectra
Beacon triangulation studies: Good trajectory to 61 sec, intermittent thereafter
Luxembourg experiment: As a result of intermittent operation, insufficient data were obtained to realize gignificant results

COMMENTS
Rocket modifications: Rocket carried new elongated nose section (Blossom) which provides for 80 to 100 cubic feet of space for research instruments. Length of original V-2 was increased by one diameter.
Rocket performance: Takeoff was normal. Steering was good and performance of the propulsion unit was better than predicted.

REPORTS AND PAPERS
"Investigation of the Ionosphere Utilizing Sounding Rockets," Upper Atmosphere Research Laboratory, Boston University, Contract AF19(122)-36, Report No. 3, 31 May 1950
"Luxembourg Equipment, Conmmon Power Supply," Tufts College, Contract AF19(122)-89, Progress Report No. 2, 15 September - 15 December 1949
"Research in the Physical Properties of the Upper Atmosphere, With Special Emphasis on Acoustical Studies with V-2 Rockets," Research Institute of Temple University, Contract W19-122 ac-12, Report No. 8, 24 May 1950

Time of firing: 1619 MST
Agency: Air Research and Development Command Altitude: 2.6 miles

UPPER AIR INSTRUMENTS

Skin temperature measurements: Nickel temperature-sensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flushmounted thin steel diaphragms distrubuted along rocket skin (B. U.)
Emission spectrum experiment: High-powered pulsed transmitter operating in the neighborhood of 1.4 Mc to create electrostatic field producing an emission glow (Tufts College and AFCRC)
Phototube experiment: Six multiplier phototubes, mounted in groups of three on opposite sides of warhead, to measure light radiation of electrostatic probe experiment (AFCRC)
Vertical incidence ionosphere experiment: Synchronized ground and rocketborne equipment to measure delay time of low-frequency pulse traveling through the E layer by comparison with travel time of undelayed high-frequency signal (AFCRC)
Luxembourg experiment and artificial airglow: Intermittently pulsed "disturbing" transmitter, pulsed transmitter to radiate "wanted" signal, phototube detectors with filters, cameras (Tufts College, University of Utah, A FCRC)
Acoustical studies: Meteoric impacts and acoustic noise. One condenser and one crystal microphone. (Temple University).
Cosmic radiation particle detection experiment: Two sealed cadmium covered paraffin spheres containing nuclear emulsion plates, and two sealed rectangular iron boxes containing nuclear emulsion plates and lead, placed in Zone \boldsymbol{C} of warhead. (U. of Chicago).
Soft solar x -ray studies: Packets each containing photographic film with a steppedwedge type aluminum filter were placed on surface of rocket (AFCRC)

ROCKET PERFORMANCE INSTRUMENTS

Beacon triangulation studies: Triangulation system used to obtain accurate trajectory. Airborne $470-493.5 \mathrm{Mc}$ beacon transmits range pulses to 4 ground stations. (A FCRC).
Data transmission utilizing television and beacon techniques: Airborne television camera and transmitter to supply observations of ground and parachute performance. Portion of television raster utilized for ranging. (AFCRC, B. U., and Tufts College). Project Albert III: (Aero-Medical Lab., WPA FB).

DATA RECOVERY INSTRUMENTS

Teleneter: NRL AN-DKT-2 (XN-1) PPM-AM telemetering system operating at frequency of 1025 Mc 30 channels. G. E. telemetering system - 30 channels. BRL telemetering equipment (Hermes).
Physical recovery: Blossom warhead to be separated from rocket body by means of four pistons actuated by explosive charge. To be lowered by parachute after separation. One red 64 -ft nylon ribbon main canopy used in conjunction with a 16 -ft nylon ribbon drag parachute.

EALLISTIC INSTRUMENTS

Firing Range
Theodolites: Three Mitchell and eight Askania stations
Cameras: Three ballistic and three Bowen-Knapp stations
Telescopes: Three stations
Radar: Two S-band radars
Doppler: Six stations
Impact location: E and C stations of the impact point computer were operated

Airborne:

Beacon: APN/55-S-band
Radio cutoff: One ARW-37 radio receiver operating at 54.5 Mc was located in control compartment for fuel cutoff and parachute ejection
Other: Routine rocket performance instrumentation

ROCKET INFORMATION

Unfueled rocket weight: 9996 lb
Unfueled rocket C.G.: 260.5 in.
Gross weight at takeoff: $29,195 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Two degrees at 13 sec
Time to burnout: 24.7 sec (fuel cutoff)
Velocity at burnout: 620 ft/sec
Altitude at burnout: 1.7 miles
Time to zenith: 42.5 sec
Altitude at zenith: 2.6 miles
Time to tail blowoff: 48.2 sec (signal given but not effected)
Flight duration: 82.9 sec
Impact coordinates: Main body and warhead - approximately $3 / 4 \mathrm{ml}$, west and $1 / 2$ mi. north of the launcher. Nose tip - 200 yd south of main impact.

BALLISTIC DATA

Theodiolites: Askania - to impact, Mitchell - to impact
Cameras: Missile did not climb high enough during burning period for recording of images by ballistic cameras. Bowen-Knapp - for approximately 17 sec of filght. Telescopes: Tracked main body to impact.
Radar: Good signal until 10.5 sec , when beacon went out abruptly
Doppler: Noisy signal on six stations, faded out at about 26.7 sec
Impact location: Trackers at E and C stations followed the rocket to impact

DATA RECOVERY

T'elemeter: NKL telemetering equipment functioned normally throughout flight of missile. Permes telemetry - good signal obtained.

Physical recovery:

Blossom IV-C experiment - after two explosions in rocket, attempt was made to save warhead and parachute by giving warhead blowoff command at 48.2 seconds. However, command was not effected.
Parachute experiment - parachute ejection did not take place

Instrument rack with all instruments was badly damaged by impact and fire. Two cameras in main body were recovered in good but not operable condition. Nose cone was badly broken up. Parachute was badly burned.

EXPERIMENTAL DATA

Because of the nature of the flight, no data were obtained from the soft x-ray studies, phototube experiment, vertical incidence ionosphere experiment, acoustical studies, particle detection experiment, emission spectrum experiment, Luxembourg experiment and artificial airglow
Skin temperature measurements: Measurements obtained for duration of short flight
Beacon triangulation studies: Good signal to impact
Data transmission utilizing television and beacon techniques: Good signals until second explosion

COMMENTS

Rocket modifications: This was the third V-8 to carry an elongated nose section, giving an additional length of one diameter to the rocket
Hocket performance: After firing time had been delayed twice, takeoff appeared normal. At 10.7 sec small explosion occurred in tail section and west fin disintegrated; missile began to roll and yaw. Second explosion at 24.2 sec in tail section and missile began to tumble. Blowoff command given at 48.2 sec , but command was not effected.
Other: Upon impact a high order explosion occurred, scattering parts and fragments over a wide area; flames of the burning fuel appeared to be about 80 ft high. The instrument and parachute compartment remained at the point of impact.

REPORTS AND PAPERS

"Rocket-Borne Television Camera Utilizing the RCA Type 5527 Iconoscope," W. C. Moore, Part II, Technical Note No. 7, Upper Atmosphere Research Laboratory, Boston University, 4 April 1950, Contract A F19(122)-36
"Research in the Physical Properties of the Upper Atmosphere, With Special Emphasis on Acoustical Studies with V-2 Rockets," Research Institute of Temple University, Report No. 6, 8 February 1950, Contract W19-122-ac-12
"Investigation of the Ionosphere Utilizing Sounding Rockets," Upper Atmosphere Research Laboratory, Boston University, Report No. 2, 1 September - 30 November 1949, Contract A F19(122)-36

IDENTIFICATION

Time of firing: 1800 MST
Agency: University of Michigan for SCEL
Altitude: 93.6 miles

UPPER AIR INSTRUMENTS

Density -pressure-temperature: SCEL sound grenades. Shock wave angle measurement for temperature. Ram and cone surface pressure gages for temperature.
Composition: Two evacuated air-sampling bottles with associated timer and pyrotechnic opening and sealing devices

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-501 23-channel PPM-AM system
Physical recovery: Warhead control compartment separation by TNT

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations Cameras: Two ballistic and three Bowen-Knapp stations Telescopes: Four stations Radar: One modified SCR-584 S-band station

Airborne

Beacon: AN/APN-55 S-band transponder
Radio cutoff: AN/DRW-37 FM control receiver for command cutoff and blowoff Aspect: Three Giannini heliograph cameras
Other: Routine rocket propulsion and control performance instrumentation (G. E.)

ROCKET INFORMATION

Payload weight: 2535 lb
Unfueled rocket weight: 8422 lb
Takeoff weight: 27,840 lb
Flight duration: 600 sec estimated

ROCKET PERFORMANCE

Program angle: Seven degrees North
Time to burnout: 65.3 sec
Velocity at burnout: $4800 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $123,200 \mathrm{ft}$
Time to zenith: 225 sec
Altitude at zenith: 93.6 miles

ROCKET PERFORMANCE (Continued)

Time to tail blowoff: 370 sec Altitude at tail blowoff: $276,000 \mathrm{ft}$
Impact coordinates: Main body -39.5 mi . north, 2.9 mi . west of launcher; warhead 40 mi . north, 3.5 mi . west of launcher

BALLISTIC DATA

Theodolites: Askania trajectory data from 1.6 to 69.6 sec
Radar: Trajectory data from 0 to 369.5 sec

DATA RECOVERY

Telemeter: Data from 0 to 18 sec , and from 50.5 to 52.5 sec ; none thereafter Physical recovery: Two air-sampling bottles recovered. Three heliographs in excellent condition.

EXPERIMENTAL DATA

Upper air composition: No data
No air samples - one bottle seal ruptured at impact, opener failed on other bottle Because of the telemeter failure no information was obtained from the shock wave angle experiment or the cone pressure experiment

COMMENTS

Rocket modifications: Four Pirani gages mounted on extension rods were placed at 90 -degree intervals, eight in. from the longitudinal axis of a 40 -degree right circular cone. The rods were driven through an excursion of 8 in . with a period of about 3 sec in a direction parallel to the cone axis so as to intercept the shock wave.

An opening for the ram-pressure Pirani gage was placed in the tip of the cone and four openings for cone side-pressure gages were placed at 90 -degree intervals on the cone surface

The holes for the grenades were located radially in the base of the warhead Rocket performance: Excellent

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," L. M. Jones and H. W. Neill, Engineering Research Institute, University of Michigan, Final Progress Report, Contract No. W-36-039-sc-32307, October 31, 1950

IDENTIFICATION

22 January 1948
Time of firing: 1312 MST
Agency: Naval Research Laboratory
Altitude: 99 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Stagnation pressure gages at nose tip. Ambient pressure gages at warhead base. Ambient pressure gages ahead of tail fins.

Cosmic radiation: Wilson cloud chamber

Ionosphere: Ionosphere propagation transmitters. Positive ion gage.

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-501, 23-channel PPM-AM system
Physical recovery: Warhead separation explosives in control chamber. Cloud chamber camera secured to motor with elevator cable.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two SCR-584's
Doppler: Four stations
Airborne
Beacon: APN-55, S-band radar beacon
Doppler: Dovap transceiver
Radio cutoff: Two AN/ARW-7 receivers command cutoff and blowoff Other: Roll, pitch, and yaw gyroscopes. Spin stabilization jatos.

ROCKET INFORMATION

Unfueled rocket weight: 9548 lb
Gross weight at takeoff: $29,013 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees
Time to burnout: 67 sec Velocity at burnout: $4985 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: 23.5 miles Time to zenith: 228 sec Altitude at zenith: 99 miles Time to tail blowoff: 408 sec (uxplosion) Altitude at tail blowoff: 6.2 miles

ROCKET PERFORMANCE (Continued)

Flight duration; 420 sec approximately
Impact coordinates: 48 mi . north

BALLISTIC DATA

Theodolites: Mitchell - Tracked down to ground haze; Askania - satisfactory operation
Cameras: Bowen-Knapp - Satisfactory operations
Telescopes: One station tracked 60 sec , other 72 sec . Test station tracked throughout flight.
Radar: Both radars tracked until 408 sec. Good data records obtained. Doppler: Good signals until after burnout, then considerable interference from ionosphere experiment. Data tabulated from 0 to 126 gec , poor after 116 sec .

DATA RECOVERY

Physical recovery: The warhead separation explosives did not operate

COMMENTS

Rocket performance: Two-rpm roll rate after burnout. Rocket oscillated during descent. Radio blowoff signal given at 310 sec , timer signal at 325 sec . Warhead did not separate until rocket disintegrated from violent explosion at 408 sec. Yaw less than five degrees during burning. Good propulsion performance.

Experimenta: Cosmic radiation, Solar radiation, High altitude photography.

Agency: Air Research and Duvelopment Command

Experimenta: Solar radiation, Sky brightncsa, Ionoaphere (AFCRC). Ionosphere, Blidn Temperature (Boston Univ.)

Experiments: Cosmic radindion, Pressure-temperature, Ionosphere.

Time of firing: 0716 MST
Agency: Applied Physics Laboratory, Johns Hopkins University Altitude: 86.75 miles

UPPER AIR INSTRUMENTS

Composition: Air-sample bottles (SCEL, Mich. U.)
Cosmic radiation: Single Geiger counter in nose extension. Four pulse ionization chambers heavily shielded with lead (APL)
Solar radiation: Ultraviolet solar spectrograph (APL)
Other: High altitude photography: K 25 with infrared film

DATA RECOVERY INSTRUMENTS

Telemeter: PXTA-501 23-channel PPM-AM system
Physical recovery: Warhead blowoff by radio command, primer cord and TNT to sever forward portion of rocket

BALLSTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and seven Askania stations Cameras: Two ballistic and two Bowen-Knapp stations Telescopes: Three stations
Radar: Two modified SCR-584 S-band stations
Airborne
Beacon: AN/APN-55 (XE-2)
Radio cutoff: AN/ARW-17 FM control receiver command fuel cutoff and blowoff
Aspect: Giannini heliographs, four ariays of photocells
Other: Routine rocket propulsion and control performance instruments (G. E.)

ROCKET INFORMATION

Unfueled rocket weight: $10,400 \mathrm{lb}$
Gross weight at takeoff: $29,868 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees
Time to burnout: 66 sec
Velocity at burnout: $4590 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 21.8 miles
Time to zenith: 217 sec
Altitude at zenith: 86.75 miles

ROCKET PERFORMANCE (Continued)

Time to tail blowoff: 341.6 sec
Altitude at tail blowoff: $\mathbf{3 8 . 6}$ miles
Flight duration: 573 sec
Impact coordinates: 41 mi . north, 2 mi , west

BALLISTIC DATA

Theodolites: Askania trajectory data from 0 to 217 sec; Mitchell trajectory data from 0 to 70 sec
Cameras: Ballistic - satisfactory operation from one atation, no data from other. Bowen-Knapp - satisfactory operations.
Telescopes: One 4.5-in. telescope tracked to 110 gec
Radar: Trajectory data trom 0 to 350 sec

DATA RECOVERY

Physical recovery: Spectrograph in 16 -ft cruter - recovered. Camera recovered four hours after firing.

EXPERIMENTAL DATA

Cosmic ray: Single counter confirmed V-2 30 data. No information on ion chambers, composition, or solar radiation.
Photography: Cameras ran 68 sec

COMMENTS

Rocket performance: Rocket very steady and rolled little

REPORTS AND PAPERS

"The Cosmic-Ray Intensity Above the Atmosphere," A. V. Gangnes, J. F. Jenkins, Jr. and J. A. Van Allen, Phys. Rev. 75:57 (1949)

DENTIFICATION

6 February 1948
Time of firing: 1015 MST
Agency: General Electric Company Altitude: 69 miles

UPPER AIR INSTRUMENTS

No upper air instruments were installed in this rocket

DATA RECOVERY INSTRUMENTS

Telemeter: 28-channel G. E. PWM/FM system
Physical recovery: Warhead separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and seven Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Two stations
Radar: Two modified SCR-584 S-band radars
Doppler: Four stations
Airborne
Beacon: G. E. S-band transponder
Doppler: Dovap transceiver
Radio cutoff: Two AN/ARW-17 receivers for command fuel cutoff and blowoff Aspect: Three hellographs in tail fins (SCEL)

ROCKET INFORMATION

Payload weight: 2200 lb
Unfueled rocket weight: 8879 lb
Unfueled rocket C.G.: 233.3 in .
Gross weight at takeoff: 28,454 lb

ROCKET PERFORMANCE

Firing angle: 0.0 degrees true
Program angle: Program and course manually introduced
Time to burnout: 67 sec
Velocity at burnout: $4,860 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 22 miles
Time to zenith: 197 sec
Altitude at zenith: 69 miles
Time to blowoff: 315 sec
Altitude at tail blowoff: 28 miles
Flight duration: 440 sec

ROCKET PERFORMANCE (Continued)

Impact coordinates: Body -3.7 mi . east and 1.4 mi , south; warhead -2.4 mi , east and 1.8 mi . south

BALLISTIC DATA

Theodolites: Complete night tracked, operation satisfactory
Cameras: 13 sec of flight recorded
Teleacopes: Complete tlight tracked
Radar: Pooz beacon signals received to blowoff
Doppler: Record to blowoff with few gaps
Impact location: Visual with ground search

DATA RECOVERY

Telemeter: Record from © to 44 sec
Physical recovery: Two hellographs recovered

COMMENTS

Rocket performance: Satisfactory
Experiment: Rocket successfully maneuvered by manual ground command for first 40 sec of burning
Other: Spare cutoff transmitter needed to effect blowoff

Time of firing: 0322 MST
Agency: Air Research and Development Command Altitude: 38.7 miles

UPPER ALR INSTRUMENTS

Soft solar x-ray measurements: Densitometer packets with x-ray type photographic film behind filters of varying thickness of evaporated aluminum (of the order of a few microns) which are opaque to visible light (A FCRC)
Ambient pressure and temperature measurements: Two type VG-1A ionization pressure gages on mid-body of rocket. One Phillips pressure gage on midbody of rocket. Special cannister for shock wave angle determination. (Mich. U.)
Skin temperature measurement: Nickel temperature-sensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flushmounted thin steel diaphragms distributed along rocket skin (Boston U.)
Vertical incidence ionosphere propagation experiment: Synchronized ground and rocketborne equipment to measure delay time of low-frequency pulse traveling through the E layer by comparison with travel time of undelayed high-frequency signal (AFCRC)
Luxembourg experiment and artificial airglow: Intermittently pulsed "disturbing" transmitter, with probe to excite artificial airglow, vertical-incidence ionosphere transmitter furnishing wanted signal; phototube detectors with filters and optical spectrograph (AFCRC)
Sky brightness measurement experiment: Three photoelectric tubes located in nose section, pointed directly at Luxembourg antenna (AFCRC)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 23 -channel telemetering system; 1025-Mc transmitter located in control compartment
Physical recovery: Parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: SCR-584, S-band
Doppler: Four stations
Airborne
Beacon: Minitature beacon installed in tip of nose cone to telemeter time of parachute ejection and aid in tracking of nose section (AFCRC)
Doppler: Dovap transceiver
Radio cutoff: One ARW-37 radio receiver at 54.4 Mc located in control compartment of rocket for fuel cutoff or warhead blowoff
Other: Routine rocket performance instrumentation

ROCKET INFORMATION

Unfueled rocket weight: $10,161 \mathrm{lb}$
Gross weight at takeoff: $29,529 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees
Time to burnout: 57.5 sec
Velocity at burnnut: $3003 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 13.1 miles
Time to zenith: 150.5 sec
Altitude at zenith: 38.7 miles
Time to tall blowoff: 96 sec
Altitude at tail blowoff: 29.8 mi . (ascending)
Flight duration: 282 sec
Impact coordinates: Main body - 17 mi . north; warhead - 16 mi . north

BALLISTIC DATA

Theodolites: Askania - good operations through burnout; Mitchell - good records through burnout
Cameras: Ballistic - operations very good; Bowen-Knapp - operations satisfactory Telescopes: Telescope I - tracker followed rocket approxdmately 180 sec ; noted intermittent glow after burnout. Telescope II, N station - rocket lost in clouds 5 or 10 sec after takeoff. Telescope III followed rocket approximately 170 sec . Telescope IV used for a spectrograph experiment.
Radar: SCEL beacon radar tracked through peak
Doppler: Good signals throughout Iight

DATA RECOVERY

Telemeter: Good telemetering record obtained for 74 sec, loss of record from 74 to 128 sec . From 128 sec to 283 sec , record was intermittent.
Physical recovery: Warhead and parachutes. One spectrograph film casette from rocket tail fin No. 1. Main body, intact up to impact, landed point down at high velocity, resulting in complete disintegration of rocket. Components scattered.

EXPERIMENTAL DATA

Ambient pressure and temperature measurements: No pressure data obtained due to low altitude. No data on shock wave angle determination due to low altitude.
Skin temperature measurement: Curves of temperature vs time for heating effects due to frictional dissipation between various points on the missile and adjacent air molecules
Spectrograph study: No data since light source (articicially induced aurora) did not function
Vertical incidence ionosphere propagation experiment: No data obtained due to insufficient altitude, although there was some measurable retardation at the maximum altitude
Soft x-ray measurements: Two packets were recovered; in one the foll was missing, and the other showed pinhole fogging only
Miniature beacon experiment: Functioned satisfactorily. Impact of the warhead was determined from signal received by ground stations from the beacon.
Sky brightness measurement: No data obtained

Luxembourg experiment and artificial airglow: No data due to failure of transmitter

COMMENTS

Rocket performance: Takeoff apparently normal; cutoff occurred unusually early at 57.7 sec . Warhead separated by cutoff receiver at 96 sec . Canister ejected at 92 sec. Rocket was very stable up to time of burnout; a roll of approxdmately 20 rpm started after burnout.

Time of firing: 1254 MST
Agency: Naval Research Laboratory
Altitude: 34.8 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Pressure gages on tail section
Cosmic radiation: Nuclear research emulsions
Solar radiation: Sunfollower solar spectrograph
Ionosphere: Generating voltmeter (electrostatic field) on midsection. Pogitive ion collector on nose.
Metro cameras: Meteorological data from wind effects on vapor trall
Other: Cross jet attenuation transmitters and receivers

DATA RECOVERY INSTRUMENTS

Telemeter: AN/DKT-2 (XN-1) 30-channel pulse position system Airborne recorder: Solar spectrogram recording camera
Physical recovery: Sunfollower-spectragraph ejector mechanism with parachute; warhead separation explosives in control section

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: Two modified SCR-584 stations
Doppler: Four stations
Impact location: Sound ranging

ROCKET INFORMATION

Unfueled rocket weight: 8169 lb
Gross weight at takeoff: $\mathbf{2 8 , 2 8 7} \mathbf{l b}$

ROCKET PERFORMANCE

Program angle: 15 degrees (actual)
Time to burnout: 57.1 sec
Velocity at burnout: $3680 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: 15 miles Time to zenith: 134.5 sec Altitude at zenith: 34.8 miles Time to tall blowoff: 60.1 sec Altitude at tall blowoff: 17 miles

ROCKET PERFORMANCE (Continued)

Filght duration: 305 sec
Impact coordinates: 32 mi . north, 7 mi . west

BALLSTIC DATA

Theodolites: Mitchell - both stations tracked to 95 sec, one to impact; Askania trajectory data from 0 to 60 sec
Cameras: Bowen-Knapp - satisfactory operations; ballistic - good record for 70 sec Telescopes: satisfactory operations
Radar: Tracked for entire flight
Doppler: Fair signals until blowoff

DATA RECOVERY

Physical recovery: Sunfollower ejected at fuel cutoff and separated as shown by telescope film, but never recovered. Warhead separation explosives set off at 60 sec.

COMMENTS

Rocket performance: Propulsion normal. Steering faulty, between 13 and 29 sec rocket rolled 40 to 50 degrees and returned to normal four times, then began 8.3 rpm roll. Rocket began to deviate to the west and propulsion was terminated to prevent crossing range boundary.

Time of firing: 1610 MST
Agency: General Electric Company Altitude: 3.4 miles

UPPER AIR INSTRUMENTS

Temperature: Flash and sound grenades to obtain anomalous propagation of sound data (SCEL)
Composition: Air sampling bottles in "Blossom" canister. (Michigan U.)
Other: Upper air wind vectors from drift of grenade puffs and talcum "smoke" generator (SCEL)
Earth's magnetic field (ARDC)

DATA RECOVERY INSTRUMENTS

Telemeter: G. E. PWM/FM, 28-channel system (production model)
Physical recovery: Warhead separation explosives in control chamber. "Blossom" canister containing air-sample bottles.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Three stations
Radar: Two modified SCR-584 S-band stations
Doppler: Four stations

Airborne

Reacon: AN/APN-55 S-band transponder
Doppler: Dovap transceiver
Radio cutoff: One ARW-17 receiver for command fuel cutoff and blowoff
Aspect: Three hellographs in tail fins
Other: Vibration sensitive yaw and pitch accelerometers Velocity meter (gyroscopic integrating accelerometer)

ROCKET INFORMATION

Payload weight: 2200 lb
Unfueled rocket weight: 9659 lb
Gross weight at takeoff: $29,074 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees true Program angle: 7.0 degrees from vertical Time to burnout: 28.5 sec

ROCKET PERFORMANCE (Continued)

Velocity at burnout: $530 \mathrm{ft} / \mathrm{sec}$
Time to zenith: 54.3 sec
Altitude at zenith: 3.4 miles
Time to tail blowoff: 65.2 sec (explosion)
Altitude at tail blowoff: 2.5 miles
Flight duratisu: 91.5 sec
Impact coordinates: 1 mi . south and $1 / 2 \mathrm{mi}$. east

BALLISTIC DATA

Theodolites: Askania and Mitchell tracked rocket and "Blossom" to impact
Cameras: Satisfactory operations
Telescopes: Satisfactory operations
Radar: Complete flight record
Doppler: Readable signals at two stations
Vibration: Instrument section yaw and pitch plane vibrations (40 cps max.) negligible magnitude
Other: Rocket velocity measured to reasonable order of accuracy with precessing gyro

DATA RECOVERY

T'elemeter: Crosstalk between three channels, satisfactory otherwise Physical recovery: Heliographs, "Blossom" parachute, and canister recovered. Pilot parachute not recovered.

EXPERIMENTAL DATA
Low altitude flight prevented any experimental data recovery

COMMENTS

Rocket modifications: "Blossom" ejector mechanism
Rocket performance: Early burnout due to low pressure air failure probably caused by regulator malfunction
Experiments: Talcum generator produced satisfactory "smoke" trails at low altitude
Other: Blossom ejection satisfactory at low altitudes

Agency: Applied Physics Laboratory
TIme: 0716 MST
Altitude: 86.8 miles
27 May 1948
Experiments: Cosmic radiation, Solar radiation, High atitidue photography. Composition (Univ, of Mich.).

Agency: General Electric Company
6 February 1948
Time: 1015 MST
Altitude: 89.0 miles
Experiments: No upper air experiments.

V-2
NO. 37
Agency: Air Research and Development Command
11 June 1948
Time: 0322 MST
Altitude: 38.7 miles
Experiments: Pressure-tnmperature (Univ. of Mich.). Skin temperature (Boston Univ.). Ionosphere, Artificial air glow (AFCRC). Artificial air glow (Univ. of Mich.).

	V-2 NO. Agency: Nime: Naval Research Laboratory Altitude: N4.8 miles

Experiments: Cosmic radiation, Solar radiation, Pressure-temperature, Ionosphere.

V-2
NO. 39
Agency: General Electric Company
Time: 1610 MST
Altitude: 3.4 miles
Experiments: Temperature-pressure (SCEL). Composition (Univ. of Mich.). Earth's magnetic field (AFCRC). Upper air winds (SCEL).

Time of firing: 1103 MST
Agency: Applied Physics Laboratory, Johns Hopkins University
Altitude: 54.0 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Pirani cone temperature probe (Signal Corps, Mich. U.)
Cosmic radiation: Four arrays of 3 Geiger tubes each surrounded by various thicknesses of lead. One array in nose extension (APL).
Composition: Two air-sampling bottles with associated opening and sealing devices (Signal Corps-Mich. U.)
Other: Skin temperature-sensitive paint on warhead. (Southern Research Institute.)

HOCKET PERFORMANCE INSTRUMENTS

High altitude photography (APL), Modified K-25 camera loaded with Super XX film.

DATA RECOVERY INSTIRUMENTS

Telemeter: NRL PXTA-501 23-channel PPM-AM system Physical recovery: Warhead blowoff by radio command. Explosives in control chamber to separate forward portion of rocket.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and five Askania stations Cameras: Two ballistic and three Bowen-Knapp stations Telescopes: Four stations Radar:' Two modified SCR-584 S-band stations Doppler: Four stations

Airborne

Beacon: APN-55 S-band transponder
Doppier: Dovap transceiver
Radio cutoff: AN/ARW-17 FM control receiver for command fuel cutoff and blowoff
Aspect: Three Gianinni heliographs. Four arrays of photocells.
Other: Rocket propulsion and control performance instruments

ROCKET IN FORMATION

Unfueled rocket weight: 9942 lb
Gross weight at takeoff: 29,510 lb

ROCKET PERFORMANCE

Program angle: Seven degrees
Time to burnout: 61.5 sec
Velocity at burnout: $3874 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 18.7 miles
Time to zenith: 180.5 sec
Altitude at zenith: 60.0 miles
Time to tail blowoff: 295 sec
Altitude at tail blowoff: 21 miles
Flight duration: 521 sec
Impact coordinates: 21 mi . north, 2 mi . east

BALLISTIC DATA

Theodolites: Askania - good record through burning almost to peak
Cameras: Ballistic and Bowen-Knapp - satisfactory operations
Telescopes: Good data for complete flight
Radar: Fair trajeciory data from 0 to 170 sec , no record from 170 to 300 sec
Doppler: Position and velocity data from 0 to 295 sec

DATA RECOVERY

Physical recovery: Camera, heliographs and air-sample bottles recovered. Warhead with temperature-sensitive paint samples not recovered.

COMMENTS

Rocket performance: Premature fuel cutoff at 61 sec by turbine overspeed. Roll rate 2 rpm beginning at 70 sec .

REPORTS AND PAPERS

"Prellminary Report on High Altitude Photography," Clyde T. Holliday, Photographic Engineering 1:16 (1950)
"Seeing the Earth From 80 Miles Up," Clyde T. Holliday, National Geographic Magazine XCVIII:511 (1950)
"Transition Effects of the Primary Cosmic Radiation in Lead, Aluminum and in the Atmosphere," J. A. Van Allen, Proceedings of the Echo Lake Cosmic Ray Symposium June 23-28, 1949, Published by the Office of Naval Research, November 1949, pp. 95-102
"Photographic Determination of the Ortentation of a Rocket," L. W. Fraser and R. S. Ostrander, Photographic Engineering 1 (No. 1):105 (1950)

IDENTIFICATION

21 March 1949
Time of firing: 2343 MST
Agency: Air Research and Development Command Altitude: 83.0 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Skin temperature atudies: Nickel temperaturesensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flush-mounted thin steel diaphragms distributed along rocket skin (Boston U.)
Soft solar x-ray study: Four packets containing photographic film were placed on surface of warhead (A FCRC)
Photographic studies: Two modified GSAP cameras with prisms were mounted in warhead to view Luxembourg probe and record power discharge and afterglow of the probe (WPAFB \& FILRAD)
Phototube experiment: Three multiplier phototubes, with associated filters and circuits, were located in warhead near a window (AFCRC)
Spectrograph study: Two spectrographs located in instrument compartment to record light produced in vicinity of Luxembourg probe (AFCRC)
Airglow experiment: A high-power, low frequency Luxembourg transmitter was used for this experiment; peak power of approximately 60 kilowatts and generator pulses of 25 -microsec duration which would be radiated off a probe on the nose of the warhead (A FCRC)
Photoelectric analysis by UCLA: Two photoelectric detecting devices located at ground stations to observe discharge produced by Luxembourg transmitter
Voltage breakdown experiment: Three sets of electrodes at varying spacing mounted on surface of rocket nose cone (AFCRC)
Common power supply experiments: Battery-powered 400 -cycle motor generator sets used to supply power for all experiments (AFCRC)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL PXTA-501 PPM-AM 23-channel telemetering system was used, but a slot antenna (cavity type) located on outer shell of the Blossom was used in lieu of standard NRL turnstile. BRL PWM 28-channel telemetering system was used to record rocket performance measurements.
Airborne recorder: Tufts College data recorder unit to record rocketborne experimental data in voltage form
Physical recovery: Separation of warhead by radio command to ARW-37 F'M control receiver, and, in event of fallure by this means, separation was to be effected by a timer. Parachute studies - 100-ft canopy type parachute, a 4-ft pilot chute, and a 32 -ft flat circular brake parachute (WPA FB and FILRAD). Blossom IV-A experiment - new elongated nose section was to be lowered to earth by parachute (FILRAD).

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and seven Askania stations

Cameras: Two ballistic and two Bowen-Knapp stations
Telescopes: Four stations
Radar: 'Two modified SCR-584 S-band stations
Doppler: Six stations

Airborne
 Beacon: 470-498.5 Mc beacon to provide measure of delay time through the E layer. Utilized new flush-mounted antennas. (U. of Utah and A FCRC.)
 Doppler: Doppler carried
 Radio cutoff: ARW-37 FM control recolver for command cutoff and blowoff
 Aspect: Pitch and yaw gyroscopes
 Vibration: Pickups in rockets
 Other: Triangulation tents - recording of replies from ionosphere beacon at four ground stations to provide position coordinates of rocket in filght (AFCRC)

ROCKET INFORMATION

Unfueled rocket weight: 9971 lb
Gross welght at takeoff: $29,636 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: Four degrees west of north
Program angle: Seven degrees
Time to burnout: 65.7 sec
Velocity at burrout: $4466 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 20.34 milles
Time to zenith: 211.0 sec
Altituide at zenith: 83 miles
Flight duration: Approxdmately 380 sec
Impact ccordinates: 33.4 md . north, 0.8 mi . east

BALLISTIC DATA

Theodolites: Coordinate data from 0 to about 70 sec , uncorrected dats to 120 sec
Cameras: Mitchell - good records at one station
Ballistic - good images recorded at D and R stations through burnout
Bowen-Knapp - satisfactory records at U and V stations
Telescopes: Good images 0 to 80 sec from 3 stations. Spectrograph at T-IV recorded
Luxembourg effect.
Radar: Trajectory data from 0 to 335.5 sec
Doppler: Trajectory data from 0 to 371.2 sec

DATA RECOVERY

Telemeter: PPM-AM - excellent signals from 0 to 376 sec , but recorders were
jammed; BRL PWM-AM - no record, telemeter power failure
Physical recovery: None, since the Blossom experiment failed
Airborne recorder: Recorder destroyed at impact

Airglow experiment: Failed to operate except for 13 sec near the end of flight Ionosphere beacon experiment: Beacon operated well untll fuel burnout and for a brief period near peak altitude; however, its fallure during the remainder of the flight resulted in recovery of very little usable data
Photographic studies: Since the Luxembourg system did not operate, the cameras mounted in the Blossom IV-A recovered no data
Phototube experiment: Telemetering records indicated that equipment functioned satiefactorily; however, desired dati were not obtained, due to fallure of the Luxembourg transmitter
Spectrograph study: No information, due to failure of the Luxembourg transmitter and destruction of rocket at impact
Skin temperature studies: Telemetering monitoring during flight indicated normal operation of this equipment; however, due to jamming of the NRL telemeter recorders for these channels, information was lost
Soft X-ray study: Film packets were destroyed at impact
Blossom IV-A experimen: Both means of ejecting the Blossom IV-A failed; the Blossom remained with the rocket and was completely demolished upon impact Parachute studies: Failure of the Blossom to separate from the rocket prevented ejection of the parachute
Skin temperature studies: Telemetering monitoring during flight indicated normal operation of equipment, but information was lost because telemeter recorders for these channels jammed
Common power supply experiment: Common power supply functioned satiafactorily throughout the flight
Photoelectric analysis by UCLA: Failure of Luxembourg transmitter resulted in no data being obtained
Voltage breakdown experiment: The $0.1-\mathrm{cm}$ gap gave a Paschen curve which was translated into pressure readings for the altitude range from 15 to 55 km ; presture compares well with accepted values. The $1-\mathrm{cm}$ and $100-\mathrm{cm}$ gap were inoperative because the atream intensity and gap area to width ratio were detrimental for cascade iontzation.
Triangulation tests: Good trajectory during initial portion of fight

COMMENTS
Rocket modifications: Rocicet carried new elongated nose section, Blossom IV-A, which provided from 80 to 100 cu ft of space for research instruments. Length of the original V-2 was increased by one diameter.
Rocket performance: Takeoff and flight appeared normal. However, parachute ejection system falled, and since no provision had been made for warhead blowoff other than parachute ejection system, rocket remained intact over complete fight.

Time of firing: 0908 MST
Agoncy: Signal Corps Engineering Laboratory Altitude: 67.4 miles

UPPER AIR INSTRUMENTS

Prescure-temperature-winds: Probe experiment of four probes fastened to main acceas doors to measure ilight temperature, vibration, and shock wave effects (Mich. U.)
Solar radiation: Soft x-ray densitometer experlment (NRL)
Smoke trail experiment: To determine speeds and directions of winds at altitudes above 100,000 feet (Edgewood Arsenal)
Shadowgraph experiment: Consiating of a small rectangular wedge fastened to nose tip of rocket and an optical system to photograph the discontinuity in the shock waye off the wedge
Biological: Seed containers for the determination of the effects of cosmic rays on Living celle

DATA RECOVERY INSTRUMENTS

Telemeter: The NRL 23-channel PXTA-501 system Physical recovery: Separation of nose section with TNT

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Eight Askania and two Mitchell stations
Cameras: Two ballistic, three Bowen-Knapp, one spectro camera at T1, and two metro cameras
Telescopes: Four etations
Radar: Two SCEL 584 S-band units

Airborne

Radio cutoff: AN/ARW-37 radio receiver
Aspect: Three heliographs installed in tall fins
Other: Routine rocket propulsion and control performance instruments

POCKET INFORMATION

Unfueled rocket weight: 8741 lb
Gross weight at takeoff: $28,106 \mathrm{lb}$ (approximately)

ROCKET PERFORMANCE

Program angle: Seven degrees north from vertical
Time to burnout: 65.3 sec
Velocity at burnout: $4000 \mathrm{ft} / \mathrm{sec}$

ROCKET PERFORMANCE (Continued)

Altitude at burnout: 22.4 miles Time to zenith: 191 sec
Altitude at zenith: 67.4 miles Time to tail blowoff; 288.7 sec Altitude at tail blowoff: 39.8 miles Flight duration: 551 sec (main body)
Impact coorcinates: main body - north 26.3 mi ., east 10.8 mi .; nose section - north 29.4 mi., east 1 C .4 mi .

BELLISTIC DATA

Theodolites: Satisfactory operation, some Askania stations tracked rocket to impact Cameras: Satisfactory operation
Telescopes: Satisfactory uperation
Radar: Beacon was tair and tracking was in automatic for about half of flight

DATA RECOVERY

Telemeter: Normal operation untll warhead blowoff
Physical recovery: Warhead separation was effective. All items for which recovery was desired were recovered in excellent condition.

EXPERIMENTAL DATA

Smoke trail experiment; A photographic record of the smoke was obtained from 67 sec until 89.2 sec . Indications are that the experiment was a distinct success.
Shadowgraph experiment: Film casette was recovered in excellent condition

COMMENTS

Rocket performance: Flight was normal to 22 sec at which time the rocket began to rock and pitch. Fallure of vane III at 22 sec caused the erratic flight. The cause of the vane failure was not determined.

IDENTIFICATION

Time of firing: 0507 MST
Agency: Naval Research Laboratory
Altitude: 103.0 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Philips and Pirani gages installed on the warhead and on the tall section; a ram pressure probe extended beyond the nose of the rocket
Cosmic radiation: Wilson cloud chamber to study the reaction of primary cosmic rays in passing through different materials; a seven Geiger counter tube bundlo to measure gamma ray activity; one package of liford plates
Solar radiation: A solar epectrograph, the record to be used in the determination of the vertical distribution of ozone in the earth's atmosphere; 2 soft x-ray densitometer experiment
Ionosphere: Two generating voltmeters; positive and negative ion collectors for determination of ton density
Other: Two K-25 cameras for earth photography and a classified experiment

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 30-channel system
Physical recovery: Separation of nose section with TNT

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Seven Askania and two Mitchell stations
Cameras: Bowen-Knapp
Telescopes: Four tracking
Radar: Modified SCR-584

Airborne

Beacon: In use
Radio cutoff: AN/ARW-37
Aspect: Schwein gyroscopes to determine rocket aspect
Other: Routine rocket propulsion and performance instruments; vibration instruments

ROCKET INFORMATION

Unfueled rocket weight: 8993 lb
Gross weight at takeoff: $28,685 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees to north

ROCKET PERFORMANCE (Continued)

Time to burnout: 64.6 sec
Velacity at burnout: $5400 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: $2 \$$ miles
Time to zenith: 228 sec
Altitude at zenith: 103.0 miles
Time to tail blowoff: 336.4 sec
Altitutde at tall blowoff: 70 miles (a.yproximately)
Flight duration: 550 sec (approximately)
Impact coordinater: Main body -51 mi . north, 7 mi . west; instrumentation - 53 mi . north, 6 mi . west

BALLISTIC DATA

Theodolites: Good records almost to impact Telescopes: Good records almost to impact Radar: Data to 176.5 sec

DATA RECOVERY

Telemeter: Ended abruptly at 27.85 sec
Physical recovery: Separation was effective. The main body was broken up very little on impact. The warhead dug itself into the ground to a depth of 6 to 8 ft . All required recovery was successful.

EXPERUMENTAL DATA

The spectrograph tailed at about the same time as the telemeter. The cloud chamber gave no data. No useful data were obtained on most of the experiments because of the telemeter fallure.

COMMENTS

Rocket performance: Takeoff was normal. At about 25 sec 2 puff of smoke was observed at the tail. However, the rocket continued in normal flight and appeared to be stable. Roll was introduced in a counterclockwise direction by means of trim tabs. One pullaway plug failed at takeoff; the plug stayed on the launching platform. This left a hole in the tail section. The recovered rocket showed indications of a flash fire which was probably caused by the jet flame blowing into this hole and igniting fuel vapors. The fire was of short duration and apparently did not affect the rocket performance. The spectrograph wiring was charred in several places and there was indication of a short circuit. The condition of the wiring indicated an external fire rather than a short from the wiring as a cause of the fire.

Time of firing: 1534 MST
Agency: General Electric Company
Altitude: 90.3 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Thirty-four absolute pressure gages for measuring surface and internal pressure distribution in a Hermes B-1 ram-jet diffuser which replaced the customary warhead installation
Composition: Two air-sampling bottles (Mich. U.)
Solar radiation: Four thermoluminescent strips (NRL), four soft x-ray film packs Biological: Five seed containers (Harvard, New Mexico College)

DATA RECOVERY INSTRUMENTS

Telemeter: Or: 3-channel Hermes telemetry system; one 30 -channel AN/DKT-2 (XN-1) (NRL)
Physical rerovery: Separation of forward portion of rocket with TNT

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: T'wo modified SCR-584 (S-band) stations
Doppler: FYve receiving stations
Airborne
Beacon: Type AN/APN-55
Doppler: Dovap transceiver
Radio cutoff: AN/ARW-37 FM control receiver
Other: Two telemetering gyros for measuring missile attitude. Three vibration pickups installed, one along each axis. Pickup outputs transmitted by a specially modified Hermes telemetry unit to ground station where oscillographic and wire recordings were made.

ROCKET INFORMATION

Payload weight: 2245 lb
Unfueled rocket weight: 8858 lb
Gross weight at takeoff: 28,376 lb

RCCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees

ROCKET PERFORMANCE (Continued)

Time to burnout: 63.5 sec
Velocity at burnout: $5150 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 20.2 miles
Time to zenith: 218 sec
Altitude at zenith: 90.3 miles
Time to tall blowoff: 350.9 sec
Altitude at tall blowoff: 39.2 miles
Flight duration: 594.5 sec
Impact coordinates: Main body $\mathbf{- 2 7 . 2} \mathrm{mi}$, north, 7.5 mi , east; warhead -30.5 mi . north, 4.7 mi. east

BALLISTIC DATA

Theodolites: Aakania - trajectory 0 to 73.08 sec; Mitchell - to 70 sec
Cameras: Performance satisfactory
Telescopes: Fairly complete records from all telescopes. No roll (± 5 degrees) detected up to burnout.
Radar: Satisfactory performance, tracked the missile to impact
Doppler: No data after 40 sec
Other: Both yaw and pitch axds telemetering gyros performed satisfactorily. Vibration equipment produced a good record during powered portion of flight but signal became noisy at 64 sec . Analysis of oscillographic records and wire recordings showed ittle correlation between vibration frequencies and amplitudes.

DATA RECOVERY

Telemeter: Hermes equipment functioned satisfactorily up to about 56 sec . Reception from AN/DKT-2 (XN-1) very sporadic; no data obtained.
Physical recovery: Effected except for two thermoluminescent strips

EXPERIMENTAL DATA

Pressure-temperature: Good data were obtainsd while telemetry signals were received

COMMENTS

Rocket modifications: Ram-jet diffuser attached to front of warhead did not affect stability or performance
Rocket performance: Performance of rocket equaled that predicted for normal flight. Steerins was good.
Experiments: Losa of telemetry signal early in flight prevented securing much useful ram-jet diffuser data

REPORTS AND PAPERS

"A Flight Teqi of the Hermes B Diffuser on an A-4 Rocket," W. F. Dankhoff, General Electric Report R49A0526 (Conftdential Report, Unclassified Title), Juiy 1949

Experiments: Cosmic radiation, High altitude photography. Shock wave temperature, Composition (Univ. of Mich.).

Agency: Air Research and Development Command
21 March 1949 Time: 2343 MST
Altitude: $\mathbf{8 3 . 0}$ miles
Experiments: Skin temperature (Boston Univ.). Ionosphere (AFCRC and Univ. of Utah). Artificial air glow (WPAFB, AFCRC, FILRAD). Solar radiation (AFCRC).

V-2
NO. 42
9 December 1848

Experiments: High altitude winds. Temperature-pressure, Shock wave angle (University of Michigan). Solar radiation (NRL).

	V-2 NO. 43
Agency: Naval Research Laboratory Time: 0507 MST Altitude: 103.0 miles	5 August 1948
Experiments: Cosmic radiation, photography.	

V-2
NO. 44
Agency: General Electric Company
18 November 1948
Time: 1:34 MET
Altitude: $\mathbf{9 0 . 3}$ miles
Experiments: Composition (Univ. of Mich.). Solar radiation (NRL). Biological (Harvarc Col., NMCA\&MA).

IDENTI FICATION

28 January 1949
Time of firing: 1020 MST
Agency: Naval Research Laboratory Altitude: 37.2 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Stagnation pressure on nose tip. Pressure on nuse and tail sections.
Cosmic radiation: Soft gamma component Geiger counter bundle. Hard gamma component Geiger counter telescope.
Solar radiation: Thermoluminescent strips
Ionosphere: Radio propagation experiment. Ion collectors. Electrostatic field (generating voltmeter). Soft x-ray film detectors. Beryllium window photon counters. Photoemission detector (modified generating voltmeter).
Other: Two K-25 aerial cameras and one GSAP camera for high altitude photography. Seed samples.

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 30-channel AN/DKT-2(XN-1) pulse position system Airborne recorder: Ten-channel photographic recorder Physical recovery: Nose cone separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: Two SCR-584 S-band
Airborne
Beacon: APN-55
Radio cutoff: AN/ARW-37 command cutoff and blowoff
Other: Roll gyro and photocells
Pitch and yaw gyros
Other
BRL spectro camera

ROCKET INFORMATION

Payload weight: 2733 lb (including ballast)
Unfueled rocket weight: 9537 lb
Gross weight at takeoff: $29,452 \mathrm{lb}$

Supplamans
February 1958

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees from vertical
Time to burnout: 56.4 sec (cutoff)
Velocity at burnout: $2970 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 12.2 miles
Time to zenith: 149 sec
Altitude at zenith: 37.2 miles
Time to tail blowoff: Did not function
Flight duration: 264 sec
Impact coordinates: 10.5 mi . north, 4 mi . east

BALLISTIC DATA

Theodolites: Good smages and tracking from Askanias to impact. Images to 70 sec from one Mitchell.
Cameras: Bowen-Knapp - good operations, ballistic - good operations
Telescopes: Complete images and tracking from two, no images after 118 sec on third, fourth had no visibility
Radar: Good record to impact from one radar

DATA RECOVERY

Telemeter: Excellent record for entire flight
Physical recovery: Equipment completely destroyed at impact, blowup system failed

EXPERIMENTAL DATA

Cosmic radjation - Comparison of V-2 and Aerobee (NRL-2) results indicate no possibility of low energy gamma rays from sun. Insufficient data due to low altitude to draw conclusions from telescope experiment.

COMMENTS

Rocket performance: Propulsion performance below normal, control defective rocket turned east and emergenvy fuel cutoff given. Rocket pitched and rolled after burnout. Angle of attack 45 degrees at peak, nose down at 189 sec , horizontal at 195 sec .

IDENTIFICATION
Time of firing: 0815 MST
Agency: General Electric Company Altitude: 5.45 miles

5 May 1949

UPPER AIR INSTRUMENTS

Pressure-temperature: Thirty-four absolute pressure gages to measure surface and internal pressure distribution in a Hermes B-1 ram-jet diffuser
Solar radiation: Extreme ultraviolet thermoluminescent detectors (NRL), four soft x-radiation detectors (NRL)

DATA RECOVERY INSTRUMENTS

Telemeter: Two PWM/FM 28-channel telemeter systems Physical recovery: Warhead separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell and seven Askania stations
Cameras: Two ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: Two modified SCR-584 S-band radars
Doppler: Stations not indicated
Airborne
Beacon: AN/APN-55 S-band transponder
Doppler: Dovap transceiver
Radio cutoff: AN/ARW-37 receiver for command fuel cutoff and blowoff
Other: Roll, pitch, and yaw gyros to measure missile attitude

ROCKET PERFORMANCE INSTRUMENTS

Doppler: Directional coupler to determine mismatch between Dovap transmitter and antenna
Camera: Spectro camera on Telescope T-I to obtain spectrograms of the rocket flame

ROCKET INFORMATION

Unfueled rocket weight: 9200 lb
Unfueled rocket C.G.: 248.5 in ,
Gross weight at takeoff: $28,940 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees true
Program angle: Seven degrees from vertical
Time to burnout: 25.5 sec (premature cutoff)
Altitude at burnout: 2.3 miles
Velocity at burnout: $1050 \mathrm{ft} / \mathrm{sec}$
Time to zenith: 58.8 sec
Altitude at zenith: 5.45 miles
Time to tail blowoff: 61.75 sec
Altitude at tail blowoff: 5.42 miles
Flight duration: 121.24 sec
Impact coordinates: Main body -1.33 mi . north, 0.86 mi . east; warhead $\mathbf{- 1 . 2 5} \mathrm{mi}$. north, 0.68 mi . east

BALLIETIC DATA

Theodolites: Coordinate data from takeofi to 121.24 sec
Cameras: Ballistic data for most of flight; Bowen-Knapp data from 0 to 13 sec Telescopes: Aspect data from takeoff to 121.24 sec
TRadar: Data from takeoff to 121.24 sec
Doppler: Good signal to 61.7 sec
Gyros: Attitude data takeoff to 61.75 sec
Spectro cameras: Rocket flame spectrograms

DATA RECOVERY

Telemeter: System No. 1 - satisfactory record 4.0 to 61.75 gec System No. 2 - satisfactory record 0.0 to 50.5 and 53.5 to 55.5 sec
Physical recovery: X-ray and thermoluminescent detectors recovered

EXPERIMENTAL DATA

Solar radiation: No usable data obtained
X-radiation: No usable data obtained
Pressure-temperature: Good data obtained on all ram-jet diffuser pressures; data duplicates that of V-2 No. 44

COMMENTS

Rocket modifications: Ram-jet diffuser replaced standard warhead
Rocket performance: Performance normal up to premature cutoff
Experiments: Solar and x-radiation experiments failed to produce data due to low rocket altitude

REPORTS AND PAPERS

"Pressure and Mach Number Anaiysis of thr, Second A-4 Test Diffuser," W. R. Nial, General Electric Technical Manual, pp. 761-793

IDENTIFICATION

14 June 1949
Time of firing: 1535 MST
Agency: Air Research and Development Command Altitude: Approxdmately 83 miles

UPPER AIR INSTRUMENTS

Cosmic radiation: Emulsion type sensitive plates for detection of high energy particles (U . of Chicago)
Soft solar x-ray study: Four packets, each containing photographic film with a stepped-wedge type aluminum filter, were placed on surface of warhead (AFCRC)
Skin temperature experiment: Nickel temperature-sensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flush-mounted thin steel diaphragms distributed along rocket skin (Boston U.)
Ambient temperature and pressure measurement: One ionization type pressure gage (Mich, U.)
Pitot tube experiment: Pitot tube located on tip of nose cone for measurement of ram and static pressures (Equip. Lab., WPAFB)
Mass spectrometer: Mass spectrometer set to masure helium to argon ratio and oxygen to nitrogen ratio as a function of altitude (Cook Research Labs.)
Oblique incidence tonosphere propagation experiment: Ground-transmitted signal travels over very long path. Receivers both in rocket and on ground. Rocket transmitter retransmits signal received in rocket t sround receiver. Measures attenuation of wave passing downward through E layer reflected from F layer. (Boston U.)
Sequencing and separation controls: Control equipment to actuate ejection system, television and parachute cameras, and antenns switchos (FILRAD)
Data transmission experiment (utilizing telemetering and television techniques): Television system for observation of ground from rocket in ascent and portion of descent, and observation of opening of parachutes (A.FCRC, Boston U., and Tufts College)
Biological experiment: Project Albert II (Aero-Medical Lab., WPAFB)

ROCKET PERIORMANCE INSTRUMENTS

Photographic studies: Four GSAP type cameras located in parachute compartment, one K-17 camera in instrument compartment, one K-25 camera in instrument compartment, four GSAP cameras in instrument compartment (Photo Lab., WPA FB)
Warhead nspect gyros experiment: Two indicators, gyro type J1 modified, one type AN/N6 camera, one aircraft clock, lighting system, and mirrors (Equip. Lab., WPAFB)
Beacon triangulation studies: Use of tracking beacon system to obtain trajectory of rocket and Blossom; evaluation of system of triangulation (AFCRC and Oklahoma A and M College)

DATA RECOVERY INSTRUMENTS

Telemeter: Ballistic research laboratory telemetering equipment (Hermes) operating at 149.22 Mc . Thirty channels.
Airborne recorder: Universal airborne detector recorder (Cook Research Laboratories) - 13-channel magnetic tape recorder. Tufts College recorder, 15 channels.
Physical recovery: Separation of warhead by radio command to ARW-37 cutoff receiver

Blossom IV-B experiment - New elongated nose section to be separated from rocket body and lowered by parachute (FILRAD, Equip. Lab., WPAFB, and A FCRC)

Parachute studies - 100-ft nylon main canopy used in conjunction with a 32-ft aylon drag parachute (Equip. Lab., WPA FB

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and eight Askania stations
Cameras: Two ballistic and thrue Bowen-Knapp stations
Telescopes: Four stations
Radar: Two S-band stations
Doppler: Six stations
Impact location: Impact point computer

Airborne

Beacon: AN/DRW-1, S-band beacon
Doppler: Dovap T-5 missile unit
Radio cutoff: Owe ARW-37 radio receiver operating at $54,5 \mathrm{Mc}$ located in control compartment for fuel cutoff and parachute ejection
Other: Routine rocket performance instrumentation (G. E.)

ROCKET INKORMATION

Unfueled rocket weight: $10,575 \mathrm{lb}$
Gross weight at takeoff: $30,443 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: 10 degrees at 50 sec
Time to burnout: 67-67.3 sec
Velocity at burnout: $4412 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 21 miles (approximately)
Time to zenith: 211 sec
Altitude at zenith: 83 miles (approxdmately)
Time to tail blowoff: 286.3 sec
Altitude at tail blowoff: 70 miles (approximately)
Figght duration: 550 sec (estimate)
Impact coordinates: Main body - 38.53 mi . north 1.9 mi . west; warhead -1.91 mi . south, 0.03 mi . west of main body; control compartment - scattered over area of several square miles south of warhead

Theodolites: Mitchell - images until shortly after burnout; Askania - data reduced through burnout
Cameras: Bowen-Knapp data for first 10-15 sec; ballistic - good images until burnout
Telescopes: Good coverage
Radar: Beacon signal stopped at 74.5 sec
Doppler: Good signals until explosion (266.3 sec), record reduced from $62-75$ sec

DATA RECOVERY

Telemeter: Hermes telemetering equipment operated normally and record was obtained up to 266 sec , at which time control compartment was blown off
Physical recovery: Blossom IV-B experiment - ejection system functioned as Intended
Parachute studies: Warbead separated from parachute, Blossom nose was blown off, by the parachute ejection system, and control compartment wes blown off by TNT changes
Airborne recorder: Magnetic tape suffered damage upon impact, but upon careful reassembly, about an 80% usable record was obtained

EXPERIMENTAL DATA

Skin temperature experiment: Curves of temperature vs time for heating effects due to frictional dissipation between various pointie on the miasile and adjacent air molecules, with some gaps due to telemetering
Oblique incidence ionosphere propagation experiment: Bureau of Standards ground transmitter ialled, no data
Amblent temperature and pressure measurements: No results reported
Mase spectrometer: Oxygen to nitrogen ratio equipment failed, no datz obtained. Helium to argon ratio equipment showed 21% change from ground to 83 miles altitude, which was not considered significant.
Soft x-ray study: Particle detection experiment, and photographic studiea were last on impact
Warhead aspect gyros experiment: Data recorded by camera and all but one film pack destroyed upon impact
Beacon triangulation studies: Only one of the four ground stations received synchronization signals from beacon, due to loss of a modulator cable at station at Sacramento Peak. One station received excellent signals at all times until altitude of 14 miles on downward leg of trajectory.
Sequencing and separation controls: Controls woriced satisfactorily
Data transmission experiment (by television techniques): Experiment functioned for approximately four minutes of flight. Pictures on screen showed cloud formation and curvature of earth. Equipment for transmission by telemetering techniques functioned for over four minutes of flight.

COMMENTS

Rocket modifications: This was the second rocket to carry the elongated nose section, increasing length of original V-2 by one diameter
Rocket performance: Takeoff and flight were normal, with rocket propulsion giving better than average performance and exceeding calculated performance
Pitot tube experiment: Good recording of data obtained
"Rocket-Borne Televiaion Camera Utilizing the RCA Type 5527 Iconoscope," W. C. Moore, Part II, Technical Note 7, Upper Atmosphere Research Laboratory, Bonton University, 4 April 1950

Time of firing: 1000 MST
Agency: Applied Physics Laboratory, Johns Hopkins University Altitude: 62.5 miles

UPPER AIR INSTRUMENTS

Composition: One air-sampling bottle (Signal Corps, Mich. U.)
Cosmic radiation: Theree arrays of three Geiger tubes each surrounded by various thicknesses of aluminum. Single pulse ionization chamber in nose extension, Fourfold Geiger tube specific ionization telescope (APL).
Solar radiation: Two thermoluminescent detectors (NRL)
High altitude photography: Three K-25 cameras with black and white, infrared, and aero kodacolor film
Biological experiment: Fruit flies

DATA RECOVERY INSTRUMENTS

Telemeter: NRL telemetering Physical recovery: Warhead blowoff by radio command

ROCKET INFORMATION

Unfueled rocket weight: 9652 lb
Gross weight at takeoff: $29,217 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees
Time to burnout: 63.5 sec
Velocity at burnout: $4440 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 20.6 miles
Time to zenith: 205 sec
Altitude at zenith: 79.5 miles
Time to tail blowoff: 321.2 sec
Altitude at tail blowoff: 39.1 miles
Flight duration: 568.5 sec
Impact coordinates: 37.4 mi . north, 1.4 mi . east

BALLISTIC INSTRUMENTS

Theodolites: Mitchell - good images from 0 to 70 sec ; Askania - data reduced from 0 to 75 sec
Cameras: Bowen-Knapp - operations satisfactory; ballistic - satisfactory, some images obscured by vapor trail
Telescopes: Good operation
Radar: To 568 sec

DATA RECOVERY

Physical recovery: Air-sample bottle punctured by fragment. All cameras recovered. Thermoluminescent detectors recovered, one operated gatisfactorily.

COMMENTS

Rocket performance: Roll rate - 1 Rev/10.9 sec at $70 \mathrm{sec}, 1$ Rev $/ 10.2 \mathrm{sec}$ at 107 sec Other: Impact predictor operated

REPORTS AND PAPERS

"The Specific Ionization of the Cosmic Radiation Above the Atmosphere," S. F. Singer, Phys, Rev. 76:701 (1949)
"The Zenith Angle Dependence of the Cosmic Radiation Above the Atmosphere at $\lambda=41^{\circ} \mathrm{N}$, " S. F. Singer, Phys. Rev. 77:729 (1950)
"On the Nature of the Cosmic Radiation Near the Pfotzer Maximum at $\lambda=41^{\circ} \mathrm{N}$," S. F. Singer, Phys. Rev. 77:730 (1950)

Time of tiring: 0958 MST
Agency: Naval Research Laboratory Altitude: 93.7 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Stagnation pressure at nose
Cosmic radiation: Minimum ionization emulsions Solar radiation: Extreme ultraviolet and soft x-ray photon counters Ionosphere: Radio propagation experiment. Ion collectors, Electrostatic field. Photo emission. Soft x-ray film detectors.
Other: Meteoric dust collectors

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 30-channel pulse position AN/DKT-1 (XN-1) Airborne recorder: 15-channel photo recorder Physical recovery: Nose separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and nine Askania stations
Cameras: Three ballistic and three Bowen-Knapp atations
Telescopes: Four stations
Radar: Two SCR-584 S-band stations
Impact location: Impact point computer

Airborne

Beacon: APN-55 S-band
Radio cutoff: AN/ARW-37 command fuel cutoff and blowoff Other: BRL spectro camera

ROCKET INFORMATION

Unfueled rocket weight: 9276 lb
Unfueled rocket C.G.: 236.2 in. Gross weight at takeoff: $28,911 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees from vertical
Time to burnout: 64.5 sec Velocity at burnort: $5000 \mathrm{ft} / \mathrm{sec}$ Altitude at burnout: 20.9 miles
Time to zenith: 225 sec
Altitude at zenith: 93.7 miles

ROCKET PERFORMANCE (Continued)

Time to tail blowoff: 336.8 sec Altitude at tail blowoff: 56 miles Flight duration: 470 sec (last radar signal)
Impact coordinates: 43.5 mi . north, 3 mi . west

BALLXSTIC DATA

Theodolites: Askania data for 95 sec, Mitchell data for 56 sec
Cameras: Complete records
Telescopes: Aspect data for 71 sec
Radar: Tracking data for 470 sec except for intervals near end of burning Impact location: No prediction from impact point computer due to loss of tracking at 30 sec

COMMENTS

Rocket performance: Normal performance, rocket started to roll at 67 sec (fin tabs positioned)

REPORTS AND PAPERS

J. E. Jackson, "Rocket-Borne Instrumentation for Ionosphere Propagation Experiments," NRL Report 3909, January 1952
J. C. Seddon, "Propagation Measurements in the Lonosphere by Means of Rockets," Trans. Am. Geophys. Usion 33:322 (Abst.) (1952).
J. C. Seddon, Upper Atnosphere Research Report No, XXII - "Rocket Investigations of the Ionosphere by a Radio Propagation Method," NRL Report 4304, March 1954
J. C. Seddon, "Propagation Measurements in the Ionosphere With the Aid of Rockets," in "Rocket Exploration of the Upper Atmosphere," edited by R. L. F. Boyd and M. J. Seaton, London:Porgamon Press, 1954, pp. 214-222
J. C. Seddon, "Electron Densitien in the Ionosphere," J. Geophys. Res. 59:463, December 1954

Agency: Naval Research Laboratory

Experiments: Cosmic radiation, Solar radiation, Pressure-temperature, Ionosphere, High altitude photography. Seed samples (Harvard College).

Agency: General Electric Company
5 May 1949
Time: 0815 MST
Altitude: 5.5 miles
Experiments: Solar radiation (NRL).

Agency: Air Research and Development Command
14 June 1949 Tlme: 1535 MST
Altitude: 83.0 malles
Experiments: Cosmic radiation (Univ. of Chicago). Skin temperature, Ionosphere (Boston Univ.). Precsure-temperature (Univ. of Mich.). Ram pressure (Equip. Lab., WPAFB). Composition (Cook Res. Labs.).

	V-2
No. 48	
Agency: Applied Physics Laboratory	17 February 1949
Time: 1000 MST	
Altitude: 62.5 miles	

Experiments: Cosmic radiation, High altitude photography. Solar radiation (NRL). Composition (Univ, of Mich.). Biological.
V. 2

NO. 49

Agency: Naval Research Laboratory	29 September 1949
Time: 0958 MST	
Altitude: 93.7 miles	

Experiments: Solar radiation, Density, Ionosphere, Meteoric dust collectors. Cosmic radiation.

Time of firing: 1505 MST
Agency: University of Michigan for SCEL
Altitude: 54.2 miles

UPPER AIR INSTRUMENTS

Density-pressure-temperature: Shock wave angle measurement for temperature. Two needle probes and two ram probes. Ram and cone surface pressure gages for temperature.
Composition: Two evacuated air-sampling bottles with associated timer and pyrotechnic opening and sealing devices
Solar radiation: Thermoluminescent detectors. Soft x-ray densitometers (NRL). Biological: Effect of cosmic rays on genes and chromosomes (NRL)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL type AN/DKT-2
firthone recorder: Cook Research Laboratories 13-channel FM magnetic tape recorder in parallel with telemeter
Physical recovery: Warhead plus control compartment separated by detonation of eight one-half pound blocks of TNT

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and seven Askania stations Cameras: Two ballistic and three Bowen-Knapp stations Telescopes: Four stations Radar: Two SCR-584 S-band units

Airborne
Radio cutoff: AN/DRW-37
Aspect: Three Giannini heliograph cameras
Other: Missile performance instruments (G. E.)

ROCKET INFORMATION

Payload weight: 2873 Ib
Unfueled rocket weight: 9530 lb
Takeoff weight: $28,973 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees north from vertical Time to burnout: 62.66 sec Velocity at booster burnout: $3450 \mathrm{ft} / \mathrm{sec}$ (vertical) Altitude at burnout: $101,200 \mathrm{ft}$

ROCKET PERFORMANCE (Continued)

Time to zenith: 170.16 sec
Altitude at zenith: $286,200 \mathrm{ft}$
Time to tail blowoff: 248.05 sec
Altitude at tail blowoff: $194,000 \mathrm{ft}$
Impact coordinates: Warhead -20.9 mi . north, 0.32 mi . east of launcher; midbody 19.38 mi , north, 0.32 mi . east of launcher

BALLISTIC DATA

Theodolites: Askania trajectory data from 0 to $357,16 \mathrm{sec}$
Telescopes: Preliminary fight data from 25.3 to 228.2 sec

DATA RECOVERY

Telemeter: Data recorded throughout the sensitivity ranges of both probe Pirani gages and ram and side Pirani garges
Airborne recorder; Although magnetic tape recorder smashed on impact, casette containing flight tape recovered in good condition. Since a good-quality telemeter record was obtained, it, rather than the recorder record, was used for data reduction.
Physical recovery: Two air-sampling bottles badly smashed. Three heliographs in excellent condition. Magnetic tape recorder casette and tape. Two thermoluminescent detectors. Three of four soft x-ray densitometers. Four seed and bacteria containers.

EXPERIMENTAL DATA

Both air-gampling bottles opened on impact - no samples. Excellent ram and sidecone pressure measurements made throughout range of ram and side Pirani gages. However, instrumental errors found to be too large to give calculation of ambient temperature with useful accuracy. Five shock-wave signals in the vicinity of $100,000 \mathrm{ft}$ were recorded. These were reduced to temperature using Askania altitude and velocity data. Results show good agreement with balloon temiperature measurements taken at the same time. Thus the shock angle method was demonstrated as feasible for making instantaneous, independent temperature measurements.

COMMENTS

Rocket modifications: Four Pirani gages mounted on extension rods were placed at 90 degree intervals eight in, from the longitudinal axis of a 40 -degree right circular cone. The rods were driven through an excursion of eight in. with a period of about three seconds in a direction parallel to the cone axis so as to intercept the shock wave.

An opening for the ram-pressure Pirani gage was placed in the tip of the cone and four openings for cone side-pressure gages were placed at 90 -degree intervals on the cone surface.

The 40 -degree cone was filled with ice water to keep the Pirani gages at constant temperature.
Rocket performance: A disturbance in the jet was noted at 43.4 sec , and from that time until command burnout there was intermittent burning of fuel. Hence peak altitude was appreciably less than expected, and because some fuel remained in the tanks, the midbody exploded on impact.

IDENTI FICATION
31 August 1950
Time of firing: 1009 MST
Agency: Air Research and Development Command
Altitude: 84.8 miles

UPPER AIR INSTRUMEN'SS

Soft solar x-ray studies: Packets, each containing photographic film covered with an opaque evaporated aluminum film, were placed on surface of warhead (AFCRC)
Skin and boundary layer temperature experiment: Nickel temperature-sensitive elements, commutated in one arm of ac resistance bridge, to sense heat change in flush-mounted thin steel diaphragms distributed along rocket skin (Boston U.)
Oblique incidence ionosphere propagation experiment: Ground-transmitted signal travels over very long path. Receivers both in rocket and on ground. Rocket transmitter retransmits signal received in rocket to ground receiver. Measures attenuation of wave passing downward through E layer reflected from F layer. (Boston U.)
Acoustical studies: Three systems of microphones and associated amplifiers set directly into shell of nose cone (Temple U.)
Sky brightness studies: Six multiplier phototubes, with associated filters, were located in instrument compartment (AFCRC)
Data recording by photo technique: Six cameras - one $B-2,16-\mathrm{mm}$ (motion picture) in parachute section, one Bel' nd Howell, $16-\mathrm{mm}$ (motion picture) in instrument section, two robot (still pictures) cameras in instrument section, and two modified GSAP cameras in mid-body (A FCRC)
Ballistic research laboratory test oscillator biological experiment: Project MX 1450 (WPAFB)
Cannonball experiment: Gyro-stabilized sphere having temperature insulated zones and containing 14 thermocouples, time and temperature recording devices, gyroscope, and breakup and recovery means. (Armour Research Foundation of Illinois Institute of Tech.)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 30-chansel system. AFCRC beacon used to telemeter multiplexed information from experiments.
Airborne recorder: Film recording galvanometer for Project Cannonball
Physical recovery: Warhead separation to be effected at peak altitude by radio command to $k+1 W-37$ cutoff receiver.

Blossom IV-G - Fifth of series of rockets carrying elongated Blossom nose section. Instrumeni compartment made of two hard wooden sections; nose cone was an aluminum shell with a probe antenna, four telemetering blade antennas, and an insulator mounted on its tip. Blossom nose section was to be separated from main body by means of four pistons actuated by explosive charge.

Parachute recovery - Main parachute canopy, 64 ft in diameter, and $16 \mathrm{ft}-$ diameter ribbon drag parachute for lowering of warhear

BALLSTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Askania stations
Cameras: Three ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: Two S-band radars
Impact point computer: Radar impact predictor

Airborne
Beacon: Radar beacon, APNi-55, S-band
Radio cutoff: ARW-37 cutoff receiver

ROCKET INFORMATION

Unfueled rocket weight: $10,683 \mathrm{lb}$
Unfueled rocket C.G.: 272.8 in.
Gross weight at takeoff: $30,178 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees from vertical
Time to burnout: 64.8 sec
Altitude at burnout: 20.5 miles
Time to zenith: 214.5 sec
Altitude at zenith: 84.8 miles
Time to tail blowoff: 221.0 sec
Altitude at tail blowoff: 84.7 miles
Fight duration: 373 sec
Impact coordinates: 36.1 mi . at azimuth of 357 degrees from blockhouse

BALLISTIC DATA

Theodolites: Mitchell data to about. 75 sec , Askania data until separation Cameras: Ballistic - records to burnout, Good Bowen-Knapp records Radar: Good signal received throughout flight until 373 sec Impact location: One tracker followed missile nearly until peak

DATA RECOVERY

Physical recovery: Warhead separation occurred at zenith.
Main parachute failed to support load of the warhead. Parachute, upon
recovery, gave evidence of severe damage due to high temperature.
Film from cameras in both the mid-body and warhead were recovered.
Mid-body cameras showed warhead separation.
All soft x-ray packets were recovered from warhead at impact site, Cannonball recovered.
Film casette for Project MX 1450 recovered.
Airborne recorder: Film recorder from Project Cannonball recovered in excellent condition

Cannonball experiment: No data obtained; outer protective cover failed to separate. All other phases of equipment worked well, i.e., Cannonball ejection from warhead and ejection and recovery of data recorder.
Skin and boundary layer temperature experiment: Curves of temperature vs time for heating effects due to frictional dissipation between various points on the missile and adjacent air molecules were obtained for rocket fins only.
Oblique incidence lonosphere propagation experiment: Excellent data. Firing occurred during lonispheric storm. Very-long-path propagation data show radio wave being "ducted" or trapped between ionospheric layers. Ion density measures obtained through the tabulation of absorption value of signal as it passes through the layer.
Acoustical studies: Noise levels lower than anticipated; meteoric impacts less intense than in V-2 No. 31.
Sky brightness studies: Intensity of aky light measured from ground to 135 km through two interference filters peaked at 4278 A and 5590 A. Values from ground to 35 im consistent with previous measurements of intensity vs altitude; from 35 to 135 km 2 relatively large and constant amount of light (approxdmately 1% of ground value) was obtained.
Soft x-ray studies: Eleven packets in experiment. Six damaged, yielding no useful information. Daricening of film in remaining five packets definitely verified presence of soft x-rays and approxdmately confirms order of magnitude of predicted intensity (10^{8} quanta/ cm in 8-12 A range).

COMMENTS

Rocket modiflcations: Nose section differed from previously launched rockets of Blossom series in that it was an aluminum shell with a probe antenna, four telemetering blade antennas, and an insulator mounted on its tip; instrument compartment was composed of two hardwood sections with aluminum access doors
Rocket performance: Preliminary atage, takeoff, and flight appeared good; propulsion performance was near optimum, and steering was good. Missile disintegration occurred on the downleg at an altitude of 11.5 miles.

REPORTS AND PAPERS

"Day Sky Brightness Measured by Rocketborne Photoelectric Photometers," H. A. Miley et al., Trans. Am. Geophys. Union (in press)

IDENTIFICATION

Time of firing: 1443 MST
Agency: Air Research and Development Command
Altitude: 18,900 ft

UPPER AIR INSTRUMENTS

The solar constant: Determination of intensity of solar radiation at the limit of the atmosphere by use of semi-conductor flake bolometers exposed to the radtation (R. I. State)

Ultraviolet radiation from the sum: A coronagraph spectrograph positioned in the direction of the sun by a biaxial pointing control (U. of Colorado)
Solar soft x-ray studies: Packets with photographic x-ray film protected by opaque filters of aluminum were exposed on surface of the rocket (AFCRC)
Vertical incidence ionosphere experiment: Synchronized ground and airborne equipment to measure delay time of low-frequency pulse traveling through the E layer by comparison with travel time of undelayed high-frequency signal (A FCRC and U. of Utah)

Photographic studies: Four cameras in instrument section - one modified Cineflex $35-\mathrm{mm}$ motion picture camera, two modified 16 mmm motion picture cameras, and one modified $16-\mathrm{mm}$ high speed camera (AFCRC)
Ultraviolet characteristics of the upper atmosphere: One F/1.5 modified MaksutovBouwers type spectrograph (U. of Denver)
Sky. Infrared measurements: Photocell (type CE-25VA/B) for measurement of sky infrared intensities (AFCRC)
Sky brightness experiment: Monochromatic photometers mounted on two access doors located 180 degrees apart to measure scattered light and day airglow (AFCRC)
Biological experiment: Project MX-1450 (Aero-Medical Lab., WPAFB)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL telemetering system
Airborne recorder: Tufts College proportional data recorder - used to supplement normal telemetering facilities; data recorded on $16-\mathrm{mm}$ film
Physical recovery:
Parachute studies - Eight ft ribbon chute to recover Aerobee nose section (see "Rocket Modifications") (Equip. Lab., WPAFB)

Blossom IV-F - standard Blossom nose cone modified as in "Rocket Modifications" to be blown off as Aerobee nose cone is ejected (Ludwig Honold Mfg. Co.)

Aerobee nose cone was to be ejected at approximately 50 miles altitude on downleg of trajectory. Approximately $10-2 \mathrm{Cec}$ later remainder of instrument section was to be separated from main body by TNT charges and fall free with no attempt at parachute recovery.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Four Mitchell and eight Askania stations

BALLISTIC INSTRUMENTS (Continued)

Cameras: Three Bowen-Knapp atations
Telescopes: Five stations
Radar: Two S-band radar's
Impact location: Impact point computer

Airborne

Beacon: 470-493.5 Mc beacon to provide trajectory information and information on delay of a $4.45-\mathrm{Mc}$ ground transmitted pulse (AFCRL)
Radio cutoff: ARW-37

ROCKET INFORMATION

Unfueled rocket weight: 9781 lb
Unfueled rocket C.G.: 266.1 in . from venturi exit
Gross weight at takeoff: $29,431 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees from vertical
Time to zenith: 47 sec
Aititurde at zenith: $18,900 \mathrm{ft}$
Fight duration: 89.0 sec to warhead impact, 100.0 aec to tail section impact
Impact coordinates: Main body $=0.7 \mathrm{mi}$. at azimuth of 56 degrees 52 ft 18 in . warhead -0.6 mi , at azimuth of 59 degrees 2 ft 52 in .

BALLISTIC DATA

Theodolites: Askania and Mitchell had images until impact
Cameras: Bowen-Knapp had tmage until 16.9 sec
Telescopes: Until impact
Radar: Good beacon signal received until 7.9 sec; beacon did not operate after that time
Impact location: Two trackers followed missile until impact
Other: Impact computer - C and E atation trackers followed to impact

DATA RECOVERY

Telemeter: Telemetering signals solid until 47.2 sec
Physical recovery: Instrumentation destroyed upon impact with exception of four cameras installed for photo studies
Airborne recorder: No recovery, due to nature of impact

EXPERIMENTAL DATA

Due to nature of the flight, no data were obtained from the upper air instrumentation flown in this rocket

Rocket modifications: Instrumentation for the solar radiation experiment and the ultraviolet radiation experiment was housed in an Aerobee nose section faired into the Blossom nose section. Instruments for both experiments were contained in a single housing which was to have been pointed at the sun by the University of Colorado biaxial pointing control. This Asrobee nose extended 43 in . beyond Station Zero of standard Blossom IV.
Rocket performance: The abnormally short flight was due to an explosion in tail section shortly after X time. At this time (approximately eight sec) several pieces of the tail were blown off. Thrust continued and steering was satisfactory, but, with loss of portions of the tail section, cutoff was called for at approximately 22 sec .

Time of firing: 1101 MST
Agency: Naval Research Laboratory
Altitude: 92.4 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Stagnation pressure on nose tip, pressure on nose cone and tail section
Cosmic radiation: Geiger counter telescope. Iford nuclear emulsions. Solar radiation: I'hermoluminescent receiver. Soft x-ray film detectors.

DATA RECOVERY INSTRUMENTS

Telemeter: NRL 30-channel AN/DKT-2(XN-1) pulse position system Airborne recorder: NRL 12-channel CR photographic recorder Physical recovery: Nose cone separation explosives in control chamber

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell stations
Cameras: Three ballistic and three Bowen-Knapp stations
Telescopes: Four stations
Radar: Two SCR-584 S-band radars
Impact location: Impact point computer

Airborne

Beacon: APN-55 S-band
Radio cutoff: DRW-4 command fuel cutoff and blowoff
Aspect: Roll, pitch, and yaw aspect gyros. NRL aspect cameras.
Other: BRL spectro camera

ROCKET INFORMATION

Payload weight: 3140 lb
Unfueled rocket weight: 9900 lb
Unfueled rocket C.G.: 252.8 in . (above burner base)
Gross weight at takeoff: $29,433 \mathrm{lb}$

ROCKE'T PERFORMANCE

Time to burnout: 64.4 sec
Velocity at burnout: $4830 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 21.7 miles
Time to zenith: 222 sec
Altitude at zenith: 92.4 miles
Time to tail blowoff: 337.3 sec

ROCKET PERFORMANCE (Continued)

Altitude at blowoff: 56 miles (approximately) Fiight duration: 515.4 sec (impact of main body)
Impact coordinates: 40.5 mi . north, 2 mi . west

BALLISTIC DATA

Theodolites: Mitchell trajectory data from 0 to 70 sec , Askania trajectory data
from 0 to 70 sec
Cameras: Bowen-Knapp and ballistic cameras - complete data
Telescopes: Altitude data from 0 to 60 sec
Radar: Trajectory data from 0 to 273 sec
Impact location: Predicted within 1.5 miles

DATA RECOVERY

Telemeter: Strong signals received. No break in record until 337 sec Physical recovery: 20\% of thermoluminescent strips recovered in good condition. Cosmic ray film pack was total loss. One aspect camera total loss, film badly damaged in the other but usable. Most of x-ray detectors recovered. Airborne recorder: Recorder film damaged but usable

COMMENTS

Rocket modifications: A . 38 caliber, 0.22 in , long cylinder inserted in aluminum nose cone
Rocket performance: Rocket performance slightly better than normal

Time of firing: 1314 MST
Agency: Naval Research Laboratory Altitude: One mile

UPPER AIR INSTRUMENTS

Cosmic radiation: Minimum ionization emulsions
Solar radiation: Photon counters. Solar spectrograph with one-axis sunfollower. Thermoluminescent crystals. Solar x-ray film detectors.

DATA RECOVERY LMSTRUMENTS

Telemeter: AN/DKT-2(XN-1) 30-channel pulse position system
Physical recovery: Warhead separation explosives in the control section and nose cone separation primer cord in nose cone. Cable attached between sunfollower and tall section of rocket.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Threc Mitchell and seven Askania stations Cameras: Three Boweu-Knapp stations
Telescopes: Four stations
Radar: Two S-band stations Impact location: Impact point computer

Airborne

Beacon: APN-55
Radio cutoff: AN/ARW-37 command cutoff and blowoff
Aspect: Two NRL horizon aspect cameras. Roll photocells. Three Reeves Inst. Co. gyroscopes.
Other: Bureau of Standards ionosphere height-finding station. Spectro camera.

ROCKET INFORMATION

Unfueled rocket weight: 9296 lb
Unfueled rocket C.G.: 238 ln .
Gross weight at takeoff: $29,227 \mathrm{lb}$

ROCKET PERFORMANCE

Firing angle: 0 degrees
Program angle: Seven degrees
Time to burnout: 42.2 sec
Time to zenith: 54 sec
Altitude at zenith: One mile
(

UPPER AIR ROCKET SUMMARY

Agency: Bigual Corps Enyineering Laboratories (University of Michigan). Time: 1501 MST
Aititude: 54.2 miles
11 April 1949
Experiments: Pressure-temperature, Composition. Solar radiation (NRL). Biological.

Agency: Air Research and Development Command

Time: 1009 MST

Altitude: 84.8 mlles
Experiments: Solar radiation (Armour Rea. Found, and Ill. Inst. of Tech.). Skin temperature, Ionosphere (Boston Univ.). Sky brightneas, solar radiation (AFCRC). Meteorites (Temple Univ.). Blological (WPAFB).

Agency: Air Research and Developmont Command
28 June 1951 TIme: 1443 MST
Altitude: 3.6 miles
Experiments: Solar Radiation (Rhode Lsland State Col., Univ, of Colo., AFCRC). Sky brightneas (AFCRC, Univ. of Denver). Ionosphere (AFCRC and Univ, of Utah). Blological (Aero. Med. Lab., WPAFB).

Agency: Nayal Research Laboratory
V-2
NO. 53

Timo: 1101 MST
Altitude: 92.4 miles
Experiments: Cosmic radiation, Solar radiation, Pressure-temperature.

V-2
NO. 54
Agency: Naval Research Laboratory
18 January 1951
Time: 1314 MST
Alititude: 1.0 milos
Experiments: Cosmic radiation, Solar radiation.

IDENTIFICATION

Agency: Naval Research Laboratory Altitude: 0 miles

UPPER AIR INSTRUMENTS

Cosmic radiation: Specially sensitized film packs (NRL, NHH)
Solar radiation: Photo counters to measure radiant energy in the spectral bands $0-100 \mathrm{~A}$ and 1100-1900A. Sunfollower spectrograph to measure radiation 10002000A. Detection of soft X-rays near 1200A by means of thermoluminescent crystals. Flim plate densitometer for detection of soft X-radiation (NRL). Radiation effects on Chemical Corps test material (Chemical Corps).

DATA RECOVERY INSTRUMENTS

Telemeter: NRL AN/DKT-2(XN-1) 30-channel system

COMMENTS

Rocket performance: The rocket blew up on the stand at beginning of main atage

IDENTIFICATION

Time of firing: 0903 MST
Agency: University of Michigan for SCEL Altitude: 77 miles

UPPER ALR INSTRUMENTS

Temperature: Twelve flash and sound grenades (SCEL). Four Pirani gages to probe shock wave angle for temperature (Mich. U.)
Composition: Two evacuated air-sampling bottles with associated timer and pyrotechnic opening and sealing devices
Cosmic radiation: Cosmic ray tracking plates for meson and proton detection (AEC) Other: Talcum genesator to permit tracking of high altitude winds (SCEL)

DATA RECOVERY INSTRUMENTS

Telemeter: NRL AN/DKT-2 30-channel PPM-AM system
Airborne recorder: Cook Research Laboratories 13-channel FM magnetic tape recorder in parallel with telemeter
Physical recovery: Warhead and instrument compartment separated by 'TNT detonation

BALLISTXC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and seven Askania stations
Cameras: Three ballistic and three Bowen-Knapp stations
Telescopes: Three stations
Radar: Two SCR-584 modified S-band stations
Airborne
Beacon: APN-55 S-band transponder
Radio cutoff: AN/ARW-37 FM control receiver for command fuel cutoff and blowoff
Aspect: Three Giannini heliograph cameras. APL K-25 camera for aerial reconnaissance and missile aspect.

ROCKET PERFORMANCE

Program angle: Seven degrees
Firing time: 0903 MST
Time to burnout: 65.34 sec Velocity at burnout: $4280 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 21.6 miles
Time to zenith: 205.85 sec
Altitude at zenith: 77 miles
Time to tall blowoff: 318.1 sec
Altitude at tail blowoff: 21.7 miles
Impact coordinates: Mid-body -33.33 mi . north, 3.11 mi . east of launcher

Supplemant
Febrwary 1998

BALLISTIC DATA

Theodolites: Askania trajectory data from 3 to 355 sec . Mitchell trajectory data from 1 to 74.8 sec .
Telescopes: Attitude data from 4.4 to 80 sec
Radar: Trajectory data from 0 to 586 sec
Aspect: Giannini data, APL K-25 camera aspect data.

DATA RECOVERY

Telemeter: Excellent records on all channels beyond the time required for all experiments
Airborne recorder: Cook magnetic tape recorder - excellent records until 70 seconds (Mich. U.)
Physical recovery: Two air-sampling bottles in apparently good condition. AEC cosmic ray plates. Cook magnetic tape recorder casette. Giannini heliographs operated in flight and recovered. APL aspect and reconnaissance camera excellent record over peak.

EXPERIMENTAL DATA

Air-sampling bottle sealers failed to operate - no samples. All four Pirani gages gave excellent data in the aititude region of 85,000 to $130,000 \mathrm{ft}$. At this point, one gage or its circuit failed. Three-gage data were obtained up to $145,000 \mathrm{ft}$, then a second gage went out. Signals were obtained from the two remaining gages up to $230,000 \mathrm{ft}$ at which point both burned out due to overheating at the low pressure.

Although no yav data were available from 183,000 to $230,000 \mathrm{ft}$, reduction was made of the three- and four-probe data. The temperatures obtained agree well with measurements by other methods. The results show that the shock wave angle method is useful for making instantaneous, independent measurements of temperature to $230,000 \mathrm{ft}$.

COMMHNTS

Rocket modifications: Four Pirani gages mounted on extension rods were placed at 90 -degree intervals 8 in . from the longitudinal axis of a 40 -degree right circular cone. The rods were driven through an excursion of 8 in . with a period of about 3 sec in a direction parallel to the cone axis so as to intercept the shock wave.

Holes for the SCEL grenades were located on radii at the base of the warhead.
Rocket performance: Normal in all respects
Experimental: The Cook magnetic recorder and two Piranis failed at about the time one grenade should have fired. This grenade was later found to be jammed in the warhead. It is thought that the ejection charge may have damaged some circuits.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," L. M. Jones, and H. W. Neill, Engineering Research Institute, University of Michigan, Final Progress Report, Contract W-36-039-8c-32307

Time of firing: 2016 MST
Agency: Air Research and Development Command Altitude: 1.9 miles

UPPEP AIR INSTRUMENTS

Soft solar X-ray studies: A number of packets, each containing photographic film with a single thickness filter, were placed on surfaces of the rocket (AFCRC)
Skin temperature experiment: Nickel temperature-sensitive elements, commutated in on $\quad \mathrm{arm}$ of ac resistance bridge, to sense heal change in flush-mounted thin stee: : aphragms distributed along rocket skin (B. U.)
Atmospheric composition studies: Grating spectrograph, Littau type, aperture $\mathbf{4} \mathbf{2} .9$, electrodeless discharge light source (AFCRC)
Emission spectrum experiment: Crystal controlled rf generator operating at 1.4 Mc and square wave modulated at 979 cps to create a strong electrostatic field. Rocket was split by insulating section just forward of control compartment and operated as a doublet antenna for this gen tor (Tufts College and AFCRC)
Luxembourg experiment: Pulsed transmitter c,erating at 3.5 Mc and synchronized with emission spectrum generator to investigate cross modulation (U. of U'tah, Tufts College, and AFCRL)
Synchronizing beacon: A 493.5-470 Mc beacon provides synchronizing signals from ground transmitter for emission spectrum and Luxembourg experiments (HAFB, Oklahoma A and M, and AFCRC)
Photoelectric detection of artificial airglow: Six multiplier phototubes with associated interference filters and circuits installed in instrument compartment (Naval Ordrance Test Station)
Photographic detection of artificial airglow: Eight motion picture GSAP $16-\mathrm{mm}$ cameras (modified and re-geared) for recording intensity of emission spectrum experiment glow discharge. Four located in instrument compartment and four in missile body. (AFCRC).
Night sky infrared measurements: Phototube with appropriate filter and amplifier to measure infrared radiation in the night sky (AFCRC and HAFB)
Common power supply: Three 2.8 -kva inverters, each powered by eight type ER-830 batteries. Output of two inverters used for Luxembourg equipment, and output from third served as common power supply for rocket.

DATA RECOVERY INSTRUMENTS

Telemeter: NRL telemetering system. Hermes telemetering system.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Two Mitchell stations
Cameras: Two Bowen-Knapp stations
Radar: S-band radar, MPQ/12

ROCKET INFORMATION

Unfueled rocket weight: $10,407 \mathrm{lb}$
Unfueled rocket C.G.: 267.9 in.
Gross weight at takeoff: $30,067 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: 7 degrees
Time to zenith: 33.5 sec Altitude at zenith: 1.9 miles Flight duration: Approximately 65.1 sec
Impact coordinates: 3818 ft at aaimuth of 110 degrees 37 ft

BALLISTIC DATA

Radar: Beacon went out at 16.0 sec. Radar was returned to straight reflection and tracked rocket from 18.0 sec to impact in automatic.

EXPERIMENTAL DATA

No experimental results due to nature of flight

COMMENTS

Rocket modifications: The typical V-2 rocket was modified by increasing the length of the missile by one diameter. Nose section differed from previously launched Blossoms in that recovery by parachute was not a test objective. An insulated section required for the Luxembourg and emission spectrum experiments was used in place of the original parachute compartment.
Rocket performance: Preliminary stage and takeoff appeared normal and missile rose as expected for approximately 15 sec . At approximately 15.5 sec an explosion occurred in the propulsion section of miseile; a second explosion occurred at approximately 18.5 sec , and a third, at 19.5 sec , which destroyed a large portion of the tail section.

Never Fired

IDENTIFICATION

Time of firing: 0906 MST
Agency: Signal Corps Engineering Laboratory, University of Michigan Altitude: 75 milles

UPPER AIR INSTRUMENTS

Composition: Seven sample bottles mounted at the forward end were flown. These contained $\mathrm{C}^{14} \mathrm{O}_{2}$ contaminators. The array was covered with an ejectable false cone. The bottles were equipped with an improved model pyrotechnic opener and cold-weld sealer. The bottles were grouped in three canisters - two containing three bottles of 500 cu in. capacity, and one containing one bottle of 2100 cu in. capacity. Each canister was equipped with a silicone rubber-Fiberglas ribbon parachute. The samples were more or less evenly spaced in the altitude range 58 to 104 kdlometers.

DATA RECOVERY INSTRULAENTS

Telemeter: Pulse-widening feature of radar beacon used as a one-channel system Airborne recorder: An APL-furnished camera used to record miasile aspect during samping
Physical recovery: Nose cone separated by jato, warhead by primer cord; sampling bottles separated with bliasting caps and piston charges, and lowered by parachute

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and six Asloania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Four stations
Radir: Three S-band and one X-band
Impact computer: Impact predictor
Airborne
Beacon: AN/APN-55
Radlo cutcff: AN/DRW-4

ROCKET INFORMATION

Unfueled rocket weif.fit: $10,525 \mathrm{lb}$

ROCK. PERFORMANCE

Firing time: 0906 MST
Program angle: Seven degrees
Time to burnout; 69 sec

ROCKET PERFORMANCE (Contrnued)

Velocity at burnout: $4120 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 23.4 miles
Time to zenith: 200 sec
Altitude at zenith: $100,000 \mathrm{ft}$
Impact coordinates: Maln body and tail cone -28.1 ml . north, 0.6 mi . east; nose cone - 26 ml . north, 1 ml . east; wathead - 29 mi . north, 2 mi . west; canisters - 24.7 ml . north, 1.3 ml . east; 24.5 ml . north, 1.8 ml . east; 25.2 mi . north, 1.8 mi . east

BALLISTIC DATA

Theodolites: Askania trajectory data from 0 to 54 sec. Mitchell trajectory data from 0 to 30 sec .
Cameras: Bowen-Knapp trajectory data from 0 to 15.4 sec
Telescopes: Optical conditions very poor; data from 0 to 40 sec
Radar: Trajectory data from 0 to 101 sec

DATA RECOVERY

Telemeter: Although radar beacon operated, its pulise-widening feature did not Alrborne recorder: Aspect camera found to be in reusable condition, and its film yielded excellent plctures to beyond peak
Physical recovery: All canisters and bottles recovered in excellent shape. All parachutes operated perfectly. Jato in nose cone found unfired, indicating that cone may not have come off.

EXPERIMENTAL DATA

Samples were obtained from at least five of the seven bottles. One bottle leaked and one has not yet been opened. The results verify the results from Aerobees SC-17 and SC-21; that is, an increase in the relative amounts of hellum and neon with respect to nitrogen and a corresponding decrease in argon were measured. This separation starts at about 58 km and increases more or less smoothly with altitude but with less magnitude than required by Dalton's law. No $\mathrm{C}^{14} \mathrm{O}_{2}$ contamina. tion was detected.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," Engineering Research Institute, University of Michigan, Progress Report No. 2, Contract DA-36-039 sc-15443, July 31, 1952

Time:

Altitude: 0.0 miles
Experiments: Cosmic radiation (NRL, Nat. Inst. of Health). Solar radiation, Biological (U. S. Army Chem. Corps).

Agency: Slgnal Corps Engineering Laboratories (Univ. of Michigan)

Experiments: Preasure-temperature, High altitude winds (SCEL). Composition (Univ. of Mich.). Cosmic radiation (AEC).

	V-2
Agency: Air Research and Development Command	NO. 57
Time: 2018 MST	8 March 1951
Altitude:. 1.9 mlles	

Experiments: Composition (AFCRC, Tufts Col., USNOTS). X-radiation (AFCRC). Sky brightness (AFCRC \& HAFB).
Comment: This rocket never fired.

Agency: Signal Corps Engineering Laboratories (University of Michigan).
Time: 0908 MST
Altitude: 64.3 miles
Experiments: Composition, High altitude photography.

Time of firing: 1404 MST
Agency: Signal Corps Engineering Laboratory, University of Michigan Altitude: 87.6 miles

UPPER AIR INSTRUMENTS

Temperaiure: "Moving probe" method for ambient temperature as a function of shock wave angle. An array of ten probes was used to over-determine the shock wave and to measure shock wave curvature. Probes were covered with false cone during high heating portion of trajectory. This equipment was practically the same as on Aerobees SC-15 and SC-19. The experiment is similar also to that of V-2 Nos. 33, 50, and 56. In the latter cases the probes moved, whereas in the Aerobees and V-2 60 the cone moved.

DATA RECOVERY INSTRUMENTS

Telemeter: 30-channel NRL telemeter; telemeter feature of Dovap used as a singlechannel system
Airborne recorder: Two APL cameras to record missile aspect; a Mich. U. 13channel magnetic tape recorder as backup for telemeter
Physical recovery: Nose cone separated by jato; warhead separated by primer cord

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell and six Asloania stations
Cameras: Two Bowen-Knapp stations
Telescopes: Four stations
Radar: Two S-band units
Doppler: Transmitter and receivers
Impact location: Two trackers

Airborne

Beacon: AN/APN-55s
Doppler: Type T-4 Dovap transponder Radio cutoff: AN/ARW-37

ROCKET INFORMATION

Payload weight: 3500 lb Unfueled rocket weight: $10,221 \mathrm{lb}$ Unfueled rocket C.G.: 258 in. from tail Takeoff welght: $30,639 \mathrm{lb}$

ROCKET PERFORMANCE

Program angle: Seven degrees
Firing time: 1404 MST
Time to burnout: 70.5 sec
Velocity at burnout: $4600 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 25 miles
Time to zenith: 220 sec
Altitude at zenith: 87.6 miles
Time to tall blowaff: 382.3 sec
Altitude at tail blowoff: 10.8 miles
Impact coordinates: Warhead - 42 mi . north, 3 or 4 mi , east

BALHISTIC DATA

Theodolites: Askania trajectory data from 0 to 405 sec . Mitchell trajectory data from 0 to 221 sec.
Cameras: Bowen-Knapp trajectory data from 0 to 17.9 sec
Telescopes: Images to 384 sec
Radar: Trajectory data to 382 sec
Dojpler: Trajectory data to 290 sec

DATA RECOVERY

Telemeter: Good record from 0 to 163 sec and from 225 to 382 sec . Inoperative from 163 to 225 sec.
Airborne recorder: Tape recorder inoperative throughout flight; film in one camera casette badly broken up, while that in second camera was perfact except for three brealos
Physical recovery: Warhead blowoff at 60,000 ft on downleg. Much damage but camera film recovered as noted.

EXPERIMENTAL DATA

Probe mechanism falled to move until after peak. A few scattered signals were obtained on downleg but no useful results were obtained.

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," Engineering Research Institute, University of Michigan, Progress Report No. 5, Contract DA-36-039 sc-125, February 29, 1952

IDENTIFICATION

26 October 1950
Time of firing: 1602 MST
Agency: Ballistic Research Laboratories
Altitude: 5.0 miles

UPPER AIR INSTRUMENTS

Pressure: Ten total-pressure tubes close to the nose cone surface. Four differential pressure gages for pitch and yaw measurements. Two static pressure gages on nose cone surface. One total-pressure gage outside nose cone boundary layer for Mach number. (BRL).
Temperature: Thirty-three skin temperature gages in resistance bridges cemented to inside surface of nose skin (BRL). Twenty-four temperature sensing elements on body and one tail fin (Boston U.).

ROCXET PERFORMANCE INSTRUMENTS

Control and propulsion performance: Information on the control and performance of the missile during and after burning (G. E.)

DATA RECCVERY INSTRUMENTS

Telemeter: Two Hermes-PWM-PM telemetering sets with 28 channels, each operating at a rate of 30 per sec. One doppler telemetering set with 12 channels operating at a rate of 6 per sec.

BALLISTIC INSTRUMENTS

Firing Range
Theodolites: Three Mitchell and eight Askania stations
Cameras: Three Bowen-Knapp stations
Telescopes: Five stations
Radar: Two modified SCR 584 S-band stations
Doppler: Eight stations
Impact location: Impact point computer - two stations
Airborne
Beacon: APN-55 S-band transponder
Doppler: Dovap transceiver
Radio cutoff: ARW-37, FM control receiver for command blowoff and cutoff Other: Spheredop transmitter

ROCKET INFORMATION

Payload weight: 3700 lb (warhead)
Unfueled rocket weight: 8807 ib Unfueled rocket C.G.: 237.9 in . Grosis weight at takeoff: $28,180 \mathrm{db}$

ROCKET PERFORMANCE

Firing angle: six degrees from vertical
Program angle: Six degrees from horizontal at thrust cessation
Time to burnout: 40.7 sec (explosion in the missile)
Velocity at burnout: $3153 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout: 3.94 miles
Time to zenith: 59 sec
Altitude at zenith: 5.0 miles
Flight duration: 107 sec
Impact coordingtes; 15.4 ml . north, 0.2 mi . west

BALLISTIC DATA

Theodolites: Mitchell trajectory data from 0 to 50 sec; Askania trajectory data from 0 to 50 sec
Cameras: Bowen-Knapp trajectory data while in field of view
Telescopes: Complete records for five telescopes. Yaw and orientation data to 50 sec.
Radiar: Trajectory from 0 to 50 sec
Doppler: Trajectory data from 0 to 50 sec
Impact location: Tracked to explosion

DATA RECOVERY

Telemeter: Complete record - BRL, G. E., 50% record - Boston U.

EXPERIMENTAL DATA

Boundary layer flow: Pressure and skin temperature data indicated that heat transfer from air to rocket surface was greater than that required to damp small boundary layer oscillations. The boundary layer over the nose cone appeared to be laminar at Reynolds numbers from 0.5×10^{8} to 1.0×10^{8}. The rocket reached Mach three at 25,000 feet in approximately horizontal flight before it exploded abruptly from unknown causes. (BRL).
Surface.temperature measurements: Data were received only for those elements located on the main body of the rocket. Results of the experiment are classified. (Boston U.).

COMMENTS

Rocket modifications: The standard V-2 warhead was replaced by a highly polished metal cone with included angle of 20 degrees and having a length of more than eight feet. This constituted the test area for the boundary layer experiment.
Rocket performance: Rocket was programmed to reach horizontal flight at approximately $25,000 \mathrm{ft}$ at a speed of Mach four. The rocket exploded at 50 sec for reasons unknown, at which time the speed was Mach three.
Experiments: The experiment was considered successful despite rocket explosion. Sufficiently high velocity was attained to prove experimentally that removal of heat from the boundary layer by the rocket skin will result in laminar flow at high Reynolds Numbers.
"The Flush-Mounting Temperature Sensing Unit," Technical Note No. 1, Excerpts from Progress Reporta Nos. 4 and 6, Project Skin Temperature, Upper Atmosphere Research Laboratory, Boston University
"The Stablily of the Laminar Boundary Layer in a Compressible Fluid," L. Lees, NACA T.N. 1360, July 1947

IDENTIFICATION

Time of firing: 1200 MST

 Altitude: 132.6 miles
UPPER AIR INSTRUMENTS

No upper atmosphere research experiments

IDENTIFICATION

Time of firing: 0906 MST
 Agency: Signal Corps Engineering Laboratories (University of Michigan) Altitude: 64.3 miles

UPPER AIR INSTRUMENTS

Composition, high altitude photography

COMMENTS

Same firing also listed as V-2 No. 59

Time of firing: 0033 MST
Agency: Naval Research Laboratory
Altitude: 48.5 miles

UPPER AIR INSTRUMENTS

Pressure-temperature: Two Philips gages (NRL)
Cosmic radiation: Specially sensitized film pack
Solar radiation: Fum plate densitometers for detection of soft X-rays (NRL)
Composition: A radio frequency mass spectrometer designed to obtain composition of the atmosphere between mass numbers 48 and 5 in the altitude range 60 to 94 miles (NRL)
Other: Rotating coil to measure earth's magnetic fleld (NRL). Night aky infrared measurements (AFCRC).

DATA RECOVERY INSTILUMENTS

Telemeter: NRL system

BALLISTIC INSTRUMENTS

Firing Range

Theoriolites: Askania and Mitchell
Cameras: Ballistic and Bowen-Knapp
Radar: 2 stations
Impact location: Impact point computer
Airborne
Beacon: Beacon transponder
Radio cutoff: AN/ARW-37 cutoff receiver
Other: A Gerrian-inade gyro-type integrating accelerometer

ROCKET INFORMATION

Unfueled rocket weight: 9294 lb
Unfueled rocket C.G.: 238.1 in . from venturi exit
Gross weight at takeoff: $28,000 \mathrm{lb}$

RCCKET PERFORMANCE

Program angle: Seven degrees true north
Time to burnout: 53.1 sec
Velocity at burnout: $3420 \mathrm{ft} / \mathrm{sec}$
Altitude at burnout:
Time to zenith: 160.6 sec
Altitude at zenith: 48.5 miles

hOCKET PERFORMANCE (Continued)

Time to tail llowoff: 217.4 sec
Flight duration: 280 sec
Impact coordinates; 20.68 mi . at $\mathbf{3 5 5 . 5}$ degrees azimuth. from Army blockhouse

BALI TIC DATA

Theodolites: Askania to 70 sec , Mitchell to 62 sec
Cameras: Ballistic to 54 sec , Bowen-Knapp to 15 sec
Radar: To 269.5 sec
Impact location: From 0 to 102 sec and 113 to 150.5 sec

COMMENTS

Rocket performance: The missile functioned well until 53.25 sec , at which time there was a marked decrease in thrust. The failure has not been explained, but the most loyical cause was failure of the 25 -tion valve by fire or vibration.

Agency; Signal Corps Engineering Laboratortes (University of Michigan) Time: 1404 MST Altitude: 87.6 miles

29 October 1951

Exper'ments: Pressure-temperature.

V-2
NO. 61
Agency: Ballistic Research Laboratories
Time: 1602 MST
26 October 1850
Altitude: 5.0
Experiments: No upper air research experinents.
Agency:
Time: 1200 MST
Altitude: 132.5 miles

Agency: Signai Corps Engineering Laboratories (University of Michigan)
TIme: 0906 MST
Altitude: $\mathbf{6 4 . 3}$ miles
Experiments: Composition, High altitude photography. Comment: Same firing also listed as V-2 No. 59.

V-2
TF-3
Agency: Naval Lesearch Laboratory 22 August 1852
Time- 0033 MST
Alditude: 4 is mil
Esmeriments: Contposition, Eressure, Magnetic field, Solar radiation. Cosmic radiation (Natl. Inst. of Health). Sky brightness (AFCRC).

This rocket was never fired

Supplement
February 1958

Time of firing: 0849 MST
Agency: Signal Corps Eingineering Laboratory, University of Michigan Altitude: 4.4 miles

UPPER AIR INSTRUMENTS

Composition: Same sample-bottle instrumentation as in V-2 No, 59

DATA RECOVERY INSTRUMENTS

Telemeter: Pulse-widening feature of radar beacon used as a single-channel system Airborne recorder: One APL camera to record missile aspect
Physical recovery: Nose cone separated by M-2 jato; warhead separated by primer cord

BALLISTIC INSTRUMENTS

Airborne

Beacon: AN/APN-55s
Radio cutoff: AN/ARW-37 F'M control cutoff receiver

ROCKET INFORMATION

Unfueled rocket weight: $10,140 \mathrm{lb}$
Unfueled rocket C.G.: 257.5 in . from venturi exit
Takeoff weight: 29,701 lb

ROCKET PERFORMANCE

Firing angle: 0.0 degrees
Program angle: Seven degrees
Firing time: 0850 MST
Altitude at zenith: 23,300 ft
Impact time: 90.33 sec
Impact coordinates: 0.537 mi . at 320 degrees azimuth

BALLISTIC DATA

Theodolites: Askania trajectory data from 0 to 25 sec Cameras: Bowen-Knapp trajectory data from 0 to 14 sec Radar: Trajectory data from 14 to 87 sec

DATA RECOVERY

Physical recovery: Parachutes recovered in fair shape

EXPERIMENTAL DATA

No results

COMMENTS

Rocket performance: Explosion in tall section at 27 sec , thrust terminated. Rocket demolished on impact

REPORTS AND PAPERS

"Atmospheric Phenomena at High Altitudes," Engineering Research Institute, University of Michigan, Progress Report No. 3, Contract DA-36-039 sc-15443, October 1952
WSPG Report of V-2 TF-5
FDL Advance Data Report No. 333, Numerical and graphical trajectory data from Bowen-Knapp observations of V-2 TF-5
FDL Advance Data Report No. 463, Numerical and graphical trajectory data from Askania observations of V-2 TF-5
WSSCCA Radar Data Report, Numerical and graphical trajectory data from radar observations of V-2 TF-5

IDENTIFICATION

20 November 1947

Time of firing: 1647 MST
Agency: General Electric Company Altitude: 16.6 miles

UPPER AIR INSTRUMENTS

No upper atmosphere experiments

Agency: Signal Corps Engineering Laboratories (Undversity of Michigan).

Altitude: 16.8 miles

Experiments: Temperature, Composition, Cosmic radiation (NatI. Inst. of Health).

V-2
 ©. E. SPECLAL

Agency: General Electric Company
Time: 1647 MST
Altitude: 16.6 miles
Experiments; No upper air research experiments.
10. THE VIKING ROCKET

Description

Characteristics - Table
Firings - Table
Naval Research Laboratory Viking Rocket Firings

Data Sheets

UPPER AIR ROCKET SUMMARY

10. THE VIKING ROCKET

The Viking is a vertically launched sounding rocket designed to carry a 500 -pound instrument load to altitudes above 100 miles. It is a conically tipped cylinder 46.5 feet long with a diameter of 32 inches and has four equally spaced fins at the after end of the cylinder. Propulsive force is obtained from a liquid propellant rocket motor which is spent at an altitude of about 25 miles. It is stabilized* in flight and controlled in trajectory by an internal control system. The major characteristics of the Viking are given in Table 10.1 and the firings are summarized in Table 10.2.

Instrument Space and Structure

The rocket consists of five major sections: a nose section, an instrument section, a control section, a tank section, and a tail section. Upper air instrument space is contained within the nose and instrument sections, except for very small volumes that are available in the tail section. The removable and pressurizable nose cone provides 13.5 cu ft of instrument space within a cone-ogive configuration that is 79 inches long and which has a maximum diameter of 30 inches. An additional 12 cu ft is provided by the 31 -inch long ogive-cylinder instrument section which has a maximum diameter of 32 inches. This section is also removable, but it is not pressurized.

The instruments are installed on a structure that fits within the nose section and which is attached to the nose cone by means of four mounting tabs near the base of the nose cone. Instruments are installed within the nose section by bolting them to plywood bulcheads. In some special cases they are mounted on the rocket skin when they are both light in weight and need access through the skin.

The remaining sections of the rocket are devoted to the rocket's control and propulsive systems. The gyros and controls are located just behind the instrument section; then follows the pressurizing gas sphere, and the oxygen and alcohol tanks. The tail section contains the steam plant, propellant pumps, hydraulic power system, and the rocket motor.

Electrical Wiring and Antennas

Electrical connections and r - f transmission cables are routed from the forward to the after sections of the rocket through external shrouds mounted on the tank section. External circuits from the blockhouse for the control, monitoring, and auxiliary powering of instruments within the rocket are connected through a receptacle in the instrument section. The connector is electrically ejected automatically just prior to ignition of the rocket motor. Similar circuits associated with the rocket's control and propulsion systems are connected through two pull-away connectors at the base of the rocket. These connectors are disengaged by upward motion of the rocket.

Antennas for the radio telemeter, radio cutoff, radio doppler, radar beacon, and other radio devices are generally mounted on the tall fins in the form of outrigger turnstiles, or as rods along the trailing edges of the fins.

Propulsion
The regenerative-type rocket motor burns a mixture of alcohol and liquid oxygen. These two liquids are injected into the combustion chamber by propellant pumps driven

[^9]by a steam turbine which is powered by the rapid decomposition of concentrated hydrogen peroxide. The propulsion system is semi-automatic in operation and is controlled from the blockhouse. Propellant ignition is obtained with a pyro-technic squib inserted into the combustion chamber through the nozzle. Ordinarily, the propellants are allowed to burn until one of them is exhausted. In the event that it becomes necessary to terminate propulsion prior to propellant exhaustion, a command via the radio cutoff receiver will stop the steam plant operation, thus terminating rocket thrust.

Control and Stabilization

During powered flight the rocket is stabilized in the pltch, yaw, and roll planes by internal controls. These controls are based on error signals, from gyro pickoffs, which are differentiated, amplified, and fed to solenoid controlled hydraulic valves. For pitch and yaw corrections, these valves control servos which rotate the gimbal mounted motor about either or both of its two axes, thereby slightly altering the direction of thrust. Roll correction is obtained by diverting turbine exhaust steam through ports on opposing. fins and by means of trim tabs at the outboard trailing edge of the same two fins. The roll hydraulic valves control the position of steam deflectors which are mechanically linked to the trim tabs. Two other fixed trim tabs are located on the remaining two fins; these may be present to compensate for fin asymmetry. The trajectory of the rocket is initially established by a predetermined tilt manually introduced into the firing platform. The control gyros are then aligned to the rocket axes. The firing platform has a permanent azimuth of 1.8 degrees East of North to compensate for the Coriolis force.

A coasting flight stabilization system is under development whereby the rocket control system can be used to operate an array of gas jets. These jets provide correcting moments in pitch, yaw, and roll to reduce error moments introduced at or after the end of burning.

Firing Platform

The Vikings are always statically fired prior to flight firing. The same platform and location are used for both static and flight firing. During static firing the rocket is bolted to the launching platform to prevent it from taking off. An opening under the platform leads into a large water cooled pit lined with concrete, which deflects hot gases away from the rocket.

Design, Development, and Firing Services

The Viking airframe and controls were designed and developed by the Glenn L. Martin Company, and the propulsion system was designed and developed by the Reaction. Motors, Incorporated. The project is under the technical direction of the Naval Research Laboratory. The Viking firing crew is composed of personnel from the Glenn L. Martin Company, Reaction Motors, Incorporated, the Naval Research Laboratory, and the U.S. Naval Ordnance Missile Test Facility. Supporting services are provided by the White Sands Proving Ground and the U.S. Naval Ordnance Missile Test Facility.

Figure 10.2-The Viking Rocket, cross-sectional view

TABLE 10.1

CHARACTERISTICS OF VIKING ROCKET

DIMENSIONS

Total Length
Diameter
Fin Span

WEIGHTS

Payload

INSTRUMENT SPACE

Nose Section

Apex angle
Height
Maximun diameter Volume

Forward instrument Section

Height
 Diameter
 Volume

Cther

ANTENNA CAPACITY Usec

Others Possible

PERFORMANCE
Maximum Altitude
Time to zenith
Flight Duration
Time Above 18.6 miles
FLIGHT CHARACTERISTICS
Acceleration
Duration of Acceleration Maximum Velocity Skin Temperature Rise Vibration Characteristics

585 in.
32 in.
110 in .

500 lb (naminal)

Generally pressurized, approximately conical in shape, detachable.

25 deg.
79 in.
30 in .
13.5 cu ft

Unpressurized, immediately behind nose, approximately cylindrical, two access doors, detachabie.

51 in.
32 in .
12 cu ft
Small unpressurized volumes in motor section.

Outrigger turnstiles on two fins.
Rods on each of four fins.
Whips on body.
Outrigger turnstiles on two remaining fins.
Notches in fins.
Slots in body.
Probe at nose.

> 136 mi (394 lb payload).
> 107 mi (675 lb payload).
> 266 sec (approximate).
> 500 sec (estimated).
> 410 sec (approximate).

Maximum of about 7 g .
About 70 sec.
About 5000 ft per sec.
Several hundred degrees on nose cone.
Significant amplitudes observed in nose at frequencies between 200 and 400 cycles during burning, insignificant aifter burnout. Could be possible source of trouble to high gain electronic equipment.

TABLE 10.1 (Continued)
FLIGHT CHARACTERISTICS (Continued)

Aspect Behavior

 Powered flight Coasting flightStabilized in roll, pitch, and yaw by control system. Post burning stabilization system under development to maintain roll, pitch, and yaw displacements to within 5 degrees of initial alignment.

TABLE 10.2
NAVAL RESEARCH LABORATORY VIKING ROCKET FIRINGS

VIKING ROCKETS	DATE	$\begin{aligned} & \text { TMME } \\ & (\mathrm{LCT}) \end{aligned}$	ALTITUDE (MILES)	EXPERIMENTS
1	3 May 49	0914	50.0	Pressure, temperature, photography
2	6 Sep 49	0957	32.3	Pressure, temperature, photography
3	9 Feb 50	1444	50.0	Solar radiation, cosmic radiation, pressure, temperature, photography
4	11 May 50	1608	105.0	Cosmic radiation, pressure, temperature (lat. $00^{\circ} 11.2^{\prime} \mathrm{N}$, long. $161^{\circ} 25^{\prime} \mathrm{W}$)
5	21 Nov 50	1018	108.4	Ionosphere, solar radiatión, pressure, temperature, photography
6	12 Dec 50	0004	40.2	Pressure, density, composition, solar radiation, ionosphere
7	7 Aug 51	1100	136.0	Pressure, density, solar radiation, cosmic radiation; cosmic radiation (NIH)
8				Never fired
9	15 Dec 52	1438	136.0	Solar radiation, pnotography; cosmic radiation (NIH)

Asoncy: Naval Zitesearch Lahoratory
Time; CP14 MsT
Altitude: 50.4 miles

UPPER-AIR INSTRUMENTS

Pressure-temperature: stagnation pressure at nose tip; pressure at base of nose cone and ahead of fins. Skin temperature gages on nose and tail section.
Solar radiation: Six X-ray film detectors with foil filters.

DATA-RECOVERY DNTRUMENTS

Telemeter: AN/DKT-2 (XN-1) 30 channel PPM-AM system. Physical recovery: No separation explosives installed.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell, six Askania, and two Tele-theodolite stations.
Camexas: Three Fwwen-Knapp stations.
Telescopes: Four stations.
Radar: Two modilied SCR-584 S-band stations.
Doppler: At least three stations.
Impact location: Impact Point Computer and three sound ranging stations.

Airtorne

Beacon: AN/DPW-1 S-band transponder.
Doppler: Dovap transceiver.
Radio cutoff: AN/ARW-37 FM control recelver.
Aspect: Two modified GSAP cameras.
"ther: Longitudinal accelerometer; propulsion and steering performance instruments.

ROCKET PERFORMANCE

Firing angle: 3 degrees North and 0.2 degrees West (tilt from vertical).
Time to burnout: 54 sec.
Altitude at burnout: 14.6 miles
Velocity at burnout: 3500 ft . per sec.
Time to zenith: 163.5 sec .
Altitude at genith: 50.4 miles
Time to blowoff: 290 sec . (rocket breakup).
Altitude to blowoff: 5 miles (rocket breakup).
Flight duration: 290 sec.
Impact coordinates: 10 miles North and 2.5 miles West.
Payload weight: 500 lbs .
Unfueled rocket weight: 2750 lbs.
Unfueld rocket C. G. :
Gross welght at takeoff: 9650 lbs .

BALLISTIC DATA

Theodolites: Coordinate data 0 to 76 sec .
Cameras: Coordinate data 0 to 8 sec .
Telescopes: Stations TI, TII, TII, \& TIV tracked 0 to 86, 0 to 39,0 to 136, and 0 sec. respectively.
Radar: Coordinate data 0 to 290 sec .
Doppler: No useable signals during powered fight and only partially useable signals thereafter.
Impact location: Computer predicted 10.4 miles North and 2.8 miles West; no data of value from sound ranging stations.
Aspect: Determined completely for powered flight from gyros and optical instruments; no GSAP camera data.
Rocket performance: Good data obtained.

DATA RECOVERY

Telemeter: Gool record for almost all channels 0 to 240 sec ., some data lost due to momentary fallure of extermal end organ battery.
Physical recovery: Aerodynamic forces tore rocket apart, fragments scattered over 4 sq. miles. X-ray detectors and CSAP cameras destroyed.

EXPERIMENTAL DATA

Solar radiation: No data.
Pressure-temperature: Ambient pressures measured from 24.9 to 45.4 miles, one measurement near peak (50.4 miles). Some pressures lower than by previous measuroments. (40% low at 40.4 miles). Ambient data not obtained due to low ram pressure.

COMMENTS

Rocket performance: Power plant satisiactory except for short burning time resulting from steam plant leak. Control adequate in pitch and yaw, unsatisfactory in steady state roll errors.

REPORTS AND PAPERS

"Rocket Research Report No. 1," by M. W. Rosen and J. M. Bridger, NRL Report No. 3585, Naval Research Laboratory, December 1949.
"Pressures and Temperatures in the Earth's Upper Atmasphere," by R. Havens, R. Koll, and H. LaGow, Naval Research Laboratory Reprint, March 1950.
"The Pressure, Density, and Temperature of the Earth's Atmosphere to 160 Kilometers," by R. J. Havens, R. T. Koll, and H. E. JaGow, J. Geophys. Res., 57:59-72, March 1952.

Agency: Niaval Research Laboratory

Time: 0957 MST
Altitude: 32.3 miles

UPPER-AIR INSTRUMENTS

Solar radiation: Three X-ray film detectors with foll filters.
Pressure-temperature: Stagnation pressure gage at nose tip and amblent gages on tall section.

DATA-RECOVERY INSTRUMENTS

Telemeter: AN/DKT-2 (XN-2) 30 channel PPM-AM system.
Physical recovery: Prima cord to cut skin and shaped charge to cut cables for nose section separation.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Three Mitchell, one Tele-theodolite, and seven Asicania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Radar: Two modified SCR-584 S-band stations.
Doppler: Five stations.
Impact location: Impact Point Computer, sound ranging stations, and SCEL sound ranging set GR-3.

Airborne

Beacon: AN/DPW-1 S-band transponder.
Doppler: Dovap transceiver.
Radio cutoff: AN/ARW-37 FM control receiver.
Aspect: Two GSAP and two K-25 cameras.
Other: Longitudinal accelerometer; rocket propulsion and control perfoimance inatrumenta.

ROCKET PERFORMANCE

Firing angle: 3 degrees North (tilt from vertical).
Time to burnout: 49.5 sec .
Altitude at burnout: 11.1 miles.
Velocity at burnout: 2675 ft . per sec.
Time to zenith: 133 sec .
Altitude at zensth: $\mathbf{3 2 . 3}$ miles
Time to blowoft: 161.2 sec .
Altitude at blowoff: 30.1 miles
Flight duration: 506 sec . (afterbody); 394 sec . (nose).
Impact coordinates: 8.5 miles North, 0.2 miles East (nose); 8.4 miles North and 2.4 miles East (afterbody).
Payload weight: 412 lbs .
Unfueled rocket weight: 2680 lbs .
Unfueled rocket C. G.:
Gross weight at takeoff: 9985 lbs.
BALLISTIC DATA
Theodolites: Coordinate data 0 to 161 sec .
Cameras: Coordinate data 0 to 12 sec .
Telescopos: Three stations tracked 0 to 161 sec., one station tracked nose to impact, two others tracked main body to impact.
Radar: Coordinate data 0 to 38 sec .
Doppler: Coordinate, velocity, and acceleration data 10 to 161 sec .
Impact location: Impact Point Computer and SCEL Geophone data within $1 / 2$ mile of aurveyed impact, no useful data from sound ranging stations.
Aspect: K-25 and CSAP photographs obtained.
Othor: Good data obtained on propulsion and control performance.

DATA RECOVERY

Teleraeter: Good records for all channels, several short interval interruptions from noise and loss of synchronization.
Physical recovery: Ercellent recovery. Useable film from one K-25 and both GSAP cameras. Two of three X-ray detectors recovered.

EXPERTMENTAL DATA

Pressure-temperaturc: Excellent pressure measurement taken at 32.3 miles, when rocket was rooving with low relative velocity, in substantial agreement with data from other rockets.

COMMENTS

Rocket performance: Prematur. jutoff due to damage by leak developed in steam plant. Excellent control in pitch and yaw, satisfactory roll control.
Doppler: Improvement in antennas resulted in good performance.

REPORTS AND PAPERS

"Rocket Research Report No. 2," by M. W. Rosen and J. M. Bridger, NRL Report No. 3641, Naval Research Laboratory, March 1950.
"The Pressure, Density, and Temperature of the Earth's Atmosphere to 160 Kilometers;" by R. Havens, R. Koll, and H. LaGow, J. Geophys. Res., 57:59-72, March 1952.

Agency: Naval Research Laboratory
Time: 1444 MaT
Altitude: 80.4 milea.

UPPER-ALR DNETRUMTATS

Conmile radiation: Golgor counter telescope to meanure zenith angle dopendence of radiation. Mnimum ionisution omulitons.
Solar radiation: Ulitraviolat apectrograph. X-ray film detectors with foll filtors.
Pressure-temperature: Ram preseure gage at nose tip, ambient precsure gages on tall section.

DATA-RECOVERY DNGTRUMTENTS

Tolemotor: AN/DET-2 (XN-1) 30 channel PPM-AM nyatom.
Physical recovery: Nome separation by primacord around rockot peripiary and shaped charie to sever cable and plping.

ballistic betrauments

Firing Range

Theodolites: Three Matchell and nine Aakanda stations.
Cameras: Three Bellistic and three Bowen-Knapp statiove.
Tolencopas: Pour ntations.
Radur: Two modified ECR-584 8-hand stations.
Doppler: None.
Impact location: Impuct Point Computer and four sound ranging atations.

Arborme

Beacon: AN/APN-55 8-band transponder.
Radio cutoff: AN/ARW-37 FM control receiver for command blowoff and fuel cutoff.
Aspect: Two NRH wide angle horizon camerns.
Vibration: Vibration pickupe in nowe and propulation unit mounting ring.
Other: Longitudinal accelerometer, rocket propulaion and control syatem performance instrumenta.

Other
scuowphere: Bureau of Standardis ionowphere helght finding witation.

ROCKET PMRPORMANCE

Firing angle: 3.0 degrees North and 0.45 degreea Weat (tilt from vertical).
Time to burnout: 59.6 sec . (radio cutoff).
Altitude at iournout: 16.6 milles
Velocity at burnout: 3440 ft . per sec.
Time to zenith: 160 sec.
Altitude at zenith: 50.4 milles
Time to blowoft: 201.3 sec .
Altitudn at blowoff: 47.5 miles
Flight duration: 420 sec . (time to impact).
Impact coordinates: 3 milles North, 18.7 milles West (Nose). 3.7 miles North, 20.2 miles Weat (afterbody).
Payload weight: 480 lbe.
Unfueled rocket weight: 2207 lbm.
Unfueled rocket C. G.:
Gross weight at takeoff: $11,047 \mathrm{lbs}$.

BALlistic data

Theodolites: Trajectory data 0 to 100 sec .
Cameras: Images obscured by vapor trall.
Telescopes: Attitude data 0 to 100 soc .
Radar: Trajectory data: 0 to 201 sec.
Impact location: Impact Point Computer prediction within $1 / 2$ mile, Ceophone data 1.3 miles in error, sound ranging not effective.

Aspect: Zenith angle 0 to 185 sec ., swivel angle 0 to 185 sec . from aspect cameras.
Vibration: Slignificant amplitudes up to 2000 cycles near motor. Significant amplitudes up to 500 cycles in nose. Greatest amplitudes at less than 25 cycles. No significant vibration after cutoff.
Rocket Performance: Good data obtained.

DATA-RECOVERY

Telemeter: Partially satisiactory. Timing pulses Inat intermittently. Intermittent external end organ batiery resulted in loss of instruments supplied by it.
Physical Recovery: Nose section in falr condition. Afterbody badly damaged by explosion of residual fuels. Spectrograph and detectors in fair condition. One aspect camera in good condition. Commic ray emulstona badly damaged.

EXPERIMENTAL DATA

Solar radiation: No data due to insufficient altitude.
Cosmic radiation: No data due to low altitude and poor aspect.
Pressure-temperature: Altitude too low to obtain algnificant data with gages used. Some ekin temperature measurements made at base of alcohol tank.

COMMENTS

Rocket performance: Power plant performance excellent, new seals in ateam system stopped leak. Rocket began to roll shortly after takeoff and began westerly flight path deviation. Propulsion terminated by radio cutoff. Rocket rolled at 20 RPM during coasting fight.

REPORTS AND PAPERS

"Vibration in the Viking No. 3 Rocicet," by C. B. Cunningham, E. E. Bissell, L. H. A. Feher, and R. W. Stroup, Rocket Research Report No. III, NRL Report No. S695, Naval Research Laboratory, July 1050.
"Rocket Research Report No. IV," by M. W. Rosen and J. M. Bridger, NRL Report No. 3716, Naval Research Laboratory, July 1950.

Agency: Naval Research Laboratory
Time: 1600 LCT
Location: $00^{\circ} 11.2^{\prime}$ North, $161^{\circ} 25$ ' West (U.S.S. Norton Sound)
Altitude: 105 milles

UPPER-AIR DNGTRUMESTS

Coamic radiation: Geiger and proportional counter telescope to measure ionization of primary radiation.
Pressure-temperature: Ram pressure gage at nose tip and ambient pressure gagos on tall section.

DATA-RECOVERY INSTRUMENIS

Telemeter: AN/DKT-2(XN-1) 30 channel PPM-AM systems.

BALLETIC RNSTRUMENTS

Radar: SP/8M S-band station on firing ship. Mark 25 and Mark 88 on support ship. Beacon: AN/DPW-1 8-band tranaponder.
Other: Longitudinal accelerometer, rocket propulsion and control performance instrumente.

ROCKET PERFORMANCE

Firing angle: Akimuth 150 degrees true; 2.35 degree inclination from vertical.
Time to burnout: 74 sec.
Altitude at buricut: 24 miles.
Velocity at burnout: 5160 ft . per sec.
TIme to zenith: 242 sec.
Altitude at zenith: 105 miles.
Flight duration: 495 sec .
Impact coordinates: 8 miles range.
Paylord weight: 900 lbs .
Untueled rocket weight: $\mathbf{3 , 1 0 7} \mathrm{lbs}$.
Unfueled rocket C. G.:
Gross weight at takeoff: $11,440 \mathrm{lbs}$.

BALLISTIC DATA

Radar: The SP/SM radar tracked throughout flight axcept for short duration intervals at burnout and before impact. The Mark 63 tracked for short interval after takeoif and the Mark 25 tracked untll shortly after burnout. Acceleration data obtained from accelerometer.

DATA RECOVERY

Telemeter: Satisfactory record for entire fight except for short interval at burnout. Physical recovery: None attempted.

EXPERIMENTAL DATA

Cosmic radiation: No results. Aspect information poor and low number of registered counts made the data statistically insignificant, Experiment identical to V-2 No. 53.
Pressure-temperature: Pressures obtained up to 42.3 miles, Densities obtained 24.0 to 41 miles. These pressure and density data in substantial agreement with White Sands meesuremonts.

COMMENTS

Focket performance: Propulsion near optimum, performance in excess of that expected. Steady state roll error small during initial flight, increased to 19 degrees at 68 sec. Roll began at cutoff, increasing to 30 RPM at 80 sec . and stabilized at 53 RPM by 90 sec. Inclination of rocket within 10 degrees of vertical until 100 sec . when it began to spiral away and attained an 85 degree inclination by 180 sec.

REPORT'S AND PAPERS
"Rocket Research Report No. V," by M. W. Rosen and J. M. Bridger, NRL Report No. 3751, Naval Research Laboratory, October 1950.
"The Pressure, Density, and Temperature ot the Earth's Atmosphere to 160 Kilometers," by R. Eavens, R. Koll, and H. LaGow, J. Geophys. Res., 57:59-72, March 1952.
"Pressures, Densities, and Temperatures in the Upper Atmosphere," by the Upper Atmosphere Rocket Research Panel, Phys. Rev., 88:1027-82, December 1952.

Agency: Naval Research Laboratory
TIme: 1018 MST
Altitude: 108.4 miles

UPPER-AIR INSTRUMENTS

Cosmic radiation: Minimum ionization emulsions.
Solar radiation: X-radiation by photoemission, ionization chamber, scintillation counter, photographic techniques, ceiger c ounters.
Pressure-temperature; Ram preasure gage at nose tip, ambient pressure gagem on tail section. Ionosphere: Ion collector probe at nose tip, and two R. F. propacation transmitters. Aurgiow: Oxygen green and sodium "O" line.

DATA-RECOVERY INBTRUMENTS

Telemeter: AN/DET-2 (XN-1) 30 channel PPM-AM system. Physical recovery: Nose section separation explosives ahead of tuel tank.

BALLISTIC DNSTRUMENTS

Firing Range

Theodolites: Three Mitchell and eight Askania stations.
Cameras: Three Bowen-Knapp stations.
Telescopes: Four stations.
Radar: Two modified SCR-584 8-band stations.
Doppler: None
Impact location: Impact Point Computer and SCEL Geophone Sound ranging set GR-S.

Airborne

Beacon: AN/DPW-1 S-band transponder.
Radio cutoff: AN/ARW-37 FM control receiver for command fuel cutoff and recovery blowoff.
Aspect: Two modified CSAP horizon cameras.
Acceleration: Longitudinal accelerometer.
Other: Rocket propusilion and control system performance instruments.

Other

Jonosphere: Bureau of Standards ionosphere height finding station.

ROCKET PERFORMANCE

Firing angle: 3 degrees North (tilt from vertical).
Time to burnout: 78.9 sec .
Altitude at burnout: 25.3 miles
Velocity at burnout: 5150 ft . per sec.
Time to zenith: 248.4 sec .
Altitude at zenith: 108.4 miles
TYme to blowoff: 438.5 sec . (rocket bregkup).
Altitude at blowoff: 8 miles (rucket breakup).
Flight duration: 450 sec . (impact).
Impact coordinates: 8.0 milles North and 0.8 miles West.
Paylosd weight: 875 lbs.
Unfueled rocket weight: 2232 lbs.
Unfueled rocket C. G.:
Gross welght at takeoff: $11,388 \mathrm{lbs}$.

BALLISTIC DATA

Theodoiltes: Trajectory data 0 to 480 sec .
Cumeras: Trajectory duta 0 to 18 sec .
Telescopes: Attitude data 0 to $\mathbf{3 8 0} \mathbf{s e c}$.
Radar: Trajectory data 0 to 436 sec .
Impact location: Impact Point Computer in error by 1.5 miles West of impact.
Aspect: Camera data - zenith, heading, and roll angles 0 to 360 sec .

DATA RECOVERY

Telemeter: Excellent record 0 to 441 sec ., except for 1 sec . interval at turnout.
Physical recovery: Nose section separation explosives did not detonate. Aerodynamic forces tore rocket apart, and fair equipment recovery attained. Useable filkn from aspect cameras. Cosmic ray emulsions and X-ray detectors unusable.

EXPERMMENTAL DATA

Cosmic radiation: No data, emulsions destroyed.
Solar radiation, air glow, and ion probe: Data obtained, however not analyzed in detail. Propagation:, Data received throughout filght, complicated by rocket spin and oblique incidence of signals received. Preliminary effective electron densities: a) not greater than 0.1 a 10^{4} electrons centimeters ${ }^{-5}$ below 44 miles, b) about 0.3×10^{4} electrous centimeter ${ }^{-3}$ from 44 to 56 miles, c) steep E-layer gradient began about 57 miles with linear increase to (13.5) $\times 10^{4}$ electrons centimeter ${ }^{-3}$ at 68 miles, d) remained near this value from 68 to 75 miles, e) monotanic increase 75 to 91 miles, 1) rfached (14.0) $\times 10^{\frac{4}{2}}$ electrons centimeters -5 at 78 miles and (18.0) $\times 10^{4}$ electrons centimeters ${ }^{-3}$ at 93 miles. General shapt of lower E-region in agreement with previous NRL results.

COMMENTS

Rocket performance: Control during powered filight excellent. Roll program delayed 3.5 sec . by circult error. Roll rate 16.5 RPM at 103 sec . Increased to 24.2 RPM at 395 sec. Interaction between roll and gas jets caused increase in zenith angle and slow clockwise precision. Zenith angle varied between 65 degrees and 90 degrees while rocket slcwly precessed with 72 sec . period after 140 sec .

Rocket Modifications: Two opposing 15 ft . whip anteanas installed on instrument section and folded along rocket body during powered fifght. Erected later by electrically driven screwiacks initiated by computaris timer.

REPORTS AND PAPERS

"Rocket Research Report No. VII," by M. W. Rosen, J. M. Bridger, and H. Spitz, NRL Report No. 3830, Naval Research Laboratory, July 1951.

DENTIFICATION

NO. 6
Agency: Naval Research Leboratory
Time: COO4 MST
Altitude: $\mathbf{4 0 . 2}$ miles

UPPER-AIR INSTRUMENTS

Pressure-temperature: Ram pressure gage at nose tip, ambient pressure gages at base of nose section and on tall section.
Composition: Platinum wire atomic axygen detector.
Lonosphere: Diffusion current collector to measure ion and electron current densities and energies. Generating voltmeter to measure electrostatic field on rocket.

DATA-RECOVERY INSTRUMENTS

Telemeter: AN/DKT-2 (XN-1) 30 channel PPM-AM system. Physical recovery: None.

BALLISTIC INSTRUMENTS

Firing Range

Theodolites: Two Mitchell and four Askania stations.
Cameras: Three Ballistic and three Bowen-Knapp stations.
Telescopes: None
Radar: Two SCR-584 S-band stations.
Doppler: None
Impact location: Impact Point Computer and SCEL Geophone set GR-3.

Airborne

Beacon: AN/DPW-1 S-band transponder.
Radio cutoff: AN/ARW-37 FM control receiver for command fuel cutaff.
Aspect: Two bolometers (night firing precluded use of cameras).
Acceleration: Longitudinal accelerometer.
Other
Ionosphere: Bureau of Standards lonosphere height finding equipment.

ROCKET PERFORMANCE

Firing angle: 3 degrees North (tilt from vertical)
Time to burnut: 69.6 sec .
Altitude at burnout: 22.6 miles
Velocity at burnout: 2600 ft . per sec. (Max. of 4030 ft . per sec attained earlier).
Time to zenith: 144.5 sec .
Altitude at zenith: 40.2 miles
Time to blowoff: No blowoff.
Flight duration: 291.7 sec .
Impact coordinates: 0.8 miles North and 7.6 miles East.
payload weight: 344 lbs .
Empty rocket weight: 2484 lbs .
Unfueled rocket C. G.:
Gross weight at takeoff: 10.892 lbs.

ballistic data

Theodolites: Trajectory data 0 to 66.9 sec .
Cameras: Bowen-Knapp trajectory data 0 to 16 sec ., Ballistic trajoctory data to 86.9 sec . Radar: Trajectory data 0 to 96 sec .
Impact location: Incorrect predictions, confusion from erratic behavior of rocket.
Aspect: No data, excessive noise on bolometer channels.

DATA RECOVERY

Telemeter: Continuous record 0 to 220 sec , with 3 sec . gap at 65 sec ., large record gaps 220 sec . to impact.
Physical recovery: No recovery installation, residual rocket fuels exploded, fragments recovered.

EXPERIMENTAL DATA

Composition: No data.
Ionosphere: No data.
Pressure-temperature: One measurement obtained at 40.2 miles with maximum error of 4%. Erratic behavior prevented other measurements.

COMMENTS

Rocket performance: Propulsion normal throughout burning period. Aerodynamic heating caused deformation of fins to begin at 47 sec . and rocket veered to East. Severe fin fallure about 62 sec . Vertical velocity dropped from 4030 ft . per sec, at 62 sec . to 2600 ft . per sec. by 69.6 sec . due to high aerodynamic drag caused by large angle of attack.
Pressure: Pressure data significant in studying rocket behavior.
T-day experiments: This firing part of a coordinated group of firings (Aerobees SC-14, 15, \& 16, and USAF-9) and Harvard College meteorite measurements.

REPORTS AND PAPERS

Tectnical Note No. 395, Aberaieen Proving Ground Ballistic Research Laboratories,
"Rocket Research Report No. DX," by M. W. Rosen, J. M. Bridger, and A. E. Jones, NRL Report No. 3854, Naval Research Laboratory, September 1951.
"The Pressure, Density, and Temperature of the Earth's Atmosphere to 160 Kllometers," by R. Fiavens, R. Koll, and H. LaGow, J. Geophys. Res., 57:59-72, March 1952.

Ageacy: Naval Research Laboratory
TIme: 1059 MST
Altitude: 136 miles

UPPER-AIR INSTRUMENTS

Cosmic radiation: Minimum ionization emulsions. NRL and National Institutes of Health. Solar radiation: Six X-ray film detectors with foil filters.
Pressure-temperature: Ram pressure gage at nose tip, ambient pressure gages at base of nose section aud on tall section. Pressure gage at base of rocket. Skin temperature gages on nose cone and in tail fins.

DATA-RECOVERY INSTRUMENTS

Telemeter: AN/DKT-2 (XN-1) 30 channel PPM-AM system.
Physical recovery: Nose section separation explosives ahead of oxygen tank.

BALLISTIC ENSTRUAENTS

Firing Range

Theodolites: Four Mitchell and seven Askanla stations.
Cameras: Two Bowen-Knapp stations.
Telescopes: Three stations.
Radar: Two modified SCR-584 S-band atations.
Doppler: None
Impact location: Impret Point Computer and SCEL Geophone set GR-3.

Airborne

Beacon: AN/DPW-1 S-band transponder.
Radio cutoff: AN/ARW-37 FM control receiver for command fuel cutoff and recovery blowoff.
Aspect: NRL wide angle horizon camera and magnetometer.
Acceleration: Longitudinal accelerometer.
Other: Rocket propulsion and control system performance instruments.

Other

Lonosphere: Bureau of Standards ionosphere height finding station.

ROCKET PERFORMANCE

Firing angle: $3 . n$ degree North (cill from vertical).
Time to burnout: 71.9 sec .
Altitude at burnout: 27.1 miles
Velocity at burnout: 5864 ft . per sec.
Time to zenith: 265.8 sec .
Altitude at zenith: 136 miles
Time to blowoff: 430 sec .
Altitude at blowoff: 62 miles
Flight duratiox:
Impact coordinates: 49.3 miles North and 3.0 miles West.
Payload wetght: 394 lbs.
Unfueled rocket yeight: 2566 lbs.
Unfueled rocket C. G.:
Gross weight at takeoff: 10,728 lbs.

BALlistic data

Theodolifes: Trajectory data 0 to 80 sec .
Cameras: Trajectory data 0 to 14 sec .
relescupes: Poor image quality due to thin overcast.
Radar: Trajectory daia: 0 to 374 sec .
Impact location: Predicted impact 9 miles North and 0.5 miles West of actual impact.
Aspect camera: Inclination and bearing of rocket 0 to 360 sec .

DATA RECOVERY

Telemeter: Excellent performance throughout flight.
Physical recovery: Nose and afterbody recovered in fair condition in same area. Some fragments scattered nearby. Evidence of fire around propellant tanks. Cosmic ray emulsions severely damaged by shock and exposure. Aspect camera in falr mechanical condition, film excellent. Three X-ray detectors recovered with foll windows ruptured.

EXPERDMENTAL DATA

Cosmic radiation: No data, emulsions damaged.
Solar radlation: No data, X-ray detectors damaged.
Pressurf-temperature: Pressure data obtained from ground to 43.5 miles, and from 85.9 to 68.4 miles. Atmospheric density $(1.0 \pm 0.2) \times 10^{-7} \mathrm{gm}$. per cubic meter at 136 miles. Nase cone skin temperature max. of $290^{\circ} \mathrm{C}$ by 75 sec ., dropped to approximately $180^{\circ} \mathrm{C}$ by 430 sec. Fin temperatures rose to max. of $140^{\circ} \mathrm{by} 140 \mathrm{sec}$. Upper air wind 179 miles per hour from Southeast at 124.3 milles altitude.

COMMENTS

Rocket performance: Optimum propellant mixture ratio attained, altitude 12 miles higher than expected. Control system operation excellent. Zenith angle maximum of 23 degrees during coastin tlight, precession period 104 sec ., 1.5 RPS spin deliberately introduced by control system.

Experiments: This and past firings indicate improved technique for protecting cosmic ray emulsions and X-ray detectors necessary.

Other: Aerodynamic heating damaged telemeter and beacon antennas. The telemeter antenna fairing cadmium plating (melting point $-320^{\circ} \mathrm{C}$) was eroded during ascent as were the sides of the Kel-F (softening point $200^{\circ} \mathrm{C}$) plastic dome. The dome softened and ruptured during descent. The beacon antenna dome softened and ruptured during ascent.

REPORTS AND PAPERS

"Rocket Research Report No. X," by M. W. Rosen, J. M. Bridger, and A. E. Jones, NRL Feport No. 3946, Naval Research Laboratory, March 1952.

Technical Note No. 574, Aberdeen Proving Ground Ballistic Research Laboratories, September 1951.

Technical Note No. 549, Aberdeen Proving Ground Ballistic Research Laboratories.
"Density of the Earth's Atmosphere at 219 Kilometers," R. J. Havens and O. Berg, Am. Geophys. Un. Trans., 33:316, 1952 (Abstract).
"Atmospheric Winds at 200 Kilometers," R. J. Havens and H. Spitz, Am. Geophys. Un. Trans., 33:317, 1952. (Abstract).

Agency: Naval Recearch Laboratory.

Comments: This rocket never fired, destroyed during static firing.

VIKiNG
NO. 9
15 December 1952

Agency: Naval Research Laboratory.
 Time: 1438 MST
 Altitude: 136 miles

Experiments: Solar radiation; High altitude photography. Commic radiation (Natlonal Institutes of Health).

11. BIBLIOGRAPHY

Air Research Development Command

Applied Physics Laboratory
Ballistic Research Laboratories
Naval Research Laboratory
Signal Corps Engineering Laboratories
Upper Atmosphere Rocket Research Panel
Miscellaneous

UPPER AR ROCKET SUMMARY

11. BIBLLOGRAPHY

Air Research and Development Command - Reports
"Wide Band Antenna for Ionosphere Pulse Transmitter," Dapartment of Engineering Research, Univeraity of Michigan, undated.
*Technical Report on the Measurement of Temperature and Pressure in the Ionosphere, by W. G. Dow and A. Relfmen, Department of Engineering Resparch, Univeraity of Michigan, July 1940.
"Pulse Transmitter for Ionosphere Measuremente," by W. G. Dow and H. C. Yarly, Department of Engineering Research, University of Michlgan, Soptember 1947.
"Experimental Pressure Data Obtained from V-2 Rocket Fughts of 21 November, 1046, and 20 February, 1947, with a Preliminary Analysis of theme Data," by W. G. Dow, A. Reifman, and F. V. Schultr, Department of Engineericg Research, University of Michigan, December 1047.
*Atmospheric Pressure and Temperature Measurements between the Altitudes of 40 and 110 Kilometers," by F. V. Schultz, N. W. Spencer, and A. Reifiman, Upper Air Research Program, Report No. 2, Englineering Research Institute, University of Michigan, July 1948.
"V-2 Experiment for Measuring Upper Atmosphere Temperature by Means of a Shock Wave," by W. G. Dow, H. C. Early, and A. A. Horak, Engineering Research Institute, University of Michigan, November 1948.
"Pointing Control Design, Volume I - Uriaxdal," by D. Stacey, J. Knaur, R. Westerwick, C. Sheldon, and C. Appelgate, Special Report No. 1, Upper Air Iaboratory, University of Colorado, November 1849.
*Rocket-Borne Television Camera Utilizing the RCA Type 5527 Iconoscope, Part IInstrumentation," Upper Atmosphere Research Laboratory, Boston University, search 1950.
*Rocket-Borne Television Camera Utilizing the RCA Type 5527 Iconoscope, Part II Results of Blossom IV-B and Blossom IV-C Experiments," Tech. Note No. 7, Upper Atmosphere Research Laboratory, Boston University, April 1950.
"Application of Willard Type BR-3 Lead Acid Storage Cells for Sounding Rocket High Voltage Power Supplies," by R. Knight, Tech. Note No. 8, Upper Atmosphere Research Liboratory, Boston University, June 1850.
"A Monochromatic Solar Camera for Rocket Installation," Report No. CL-1, Upper Air Laboratory, University of Colorado, June 1950.
"Batteries for Rocket Instrumentation," Report No. CL-2, Upper Air Laboratory, University of Colorado, July 1950.
"Drop Table Shock Tester," by H. R. Powell, Tech. Note No. 9, Upper Atmosphere Research Laboratory, Boston University, August 195C.
"An Ultraviolet Monochromatic Camera, Volume 1," Ipecial Report No. 2, Upper Air Laboratory, University of Colorado, December 1950.
"Performance of the University of Colorado Uniaxial Pointing Control," Heport No. CL-4, Upper Air Laboratory, University of Colorado, March 1951.
"Mindature Shock-Proof Control Relay," by H. R. Powell, Tech. Note No. 9, Upper Atmosphere Research Laboratory, Boston University, July 1951.
"The Calibration of the Apparatus and Yurther Analysis," Studies on the Threshold Sensitivity of Infra-Red Detectors Used in Rockets, Part 3, by H. Fischer, Report No. E5053-3, Special Studies Laboratory, Electronics Research Division, Air Force Cambridge Research Center, September 1251.
"An Ultraviolet Vacuum Test Chamber, Volume 1," Special Report No. 8, Upzer Air Laboratory, University of Colorado, September 1951.
"A Description of the Apparatus to be Flown in an Aerobee Rocket," by C. Aiken and W. Sloughter, Studies on the Threshold Sensitivity of Inira-Red Detectors used in Rockets, Part 2, Report No. E5053-2, Air Force Cambridge Regearch Center, October 1951.
"Application of T-V Techniques to Spectrography I," by G. W. Wong, Tech. Note No. 14, Upper Atmosphere Research Laboratory, Boston University, February 1952.
"Dynamic Probe Measurements in the Ionosphere," by G. Hok, N. W. Spencer, A. Reiman, and W. G. Dow, Upper Atmosphere Research Program, Report No. 3, Enqineering Research Institute, University of Michtgan, December 1952.
*The Influence of the Earth's Magnetic Field on Dynamic Probe Measurements in the Ionosphere," by G. Hok, N. W. Spencer, A. Relfman, and W. G. Dow, Supplementary Note to Upper Atmosphere Research Program Report No. 3, Engineering Regearch Institute, University of Michigan, December 1952.
"A Digital Electronic Data Recording System for Pulse-Time Telemetering," by G. O. Hall and R. M. Slavin, Eds., Tech. Report 53-1, Geophysica Research Directorate, Air Force Cambridge Research Center, February 1953.
"Rocket Borne Equipment for the Measurement of Intrared Radiation," by R. M. Slavin, Tech. Report 53-2, Geophysics Research Directorate, Air Force Cambridge Research Center, February 1953.

Air Research and Development Command - Contractors' Progress Reports Aerojet Engineering Corporation Progresa Reports under Contract No. AF19(122)-50. Baird Associates, Inc. Progress Reports under Contract No. M19-122 ac-23. Boston University Progress Reports under Contract No. AF19(122)-36. Callfornia, Univeralty of, Progress Roports under Contract No. W19-122 ac-19.

Coloradio, University of, Progress Reports under Contract No. W19-122 ac-9.
Cook Research Laboratories Progress Reports under Contract No. AP19(122)-69.
Denver, Undversity of, Progress Reports under Contracts W19-182-ac-16 and AF19 (604)224.

Franklin Insttite Progross Reporte under Conkract No. AF19(122)-63.
Michigan, Univeraity of, Progress Reports under Contract No. AF19(122)-55.
New Hampahire, University of, Progrese Reports under Contract No. AY19(604)-226.
Ohto State Univeratity Progress Roports under Contract No. AF19(122)-13.
Orlahoma Agricultural and Mechanical College Progrems Reports under Contract No. W28-009 ac-370.

Oregon, Univoraity oi, Progrema Reports under Contract No. AF19(122)-80.
Rhode Island, University of, Progreas Reports under Contracts W28-098 ac-377 and AF19(122)-249.

Temple University Progress Reports under Contract No. Wi9-122 ac-12.
Tults Coliege Progreas Reportis under Contract No. AP19(122)-63.
Utah, Universdty of, Progress Reports urder Contracts W19-122 ac-15 and AF19(g04)-304.
Wentworth Inetitute Progress Reports under Contracts AF10(122)-215 and AF19(122)-40.
"Theory and Application of the Variable Voltage Probe for Exploration of the Ionosphere," by A. Reifman and W. G. Dow, Phys. Rev., 75:1311-2, 1949.
"Dynamic Probe Measurements in the Ionosphere," by A. Reifman and W. G. Dow, Phys. Rev., 76:987-8, 1948.
"The Design and Construction of a F/1.1 Quartz Spectrography," by B. E. Cohn, R. F. Calfee, M. E. Juza, S. L. Simmons, and D. Warren, Colorado-Wyoming Academy of Science, May 1950.
"Specialized Problems in Rocket Telemetering," by M. O'Day, Joint ANEE-NTF Conference on Telemetering, May 24-26, 1950, Philadelphia, 139-43, August 1950.
"Data Recording and Automatic Reduction System for Telemetering," by G. O. Hall, Joint AIEE-NTF Conference on Telemetering, May 24-26, 1950, Philadelphia, 183-7, August 1950.
"Grating Spectrograph for Observation of Sky at Total Solar Erclipse," by B. E. Cohn, M. F. Juza, T. F. Maker, F. S. Speck, J. W. Brooks, and A. Goddard, ColoradoWyoming Academy of Science, May 1052.
"Day Sky Brightness Measured by Rocket Borne Photoelectric Photometers," by H. A. Miley, E. F. Cullington, and J. F. Bedinger, Trans. Am. Geophys. Union, 33:321, 1952.
"Ionospheric and Upper Air Research," Geophysics Research Directorate, Air Force Cambridge Research Center, Phys. Today, 6(3):10-3, March 1953.

Applied Physics Laboratory - Reports

*The Rocket Technique Applied to Exploration of the Geomagnetic Field to Great Heights Within the Atmosphere," E. H. Veatine, Repart CM-480, Applied Physics Laboratory, The Johns Hopidns University, 18 June 1948.
"Eigh Altitude Research Using the V-2 Rockets, Msurch 1946-April 1947," by L. W. Fraser and E. H. Seigler, Bumblebee Series Report No. 81, Applied Physics Laboratory, The Johns Hopkins University, July 1948.
"Bumblebee Report No. 95," by L. W. Fraser, Applied Physics Laboratory, The Johns Hopkins University, December 1818.
A Report of Aerobee A-18, by A. V. Gangnes and J. W. B. Berghausen, Report CF-1565, Appliod Physics Laboratory, The Johns Hopidns Univergity, December 1850.
"Bigh Altitude Research at the Applied Physics Laboratory," by L. W. Fraser, Bumblebee Series Report No. 153, Applied Physics Laboratory, The Johns Hoplins University, May 1951.
"The Exploration of the Future," by J. A. Van Allen, Explorer's Journal, 4:24, 1947.
 H. E. Tatel, and J. A. Van Allen, Phys. Rev. 72:173, 1947.
"The First Night Firing of a V-2 Rocket in the United States," by F, Zwicky, Publ. Astron. Soc. Pacific, 58:32-3, 1947.
"Research with Rockets," by F. Zwicky, Publ. Astron. Soc. Pacifi:; 59:64-73, 1947, Erratum, Publ. Astron. Soc. Pacific, 59:189, 1847.
"Multichannel Telemetering for Rockets (Aerobee Telemetering)," by G. H. Melton, Electronics, December 1948.
"Cosmic Ray Bursts in the Upper Atmospnere," by H. E. Tatel and J. A. Van Allen, Phys. Rev., 73:87, 1948.
"The Cosmic Ray Counting Rate of a Single Geiger Counter from Ground Level to 161 Km . Altitude, ${ }^{\text {B }}$ by J. A. Van Allen and H. E. Tatel, Phys. Rev., 73:245, 1948.
"The Ultra-Violet Spectrum of the Sun from $V-2$ Rockets," by J. J. Hopfield and H. E. Clearman Jr., Phys. Rev., 73:877, 1848.
"The Aerobee Rocket - A New Vehicle for Research in the Upper Atmosphere," by J. A. Van Allen, L. W. Fraser, and J. F. R. Floyd, Science, 108:746, 1948.
"Exploratory Cosmic Ray Observations at High Altitudes by Means of Rockets," by J. A. Van Allen, Sky and Telescope, VI: 7 , 1948.
*An Improved Upper Limit to the Primary Cosmic Ray Intensity at Geomagnetic Latitude $41^{\circ} \mathrm{N},{ }^{\prime \prime}$ by J. A. Van Allen, Proceedings of the Echo Lake Cosmic Ray Symposium, June 23-28, 1949, pp. 95-102, published by the Office of Naval Research, November 1949.
"Cosmic Ray Intensity Above the Atmosphere at the Geomagnetic Equator," by J. A. Van Allen and A. V. Gangnes, Proceedings of the Echo Lake Cosmic Ray Symposium June 23-28, 1949, pp. 199-205, published by the Office of Naval Research, November 1949.
"Experiments with Low Efficiency Telescopes above the Atmosphere at $L=41^{\circ} \mathrm{N}$, and $L=0^{\circ}$, by S. F. Singer, Proceedings of the Echo Lake Cosmic Ray Symposium June 23-28, 1949, pp. 206-214, published by the Office of Naval Research, November 1940.
"Studies of Extensive Air Showers," by S. F. Singer, Proceedings of the Echo Lake Cosmic Ray Symposium, June 23-28, 1949, pp. 293-295, published by the Office of Naval Research, November 1948.
"The Transition Effects of the Primary Cosmic Radiation in Lead, Aluminum, and the Atmosphere," by J. A. Van Allen, Proceedings of the Echo Lake Cosmic Ray Symposium, June 23-28, 1949, pp. 95-102, published by the Office of Naval Research, November 1949.
*Nature of the Primary Radiation as Revealed by Transition Effects in Lead and Within the Atmosphere, " by J. A. Van Allen, L. W. Fraser, and R. A. Ostrander, Bull. Am. Phys. Soc., 24:48, 1949.
"The Cosmic Ray Intensity Above the Atmosphere," by A. V. Gangnes, J. F. Jenkins, Jr., and J. A. Van Allen, Phys. Rev., 75:57, 1949.
*The Zenith Angle Dependence of Flux of the Hard Cosmic Ray Component up to 26,000 Feet," by J. F. Jenkins Jr., Phys. Rev., 76:992, 1949.
"The Specific Ionization of the Cosmic Radiation Above the Atmosphere," by S. F. Singer; Phys. Rev., 77:701, 1949.
"The Zenith Angle Dependence of the Cosmic Radiation Above the Atmosphere at $L 41^{\circ} N$," by S. F. Singer, Phys. Rev., 77:701, 1949.
"The Atmospheres of the Farth and Planets; Papers Fresented at the Fiftieth Anniversary Symposium of the Yerkes Observatory, September 1947." by Gerald P. Kuiper, Ed., University of Chicago Press, Chicago, 1949.
"Measurements of the Earth's Magnetic Field at High Altitude at White Sunds, New Mexico," by S. F. Singer, E. Maple, and W. A. Bowen, J. Geophys. Research, 55:115, 1950.,
"Theoretical Geomagnetic Effects in Cosmic Radiation," by R. A. Alpher, J. Geophys. Research, 55:437-471, 1950.
"Seeing the Earth From 80 Miles Up," by Clyde T. Holliday, The Nat'l. Geog. Soc., XCVIII:511, 1950.
"Preliminary Report on High Altitude Photography," by C. T. Holliday, Phot. Engr., 1:16, 1950.
"Photographic Determination of the Orientation of 2 Rocket," by L. W. Fraser and R. S. Ostrander, Phot. Engr., 1:105, 1950.
"The Absorption Spectrum of Water Vapor Between 900 and 2000 Angstroms," by J. J. Hopfield, Phys. Rev., 77:560, 1950.
"The Specific Ionization of the Cosmic Radiation Near the Piotzer at $L=41^{\circ} N$," by S. F. Singer, Phys. Rev., 77:730, 1950.
"The Cosmic Ray Intensity Above the Atmosphere at the Geomagnetic Equator," by J. A. Van Allen and A. V. Gangnes, Phys. Rev., 78:50, 1950.
"On the Primary Cosmic Ray Spectrum," by J. A. Van Allen and S. F. Singer, Phys. Rev., 78:819, 1950.
"On the Azimuthal Asymmetry of Cosmic Ray Intensity Above the Atmosphere at the Geomagretic Equator," by J. A. Van Allen and A. V. Gangnes, Phys. Rev., 79:51, 1950.
"The Primary Specific Ionization and Intensity of the Cosmic Radiation Above the Atmosphere at the Geomagnetic Equator," by S. F. Singer, Phys. Rev., 80:47, 1850.
"On the Possibility of Earth Launched Meteors," by F. Zwicky, Publ. Astron. Soc. Pacific, 58:260-1, 1950.
*Evidence for Ionosphere Currents from Rocket Experiments Near the Geomagnetic Equator," S. F. Singer, E. Maple, and W. A. Bowen, J. Geophys. Research, 58:265, 1951.
"On the Density Spectrum and Structure of Extensive Air Showers," by S. F. Singer, Phys. Rev., 81:579, 1951.
"High Altitude Distribution of Atmospheric Ozone," by J. A. Van Allen and J. J. Hopfield (to be published).

Ballistic Research Laboratories - Reports

 Aberdeen Proving Ground, undated (circa 1946).
*Report No. 639," by H. P. Hitchcock and V. M. Reklis, BRL, Aberdeen Proving Ground, October 1847.
"Report No. 695," by H. P. Hitchcock, BRL, Aberdeen Proving Ground, April 1949.
"Report No. 700," by H. P. Hitchcock, BRL, Aberdeen Proving Ground, June 1949.
"Optical Studies of the Jet Flame of the V-2 Missile in Flight," by J. B. Edsen, BRL Report No. 708, Aberdeen Proving Ground, Aagust 1949.
"Memorandum Report No. 515," by H. P. Hitchcock, BRL, Aberdeen Proving Ground, August 1950.
"Study of Spectra of Missile Jets in Flight and an Analysis of the Spectrum of the Jet of V-2 No. 5," White Sends Proving Ground, New Mexico, BRL Technical Note 513, June 1951.
"Miotion Pictures in the Guided-Missile Program," by H. M. Cobb, J. Soc. Motion Picture Engrs., 53:481-9, November 1949.
"Charge Densities in the Ionosphere from Radio Doppler Data," by W. W. Berning, J. Meteorol., 8:175-81, Junc 1851.
"Tracixing Guided Missiles with Radio Doppler,* by R. L. Hill, The Rice Engineer, 1:6-15, December 1953.
"The Viking No. 1 Firings," by M. W. Rosen and J. M. Bridger, Rocket Research Report No. I, NRL Report 3583, December 1949.
"The Viking No. 2 Firings," by M. W. Rosen and J. M. Bridger, Rocket Research Report No. II, NRL Report 3641, March 1950.
"Vibration in the Viking No. 3 Pocket," by C. B. Cunningham, E. E. Bissel, H. A. Feher, and R. W. Stroup, Rocket Mesearch Report No. III, NRL Report 3695, July 1950.
"The Viking No. 3 Firings," by M. W. Rosen and J. iv. Bridger, Rocket Research Report No. IV, NRL Report 3716, July 1950.
"The Viking Shipboard Firings," by M. W. Rosen and J. M. Bridger, Rocket Research Report No. V, NRL Report 3751, October 1950.
"The Viking No. 5 Firings," by M. W. Rosen, J. M. Bridger, and H. Spitz, Rocket Research Report No. VII, NRL Report 3830, July 1951.
"The Rocket Impact Point Computer," by T. A. Bergstralh, Rocket Research Report No. VIII, NRL Report 3851, October 1951.
"The Viking No. 6 Firings,* by J. M. Bridger, M. W. Rcsen, and A. E. Jones, Rocket Research Report No. IX, NRL Report 3854, September 1951.
"The Viking No. 7 Firings,* by M. W. Rosen, J. M. Bridger, and A. E. Jones, Rocket Research Repurt No. X, NRL Repori 3946, March 1952.
"U.A.R. Report No. I," by M. A. Garstens, H. E. Newell Jr., and J. W. Siry, NRL Report R-2955, October 1946
"U.A.R. Report No. II," by H. E. Newell, Jr., and J. W. Siry, NRL Report R-3030, December 1946.
*U.A.R. Report No. III," by H. E. Newell, Jr., and J. W. Siry, NRL Report R-3120, April 1947.
"U.A.R. Report No. IV," by H. E. Newell, Jr., and J. W. Siry, NRL Report R-3171, October 1947.
${ }^{4}$ U.A.R. Report No. V, ${ }^{*}$ by H. E. Newell, Jr., and J. W. Siry, NRL Report R-335B, June 1948.
"U.A.F. Report No. Vl, A Detector for the Dobson Ozone Spectrophotometer," by H. L. Clark, NRL Report P-3333, August 1948.
"U.A.R. Report No. VII, Counting With Geiger Counters," by H. E. Newell, Jr., and E. C. Pressly, NRL Report P-3446, April 1949.
"U.A.R. Report No. ViII, Prediction and Location of D.ocket Impacts at White Sands Proving Ground," by H. E. Newell Jr., NRL Report P-3485, June 1949.
"U.A.R. Report No. DX, A Sun-Follower for the V-E Rockets," by H. L. Clark, NRL Report 3522, August 1949.
"U.A.R. Repart No. X, The Matrix Telemetering Systzm,* by J. T. Mengel, N. R. Best, D. G. Mazur, and K. M. Uglow, NRL Report 3533, September 1949.
"U.A.R. Report No. XI, A Note on the Geometry of Geiger Counter relescopes," H. E. Newell, Jr., and E. C. Pressly, NRL Report 371ti, Auguzt $10 \% 0$.
*U.A.R. Aepurt No. XII, Direat Measurements of Solar Exireme Ultraviolet and X-Rays from Fockets by means of a CaSO_{4} : Mn Phosphor," by .K. Watanabe, J. D. Purcell, and R. Tuusey, RRL Report 1735 , September 1950.
U.A.R. Report No. XIII, Rocket-Borne Instrumentation for Ionosphere Propagation Experiments, by J. E. Jaskson, NRL Report 3909, January 1952.
"U.A.R. Report No. XIV, Radio-Frequency Mass Spectrometer for Upper Air Research," by I. W. Townsend, Jr., NRL Report 3928, January 1952.
"U.A.R. Report No. XV, AN/FKR-I () Telemetering Ground Station Improvement Program," by N. R. Best, NKL Report 3992, May 1952.
"(I.A.R. Fteport No. XVI, AN/DKT-7 () Fifteen Channel PTM Telemetering Transmitter," by D. G. Mazur, K. M. Uglow, R. Lowell, and N. R. Best, NRL Report 4016, August 1952.
*U.A.R. Report No. XVII, A Solar Aspect, Indicator for a Rocket," by D. M. Packer and R. Tousey, NRL Repcrt 4024, September 1952.
"U.A.R. Report No. XVIU, A Method for Determining Density in the Upper Atmosphere During R.icket Flight, ${ }^{n}$ by R. Horowitz and D. Eleitman, NRL Feport 4246, October 1953.
"U.A.R. Report No. XIX, A Geomagnetic Field Angular Orientation Indicator for a Rocket," by D. M. Packer, NRL Report 4247, November 1953.
"U.A.P. Report No. XX, A Lightweight Azimuth-Correcting Sun Follower," by H. L. Clark, NRL Report 4267, December 1953.

Naval Research Laboratory - Reports: Miscellaneous

"Telemetering iquipment Developed and Provided by the Naval Research Laboratory for General Use in the V-2 Fixings,* by V. L. Weeren, C. H. Hoeppner, J. R. Kauke, S. W. Lichtman, and P. R. Shifflett, NRL Report R-3013, October 1946.
"Photography from the V-2 Rocket at Altitudes Ranging up to 160 Kilometers," by T. A. Bergstialh, NRL Report R-3083, April 1947.
"Upper Atmosphere Regearch with V-2 Rockets," by H. E. Newell, Jr., NRL Report R-3204, June 1948.

COMPOSITION

"Measurements of the Vertical Distribution of Atmospheric Ozone from Rockets," by F. Johnson, J. Purcell, and R. Tousey, J. Geophys. Research, 56:583-94, 1051.
"Direct Measurements of the Vertical Distribution of Atmospheric Ozone to 70 Kilometers Altitude," F. S. Joinnson, J. D. Purcell, R. Tousey, and K. Watanabe, J. Geophys. Research, 57:157-176, June 1952.
"Radio-Frequency Mass Spectrometer for Upper Air Research," by J. W. Townsend, Rev. Sci. Instr., 23:538-41, October 1952.

COSMIC RAYS

${ }^{*}$ Cosmic Radiation above 40 Miles," by S. E. Golian, E. H. Krause, and G. J. Perlow, Phys. Rev., 70:223-4, August 1946.
"Additional Cosmic Ray Measurements with the V-2 Rocket," by S. E. Golian, E. H. Krause, and G. J. Perlow, Phys. Rev., 70:776-7, November 1946.
"Non-Primary Cosmic Ray Electrons Above the Earth's Atmosphere," by G. J. Perlow and J. D. Shipman, Jr., Phys. Rev., 71:325-6, March 1947.
"Further Cosmic Ray Experiments Above the Atmosphere," by S. E. Golian, and E. H. Krause, Phys. Rev., 71:918-9, June 1947.
"A V-2 Cosmic Ray Experiment," by G. J. Perlow, Phys. Rev., 72:173, July 1947. (Abstract).
"Further Cosmic Ray Experiments Above the Atmosphere," by E. H. Krause and S. E. Golian, Phys. Rev. 72:173, July 1947 (Abstract).
"Geometric Factors Underlying Coincidence Counting with Geiger Counters," by H. E. Newell, Jr., Rev. Sci. Instr., 19:384-9, June 1948.
"Rocket Borne Cloud Chamber I," by S. E. Golian, C. Y. Johnson, and M. Kuder, Phys. Rev., 74:1215, November 1948 (Abstract).
"Rocket Borne Cloud Chamber II," by G. J. Perlow, E. Krause, and C. Schroeder, Phys. Rev., 74:1215, November 1948 (Abstract).
"V-2 Cloud Chamber Observation of a Multiply Charged Primary Cosmic Ray," by S. E. Golian, C. Y. Johnson, E. H. Krause, M. L. Kuder, G. J. Perlow, and C. Schroeder, Phys. Rev., 75:524-5, February 1949.
"Gamma-Rays in the Primary Cosmic Radiation," by C. W. Kissinger, C. A. Schroeder, and G. J. Perlow, Phys. Rev., 76;164, July 1949 (Abstract).
"A Search for Cosmic Ray Diurnal Effects at Rocket Altitudes," by G. J. Perlow, C. W. Kissinger, and C. A. Schroeder, Phys. Rev., 76:164, July 1949.
"Counting With Geiger Counters," by H. E. Newell, Jr., and E. C. Pressly, Rev. Sci. Instr., 20:568-72, August 1949.
"Cosmic Ray Measurements in Rockets," by G. J. Perlow, Sci. Monthly, 69:382-5, December 1949.
*A Proportional Counter Technique," by L. R. Davis, C. W. Kissinger, and G.J. Perlow, Phys. Rev., 80:132, October 1950 (Abstract).
*Rocket Measurement of Cosmic Ray Ioniration and Eange," by G. J. Perlow, T. A. Bergstralh, C. Y. Johnson, and J. D. Shipman, Jr., Phys. Rev., 80:133, October 1950 (Abstract).
"Cosmic Ray Diurnal Effect Measurements," by T. A. Bergatraih and C. A. Schrceder, Phys. Rev., 80:134, October 1850 (Abstract).
*A. Note on the Geometry of Geiger Counter Telescopes," by H. F. Newell and F. C. Pressly, Rev. Sci. Instru., 21:918-22, November 1950.
"A Search for Primary Cosmic Gamma Radiation I," by G. J. Perlow and C. W. Kissinger, Phys. Rev., 81:552-4, 15 February 1051.
*A Search for Primary Cosmic Gamma Radiation II. Low Energy Radiation Above and Within the Atmosphre," by G. J. Perlow and C. W. Kissinger, Phys. Rev., 84:572-80, November 1951.
"Rocket Determination of the Ionization Spectrum of Charged Cosmic Rays at $L=41^{\circ} \mathrm{N},{ }^{\prime \prime}$ by G. J. Perlow, L. R. Davis, C. W. Kisainger, and J. D. Shipaian, Jr., Phys. Rev., 88:321-5, October 1952.

ELECTRONICS

"Telemetering Irom V-2 Rockets, Part I," by V. L. Heeren, C. H. Hoepprer, J. R. Kauke, S. W. Lichtman, and P. R. Shifflett, Electronics, 20:100-5, March 1047.
${ }^{* T e l e m e t e r i n g ~ f r o m ~ V-2 ~ R o c k e t s, ~ P a r t ~ I I, " ~ b y ~ V . ~ L . ~ H e e r e n, ~ C . ~ H . ~ H o e p p n e r, ~ J . ~ R . ~}$ Kauke, S. W. Lichtman, and P. R. Shifflett, Electronics, 20:124-7, April 1947.
"Scale of N Counting Circuits," by B. Howland, Electronics, 20:138, July 1847.
"A Diode Coincidence Circuit," by J. D. Shipman, Jr., B. Howland, and C. A. Schroeder, Phys. Rev., .72:181, July 1947 (Abstract).
"A. Method for Calculating Electric Field Strongth in the Interference Region," by H. E. Newell, Jr., Proceedings of the ME, 35:777, August 1947.
"Electronics for Cosmic Ray Experiments," by B. Howland, C. A. Schroeder, and J. D. Shipman, Jr., Rev. Sci. Instr., 18:551-56, August 1947.
${ }^{*}$ Capacitor Cuunting Circuit," by B. Howland, Electronics, 21:182-90, Juns 1948.
"Laboratory Coincidence, Anti-Coincidence Unit," by C. A. Schroeder, J. D. Shipman, Jr., and P. R. McCray, Phys. Rev., 76:163, July 1949 (Abstract).
"Long Range Multi-Channel Telemstering System," by J. T. Mengel, Instruments, 23:70-2, January 1950.
*Square Wave Keying of Oscillators," by J. C. Seddon, Flectronics, 23:162-72, February 1950.
"Matrix Telemetering System," by N. R. Best, Electronics, 23:82-5, August 1950.

ELECTRONICS (Continued)

"Pulse Time Modulation Telemetering Systems for Rocket Application," by J. T. Mengel, Trans. AIEs, 70:599-605, 1951.
"Electronics in Space," by C. DeV ore, Signal, Jan-Feb, 1953.

IONOSPHERE

"Soft X-Radiation in the Upper Atmosphere," by T. R. Burnight, Phys. Rev., 76:165, July 194θ (Abstract).
"Rocket Applications of Electrostatic Generating Voltmeters," by J. F. Clark, Jr., Instruments, 22:1007-9, November 1949.
«Propagation Measurements in the Ionosphere by Means of Rocikets," by J. C. Seddon, Trans. Am. Geophys. Union, Program 23rd Annual Meeting, 322, 1952.
"Propagation Measurements in the Ionosphere with the Aid of Rockets," by J. C. Sedion, J. Geophys. Research, 58:323-35, September 1853.

PHOROGRAPHY

"Upper Atmosphere Photography," by C. P. Smith, Jr., Signal, 7:39-41, May-June, 1853.

PRESSURE, TEMPERRTURE, AND DENSITY

*Pressure and Temperature Measurements in the Upper Atmosphere," by N. R. Best, Eric Durand, D. Gale, and R. Havens, Phys. Rev., 70:085, December 1946.
"Pressure and Temperature Measurements in the Upper Atmosphere," by N. R. Best, Aeronaut. Eng. Rev., 6:27, February 1947 (Abstract).
"Pressure and Temperature of the Atmosphere to $120 \mathrm{Km} ., "$ by N. Best, R. Himens, and H. LaGow, Phys. Rev., 71:915-6, June 1947.
"A. New Vacuum Gauge," by R. Havens, R. Koll, and H. LaGow, Rev. Sci. Instr., 21:596-8, July 1050 .
*A New Vacuum Gage," by R. Havens, R. Koll, and H. LaGow, Physics Today, August 1950.
"Temperatures and Pressures in the Upper Atmosphere," by H. E. Newell, Jr., Compendium of Meteorology, T. F. Malone, Ed., Am. Meteorol. Soc., Boston, pp. 303-10, 1851.
"Density of the Earth's Atmosphere at 218 Kilometers," by R. Havens and O. Berg, Trans. Am. Geophys. Union, Program of 23rd Annual Meeting, 33:316, 1052.
"The Average Atmosphere up to 220 Km .," by R. J. Havens and H. E. LaGow, Extrait des Mémoires de la Societe Royale des Sciences de Liège, Tome XII, Fasc I-II, 1852.
"High-Altitude Diurnal Temperature Changes Due to Ozone Absorption," by F. S. Jo^{+}Bull. Am. Meteorol. Soc., 34:106-110, Mar. 1953.

ROCKETS

"Super Altitude Research Rocket Revealed by Navy," by C. H. Smith, Jr., M. W. Rosen, and J. M. Bridger, Aviation, 48:40-3, June 1947.
"The Early Eistory of Rockat Research," by J. W. Siry, Sci. Monthly, 71:326-32, November 1950.
"Rocket Research in the Twentieth Century," by J. W. Siry, Sci. Monthly, 71:408-21, December 1950.
"Early Rocket Research," by J. W. Siry, Moch. Eng., 73:136-8, February 1851.
"Twentieth Century Rocket Research," by J. W. Siry, Mech. Eng., 73:322.a4, April 1951.
"Characteristics of the Righ-Altitude Rocket as a Research Tool," by H. E. Newell Jr., Chap. XX, pp. 405-11, The Physics and Medicine of the Upper Atmosphere, O. Benson and C. White, Eds., University of New Mexico Press, Albuquerque, 1352.
"A Down to/Earth View of Space Flight," by M. W. Rosen, J. Brit. Interplanet. Soc., 12:26-32, January 1952.
"A Down to Earth View of Space Flight," by M. W. Rosen, Siky and Telescope, 12:35-6, December 1952.
"The High Altitude Sounding Rocket," by M. W. Rosen and R. Snodqrass, Aero Dig., September 1953.

SOLAR RADIATION

"Solar Ultra-Violet Spectrum to 88 Kilometers," by W. A. Bawm, F. S. Jahnson, J. J. Oberly, C. C. Rockwood, C. V. Strain, and R. Tousey, Phys. Rev., 70:781-2, November 1946.
"Solar Spectroscopy at Bigh Altitudes," by C. V. Strain, Sky and Telescope, 6:3-6, February 1947.
*Solar Spectrograph for a V-2 Rocket," by R. Tousey ${ }^{\text {C }}$ C. V. Strain, J. J. Oberly, F. S. Johnson, and W. A. Baum, J. Opt. Soc. Amer., 37:523, June 1947 (Abatract).
"Solar Ahsorption Lines Between 2950 and 2200 Angstroms," by E. Durand, J. J. Oberly, and R. Tousey, Phys. Rev., 71:827, June 1947.
"Reduction of Astigrantism in the NRL Rocket Spectrograph," by F. S. Johnson and R. Tousey, J. Opt. Soc. Amer, 37:991, December 1947 (Abstract).
"The Solar Ultrawiolet Spectrum from a V-2 Rocket," by R. Tousey, C. Strain, F. S. Johnson, and J. Oberly, Astron. J., 52:158-9, 1947 (Abstract).
"Analysis of the First Rocket Ultraviolet Solar Spectra," by E. Durand, J. J. Oberly, and R. Tousey, Astrophys. J., 109:1-16, January 1849.
"Observations at High Altituces of Extreme Ultraviolet and X-Rays from the Sun," by J. D. Purcell, R. Tousey, and K. Watanabe, Phys. Rev., 76:165-6, July 1948 (Abstract).

SOLAR RADIATION (Continued)

"Measurements of the Solar Extreme Ultraviolet and X-Rays from Rockets by Means of a CaSO4:Mn Phosphor," by R. Tousey, K. Watanabe, and J. D. Purceil, Phys. Rev., 83:792-7, August 1951.
"Properties of $\mathrm{CaSO}_{4} \mathrm{Mn}$ Phosphor Under Vacuum Ultraviolet Excitation," by K. Watanabe, Phys. Rev., 83:1025-30, September 1951.
"Photon Counter Measurements of Solar X-rays and Extreme Ultraviolet Light," by H. Friedman, S. W. Lichtman, and E. T. Byram, Phys. Rev., 83:1025-30, September 1951.
"Ultraviolet Radiation and X-Rays of Sular Origin," by T. R. Burnight, Chap. XIII, pp. 226-38, The Physics and Medicine of the Upper Atmosphere, O. Benson and C. White, Eds., University of New Mexico Press, Albuquerque, 1952.
"Measurements of the Absorption of $\lambda 1216 A, \lambda 2050 A$, and $\lambda 8$ Solar Radiation in the Upper Atmosphere," by E. T. Byram, T. Chubb, H. Friedman, and S. W. Lichtman, J. Opt. Soc. Amer., 42:876-877, 1952 (Abstract).
"A New Photograph of the Mg II Doublet at 2800A in the Suny" by F. S. Johnson, J. D. Purcell, R. Tousey, and N. Wilson, Astrophys. J., 117:238-239, January 1953.
"Rocket Spectroscopy," by R. Tousey, J. Op̣t. Soc. Amer., March 1853.

WINDS

"Atmospheric Winds at 200 Kilometers," by R. J. Havens and H. Spitz, Trans. Am. Geophys. Union Program 23rd Annual Meeting, 317, 1052.

GENERAL

"The Upper Atmosphere of the Earth," by E. O. Hulbert, J. Opt. Soc. Amer., 37:40515, June 1947.
"Exploration of the Upper Atmosphere by Means of Rockets," by H. E. Newell, Jr., Sci. Monthly, 64:453-63, June 1947.
"High Altitude Research with V-2 Rockets," by E. H. Krause, Science, 106;1225, August 1947.
"The Earth's Atmosphere," by R. J. Havens, Coast Artillery J., 90:10-12, Nov-Dec 1947.
"High Altitude Research With V-2 Rockets," by E. H. Krause, Proc, Am. Phil. Soc., 91:430-46, December 1947.
"The Upper Atmosphere Studied from Rockets - Rocket Sonde Research at the Naval Research Laboratory," by E. Durand, Chap. IV, C, pp. 134-48, G. P. Kuiper, Ed., University of Chicago Press, Chicago, 1949.
"Upper Atmosphere Measurements by Means of Large Rockets," by T. A. Bergstralh, Aeronaut. Eng. Rev., 8:39, March 1949 (Abstract).
*A Review of Upper Atmosphere Research from Rockets," by H. E. Newell, Jr., Trans. Am. Geophys. Union, 31:25-34, February 1950.

GENERAL (Contixued)

"Physical Characteristics of the Upper Atmosphare of the Earth," by F. O. Bulbert, Chap. II. pp. 35-53, The Phyalcs and Medicine of the Upper Atmospbere, O. Benson and C. White, Eds., University of New Mexico Press, Albuquerque, 1932.
"The Physical Recovery of Intrumente and Data from a Rocket Flight," by C. P. Smith, Jr., Chap. XX, pp. 441-40, The Physics and Medicine of the Upper Atmusphere, O. Benson and C. White, Eds., University of New Mexico Press, Albuquerque, 1952.
"Rocket Upper Air Research," by E. E. Newell, Jr. and J. W. Biry, J. Am. Rocket Soc., 23:7-13, Jan-Feb 1953.
"Eigh Altitude Rocket Research," by H. E. Newell, Jr., Academic Press, New York, December 1953.
"Atmospheric Phenomena at High Altitudes," unsigned, Progress Reports under Contract No. DA-36-030-sc-125, Engineering Research Institute, University of Michigan.
"Atmospheric Phenomeng at High Altitudes," by L. M. Jones and H. W. Neill, Progress Reports under Contract No. W-36-039-sc-32307, Engineering Research Institute, University of Michigan.
*Calculations of Pressures on Cones Moving at Supersonic Velocities in the Upper Atmosphere," by R. G. Mills, Engineering Research Institute, University of Michigan, October 1946.
"Physical Status of the Atmosphere," by H. W. Nelll, Engineering Research Institute, University of Michigan, March 1947.
"Analyals of Pressure Measurements Recorded During the Flight of V-2 No. 25," by R. J. Leite and V. C. Liu, Engineering Research Institute, University of Michigan, April 149.
*An Evaluation of Bhadowgraph and Schlieren Optical Methods for Determining Temperatures in the Upper Atmosphere," by E. B. Turner and V. C. Liu, Engineering Research Institute, University of Michigan, July 1949.
"Parachute Release Assembly for Aerobee Rocket," by P. Devroetes and E. A. Terhune, Tech. Memo. No. 1291, Signal Corps Engineering Laboratories, May 1950.
"An Aerodynamic Method of Measuring the Ambient Temperature of Air at High Altitudes," by F. L. Bartman, V. C. Liu, and E. J. Schaefer, Engineering Research Institute, University of Michigan, July 1950.
*Prelimirary Investigation of Sphere Method of Ambient Temperature Measurement," by V. C. Liu, Tech. Memo. No. 1, Engineering Research Institute Project M893, University of Michigan, 1950.
*Upper Atmosphere Ambient Densities and Temperatures as Obtained from the Measurement of Drag Forces upon 2 Falling Sphere," by F. L. Bartman, Tech. Memo. No. 2, Engineering Research Institute, University of Michigan, 1951.
© On Sphere Method of Ambient Temperature Measurement in the Upper Atmosphere with Wind," by V. C. Lu, Tech. Memo. No. 3, Engineering Research Institute, University of Michigan, 1951.
"Performance Analysis of a Sounding Rocket," by V. C. Liu, Tech. Memo. No. 4, Engineering Research Institute, University of Michigan, 1951.
*Estimation of the Transient Skin Temperature of a Falling Sphere," by V. C. Liu, Tech. Memo. No. 5, Engineering Research Institute Project M893, University of Michigan, 1951.
*A Technique for Rendering Solutions to the Problem of Ambient Temperature Measurements in the Upper Atmosphere," by V. C. Liu, Tech. Memo. No. 6, Engineering Research Institute, University of Michigan, 1952.
"Exploring the Oxonosphere," by C. J. Brasefield, Sci. Monthly, 68:395-9, June 1946.
"Into the Ionosphere," by H. Berman, Signal, 1(5):29-31, May-June 1947.
"Into the Ionosphere," by H. Berman, Coast Artillery J., 80:32-8, Sept-Oct 1947.
"Meteorological Radio Direction Fiading for Measurement of Upper Winds," by R. A. Kirkman and J. M. LaBedda, J. Meteorol., 5:28-97, February 1948.
*On the Accuracy of Winds Alott at Low Altitudes," by A. Arnold, Bull. Am. Meteorol. Soc., 29:140-1, March 1948.
"Recent Meteorological Rocket,* by M. Ference and W. Lotz., Weatherwise, 1:52-3, June 1948.
"Measurement of Air Temperature in the Presence of Solar Radiation," by C. y. Brasefield, J. Meteorol., 5:147, August 1848.
${ }^{*}$ Chemical Composition of the Stratosphere at 70 Km. Height," by K. F. Chackett, F. A. Paneth, and E. J. Wilson, Nature, 164:128-9, July 1949.
"Chemical Analysis of Stratosphere Samples from 50 and 70 Km . Hetght," by K. I. Chackett, F. A. Paneth, and E. J. Wilson, J. Atm. and Terrest. Phys., 1:49-55, 1950.
"Winds and Temperatures in the Lower Stratosphere," by C. J. Braseteld, J. Meteorol., 7:66-9, March 1950.
"Isotropic Separation due to Settling in the Atmosphere," by J. M. McQueen. Phys. Rev., 80:100-1, October 1950.
"Does Dtifusive Separation Exist in the Atmosphere Below 55 Kilometers," by D. W. Hagelbarger, L. T. Loh, H. W. Nelll, M. H. Nichols, and F. A. Wenzel, Phys. Rev., 82:207-8, April 1851.
"Variations in the Chemical Composition of Stratosphere Air," by K. F. Chackett, F. A. Paneth, P. Reasbeck, and B. S. Wiborg, Nature, 168:358-60, September 1851.
"Diffusive Separation in the Upper Atmosphere," by L. M. Jones, L. T. Loh, H. W. Neill, M. H. Nichols, and E. A. Wenzel, Phys. Rev., 84:846-7, November 1951.
"Temperatures in the Earth's Upper Atmosphere," by M. Ference, Jr., Trans. Am. Geophys. Union, 33:317, 1852 (Abstract).
"Remote Opening and Sealing of Metal Tubes," by L. T. Loh, H. W. Neill, M. H. Nichols, and E. A. Wenzel, Rev. Sci. Instr., 23:339-41, July 1052.
"The Chemical Exploration of the Stratosphere," by F. A. Paneth, J. Chem. Soc., 3651-2, London, September 1952.
"The Micro-Analysis of the Inest Gases," by F. A. Paneth, Endeavour, 12(45):5-17, January 1953.

V-2 Report No. 1, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 27 Feb 1946.

V-2 Report No. 2, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 27 Mar 1946.

V-2 Report No. 3, Minutes of Meoting of the V-2 Upper Atmosphere Research Panel on 24 Apr 1946.

V-2 Report No. 4, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 3 Jupe 1946.

V-2 Report No. 5, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 9 July 1946.

V-2 Report No. 6, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 5 Sept 1946.

V-2 Report No. 7, Minutes of Meeting of the V-2 Upper Aimosphere Research Panel on 4 Nov 1946.

V-2 Report No. 8, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 Jan 1947.

V-2 Report No. 9, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 25 Mar 1947.

V-2 Report No. 10, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 7 May 1947.

V-2 Report No. 11, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 3 July 1947.

V-2 Report No. 12, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 1 Oct 1947.

V-2 Report No. 13, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 29 Dec 1947.

V-2 Report No. 14, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 Jan 1948.

V-2 Report No. 15, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 18 Mar 1948.

V-2 Report No. 16, Minutes of Meeting of the V-2 Upper Atmosphere Research Panel on 28 Apr 1948.

Panel Report No. 17, Minutes of Meeting of the Upper Atmosphere Rockei Research Panel on 16 June 1948.

Panel Report No. 18, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 29 Sept 1948.

Panel Report No. 19, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 5 Jan 1949.

Panel Report No. 20, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 21 Apr 1949.

Panel Report No. 21, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 3 Aug 1949.

Panel Report No. 22, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 26 Oct 1949.

Panel Report No. 23, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 14 Feb 1950.

Panel Report No. 24, Minutes of Meeting sif the Upper Atmosphere Rocket Research Panel on 20 Apr 1950.

Panel Report No. 25, Minutes of Meeting of tho Upper Atmosphere Rocket Research Panel on 13 and 14 June 1950.

Panel Report No. 26, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 and 8 Sept 1950.

Panel Report No. 27, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 25 Apr 1951.

Panel Report No. 28, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 25 Apr 1951.

Panel Report No. 29, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 14 and 15 Aug 1951.

Panel Report No. 30, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 24 Oct 1951.

Panel Report No. 31, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 8 Jan 1952.

Panel Report No. 32, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 30 Apr 1952.

Panel Report No. 33, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 7 Oct 1952.

Panel Report No. 34, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 29 and 30 Jan 1953.

Panei Report No. 35, Minutes of Meeting of the Upper Atmosphere Rocket Research Panel on 29 Apr 1953.

Miscellaneous - Reports
Reports under the Project Hermes $\sqrt{ }-2$ Misslle Program, General Electric Company, 1946-1952.
*Final Report, Broject Hermes V-2 Missile Program," by L. D. White, Report No. R52A0510, General Electric Company, September 1952.

S

Miscellaneous - Papers and Articles

"Cloud Observations From Rockets," by D. L. Crowion, Bull. Am. Meteorol. Soc., 30:17-22, January 1949.
"Stars and Heavy Primaries Recorded During a V-2 Rocket Flight," by H. Yagoda, H. G. de Carvalaho, and N. Kaplan, Phys. Rev., 78:765-7, June 1950.
"Results of Rocket and Meteor Research," by F. L. Whipple, Bull. Am. Meteorol. Soc., 33:13-25, January 1952.
"Pressures, Densities, and Temperatures in the Upper Atmosphere," by the Upper Atmosphere Rocket Researcin Eanel, Phys. Rev., 88:1027-32, December 1952.
"Observations on Stars and Heavy Primartes Recorded in Emulsions During Flight of a Viking Rocket," by H. Yagod, Bull. Am. Phys. Soc., 28:21, April 1053 (Abstract).

Naval Research Laboratory Technical Library Research Reports Section

DATE: $\quad 12$ July 2000
FROM: Mary Templeman, Code 5227

TO: Code 7600 Dr Gursky

CC: Tina Smallwood, Code 1221.1 to $7 / 26 / 0)$
SUBJ: Review of NRL Reports

Dear Sir/Madam:

1. Please review NRL Report 4276 for:

This document

Thank you,

Mary Templeman (202)767-3425 maryt@library.nrl.navy.mil

Hae NRL/US soondiner rocket

The subject report can be:
\square Changed to Distribution A (Unlimited)
$\square \quad$ Changed to Classification \qquad Other:

[^0]: -Repeckeged version of ($\mathrm{XN}-1$).
 Peak Pulae Power.

 * Equipment waight excluding dynamotor and batteries.

[^1]: *In this grouping the prefix denotes the data encoding system and the suffix denotes the data transmission system.

[^2]: *The V-2 measurements are always referenced to the burner base, whereas, the Aerobee and Viking measuremeats are referenced to the nose tip.

[^3]: *cf. Rocket Stability, Sect. 6.

[^4]: Suptriment
 Pebruary 1958

[^5]: *cf. Rocket Stability, Sect. 6.

[^6]: *Balloon release time
 Bulloon altitude, rocket did not fire. * Balloon cut down, rocket did not fire ****Zenith altitude of rocket uncertain.

[^7]: Agency: Iowr State University.
 Location: 77* 21^{\prime} North, $73^{\circ} 29^{\prime}$ West.
 Time: 1417 EST.
 Launching altitude: 9.7 miles.
 Zenith alittude: 47.3 miles.
 Experiments: Cosmic radiation.

[^8]: *cf. Rocket Stability Sect. 6.

[^9]: *cf. Rocket Stability, Sect. 6.

