UNCLASSIFIED

AD NUMBER

ADB335969

LIMITATION CHANGES

TO:

Approved for public release; distribution is unlimited.

FROM:

Distribution authorized to DoD only; Administrative/Operational Use; 01 AUG 1945. Other requests shall be referred to Office of Scientific Research and Development, Washington, DC 20301. Pre-dates formal DoD distribution statements. Treat as DoD only.

AUTHORITY

OTS index dtd Jun 1947

THIS PAGE IS UNCLASSIFIED

Division 2, National Defense Research Committee of the MONTHLY REPORT NO. AES-12 (OSRD NO. 5393)

TIS

NDRC/ Div. 2

077 AES-12

AIR AND EARTH SHOCK

Volume 12. June 25 to July 25, 1945

A Compilation of Informal Reports Submitted in Advance of Formal Reports

> TECHNICAL INFORMATION BRANCH ORDNANCE RESEARCH CENTER ABERDEEN PROVING GROUND MARYLAND

DISTRIBUTION STATEMENT E: Distribution authorized to DoD Components only. Other requests shall be referred to:

aob(e) 334.9/1400

Pertinent Service Project

OD-03

TEOHAIUA: BLDG. 313 ABERDEEN PROVING GROUND, MU STEAP-TL

This document contains information affecting the national defense of the United States within the meaning of the Espionage Act, 50 U.S.C.; 31 and 32, as amended. Its transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

20071217202

DECLASSIFIED - DOD Directive No. 5200.9, 27 September 1958 UNULASSIFIE

Copy No. 54

Division 2, National GLASSICALE Dommittee of the Office of Scientific Research and Development, MONTHLY REPORT NO. AES-12 (OSRD NO. 5393)

AIR AND EARTH SHOCK

Volume 12. June 25 to July 25, 1945

A Compilation of Informal Reports Submitted in Advance of Formal Reports

the factor is a second second second

and the shaft of

the second second

Pertinent Service Project 0D-03

DECLASSIFIED - DOD Directive No. 5200.9, 27 September 1958

ASSIFIED Approved on August 1, 1945 for submission to the Computer Bight Welsin for

E. Bright Wilson, Jr., Chief Division 2 Effects of Impact and Explosion This report was edited and prepared for duplication by, and is distributed by:

Technical Reports Section Office of the Vice Chairman, NDRC Room 4724, Munitions Building Washington 25, D.C.

Requests by <u>Service</u> personnel for additional copies should be addressed to:

War Department

.

War Department Liaison Officer with NDRC Headquarters, Army Service Forces The Pentagon -Washington 25, D.C.

Navy Department

Chief of Research and Inventions Research and Development Division EXOS, Navy Department Washington 25, D.C.

Preface

This report is the twelfth monthly report of Division 2; NDRC; on Air and Earth Shock, covering the period from June 25 to July 25, 1945. These monthly reports are compilations of informal reports submitted in advance of formal reports. In no gase is it to be presumed that the work is complete or that the results reported are other than tentative.

The work described in the report is pertinent to the project designated by the War Department Liaison Officer as OD-03 and was performed under Contract OEMsr-260 with Princeton University.

The present volume contains only one paper.

Initial distribution of copies

Nos. 1 to 24 to Liaison Office, OSRD, for Air Ministry (5 copies) Combined Operations (1 copy) Department of Scientific and Industrial Research (1 copy) Ministry of Aircraft Production (2 copies) Ministry of Home Security (1 copy) Ministry of Supply (6 copies) War Office (2 copies) Additional distribution (6 copies)

Nos. 25 to 31 to Office of the Executive Secretary, OSRD;

No. 32 to Office of Field Service, OSRD (V. V. Sides);

No. 33 to J. P. Baxter, III, Historian, OSRD; No. 34 to R. C. Tolman, Vice Chairman, NDRC;

Nos. 35 and 36 to E. B. Wilson, Jr., Chief, Division 2;

No. 37 to W. Bleakney, Deputy Chief, Division 2;

No. 38 to. H. L. Bowman, Member, Division 2;

No. 39 to W. E. Lawson, Member, Division 2;

No. 10 to D. P. MacDougall, Member, Division 2;

No. 41 to J. von Neumann, Member, Division 2;

No. 42 to S. A. Vincent, Member, Division 2;

No. 43 to M. P. White, Technical Aide, Division 2;

No. 44 to P. C. Cross, Consultant, Division 2;

No. 45 to J. G. Kirkwood, Consultant, Division 2;

No. 46 to N. H. Newmark, Consultant, Division 2;

No. 47 to A. H. Taub, Consultant, Division 2;

iii

CONFIDENTIAL

- Nos. 48 and 49 to Division 2 Library, Princeton University;
- No. 50 to R. A. Connor, Chief, Division 8;
- No. 51 to G. B. Kistiakowsky, Member, Division 8;
- No. 52 to Division & Files;
- No. 53 to Mina Rees, Technical Aide, Applied Mathematics Panel;
- Nos. 54 and 55 to Aberdeen Proving Ground (Ballistic Research Laboratory; Maj. J. S. Lieb);
- No. 56 to Air Technical Service Command, Wright Field, Dayton, Ohio (TSESE-41);
- Nos. 57 and 58 to Army Air Forces (Lt. Col. J. M. Gruitch; Th. von Kármán, Scientific Advisory Group);
- No. 59 to AAF Board, Orlando, Fla. (President);
- Nos. 60 and 61 to AAF Proving Ground Command, Eglin Field, Fla. (ALS; Proof Division);
- No. 62 to Army Ground Forces (Col. M. R. Cox);
- No. 63 to Corps of Engineers (Lt. Col. S. B. Smith);
- No. 64 to Engineer Board, Fort Belvoir, Va. (Maj. C. A. Burress);
- No. 65 to Engineer Board Experiment Station, Port Royal, Va. (Maj. J. L. Bisch);
- No. 66 to Joint Target Group;
- No. 67 to Office of the Secretary of War (R. D. Huntoon);
- Nos. 68 to 71 to Ordnance Department (Col. I. A. Luke; Col. S. B. Ritchie; L. R. Littleton; H. M. Morse);
- No. 72 to Picatinny Arsenal (Technical Group);
- Nos. 73 to 76 to Bureau of Ordnance [Lt. Comdr. S. Brunauer; A. Wertheimer; Research and Development Division (2 copies)];
- No. 77 to Bureau of Ships (Comdr. J. M. Fluke);
- No. 78 to David Taylor Model Basin (Comdr. J. Ormondroyd);
- No. 79 to Joint Intelligence Center, Pacific Ocean Area (Lt. Comdr. T. C. Wilson, Target Analysis Section);
- No. 80 to U.S. Naval Amphibious Training Base, Fort Pierce, Fla. (Demolition Research Unit);
- No. 81 to U.S. Naval Ordnance Test Station, Inyokern, Calif. (K. C. Gordon);
- No. 82 to H. L. Beckwith, Princeton University;
- Nos. 83 and 84 to H. J. Fisher, Explosives Research Laboratory, Brucaton, Pa.; No. 85 to W. D. Kennedy, Woods Hole Oceanographic Institution.

AES-12a (OSRD-5393a) July 25, 1945 Division 2, NDRC

Project OD-03

ADVANCE RELEASE: This information is tentative and subject to revision.

W. Bleakney, Supervisor

REACTIONS OF SIMPLE SYSTEMS UNDER BLAST LOADING by D. Montgomery and A. H. Taub

Abstract

The differential equation $M\dot{x} + F(x) = p(t)$ is considered for some simple cases of blast loading. The right-hand side is assumed linear, and F(x) on the one hand is taken as constant and on the other is taken as linear from the origin to the constant and then as remaining constant for larger values of x. It is shown that the situations in the two cases differ moderately. An approximation formula is developed by which certain information in the latter case can be obtained from the former.

1. Introduction

In discussing the behavior of various targets under blast loading it is often possible to reduce the mathematical problem to that of a one-dimensional system governed by the equation

$$M \frac{d^2x}{dt^2} + F(x) = p(t), \qquad (1)$$

where <u>x</u> is the displacement of the system, F(x) is the restoring force, <u>M</u> is the equivalent mass of the system, and p(t) is the force [= pressure × area] acting on the system where p(t) is dependent on time.

Equations of this form arise in many problems; for example, if the target is elastic and has various modes of vibration, its response is determined by solving a set of equations of the type of Eq. (1) where F(x) is of the form $k_n x$. Again, this equation is found in the treatment given by Christopherson¹ in R.C. 349 of the action of brick walls. There it is shown that F(x) may be replaced by a constant.

In the application we have in mind (blast wave) the function p(t) is zero for negative time, has a finite initial value p_0 at t=0, decreases to

1/ "A modification of the impulse criterion for blast damage," by D. G. Christopherson, R.C. 349, Sept. 1942 (Confidential).

CONFIDENTIAL

zero again at time t_o, and becomes negative thereafter, rising to zero at some later time. The problem with which we are mainly concerned may be stated as follows:

What relation must exist between p_0 and t_0 in order that the maximum of the solution of Eq. (1) be a specified quantity, say x_3 ?

If the solution of this problem is known, then for a target such as a brick wall we can determine the relation between po and to that will just cause the target to fail -- that is, reach a critical displacement with zero velocity. The quantity pois called the peak pressure acting on the target, and to is called the duration of the pressure wave. The area under the pressuretime curve between t=0 and $t=t_o$, called the positive impulse, may be related to po and to. The result may then be expressed in terms of the peak pressure and positive impulse just necessary to cause failure. If the relation between peak pressure and impulse_acting on the target and the same quantities in the blast wave are known, then for any charge weight a distance can be determined that is the limiting distance at which the target is destroyed. In order to perform the last calculation the dependence of peak pressure and impulse in the blast wave on weight of charge and distance must be known. These quantities must be corrected for reflection, diffraction, and motion of the target in order to obtain the peak pressure and impulse. acting on the target.

This paper will be concerned with the determination of the relation between peak pressure and impulse acting on the target for a given maximum displacement for special cases of Eq. (1). The specializations made are as follows:

> A: $p(t) = p_0 \left(1 - \frac{t}{t_0}\right)$. Case I: F(x) = constant = P,

Case II:
$$F(x) =\begin{cases} \frac{P}{x_1} x, & 0 \le x \le x_1; \\ P, & x \ge x_1. \end{cases}$$
 (a)

or

Case I is a limiting case of case II. If the desired deflection is x_3 and if x_1/x_3 approaches zero, then general existence theorems guarantee that the solutions in case II approach those in case I. However, there is no guarantee that a given value of x_1/x_3 , say 0.01 for example, will bring the solutions near each other to an accuracy of about the same size. Actually we find that the solutions can differ to a greater degree than 0.01 in this case, although the difference is not excessive. We exhibit numerical calculations bearing on this point, and we also develop a formula that makes it easy to calculate from the limiting case what the situation is for a given value of x_1/x_3 provided this value is not too large. We consider only cases where $x_3 > x_1$ since in such cases a target will be destroyed when it reaches a deflection x_3 with zero velocity. At the end we also take up a related question whose description we postpone.

2. Solution for case II

We shall treat case I as a special case of case II and proceed first to obtain the solutions in the latter case.

In the interval from 0 to x_1 the solution is as follows:

$$x = \frac{p_0}{M\omega^2} \left[\frac{\sin \omega t}{\omega t_0} - \frac{t}{t_0} + 1 - \cos \omega t \right], \qquad (2)$$

where $\omega^2 = P/Mx_1$, and hence in this interval

$$\dot{x} = \frac{p_0}{M\omega^2 t_0} \left[\cos \omega t + \omega t_0 \sin \omega t - 1 \right].$$
(3)

Let t_1 be the time_at which the displacement reaches x_1 . Making use of the fact that $\omega^2 = P/Mx_1$, we see that

$$x_1 = \frac{p_0 x_1}{P} \left[\frac{\sin \omega t_1}{\omega t_0} - \frac{t_1}{t_0} + 1 - \cos \omega t_1 \right].$$

Dividing by x_1 and rearranging, we find as the equation determining t_1

$$\omega t_{o} \cos \omega t_{1} + \omega t_{1} - \sin \omega t_{1} = \omega t_{o} \left(1 - \frac{P}{P_{o}} \right).$$
 (4)

CONFIDENTIAL

- 3 -

CONFIDENTIAL

We let \dot{x}_1 be the value of \dot{x} at t_1 and we denote by \underline{I} the quantity $\frac{1}{2}p_0t_0$ which is the area under the curve p(t) from 0 to t_0 . Then from Eq. (3)

$$\frac{\text{lix}_1}{\text{I}} = \frac{2}{\omega^2 \text{t}_0^2} (\omega \text{t}_0 \sin \omega \text{t}_1 + \cos \omega \text{t}_1 - 1).$$
 (5)

When t is greater than t_1 and x is greater than x_1 Eq. (1) becomes

$$M\dot{x} = p(t) - P = (p_0 - P) - \frac{p_0}{t_0} t.$$

Making use of the fact that $x = x_1$ and $\dot{x} = \dot{x}_1$ when $t = t_1$, we find that

$$M\dot{x} = M\dot{x}_{1} + \left[p_{0} \left(1 - \frac{t_{1}}{t_{0}} \right) - P \right] (t - t_{1}) - \frac{p_{0}}{2t_{0}} (t - t_{1})^{2}$$
(6)

11

and

$$Mx = Mx_{1} + M\dot{x}_{1}(t-t_{1}) + \frac{1}{2} \left[p_{0} \left(1 - \frac{t_{1}}{t_{0}} \right) - P \right] (t-t_{1})^{2} - \frac{p_{0}}{6t_{0}} (t-t_{1})^{3}$$
(7)

Let t_3 be the value of t at which the solution given by Eq. (7) has its maximum value, and let x_3 be this maximum. When $t = t_3$ the left-hand side of Eq. (6) is zero and we obtain

$$\operatorname{Mx}_{1} = \frac{\operatorname{Po}}{2\operatorname{t}_{0}} (\operatorname{t}_{3} - \operatorname{t}_{1})^{2} - \left[\operatorname{Po}\left(1 - \frac{\operatorname{t}_{1}}{\operatorname{t}_{0}}\right) - \operatorname{P}\right](\operatorname{t}_{3} - \operatorname{t}_{1}).$$

Let $\gamma_3 = (t_3 - t_1)/t_0$. Rearrangement gives

$$\frac{Mx_1}{I} = r_3^2 - 2 \cdot \left[\left(1 - \frac{t_1}{t_0}\right) - \frac{P}{P_0} \right] r_3.$$

Solving for 73,

$$\tau_{3} = \left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right) \pm \left[\frac{ifx_{1}}{I} + \left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right)^{2}\right]^{1/2}, \quad (8)$$

where we must choose the sign before the square root so as to make τ_3 positive. In developing the approximation formula we consider the case where $1 - t_1/t_0 - P/p_0$ is positive.

To find x_3 we substitute this value in Eq. (7):

$$Mx_{3} = Mx_{1} + t_{0}\tau_{3}\left[Ix_{1} + \frac{1}{2}\left[p_{0}\left(1 - \frac{t_{1}}{t_{0}}\right) - P\right] t_{0}\tau_{3} - \frac{p_{0}t_{0}}{6}\tau_{3}^{2}\right].$$

CONFIDENTIAL

CONFIDENTIAL

Replace Mx1 by its value from the equation preceding Eq. (8):

$$Mx_{3} = Mx_{1} + \frac{p_{0}t_{0}^{2}\tau_{3}^{2}}{6} \left[2\tau_{3} - 3\left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right) \right].$$
(8a)

Now $p_0 = \frac{p_0}{P} P = \frac{p_0}{P} M\omega^2 x_1$, and hence

$$x_{3} = x_{1} + \frac{1}{6} \frac{p_{0}}{P} \omega^{2} t_{0}^{2} x_{3}^{2} \left[2 \tau_{3} - 3 \left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{p_{0}} \right) \right].$$
(9)

Instead_of plotting p_0 against t_0 it is more convenient to plot $I/\sqrt{2PMx_3}$ against p_0/P , and we shall next derive a formula expressing the first of these quantities in terms of the second in the limiting case. In this case $t_1 = x_1 = 0$. Here Eq. (9) becomes meaningless because in Eq. (9) we have used the expression P/x_1 for a slope. However, from Eq. (8a), in this case

$$Mx_{3} = \frac{t_{0}^{2} \tau_{3}^{2} p_{0}}{6} \left[2 \tau_{3} - 3 \left(1 - \frac{P}{P_{0}} \right) \right],$$

and also in this same case by Eq. (8)

 $\mathbf{\tilde{\tau}}_3 = 2\left(1 - \frac{P}{P_0}\right).$

Hence

$$PMx_{3} = \frac{16PI^{2}}{3P_{0}} \left(1 - \frac{P}{P_{0}}\right)^{3}$$
(10)

and

$$\frac{1^{2}}{PMx_{3}} = \frac{3}{16} \frac{P_{o}}{P} \frac{1}{\left(1 - \frac{P}{P_{o}}\right)^{3}}.$$
(11)

Table T

From Eq. (11) a table of values may be computed relating p_0/P and $I/\sqrt{2PMx_3}$. Table I and the graph of $x_1/x_3 = 0$ in Fig. 1 present these values.

Notice that for some computations in case II it is convenient to use the following relation

$$\frac{I}{\sqrt{2PMx_3}} = \frac{\frac{1}{2} \frac{p_0}{P} \omega^2 x_1 M_0}{\sqrt{2M^2 \omega^2 x_1 x_3}} = \frac{1}{2\sqrt{2}} \frac{p_0}{P} \sqrt{\frac{x_1}{x_3}} \omega t_0. (12)$$

TADIE	+ •	Varues	OT TIVE	TTW3 TH
		the	limiting	case.
The second second		and the second	and a 24 disclose where	State of the local division of the local div

P _o P	$\frac{I}{\sqrt{2PMx_3}}$	Po P	$\frac{I}{\sqrt{2PMx_3}}$	
1.25 1.5 2 3 4 5	5.413 2.756 1.732 1.378 1.333 1.353	6. 7 8 9 10	1.394 1.444 1.496 1.550 1.604	
CONFIDENTIAI				

- 5 -

CONFIDENTIAL.

....

- 6 -

The quantity $I^2/2PMx_3$ has the following physical interpretation; it is the ratio of the kinetic energy given to the target if the loading is truly impulsive (the impulse I is communicated before any displacement or velocity is acquired by the target) to the static work done on the target when it is displaced to failure. This ratio would be one for impulsive loading. Actually in the limiting case this ratio is a function of P/p_0 and its minimum value is $\frac{1}{3}$. Thus the fact that the loading is spread out over a finite time has an appreciable effect on the behavior of the system.

- 7 -

The fact that the value of $I/\sqrt{2PMx_3}$ rises slowly for values of p_0/P greater than four, implies that in this range of p_0/P the "impulse criterion" is approximately true. That is, if the impulse in the pressure wave acting of the structure is greater than and approximately the minimum value the target will break, provided of course p_0/P is greater than four. In the range where p_0/P is less than two, but greater than one, the value of $I/\sqrt{2PMx_3}$ changes very rapidly for small changes in p_0/P . This means that the breaking of the target is following a pressure criterion.

3. Approximation formulas

We shall now find a method to obtain approximately the value of $I/\sqrt{2PMx_3}$ for a given value of x_1/x_3 from the value of $I/\sqrt{2PMx_3}$ in the limiting case. The equations we need for this purpose are Eqs. (4), (5), (8), and (9).

For convenience we collect these formulas in one place

$$\omega t_0 \cos \omega t_1 + \omega t_1 - \sin \omega t_1 = \omega t_0 \left(1 - \frac{P}{P_0}\right), \qquad (4)$$

$$\frac{M\dot{x}_1}{I} = \frac{2}{\omega^2 t_0^2} (\omega t_0 \sin \omega t_1 + \cos \omega t_1 - 1), \qquad (5)$$

$$\tau_{3} = \left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right) + \left[\frac{Mx_{1}}{1} + \left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right)^{2}\right]^{1/2^{-}}, \quad (8)$$

$$x_{3} = x_{1} + \frac{x_{1}}{6} \frac{p_{0}}{P} \omega^{2} t_{0}^{2} \tau_{3}^{2} \left[2\tau_{3} - 3\left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right) \right].$$
(9)

CONFIDENTIAL

CONFIDENTIAL

CONFIDENTIAL

Suppose that P/p_0 is fixed. If we also fix ωt_0 , then ωt_1 is determined by Eq. (4). Then $M \dot{x}_1/I$ is given by Eq. (5) and, since $t_1/t_0 = \omega t_1/\omega t_0$, τ_3 is given by Ec. (8) and x_1/x_3 is determined by Eq. (9). Hence for each value of P/p_0 there will be a value of ωt_0 which gives x_1/x_3 a fixed value.

- 8 -

Assuming that x_1/x_3 and P/p_0 are fixed we now estimate what the value of ωt_0 will be when x_1/x_3 is small.

For a first rough estimate assume that $t_1 = 0$ and that $\tau_3 = 2(1 - P/p_0)$ as in the limiting case. Then from Eq. (9)

$$\frac{x_3}{x_1} = 1 + \frac{2}{3} \frac{p_0}{P} \omega^2 t_0^2 \left(1 - \frac{P}{p_0}\right)^3.$$

We may drop the one as unimportant when x_3/x_1 is large and get as a first estimate $(\omega t_0)_1$ of ωt_0 ,

$$\omega t_0)_1^2 = \frac{3 \frac{x_3}{x_1} \frac{P}{p_0}}{2 \left(1 - \frac{P}{p_0}\right)^3}.$$
 (13)

We now assume that a second approximation $(\omega t_0)_2$ is given by

$$(\omega t_0)_2 = \beta(\omega t_0)_1, \qquad (14)$$

where β is a quantity to be determined.

From Eq. (1) it is seen that a good approximation to wt1 is

$$\omega t_1 = \arccos\left(1 - \frac{P}{p_0}\right), \tag{15}$$

and from Eq. (5) an approximation for lix_1/I is

$$\frac{M\dot{x}_{1}}{I} = \frac{2 \sin \omega t_{1}}{\omega t_{0}}.$$
 (16)

We also make the following estimates for τ_3 and τ_3^2 :

$$\tau_{3} = 2\left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right) + \frac{Mx_{1}}{I} \frac{1}{2\left(1 - \frac{t_{1}}{t_{0}} - \frac{P}{P_{0}}\right)}$$
(17)

and

0

$$r_{3}^{2}\left[2\tau_{3}-3\left(1-\frac{t_{1}}{t_{0}}-\frac{P}{P_{0}}\right)\right] = 4\left(1-\frac{P}{P_{0}}\right)^{3}-12\left(1-\frac{P}{P_{0}}\right)^{2}\frac{t_{1}}{t_{0}}+6\frac{Mt_{1}}{T}\left(1-\frac{P}{P_{0}}\right).$$
 (18)

The value $(\omega t_0)_1$ has been chosen so that the desired value of x_3/x_1 is given by

- 9 -

$$\frac{x_3}{x_1} = \frac{2}{3} \frac{p_0}{P} (\omega t_0)_1^2 \left(1 - \frac{P}{p_0}\right)^3, \qquad (19)$$

but substitution of Eq. (18) in Eq. (9) and use of the second approximation $(\omega t_0)_2 = \beta(\omega t_0)_1$ gives

$$\frac{x_{3}}{x_{1}} = 1 + \frac{1}{6} \frac{p_{0}}{P} \beta^{2} (\omega t_{0})_{1}^{2} \left[\frac{1}{2} \left(1 - \frac{P}{p_{0}}\right)^{3} - 12 \left(1 - \frac{P}{p_{0}}\right)^{2} \frac{t_{1}}{t_{0}} + 6 \frac{Mx_{1}}{I} \left(1 - \frac{P}{p_{0}}\right) \right].$$

Equating these two values, again dropping the one as unimportant when x_3/x_1 is large, and dividing, we find

$$4\left(1-\frac{P}{P_0}\right)^3 = \beta^2 \left[4\left(1-\frac{P}{P_0}\right)^3 - 12\left(1-\frac{P}{P_0}\right)^2 \frac{t_1}{t_0} + 6 \frac{H\dot{x}_1}{I}\left(1-\frac{P}{P_0}\right)\right].$$

Hence

$$\beta^2 = \frac{1}{1+\alpha},$$

where .

$$\alpha = \frac{1}{1 - \frac{P}{P_0}} \left[\frac{3/2}{1 - \frac{P}{P_0}} \frac{Mx_1}{1 - \frac{P}{P_0}} - 3 \frac{t_1}{t_0} \right].$$

Substituting the relation given by Eq. (16) and remembering that $t_1/t_0 = \omega t_1/\omega t_1$,

$$\alpha = \frac{3}{\left(1 - \frac{P}{P_0}\right)^2} \left[\sin \omega t_1 - \left(1 - \frac{P}{P_0}\right) \omega t_1 \right] \frac{1}{(\omega t_0)_2},$$

and then using the relations given in Eqs. (13), (14), and (15),

$$\alpha = \frac{1}{\beta} \frac{3}{\left(1 - \frac{P}{P_0}\right)^2} \left[\sin\left\{ \arccos\left(1 - \frac{P}{P_0}\right) \right\} - \left(1 - \frac{P}{P_0}\right) \arccos\left(1 - \frac{P}{P_0}\right) \right] \left[\frac{2\left(1 - \frac{P}{P_0}\right) \frac{x_1}{x_3}}{3\frac{P}{P_0}} \right] \right]$$
or
$$\alpha = \frac{\gamma \sqrt{\frac{x_1}{x_3}}}{\beta},$$

CONFIDENTIA

. - 10 -

where

$$\mathbf{r} = 3 \left[\frac{2 \frac{P_0}{P}}{3\left(1 - \frac{P}{P_0}\right)} \right]^{1/2} \left[\sin \left[\arccos \left(1 - \frac{P}{P_0}\right) \right] - \left(1 - \frac{P}{P_0}\right) \arccos \left(1 - \frac{P}{P_0}\right) \right].$$

Hence

$$\beta^{2} = \frac{1}{1 + \alpha} = \frac{1}{1 + \frac{\gamma}{x_{3}}},$$

$$1 + \frac{\gamma}{\frac{\sqrt{x_{3}}}{\beta}},$$

$$\beta = -\frac{\gamma\sqrt{\frac{x_{1}}{x_{3}}}}{2} + \sqrt{1 + \frac{\gamma^{2}x_{1}/x_{3}}{4}},$$

$$\beta \cong 1 - \frac{\gamma}{2}\sqrt{\frac{x_{1}}{x_{3}}} + \frac{\gamma^{2}}{8}\frac{x_{1}}{x_{3}}.$$

Table II. Values of 7 and 3.

				ßfor
Po P	Ž	2	7 2 8	$\frac{x_1}{x_3} = 0.01$
1.25	4.323	2.162	2.337	0.760
1.5	2.767	1.384	0.958	. 852
2	1.677	0.838	.351	.920
3	0.959	.480	.115	.953
4	.688	.344	.0592	.966
5	.522	.261	.0341	.974
6	.425	.212	.0225	.979
7	.359	.180	.0162	.982
8 ' '	.311	.156	.0122	.984
9 _	.274	.137	.0094	. 986
10	.245	.122	.0074	.988

Thus we have achieved our purpose — to find the approximate value of $\underline{\beta}$. A table of values of $\overline{\gamma}/2$ and $\overline{\gamma}^2/8$ as well as the values of $\underline{\beta}$ when $x_1/x_3 = 0.01$ is given in Table II.

(20)

If we replace ωt_0 in Eq. (12) by $(\omega t_0)_1$ we see that we obtain the value of $I/\sqrt{2PMx_3}$ for the limiting case. Hence the factor β is also the factor which when multiplied by $I/\sqrt{2PMx_3}$ in the limiting case yields the value (approximately) for any value of x_1/x_3 .

Table III shows $I/\sqrt{2PM_3}$ as computed in certain cases and as given by the approximation formula derived above. It can be seen that the approximation formula is quite accurate in these cases. Hence, to get a good estimate of $I/\sqrt{2PM_{X3}}$ for a given small value of x_1/x_3 , compute $\underline{\rho}$ from Eq. (20), using in many cases the values of $\frac{3}{2}$ and $\frac{2}{6}$ from Table II. Then multiply $\underline{\rho}$ and the limiting value of $I/\sqrt{2PM_{X3}}$ from Table I. This approximation formula is quite accurate when x_1/x_3 is small, and is fairly accurate for values of x_1/x_3 as large as 0.3 or 0.4. Figure 1 gives the values of $I/\sqrt{2PM_{X3}}$ for various values of x_1/x_3 between 0 and 1. The case $x_1/x_3 = 1$

approximate varues of 1/V2FMK						
Po P	<u>x1</u> x3	Exact Value of $\frac{I}{\sqrt{2P_{1}x_{3}}}$	Value Civen b Approximation Formula			
1.5	0.0205	2.280	2.265			
2.0	.0424	1.457	1.458			
2.0	.0124	1.577	1.578			
3.0	.0150	1.300	1.299			
3.0	.0069	1.324	1.324			
4.0	.0223	1.269	1.266			
4.0	.0129.	1.283	1.281			
7.0	.0091	1.420	1.420			
10.0	.0220	1.575	1.575			
10.0	.0125	1.583	1.582			

Table III. Comparison of exact and

may be handled as follows. In this case F(x) is a straight line and $\frac{2}{2}$

$$3 = \frac{2p_0}{M\omega^2} \left[1 - \frac{\arctan \omega t_0}{\omega t_0} \right];$$

- 11 -

using the fact that $\omega^2 = \frac{P}{16_{23}}$, we obtain

Ρ.	=	2	Γ.	arc tan wto]
20		6	[' -	wto

We find also in this case, by Eq. (12),

$$\frac{I}{\sqrt{2PEt_{x_3}}} = \frac{1}{2\sqrt{2}} \frac{P_0}{P} \omega t_0.$$

The graphs for this case and for the cases where $x_1/x_3 = 0.0$, 0.01, 0.1, 0.2, and 0.5 are shown in Fig. 1.

The curves of Fig. 1 all have vertical asymptotes on the left. To find them proceed as follows. Looking at the Eqs. (4), (5), (8), (9), and (12),

2/ The following equation is derived by solving the differential equation for x(t). Determine the time at which the maximum is obtained from the equation $\dot{x}(t_1) = 0$. Substitute this value of t_1 in the equation $x(t_1) = x_3$. See R.C. 6, "The design of buildings against air attack (Part 2)," March 1939. Restricted. let ω_0 approach infinity. Then γ_3 approaches zero. Let $\frac{p_0}{P}, \frac{1}{2} \leq \frac{p_0}{P} \leq 1$, be fixed, and attempt to find the corresponding value of x_1/x_3 . Since $1-t_1/t_0 - P/p_0$ is negative, the approximation for γ_3 given by Eq. (17) is to be replaced by the expression obtained by the choice of signs in Eq. (8) which makes γ_3 positive. This gives

$$r_{3} = \frac{-M\dot{r}}{1} \frac{1}{2(1 - t_{1}/t_{0} - P/p_{0})}.$$

Since $t_1/t_0 = \omega t_1/\omega t_0$ is negligible compared to $1 - P/p_0$, we obtain

$$\gamma_3 = \frac{\sin \omega t_1}{\omega t_0 (P/p_0 - 1)}.$$

Substituting in Eq. (19) and replacing $\sin^2 \omega t_1$ by $2P/p_0 - (P/p_0)^2$ we obtain

$$\frac{x_3}{x_1} = 1 + \frac{1}{6} \frac{p_0}{P} \frac{2P/p_0 - (P/p_0)^2}{(P/p_0 - 1)^2} [\tau_3 - 3(1 - P/p_0)].$$

laking use of the fact that r_3 is small compared to $3(1 - P/p_0)$ we write

$$\frac{x_3}{x_1} = 1 + \frac{1}{6} \frac{2 - P/P_0}{(P/P_0 - 1)^2} 3(P/P_0 - 1)$$
$$= 1 + \frac{2 - P/P_0}{P/P_0 - 1}$$

and

$$\frac{x_1}{x_3} = \frac{2P/p_0 - 2}{P/p_0}$$

This may be written

$$\frac{p_0}{P} = 1 - \frac{1}{2} \frac{x_1}{x_3}.$$

Hence this is the location of the vertical asymptotes for the curve associated with x_1/x_3 . When $x_1/x_3 = 0$ the asymptote is at 1, and as x_1/x_3 increases to 1 the position of the asymptote shifts linearly to $\frac{1}{2}$.

As we have seen, the curves all have a vertical asymptote given as above. After this they drop rather soon to a minimum and then rise gradually. The position of the minimum varies from about 1.5 for $x_1/x_3 = 1$ to 4 for $x_1/x_3 = 0$.

One is it is a to want it is to to

4. Comparison of case II to an elastic system

Returning to the differential equation Eq. (1), we discuss next a problem which arises in connection with F(x) as given in case II and as given in still another case called case III.

The function F(x) = kx where $k = P/x_1$ is the value given in (a) of case II Thus the curve of case III is merely a continuation of the straight line with which the curve in case II begins. Suppose that the desired maximum deflection in case II is x_3 and that the desired maximum deflection in case III is x'_3 . The area A_2 under the curve II from 0 to x_3 is

 $h_2 = kx_1x_3 - \frac{kx_1^2}{2}$.

The area under the curve III from 0 to x's is

$$A_3 = \frac{k x_3^{12}}{2}$$
.

Under some conditions it is reasonable to suppose that if $A_2 = A_3$, then the p_0 and t_0 which produce a maximum deflection x_3 in case II will produce a maximum deflection x_3^i in case III. This conjecture will be examined below, and it will be shown that it is not always true.

For $A_2 = A_3$, the following must hold

$$x_3^{12} = 2x_1x_3 - x_1^2$$

or when x1 is small,

x12 = 2x3x3.

Let X_{TTT} be the maximum deflection in case III. Then

$$x_{\text{III}} = \frac{2p_0}{M\omega^2} \left[1 - \frac{\arctan \omega t_0}{\omega t_0} \right]$$
$$= 2 \frac{p_0}{P} x_1 \left[1 - \frac{\arctan \omega t_0}{\omega t_0} \right]$$

For small values of x1 this is approximated fairly well by

$$x_{III} = 2 \frac{p_0}{P} x_1.$$

- 13 -

(21)

In case II assume that x_1/x_3 is so small that the maximum deflection x_{TT} is approximately equal to what it would be in the limiting case,

$$x_{II} = \frac{1}{M} \frac{2}{3} \left(1 - \frac{P}{P_0} \right)^3 p_0 t_0^2.$$

According to Eq. (21) we wish to compare the quantities

$$4\left(\frac{p_0}{P}\right)^2 x_1^2$$
 and $\frac{4}{3M}\left(1-\frac{P}{p_0}\right)^3 p_0 t_0^2 x_1$.

It is clear that in general these two quantities do not approximate each other, and as a further check it is easy to choose special values of the constants which show a substantial discrepancy between the two quantities.

As a numerical example suppose that M=1, $t_0=1$, $\frac{P}{P_0}=\frac{1}{2}$ and $\frac{x_{II}}{x_1}=100$.

Then

$$x_{II} = \frac{P_0}{12},$$
$$x_{III} = 4x_1,$$

and

$$\frac{x_{II}}{x_{1}} = 100 = \frac{p_{0}}{12x_{1}},$$

 $p_0 = 1200x_1$.

We wish to compare the quantities

$$16x_1^2$$
 and $\frac{p_0x_1}{6}$,

$$16x_1$$
 and $\frac{p_0}{6}$,

or

or

16x1 and 200x1.

These quantities differ by a factor of more than 12. For this numerical case practically all of the action takes place while the right-hand side of the differential equation is positive.

TITLE: Air and Earth Shock - A Compila Final Reports - Vol. 12 - 25 June AUTHOR(S) : (Not known)	tion of Informa to 25 July 1945	l Reports \$	ubmitted in Advance of	ATI- 60554 REVISION (None) OPER AGENCY NO.
ORIG. AGENCY : Princeton Univ., N. J PUBLISHED BY :OSRD, NDRC, Div. 2,	Washington, D.	c.		(None)
Aug 45 Unclass, U.S.	DARD 3393; AES-12			
loading. The right-hand side constant and on the other is to remaining constant for larger differ moderately. An approx in the istter case can be obtai	is assumed line ken as linear f values of \underline{x} . I timation formul ned from the fo	ear, and F(rom the or it is shown a is develo rmer.	x) on the one hand is tak igin to the constant and it that the situation in the ped by which certain inf	en as ben as two cases ormation
DISTRIBUTION: Copies of this report obt	inable from C	Ato.		
DIVISION: Army Materiel (27) SECTION: Army Ordnance (1)	SUBJ meas One-	SUBJECT HEADINGS: Explosions - Shock and pressure measurement (34458); Blast effects (16210); Shock waves, One-dimensional (86309.25); Pressure waves (74620)		
ATI SHEET NO.: R-27-1-2 Control Air Decuments Office Wright-Pattorson Air Force Bash, Dayton, Ohio	AIR TECH	NICAL INDE	ĸ	
