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GLASS~FIBER-REINFORCED METALLIC TANKS
FOR CRYOGENIC SERVICE

by

E. E. Morris

ABSTRACT

Advantages of and design requirements for a load-bearing metal shell with
an overwrapped glass-filament shell for high-pressure- fluld storaggjdt 5 to
—4250F were investigated analytically and experlmentally Proper design permits
utlllza%lon of the maximum load-bearing capabilities of both shells and makes
possible tanks of significantly lighter weight than the best cylindrical and
spherical homogeneous metal pressure vessels.

[élass-fﬁber reinforced metal tanks were fabricated and tested; they
successfully met design objectives in cyclic fatigue, creep, and burst tests in
the 75 to- —425 F range, and should be considered for application to aerospace
systems. The testing (l) confirmed the results of a parametric study of the
vessels, (2) revealed that no degradation in tank strength resulted from cyclic-
fatigue and sustained-loading tests at 75, -320, and —425 F, and (3) established
that vessel strength increased about 25% at cryogenic temperatures?]
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GLASS -FIBER-REINFORCED METALLIC TANKS
FOR CRYOGENIC SERVICE

by

E. E. Morris

SUMMARY

The advantages of combining a load-bearing metal shell with an overwrapped
glass~filament shell for high-pressure~fluid storage in the 75 to ~M230F range
were investigated analytically and experimentally, as were the design require-
ments. The research was concentrated on a parametric study of glass~fiber-
reinforced (GFR) metal tanks, followed by design, fabrication, and structural
evaluation of GFR metal tanks at 75, -320, and ~M25OF in burst, cyclic-fatigue-~
plus-burst, and sustained-loading~plus-~burst tests. The results demonstrated
that GFR metal tanks utilize the maximum load-bearing capabilities of both the
liner and the fllament shell, and are significantly lighter in weight than the
highest-performance, cylindrical and spherical, homogeneous metal tanks.

The parametric study involved characterization of candidate metal-liner
materials; definition of design-allowable strengbth levels for S-HTS glass-
filament-wound composites; development of analytical procedures for tank design
and evaluation; development of curves characterizing design features of GFR
Ti-5A1-2.53n, GFR Inconel X-750, GFR 2219-T62 aluminum, and GFR 301 stainless
steel tanks with operating pressures in the 1000 to 4000-psi range; and
comparative rating of GFR-metal-tank performance with homogeneous metal tankage
made from the Ti-6A1-LV, Type 301 stainless steel, 2219-T87 aluminum, and
Inconel 718 alloys.

The design criteria used included requirements that the compressive
buckling and yield strengths of the liner were not to be exceeded at a zero
internal pressure (when the liner is in maximum compression due to external
forces produced by the overwrapped filaments). Consequently, the designs
that were developed do not require an adhesive bond between the two shells
to keep the liner from buckling, as do glass-filament-wound tanks wibth very
thin metal liners. Adhesive-bond integrity during the service life of GFR
metal tanks is therefore not an area of concern, The tanks were alsc degigned
to minimize liner hysteresis effects during cyclic operating-pressure applica-
tion by requiring that the liner-stress jrange between zero and the operating
pressure be within the offset biaxial co&pressive and tensile elastic limits,
after an initial prestress-pressure load (which plastically deforms the liner
beyond its biaxial-yield stress).

The parametric-study results were verified by the Tabrication and.
testing of twenty 18-in.-dia GFR Inconel X-T50 tanks that had an operating
pressure of 2000 psi and a burst pressure of 3000 psi at TSOFo The metal shell
had sufficient biaxial ductility over the 75 to —hEBOF range to perform
satisfactorily up to the failure stress of the filament-wound shell. The

XV




average tankage burst strength at TSOF was within 0.67% of the design value, and
the variation was ogly 4,30% of the average. The average increase in gank per-
formance between Z5 F and cryogenic temperatures was 22 to 25% at -320°F and

23 to 27% at -L423 F for vessels subjected to single-cycle burst tests, 100-
cycle-fatigue plus burst tests, or T2-hour sustained-pressurization plus burst
tests. There was no significant difference between the burst-strength levels
attained in the fatigue-cycling or sustained-loading tests (at 60 to T70% of

the single-cycle burst strength) and in direct pressurization to the burst

point without such prior exposure.

As compared with existing tankage, considerable weight savings can be
obtained with GFR Inconel X-T50 tanks, which merit serious consideration for
application to aerospace systems. Improved efficiency and greater weight
savings over the 75 to -AEBOF range will Dbe provided by GFR Ti-5A1-2.558n
vessels; investigations are warranted to evaluate thelr performahce advantages,
as well asito:provide the data required by system.designers for advanced
applications. '

xvi
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I. INTRODUCTION

A. BACKGROUND

Successful application of glass-filament-wound construction to the
design of pressure vessels, particularly in solid-propellant rocket-motor cases,
has suggested its use for the containment of cryogenic fluids. The high strength-
to~density ratio, dimensional stability, structural reliability, low thermal
conductivity, and ease and low cost of fabrication of glass/resin composite
structures are characteristics inherently attractive for cryogenic applications,
including efficient tankage.

The use of such structures for cryogenic pressure vessels will
result in considerable welght savings because the filament-wound-composite
(FWC) material has a much higher strength for its weight than do metal-tankage
materials. Although the composite is light in weight, it is permeable to
pressurized flulds and requires an inner sealant liner when used for cryogenic
vessels.

Suitable liner materials are availlable for room-temperature service.
Liners for cryogenic use, however, have presented difficult developmental prob-
lems. They must respond repeatedly, without fallure, to very large biaxial
strains in order to be compatible with the filament-wound composite at its
operating-stress level, and must then strain biaxially to the failure stress
of the filaments.

Metals have the required cryogenic-liner properties, but the high
strength and relatively low modulus of glass fibers currently used produce
elastic strains 3 to 10 times the biaxial elastic strain of metals at efficient
operating and burst stresses, and the liners must work well beyond their initial
yield point. Considerable effort is being devoted to the development of rela-
tively thin strain-compatible liners that can work in theilr plastic region for
a number of cycles. These thin liners must be bonded to the tank wall to keep
from buckling on depressurization, and attempts to use high-elongation foils
and to straln-cycle liners in their plastic range at cryogenic temperatures
have had only moderate success. This was because of (1) liner buckling on
vessel depressurization when the liner-to-composite bond failed, and (2)
subsequent fatigue failure in the buckled area.

Another sealing approach for cryogenic service 1s to combine the
glass~filament-wound composite with a load~bearing, nonbuckling, metal shell
that need not be acdhesively bonded to the wall to keep from buckling. This
shell provides the necessary liner and permits exploitation of the strength
potential of glass fibers. For high-pressure-fluid storage containers, a
metal shell can be combined with a glass-fiber overwrap to achieve a vessel
of less total weight for a given copersting pressure and volume than is possible
with an all-metal vessel. For the inner and cuter shells tc operate at their
optimum efficiencies, however, a proper preload or strain relationship must
be achieved when the vessel is unpressurized.

The work reporied here was undertaken to determine analytically
and experimentally the advantages and design reguirements of combining a




load-bearing metal shell with an overwrapped glass-filament shell for high-
pressure gas or liguld storage In the range from 75 to ~425OF. A topical
report, entitled Parametric Study of Glass-Filament-Reinforced Metal Pressure
Vessels (Reference 1), was issued to cover the characterization of liner ma-
terials, definition of design-allowable strengths for glass-filament-wound
composites, analytical procédures for use in the design and evaluation of glass-~
fiber-reinforced (GFR) metal tanks, parametric investigations, and comparative
ratings of pressure vessels. This report .provides a .detailed surmary

of all work performed during the program (including a summary of Reference 1),
with emphasis on the design, fabrlcatlon and structural evaluation of GFR
metal tanks at +75, -320 and -M25 F in burst fatigue, and creep tests.

B. PROGRAM PLAN

The objective of this work was to determine analytically and
experimentally the advantages of and design requirements for combining a
load-bearing metal shell with an overwrapped glas: ~filament shell for high-
pressure gas or liquid storage in the 75 to -AEB F range.

The program consisted of a three-task, 22-month technical effort.
Task I included an analytical design study and parametric evaluation of the
glass-shell/metal-shell combination. The task was completed with an investiga-
tion of the buckling characteristics of open-ended metal cylinders overwrapped
circumferentially with layers of tensioned filaments.

Twenty 18-in.-dia GFR metal tanks designed in accordance with the
requirements established in Task I were fabricated during Task II.

These vessels were evaluated in a Task III structural-test program.
They were subjected to burst cyclic-fatigue~plus-burst, and creep-plus-burst
tests at 75, =320 and MEB Fw The results were analyzed and evaluated, and
were then compared with the predictions made for GFR metal tanks in Task I.



L

IT. DESCRIPTION OF GFR METAL TANKS

The most significant property of glass~filament-wound composites for
pressure vessels is the %igh composite-wall strength~to~dens%ty ratio attainable -
of thg order of 2.0 x 10° in. for the cylinder and 3.20 x 10° in. for the heads
at 75°F. The large fiber strains associated with this performance create ex-
tremely difficult design problems when the requirement for a s=alant liner ig
introduced. These problems, and the design approaches used to overcome them,
are reviewed below,

A. FILAMENT -WOUND-COMPOSITE MATERIAL

A filament-wound reinforced-plastic structure contains many
continuous, small-diameter, high-strength fibers imbedded in a matrix of
organic or inorganic material. The constituents cf typical glass-filament
and boron-filament composites are shown photomicrographically in Figure 1.

These composites are fabricated by winding a specifically oriented
pattern of pretensioned, matrix-impregnated, continuous filaments onto a
mandrel. The fibers, which in most applications have been glass, constitute
the primary load-carrying element. The maximum structural efficiency is ob-
tained by orienting them to provide the strength components regquired to meet
the applied loads. In pressure vessels and other structures, where the
directions and relative magnitudes of forces are fixed, the resin matrix has
the secondary role of controlling fiber efficiency by transferring loads from
broken fibers, hardening the structure in terms of shape and fiber orientation,
and protecting fibers from each other and from degrading enviromments.

The filament content of a glass-FWC structure for pressure-vessel
application is generally about 67 vol% (or 82 wt%), with the resin matrix
constituting the remainder. This construction, with a density of 0,088
lb/in°5 for S8-HTS glass¥* and an epoxy=-resin density of 0.042 lb/inc5, results
in a composite density of 0.073 lb/in°5, which is about one-quarter the density
of steel and less than one-half the density of titanium. This low weight and
a high FWC strength (e,g., a 150,000-psi wall-hoop stress for a pressure~vessel
cylinder) characterize a highly efficient structural material.

B. SEALANT-LINER REQUIREMENTS

The filament-wound composite, while light in weight, 1s permeable
to gases and liquids under pressure. Furthermore, the filament and/or resin
may be subject to chemical corrosion by contained fluids, such as propellants.
Permeability and corrosion can be overcome by using a thin interior liner to
prevent or minimize fluid contact or transmission through the wall. Because
pressure-vessel performasnce is based on the total weight, operating pressure,
and volume, a minimum-weight liner is desirable.

*
Also designated S-901 glass by the manufacturer, Owens-Corning Fiberglas
Corporation.




The functional requirements for sealant liners include

. Impermeability to gases and liguids under pressure

° Resistance to corrosion by contained fluids

. Strain compatibility between the liner and the
composite structure up to the composite-failure
stress

° Resistance to fatigue when subjected to repetitive

loading to the operating stress level

e Toleration of tank expansion and contraction during
temperature cyecling.

C. LINER MATERTALS

Molded elastomers, polymeric films, metal coatings, metal foil, and
thin metal sheet have been used for liners. The polymeric materials have been
sultable when the service life 1s short and when some permeation through the
structure 1s tolerable. Elastomeric liners have thus far been restricted to
temperatures greater than ~65OF because they lose extensibility as the glass-
transition temperature is reached.

When a polymeric liner is functionally adequate, the designing of
the filament-wound vessel 1s relatively straightforward. When stringent
limitations aye imposed on fluld leakage or when the operating temperatures
are below ~650F, metal liners must be used because elastomers and polymers
cannot now provide the necessary properties.

D. METAL-LINER DESIGN CONCEPTS

The high strength and relatively low modulus of glass filaments
create a requirement for large biaxial strains in the metzal liner, and are the
most significant factors influencing material selection and design. The liner
membrane must strain under a l-to-1 biaxial field past its yield point to the
operating and ultimate stresses of the filaments without failure or fluid
permeation under pressure. At T5OF, S-HTS filaments have an elastic modulus
of 12.4 x 10” psi and a representative ultimate filament strength in pressure
vessels of 330,000 psi, yielding a biaxial-failure strain of about 2.7%. At
cryogenic temperatures, the filament strength may increase as much as 50% to
495,000 psi, while the modulus increases about 10% to 13.6 x 10° psi, producing
a biaxial-failure strain of about 3.6%., Stress-strain relationships for S-—
glass filaments andthree possible metal-liner wmaterials at TSOF are shown in
Figure 2. As indicated, the strains at the operating stress will cause the
liner to exceed its yield point and to deform plastically. In general, this
will occur even if the design makes use of the complete compression-to-tension
elastic~strain range of the liner,

When the liner is permitted to work beyond the proportional limit
into its plastic zone upon application of the zero-to-maximum use or limit



pressures, it will spring back along its offset, blaxial, elastic, stress-
strain curve as the pressure is relieved and will be pushed into compression
by external pressure from the overwrapped filaments until load equilibrium is
reached. An acdhesive bond must be retained between the liner and the filaments
to prevent buckling, or the liner must be strong enough not to buckle and
thereby suffer fatigue failure.

Metal-liner design concepts have been categorized into four groups,
(defined below), based on their zerc~to-operating-to~Zero-pressure strain
characteristics. Figure 3 presents their associated schematic stress-strain
curves; for simplicity, the plots assume no liner prestress in compression
during fabrication and a common origin for the liner and FWC stress-strain
curves.

1. Elastic Liner (Concept A)

This is a very thin, smoobth liner that is strained only in
the tenegile elastlc zone or the compressive and tensiie elasstic zones. It may
or may nobt reguire tank-wall bonding to prevent buckling under compression
loading.

2, Smooth, Bonded. Liner (Concept B)

This is a very thin, smooth liner that is strained in the
tensile and compressive elastic and plastic zones and reqguires a bond to the
tank wall to prevent buckling under compressive stress.

3, Corrugated Liner (Concept &)
This very thin, corrugated-metal liner is designed so that
pleats considerably increase its elastic-strain capability as compared with

the smooth parent material of constructlon. It ig strained only in its
elastic zone.

b, Plastic-Elastic, Load-Bearing Liner (Concept D)

This is a thicker, smooth, load-bearing liner that is strained
only in the tensile and compressive elastic zcones after an initial prestress
into the plastic zone. It is strong enough to resist buckling under compressive
loading.

The first thres concepts are referred to as metal-lined glass-~
filament-wound pressure vessels, and the fourth as the GFR-metal pressure-
vessel concept. This program analytically and experimentally investigated
the design reguirements and advantages of GFR metal tanks.

E. GFR METAL TANKS

When design requirements dictate the use of a metsl liner to meetb
performance specifications, thick liners that shars loads with the FWC shell
offer an excellent approach to workable, low-weight, high-pressure~fluid,
storage vessels.




This concept provides a tank formed by combining a load-bearing
metal shell with an overwrapped glass-filament shell. Metal~-tank fabrication
procedures are used in constructing the liner. The glass shell is fabricated
by winding a specifically oriented pattern of pretensioned, resin-impregnated,
continuous filaments over the metal shell.

1. Stress~-Strain Conditions

A schematic stress-strain diagram for a pressure vessel so
constructed is presented in Figure 4. With reference to that figure, a "load-
bearing metal shell" is defined as one capable of resisting buckling at the
compressive-stress level (E) shown there (produced by external pressure from
the overwrapped shell), when no bond exists between the two shells., The two
shells are designed to minimize the hysteresis loop of the liner in the
operational-pressure-cycle stress range (B) to (J) to (B) [iaeo, (B) to (J)
is an elastic stress-strain curvel.

Significantly different stress~strain conditions are imposed
on GFR metal tanks during application of the internal pressures associated with
tank fabrication, proof testing, burst testing, and operation. Figure L4 depicts
these states for both shells during fabrication, after mandrel removal, and atb
the proof-pressure prestress, zero pressure, operating pressure, and burst
pressure. It provides a basis for the ensulng discussion, which repeatedly
refers to polnts depicted there.

The metal shell may be held in a stress-free (strain-free)
state by a rigid mandrel while being overwrapped with tensioned filaments
[point (M)]. Upon mandrel removal, however, it will spring back into a
compressive state, due to the overwrap pressure [point (Oﬁ° The magnitude
of compression at zero-internal-pressure equilibrium depends on the relative
thicknesses and moduli of the overwrapped filaments and the liner, as well
as the biaxlal stress-strain characteristics of the liner and the filament-
winding tension used during FWC fabrication.

When the first pressure load (pp) is applied, the GFR metal
tank is strained to point (A), which is fixed by material properties and
thicknesses and by the load. For factors of safety associated with aerospace
tankage and with the glass~filament and metallic materials now available,
point (A) will be beyond the metal-shell yield point and considerable plastic
deformation may occur. In general, it can be sald that the blaxial tensile
strain produced in the liner by the initial prestress load will exceed l%
and may be greater than 2%,

When that initial lcad is removed, the liner will spring
back along the offset, biaxial, elastic, stress-strain curve {A)-(E) and
will be pushed into high compression by external pressure from the overwrapped
filaments until load equilibrium is resched at point (E) [strain (G)]. The
GFR metal tanks are designed so that point (E) does not exceed (a) the critical
buckling-stress level of the liner in the absence of a bond between the two
shells, or (b) the compressive elastic limit of the liner.



The operating-pressure level (po) will always be less than or
equal to py,. During the application of cyclic operating-pressure loads, there-
fore, the metal-liner strain range is between points (G) and (K), and the value
of (K) may be as large as (B).

Specific stress and strain values fixing the range between
(G) and (K) depend on design details, but maximum values for that range can
be estimated from candidate-material properties by assuming that the minimum
value of (G) occurs at the hiaxial-compressive-yield stress of the metal shell
and that the maximum value of (K) is equal to the strain (B) and occurs when
Py = Associated with the minimum value of strain (G) is the stress op and
with tge maximum value of strain (K) the stress o7. As an approximation, and
in the absence of the Bauschinger effect,* it may be assumed that -op = o5 =
material tensile-yield point, in accordance with the forcgoing assumptions.
This strain range between op and o, is the maximum-permissible operating-
strain range for GFR metal tanks.

2. Unique Design Criteria

Designs of GFR metal tanks must be bascd on both internal-
pressure requirements and zero-pressure stress states in the liner. In addition
to the usual requirements, the following conditions are iImposed on the liner
design:

a. An adhesive bond between the two chells 1s not required
to prevent buckling when the liner is loaded in compression. The unbonded
liner must have sufficient buckling strength and load-carrying capability to
sustain external forces from the overwrapped filaments.

b. The compressive-stress level in the liner will not
exceed the compressive elastic limit, to minimize hysteresis effects and
thereby improve the cyclic-fatigue endurance.

c. The stress level in the liner at the operating pressure
will not exceed the tensile elastic limit, to minimize hysteresis effects
during cyclic applications of the operating pressure.

In GFR metal tanks, efficient use of filament strength
requires that the parent metal and weldments of the liner have sufficient
ductility to permit biaxial straining to (a) the maximum design-allowable
filament stress at p,, and (b) the ultimate elongation of the filaments at
their ultimate stress. Metal shells without the reguired strain capability
rdue to cryogenic-temperature effects, heat-treatment level, low weld-joint
ductlllty, or propagating defects in the welds (cracks, 1ncomplete fusion,
lack of penetration, excessive porosity, excessive inclusicns, etc.)} will
fail prematurely by local fracture of weldments or the parent metal, followed
by leakage. Candidate materisls must therefore have suitable elongation
capability to be strain-compatible with the glass filaments.

*
Reduced deformation resistance in one loading direction following initial
prestraining in the opposite direction.



Under the 1l-to-1 biaxial-stress-field conditions, such as
exist in FWC pressure vessels and GFR metal tanks, metals have a significantly
reduced strain capability as compared with their uniaxial (1-to-0) ductility.
As shown in Reference 1 (pp. B-1 to B- %), the allowable elongation under such
conditions in the +75 to -423°F range’ is less than 50% (and closer to 25%)
the uniaxial ductility. On this basis, the design rule is used that the
allowable biaxial elongation of a metal under l-to-1 stress-field conditions
is 25% of the uniaxial value. With such a design allowable, the liner materials,
in the parent metal and weldments, must have a uniaxial ductility capability
about 4 times the ultlmate filament strain, or 10.8% uniaxial elongation at
+75 °F and 1.. L% at h23 F, to be able to strain as a liner to achieve the full
strength potential of the glass-FWC shell.
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i III. TASK I - PARAMETRIC STUDY

The design, fabrication, and testing of GFR metal tanks were preceded by
an investigation of overwrapped-metal-shell buckling strengths, and a compre-
hensive characterization analysis and parametric study of these tanks. The
results, reported in Reference 1, are summarized below.

A, COMPRESSIVE PROPERTIES AND BUCKLING STRENGTHS OF OVERWRAPPED
METAL SHELLS

; An important design innovation associated with this configuration

§ is extension of the elastic range of the metal by operating from compression

; to tension rather than in just the tension range. This is accomplished by
imposing on the unpressurized filament shell a positive tension load that is

; reacted by .a compressive load in the metal shell. Compressive liner stress

i at a zero chamber pressure can be set up by a number of techniques: using

tension during filament winding, subjecting the fabricated tank to a pre-

stress pressure that produces plastic ylelding of the liner, or cowbinations

of these two techniques.

? To design the load-bearing component, it 1s necessary to know the
i compressive-stress level at which (1) liner buckling occurs, or (2) the
! elastic limit of the liner is exceeded. Present methods of analysis do not
| permit the calculation of compressive-buckling-stress design limits; however,

* this information has been established by experimental evaluation, and Reference
1 summarizes data available in the literature. As described there, R. H. Johns
and A. Kaufman of the NASA Lewis Research Center tested the buckling of metal
e cylinders due to overwrapping in the circumferential direction with layers of
: tensioned filaments.

They conducted 29 tests on mild steel, stainless steel, nickel,

titanium, and aluminum specimens with diameter-to-thickness (D/t) ratios
: ranging from 175 to 3000, and obtained another five data points (with D/t
i ratios in the range from 320 to 600) from the literature. Their analysis of
all these results indicates that a straight-line correlation exists in
logarithmic coordinates between D/t and ob/ES, vwhere o, is the critical
stress from overwrapping at buckling failure and Eg is the metal-cylinder
secant modulus at failure taken from the stress-strain curve, as shown in
Figure 5., The OC/ES parameter is thus the compressive strain at which
buckling occurs. This correlation was used for the parametric study covered
in Reference 1.

Additional work was done to determine the TSOF compressive prop-
erties and buckling strengths of filament-overwrapped, open-ended, metal
cylinders. A detailed report on the experimental evaluation is presented
in Appendix A. In summary, compressive-stress=-strain curves and the point at
which buckling failure occurred were determined for 1l2-in.-dia cylinders
made from 2219-T62 aluminum alloy, nickel-base-alloy Inconel X-750 in the
solution-treated and aged (STA) condition, and 5A1-2.5Sn titanium alloy
(Ti-5A1-2.5Sn). Data from these experiments were evaluated and compared with
other available data to provide a means for estimating compressive-stress
limits as a function of the controlling parameters. The buckling characteristics




were in excellent agreement with the predicted behavior (determined from Figure
5) and correlations used for the parametric study. This agreement is shown in
Figure 6, where data from the six cylinders tested are compared with other

available data.

In all six cylinders, buckling failure occurred in the longitudinal
seam weld at high stress levels. All failed in a cusp buckle. Compressive
stress-strain curves were developed from the data recorded during the buckling

tests.
B. STUDY RESULTS

This section summarizes the results of the parametric study
(Reference 1), in which the advantages of and reguirements for combining a
metal shell w1th a glass-filament shell for high-pressure-fluid storage in
the +75 to -AEB F range were investigated. The research was concentrated on
characterization of candidate metallic materials, definition of design-allowable
strength levels for S-HTE glass-FWC structures, development of analytical
procedures for the design and evaluation of GFR metal tanks, parametric study
of the tanks, and rating of tank performance in comparison with homogeneous
metal tankage made from Ti-6A1-4V, Type 301 stainless steel (8S), Inconel 718
(a nickel-base alloy), and the 2219-T87 aluminum alloy. The service require-
ment included sustained loading and 100 pressure cycles to the operating
pressure.

To minimize hysteresis effects in the metal shell during cyclic
operation, the tanks were designed so that, after the application of an initial
prestress-pressure load (which plastically deforms the liner beyond its bi-
axial-yield stress), the stress range between zero pressure and the operating
pressure was within the offset bilaxial compressive and tensile elastic limits.

In the parametric study, the liner stress at the operating pressure was required
not to exceed 90% of the offset biaxial-yield stress.

Analyses of material properties revealed that several available
alloys provide sufficient ductiliby and strength to meet tha design requirements.
The alloys studied were Ti-5A1-2.5Sn [annealed, extra-low-interstitial (ELI)
grade}, Type 301 SS (half-hard temper), the 2219-T62 aluminum alloy, and the
Inconél X-750 (STA) nickel-base alloy. Because of cyclic~prassurization effects
on FWC strength, it was estimated that the oparating-pressurs filament-stress
level had to be maintained at 60% or less of the single-pressure-cycle burst
stress to sustain the 100-cycle requirement for the tanks. An operating-pressure
design-allowable filament-stress level of 200,000 psi at 75 P, compared with a
representative single=-cycle tdnkmbumst-pTeSSuTv filament-stress level of
330,000 psi, was necessary., At ~320 and =M25 ¥, these allowable levels were
expected to increase by 50% to a 300,000~psi operating stress and a 495,000-psi

burst stress.

A structural analysis and compubter program were developed for use
in designing and analyzing complete tanks, wound with either geodesic or in-
plane patterns along the cylinder and over the end domes and complemented by
circumferential windings in the c¢ylinder. Optimum head contours were developed,
and the following wers computed for more than 1000 different configurations of
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GFR metal tanks: filament- and metal-shell stresses and strains at zero
pressure and the design pressure; hoop-wrap thickness required for the
cylindrical portion; and weight, volume, and filament-path lengths for the
components and complete vessel. For these designs, the computer program also
determined the stresses and strains in both shells throughout service cycling
from a series of input pressures, composite temperatures, and metal~liner
temperatures.

Tanks were designed for room-temperature service so that the
compressive-yield stress of the liner is not exceeded at any point on the
head and in the cylinder, and so that the critical buckling-stress level is
not exceeded in the cylinder or at the equator of the head when the liner is
in maximum compression due to the overwrap. Thus, the designs developed in
the study do not require an adhesive bond between the glass-~fiber and metal
shells to prevent buckling.

The optimum room-temperature designs were found to be optimum
also for cryogenic temperatures if the tank is warmed at some time during its
service life. The reason is that such designs have the maximum-permissible
compressive stress in the metal shell at zero pressure after the proof test,
and additional plastic deformation at any temperature results in too high
compressive stresses at room temperature. At cryogenic temperatures, these
designs can operate at an increased pressure to improve the performance if
use is made of the change in metal-shell tensile-yleld strength produced by
the temperature change.

The necessary head contours are intermediate between that for the
FWC pressure vessel and the spherical shape optimum for homogeneous metal
heads. In GFR-metal-tank heads with the optimum contour, stresses are
constant in the filaments up the contour, and a 1-to-1 stress field 1s
produced in the liner at the design pressure and temperature, thus satisfying
the requirements for optimum closure design. Completely wrapped GFR metal
tanks with optimum head contours have higher performance than spherical GFR
metal tanks or circumferentially reinforced, cylindrical tanks with hemi-
spherical end closures. The performance level for completely wrapped oblate
spheroids is comparable to that of completely wrapped cylinders.

Proper design of GFR metal tarnks permits exploitation of the
maximum load-bearing capabilities of the metal and filament shells. It
makes possible operating pressures in the range from 1000 to 4000 psi and
higher, with performances significantly greater than those of the highest-
performance, cylindrical and spherical, homogeneous metal tanks. Figure T
presents a summary comparison of operating-pressure performance factors

pOV/W for GFR metal tanks, homogeneous metal tanks, and high-pressure
glass~FWC tanks with very thin metal liners at 75 °F and cryogenic operating
temperatures. The design stress of the homogeneous tanks was 6?% of the

*
Where p = design pressure, psi [e,go, operating pressure (po) or burst
pressure (pb)]; V = internal volume, in.”; and W = pressure-vessel weight,
1b (not including fittings).
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ultimate tensile strength or T7% of the yield strength, whichever gave the lower
operating-stress level (a factor of safety of 1.5 based on ultimate strength or
1.3 based on yield strength). The GFR metal tanks and FWC vessels were assumed
to operate at filament-stress levels of 200,000 psi at TSOF and 300,000 psi or less
at -320 and -MEBOF. The low~temperature performances are maximum values based

on full use of material properties at those temperatures. The GFR metal tanks
are designed, however, so that after they are worked at their opsrating pressure
at cryogenic temperatures, they may be warmed to room temperature without ex-
ceeding the meximum-permissible compressive stress. If the vessel warms during
use or there are other reasons for not employing the properties of the structural
material at the operating temperature, the performance factors given for each
type of vessel as a function of temperature must be adjusted correspondingly.

Maximum performance for cryogenic service will be provided by high-
pressure FWC tanks with very thin metal liners, provided that a reliable liner
design can be developed. For this reason, the comments that follow pertain
only to comparison of GFR metal tanks and homogeneous metal vessels.

Maximum efficliency over the 75 to -&QBOF range is provided by GFR
Ti-5A1-2.55n vessels., Their performance is considerably greater than that of
the other GFR metal tanks and all candidate homogeneous vessels. At room
temperature, it is 35% higher than that of Ti-6Al-4V (annealed) spheres and
T70% higher than that of Ti-6A1-L4V (annealed) cylinders. When compared with
the performance of the highest-strength homogeneous vessels made from 301 S8S;
Inconel T18 (STA), and 2219-T87 aluminum (see Figure 7), the improvement ranges
from 40 to 130%, depending on the shape and the alloy used.

o The GFR titanium tanks have a minimum safety factor of 1.40 to 1.57
at Tg F, which is comparable to that of the homogeneous tanks. Af -320 and
~4237F, burst-strength performance is believed to be limited by the blaxial-
strain capability of the liner weldments, and the full glass-~filament potential
cannot be realized. When the cryogenic progerties ars used to maximize pOV/W,
the safety factors are 1,16 to 1.30 at ~320°F ani 1.08 at -423°F, However,
if the cryogenic-strength propertlies of both shells are not employed to in-
crease the p_ level, the safety factors increase to about 1.70 to 1.80 at
-320°F and 1.60 to 1.70 at -Lo3°F. In designing these tanks for cryogenic
service, a compromise must therefore be reached bebween the safeby factor and
the resulting poV/W value.

The second highest performance ab T5OF is provided by GFR 2219-T62
aluminum tanks. Compared with Ti-6A1-L4V (annealed), it is as much as 15%
higher than that of spheres and 25 to 45% higher than that of cylinders. The
safegy factors are 1.43 to 1.57 at TSOF, depsnding on shape and pressure. At
-320 F, these values are close to 1.40 at the maximum operating-pressure level,
At ~h230F, however, low weldment ductility decreases the estimated factor to
only 1.08 at the maximum operating pressure. As was the case for titanium,
safe operation at -L23°therefore reguires a compromise between adeguate safetby
and high pOV/W. As an example, 1f the T5OF pOV/W of 355,000 to 405,000 in.
is acceptable at =320 and =423 F, the operating pressure could be held at
the T5OF value in cryogenic use. If this is done, the TSOF safety factor
of 1.43 to 1.57 changes to about 1.50 at -320°F but drops to 1.20 at -423°F.
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The performance of GFR 301 8S (half-hard) oblate~spheroid vessels
is slightly below that of GFR aluminum tanks and of homogeneous Ti-6Al-LV
(annealed) spheres, but is above that of all the other homogeneous vessels.
Thg factors of safetyoat the max%mum operating pressure are about 1.50 at
75 F and 1.70 at -320"F; at -423°F, the value is reduced to only 1.08, due
to the low estimated strain capabllity of metal-shell weldments.

The GFR Inconel X-750 (STA) tanks have a number of unique features.
In the 75 to —425OF range, the liner has sufficient ductility to strain to the
ultimate filament strength, thereby achieving the maximum performance obtainable
with this material combination and the design requirements imposed on GFR metal
tanks. The factors of safety based on the maximum-permissible p, increase as
the operating temperature decreases; except for cylindrical vessels at T5F,
they range from 1.50 to 1.85 at 75 to —h25oF. Because of the good liner per-
formance (large biaxial-strain capability and 100% weld-joint efficiency) it
appears feasible (and is recommended, if optimum performance is to be attained)
to operate ag levels that produce liner stresses equal to the proof-pressure
stress at ZS F or at the offset-yield stress as the temperature is reduced from
5 ;o -423"F. This po increase results in an improvement of about lO% in
poV W.

o If GFR Inconel tanks are operated at 90% of the offset-yield stress,
the 75 F performance is about 20% greater than that for homogeneous Ti-6A1-4V
(annealed) cylinders, and about 30% greater than for 301 S8 (extra-full-hard
temper) cylinders. The performance advantage is maintained at these and
higher values in comparison with spherical and cylindrical homogeneous tanks
fabricated from Inconel 718 (STA) and 2219-T87 aluminum. The GFR Inconel
X-750 (STA) tanks can have equivalent or slightly higher performance factors
than Ti-6A1-LV and 301 SS spheres. If the low-temperature mechanical properties
are employed, their rate of performance increase at cryogenic temperatures is
less than that for homogeneous titanium and stainless steel vessels, which
develop superior pOV/W values in cryogenic use.

If the GFR Inconel tanks are operated at 100% of the offset-yield
stress, the 75 to -MEBOF performance is equivalent to that of GFR aluminum
and GFR stainless steel tanks, as shown in Figure 7. At TSOF, they are
superior to all configurations of homogeneous vessels made from the repre-
sentative stainless steel and titanium-, aluminum-, and nickel-base alloys.
When cryogenic-temperature properties are used to increase the pOV/W,
homogeneous titanium spheres and cylinders and homogeneous stainless steel
spheres have higher values than GFR Inconel tanks. Creep of homogeneous
titanium-alloy vessels,when subjected to the operating-stress levels assumed
in this analysis, may create a problem in the 75 to -M250F range. If the
problem is shown to be serious, the performance advantages offered by GIFR
Inconel tanks will be greatly amplified.
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Iv. TASK IT - PRESSURE-VESSEL DESIGN

A. SELECTION OF CONFIGURATION

Using the Task I results, a GFR metal vessel was selected for
design, fabrication, and testing. The parametric study showed that tanks
of GFR Ti-5A1-2.5Sn (annealed, ELI grade) were the most efficient. However,
the study also revealed that, with the exception of Inconel X-T750, the
titanium-alloy and other candidate materials [2219~T62 aluminum and 301
(half-hard) stainless steel} might have insufficilent biaxial ductilities in
weldments at cryogenic temperatures for satisfactory performance. The burst-
strength performsnce of vessels made with these liner materials could be
limited by the blaxial-strain capability of the weldments, and the full
strength potential of the glass filaments would not be realized. Nickel-base
alloy Inconel X-750 (STA) was thus selected, because 1t offered a higher
probability of success for exploitation of the full potential of fiber
glass at all temperatures than did Ti-5A1-2.58n, 2219-T62 sluminum, or 301 SS
(halfmhard)° S~glass filament roving with the HTS finish was sslected for the
filament-wound~-shell component on the basis of high strength, experience in
its use, and commercial availability. Aercjet work under Contract NAS 3-6287
led to the development of a resin matrix with higher elongation at cryocgenic
temperature than commonly used resins, Tais resin [ Epon 828/DSA/Empol 1040/
BDMA (100/115.9/20/1 parts by weight)}* has been shown to improve the p V/W
for filament-wound vessels at cryogenic temperatures while giving a per%ormance
equivalent to that of standard epoxies at ambient temperatures (Reference 2),
and was therefore selected asg the FWC resin matrix.

A review of optimum designs for GFR Inconel X-750 tanks showed that
an oblate spheroid would provide the best combination of operating~- and burst-
ressure performence factors (pV/W), factors of safety for 75, =320, and —MEBOF
service temperatures, and fabrication practicality. The highest pV/W for such
tanks is obtained with a 75OF p. value of about 1800 psi or greater. For
vessel design, 2000 psi was selécted; the parametric-design curves show that
the related T5OF Tactor of safety is 1.50 and the design burst pressure is

3000 psi.

: To minimize hysteresis effects during cyclic pressurization, the
tank was designed so that, after an initial prestress-pressure load that
plastically deforms the metal shell beyond its blaxial-yield stress, the
stress range in the liner between zero and the operating pressure (po) was
within the offset bilaxial compressive and tensile elastic limits. In the
parametric study and for vessel design, the liner stress atb b, Was regulred
not to exceed 90% of the offset biaxial-yield stress. This was implemented
by using a 2220-psig proof pressure (pp) at T5°F in conjunction with the
2000-psi p, to establish the required margin between proof and operating
stresses in the liner,

*
Epon 828 is a bisphenol A epoxy; DSA is dodecenyl succinic anhydride, a
flexibilizing curing agent; Empol 1040 is a high-molecular-weight tri-
carboxy acid; and BDMA is benzyldimethylamine, a cure catalyst.
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The selected dimensions for the oblate spherocid were a diameter of
18 in. and a length of 14 in. The axial-port size at each end was fixed at
2.70 in., or 15% of the vessel diameter.

B. SERVICE-CYCLE REQUIREMENT

The service requirement used for the design included a minimum
fatigue life of 108 pressure cycles and T2 hours of sustained loading at the
75, =320, and -423°F operating pressures.

C. ANATLYSIS OF MATERTAL PROPERTIES
1, Metal Shell
o Detailed characterization analyses of Inconel X-750 over the
75 to -423°F range were reported in detail in Reference 1. Properties used

for the design and computer analyses of the metal shell are shown in Tables
1 and 2.

2. Glass~-Filament Shell

An analysis was undertaken to determine the minimum, maximum,
and typical values of room-temperature, single-pressure-cycle, allowable, S-HTS
glass-filament, strength levels in vessels having p. values from 1000 to 4000
psi, diameters in the 12 to 40-in. range, and length-to-diameter (L/D) ratios
ranging from 0.62 to 5. Reference 1 covers this analysis in detail and reviews
other filament-shell properties. It shows that representative strengths ranged
from 314,000 to 368,000 psi for hoop filaments and from 272,000 to 370,000 psi
for longitudinal filaments. A typical value sultable for calculations was
found to be 330,000 psi; it was used for the pressure-vessel design analysis.

Adjustments were made in the single-cycle design allowables
to account for the effects of cyclic and sustained loading (assumed to be
100 pressure cycles and T2 hours of sustained loading at the operating-stress
level). The typical single-cycle strength of 330,000 psi was reduced, by
multiplication with a factor of 0,60, to 200,000 psi to provide for the service-
life requirement, based on Aerojet Independent Research and Development (IRD)
data on the effects of pressure loading at ambient temperature on the strength
of glass-IWC vessels. The outer shell was thus designed to have a filament
stress of 200,000 psi at the T5°F p, of 2000 psi.

Data on glass-fiber and glass-FWC properties at cryogenic
temperatures were compiled and developed. They provided the basis for the
following estimates for S-HTS glass filaments with a design-temperature
decrease from TSOF to =320 or -4250F: a design-allowable filament-strength
increase of 50% and a tensile~modulus increase of 10%. With these estimates,
the filament strengbhs increased from the typical 330,000 psi at TSOF to
495,000 psi at -320 and -423°F; the tensile modulus increased from 12.L4 x 106
to 13.6 x 10 psi; and the ultimate filament tensile strain increased from
about 2.68% to about 3.64%.
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Material properties used for the design and computer analyses of
the glass shell are given in Table 2, along with other design data.

D. PRELIMINARY SIZING AND DESIGN

Preliminary tank-design parameters were established with the design
curves of Reference 1, reproduced here as Figures 8 to 13. The only information
needed to establish the preliminary design was the following:

Operating pressure at T5OF 2000 psi

Diameter 18 in.

Shape Oblate spheroid
Filament stress at T5°F P, 200,000 psi
Metal=-shell stress at 0.90 of offset
operating pressure and yield stress at
temperature temperature

Winding pattern Longitudinal in-plane
Metal-shell material Inconel X-750 (STA)
Overwrap material S-HTS glass filaments

It was assumed that the boss diameter is 20% of +the vessel diameter, and that
a rigid mandrel and filament-winding stress of 47,000 psi are used. (In the
subsequent detailed analysis, these parameters are altered, as described in
paragraph IV,E,2,) '

The relatlonshlp glven in Figure 8 for Py Vs room-temperature Pp
shows that for p, = 2000 psi at T5 °F in a GFR Inconel X-T50 (STA) tank,
pp = 2220 psi. The use of a higher value for Pp will cause an overly high
compressive stress in the liner at zero pressure and room temperature. Figure

8 also shows that the -320 and -423°F P, & 2300 psi.

With this information, the design curves of Figures 9 to 1% can
be used to establish other tank parameters. Figure 9 shows that a liner
diameter-to-thickness ratio (D/TL of 383 is required when p 2220 psi and
the shape is an oblate spheroid. For D = 18 in. and D/T 285, = 0,047
in., The optimum liner-to-glass-shell thlckness ratic (TL/“O is found Trom
Figure 10 to be 1.66 for p, = 2220 psi. Thus, with Ty = 0,047 in. and
TL/TO = 1.66, the longltudlnal FWC thickness at the equator of the head (Ty)
is 0.028 in. From Figure 11, pOV/W for the design at 75 Or is 327,000 in.
From Figure 12, p,V/W at -320 and =L23°F is 365,000 in., if the operating
pressure develops 90% of the liner offset-yield stress at that temperature.

The factor of safety for the design is 1.50 at T5°F and 1.85 at
-320 and -423°F, from Figure 13.
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E. STRUCTURAL DESIGN AND ANALYSIS

1. Method of Analysis

The shape and component thicknesses were established with the
computer program for analysis of GFR metal tanks developed under this contract
(detailed in Reference 3 and summarized in Appendix B). The program was used
to investigate the filament shell by means of a netting analysis, which assumes
constant stresses along the filament path and that the resin matrix makes g
negligible structural contribution. The filament and metal shells are combined
by equating strains in the longitudinal and hoop directions and by adjusting the
shell radii of curvature to match the combined material strengths at the design
pressure. :

The program established the optimum head contour and defined
the component thicknesses and other dimensional coordinates, as well as the
shell stresses and strains at zero pressure and the design pressure, the
filament~-path length, and the weight and volume of the components and complete
vessel. It was also used to determine the stresses and strains in the ftwo
shells during vessel operation through the use of a series of pressures,
composite temperatures, and metal-shell temperatures as inputs. This permitted
analyses of pressure and temperature cycles taking into account previous strains
and loads,

2. Design Parameters and Drawings

Table 2 presents input variables used for the computer
analysis, and other pressure, dimensional, and material parameters.

Designs were prepared for the Inconel X-T50 polar boss
(Part No. 178089), Inconel X-750 metal-shell assembly (Part No. 178090),
GFR Inconel X-750 pressure vessel (Part No. 178091 initial design, and Part
No. 1268928, final design), the head reinforcements (Part Nos. 178163 and
1268927), and the GFR Inconel X-750 test assembly (Part No. 17813k). They
are shown in Figures 1k to 18.

The 18-in.-dia test vessel was an oblate spheroid with
p, = 2220 psi at 75°F, and design p, values of 2000 psi at 75°F, 2300 psi-
a% -320°F, and 2350 psi at =423 F. The design burst pressure (pb) at TSOF
was 3010 psi; at -320°F it was 4263 psi and at -423°F was 4300 pei, based on
a 50% increase in design-allowable filament stresses at those temperatures.
Table 3 gives the vessel-design parameters.

The tank consists of a 0.047-in.-thick Inconel X-750 (STA)
metal liner overwrapped with an S-HTS glass-FWC thickness of 0.030 in. at
the equator of the heads. The FWC resin matrix is a highly modified, highly
Tlexibilized, epoxy resin of the following formulation: Epon 828/DSA/Empol
1040/BDMA (100/115.9/20/1 pbw) (Resin System 2 developed by Aerojet under
Contract NAS 3-6287). The polar bosses at each end of the vessel are 15%
of the vessel diameter.

17




Reinforcement consisting of unidirectional, resin-impregnated,
glags-filament tapes laid tangentially to the polar boss and extending along
each head to a normalized radial distance (Z) of 0.50 is required for each head.
It 1s designed to provide sufficient strengbh so that plastic deformation of the
metal shell at pp = 2220 psi is reduced between 0.50 < Z £ 0.15 (polar boss)
to ensure that, on post-proofing depressurization, the compressive-springback
stress does not exceed the liner's proportional limit at any point on the head.

The pressure-vessel membrane is analyzed in detail below. The
polar-boss design is analyzed in Appendix C, and filament-winding-pattern
calculations and head~reinforcement design are covered in Appendix D,

3. Detailed Analysis of Pressure-Vessel Stress-Strain and
Pressure-Strain Relationships

Computer output was used in analyzing the metal- eand glass-
shell stress-strain and pressure=-strain relationships.

Figure 19 presents 75OF stregs-strain relationships for the
hoop and longitudinal directions at the equator of the heads (2 =1.0) and
at 2 = 0.5, It shows conditions in the component materials at winding, after
mandrel removal, at the liner-yield point, at p, = 2220 psi, at zero pressure
after proofing, at p = 2000 psi (at 75°F), and’at P, = 3010 psi.

Observations of interest are (a) at zero pressure after
proofing, a longitudinal compressive stress of -108,000 psi [the design~
allowable compressive-yield stress for Inconel X-T750 (STA)] occurs in the
liner heads at 2 = 0.5; (b) the maximum tensile stress in the liner at Po
after proofing occurs in the longitudinal direction of the heads at the
equator and equals 90% of the offset-yield stress; (c) the filament stress
at the equator of the heads at b, 1s the required 200,000 psi; and (d) the
design-allowable filament stress of 330,000 psi 1s developed in the longitudinal
filaments at 3010 psig.

Figures 20 and 21 show the -3%320 and wJ+230F shresg~-ghrain
conditions. The curves assume that vessels are proocfed at TSOF and de-
pressurized before cooldown to the cryogenic temperature; the curve shifts
due to temperature changes are indicated. The maximum tensile stress in the
liner at p. occurs in the longitudinal direction of the heads and equals 90%
of the offset=-yield stress at the operating temperature. The filament stresses
reach a maximum of 495,000 psi at pressures of 4263 psi (-320°F) and 43%00 psi

(-423°F).

At TSOF the longitudinal and hoop strains at the design
P, of 3010 psi are the same (see Figure 19). However, when the vessel is
pressurized to the burst point at ~-320 and =425 ¥, the hoop strain at the
design pp is considerably greater than the longltudlnal strain, inducing
large blaxial-strain requirements for the liner.

Stress conditions in the tank heads at 75OF as a function
of 7 are given in Figure 22 for p, = 2220 psi. The liner stresses are
essentially constant up the contour.
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Figgre 23 shows stresses at Py = 2000, 23500, and 2350 peig
at 75, =320, and -425°F, respectively, The J T'ilament stress at 75 F at the
equator of the heads is the required 200,000 psi. The maximum liner stress at
Po occurs in the longitudinal direction of the heads (at the equator at TSOF,
and up the head at ~320 and -AEBOF) and equals approximately 90% of the liner's
offset-yield stress.

Stresses at zero pressure after proofing are shown in Figure
24 for T5, -320, and -MEBOF exposure temperatures. The compressive stresses
in the liner heads at that pressure controlled the tank design. They increased
from relatively low values at the equator (Z = 1.0) to very large values where
the thicker axia%-port boss was welded to the shell at about 2 = 0.25. A
decrease from 75 F to =320 and -MEBOF produced only slight stress changes in
the unpressurized tank.

In review, the tank-design criteria with regard to compressive
stresses in the liner were (a) the critical-buckling stress must not be ex-
ceeded at the equator of the head, and (b) the head stresses must not exceed
the compressive-yield stress. In this case, the liner values did not exceed
the -65,000-psi buckling stress allowable at the equator, but did exceed the
compressive-~yield stress of -108,000 psi at Z < 0.50. Therefore, either the
liner thickness or the composite thickness at Z < 0.50 had to be increased to
reduce the stresses to acceptable values in the depressurized tank after proofing.
The latter approach: was selected, and patterns of glass/resin-composite reinforce~
ments (design shown in Figure 17) were added locally (as indicated in Figure
16), to increase the composite thickness, decrease the liner deformation at
Z < 0.50, and thereby reduce the compressive stresses at zero pressure %o
acceptable levels. These local reinforcements also reduce FWC radial de-
flection adjacent to the rigid center boss, and thereby minimize abrupt in-
creases in liner strain adjacent to the boss.

At the 750 design py, of 3010 psi, the filament stresses were
constant up the contour and a l-to-1 stress field was produced in the liner
(see Figure 19), thus satisfying the requirement for optimum closure design.

The computer output was used to construct pressure~strain
curves for 75, =320 and -MEBOF test conditions, to be used to compare the
measured pressure-strain characteristics with the predicted behavior. The §
predicted curves are presented in Figures 25 to 27.
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V. TASK II - PRESSURE-VESSEL FABRICATION

Twenty 18-in.-dia GFR Inconel X-750 (STA) tanks were fabricated as
described below for structural evaluation at 75 to -423 F.

A, PROCEDURE

Tank fabrication was accomplished in accordance with the design
drawings, a metal-shell fabrication specification, an FWC-shell fabrication
procedure, and the general sequence shown in Figure 28, a manufacturing flow

diagram,

Inconel X-T750 forgings were machined to provide the required polar
bosses (Figure 29). Heads were formed from Inconel X-T750 sheet (Figure 30);
they had an opening at the apex of the dome to accept the polar bosses, and
were matched into sets ready to weld with a maximum gap between butt edges
of 0,002 to 0.004 in. and a diameter tolerance of +0.002 in. at the butt
edges. FEach boss was match-fitted to the opening, and the Jjoint areas were
cleaned before welding.

A Sciaky 30-kw electron-beam-welding machine with a 68 by L6 by
68-in. vacuum chamber was used (Figures 31 and 32). It permits movement in
the x, ¥y, and z directions. The relative movements of the electron beam and
the work were programed in advance, and all welding was automatic.

This approach differs from fusion welding in that it does not
depend on heat conduction from an external source to achieve coalescence.,
Basically, a small hole is 'wvaporized" through the jolnt by a narrow beam
of electrons. As the beam travels along the Joint, the molten metal solidifies
behind the traveling hole, thus forming the weld in a vacuum enviromment and
eliminating atmospheric contamination.

The setup used for welding a boss to a formed head is shown in
Figures 31 to 33, and a typical completed half shell in Figures 34 to 37.

The half shells were inspected and mated on the basis of it at
the girth weld. After the Joint areas were cleaned, each set of half shells
was assembled in the vacuum chamber (as illustrated in Figure 38) and welded
together. A typical completed assembly is shown in Figure 39,

A1l welds were subjected to 100% radiographic inspection to the
required specification (AGC-13860, Class 11), which permits no weld cracks,
parent-metal cracks, incomplete penetration, incomplete fusion, aligned
porosity, linear porosity, undercut, sharp weld edges, etc. that might
propagate or become sites of stress concentrations. The specification
permits scattered porosities no greaterthan 0.010 in. in diameter if they
are no closer to each obther than three diameters (or a 0.020-in. minimum)
and there are no more than three pores per inch. The weldments also were

subjected to 100% dye=-penetrant inspection.
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After acceptance, the units were solution~treated and aged in dry
hydrogen to develop their full mechanical properties.

Glass roving, resin, unidirectional glass~filament tape, and other
materials needed for overwinding and curing were procured. Layup molds for the
head reinforcements were fabricated. The filament-winding machine, roving-
tension devices, resin-impregnation system, and payoff rollers were installed
and thoroughly checked before the initiation of overwinding. Several trial
windings were made on a liner assembly to verify the procedures and the pattern.

After preparations were completed, the liners were wound and cured.
Figure 40 shows the positioning of an assembly in the winding machine, Figures
41 and 42 show overwinding with resin~impregnated glass, and Figure 43 shows a
typical, completed, GFR Inconel X~750 tank instrumented for testing.

B. SPECIFICATIONS

Detailed fabrication specifications and procedures were wriltten to
facilitate planning, data collection, and all allied phases of work. The
liner specification is presented in Appendix E, and the FWC procedure in
Appendix F.

C. DEVELOPMENT OF WELD SCHEDULE

The importance of joint integrity led to the initiation of a weld=-
schedule and weld-joint verification program prior to fabrication. Simulated
circular boss~-to-head welds and circumferential half-shell to half-shell welds
were made and evaluated to define and optimize the schedule required for each
operation.

Simulated boss-weld specimens were machined from Inconel X-T750 to
the same dimensions as in the weld-joint design. After cleaning, they were
mounted on fixtures in the welder, and the optimum schedule was developed. The
specimens were evaluated radiographically and by the dye-penetrant method and
were inspected for weld bead and dropthrough.

The simulated-girth-weld specimens were rings fabricated in
accordance with the Jjoint design. After cleaning, they were mounted in the
welder, the optimum schedule was developed, and the specimens were inspected.

D. DETAILED FABRICATION SEQUENCE

The detailed manufacturing sequence for each tank included the
operations summarized below.

1. Metal-Shell Fabrication

a. Closed~die pancake forgings for the bosses and formed
half shells were procured and accepted on the basis of certification and quality-
assurance inspectlon of the base-material chemical and physical properties, heat-
treat number, tensile coupons, and compliance with dimensional requirements.
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b. Heat numbers were logged and serial numbers were marked
on all parts throughout machining.

C. Each boss forging was rough-machined and finish-machined
with the aid of contour templates, drill jigs, and forming tools.

a. Formed half shells were dimensionally inspected for in-
side diameter, wall thickness, contour, and length.

e. If required, forward and aft formed-shell halves were
machined to generate square edges for the Joint at the outside diameter of the

boss.

f. The shell halves and bosses were cleaned and enclosed
in individual polyethylene bags.

g The boss~to-head~weld fixture was assembled in the
welding chamber.

h. The forward boss and the forward shell half were
mounted on the fixture.

1. These parts were inspected for weld-joint fit and
were repositioned as required to minimize gap and mismatch.

Jo The forward boss was welded to the forward shell half
in accordance with the weld schedule,

k. This assembly was visually inspected for weld crown,
penetration, undercut, and surface condition.

1. The weld Joint was radiographically inspected and
fluorescent-penetrant-inspected.

m. It was blended as required for the desired surface
condition, and all penetrant-inspection indications were removed.

n. If required, the weld was repalred in accordance with
radiographic-inspection records and the fabrication specification, and was
reinspected as in Operations 1 and m, above. Figure 4L shows typical accepbable,
unacceptable, and repaired weld joints.

0. Operations h through n were repeated for the aft boss
and the mating aft shell half,

P Pairs of forward and aft half-shell subassemblies were
mated and identified to assure a minimum of midsection weld-joint mismatch.

g. Half-shell pairs were cleaned and each half shell was
enclosed in a polyethylene bag.
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r. Forward and aft half shells were mounted on the girth-
weld fixture.

S, The assembly was inspected for mismatch and weld-joint
gap.

t. It was checked for runout condition, and was repositioned

and corrected as required to minimize runout.
U The half shells were tack-welded together.

Ve The circumferential joint was completely welded in
accordance with the qualified schedule.

W The weld was visually inspected and was reworked as
required to satisfy tolerances on the crown, undercut, and finish.

X The assembly was radiographically inspected and
fluorescent-penetrant-inspected.

Ve It was reworked, 1f required, in accordance with the
fabrication specification and was reinspected. Figure L4 shows typical acceptable,
unacceptable, and repaired weld joints.

Z. The shell assembly was solution-treated and aged in dry
hydrogen as required by the fabrication specification.

2. GFR-Metal~Tank Fabrication

a. Glass-filament roving and resin constituents were
procured and accepted on the basis of certifications and guality-assurance
inspection for the required chemical and physical properties.

b. The roving and resin were stored and were preconditioned
as required.

C. The exterior of the metal shell was powder-blasted,
and the shell was enclosed in a polyethylene bag.

d. The shell was mounted on the winding shaft.

e. The shell/shaft assembly was positioned in the filament-
winding machine.

f. The polyethylene bag was removed and the shell was
wiped with methyl ethyl ketone solvent and allowed to air-dry.

g. The resin was mixed, and the shell was brush-ccated.

h. Rolls of glass roving were positioned on the winding

machine, and the roving tension, wrapping angle, and machine turn/rpm ratio
were set.
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i. Mixed resin was placed in the resin-impregnation

device.
Je The longitudinal filament layers were wound to the

required number of turns; head reinforcements were applied and positioned
during winding.

k. The wound unit was wiped to remove excess resin.
1. The filament-wound composite was covered with a Dbleeder
cloth.
m. The entire, wrapped, shell assembly was vacuum-bagged, j
and a vacuum was applied (minimum, 22 in. Hg).
N, The unit was oven~cured for 2 hours at 15OOF and 4 hours
o
at 300°F.
0. It was removed from the oven, and the vacuum bag and

bleeder cloth were stripped off.,

D The filament-wound shell assembly was removed from the

winding shaft.
g The vessel was solvent-cleaned and allowed to air-dry. .
r. The complete tank was identified with a part number

and a serilal number, and was enclosed in a sealed polyethylene bag.

After this operation, tanks were sent to the test facility for
structural testing.

E. MATERTAL-VERIFICATION TESTS

1. Inconel X-750 (STA)

Uniaxial tensile tests were conducted at ambient temperature
on parent-metal, transverse-welded, and longltudinally welded specimens of
Inconel X-750 (STA). The specimens were of standard configuration: 8 in. long
by 3/4 in. wide, with a reduced section 1/2 in. wide machined for a gage length
of 2 in. The parent-metal specimens were taken from (a) the sheet of material
used to form the heads for Tank 2 (0,065 in. thick), and (b) another shest of
approximately the same thickness as the finished heads (0.053 in.) and used for
the fabrication of weld=-schedule-development specimens. Welded specimens were
fabricated by electron-beam welding to simulate the metal-shell Joint. The
transverse specimens were welded at the midpoint of the gage length. The
longitudinal specimens were welded along the entire long axis. All specimens
were solution-treated and aged with the first group of metal-shell assemblies.

Table L summarizes the test results. Typical properties of
formed-head parent-metal specimens (87,700-psi proportional limit, 110,500-psi
vield strength, 171,870-psi ultimate strength, and 26.9% elongation) were lower
than the properties used for the parsmetric study (Reference 1: 108,000-psi
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proportional limit, 120,000-psi yield strength, 1T74,000-psi ultimate strength,
and 25% elongation). When the stress-strain curve used for the parametric study
was plotted and compared with typical measured values for the Inconel specimens,
very close correspondence was found (see Figure L45). By changing the plastic
modulus of the parametric study (796,000 psi) to the measured value (440,000

psi), the stress-strain curves were essentially the same, within the two-straight-
line¥* approximation of the design analysis.

Parent-metal specimens made from the same sheet as the welded
specimens yielded test results very similar to those from the formed-head
parent-metal coupons. As shown in Table L4, the longitudinally and transverse-
welded specimens had higher proportional limits, yield strengths, and ultimate
strengths than for the parent metal, because of the weld bead (left on the
specimens and not included in the calculated stress). The average elongation
of 21.7 to 22.5% was only 90% of the parent-metal values, but was more than
adequate to meet the biaxial-ductility design requirements for the liner.

The test results confirmed the information compiled for
Inconel X-750 (STA) and indicated the adequacy of the properties used for
liner design.

2. S5-HTS Glass Roving

The 20-end S-HIS glass roving employed was tested to ensure
conformance with the procurement specification. The average strand strength
was 466,570 psi (standard deviation of 22,940 psi), compared with a specified
minimum tensile strength of 400,000 psi. The roving weight was 0.6019 g/yard,
compared with specified limits of 0.5600 (minimum) to 0.6480 (maximum) g/yard.

F. COMMENTS ON FABRICATED TANKS

1. Metal Shells

Twenty-three 18-in.-dia, 1lh-in.-long, oblate-spheroid,
Inconel X-750 shells were fabricated to obtain the 20 needed for the program.
Two of them were damaged beyond repair when the automatic welder malfunctioned,
and Table 5 summarizes the characteristics of the remaining 21, including
average wall thicknesses, weights, volumes, remarks on fabrication deviations,
and test assignments.

Fourteen of the shells (Serial Nos. 2 through 12, 19, 20,
and 22) conformed to all design-drawing and fabrication-specification require-
ments.

Three (Serial Nos. 13, 15, and 21) conformed to all design
requirements except that the girth-weld-joint mismatch exceeded the objective
of a 0.004-in. maximum. This excessive mismatch (0.007-in. maximum) was a
local condition extending over 1 to 4 in. of circumference. One shell
(Serial No. 17) had a local 0.007-in. girth-weld-joint mismatch and a single

¥
One for elastic modulus and one for plastic modulus.
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0.015~in, -dia spherical pore in the weld.® These four shells were approved for
use In the test program, with ghe stipulation that the vessel with the 0.015-in.-
dia weld pore be used for -320°F burst or creep testing.

Two other shells (Serial Nos. 14 and 16) had more serious weld-
Joint mismatches. Thelr worst conditions were 0.010 and 0,0l4-in. mismatches,
respectively. They were assigned to the =320 °F burst tests.

The twenty-first shell (Serial No. 23, 0.018-in. mismatch)
was not required for the contractual test program. It was subsequently used to
evaluate cryogenic-temperature-measurement instrumentation, and was burst-tested

at -320°F.

Average dimensional, weight, and volume characteristics are
summarized and compared with design values in Table 6.

The design wall thickness for the 18-in.-dia liner was 0.0LT
in., +0.010 and -0.000 in. The actual wall thicknesses were within tolerances
and averaged 0,053 in., or 11.3% above the nominal 0.0L7-in. design value.

The design weight of the liner assembly based on the 0.047-in,
thickness was 12.148 1b, not including bosses. The shells without bosses
actually weighed an average of 13.123 1b, or an increase of 8%. The excess
was the consequence of an average wall thickness greater than the nominal design o
value. The bosses averaged 1.500 1b each. The complete liner assemblies
averaged 16.149 1b, compared with the 15.148-1b design value.

The original internal volumes averaged 2330 cu in., compared
with a design value of 2370 cu in. (After proof testing, the average measured
volume was 2374 cu in.)

2. GFR Metal Tanks

The 21 liner assemblies were overwrapped with resin-impregnated
S-HTS glass~-filament roving and were cured to produce GFR Inconel X-750 (STA)
pressure vessels. Four of them are shown in Figure U46.

The tank design originally incorporated an epoxy-polyurethane
adhesive layer (Narmco 75A3/7139) between the liner and the filament overwrsp,
and a single local glass~filament reinforcement on each head. The changes
described below were made after the first two tanks were fabricated and tested.

Problems were encountered in the curing** of the first two
vessels fabricated (Serial Nos. 2 and 3). During the Tank 2 cure an oven
malfunction caused the temperature to hold at 300°F for 15 hours rather than
the scheduled 4 hours. Surveillance was intensified to eliminate recurrence.

*
The fabrication specification permits scabbered porosities no greater than
0,010 in. in diameter, if they are no closer than three diameters {or a 0,020~
in. minimum) and there are no more than three pores per inch.

*¥
The resin-cure schedule for the fllamentawound composite andAmetal shell=-to-

composite adhesive was 2 hours at 150 °F and 4 hours at 300 °F.
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After Tank 3 was cured, the filament-wound composite appeared
discolored. Examination after burst testing revealed that the adhesive layer
between the liner and the IFWC shell was uncured. Additionally, the adhesive
coating (about 0,00% to 0.005 in. thick when applied to the liner) appeared to
have migrated into the resin of the first of four overwrap layers; this portion
was also uncured. It was concluded that the probable cause was improper mixing
of the resin-adhesive constituents. Because the design criteria are not based
on a bond between the two shells to keep the liner from buckling, it was decilded
to eliminate this adhesive layer to minimize potential fabrication problems.
Instead, a thin coat of the IWC resin matrix was applied to the liner before
overwinding. This procedure was used for all tanks fabricated after the first
two.

‘ The test results for the first two tanks indicated a need for
additional liner reinforcement at the boss-to-head weld to reduce strains
there. It was decilded to incorporate another glass-filament reinforcement on
each head (for a total of two). This was done for all tanks fabricated after
the first two.

Characteristics of the 21 tanks are summarized in Table 5,
which includes wall thicknesses, weights, resin contents, volumes, and remarks
on fabrication deviations.

The average dimensional, weight, and volume characteristics
of the 20 tanks used in the contractual test program are summarized in Table
6. The average FWC thickness of 0.028 in. and equivalent filament thickness
of 0.020 in. at the equator of the vessels were within 0.002 in. of the design
values. The T2-vol% filament content in the composite was greater than the
67.3% expected and is attributed to the vacuum-bag cure used to consolidate
the structure and remove excess resin. The FWC weight of 2.974 1b was
slightly below the 3.041-1b design value, primarily because of the low resin
content. The average tank weight of 19.525 1b was greater than the 18.630-1b
design value because the 0.053~in. liner-wall thickness was greater than the
0.047-in. design value.

3. Assignment of Vessels for Testing

Detailed review and evaluation of fabrication records, and
of the relative severity of the tests planned, led to the assignment of
vessels for testing as shown in Table 5.
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VI, TASK ITIT - TEST PROGRAM FOR STRUCTURAL EVALUATION OF PRESSURE VESSELS

A, TEST PLAN, FACILITY, AND INSTRUMENTATION

1. Test Plan

Tests were conducted in conformance with a NASA-approved
test plan, which defined the test facility and the methods for vessel ilnstru-
mentation and pressurization. Structural evaluations of the 20 18-in.=-dia
GFR Inconel X-750 (STA) tanks were made in the following burst, fatigue-plus-
burst, and creep-plus-~burst tests:

No. of Test Vessels
Type of Test | At 75°F At -320°F At -403°F

Pressurization to the burst point 3 3 2

100 pressure cycles to the operating
pressure, followed by pressurization to
the burst point 2 2 2

72 hours of sustained pressurization at the
operating pressure, followed by pressuriza-
tion to the burst point 2 2 2

Total T T 6

In addition, a test was conducted at —52OOF to determine the

temperature gradients across the wall during cyclic pressurization and
pressurization to burst, and to evaluate cryogenic-temperature-measurement

instrumentation for FWC pressure vessels.

The serial numbers of tanks assigned the various tests are
shown in Table 5. Vessels were pressurized at rates produting approximately
1% strain/min (1200 psi/min at 75°F and 1700 psi/min at -320 and -423°F).

8. Proof Tesgts

It was planned to proof-test all the tanks to 2220
psilg at room temperature to establish the proper prelcoad between the inner
and outer shells. These tests were conducted by increasing the pressure to
2220 psig, holding it for 1 min, and then returning it to zero. All vessels
tested at room temperature as well as the initial units tested at cryogenic
temperatures were proof~tested, but thils procedure was deleted in most of
the cryogenic testing for reasons discussed below.

[ Burst Tests

Burst tests were conducted by increasing the internal
pressure untll failure occurred.
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C. Faﬁigue-Plus-Burst Tests

Fatigue tests were conducted by increasing the internal
pressure to the design operating value and then reducing it to zero (for room-
temperature tests) or to about 100 psi (for cryogenic tests). This was repeated
for 100 cycles, after which the vessels were pressurized to the burst point.

d. Creep-Plus-Burst Tests
Creep tests were conducted by increasing the internal
pressure to the design operating value and holding it for T2 hours, after which

the vessels were pressurized to the burst point.

2. Facility for Cryogenic Tests

The facility used is shown schematically in Figure 47. The
vessels were pressurized with 1nh1b1ted water for room-temperature tests, with
liquid nitrogen (LN,) for -320 °F tests, and with liquid hydrogen (LHp) for
-423"F tests. For the cryogenic tests, gas-controlled valves were used to
regulate the pressurization rate. The cryogenic-test fixture (Figure 48)
consisted of a vacuum chamber with provisions for instrument leads and vacuum-
Jacketed pressurization lines.

For the cryogenic testing, vessels were installed in the
vacuum chamber, which was pumped down to 10 mm Hg to assure the required
temperatures. The tank temperatures were maintained as low as possible, and
thermal equilibrium was obtained before the tests were initiated. When LN
was used thermal equilibrium was deflned as a vessel flange or skin temperature
of -300 F or less, and attainment of ~310 °F or below at the vessel-outlet vent
line. For LH, tests, 1t was defined as -MOSOF or less as measured at the vessel-
outlet line, with flange and skin temperatures of -4OO F or less.

For most of these tests, a cryogenically cooled shroud covered
with layers of low-emissivity aluminum foil was installed over the tank to
reduce heat inputs due to radiation and residual gas conduction. Glass marbles
were used inside the LHQ-test tanks to reduce the quantity of hydrogen needed.

3. Instrumentation

’ Instruments were used to monitor the specimen temperature (for
cryogenic tests), longitudinal and circumferential strain, and internal pressure

throughout the pressurization cycle. Figure 49 shows the strain-instrument locations.

Temperature was monitored with copper-constantan thermocouples
in t%e ~3520 °F tests. Because thermocouple accuracy was questlogable below
-320°F, platinum resistance-thermometers were used for the -423 F tests. Two
temperature measurements were made on the tank exterior (90o apart clrcumfer-
entially) near the equator. In addition, the temperatures of the cryogenic
fluids inside and outside the tank were measured and recorded.
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Strain measurements were obtalned with Aerojet-developed
"bow~tie" extensometers. This device consists of a piece of beryllium-
copper sheet in a configuration that provides two cantilever beams, which
are fitted with bonded strain gages. Metal-foll strip, approximately 0.25
in. wide, was used to link the beam ends to the gage ends. Both the exten-
someter and the foil strip were positioned against the test-vessel surface.

For girth (hoop) measurements, the thin metal strip was
placed around the tank equator and secured to opposite ends of the b=zam;
circumferential deflection resulted in a proportional output of the gages
on the bow~tle cantilever beams. For longitudinal-deflection measurements,
metal strips were affixed to terminals wound into the tank near the polar
bosses and run along the heads longitudinally toward the equator; the
cantilever~-beam ends of the bow tie were connected to the ends of the
strips at the midsection of the tank. A longitudinal deflection produced
a proportional strain~gage output. Figure 50 shows one girth and two
longitudinal bow-tie extensometers installed on a GFR Inconel X-750 tank,

The accuracy of the extenscmeter strain gages depends on
the gage factor, which is extremely sensitive to cryogenlc-temperature
variations. To provide the required accuracy, the concept of controlled-
temperature strain transduction was employed: Heaters were provided to main-
tain the gages at temperatures within their compensation range and a sensor
was added to record the vessel-surface temperature in the vicinity of the .
extensometer. This sensor was used to verify that the heat input to the bow
tie did not warm the tank surface in the region of the transducer. Thermal
insulation was used under the heated extensometers to minimize heat transfer
to the vessel. Data taken during the tests showed that no significant vessel
warming was produced by the heated bow ties.

Bach extensometer was calilbrated before testing, as described
in Appendix G. The bow ties were Installed on the vessel and calibrated end-to-
end under ambient conditions. The gage factors did not vary under cryogenic
conditions because heaters at the gage locations kept thelr temperature at
essentially the ambient value; monitoring during crgogenic testing revealed
that the bow ties were usually maintained at TO +20°F. Because the strain
reading varies only 1% per ' 100°F-change in-the TOPF.range due.to. gage-factor .
varlation, there was negligibletloss in:accuracy due to temperatursz effects.

To calibrate for longitudinal displacements, the distance:
between the bow-tie attachment points or terminals (Li) was measured with an
engineering scale. The bow tie and its mebtal-strip extensions were then
stretched to the maximum expected deflection, using accurately determined
positions (ALy). The strain was calculated as ALj/Lj to indicate the total
between the two attachment points. To calibrate the girth extensometer, the
tank circumference (Lp) was measured and the bow-tie attachment band was ;
moved to produce the maximum expected deflectlion (ALE)G The girth strain
was calculated as ALQ/LQO Calibration was done under amblent conditions,
and a zero shift occurred due to thermal contraction when the tank was cooled
to cryogenic temperatures. However, because the bow-tle repeatibility under
amblent conditions wag essentlally linear and the heaters maintained ambient.
temperatures, 1t was only necessary to reset the recorder to zero to correct
for thermal contraction.
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B. TEST RESULTS

The test results at 75, ~320, and -MEBOF are individually discussed
in this section and summarized in Table T.

1. Room-Temperature Tests (75°F)

Ambient-temperature proof, fatigue, creep, and burst tests
were conducted on seven vessels. The vessels were designed for a 2000-psig
operating pressure, a 2220-psig proof pressure, and a 3010-psig burst pressure
at amgient temperature. All tanks were subjected to the 2220-psig proof test
at 75 F before the fatigue, creep, and/or burst tests. Prior to testing, all
were instrumented with one girth and two longitudinal extenscmeters as shown
in Figure 49.

8., Proof and Burst Tests

Proof and burst tests were conducted on three vessels.
All passed the proof test. The average burst pressure was 2990 psig, 0.67%
less than the nominal design pp; the minimum and maximum were within h.BO% of
the average. Continuous strain-vs-pressure records were obtained, and the
tests are discussed below.

(1) Serial No. 2

Tank 2 was taken to the proof pressure at a 1%
strain rate, was held there for 1 min, and was depressurized and inspected.
Only minor FWC crazing had occurred. FWC delamination from the metal shell
was noted in the region of the polar boss, extending ho more than 1 in. past

the edge of the head reinforcement.

The tank was hydrostatically pressurized to
the burst point (2960 psig). Failure occurred in the liner at the boss-to-
head weld. When the internal pressure dropped to zero, due to water leakage
through the fracture, both liner heads buckled under compressive forces produced
by the filament shell (see Figure 51).

The hoop- and longitudinal-strain data obtained
(at locations shown in Figure L49) were excellent (see Figure 52). At the
burst, the maximum stress in the liner was 134,000 psi and in the filament
shell was 313,000 psi. The strains at burst were about 2.40% in the
longitudinal direction and 1.98% in the hoop direction.

No weld-joint defects were shown in X-rays of
the boss-to-head welds made before the test. BRadiographic inspection of
the tank after testing revealed no degradation of the girth weld or the
boss~to-head welds other than at the fracture site, but buckling in the
region of the boss-to-head welds at both ends prevented satisfactory X-ray
resolution.

A metallurgical analysis of the fracture area
was conducted (Appendix H). The conclusions were as follows:
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(a) Fracture occurred at the interface between
the heat-affected zone of the formed head and the weld nugget Jjoining the head
to the boss.

(b) The grains in the Y-shaped nugget were
relatively coarse and had directional orientation. The narrow heat-affected
zone had coarser grains than the parent metal away from the weld.

(¢c) DNo defects were found in the undamaged
portion of the fracture surface. The possibility of localized weld undercut
could not be evaluated because of plastic deformation and necking.

(a) The probable cause of failure was an
abrupt change in microstruchbure at the interface between the parent-metal
heat-affected zone and the weld.

To investlgate the Tank 2 failure mode, the other
two:tanks in this series were instrumented with hoop and longitudinal strain
gages in the vicinity of a polar boss.

(2) Serial No. 3

Before testing, three hoop and three longitudinal
strain gages were mounted in the vicinity of one polar boss on Tank 3, in
addition to the hoop and longitudinal extensometers used for all tests. The
locations and orientations are shown in Figure 53.

Pressure was increased until FWC failure occurred
(at 2940 psig) adjacent to a polar boss (Figure 54). The metal shell did not
fracture; it plastically deformed at filament failure, and reduced the water
pressure in the tank to 800 psig. The maximum burst-pressure stresses were
134,100 psi for the liner and 317,200 psi for the filaments.

As reported in Sectlion V,F,2, examination
revealed that the adhesive layer between the two shells was not cursd and had
migrated into the inner one-fourth of the overwrap, which was also uncured.

Excellent hoop- and longitudinal-sgtrain data wers
obtained (Figure 55). The strains at burst were about 2.18 and 2.70%,
respectively. Data from gages in the vicinity of the polar boss (as shown in
Figure 53) are presented in Figures 56 and 57. These strains were greatsr than
expected, both in tension and compression, and increased up the head as the
boss was approached. As an example, filament strains adjacent to the polar
boss were 1.10% at the proof pressure, -0.24% at O psig after proofing, and
2,20% at the 2940-psig burst pressure. The high tensile strain at the proof
pressure and the high compressive strain after proofing indicate that the
plastic deformation and springback were greater than predicted by the design

analysis.

The high strains recorded in the bosgs région led
to a decision to incorporate an additional reinforcement on each head (for a
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total of two) to reduce strains at the boss. All tanks were subsequently
fabricated with the additional reinforcements.

Radiographic inspection of the liner after
testing showed that a small crack had propagated from a 0.008-in.-dia porosity
in the girth weld. No other weld~joint degradation was found.

(3) Serial No. 5

Tank 5 passed the proof test with a small amount
of FWC crazing and no apparent delamination between the two shells.

After depressurization, the vessel was taken to
a burst pressure of 3070 psig. A very energetic FWC failure occurred adjacent
to the polar boss and caused all filaments to separate from the liner (see Figure
58). The liner did not fracture or leak under a pressure of several hundred
psig. The burst-pressure stresses were 136,000 psi for the liner and 322,500
psi for the filaments.

Excellent hoop- and longitudinal-strain data
were again obtained (Figure 59). Significantly greater hoop strains at the
proof pressure were noted as compared with the Tank 2 and 3 data. The burst-
pressure strains were about 2.80% (longitudinal) and 2.92% (hoop).

High strains were again recorded in the FWC
gages adjacent to the polar boss (Figures 60 and 61). Filament strains
immediately beside the polar boss were 1.00% at the proof pressure, -0.40%
at O psig after proofing, and 3.48% at the burst. The polar-boss region
sustained much greater tensile and compressive springback strains than predicted
by the design analysis. On the basis of Tank 3 and 5 data, it was concluded
that the local head reinforcements (one set in Tank 3 and two sets in Tank 5)
were not reducing plastic deformation around the boss.

b. Proof, Fatigue, and Burst Tests

Ambient-temperature fatigue tests were conducted on
two vessels by proofing at 2220 psig, cyclically applying the 2000-psig
operating pressure (p,), and pressurizing to the burst point if the tank
achieved 100 pg cycles,

Both tanks passed the proof test. One sustained 100
cycles between zero and p, and then was burst-tested to 2910 psig (97% of the
average original burst strength). The other failed after approximately 50 Po
cycles in a compressive-buckling mode when the internal pressure was reduced
to zero. Strain-vs-pressure records were obtained for the proof test; for
pressure cycles 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100;
and for the burst test.

(1) Serial No. T

After successful proofing and depressurization
for inspection, Tank T was pressure-cycled between 0 and 2000 psig 100 times.
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Inspection revealed no visible degradation. Slight FWC crazing was Tfound
after proofing, but its magnitude did not seem to have increased after

cycling.

The tank was pressurized to failure (at 2910
psig, or 97% of the average original vessel strength), which occurred in the
FWC shell next to the boss (Figure 62). Apparently as a result, the liner
developed two longitudinal splits joined by a hoopwise fracture along the

‘heat-affected zone of one boss-to-head weld. Hoop~-and longitudinal-strain
data for the proof and burst phases are shown in Figure 63, and for the lst,
50th, and 100th pressure cycle in Figure 64. The pressure-cycling hysteresis
loops were small, as was the permanent set.

The burst~pressure stresses weres 153,700 psi
for the liner and 309,500 psi for the filaments.

(2) Serial No. 8

Tank 8 was proofed, depressurized, and pressure~-
cycled between 0 and 2000 psig. Leakage around a polar boss was noted after
50 cycles, and the tank was depressurized and inspected. The head had buckled
as shown in Figure 65. The tank interior revealed a fracture line extending
approximately 3 in. along the boss~to~-head weld. It is believed that the
head buckled under external IWC forces during fatigue-test depressurization,
after which the application of a few pressure cycles fatigued and fractured
the metal at the weld Jjoint.

The other head was unchanged at the end of the
test but buckled within the next 2 days. Pressure-vs-strain data for the
proof test are presented in Figure 66, and for the lst and 50th pressure
cycles in Figure 67. The pressurs-cycling hysteresis loops were small.,

C. Proof, Creep, and Burst Tests

Ambient~temperature creep tests were conducted on two
vessels, by proofing at 2220 psig, holding them at P, = = 2000 psig for 3 days
(72 hours ), and then pressurizing to the burst po1nt

Both passed the proof and sustained-pressurization
tests. One achieved a pp of 3000 psig (100% of the original average strength).
The other had a pp of 2630 psig (88% of the original average strength); during
the test, however, the pressure was held for 1 min at 2400 psig (80% of the
original average strength) becauss of incorrect pressurizing- system operation,
which may have contributed to the relatively low py. Pressure-strain data
were obtained for the proof tests, for the creep tests at lL-hour intervals,
and for the burst tests.

(L) Serial No. 4
After proofing and depressurization, Tank I} was

held at py for T2 hours., Inspectlon showed no visible degradation,.and the
burst test was initiated. The vessel was loaded to 2400 psig, the test



engineer found he could not increase the pressure, and the tank was held at
that level for 1 min before the test could proceed. Failure occurred at
2630 psig (88% of the original strength) in the form of a fracture at the
boss-to-head weld. Both heads buckled after internal pressure was lost
(see Figure 68).

Pressure~vs-strain data are presented in Figure
69 for the proof and burst phases, and in Figure TO for the creep test (whose
start and end transients are shown in Figure Tl). Negligible creep was detected
during sustained loading.

(2) Serial No. 6

Tank 6 was proofed, depressurized, creep-tested
for T2 hours, and burst-tested at 3000 psig (100% of the original average
strength ). FWC failure occurred adjacent to the polar boss. As in the case
of Tank T, the liner had two longitudinal splits jolned by a hoopwise fracture
along the heat-affected zone of a boss~to-head weld. A post-test view is shown
in Figure T2.

The pressure-strain data were excellent. Hoop-
and longitudinal-strain data are presented in Figure 73 for the proof and
burst phases, and in Figure TL for the creep test (whose start and end transients
are shown in Figure 75). Negligible creep occurred during sustained pressuriza-
tion. The burst-pressure stresses were 137,800 psi for the liner and 331,700
psi for the filaments. Longitudinal strains of 2.59% and hoop strains of
2.49% were obtained at the burst.

2. LN, Tests (-320°F)

Ligquid-nitrogen fatigue, creep, and burst tests were conducted
on seven vessels. The proof pressure at 757F was established as 2220 psig and
the operating pressure at -3207F as 2300 psi. Prior to cryogenic testing, the

tanks were to be proofed at ambient temperature. All the vessels were instrumented

with one girth and two longitudinal extensometers, as well as copper-constantan
thermocouples on the exterior (Figure 49).

8 Ambient~Temperature Proofing

Tank 16 was the first to be proof-tested. There was
concern over the possibility of buckling after proofing (due to high FWC
compressive stresses) and the tank was examined periodically; no buckling
occurred.

Tank 14 was then proofed; on depressurization one
liner head buckled (but the metal did not fracture). The other head buckled
by the next day. After discussion with the NASA Project Manager, it was decided
to reduce the proof pressure to 2000 psig to decrease the liner-springback
stresses. Tank 1l was then proofed at 2000 psig, and one head buckled on
depressurization (to a less severe degree than Tank 14). Additional discussions
with NASA resulted in a decision not to proof-test the remaining tanks and %o
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amend procedures so that, if liner ylelding occurred in subsequent testing,
the internal pressure level would not be reduced below 100 psi (which would
stabilize the liner and give it no opportunity to buckle).

Y. Burst Tests

Three tanks were LNp burst-tested. All had girth-weld-
jolnt mismatches in excess of the specified 0.004 in. (see Table 5). The
average p, was 354k psi, 18% higher than the ambient-temperature py. The
minimum and maximum p, values varied T% from the average.

(1) Serial No. 13

Tank 13 was assembled in the vacuum chamber and
filled with LN,. After steady-state conditions were attained, 1t was teken to
a Pp of 3588 psi. The failure appeared to originate in the FWC shell at the
polar boss, with subsequent liner fracture. The 0.007-in. weld mismatch noted
after fabrication did not appear to contribute to the fallure. A post-test
view is shown in Figure 76. Excellent hoop~ and longitudinal-strain data were
obtained (Figure T77), and the strains at failure were in excess of 4%. The
burst-pressure stresses were 162,500 psi for the liner and 384,200 psi for
the filaments.

(2) Serial No. 14

Both heads of Tank 14 had buckled after proofing
at 2220 psig. The tank was filled, cooled with LWNp, and taken to a py of
3400 psi.

Both shells failed, apparently as a result of
liner girth-weld faillure, which in turn was probably caused by the excessive
mismatch of 0.01l4 in. noted after fabrication. This was the only vessel in
which failure appeared to originate in the girth weld; a post~test view is
shown in Figure T8.

The burst-pressure stresses were 157,800 psi
for the liner and 357,400 psi for the filaments.

(3) Serial No. 16

Tank 16 had been proofed (2220 psi) and de-
pressurized without buckling. It was then taken to a p, of 3645 psi. As
for Tank 13, the fallure appeared to have originated in the FWC shell at
the polar boss; the liner was broken into several pieces, as shown in
Figure 79. The weld mismatch of 0,010 in. did not influence the test results.

Excellent hoop~ and longitudinal-strain data
were obtained (Figure 80). Because they do not include the initial proofing
data, they appear to indicate a higher yileld strength and reduced strain at
fracture as compared with Tank 13. Data for other tanks indicate that the
permanent set after the proof test amounted to about ODE% in hoop strain
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and 0.6% in longitudinal strain; when these values are added to the strain
data in Figure 80 to get the approximate total vessel strain at failure, the
indicated ultimate strains are 4.55% (hoop) and 3.90% (longitudinal). These
values are comparable to the results obtained in the Tank 13 burst test. The
burst-pressure stresses were 163,700 psi for the liner and 391,100 psi for the
filaments.

c. Fatigue-Plus-Burst Tests

Fatigue tests were conducted on two vessels by
cyclically applying a 2300-psi Po 100 times, and then pressurizing to the
burst point. Both tanks sustained 100 cycles; one subsequently failed at
3169 psi in the boss-to-head weld and the other at 3554 psi (100% of the
original average strength) in the membrane structure.

(1) Serial No. 20

On the first pressure cycle, Tank 20 was in-
advertently overpressurized to 2555 psi rather than 2300 psi. It was Then
successfully cycled to 2300 psi 100 times, followed by pressurization to
failure at 3169 psi. A liner leak developed in one boss-to-head-weld area;
the pressure was maintained at 3100 psi and LNo flowed profusely through the
FWC shell in the vicinity of the liner fracture. The tank pressure was relieved,
and both liner heads buckled as shown in Figure 81.

Hoop- and longitudinal-strain data for the first
pressure cycle and the burst test are shown in Figure 82, and for the 2nd, 50th,
and 100th cycles in Figure 83. There was negligible permanent set due to
pressure cycling. The hysteresis loops were larger than noted in room-tempera-
ture tests.

(2) Serial No. 21

Tank 21 underwent three fill, cooldown, and
warmup cycles before testing. After the fourth cooldown, it was successfully
subjected to 100 Py cycles. It was then taken to a py of 3554 psi (identical
to the average orlglnal single-cycle =320 °F burst strength). The failure was
very energetic; both shells were blown into many pieces (some shown in Figure
84). The 0.007-in. girth-weld mismatch (Table 5) did not appear to contribute
to the failure.

Strain-vs-pressure data for the first cycle and
the burst test are presented in Figure 85. A longitudinal strain of 3.86%
and a high hoop strain of 5.00% were obtained at the burst point. Pressure-
strain curves for the 2nd, 50th, and 100th pressure cycles are given in Figure
86; the results are similar to those for Tank 20.

The burst¥pressure stresses were 162,700 psi for
the liner and 385,500 psi for the filaments.
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d. Creep-Plus~-Burst-Tests

Creep tests were conducted on two vessels that had
0.007-1n., weld-joint mismatches; this condition did not affect the test
results, nor did a 0.0l5-in.-dia spherical porosity noted in one of the
girth welds. The testing consisted of sustained pressurization at 23500 psi
for 72 hours followed by pressurization to failure. Both tanks passed the
sustained-loading tests; they achieved py values of 3538 and 3797 psi - i.e.,
within 7% of each other and higher than those attained in single-cycle burst
tests.

(1) Serial No. 15

Tank 15 was maintained at the operating pressure
for T2 hours, and was then ftaken to a pyp of 3797 psi, the highest obtainsd in
the program. Fallure occurred at the polar-boss region in both shells (see
Figure 87). Pressure-vs-strain data are shown in Figure 88 for the initial
pressurization to Ps and for the burst test after sustained loading. Pressurs
and strain fluctuations during the crzep-test loading are shown in Figure 89,
Although the recorded data did not indicate overpressurization, Figure 88
indicates that an increase in vessel yield to about 2500 psi occurred during
sustained loading.

The burst-pressure strains were 3.68 and L.4L%
in the longitudinal and hoop directions, respectively. The burst-pressure |
stresses were 172,600 psi for the liner and 423,800 psi for the filaments.

(2) Serial No. 17 .§

After creep testing, Tank 17 was ftaken to g
of 3538 psi. IWC failure occurred near the polar boss, causing subseguent
liner fracture (see Figure 90).

Pressure~strain data shown in Figures 91 and
92 indicate that creep apparently occurred. The burst-pressure strains
were about 3.70% (longitudinal) and 4.50% (hoop), which were very similar
to those for Tank 15. The burst-pressure stresses were 161,800 psi for the
liner and 380,700 psi for the filaments.

3, LH,_Tests (-423°F)

Liguid-hydrogen fatigue, creep, and burst tests wers con-
ducted on six vessels. The design Pg at =U237F was 2350 psi. All vesgels
were instrumented with one girth and two longitudinal extensometers, plus
platinum resistance-thermometers bonded to the ouber surface.

a. Burst Tests

Single-cycle, L, burst tests were conducted on two
vessels. One failed at 3185 psi in the boss-to-head weld of the liner and
the other failed at 3685 psi in the filament-wound composite.



(L) Serial No. 11

Tank 11 had been proof-tested at 2000 psig at
ambient temperature, after which one head buckled (see paragraph VI,B,2,a,
foregoing). It was assembled in the vacuum chamber, was filled with LH
and cooled down, and was then taken to a py of 3185 psi. Failure apparently
occurred in the liner at the boss weld of the head that had not previously
buckled. Both heads buckled after the burst. A post-test view is shown in
Figure 93.

The hoop- and longitudinal-strain data presented
in Figure 94 do not include data for the 2000-psi proofing, which raised the
yield pressure. If a permanent set of 0.2%-hoop and 0.6%-longitudinal strain
is assumed for the proof test and these values are used in Figure 94, the
failure strains would be 3.0% (hoop) and 2.8% (longitudinal).

(2) Serial No. 19

After cooldown, Tank 19 was taken to a pp of
3685 psi. The failure apparently occurred in the filament shell, which was
blown to pieces. The liner was broken into several portions, as shown in
Figure 95.

Very good pressure-vs-strain data were obtained
(Figure 96). The burst-pressure longitudinal strain was 3.75%, hoop strain
4.22%, liner stress 167,600 psi, and filament stress 390,100 psi.

b. Fatigue-Plus-Burst Tests

Fatigue tests were conducted on two vessels through
the application of a 2350-psi p, for 100 cycles, followed by pressurlzation
to the burst point. Both vessels passed the LHo cycling test. One tank had
a pp of only 2535 psi while the other burst at 3700 psi, the highest value
in the LH, tests.

(1) Serial No. 9

After cooling, Tank 9 was successfully subjected
to 100 Po cycles and was taken to a pp of 2535 psi. Fallure apparently
originated in the liner at the boss-to-head weld; the filament shell was
severely damaged (see Figure 97).

Figure 98 gives longitudinal- and hoop-strain
data for the initial pressurization and the burst phase, and Figure 99
provides pressure-strain data for the 2nd, 50th, and 100th cycles. The
pressure~cycling hysteresis loops were small, and only negligible permanent
set was found.

(2) Serial No. 10
Tank 10 also passed the 100~cycle test and

was then taken to a Py of 3700 psia. Failure occurred in the filament
shell, and the liner was severely fractured (see Figure 100).
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Figure 101 gives strain-vs-pressure data for the
initial pressure cycle and the burst phase, when a longitudinal strain of
4.10% and a hoop strain of L4.76% were obtained. The burst-pressure stresses
were 168,400 psi for the liner and 395,100 psi for the filaments. Figure 102
provides pressure~-strain curves for the 2nd, 50th, and 100th cycles.

C. Creep-Plus~Burst Tests

Creep tests were conducted on two vessels, which
survived sustained pressurization at 2350 psi for T2 hours, and then achieved
burst pressures of 3615 and 3700 psi - values within 2.5% of each other and
higher than the.aversge in the LH2 single~-cycle burst tests.

(1) Serial No. 12

After cooldown, Tank 12 was taken to the design
po and held there for T2 hours (except for a short depressurization to approxi=-
mately 500 psi after 12 and 36 hours to permit recharging of the liguid- and
gaseous~hydrogen trailers). It was then taken to a pp of 3700 psia. Failurs
apparently originated at the polar boss in the filament shell, which was blown
to pieces. The metal shell was broken into a few portions, as shown in Figure

103,

Figures 104 and 105 present pressure-vs-gtrain
data; overpressurization to 2450 psi caused additional plastic deformation, asg
indicated there. The burst-pressure strains were about 3.6% (longitudinal)
and 3.5% (hoop). The failure stresses were 168,000 psi in the liner and 382,600
psi in the filaments.

(2) Serial No. 22

Tank 22 was also successfully creep-tested. After
about 22 hours of sustained loading, the pressure was ilnadvertently increased
to 2600 psia and caused considerable plastic deformation of the liner and
permanent set in the tank. The pressure was reduced to 2350 psia, and the test
was continued (except for a short depressurization to approximately 500 psi
after 24 and 48 hours) until the loading period totaled 72 hours. The tank
was then taken to a py of 3615 psia. Again, failure apparently originated
in the filament shell, which was severely damaged. The metal shell was also
blown into several pieces, as shown in Figure 106.

Figurss 107 and 108 give the pressure-vs-strain
data. The burst-pressure strains were 3.62% (longitudinal) and 3.80% (hoop).
The failure stresses were 166,200 psi in the liner and 382,400 psi in the
filaments.

L, Wall-Temperature-Gradient Tests

A considerable increase in measured cryogenlc temperatures
on the outer skin of the composite was encountered during pressurization to
the p, value (in fatigue and creep tests) and to the burst pressure. The
instruments used were platinum resistance-thermometers for the L, and LN,
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tests, with copper-constantan thermocouples added for the LNy tests. They
were bonded to the tank exterior after fabrication.

When the problems were encountered, it was believed that
measurement 1naccuracy was being caused by unbonding of the instruments as
the vessels were pressurized to high strain levels., This was verified in a
special =320 °F test conducted on an 18- in.-dia GFR Inconel X-T750 tank that
had been fabricated with both types of instrument wrapped against the liner
and into the FWC shell.

The objectives of this LN, evaluation were (a) to investigate
installation techniques and the rellablllty of placement within the FWC wall,
and (b) to measure actual temperatures on the liner, at various distances
from the liner in the IWC wall, and on the outer surface of the IWC wall.

G Procedure

Platinum resistance-thermometers and copper-constantan
thermometers were installed on the test vessel (Serial No. E-1) in the positions
depicted in Figure 109. The liner was a rejected part having a girth-weld-
Joint mismatch of 0.018 in. The following tests were performed, with all.
temperatures recorded continuously:

(1) Two pressure cycles were conducted in which the
tank was pressurized to 1800 psi and was vented to zero at approximately
1700 p51/m1n. Initial LN, equilibrium-temperature conditions were obtained
before the first pressure cycle, and an LNo~cooled shroud was used over the
vessel during the test.

(2) Three additional pressure cycles identical to
the foregoing were performed, except that the LNy-cooled shroud was not used.

(3) A final test was performed, without the shroud,
in which the vessel was pressurized to failure.

b. Results

Two platinum resistance-thermometers (T-E and T-D)
did not function during testing; the sensing elements shorted to the liner.
The T-3 copper-constantan thermocouple apparently partially open-circuited,
and its data were inaccurate.

Figure 110 shows the transient-temperature data from
the other instruments plotted against pressure for the first cycle of Test
(1). Similar data plotted for Tests (2) and (3) are shown in Figures 111 and
112, respectively. Failure during Test (3) occurred at 3232 psi, and a post-
test view 1s shown in Figure 113,

The plot for the tank exterior shows progressively

higher values for the initial temperature measurements in the three cycles
of Test (2) and in Test (3). External instrument-wall bond degradation was
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found that apparently was caused by thermal cycling and pressure cycling and
gave rise to invalid readings. All other thermometers, however, indicated
only a slight increase in temperature during test-cycle pressurization, as

shown by their plots.
C, Conclusions

This investigation verified that the vessels tested
in the tank-evaluation program were essentially at the nominal cryogenic
temperature required. It demonstrated also that thermometers can be practically
and reliably placed within the glass-FWC wall to provide accurate readings
at cryogenic temperatures.
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VII. EVALUATION OF STRENGTH AND PERFORMANCE LEVELS, PRESSURE-STRAIN
CHARACTERISTICS, AND PARAMETRIC-STUDY FINDINGS

A, STRENGTH AND PERFORMANCE LEVELS

GFR Inconel X- TSO (STA) tanks successfully sustained burst, fatigue,
and creep tests at 75 to -h23 F. The test results are compared on the basis of
the pressure-vessel performance factor pr/w in Figure 114 and on the basis
of glass=-filament stress at the burst pressure in Figure 115. The results are
evaluated below, following an analysis of modes of failure.

1. Failure Modes

The apparent failure modes, summarized in Table 8, include
glass~FWC faillures near the polar boss, liner fractures at the boss-to-head
weld, a liner fracture at the girth weld, and a liner failure in compressive
buckling during fatigue testing.

There are important implications in the fact that 18 of 20
vessels failled during burst testing near the polar bosses. The boss grea
was the most highly strained portion (see paragraphs VI,B,l,a,(2) and (3),
and Figures 56, 57, 60, and 61) and also the most sensitive to fabrication
imperfections because local head reinforcements were incorporated there.

Five of the 18 failed in the liner at the boss-to-head
weld. Of these, Tank 11 underwent head buckling after an amblent-temperature
proof test, Tank 20 experienced overpressurization and excessive plastic
deformation on the first of 100 pressure cycles during fatigue testing, and
Tank 4 was taken to a high stress level that was held for about 1 min before
pressurization was continued to the burst point. It is believed that these
factors, coupled with strain magnification in the liner at the boss-to-head
weld due to head-reinforcement ineffectiveness and high polar-boss rigidity,
precipitated liner failures at that weld. This subject is discussed further
in Section VII,C, below.

The remalning 13 boss-area fallures occurred in the FWC
shell at rather consistent filament-stress levels (see Figure 115). The
local high FWC strains at the boss (see Figures 56, 57, 60 and 61) indicate
a stress concentration that restricted potential IWC performance; if this
is the case, higher ultimate-glass-filament- strength levels than indicated
in Figure 115 may be obtainable over the T5 to —425 F range.

One vessel, Tank 14, failed in the liner at the girth
weld. This premature failure was attributed to an excessive weld-joint
mismatch of 0.0Ll4 in.

Tank 8, the only one that did not sustain the intended
service-cycle testing, failed during pressure cycling by liner-head buckling.
This was attributed to the ineffective head reinforcement, which had been
designed to ensure that compressive stresses in the metal heads would noct
exceed the buckling strength. Strains measured during proof testing and
depressurization to zero showed greater-than-expected values for (a) plastic

L3




deformation of the liner in the boss vicinity, and (b) compressive stresses
in the liner at zero pressure after proofing.

2 Burst Tests

As shown in Figures 114 and 115, the p, performance was
consistent at each temperature for tanks not failing 1n the liner. Based
on the pr/w factor, performance increased 22% at =320 °F and 25% at -425 il
over the room-temperature values. On the basis of ultimate-~glass- fllament~
stress levels, performance increased 21% at -520 F and 25% at MEB F.

3. Cyclic-Fatigue-Plus-Burst Tests

A significant finding was that the tanks were able to
sustain the 100~cycle fatigue test to the operating pressure at all tempera-
tures, and then to develop high~burst-strength levels. Although one veszel
tested at T5 %F failed to achieve the 100 Po cycles (due to compressive-
buckling failure), all others passed this test. As shown in Figures 11L
and 115, the py performance was orery close to the single~cycle burst-strength
levels, except for (a) one =320 °F test vessel that failed prematurely in the
liner during the burst-test phase (probably as a result of significant over-
pressurization on the first fatligue-pressure cycle that set up a severe pre-
load between the two shells), and (b) one -423°F test vessel that failed
prematurely in the liner during the burst-test phase for reasons that could .
not be established. Data for vessels failing in the glass-FWC shell show
that both the pr/W performance and ultlmate glass-filament stresses in=-
creased 25% at -520 F and 27% at 425 F as compared with 75 °r,

No significant difference between strength levels was found
for vessels subjected to cyclic fatigue before burst testing and those
pressurized directly to the burst polnt without fatigue cycling. This
characteristic of the GFR Inconel X-750 (STA) tanks is attributed to the facth
that the pressure cycling did not subject the filaments to a full zero-stress
to operating-stress range (such as occurs in FWC tanks that have non-load-
carrying liners), but instead represented a small stress (strain) amplitude
superimposed on a much larger residual filament tensile stress at zero pressurs
after the liner was plastically deformed by the initial load.

The filament-stress conditions under cyclic fatigue are
shown in Figures 19, 20, and 21. The longitudinal-glass-filament stresses
at zero pressure after proofing amounted to about 140,000 to 150,000 psi, and
at the operating pressure to about 200,000 to 220,000 psi. Thus, pressure
cycling superimposed a cyclic stress of about 50,000 psi on the zero-pressure
filament stress of 140,000 to 150,000 psi.

The strength degradation characteristic of glass-~FWC vessels
subJjected repeatedly to large strain cycles Thus does not apply to GFR metal *
tanks.

L, Sustained-Loading-Plus-Burst Tests §
|

No degradation in vessel strength occurred as the result of
T2-hour sustained pressurization at the pp value over the entbire temperabure
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range. As shown in Figures 114 and 115, the burst strengths after such
pressurization were just as high as for tanks taken to the burst point with-
out exposure to sustalned loading. Based on the pr/W rating factor, the
performance increased 25% at -320°F and 23% at -423°F as compared with 75 °F.
The ultimate- glass -filament-strength levels were 21% higher at -320 F and 15%
higher at -423°F,

5. Glass~-Filament Strength Levels

Figure 116 shows the average values for and range in ultimate
S-HTS glass-filament-strength levels obtained in all tests of 18-in.-dia GFR
Inconel X-750 (STA) tanks in which filament failures occurred.

The average level at ambient conditions (75°F) was 320, 200
psi, which is 9T% of the 330,000 psi used for design and analysis. At -320 F,
the average strength was 393,100 psi, or a 23% improvement over the TSOF value°
At -4250F, the average strength was 387,600 psi, or 21% greater than the T5 °p
value.

The strengths demonstrated at cryogenic temperatures were T9%
of the 495,000 psi previously estimated for design and analysis.

B. PRESSURE-STRAIN CHARACTERISTICS

This section compares predicted behavior (computer design analysis)
and measured behavior with regard to stress-strain and pressure-strain charac-
teristics of the GFR Inconel X-750 (STA) tank. (Paragraph IV,E,3 discusses
these characteristics, and Section VI,B presents the test data.)

o Figure 117 provides predicted and measured pressure-strain curves
for a 75 F proof test to 2220 psig, depressurization to zero, and loading to
a burst pressure of 2940 psig (Tank 3). Generally good correspondence was
obtained. The analysis predicted that longitudinal strains would lead hoop
strains until the design of 3010 psi was approached, when they would approach
each other until they reached identical values at the design pp. The measured
pressure-strain curve displayed this characteristic.

Yielding in the hoop direction occurred at a lower pressure than
estimated, probably because the analysis assumed the metal stress-strain curve
could be represented by two straight lines when in fact the curve bends as the
liner yields. At the proof pressure, the vessel yielded in the hoop direction.
On depressurization to zero from this point, the tank relaxed down an offset,
biaxial, elastic, pressure-strain curve having the predicted slope. On re-
pressurization, the hoop-strain curve almost exactly retraced the springback
curve up to the offset-yield point, where additional plastic deformation
occurred. As the vessel-yield point was exceeded, the measured hoop-strain
curve rose to the predicted curve and followed it up to the burst point.

Yield in the longitudinal direction occurred at about the
estimated pressure, and the predicted and measured pressure-strain curves
up to the proof pressure were fairly close. The measured longitudinal
strains were less than expected at the proof pressure. On depressurization
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to zero from this point, the tank relaxed down an offset curve with the ex-
pected slope to about 400 psi, where excessive springback was noted. This
springback could have been caused by (1) compressive liner yield, or (2)

local high compression in the liner near the polar bosses that caused ex-
cessive inward deflection of the boss region, which in turn relaxed the longi-
tudinal extensometers sufficiently to produce the readings indicated at zero
pressure in Figure 117, The test-data review for Tank % in paragraph VI,B,l,a,
(2) tends to support the latter interpretation. On repressurization, the
longitudinal-strain curve paralleled the springback curve until the offset-
yield pressure was reached; from there it essentially followed the predicted
curve up to the burst point.

Computed ultimate vessel strains were compared with the measured
values to evaluate the design analysis. Figure 118 shows this comparison, for
all tanks tested at ambient conditions (75°F) that failed in the glass-FuC
shell, as a plot of calculated ultimate filament stress vs calculated strains
and measured strains. The calculated and measured values corresponded closely,
indicating that the analysis and the ambient-femperature material properties
used in analysis yielded results very close to the actual test measurements.

When the same comparison was made for =320 and -MZBOF test results,
it was found that the correlation was not as close. The measured strains were
greater than the computed strains. Possible explanations are that (1) the
plastic modulus and yleld strength of Inconel X-750 were not as well characterized
at cryogenilc temperatures as under ambient conditions, and (2) the FWC co-
efficient of thermal contraction, with the filaments oriented as in the GFR
Inconel X~750 tanks, is not accurately known.

C. HEAD-REINFORCEMENT DESICGN AND BOSS-TO-METAL-SHELL TRANSITION

The test data revealed that the head reinforcements incorporated
in the continuous windings of the FWC shell were not reducing strain there
as expected. It is believed that a contribubting factor was the difficulty, in
fabrication, of positioning reinforcements tightly against the continuous
windings and conseguent failure of the reinforcements to take thelr design
load until after some composgite straining had occurred, and not at the beginning
of pressurization. This would result in higher-than~-design strains in the
liner and higher compressive stresses at zero pressure after proofing. In
future designs, 1t is concluded, the metal shell should be designed to fulfill
the role assigned to the glass-filament head reinforcement in this program.

Several vessels failed 1n the liner at the boss-to-head weld.
This can be attributed in part to head-reinforcement ineffectiveness; but
another very important consideration is that of boss rigidity as compared
with the extensibllity of the filament-wound composite on top of the boss., In
the membrane away from the boss, both shells strain uniformly; at the transition
from the liner to the boss, however, the filaments remaln essentially isotensoid
(with their high strains ), while rigidity does not permit the thick boss to
strain with the filaments. 7This leads to a strain mismatch and relative move-
ment between the boss and the overwrap. Localized strain magnification will
occur in the transition area in order to maintain the overall strain compabibility.
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Test-data analysis has shown that the length over which this strain
magnification occurs is between 15 and 20 times the liner thickness. On the
i basis of this length and a typical boss, specific strain regions may be defined
: and a theoretical strain curve can be drawn (see Figure 119). The calculation
of a strain-magnification value is based on the matching of filament- and metal-
shell extensions (sf and 8y, respectively), which requires that

’ 6m: §f
| where the filament extension is
5f = efL
! with
1 L = (DW/E) + 20 tp

and the metal -shell extension is

where em is some function of the radial distance (R) as shown in Figure 119, which
defines the symbols.

! Assuming that the strain magnification is constant and limited to the
| region of length 20 tL, the metal-shell extension is

! 5m B em,max (20 tL)

By combining equations, the strain magnification is found to be

emmax DW
. -~ 't Iox
€r ' L

For the 18-in.-dia GFR Inconel X-750 (STA) tank,

(_*.
il

0.047 in.

%.602 in.

(w)
]
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and

€
m,max
—— 2.9

€p

Based on this information, several general conclusions can be
drawvn: (1) The magnitude of the strain magnification is considerable and
should not be neglected, (2) smaller bosses tend to reduce the magnitude of
the strain magnification, and (%) thin liners amplify the strain magnification,
which indicates that strain damping might be accomplished by a more gradual
liner taper in fubture designs of GFR metal tanks.

For maximum compatibility with the high strains in the end domes,
the metal boss should be designed to have low rigidity and be as small as
possible (i.e., the liner should have the minimum possible dimensicns that
do not plastically deform to the same strains as the isobenscid filaments of
the end domes). In practice, this would be azcomplished by reducing the body
of the boss tc the smallest practical dimensions in width and thickness. By
keeping the width small, the magnitude of the mismatch between FWC and boss
deflections can be reduced and the strain absorbed by the liner membrane at
the edge of the boss flange can be minimized. By keeping the thickness small,
the boss flange can be blended into the liner membrane over a short distance
to reduce the effectlive width of the boss.

D. PARAMETRIC-STUDY REPORT

An imporbant objective of the test program was evaluation of the
analytical methods and parametric investigation reported in Reference 1. Test
data confirmed that the parametric-study methods, results, and conclusions were
ezsentially valid. Modifications are noted below.

Figures 120 to 123 compare the parametric-study predictions with
detailed-vessel~-design values and the values measured in fabrication and
testing. As shown in Figure 120, the liner D/TL design ratioc was the same as
predicted and the measured velue was lower because of fabrication tolerances.
For the TL/TO ratlo, shown in Figure 121, the detailed computer analysis gave
a value close to but less than the parametric-study value (bszause the boss-
diameter/vesselmdiameter ratio was 0.20 for the parametric study and 0.15 for
the fabricated 18-in.-dia tank), and the measured Ty /Ty was larger than the
design value, due to fabrication tolerances. Similar comments apply to the
performance~factor data shown in Figure 122, Figure 123 presents factor-of-
safety data for the tanks. The safeby factor predicted by the paramstric
study and design analysis was achieved at 75OF9 but not at =320 and ~4250F
for reasons discussed below,

Glass-FWC strength degradation expected to result from cyclic
pressurlzation led to selection of the operating-pressure filament-shress
level as 60% of the single-cycle burst stress, so that the 100~pressurs-cycle
reguirement could be sustained. An operating-pressure deglgn-allowable
filament-stress level of 200,000 psi at 75OF, compared with an expecbted bus
presgure filament-stress level of 330,000 psi was used in the paramsbric st

o
s
!

yady .
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At -320 and —MEBOF, these levels were expected to increase by 50% to an
operating-stress level of 300,000 psi and a burst-stress level of 495,000 psi.

The cyclic=-pressurization tests at all temperatures produced no
detectable filament-strength degradation, so that the operating stress assumed
for the parametric study (EO0,000 psi at TSOF and a 300,000-psi maximum at
cryogenic temperatures) was conservative. On this basis, all parametric-design
curves of Reference 1, except those giving safety factors for GFR Inconel X-T50
and GFR 301 stainless steel (half-hard) tanks (in Figures UL and 53 of Reference
1), may be considered accurate for use in preliminary design of GFR metal tanks.

The room-temperature burst-pressure glass-FWC stress level of
330,000 psi used for the parametric study was substantiated by the test results.
The ultimate-glass~filament-strength levels at -320 and -AEBOF, however, were
about 20 to 25% higher than at room temperature, rather than the 50% increase
assumed in the parametric study. This result affected only two parametric-design
curves of Reference 1: (1) Figure 44, which presented -320 and -423°F safety-
factor curves for GFR Inconel X-T750 based on an ultimate filament stress of
495,000 psi rather than the demonstrated 20 to 25% increase (from 350,000 psi
to about 410,000 psi), and (2) Figure 53, which presented the -320"F safety-
factor curve [for GFR 301 885 (half-hardﬁ, for the same reason. These curves
should be displaced to show the lower safety factors associated with an ultimate
filament stress of 410,000 psi. It is estimated that the safety-factor curves
based on this value will be 80 to 90% of the values shown for a stress of

495,000 psi.

The other parametric-design curves for the GFR metal tanks remain

_unaffected because either (1) they were based on the design operating-pressure

conditions selected in the parametric study, which were verified by the test
program, or (2) the safety-factor curves for GFR titanium (5A1-2.5Sn, ELI
grade ), GFR 2219-T62 aluminum, and GFR 201 88 (half-hard) tanks [Reference 1
Figures 39, 49, and 53 (except the ~3207F values)] were lndependent of the
allowable ultimate-glass-filament-strength level at cryogenic temperatures
because the allowable liner~biaxial-strain capability controlled the design
burst pressure.

The structural analysis of and computer program for GEFR metal tanks
developed during the parametric study were essentially verified. Test data
substantiated that the new head contours developed for these tanks have a
1-to-1l stress field in the liner and nearly constant stresses in the filaments
up the head at the design temperature and pressure, thus satisfylng the require-
ments for optimum closure design. Analysis improvements that can be made
include provisions for (1) a more accurate stress-strain curve for the liner
(rounding during the yield), and (2) the input of a variable Poisson's ratio
as the metal shell yields past the elastic limit,
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A The principal objective of this program - analyulcal and experimental
evaluation of GFR metal tanks for service at 75 to ~M25 F - was accomplished.

B, Analysis, design, fabrication, and testing demonstrated the feasibility
and potential of GFR metal tanks. Their performance is intermediate between that
of thin-metal~lined glass-FWC and homogeneous metal pressure vessels. Adhesive-
bond Integrity during service is not an area of concern, however, because the
GFR metal tanks do not reguire a liner-overwrap bond to keep the liner from
buckling (as do thin-metal-lined tanks).

C. Proper design permits exploitation of the maximum load-bearing
capabilities of both the liner and the glass=~FWC shell and mekes possible tanks
whose performance isg significantly greater than the highest-performance,
cylindrical and spherical, homogeneous metal tanks.

D. The parametric-study results and conzlusions (reported in Reference
1) were esgsentially verified by the fabricatiorn of GFR metal tanks and eValuatlon
in burst, fatigue-plus-burst, and creep-plus-burst tests at 75, -320, and L25 B,

E. The parametric study may be used to accurately determine preliminary
de81gns of GFR metal tanks for which the allowable glass-filament stress at the
™ °F operating pressure is 200,000 psgi. A change in this desgign criterion will
change the liner and glassmFWC—shell deslign details from those given thers, bub
new designs can readily be determined with the computerized analysis developed
under this contract.

F. The 18-in.-dia GFR Inconel X-750 (STA) tanks that were fabricated
and tested demonstrated most of the characteristics predicted by the parametric
study. An exception was that the ultimate-glass-filament-gstrength level attained
in cryogenic-temperature tests was less than the increase over room-temperaturs
strength predicted on the basis of glass-monofilament and simple~composite=-
specimen tests. The following conclusions were drawn from the vessel-test
results:

1. Inconel X-750 (SmA) has sufficient biaxial dquLthy in the

parent metal and electron-beam-welded joints over the 75 to =423 O range to
perform gatisfactorily as the liner for the glass-FWC shell.

2. The average pressure-vessel burst strength et amblent tempera-
ture (75°F) was within 0.67% of the design burs® pressure and varied only
1,%30% from the average. The average ultimate glass~filament strength of
320,200 psi was 97% of the 3%0,000~psi value used for design and analysis.

3, The average increase in performance between ambient and
cryogen“c temperatures for Vessels failing in the FWC shell was 22 to 25%
at -520 F and 23 to 27% at ~425 , based on the pbv/w values for single-cycle
burst tests, 100-cycle~fatigue plus burst tests, or T2-hour-sustained-
pressurizatlion plus burst tests. Based on average ultimate~filament-stress
levels, the performance increased 23% at w5200F and 21% at =423 F.
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b, There was no significant difference between the strength
levels attained by (a) vessels subjected to 100-pressure-cycle fatigue or
T2-hour sustained loading before burst testing, and (b) vessels pressurized
directly to the burst polnt without exposure to a simulated service cycle.
For these tests the ratio of burst pressure to operating pressure was about
1.50, and the operating pressure was about 60 to TO0% of the burst pressure.

5. The tank design was controlled by compressive stresses in the
liner heads at zero pressure after proofing at T5OF. As designed on the basis
of the computer analysis, the compressive stresses did not exceed the buckling
stress allowable at the equator but did exceed the compressive-yleld stress up
the head near the boss, which gave rise to the incorporation of local glass-
filament reinforcements there to decrease plastic deformation at the proof
pressure and subsequent compressive stresses at zero pressure. The test data
revealed that high strains occurred near the polar bosses despite the lccal
reinforcements.

6. In burst tests, 18 of 20 vessels failed near the polar
bosses - 13 in the IWC shell and 5 in the metal shell. It is believed that
strain magnification occurred at the boss-toshead juncture, due to head-
reinforcement ineffectiveness and high polar-boss rigidity, and caused the
five liner failures. The other 13 vessels failed at rather consistent filament-
stress levels, but the high local strains measured in the FWC shell indicated
a stress concentration that may have restricted the potential performance of
the filaments over the 75 to -423°F range.

T Generally good correspondence was obtained between the expected
and the measured pressure-strain characteristics. As predicted, longitudinal
strains led hoop strains until the design burst pressure was approached, when
the hoop strains caught up with and then exceeded the longitudinal strains.

. 8. The tanks could be operated at 100% of the liner's offset-
yield strength (rather than the 90% assumed in the parametric study) and at
about 60 to TO% of the burst pressure in the cyclic-fatigue and sustained-loading
tests at all temperatures without apparent degradation in performance. Liner
operation at 100% rather than 90% of the offset-yield stress, if applied to the
results of the parametric study, will increase the pOV/W factors givqg there
by about 10%.

9. Although most of the tanks were fabricated without design
deviations, a few liners had girth-weld-joint mismatches in excess of the
requirements. Testing revealed that the mismatch apparently did not contribute
to failure until it exceeded 25% of the liner thickness.

G The buckling strengbths determined for Ti-5A1~-2.5Sn, 2219-T62
aluminum, and Inconel X-750 cylinders overwrapped circumferentially with
layers of tensioned filaments were in agreement with the values used for the
parametric study.

H. GFR Inconel X-750 tanks offer weight savings as compared with
existing tankage. The successful results obbained indicate that they are
worthy of serious congideration for application in aerospace systems.




I. Improved efficiency for GFR metal tanks over the 75 to -MQBOF range
will be provided by GFR Inconel 718 and GFR Ti-5A1-2.58n vessels. Their
projected performance is considerably greater than that of GFR Incconel X-750
tanks and homogeneous metal tanks., Additional studies and evaluations are
warranted to establish performance data for GFR metal tanks having higher-per-
formance liners than used in this program. The investigations should include
the use of higher-modulus filaments in the FWC shell to lower liner strains and
thereby improve performance.

J. Future GFR metal tanks should be designed so that the metal boss is
as small as possible and of low rigidity. The liner component should be designed
to fulfill the role assigned to the glass-filament head reinforcements in this
program, by appropriately increasing the liner thickness in the polar~boss

region.

K. Continued research and development work incorporating the new
technology being developed for advanced composite materials, as well as lighter-
weight high-strength metal-shell materials having adequate blaxial ductility,
will lead to tankage optimization and advanced aerospace applications.
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TABLE 2

MATERTAL PROPERTIES USED FOR DESIGN ANALYSIS
OF 18-INCH-DIAMETER GFR INCONEL X-750 TANK

Inconel X-750

Volume fraction of filament in
composite

Filament, design-allowable stress,
psi
o
At +757F
At -320°F
At -L23°F

Table 2

Property (STA)

Density, 1b/in.” 0.300
Coefficient of thermal exgansion, _
in./in.-°F at +75 to -423°F 4.990 x 10
Tensile-yield strength, psi 118,000
Derivative of yield strengthowith
respect to temperature, psi/ F -60.1
Proportional limit, psi 108,000
Derivative of proportional limit o
with respect to temperature, psi/ F -54.2
FElastic modulus, psi 31.0 x 106
Derivative of elastic modulus with
respect to temperature, psi/ F -2010
Plastic modulus, psi 440,000
Derivative of plastic modulusg with
respect to temperature, psi/ F -0.1
Poisson's ratio 0.290
Derivative of Poisson's ratio with
respect to temperature, l/OF 0.0
Maximum metal-shell biaxial
longitudinal strain at design
condition, ina/in.

At +75OF 0.0625

At -320°F 0.0750

At -423°F 0.0700

Glass-Filament-
Wound Composite

0.072

2.010 x 10‘6

leh ¢ 106

-2410

0.673

330,000
495,000
495,000



TABLE 3

DESIGN PARAMETERS FOR 18-INCH-DIAMETER
GFR INCONEL X-750 OBLATE-SPHEROID PRESSURE VESSEL

i . Parameter

Major diameter, in.
Polar-boss diameter, in.

Operating pressure (po), psi

At +T75°F
At -320°F
At -L23OF

Burst pressure (pb), psi

At +75°F
At -320°F
At -42zOF

Metal-shell thickness, in.

FWC thickness at equator, in.

3

Internal volume (V), in.

Total vessel weight
(without bosses or head reinforcements), (W), 1b

Performance factor (pV/W), in.

Based on operating pressure (po)
At +75°F
At -5208F
At -423°F

)

Based on burst pressure (p

b
At +75°F
At =320 F
At -4o3Cp

Table 3

Value
18.00

2.70

2000
2300
2350

3010
4263
4300
0.0k7
0.030

2370

15.200

312,000
358,000
364,000

469,300
664,000
670,000
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TABLE 6

AVERAGE DIMENSIONAL, WEIGHT, AND VOLUME PARAMETERS
FOR 18-IN.-DIA, GFR INCONEL X-750, PRESSURE VESSELS

Parameter

Value

Inconel X-750 Shell Assembly

Cutside diameter, in.
Overall length, in.
Wall thickness, in.

Boss weight (2), 1b

Formed-head weight (2), 1b

Total weight, 1b

Internal volume, in.5
Before proof test
After proof test

Design

17.970

14.138

0.0L4T7

(+0.010,-0.000)
3.000

12.148
15.148

2370

GER Inconel X-750 Pressure Vessel

Outside diameter, in.

Overall length, in.

FWC thickness at egquator, in.

Equivalent glass-filament thickness at
equator, in.

FWC glass content, vol%

FWC weight, 1b

Head-reinforcement weight (2 sets), 1b

Total vessel weight, 1b

Total vessel weight (without bosses), 1b

,x< .
Average for first seven vessels.

Table 6

18.0%0
14.138
0.030

0.019
67.3
3.041
0.441
18.630

15.630

Actual

17.957
1Lk.170
0.05%0

3.000
15.123
16.149

2330%
237) "

18.009
1h,161
0.028

0.020
T2

2.974
0.h4h1

18.525
16.500



TABIE 7

PERFORMANCE DATA FOR 18-IN.-DIA GFR INCONEL X-750 PRESSURE VESSELS

Burst-Pressure Stresses, pesi

Performance Factor (pV, w),* in.

Test -
Serial Temp —Pressure, psig = (g0 Liner At Proof At Operating At Burst
To. °F Type Proof Operating Burst Filament Longitudinal Hoop Pressure Pressure Pressure Failure Mode Remarks
2 75 Proof, burst 2220 - 2960 313,100 134,000 132,000 31,000 - 418,000 Liner at boss-to- -
head weld; filaments
did not fail; subse-
quent head buckling
on depressurization.
3 T5 Proof, burst 2220 - 2940 317,200 134,100 133,800 317,000 - 420,000  Filaments at boss; -
liner did not fail.
b 75 Proof, creep, 2220 2000 2630 270,100 126,300 119,400 312,000 281,000 370,000 Liner at boss-to- During burst test,
burst head weld; filaments pressure inadvertently
did not fail; subse- held at 2400 psi for
quent head buckling 1 min.
on depressurization.
5 T5 Proof, burst 2220 - 3070 322,500 136,000 135,200 316,000 - 437,000 Filements at boss; -
liper did not fail.
6 T5 Proof, creep, 2220 2000 3000 331,700 137,700 137,800 318,000 286,000 430,000 Filements at boss; -
burst longitudinal liner
fractures.
T 75 Proof, cyelic 2220 2000 2910 309,500 133,700 131,500 318,000 287,000 417,000 Filaments at boss; -
fatigue, burst longitudinal liner
fractures.
8 T5 Proof, cyclic 2220 2000 - - - - 313,000 282,000 - Buckling of liner -
fatigue, burst head at boss, 50th
pressure cycle;
fluid leakage
through liner at
boss-to-head weld.
9 -423  Cyclic fatigue, - 2350 2535 215,200 153,100 118,500 - 354,000 360,000 Liner at boss-to- -
burst head weld, with
subsequent filament
Tracture.

10 -423  Cyclic fatigue, - 2350 3700 395,100 168,400 166,600 - 335,000 527,000 Filaments at boss; -

burst extensive liner
fractures.

11 -423  Proof, burst 2000 iy 3185 318,400 156,600  1hk,100 287,000 - 457,000  Liner at boss-to- Buckled in one head
head weld; subse- only after de-
quent head buckling pressurization
on depressurizztion. following 2000-psi

proof test; during
subsequent burst
test, vessel falled
at 3185 psi.

12 -423 Creep, burst - 2350%% 3700 382,600 168,000 164,500 - 335,000 527,000 Filaments at boss; -
liner fracture.

13 ~320 Burst - - 3588  38Y4,200 162,500 161,300 - - 512,000 Filaments at boss; -
liner fracture.

14 -320 Proof, burst 2220 - 3400 357,400 157,800 153,600 323,000 - 495,000 Liner at girth Buckled in both heads
weld; subsequent after depressurization
filament fracture. following 2220-psi

proof test.

15 -320 Creep, burst - 2300 3797 423,800 169,500 172,600 - 341,000 562,000 Filaments at boss; -
liner fracture.

16 ~320 Proof, burst 2220 - 3645 391,100 163,700 163,300 324,000 - 531,000 Filaments at boss; -
liner fracture.

17 -320 Creep, burst - 2300 3538 380,700 161,800 160,300 - 336,000 516,000 Filaments at boss; -
liner fracture.

19 -423  Burst - - 3685 390,100 167,600 165,200 - - 534,000 Filaments at boss; -
extensive liner
fractures.

20 =320 Cyclic fatigue, - 2300%%% 3169 326,100 151,800 143,800 - 332,000 458,000 Leak in liner at -

burst boss-to-head weld;
subsequent head
buckling on de-
pressurization.

21 -320 Cyelic fatigue, - 2300 3554 385,500 162,700 161,700 - 338,000 521,000 Filament and liner -

burst fracture.

22 -k23  Creep, burst - 2350%%x% 3615 382,400 166,200 163,000 - 339,000 525,000 Filament failure, -
with extensive
liner fractures.

*
Where p = pressure (psi), V = internal volume after proof test (in.s), and W = pressure-vessel weight, without bosses (1b).
*

Inadvertent overpressurization to 2450 psi during creep test.

E
Inadvertent overpressurization to 2555 psi on first fatigue cycle.

TR
Inadvertent overpressurization to 2600 psi during creep test.

Table 7




TABLE 8

VESSEL-FAILURE MCDES

Tank Serial No.

Iiner |
Failure in |
Tesg Temp Filament Failure Fracture Compressive
F at Boss At Boss Weld At Girth Weld Buckling !
* é
75 3, 55 6, T, 2, b - 8 3
=320 13, 15, 161 17, 20* » 1hx* - ;
21 |
B *X¥e i
-423 10, 12, 19, 22 9, 11 - - - |
Total at .
each -
Location (13) (5) (1) (1)
*

Overpressurization during test.

*%
Excessive girth-weld-joint mismatch of 0.0lh4 in. and head buckling after

amblent~temperature proof test.

*%¥
Head buckling after ambient-temperature proof test.

Table 8
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Final Design, 18-in.-dia GFR Inconel X-750 (STA) Tank Assembly
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30 18-in.-dia Formed Head

Figures 29 and 30




Fig. 32 Half Shell in Welding Chamber

Figures 31 and 32



Assembly of Formed Head and Polar Boss with Electron
Gun in Position for Welding

Figure 33




Fig. 34 Completed Half Shell, Exterior View

Fig. 35 Boss-to-Head Weld, Exterior View

Figures 34 and 35



Fig. 36 Completed Half Shell, Interior View

Fig. 37 Boss-to-Head Weld, Interior View

Figures 36 and 37




Fig.

38 Assembly of Two Half Sections in Welding Chamber with
Electron Gun in Position for Welding

Fig. 39 Complete Metal-Shell Assembly

Figures 38 and 39



Fig. 40

Metal-Shell Assembly in Filament-Winding Machine

Fig. 41 Application of ILongitudinal
Filament Winding to Metal Shell

Figures 40 and 41




Fig. b2 Overwinding of Metal Shell
Showing Head Reinforcemeqt

Fig. 43

Completed Tank Instrumented for Testing

Figures 42 and 43



Acceptable Girth Weld

Unacceptable Girth Weld ( Incomplete Penetration )

s s et

Acceptable Repair Weld of Above Area

B

X-Rays of Acceptable, Unacceptable, and Repaired Welds

Figure uLi
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Cryogenic-Test Control Facillity

Figure 48
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Extensometer Instrumentation

Figure 49
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Figure 51

Tank 2 After Test, Top View
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Edge of head
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18. 00

Strain-Gage Instrumentation, Top View

Figure 53



Tank 3 After Test

Figure 5u
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Tank 8 After Test
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Tank 4 After Test
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Figure 78

Tank 1L After Tegt
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Tank 16 After Test
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Figure 80
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Tank 15 Pressure vs Strain During
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Tank 17 Pressure vs Strain During Creep Test (-32(
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Tank 22 After Test
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Tank After Temperature-Evaluation Test
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APPENDIX A

EXPERIMENTAL EVALUATION OF COMPRESSIVE-STRESS~STRAIN CHARACTERISTICS AND
BUCKLING STRENGTH OF FILAMENT-OVERWRAPPED METAL CYLINDERS

Investigators are evaluating several metal-liner concepts for glass-FWC
pressure-vessel structures. The concept studied in this program combines an
overwrapped glass-~filamenht shell with a load~bearing metal shell that is able
to resist buckling from compressive stresses produced by the overwrapping when
no bond exists between the two shells. In addition, when buckling will not
occur before the compressive elastic limit of the metal shell is reached, the
design must be such that this limit is not exceeded (to minimize hysteresis
effects).

To design such a structure, it is necessary to establish the compressive-
stress level at which (1) liner buckling occurs, and (2) the elastic limit of
the liner is exceeded. In the past, however, buckling data have been scarce,
and availlable analytical methods have not permitted the calculation of realistic
compressive~buckling-stress design limits.

Experiments were conducted at 75OF to determine the compressive properties
of open-ended metal cylinders overwrapped circumferentially with layers of
tensioned filaments. Stress-strain curves and buckling-faillure points were
determined for three alloys: 2219-T62 aluminum, nickel-base Inconel X-T750
(STA), and Ti-5A1-2.55n. The data were compared with other available data to
provide a means for estimating compressive-stress limits as a function of the
controlling parameters. The resulting information was compared with design
criteria used for the parametric study of GFR metal tanks reported in Reference
A-1,

I. CRITERIA FOR SELECTION OF METAL-CYLINDER DIAMETER-TO-THICKNESS RATIOS

R. H. Johns and A. Kaufman of the NASA Lewis Research Center have tested
the buckling of metal cylinders overwrapped in the cilrcumferential direction
with layers of tensioned filaments. They conducted 29 tests on mild steel,
stainless steel, nickel, and aluminum cylinders with diameter-to-thickness
(D/t ratios ranglng from 175 to 3000, and obtained five other data points
(w1th D/t ratios in the range from 320 to 600) from the literature.

Their results are presented in Reference A-2 and summarized in Figure
5 of the main text. They indicate that a straight-line correlation exists in
logarithmic coordinates between D/t and 0'/E , where o is the critical hoop
stress from overwrapping at buckling falluresand By 1scthe secant modulus at
failure taken from the stress-strain curve., The parameter ob/E is the
compressive hoop strain at buckling.

The analysis reported in Reference A-1 indicated that the compressive
elastic limit of the metal shell was equal to or very near the opbtimum
compressive-stress design point for many tanks having operating pressures in
the range from 1000 to 4000 psi. The D/t ratio associated with buckling at
the compressive elastic limit or yileld point was therefore selected as the




single most important characteristic that should be determined for each of the
three materials. Cylinder D/t ratios were chosen for the test program on the
basis of the NASA data, which indicated the expected minimum buckling stresses
were approximately equal to the compressive-~yleld strengths.

IT. TEST SPECIMENS

A. DESIGN
1. Materials

Characterization analysis of candidate materials (Reference
A-1) resulted in the selection of the 2219 aluminum alloy solution-heat-treated
and aged to the T62 temper, Inconel X-750 (STA), and Ti-5A1-2.58n for the test
specimens. Their compressive properties are summarized in Table A-l.

2. D/t Ratios

The following design D/t ratios were selected, on the basis of
information in Figure 5 of the main text and Table A-1, to provide buckling
stresses equal to the nominal values for compressive-yield strength:

Material D(t Ratic

Ti-5A1-2.58n 265
2216-T62 aluminum 325
Inconel X-750 (STA) 325

3. Length~to-Diameter Ratio

The ranges of geometries used in analyzing buckling under
external pressure included (a) snort and transition-length cylinders, (b) long
cylinders, and (c) very long cylinders, as shown in Figure A-1. The test
cylinder was designed to be sufficiently long to ensure no restraint on
deformation imposed by the radial rigidity of its end plates. The length-to-
diameter ratio was chosen as 1.5, on the basis of information in Reference
A-3% and Figure A-1, and an estimation of end effects due to rigid end plates.

L. Diameter, Length, and Thickness

A diameter of 12 in. and a length >f 18 in. were selected for
the test cylinders. Sheet material was purchased to the closest available
thickness that would approximately permit the required D/t ratio at D = 12 in.
After it was received, its thickness was accurately determined and cylinder
diameters were chosen to yield the required D/t:



Required Measured Required Cylinder
D/t Thickness, in. "~ Diameter, in.
2219 aluminum 325 0,040 13.00
Inconel X-T750 325 0.041 13.32

Ti-5A1-2.5Sn 265 0.0h41 10.88

B. FABRICATION

Three cylinders of each material were fabricated. Constant-
thickness -sheet was used because these alloys have high welded~joint efficiencies
[90 to 102% for Ti-5A1-2.58n, 100% for 2219-T62 aluminum (welded in the T31
condition and solution-treated and aged to T62) and 100 to 105% for Inconel
X-750 (welded in the solution-treated condition and aged after welding)].

The sheet was roll-formed to the proper contour and the ends were
joined to form the longitudinal weld joint. The rolled cylinder was supported
by tooling during tungsten inert-gas (TIG) welding, and all weld beads were
ground flush on the inner and outer surfaces.

The weldments were then subjected to 100% radiographic inspection.
The propagating defects noted were ground out and repair-welded. After re-
inspection, the cylinders were given the applicable heat treatment and were
X-rayed again to ensure freedom from propagating defects.

Two cylinders of each material were selected for testing; their
characteristics, including the heat treatment used, are summarized in Table
A-2. The six cylinders are shown 1in Figure A-2.

III. TEST PLAN
A, INSTRUMENTATION

Unilaxial and blaxial strain measurements were made at four 90O
intervals around the interior of the cylinder approximately at the longitudinal
center, as indicated in Figure A-3. Two active longitudinal gages and four
active cilrcumferential gages, with an inactive counterpart for each, were used
(a total of 12 per cylinder). The strain-gage measurements, together with one
temperature measurement and one pressure measurement, were made through hermetic
seals in the cylinder-support tooling. A slip ring was provided in the tooling
so that these readings could be taken continuously or intermittently during
filament winding and testing without breaking the electrical circult.

Constantan foll-type gages on an epoxy carrier with an effective
gage length of 0.5 in. were used [Baldwin Lima Hamilton FAB-50-35 S-6 and
S-lB]. They had temperature compensations of 6 and 13 ppm/oF for titanium,
nickel, and aluminum. For good results in the low elastic range, an active-
dummy half-bridge configuration was used to compensate for temperature changes.
Figures A-4 and A-5 depict a typical installastion of strain gages on a
cylinder and of the cylinder on a portion of the support tooling.




Continuous~-recording equipment was used to obtaln strain, pressure,
and temperature measurements during winding and testing.

B. EXPERIMENTAL PROCEDURE

Buckling studies had formerly been conducted by winding on a
cylinder until collapse occurred. If the cylinder buckled before the elastic
limit was reached, stresses could be determined from the measured strains and an
assumed modulus-of~elasticity value. If the cylinder buckled above the elastic

limit, external loads and the resultant stresses were estimated from the filament-~

winding tension and the number of filaments applied. This approach has inherent
inaccuracies because (1) the winding-tension measurement is not exact, and (2)
the tension in already deposited layers decreases as the cylinder is compressed

by additional layers.

The test procedure in this program employed a pressure mandrel for
support during overwinding. The use of internal pressure to counterbalance the
winding load made it possible to determine exactly the external force on the
cylinder from the overwindings at the start by pressurizing until the metal
strain was zero. This pressure was equal to the external pressure., Recordings
of pressure decay vs compressive strain were then used to accurately determine
compressive stresses vs strains.

After the cylinders were strain-gaged and assembled to the pressure-
mandrel tooling, the unit was positioned in a winding machine and electrical
connections were made to the slip ring as shown in Figure A-6. The test
assembly was connected to a portable, self-contained, hydraulic, pressure-
mandrel system 8nd was filled with a liquid.

Zero readings were taken on all strain gages. Following the
pressurized-mandrel concept, the internal pressure was increased to balance
the applied compression loads as filament layers were applied under tension.
Dacron filaments were used because (1) they could be wound at relatively high
tension, and (2) the applied tension load would be relieved very slowly as the
cylinder compressed because of the low modulus of elasticity of the filaments.
After the winding of each layer, the internal pressure was increased to bring
the circumferential-strain-gage readings back to the original, siress-free,
reference point. Sufficient layers were applied to induce high compressive
stresses 1f the internal pressure was removed.

The internal pressure was gradually reduced after a glven number
of layers were wound and after pressure adjustments to bring the strain-gage
readings to the initial, stress~frse, reference point. The strain and internal
pressure were recorded continuously. Because there was concern that a positive
pressure inside the cylinder would tend to retard buckling, the initial de~
pressurization cycle was scheduled to occur before enough filaments had been
applied to buckle the cylinder. If the cylinder did not buckle when zero
pressure was reached, it was repressurized to the original reference poilnt,
and additional layers were applied. The cylinder was again depressurized, and
this sequence was repeated until it buckled.

A-h



In the first test, the cylinder (Serial No. 3, aluminum) buckled
on the first depressurization cycle. In all subsequent tests, from two to
nine cycles were needed. Table A-3 summarizes the overwrap data for each
cylinder tested, including the winding pattern, tension, number of layers,
internal pressure, and maximum compressive stresses and strains.

Iv. TEST RESULTS

The buckling characteristics in all cases were in excellent agreement
with the predicted behavior, as determined from the correlation established
by NASA (compressive hoop strain (o-/ES) Vs D/t ratio] and shown in Figure 5
of the main text. This agreement 18 shown in Figure 6 of the main text, where
data from these cylinders are compared with other available data.

All the cylinders buckled in the longitudinal seam weld at high stress
levels (see Figure A-T). All were cusp-buckling failures. No metal fracture
occurred in the Inconel cylinders, but metal fracture occurred along the weld
seam in the titanium and aluminum cylinders after snap-through of the cusp
buckle. This failure was usually accompanied by leakage inside the cylinder,
followed by additional liner collapse and tearing due to the action of the
highly tensioned, low-modulus, Dacron filaments (shown in Figure A-8).
Figures A-9 to A-1L show the buckled cylinders.

A. PRESSURE-STRAIN DATA

Figures A-15 to A~20 plot cylinder-mandrel pressure vs average hoop
and longitudinal strains. Compressive strains in the hoop direction were
accompanied by tensile strains in the longitudinal direction, as was expected
from the Poisson's-ratio effect (longitudinal extension resulting from
circumferential compression). For the titanium cylinders (Figures A-19 and
A-20), the longitudinal tensile strains reverse and go into compression as
high compressive stresses are developed in the hoop direction. A possible
explanation is that the axial restraint on cylinder extension imposed by the
tooling caused the longitudinal compressive strains.

B. STRESS~STRAIN DATA

Hoop stress-strain curves were developed from the pressure-strain
data. They are shown in Figures A-21 to A-25, along with estimated stress-
strain curves. Incomplete data precluded a stress-gtrain diagram for the
Serial No. 2 titanium cylinder. The curves were determined by calculating
the stress at various internal-pressure levels, using load and strain compati-
bility equations. The only assumptions required were (1) a value for the
elastic modulus of the metal, and (2) elastic behavior of the filaments from
winding to buckling. Provision was thus made for load relaxation in the
tensioned filaments as the cylinder compressed. The computed metal stresses
were checked in the elastic region by the principal stress equations:
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and

where

o = —— (e, +me
1 2 ( 1 2)
lem
g )
o, = €. +m €
2 5 %o 1
l-m
oy Oé = principal stresses
8, €5 = principal strairs, from pressure-strain curves
m = Polsson's ratio
E = modulus of elasticity

The stresses compuated by the two methods agreed well.
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| ~ TABLE A-1

COMPRESSIVE PROPERTIES FOR METAL CYLINDER MATERTALS

Nominal Value, psi, at TSOF

Proportional Yield Modulus of

Alloy Limit Strength Elasticity
Ti-5A1-2.58n

Normal grade 92,000 120,000 15.5 x 106

ELT grade 90,000 105,000 15.5 x 106

2219-T62 aluminum 36,000 44,000 10.3 x 106

Inconel X-750 (STA) 108,000 120,000 31.0 x 106

Table A-1




T
*ON T®BIXSS

Table A-2

se oweg 19 6T6°0T  096°0T nhmwrmmm
Lytsoxod I,00TT 2® (v uotgtrsod
"UT-QTO°0 gIndy g JITe -wo) ‘IT =odAT
SuUO J0J UT PeASTITSX ¢ oH06~1~TIN)
1dsoxs ‘ouweg ¢26°0T 096701 =88aJ11g ugG e-Tvé- 1L
PSTOOD
-ITB puUB
¢ 3Inoly 0g XOT
A 00¢T 2ae
Hﬁmogﬁ Pede
¢paToO00=~ITB
‘I 68 G29T  (98LL-N-TIN)
sweg e AS A con ¢TI e sanoy 4 PeTB3UUEB PUE
ITB UT DPOZIT PETTOI-TOOD
[ueg LEC-¢T 20t ¢T -enbe=-gssa3g ‘06L-X TouOOUT
(£,05T
¢HO"¢T  0Q0°¢T ¢ ‘pagauanb
R 8 = -zs3en) ggo9  (026g-V-TIN)
Lytrenb pram ~H-TIH xed  0-6T22 LOTTV
£10308ISTYRG QT¢ A 1THO"O 010”0 gho"¢T 0G0 ¢T (4 UOTATLUCD 29 WU TWATY
SYIBUSY PoINSEI USISD( PSINSES)y USISHI paJanses) USIsaU "ON JUTPTaM 4511Y TBTLI2UEN
_ 0 a8elsAay o8BIoAyY TBeTx AUSWLBSLT, ISPUTTLD
°T18g 3/ d "UTY(3) SSOUNOTUL ‘ot onQv -3G 5e9

I298WeTd 9pTSIn0

HEMNTTED TvIEN 40 NOLIJTHOSHA

c-V H14Vd



‘BurTyong JspuiTdo arxoFeq - ZH pum ‘T
‘gg ‘€¢ ‘ge ‘S8 ‘¢@ ‘gT ‘ST sxsdwt
deIstaso 38 - 897940 uoTquzIIngsaxdap
suly -SuTaol 85873 usUy ‘srafeT

92 98ITF FUTPUIA JOF POST UOIOBQ

*0I9Z 04 POSBAXDSP axnggaxd
uoyM paTong '8I94BT T2 39 9 970K
f81ed 0gLT Pue sIof®T 6T 38 § ST0LD
£318d QOST pue SI2AWT LT 98  oT04AD
f8ted ShET puw sxadwy ST 98 ¢ STOLD
f81ed QSTT puw 8IaL8T ¢T 3% g 314D
¢918d QOTT Pu® sxafeT TT 98 T oT0L)

*9ted GT
09 pasBaXosp aanssaxd usUM paTIONG
+878d OZTT Pue SId9LT 22 38 § STdAD
f81sd 0gé puw SI9L€T Oz 38 G 9[VLD
£878d 006 pue sa9kel QT 4 4 STOAD
f91ed 0og puw BIaLBT LT 38 ¢ OT0LD
f818d €0g pus 8I949T 9T 38 g ST04D
f31sd 2h) puw sxeisy ST 3B T STOAD

‘oasz
0% paswBaIosp aIngsaxd usyM pITIONG
-81ed 0¢g pus sxaf®T 9T 98 g 924D
¢81sd 22l pue 8x8LeT KT 38 T ST0AD

*378d &g
09 posweaIddp amssaxd USUM paTIong
-3red 094 puw saakel ), 38 T 9T0LD

*0I9Z OF PoIBaIVSp aInggard usysm paTIoNg
“918d G0G puw sXaLBT 6 1B 4 STOLD

f8ted Ggh puw sxsfeT g 3B ¢ 9T2LD {Brsd
0l¢ puw sxafsy L 948 g 9T9A) fF1sd OT¢
pus saeker g 38 T oTPAD uolgwzramssaxdsq

LTI

*dBIATaAO T8309 90UETBQISIUNOD OF uo.n._.dd&**
~Tofwy Jod youy Iad SPUBIYE 09 = UILSyed wnﬂcnﬁkn.mmﬂucvuv.ﬂgohﬁo*

(gumnoo
PUS-0Z)
SuTAOT
998T3-9
2T10°0 - 0002 G - anyd ¢ smsg g
0g00°0 000°¢0T 0zLT 61 - amsg T ug§ e-Tye-TL
6€00°0 000°6CT 02Tt 22 9 swmeg 4
(vas) 0Sl-x
2¢00°0 00066 0¢g 9T 9 swsg T Tsuoour
Q7000 002“s¢ 09% L o] sweg <
J9Tusp 00TT
uxek 26 TWUTTMLR
0500°0 006°¢h (2] 6 9 odfy uoxoeq ‘2 296122
“UT/ Ut Ted g1sd sxaleT PUBILS SJUTPUTAIIAD "ON TOLIS9E
uTsIlg sgaIqg }xoanssaxg deiarang \n_H qQUaWETTL TEEIog ZIPUTTLD
TOTSSaXAWO) BUTTHONG, TBUISUT UoSsuRL
SuTpuTh

% SHHANTTED TVIEN dEIIVEMHEAO NO VIvd

¢-¥ TIdVL

Table A-3




2INSEdII TRUWISXH JIopu(] SASPUTTA) JBTNOIT) JO Jurlsong Jo
UOTQBTNOTRY) UT POS[) SOTILDWOSY ISPUTTAD JO S3usy

1/ a
000°0T 0001 001 0T
v
\W\\\\ - % ) \lv..ﬁr
L1 L] e \ A
\\\\\\\\\\\\\\\\\\\\\\\ 4B eV P f A IHJIMVYIUIIV
oA - ~ 00T > Alv \
AT \\\\ A af U5_: ,wms.,__m —
- = ~uopisued )

\\\\\ \\ \ \\ v PP \\XV\\
d L

< \“ §%a \ g P “\
ydapd P
2db Ve ) \L y A \ g d \“
rdPd \\ yd _lmvwmvvm.“.os B x\

sJapul]ky buot ”
1280 A A | /
% - %
\M\\\ \\\\\\ 2apy \\\\ \\\\\\\V
4

wisles L L e
1 : -— G —
A v \ 5 g5 \ AN
AT I 7 s1apuijhy bua Aiap
I ssauyoluL = 1 pd P \\
-t snipey = J » >
[ Jaeuelq = @ A \\
1 yjbue = A A
A L A

01
11
A

€l

14

a/n

Figure A-1



WNINVLIL

£pngg Burryong J07

WNNINNY

SISPUTTAD

T3NOONI

Figure A-2




SUOT]RO0OT 238H=UTBIALG

ujedys |euipnyibuo] ainsesw 9-95 0} 6-95 sabeg
ujelys dooy ainseaw p-9g 0} 1-9S sabes :S310N

9-9S
p-9S

¢-9S

€-9S

Figure A-3



Strain-Gage Instrumentation

Figure A-4




Cylinder Assembly to End Plate

Figure A-5
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Figure A-6

Cylinder and Tooling Assembly in Winding Machine
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Buckled Cylinder with Portion of Windings Removed




Alvuminum Cylinder 2

Figure A-9



Aluminum Cylinder 3

Figure A-10




Inconel Cylinder 1

Tigure A-11




Inconel Cylinder 2

Figure A-12




566-157

Titanium Cylinder 1

Figure A-13




Titanium Cylinder 2

Figure A-1l4




aanssadg sa uotrssaxdwo) dooH ‘g JA9PUTTAD WNUTWNTY

Al | g
1E679-Y ~SYH -

"0 4E

TR - IFHANEE

YL ﬁaﬁ _

- . s
DI SN - PR DI S L

Figure A-15, Sheet 1 of 2



sangsald SA UOTSUSI TBUTPNITBUOT ‘g ISpUTTL) WNUTUNTY

N

ay s

t

]

e

i
e
i
!
i

VU PR &

Tigure A-15, Sheet 2 of 2




sansgald sa uoTssaxdwo) ‘¢ JOPUTTAD UMUTWNTY




aanssaig sA uotssoadwo) ‘T ISpuUTTLD TaUOOUT

TR

¥

1

P
LR

!

;
1

|

.

‘
1

I

BN SV

i
1

[

i H '
i : i S
ot . ] :
* T 1
i t [ | -
+ t i i
i .. | .
+ DU i J I
R . ; :
: . ;
ol i J
L { |
T T T '
: : ;
T .
M 1

L F N
fi%ii [N iw,Tr

= =
1 : {1
i | (DR
R R
| [
b
'
i i

i
: 1 =
, g S
! ' e
S oy
: R P o l. IS e y._f
_“ : : , N
YR C T M 3 _ ” T :
L1 8384 u . | i | u
Yol ; Lh . R S B DU S S
B0 P R IS , ! T 3 K
oN '39HI3IYeD u M | B 5 [
o M | 3 R
i EEE SV S0 T N S SO (TSN IR
i “ i ! P
, ! ; I
; T ! =
! : i . :
DU T T AR D RS N T
_ w | SR

Figure A-17




a2ansgadd SA uoTsssxdwo) ‘g ISPUTTAD Tsuooul

Figure A-18

ST N AR i : , ! ] o
WV!LU.,:.,.,,.WW|H1wr.xw“yltiw!vw!i SEEESRRNES SN RSN ERUN pE : . SO E N
b e N P . S xdiden | S e R 3 ” o : ;
.f‘,,. — Tt I = Aﬂﬁ\‘ﬂ e - ; - : :
%060 | ‘€00
- b //fl/%%/ R
; : ! . Jw/ :
Lo N Sl
' [ N
: .,,.W R i . - e e et T h”.w!w . ,l.wr -
oo ; “ , . : M
f i H _ i . .
W i ; U
e s et s T e
: - : —¥g
ORI LRI O AN I “, -
S e il S I S I s S S Bt e - o
.“ “ | | 2
E .. ! bos T g
i | H . : w3y
. . ; ! L ).
! ; : 12
: ; ! ,, e
! JEDIEE D SN SIS N SRS N S V. 50 S .
: . m : 008
| w
RN ER R : o . , : o
Lo s ! o I : ” : : e | Lo : o o L
T e R T e N I O NS IS S RN 111 O I
L .ﬂl o Lﬂ_i.}i,:‘w11‘ @&vﬁwammwﬁg. xww . e N LN T B ST S s ST SIS
. 176594 ~8YN {ON aIgx3Uo ; . : : . : i ; Co S .
i e TSN Hwﬂmﬁ%m w T “ ‘ |
e L tljbm%m‘%@@p«w&ﬁmﬂﬁ%@m bt T L . B T S Py e
S EBAR ONITDNOOAE TAISEHEANOD | m : SR R S m : L
T ) A NOR | I VEENAD=IEIOEEY [ ] , ” , _ - m m Bk 006 _
; Do [ A ; | : 4 |




2anssadd sa uoTssoxdwo) ‘T ISPUTTLD UMTUBLTLT

5 S [RETIR FETET IS )
wmuwm@owH A EReo IR - J
ddog | - e ; : ; .,
DU N S SRS SRS GV JE S S .
500 CE00C0 : .
— e 5 ”
! !
i g i
; %
: ,wﬂ SN
m & i
i <
[ o
B R ~
; : =
ol : &
: M 008 ' [y
W 0051 T
: _ 0091
| : A ” . 00T ”
“ _ o i , P
- . SIS it P L SO B ‘ . Aol :
] , :
: | t

THV 07 desEa | T | | “ T T T
1;mnnm...mnrm.m.mn.mf1411r B e ST REERE RN ERE et . Ll . s T R UV R I

g-gvN |°oN 39sazmoy | m | ” A : , Lo ﬂ : ;
1 -ON [Sepulfdn. . ; - ; M ” ' ” “ m N N '
SIE = EAVEEERVE [ e e . B T T IRl EEEEE RETY PR o s Rl SRR FIECE NN St ERC O
g T HATHSTEIHO | 4 ! ! W ;
T 0MA [ NOTIVHOJNOD TVEENID- : m M ” :
| ' i “ ” : : m .




e "'i‘"'f“,"'—“’ )
& ﬁ

sansssxg SA UOTSsaxduo))

J‘
|
R
VTR A
: !
|
i
¢

‘C aopurTd) umTUuERLIL

u&%ﬁ%ﬁ mgm :
3 #8 0

|
e ey

: | :

Lol
P

R

Lo

SN SEE
N

trvr ot o et

=+ f#wl.w xbm e R ¢ Q&:ﬂl|

Seniognoaon

i

PO SIS

0

R RR IR
R i
| H
b
BN S
i

'qw;p;

o

I

 amassad
o

i
'

.

i

Figure A-20



60 x 10° l

: Minimum design
| allowable buckling

50 | strain.

Typical uniaxial Bucklex)t 4

|
stress-strain curve |
| R 4
40 I < / 3
| | > /

30

Hoop Compressive Stress ( psi )

/ ]
20 _—Wﬁ7§ 7
/
)//5'/

10

Vad

. 002 .003 . 004 . 005
Hoop Compressive Strain (in./in. )

Compressive Stress-Strain Curve for Aluminum Cylinder 2, Buckling Test

Figure A-21




60 % 10°

Hoop Compressive Stress ( psi )

!
'-Minimum design
= allowable buckling strain
50 | !
| Typical uniaxial
| stress-strain curve
I b
40 a T
Proportional limit ——\}W/
g
30 L4 Buckle
. . /4l
Cylinder stress-strain ¥
l
I
l
I
l
l
I
|
I
. 001 . 002 . 003 . 004 . 005

Hoop Compressive Strain (in./in. )

Compressive Stress-Strain Curve for Aluminum Cylinder 3, Buckling Test

Figure A-22




120 x 10°

l ' ~Buckle __--4--~
170 L Minimum design allowable — -
buckling strain ‘ ,,f’ﬁTypica,
100 2 uniaxial
% J A4 stress-strain
A Cycle 1 i curve —
2 % //’ |
g 10 |
= ,7 |
)
2 60 ///,/ |
& |
S 50 / i
8 Y/ |
§ 40 / 1
T 30 i |
20 | // | ;
| |
10 // | |
|
0/ |
-10 '
. 001 . 002 . 003 . 004 . 005

Hoop Compressive Strain (in./in. )

Compressive Stress-Strain Curve for Inconel Cylinder 1, Buckling Test

Figure A-23




Hoop Compressive Stress ( psi )

150 x 10°

140

130
120
110

2

" buckling strain

Minimum design allowable —

—

/’ \—Typical |

uniaxial ~
stress-
 strain curve
4,
| | i
. 002 . 003 . 004 . 005

Hoop Compressive Strain {in./in. )

Figure A-2L

Compressive Stress-~Strain Curve for Inconel Cylinder 2, Buckling Test



130 x 10°

120
110
100
90
80
70
60
50

40

Hoop Compressive Stress { psi)

30
20
10

0

___ allowable buck?ing strain— >

| T
Minimum design

o -

mea,im_ ,in I

4 "--—v4<¥T ical
e u)l?laxml
1:/ stress-
{ Buckle strain

curve

. 006 . 008
Hoop Compressive Strain (in./in.)

Compressive Stress-Strain Curves for Titanium Cylinder 1, Buckling Test

Figure A-25




APPENDIX B

COMPUTER PROGRAM FOR ANALYSIS OF FILAMENT-REINFORCED
METAL-SHELL PRESSURE VESSELS

This program analyzes and designs complete metal-lined tanks filament-
wound with either geodesic (helical) or in-plane patterns along the cylinder
and over the end domes and complemented by circumferential windings in the
cylinder.

It establishes the optimum head contours at both ends, computes the
filament and metal-liner stresses and strains at zero and design pressures,
establishes the hoop-wrap thickness required for the cylindrical portion, and
computes the weight, volume, and filament-path length of the components and
complete vessel. It also determines the stresses and strains in the filament
and metal shells throughout service cycling on the basis of a series of pressure,
composite-temperature, and metal~liner-temperature inputs.

I. ANALYTICAL APPROACH

The analysis 1s based on assumptions that

A, The filament stresses are constant along their length,
B. The metal-liner stresses are constant in the meridional direction.
C. Equal strains are produced in the hoop and meridional directions at

the equator of the head and in the cylinder with increases from
the winding pressure to the design pressure.

D. The liner thickness 1s constant to permit ease of fabrication.

E. The effect of the resin matrix is negligible (a netting analysis
can be used).

F. Filament rotation is negligible with increases or decreases from
the winding pressure.

G. The head~contour radii of curvature differ negligibly between the
unpressurized and pressurized conditions.

H. The stress-strain relationships of the metal liner can be represented
by two straight lines (i.e., primary and secondary moduli ).

I. The stress-strain relationships of filaments can be represented
by a straight line.

J. Poisson's effect is negligible in a filament-wound composite.

B-1




K. Poisson's ratio = 1/2 in the plastic range of the mebal-liner
stress~-strain curve,

L. The metal-liner biaxial-yield stress eguals the uniaxial-yleld
stress in a l-to-l stress field.

The filament shell is subjected to a netting analysils that assumes
constant stresses along the filament length; both geodesic and planar winding
paths are analyzed. The structural contribution of the resin matrix in the
filament shell is ignored. That shell and the metal shell are consldered in
combinstion by equating strains in the meridional and hoop directilons and
adjusting the radii of curvature to match the combined material strengths at
the design pressure. The heads are designed first, and the cylinder is
desligned to complement them.

Cnce the vessel design 1s fixed, another anslysis 1g used to determine
stresses and strains at any temperature and pressure condition. Temperature-
varlation effects are accounted for by inputs of thermal coefficients of
contraction and changes in various physical properties of the shells. For
this analysis, the end conditions are the primary concern and it is assumed
that the physical-property changes are directly proportional to the temperature.

In general, the metal-shell compressive hoop force imposed on the head
at a zero internal pr@ssure by the composite cannot approach the liner's
meridional compressive stress because of filament-shell strength components.
The difference in relative rigidities in the hoop and meridional directions
is most noticeable at the eguator of the head at a zero pressurs. The hoop
force applied there by the filament shell is extremsly small in comparison
with the meridional force, because the wrap angle (a) is small and the hoop
force 1s egual to the meridional force times tan a.

The forces in the filament shell have o balanﬂe those in the metal
shell, and it is impossible to induce equal compressive stresses in the

liner in all directions except when ¢ h5 or when The wrapping tension and
pressures are zero. Consequently, the analysis does no+ regqulre that the
head stresses be egqual in the hoop and meridicnal directlions, but does

reguire that the strain changes be equal in those directions at the equator
of the head with increases from the winding pressure to the design pressure.
When the liner has rigid mandrel supporb during overwrapping, equal strains
(and hence equal stresses) are produced in the hoop and meridional directions
at the equator of the head and up the meridian of the head, and in the hoop
and longitudinal directions of the cylinder.

IT.  PROGRAM

The program includes four functional parts for use in pressure-vessel-
design and service-cycle-history analyses.



. -

A VESSEL DESIGN

The first three parts of the compuler program analyze and design
complete pressure vessels, wound with either geodesic (helical) or in-plane
patterns along the cylinder and over the end domes and complemented by
clrcumferential windings in the cylinder.

The program inciudes as input material properties and various
geometric parameters, metal-shell and filament-shell material properties,
filament and longitudinal-metal-shell stresses at the winding condition, and
design conditions of temperature. It also has the following seven optional
variables, of which four must be input: (1) the tensile hoop strain in the
metal shell at the design pressure, (2) the tensile longitudinal strain in
the metal shell at the design pressure, (3) the filament stress at the design
pressure, (4) the design pressure, (5) the metal-shell thickness, (6) the
filament-shell thickness at the equabtor, and (7) the metal~shell hoop stress
at the winding condition.

The program establishes the optimum head contours at both ends;
computes conbtour coordinates of the vessel's neutral axis, and inner and
outer surfaces; computes the filament- and metal-shell stresses and strains
at the winding and relaxed conditions and at the design pressure and operating-
temperature conditions; establishes the metal- and filament-shell thicknesses; and
computes thé filamént-psth length for the components and complete vessel, The tarnk
may be designed to a specific condition of pressure and of metal-shell and
composite temperatures, and stress and strain calculations for the design
will be as established by these conditions. All information at a zero
internal pressure assumes room temperature; should zero-pressure information
be required for other temperatures, the pressurization-history analysis
noted below may be used.

in addition, *the program (1) optimizes the overall vessel by
designing the cylinder section to complement the head design, and (2)
calculates the weights of the metal shell, filament shell, and entire
vessel; the surface arsza and conftained volume; and the vsszel performsnce
factor, pv/u.

B, SERVICE-CYCLE HISTORY

The fourth part of the program permits analysils of the shrescses
and strains in the filament and metal shells during the opsrating history
of the wvessel through the Input of a series of pressurss, composite tempera-
tures, and metal-shell temperatures. It permits analysis of pressure and
temperature cycles on the wvessel, taking into account previous strains and
loads.




APPENDIX C

METAL-BOSS ANALYSIS

The metal boss (Part No. 178089) is fabricated from nickel-base alloy
Inconel X-T50, which is solution-treated and aged after being welded to the
metal shell, The significant dimensicns of the boss for this analysis are
given below (only one side of symmetrical boss shown).

il g 2, [0 e oy
; , 0.190~32 UNC-28 by 0.312 in,
i e 2 920 game / deep, ten places equally spaced

W

I. MATERTAL PRCPERTIES

Inconel X-750 (STA) has the following strength properties:

Strength, psi

75°F -320°F ~403°F
Ultimate, T, 165,000 210,000 225,000
vield, T 105,000 128,000 130,000
Shear, F_ 105,000 128,000 130,000

II. DESIGN CRITERTA

‘ The metal boss 1s to be capable of sustaining the design burst pressure

f of the GFR Inconel X-750 tank (Part No. 178091) at 75, =320, and -L23°F service
temperatures. The design burst pressures (py) are 3010 psi at 75°F, 4263 psi
at -320°F, and 4300 psi at -L423°F,

The required margins of safety for the boss design are 0.25 for flange
shear and bending, and 0.50 for bolts and bolt threads.

C~1




IIT. ANALYSIS

Only the most critical section of the boss, located at the base of the
flange, was analyzed, Stresses there were determined by using the conserva-
tive assumption that the flange is a flat plate with a concentrated annular
load and a fixed inner edge (the body).

W
—  Body W

o
O
o0
[i7}
by
!_I
@
=
[4e!
M

(2.70 in. )

W

The end-Tor-end wrap pattern of the longitudinal filaments produces a
rigid band around the boss that supports the flangs. The load applied (W)
is the reaction of the boss flange bearing against the composite structure.
The total load is therefore equivalent to the pressure acting over the area
within the reaction circle. The diameter at which the load is assumed fo
act (Dy;) is (from Reference C-1)

D o= € 2,5 W.
Dw (1 + f}l) DO + 2.5 s
where
%1
€ = -~ = filament strain at ultimate stress, in. /in.
£,1 Ef :
Oy = ultimate filament strength, psi = 330,000 psi at TEOF}
? and 495,000 psi at -320 and -423°F
Ef = filament modulus, psi = 12.4 x lOb psi at 7505, and
13.6 x 10° psi at -%20 and -423°F
W = filament-winding-tape widith {= 0.323%3 in. from Figure 16

of the main texth)
A, FLANGE BENDING

The bending strsss ab the Junﬂ+J of the flange and boss
calculated in accordance with formulas for loadlpg on a fiat plats (Re
C-2, Case 22, p. 201}

(I —
G
M
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flange thickness, in. = 0.312 in.

Solving the relationships for conditions at 75, -320, and -4250F,

-
£l 330,000 psi -2 .
‘ Op = l = g = 2.68 x 10°° in./in.
B TE Be 1 15%F 10.h x 10° psi
e o & = 195,000 psi = 3.6k x 10—2 in. /in.
’ -2 o 13.6 x 10~ psi
-423°F
D, lqsop = (1 +0.0268) (2.70) + 2.5 (0.533) = 3.602 in.
Dy |30 = (1+0.036%) (2.70) + 2.5 (0.333) = 3.652 in.
-423°F
D
o M _ 3.602 _ ~
Pao 75°F D, 15%p - L= 2,700 1 = 0.355
D
~ . _ 3.632 .,
Pee | 3208 T D) | o 1= o T 1 =03
")4-25 F —LL23OF
T Py Dw2 1l (5010) (3 602)2
Ylpsr = TR 75°F " = 30,600 1b
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2
W) sp0%p = © (”265)h(5'§5g)A = 14,100 1b
2
W _ypsop = C (4;09£ (:652)" _ 1,400 16
Paa ¥ (0.335) (50,600)
S l75°F = —o o = - é = 105,000 psi
t T5°F (0.312)

The margin of safety (M.S.) is given by

Thus,

_ 165,000 _ _
M.S.I 75°F = Tosoo00 ~ L = 0:210

(0.343) (B4,100) _ 1e6 000 psi

fo o, =
b {-320°F (0.312)2 |
210,000
M.S. |-52OOF = 156,000 " 1 =10.345
(0.343) (44,%00) .
o ' Op = —=2 = 156,000 psi
b | -423°F (0.312)2

220,000 B
M.S. ’_hEBOF = T56°000 - L = +0:410
B.  FLANGE SHEAR

The shear stress in the boss flange is gilven by
o - TN
s Lt

C-b




Thus,

(3010) (3.602) _ 8,675 psi

o o) =
s|75°F (x) (0.312)
From
Fsu
M.S., = — -1
o
g
105,000
M.S. O, = ——818—— -1 = + HIGH
™F 5075 —_
_ (k263) (3.632) _ :
O-S -32OOF = (LF) (0.512) = 12,)—4-00 psi
128,000
N SRS A -
M'S'I—BQOOF = 15300 1 + HIGH
_ (4300) (3.632) .
O'S -L!-25OF = (4) (0’512) 12,500 psi
_ 130,000 _ B
M.S. -MEBOF = 12,500 1 = + HIGH
C. FLANGE THREADS
The shear stress in the threads (oy) was determined from
2
S e -
st T L Nax D, 4 (0.5)
where
D.bC = bolt-circle diameter = 2.32 in.
N = number of bolts = 10
Db = bolt diameter = 0.190 in.
y) = thread grip length = 0.285 in.
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Thus,

(3010) (2.32)? e

%t

From

e

=

[65]

1]
mql
pars

1

—

o . 105,000
75°F 15,000

M.S. 1 = +6.00

4263 (15,000) = 21,300 psi

%+t|-320°F T 3010

128,000

=S i - .
M.S. T +5.00

-320°F

- 4300

°ét|-423°F = 3610 (15,000) = 21,400 psi

130,000
21,500

)
Il
+

.0

M'S'l—MEBOF

D. BOLT STRENGTH
The load per bolt (L) was calculated from
2

pb Dbc m

L = =77

For SPS-B-186 No. 10~32 bolts with a tensile strength of 200,000 psi at ambient
temperature, the ultimate tensile load per bolt (Ltu) is 4000 1b at 75°F and

4400 1b at -320 and -L423°F.

75°F = T (10) () (0.190) (0.285) (0.5) - 17,000 psi




e e g e 2

Thus,

2
10 . T
L‘vsop - SR - o

From

_ kooo

M.S. TSOF = 1270

-1 = +2.15

!

. k63 _
520°F T 3010 (1270) = 1800 1b
4400 _
M,s,l_5gooF = B~ 1 = +1. 4k
_ k300 -
Ll_ueBOF = 3510 (1270) = 1820 1b

_ L4o0 B
M'S"-M23OF = 1820 - 1 =142

E. BOLT SPACING

The bolt spacing (S) is given by

n D
- be _ x (2.32) B ,
5 = Nb Db = {2o) (0.190) ~ 3.8% bolt diameters
REFERENCES

C~1. Aerojet-General Corporation, Structural Materials Handbook, February

1964,

C~2. J. J. Roark, Formulas for Stress and Strain, New York, McGraw-Hill,

1954,




APPENDIX D

FILAMENT -WINDING PATTERN AND HEAD-REINFORCEMENT DESIGN

I. DETERMINATION OF FILAMENT-WINDING-PATTERN PARAMETERS

A single winding pattern is applied to the metal shell in fabricating the
filament shell. Filaments oriented side by side are applied longitudinally in
a plane over the shell and adjacent to the polar bosses.

The pattern for a pressure vessel requires a specific quantity of glass
roving to obtain the necessary strength. As described in Section IV,E,2 of
the body of this report, the required longitudinal FWC thickness at the
equator of the heads (TO) is 0.030 in., based on a filament content of 67.3
vol%. The pattern is analyzed here on the basis of actual winding data and
laboratory tests of glass roving and composite specimens, which have shown
that a cured single layer of 20-end roving created by a side-by-side orienta-
tion has a thickness (tg 1) of 0.0075 in.

The required number of layers of winding (Ll) is given by

Lo To _ 0030
LT 0.0075

Iwo layers are formed for each revolution of the winding mandrel. The number
of revolutions required (Nj) is therefore

L
1 L
Nl e 2 7 2
The winding-tape width (WL) is given by
. N2 A
L 5,1 Pvg
where
I\T2 = number of 20-end roving strands per tape, selected as L
A = cross section of 20-end roving = 420 x 10—6 in.2
Pvg = glass-filament fraction in composite = 0.673
Thus,

g o b)) (20 x 10“6) -
L~ (0.0075) (0.673) ~

0.333 in.




The number of turns per revolution (N3) nust be an integer, and is given by

t D cos ¢
c

N5 = -ﬁz~:—:——— to the nearest integer
where
D, = vessel diameter = 18.00 in.
®¢ = longitudinal in-plane winding angle = 11017'
¢ = space between tapes (which should equal zero)
Therefore,

n - x(18.00) (0.981)
3 0.333 -

166 turns per revolution

II. ANALYSIS OF HEAD REINFORCEMENT

The head section of the GFR Inconel X-T750 tank must be reinforced in
the vicinity of the rigid polar boss to reduce FWC deflection there so that
the filament-shell strains are equated to the metal-shell strains. The
reinforcement will also limit plastic deformation of the liner during proof-
pressure application to the level required to keep the springback stress above
the compressive proportional limit when the pressure is reduced from the proof
value to zero.

Although glass fabric can be employed, a more efficient approach to the
addition of local rigidity is the use of a prefabricated cap-type doily made
of unidirectional glass-filament tapes laid tangentially to the circle
described by the outside diameter of the polar bosses.

Head reinforcements are made by laying strips of resin-coated glass
filaments over a form of the same contour and dimensions as the metal-shell
heads. Because two revolutions of the winding mandrel are needed to achieve
the four filament layers required, the head reinforcement should be placed
between the second and third layers (i.e,, between the first and second
mandrel revolutions).

The head-reinforcement design calculations are based on division of the
load carried by the wound filaments, the metal shell, and the reinforcement
to match the desired strain level in the vicinity of the reinforcement.

A, DESIGN CRITERIA
Sufficient reinforcement must be added to 1limit the plastic
deformation of the metal shell at the proof pressure so that the compressive

stress does not exceed the proportional limit when the pressure is reduced
to zero. Computer design analysis shows that the tank without the head
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reinforcement springs back into longitudinal compression after proof testing
at 2220 psig to stresses greater than the compressive proportional limit, at
points where the normalized radial distance (Z) is less than 0.50.

Head reinforcement is also added because the local rigidity of
the polar boss requires reduction in the glass~FWC strains near the boss
to ensure strain compatibility at the boss-to-head weld.

The tank geometry is shown in Figure D-1, The longitudinal
stress-strain curve is presented in Figure D-2 for points on the head ranging
from the equator (Z = 1.0) to the boss-to-head weld (Z = 0.264). The critical
portion of the structure for reinforcement design (maximum metal-shell com-
pression) is at the boss-to-shell weld.

B. LOAD-CARRYING CAPACITY AT BOSS-TO-HEAD WELD

Figure D-2 shows that the filament strain at the proof pressure
without the head reinforcement must be limited to 0.0l3 in./in. at the
boss-to-head weld (Z = 0.264) if the longitudinal springback stress is not
to exceed -108,000 psi, the compressive proportional limit of Inconel X-750
(STA). The rigidity of the polar boss, however, makes it advisable to keep
filament- and metal-shell strains at an even lower level at the boss-to-shell
weld.

Preliminary analysis indicated that - if the strain of the basic
windings could be limited to 0.007 in./in. at the boss-to-shell weld at the
proof pressure - (1) an acceptable head-reinforcement design could be developed,
(2) the compressive springback stress could be maintained well above the
compressive proportional limit, and (3) strains at the boss-to-shell weld
could be reduced to an acceptable level.

1. Total Load (Pi)

Figure D-3 depicts a pressure-vessel membrane and the
meridional loads (Ng) produced at diameter Dy by pressure p. If a
reinforcement system 1s to carry meridional loads (Pt) around the opening
described by Dy, the values for each side of the reinforcement are given by

p .22 2T
t 2 2 N b
where
P = pressure, psi
r, = hoop radius of curvature, in.
Db = diameter at point under consideration, in.




At the boss~to-shell weld, at proof pressure,

Z = 0.264

P = 2220 psi
r, = 17.78 in.
Db = 4,720 in.

and

p, - (2220) 111.78) (4:720)  _ 16 500 11

This load is shared by the vessel components in accordance with

P =P +P +P
r

t g 1
where
Pg = load carried by filament windings, 1b ‘
Pl = load carried in metal shell, 1b
Pr = load carried by head reinforcement, 1b

These loads are evaluated below.

2, Load Carried by Windings (Pgl

The load P, is found by methods described in Appendix V of
Reference D-1. A rough approximation of the angle (¢ ) between sequential
windings is obtained by dividing the number of degrees in a circle by the
number of wraps of winding per mandrel revolution. In this case, the winding
pattern is 166 turns/revolution. Therefore,

¢ = %g%_ = 2.16°

From Figure 8 of Reference D-1, the value of the f%ctor for determination of
the reinforcement strength is Ky =53 at ¥ = 2.16 .

The winding in the vicinity of the boss can be assumed to
consist of tangentially placed material oriented uniformly around the opening.
From a given point on the edge of the boss opening, the strength component of
each tape that crosses a radially directed line through the point is considered.
The total strength is the sum of all the individual strengths and is determined
by calculating an effective area (Ae) (see p. 4O, Reference D-1):
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Ae = Af KN cos ny

where

Af = cross sectién of a single tape

K = strength~-reduction factor employed to include the effect
of a widely distributed area (assumed to be 1.0 in the
present calculations)

N = number of layers of longitudinal winding

ny = 90°
cos n¥ = Kp = 53 (as determined above)

ny = -90°

] = angle between adjacent tapes

n = all integers between limits of -90/¢ and 90/¢

The cross-sectional area of 20-end roving . is 420 x 10-6 in.e. Each tape

congists of four 20-end rovings, and Af for the tape is therefore

Af = (4) (420 x 10'6) = 1680 x 10'6 in.2

'511,

The load carried by the glass of the basic windings is given by

Pg = A, Ee
where
E = glass-fiber tensile modulus = 12.4 x lO6 psi for S-glass
€ = desired strain, assumed to be 0.007 in./in.




Thus,

= (35.6 x 10'2) (12.4 x 106) (0.007) = 31,000 1b

3., Load Carried by Metal Shell (Py)

The meridional load carried by the metal shell between the
vessel axis and the boss-to=-shell weld 1s given by

Pe oo b, 2
17 11 2
where
oy = metal-shell stress at 0.007-in./in. strain in the basic windings =
120,000 psi (from Figure D-2)
tl = metal-shell thickness = 0.04T7 in.
Thus,

4. 720
2

P, = (120,000) (0.04T) = 13,300 1b

L. Load Carried by Head Reinforcement (P, )

- The load that must be carried by the head reinforcement to
keep the proof-pressure strain at 0.007 in./in. is given by

P

r =P " F - F

46,500 - 13,300 - 31,000 = 2200 1b

C. HEAD-REINFORCEMENT DESIGN

The required angle between adjacent tapes of the head reinforcement
can be obtained from Figure 8 of Reference D-1 when the required filament area
(Ae) is known. As before,

O

ny = 90
Ae = Af KN E cos n{ = A KN KR
ny = —905
where in this case
N = number of plies of reinforcement (N = 1 selected for the design

considered)
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Let

Pr
A > =—
e - Ft

where F% is the filament stress in the tape at the desired strain. Then,

At the desired strain of the basic windings, the head-reinforcement strain

(CHR) is given by
‘i = mw " E
where
ey, = desired strain in basic windings = 0.007 in, /in.
o, = basic-winding tension = 23,800 psi
Thus,
ey = 0-007 - 23,800 _ 5. 007 - 0.002 = 0.005 in./in.

12.4 x 10

The stress in the tape (Ft) at a strain of 0.005 in./in. is

F, = e, E =(0.005) (12.4 x 106) = 63,000 psi
t HR
Thus ,
P
r _ 2,200 .2
A, 2 F; = 63f666 = 0.0350 in.

The effective-area requirement computed above for Z = 0.264 can
be assumed to be the same as at Z = 0.150 (at the boss), because the tape
width will approximately equal the difference between Z = 0.264 and Z = 0.150
(0.94 in, for the 18-in.-dia tank), Therefore,




e f R
and
A _ 0.035
f K

For tapes of width Wf used in constructing the head reinforcement,

A =

- )
£ (Aone end) (number of ends/inch) (W,_)

t

For 3M 1009-26S unidirectional tape, there are 200 ends/inch and

-6
4120 x 10
Ay = ) (200) (wt) = 0,0042 W,
Thus,
090 . o.o0k2 W
K t
R
and
K o= 203 8.35
R 0.00k2 W, W,

The edge of the head reinforcement must extend to Z = 0.50, where
the perimeter of the reinforcement = (2) (x) (0.5) (9 in.) = 28.2 in. If
the requirement is imposed that the tapes be oriented so they butt up side-by-
side at Z = 0.5, the space (s) available for each tape width at the head-
reinforcement perimeter is

28.2

8o - 0.0784%4 ¢

Figure D-4 shows the geometry of the head-reinforcement layup pattern, from
which the following parameters are computed:

a=Vc%-1p° - \/(u.5<_))2 - (1.42)° = Lh.26 in.
W
sin ¢ = —z
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W, = L4.26 sin §

t
and
K. = 8.35 _ 8.35 - }.96
R W, L.26 sin ¢ sin ¢

Kp values determined by calculation and from Figure 8 of Reference D-1 are
shown below for various values of {.

KR Value
From From
Y, degrees 1.96/sin § Fig. 8, Ref. D=1

15 .57 8.0
1k 8.10 8.8
12 9.42 9.5
10 - 11.3 11.0
8 14.1 13.5

A value of ¢ = 10° was selected for head-reinforcement design. The number
of tapes required in each head reinforcement is 360/10 = 36. The required
tape width is

W, = 4.26 sin ¢ = (4.26) (0.1737) = 0.Th in.
D. SPRINGBACK STRESS IN METAL SHELL
At zero pressure after the proof test,

D p r, Db

1t 7+ (B gy + (A oplyp

0 = (0.047) o (4'220) + 0.356 (o;f)BW + 0.035 (O%)HR

L : Figure D-5 presents a stress-strain diagram for springback at

Z = 0.264. Trial-and-error solution of the above equation established that
the metal-shell springback stress (oi) at zero pressure was ~72,000 psi in
the longitudinal direction.
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APPENDIX E

METAL-SHELL ASSEMBLY SPECIFICATION

The provisions of Aerojet-General Specification No. AGC-10508A presented
below were used to control the fabrication, inspection, and acceptance of
Inconel X-750 shell assemblies - Part No. 178087 (26-in. diameter) or Part No.
178090 (18-in. diameter) - employed in the construction of GFR metal tanks in
this program.

L. SCOPE

1.1 This specification establishes the requirements for the fabrica-
tion of the Metal Shell Assembly (Inconel X-750 Alloy), Drawing 178087 or
178090, for GFR metallic tanks for cryogenic service. Fabrication, inspec-
tion, and testing procedures are included.

2. APPLICABLE DOCUMENTS

2.1 Government Documents.- Unless otherwise specified, the following
standard, of the issue in effect on the date of invitation for bids, shall
form a part of this specification to the extent specified herein:

STANDARDS
Federal
Fed. Test Method Std. No, 151 Metals; Test Methods

2.2 Other Documents.- Unless otherwise specified, the following
documents, of the issue in effect on the date of invitation for bids, shall
form a part of this specification to the extent specified herein:

PUBLICATIONS
AerosPace Materials Specifications
AMS 5542 Alloy Sheet, Strip, and Plate, Corrosion and

Heat Resigtant, Nickel Base - 15.5 Cr - 2,5Ti-1
(Cb + Ta)-0.7 Al-TFe

AMS 5667 Alloy, Corrosion and Heat Resistant, Nickel
Base - 15.5 Cr - TFe-2.5Ti-1(Cb + Ta)-0.TAl

AMS 5778 Alloy Wire, Corrosion and Heat Resistant,
Nickel Base - 15.5 Cr - 2.4T1~1(Cb + Ta)-0.TAL-TFe

2,3 Aerojet-General Documents.~ Unless otherwise specified, the
following specifications, standard, and drawings, of the issue in effect on
the date of invitation for bids, form a part of this specification to the
extent specified herein:
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SPECIFICATIONS

AGC-13859 Inspection, Radiographic, All Metals, Procedures for
AGC-13860 Radiographic Quality Levels, Fusion Weldments
AGC-1388L Acceptance Level, Ultrasonic, Components of Liquid
Propellant Rocket Preopuision System
AGC-13937 Ultrasonic Inspection Reguirements and Procedures
AGC-13%972 Inspection, Dye Penetrant, Metal Parts
STANDARD
AGC-STD~11294 Welding, Fusion
DRAWINGS
0-178086 Boss-GFR-Inconsl X-T50 Pressure Vessel
0-178087 Metal Shell - 26-in. Dia. GFR Inconel X-T50
Pressure Vessel
0-178089 Ross~GFR-Inconel X~-750 Pressure Vessel
0-178090 Metal Shell - 18-in. Dia. GFR fnconsl X-750

Prassure Veszel
3, REQUIREMENTS

5.1 Materigls.- Fabrication of the metal shell assembly shall be
governed by the following material reguirements:

3.1.1 Comporent Parts.- All oblate spheroidal hesds, P/N 178087-3 or
P/N 178090-3, shall te formed using colderolled, annealed and pickled Inconsl
tion AMS 5542, All bosses,
ings

=0

D

X-T750 nickel-base alloy in accordance with Specificatic

P/N 178086 or P/N 178089, shall be closed die pancake forgings of Inconel
X=T750 nickel-base alloy in accordance with Specification AMS 5667 or, &s an
alternate; machined from plate cf Inconel X-T750 nickel-base alloy in accordance
with Specification AMS 5542,

5.1.2 Material and Component Identification

5.1.2.1 FHeads.- Each sheet of blank material shall be assigred a serilal
number (l 2, 3, eubc), which shall be painted near one of the cornsrs of the
sheet The mﬁil heat number for the sheet matzrial cshall alsc be paintsd in
the same corner as the sheet serial number. Each head that ie fabricated shall
be identified by its paxt number, part serlial number (Hl H2, H3, uca), MLLl
heat number, and serial nuvmber of sheet from which the part was made. Cax
shall be used to assure that the mill heat number, part serial number, and



sheet serial number do not become disassociated from the part at any stage of
shell assembly. To retain identity of heads during the forming and annealing
operations, the mill heat number, part serial number, and sheet serial number
shall be stamped on an area that will be subsequently trimmed.

3.1.2.2 Bosses.~- Each boss that is fabricated shall be assigned a
serial number (Bl, B2, B3, etc.) and be identified by its part number, serial
number, and mill heat number of the forging stock or plate from which it was
fabricated. Care shall be used to assure that part serial number and mill
heat number do not become disassociated from the part during any stage of
assembly.

5.1.2.3 Marking Components and Maintaining Records.- Prior to assembly,
the head serial number and boss serial number shall be metal-stamped on the
boss in the location indicated on Aerojet Drawing 178086 or 178089 as applicable.
Written records identifying these serial numbers with the shell assembly (see
3.8) and the information specified in 3.1.2.1 and 3.1.2.2 shall be maintained
and delivered to Aerojet with the shell assembly and test coupons.

3.1.3 Components, Heat Treatment

%.1.%,1 Annealing Heads.~ A process anneal at 1900 °F +25 1n an atmosphere
of completely disscociated ammonia with a dew point of -T0 to ~100 °p shall be
performed on all shell heads between successive forming operations and after
the flnal forming operation. Parts shall be charged into a furnace preheated
to 1900 F, held at temperature for 30 +5 minutes, and then rapidly air=-cocled
to room temperature.

5.1.%5.2 Annealing Forged Bosses.- Prior to machining, all boss pancake
forgings shall be process-annealed in the same manner as specified for spun
heads in 3.1.3%.1 except they shall be water-quenched from the annealing
temperature.

3.1.4 Ultrasonic Inspection of Boss Pancake Forgings.- Prior to
machining, all boss pancake forgings shall be ultrasonic-ingpected both
before and after process annealing (see L4.2.1).

3.1.5 Test Coupons

%.1.5.1 Heads.- Four tensile-test-coupon blanks 5/4 in. wide x 8 in.
long shall be cut longitudinal to the direction of rolling from each sheet and
metal~stamped on one end with the mill heat number and sheet serial number.
Two of these test coupons shall be selected to represent each of the two
heads fabricated from the sheet from which the coupons were cut. The serial
number of the head they represent shall be metal-stamped on the other end.

The trimmed scrap from blank sheet material used for spherical heads shall be
metal-stamped with the mill heat number and sheet serial number, and sent %o
the Aerojet Project Engineer.
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3.1.5.2 DBosses

3.1.5.2.1 Forged.~ Three tensile-test coupons 1 in. x 1 in. x 6 in.
long representing each mill heat of forgl ng stock used for bosses shall be
forged and metal-stamped on one end with the mill heat number. To be repre-
sentative of the bosses, the forged test coupcns shalil have the same reduction
as the forged bosses and be annealed (see 3.1.3.2) with the forgings.

3.1.5.2.,2 Machined from Plate.- Three tensile-test ccoupons 1 in. wide x
8 in. long x plate thickness representing each mill heat of plate used for
bosses shall be cut both longitudinal and transverse to the direction of rolling
and metal-stamped on one end with the mill heat number.

Tesgt ~Covpon Di%positionam Wbep t%e shell assembly is ready for
1 1 - tensile-test coupons

the final heat-treatment
representing the heads and the eoupo‘a W@pw@: rt g tie bosses shall sccompany
se nbly to t at=tre t ng plavu° The coupons shall be hung by

the tank as
ha “nudh the

wires on %
heat-tresting ogev

plate from the sane
accompany the firsd

3.1.5. 4 Post-Heat~Treat Disposition of Test Coupons.- Upon completion
of the heat-treatment operstion, the test coupons shall remsin with the shell
assembly they represent and aokombany that assembly on its del<veﬂy to Aerojet
When tensile specimens are machinad from the coupons and tested in accordanc
with Fed. Test Method Std. No. 151 by Aercjet-Ceneral Corporatlion, the results

of the tests shall corply with the following values:

3.1.5.4.1 Heads.-

Jltimate tensile strengbh, psi 165,000 min
Yield strength (0.2% offset), psi 105,000 min
Eiongation in 2 in., percent 20 min
c1.5.h.2 Forged Bosses.-
2
Ultimate tensile sbrength, psi 165,000 min
Yield strength (0,2% offset), psi 105,000 min
A N °
Elongation in LD,™ percent 20 min
Peduction of area, percent 25 min

Ultimate tensgile strength, psi 155,000 min
na \ N o

Yield strength (0.2% offsst), psi 100,000 min
Eiongation in 2 in., percent 20 min

*
The test-section gage lenghh is Ffour times the section diameter (D),

Bl



3.2 Handling.- All handling of the shell assembly or its components in
the uncrated condition shall be performed using maximum care because of the
susceptibility of the material to damage during all stages of fabrication.
Components or assemblies damaged from handling shall be subject to rejection.
Components shall be kept in suitable crates or on pallets except when they are
being worked.

) 3.3 Machining.- Machining of the shell-assembly components shall conform
to the requirements of Aerojet Drawings 178086 and 178089. After final
machining, a cleaning method shall be employed to guarantee the shell interior
complete freedom from machining residue, shavings, and cuttings. After cleaning,
shell openings shall remain sealed at all times, except when removal of seals
is necessary for final fabrication or testing. Cutting tools shall be main-
tained at proper sharpness to prevent burnishing of the metal surface.

3.4  Assembly Procedures.- The shell shall be assembled in accordance
with Aerojet Drawing 178087 or 178090 as applicable.

5.5 Welding Requirements.- All components and subassemblies shall be
TIG or Electron Beam welded in accordance with AGC-STD-119k and the detail
requirements of this specification in lieu of paragraph 1.2.2 of AGC-STD-1194.
Certification of welding operators and gualification of procedures in accordance
with AGC-STD-1194 is required prior to the welding of production parts.

3.5.1 Filler Wire.~ When required, filler wire shall be Inconel 69
alloy in accordance with Specification AMS 5T7(8.

3.5.2 Inert Gas.- All TIG welding operations shall be performed with
gas backup. Inert gas used shall be either pure helium or a 75 percent helium
and 25 percent argon mixture.

3.5.3 Inert Gas Purge for TIG Welding.- Prior to welding of the Ffinal
girth closure, the shell assembly shall be purged with a large volume flow of
inert gas to exclude air. During welding, the gas flow rate shall be main-
tained at 3 to 5 cu £t per hour. If the gas flow is interrupted during TIG
welding, the welding operation shall be discontinued. The shell assembly shall
then be repurged prior to resuming the welding operation.

3.5.4 Preheat.- Preheat, in general, is not required. However, 1f the
metal temperature should drop below 70 F, it 1s best to preheat the joint to
70°F for 6 in. on both sides of the weld joint.

3.5.5 Cleaning.- In addition to the cleaning requirements of AGC-STD- !
1194, interbead cleaning of multiple-pass TIG welds to remove the refractory |
oxide film shall be done by means of power wire brushing. The use of sand-
blasting is prohibited.

3.5.6 Weld Beads,-

3.5.6.1 Boss to Head Weld Joint.- Weld beads shall be ground flush both
inside and outside in accordance with Aerojet Drawing 178087 or 178090 as
applicable,




et

3.5.6.2 Cilrcumferential Closure Weld.- Weld bead shall be ground flush
on the outside. Drop-through shall be uni foxm and shall not exceed 0,010

inch.

3.5.7 Mismatch.- Mismatch in weld Joints shall not be in excess of that
shown in Aerojet Drawing 178087 or 178090 as applicable.

3.6  Weld Repairs.~ Weld repairs shall be performed in accordance with
AGC-STD-1194 and the requirements of this specification.

3.6.1 Weld Repair Procedures.- Prior to any TIG welding repair work, the
careful removal of the defect by grinding is necessary. A minimum amount of
material shall be removed. Grinding equipment such as small Radlac or Rayflex
(FP or F) grinding wheels and rotary files may bv used to handle most repair

work. Maximum groove width shall be approximate l/ inch., For Electron
Beam weld repalr, removal of defects is not regu hﬂe

3.6.1.1 Repair of TIG Weld Defects.~ The following repair procedure
shall be performed.

3.6,1.1.1 Defect Location.- Locate defect areas from the radiographic
film or by dye-penstrant inspectlon.

3.6.1.1.2 Grinding Procedure.~ If there is no surface indication of the
defect, grind the weid bead in progressive stages of l/6+ inch in depth. Dye-
penetrant-inspect the weld after each stage of gfi nding and proceed in this
menner until the defect has beesrn located and rewmoved by grinding.

3.6.1.1.3 Cleaning.~ Prior to repair welding, the groove and areas
around and on both sides o* the groove shall be cleansd by flushing with clean,
uncontaminated iscpropyl alcchol, ox equlvaLenoo This operation shall be
followed by thorough brushing with clean austenitlc stainless steel wire
brush. Do not wipe the clesned area wlth cloth or gimilar maberial.

3.6.1.1.4 R_yfir Welding.- Menually TIG weld the ground-out area
following the reguiremsnts

3.6.1.2 Repair of Electron Beam Welds.- The following zepalir procedurs
shall be performed:

3.6.1.2.1 Defesct Locabion.- Locabe defect avsas from the radiographic

- ot

£ilm,

3.6.1.2.2 bleqnlngom Prior to repair welding, the weld and arsas on
oth sides of the weld Jjoini shall be cleaned with clean, uncorntaminated
lsopropyl alcohol, or eguivalient., This opesration shall te followed by thorough
brushing with a clean austenitic stainless steel wire brush.

3.6,1.2,3 Repair Welding.- Reweld the entirs joint using the approved
Electron Beam weld schiedule meeting the regulrements of 3.5.
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3.6.2 Repalr of Welds on Age-Hardened Material.- Weld repairs shall not
be permitted on age-hardened material.

3.7 Welded Test Strips.- Two strips 4 in. wide by 36 in. long shall be
cut across the width from each of three sheets of heat blank material and
identified with the mill heat number and sheet serial number. Each pair of
strips shall be welded in accordance with 3.5 and inspected in accordance with

4h.2.2,

3.T«L Digposition of Welded Test Strips.- The three welded test strips
shall accompany the first shell assembly through the heat-treatment operations
of 3.8 and its delivery to Aerojet to be retained for tensile and bend tests
by Aerojet-General Corporation.

3.8 Heat-Treatment Operations.- The welded shell assembly shall be
annealed and aged in accordance with the following procedure:

3.8.1 Annealing Heat Treatment.- Charge the shell assembly into a
furnace previously preheated to 1900°F +25; maintain at temperature for 30
minutes +5 and then air-cool.

3.8.2 Age Hardening Heat Treatment.- After annealing, the shell assembly
shall be age-hardened by heating to 1300°F +25, holding at temperature for 20
hours, and alr cooling.

3.,8.3 Furnace Atmosphere.- To prevent excessive oxldation, heat-treat-
ment operations shall be performed in an atmosphere of completely dissociated
ammonia or dry hydrogen with a dew point of -TO to -1007F,

3.9 Identification of Shell Assembly.- The shell assembly shall be
assigned serial numbers S1, S2, S35, etc., which shall be electrolytically
etched in the location indicated on Aerojet Drawing 178087 or 178090 as
applicable.

3.10 Workmanship.~ The shell assembly, including all component parts,
shall be fabricated, heat-treated, finished, and testéd in a thoroughly
workmanlike manner. Particular attention shall be given to neatness and
thoroughness in the forming and welding of the component parts. Non-
conformance can be cause for rejection.

L, QUALITY ASSURANCE PROVISIONS

4.1  Supplier's Responsibility.- The supplier shall be responsible for
the fabrication, heat treatment, inspection, and tests of the shell assembly
in accordance with all of the requirements and procedures of this specification.
No deviation from fabrication, heat treatment, inspection and testing require-
ments, and procedures of this specification shall be allowed except in the
form of an amendment to this specification or to the purchase order. Test
data, letters of conformance, and other pertinent information affecting shell
fabrication shall be forwarded without delay to the cognizant Aerojet-General
project engineer and Aerojet-General inspection department,
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L.1.1 Acceptance Criteris.- Acceptance of the shell assembly shall be <
based upon compliance with the regulrements herein as verified by a series of
in-process acceptance tests (see 4.2) and final inspection (see L4.3) of the
finished product., Detalled dnspection records shall be maintained to insure
that all regulrements of this specification have been met.

4.1.2 Cognizant Aerojet-General Personnel,- As reguired, Aerojet-
General personnel, such as the project engineer, welding engineer, metallurgical
engineer, stress engineer, inspector, etc., shall be permitted to observe those
phases of work as is necessary.

L.2  In-Process Acceptance Inspection.=- All requirements of this
specification shall be assured through inspection. Inspection tests shall be
performed in accordance with the reguirements specified herein.

016 = ﬁlL hogs forgings shall be ultrasonic-

Bl =]

? on AGC-139357.

L.2.1 Ultraso
inspected in accordan:

4,2,2,1 Basiz for Rejectlon,- ALL forgings shall mest the requirements
of Specification AGC-1388L as applicabls to 410 stainiess stsel bar stock.

h.2.2 Inspection During Assembly.-

h.2.2,1 Weld lnSPeCTWOuw“ All Jjoints shall be visually inspeczted for
compliance with the requirements of 3.5 and the applicable drawings, and shall -
be inspected in accordance w1tb the following:

4.2,2,1.1 Dys=Penetrant Inspection.=- Dye~penetrant inspeztion in -
accordance with Specification AGLC-13972 shall be performed on all welds.
After inspection, welds shall be cleaned tho%oughly and the welded surfaces
and adjacent areas brushed with a stainless steel wirs brush.
h,2.,2.1.1.1 3Bas - Fach weld shall be free of erbternal
cracks or propagating

h,2.2.1.2 Radﬂhgﬂﬁph*v Inspection.- Badiographic inspection shalil be

performed on all welds Ln acbordanue with Specification Agv~l5859, Radlographs
shall be subject tc the interpretation and acceptance of designated Aerocjet-
General quality control anﬂ project representatlves.. Radiographic fiim shall
be numbered to colncide with the identification markings of the sghell aszembl:
China-marking lead shall be used for marking weld identifications so *“zt +he
exact location of weld aress with corresponding radicgraphs may he essily
identified. 11 radiographic £ilm shall becoms the property of Aerojet.

L,2,2.1.2.1 Basis for Rejection.- A1l welds shall meet the reguirements
ficatbi

of Specification AGC-13860, Ciass 11 (eleven).

h,2,3 Inspection of Shell Assembly Prior %o Heat Treatment.- The shell
assembly shall be free of oil, g;eaoej paper, or any type of carbonaceous
material prior to heat treatment.
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h.2.h Inspection of Shell Assembly After Heat Treatment.-

h.2.4.1 Test Coupons.- After heat treatment of the sghell assembly, the
test coupons may be tested by Aerojet~General Corporation to verify compliance
with 3.1.5.4 of this specification.

4.,2.4.1.1 Basis for Rejection.- Failure to meet the tensile-test
requirements of 3.1.5.4 shall be the basis for rejection,

4.3 Final Inspection.- The completed shell assembly shall be subjected
to surface inspection, with visual examination for imperfections and finish.
The surface shall be such that the removal of scratches or other surface
imperfections shall not reduce the thickness of the metal below the minimum
specified on the drawing. Inspection of workmanship shall conform to 3.9.
Measurements of dimensions (with attention to Aerojet drawing tolerances)
shall be included in this inspection.

5.  PREPARATION FOR DELIVERY

5.1 Packing.- The shell assembly shall be crated and firmly supported
to avold damage during shipping.

6. NOTES

6.1 Intended Use.~ This metal shell assembly will be used for glass-
filament -reinforced meballic tankage for the storage of cryogenic flulds.,




APPENDIX F

FABRICATION PROCEDURE FOR GLASS-FWC SHELL -

Instructions given for the fabrication of the glass~FWC shell are listed
below.

I. INSPECTION OF METAL-SHELL ASSEMBLY
A, Wear clean white cotton gloves while handling the metal shell.
B. Remove the shell from its protective plastic bag.
C. Measure its length, diameter, and weight and record them cn
Figure F-1.
D. Replace the shell in the plastic bag.

II. ASSEMBLY OF WINDING SHAFT

A, Wear clean white cobtton gloves while handling the metal shell.

B. Remove the shell from its plastic bag, and place it on a foam pad
covered with clean, lint-free cheesecloth.

C. Obtain a winding shaft and install it in the shell until the fixed
collar rests against the boss face.

D. Align the five holes of the fixed collar with the boss holes. In-
stall 10-32 UNF by T/8-in,-long socket~-head cap screws, and finger-tighten.
Cross-torque all screws to 5 in.-1b.

E. Position the floating collar on the other end of the shaft. Align
the five holes of the floating collar with the boss holes. Install 10-32 UNF
by 7/8-in.-long socket~head cap screws and finger-tighten. Cross-~torque all
screws to 5 in.-1b.

F. To protect the boss face, K-seal groove, and bolt holes from resin
spillage, apply Teflon tape to cover the side of the boss and the shaft collar
so resin will not migrate to the boss-face area.

G. Cover the metal-shell/windingnshaft assembly with a plastic bag if
the next operation will not be performed immediately.

ITT. WINDING-MACHINE SETUP AND CALIBRATION

A, Install four rolls of 20-end roving in the tension devices.

B. Install the roving-guide rollers.




C. Install the resin-impregnation pot.

D. Crank the machine mount for the winding shaft to a vertical
position.

E. Secure the metal-shell/shaft assembly in the threaded mount.
Thread the shaft into the mount until the shaft flange rests against the

mount.

F. Crank the winding-shaft mount to the setting that provides
approximately the required longitudinal-winding angle.

G. ighten the bolt on the back of the winding-machine mount to
securely lock the winding shaft into position.

H. Dry-run the winding aym (withoub paying off roving) and adjust
the machine settings to obtain the reguired 166 +5 winding-arm turns pex
mandrel revolution of 36OO, Record the machine setting on Table P-1 once
the turns are cbitained.

I. Thread the four dry 20-end rovings through the gulde rollers and
the payoff roller. Secure the roving ends and set the tension at approxi-
mately 10 1lb per 20 ends.

Jdo Adjust the rcllers as required to assure a uniform=-thickness,
0.333-1in.-wide tape.

K. Engsure that the 0.333-in.-wide tape passes tangent to each boss,
with a maximum permissible distance betwesen the boss and tape edge of 0.020
in. , by making a few winding-arm turns. Adjust the winding-sghaft-mount
setting as required to provide the proper winding angle.

L. Calibrate the tension devices to provide a dynamic tension of 10
+1 1b per 20=-end roving at the roving payoff. Calibrate the tension devices
statically and then dynamically. Record on Table F-1 the static tension
needed to provide the required dynamic tension. Also record there the tension-

device settings.

Iv. POSITIONING OF METAL SHELL IN WINDING MACHINE

Prior to this operation, establish machine settings for the winding
pattern, winding angle, payoff-roller adjustments, resin-impreghation-pot
adjustments, etc. as described in Section III, above.

A, Wear clean white cotbton gloves while handling the metal shell.

B. Crank the machine mount for the winding shaft to a verbical
position.

C. Select four prefabricated head reinforcements and weigh each.

Record thelr welghts on Table F-1,
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D. Place two prefabricated head reinforcements, completely covered
with protective plastic sheet and top side down, over the machine mount for
the winding shaft. Secure them in place with tape if required.

k. Carry the metal shell to the winding machine and secure the shaft
in the threaded mount. Thread the shaft into the mount until the shaft flange
rests against the mount.

F, Crank the winding-shaft mount to the predetermined setting that
provides the required longitudinal winding angle.

G. Tighten the bolt on the back of the winding-shaft mount to securely
lock the winding shaft into position.

H. Protect the shell with plastic sheet if it is not to be overwrapped
with filaments immediately.

V. GENERAL INSTRUCTIONS FOR HANDLING OF GLASS ROVING

A, Keep each roll of 20-end glass-filament roving in its protective
plastic bag with end plates in place in its individual box in cold storage
at 32°F or lower, except when 1t is being used to overwind one or more metal
shells on a given day.

B. Welgh each spool of roving before initiating winding. For
subsequent weighing, plastic-bag any scrap obtained during winding.

C. At the completion of winding on each day, immediately remove each
roll of roving from the tension devices, repackage it gith end plates in its
plastic bag and box, and return it to cold storage (32°F or lower).

VI. RESIN PREPARATION

A. Obtain the Epon 828, DSA, Empol 1040, and BDMA resin constituents.

B. Measure out the following quantities of each constituent for each
of two batches:

Quantity, g
Epon 828 200 +0.5
DSA 231 ¥0.5
Empol 1040 Lo +0.5
BDMA 2 +0.0
C. Mix and warm the Epon 828 and Empol 1040 to 212°F. Cool the

mixture to room temperature and add the DSA and BDMA. Thoroughly mix the
constituents. Heat the mixed resin to 85 to 100°F.
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ViI. OVEEWRAPPING Or METAL SEELL

AL General Notes - (1) Stop overwrapping, remove the
restart the process if any of the Tollowing qbou_ a
breakage (b\ loss of end or ends on guide rolle:x

Q

ki i
eRvE uape width; a;d
L In winding but in
gh it ard recoxd

i
(f) excessive variation of filamer
bag all excessive roving nob use
recorded roving-spool weights; wei

—=s0

5

the welgnu on Table
B. Obtaln four rolls of 20-end roving and weigh each voll, Record

the welght on Table F-1, and place the rollis on tension-device spindles.

o on T« e Fe he mber of the gspiadle on which each roll is mounted.
Record on Table F-1l the numbe T the indle on W ea.ch 1 is nted

G payofl head

D.
Brush~impr
Maintain uh

E. Set the machine-turn counter Lo zZerc.
F. Identify thre SErmt¢u vogition of the wi‘a*nvmsha?* mount in
relation to n imrediately adjacent to the

mount.

G. Pogition ons head rei
hem securaly

<
.,
3
0
-4
©
(e
)

H. Start the zab winding., I recguired, brush on
extra resin or remove amenths,

L. Stop winding at the

o

L3 19
(should be 166 +5 turas). Maintzsin the +C”Q o ﬁn the roving. Enuey She
.

number of turns reguired to comp

Jdo Posgid ! esd » tha boss on each end of the
tank and press it curely in place Sguesre the external surface of the

mous windir

head reinforcement

K. Iy reinforce-

0
ment in accordance

L. Continue the longitudinsl filament winding until the second mandrel
revolution is completed (should be 332 +10 turns ). Secure the ernd of the tape,

and then cut it.

M. Record on Table P-1 the total number of turns applied.



. Remove the four spools of roving from the tension devices, welgh
them, and record thelr weights on Table F-1.

0. Weigh the scrap roving, and enter this weight on Table F-1.
Compute the total weight of roving used.

VIII. PREPARATION FOR CURING

A, In vacuum-bagging the wound tank shell for the cure, use one layer
of 2353 Dacron cloth for release/bleeder cloth.

B. Bag the shell with 6-mil polyvinylacetate (PVA) sheet tailored to
avoid excess wrinkles.

C. Seal the bag with zinc chromate putty..

D. Install a vacuum valve over the Dacron padding on the head.
B. Evacuate the bag to 20 in. Hg or better, and check for leaks.
IX. CURE
A, Transfer the vacuum-bagged unit to the curing oven,
B. Mount the winding shaft on the support fixtures in the oven.
C. Check the vacuum for 20 in. Hg or better.
D Cure at lSOOF for 2 hours and at BOOOF for 4 hours. Keep a record

of the cure on the continuous recording chart.

E. Reduce the oven temperature to 100°F at a rate not to exceed
o
100°F/hour.
X. FINAL INSPECTION
A, Remove the cured tank from the oven, and strip off the vacuum bag.
B. Remove the winding shaft.
C. Measure the wound-tank length, diameter, and weight and record

them on Figure F-1.

D. Place the wound tank in the storage box.




TABLE F-1

WINDING DATA (FORM)

Winding Tension

Winding speed turns/minute

Static tension at payoff required for dynamic tension of 10 +1 lb/zonend roving
at payoff:

Tension-Device Tension-Device
Spindle No. Static Tension, lb Setting

A

B

C

D

Head=-Reinforcement Weight

Reinforcement A g. Reinforcement B
Reinforcement C g. Reinforcement D g.
Roll Tension-Device Weight, g
No. Spindle No. Starting Final Roving
Total

Less scrap weight (subbtract)

Total roving on tank

Winding Pattern

Revolution Winding-Arm Turns
No. Desgign Actual Time winding started
1 166 +5 Time winding completed
2 332 +10

Table F-1
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TNSPECTION OF METAL-SHELL ASSEMBLY (FORM)

Serial No.
Before-winding data: Date Signature
After-winding data: Date Signature

Pi Tape
Diameter before winding

Diameter after winding and cure

i

g————  Length ——— oo

—eeee. Before winding

After winding and cure

Weight of metal shell before winding g

Weight of metal shell after winding and cure g

Figure F-1




APPENDIX G

CALIBRATION OF BOW~TIE, STRAIN~GAGE, DISPLACEMENT TRANSDUCERS

A single-~step, end-to-end calibration was performed on each bow-tie,
strain-gage, displacement transducer used in testing. Each pressure-~vessel
test required three transducers, two for longitudinal displacement and one
for hoop. The transducers were calibrated in place on the vessel, with all
instruments installed and connected to the data-acquisition equipment (a
continuous-strip-chart recorder for each transducer).

TLaboratory conditions (ambient temperature) were employed, because the
strain gages were maintained within the gage-compensation temperature range
(70 +20 F) during cryogenic testing by manual adjustment of current through
bifilar heatér windings. The test temperature was monitored by means of a
thermocouple very close to but not directly on the strain gage; the beryllium-
copper reed of the bow tie provided an excellent conductive path to the gage.
Additional details on instrumentation are presented in Section VI,A,3 of the
body of this report.

For use in calibration, a single washer was spot-welded at the end of
each metal-foll band attached to the longitudinal transducers. Two cali-
bration tools were inserted between each attachment tack and the inner
surface of the washer, and the signal-conditioning system was adJjusted for
a zero output reading on the recorder. The distance between the upper and
lower attachment posts was accurately measured and recorded. Rotation of
the calibration tools produced a displacement of 0.250 in. for each band,
with a total displacement of 0.500 in. The strain was then calculated from

. AL
Strain = T
where
AL = total displacement between centers of washers = 0.500 in.
L = distance between centers of attachment tacks, in.

A sample longitudinal-strain transducer-calibration calculation for a typical
vessel follows. For the longitudinal transducer, L = 17.187 in. and

Strain = I%'% -~ 0.0291 in./in.

The span control of the signal-conditioning equipment was adJjusted so
that the instrument would record 29.1% of full scale (based on the foregoing
value), to permit strain to be read directly on each strip chart during the
pressurization test. This procedure was repeated to ensure reliability.

The procedure used to calibrate the girth (hoop) transducer on each
vessel was similar to that described above. The center of the girth band
was displaced a predetermined distance on each side of the transducer (total




amount, 2.000 in, ). The calculations, and the zero and span adjustments, were
performed as indicated above, except that values appropriate for girth measure-
ments were used., A sample hoop-strain calculation, where*

total hoop-band displacement = 2.000 in.
pressure-vessel circumference = 56.688 in,

AL
L

1l

yields

Strain = %—:—2—%%: 0.0353 in./in.

Single-point strain-calibratlon data were obtained for all longitudinal
and girth transducers on all vessels before the vessel-burst teste were initiated.

Detailed laboratory calibrations were performed under ambient conditions
to determine the degree of transducer linearity arnd reproducihility. Various
displacements were set with the aid of a vernier caliper (reading accuracy,
0.001 in.), and transducer outputs for these displacements were measured with
a recording potenticmeter. The results for a longitudinal transducer are shown
in Figure G-1.

The curves for displacement vs recorder ocutput as a percentage of chart
scale were based on several data points for each configuration. All the data
polnts repeatedly fell within the width of the plot line. Because all the
transducers were linear and reproducible to 0.5% within a displacement range
from 0.06 to 2.00 in., it was nobt necessary to perform multiple-point calibra~-
tions for the individual transducers used in each test setup.

Vessel contraction during cryogenic conditioning before testing did not
affect the accuracy of the strain data, because the transducsr responses were
linear and reproducible. As installed for testing, the transducers were pre-
loaded for a displacement of approximately 1.50 in.
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APPENDIX H

METALLURGICAL ANALYSIS OF INCONEL X-750 TANK LINER

An 18-in,-~-dia, GFR, Inconel X-750 tank (Part No. 178091, Serial No. 2)
was proof-tested at 2220 psig for 1 min prior to the burst test. During the
burst-test cycle at room temperature, pressure was increased at 1200 psig/min
until failure occurred at 2960 psig, in the metal liner at the weld joint
between the boss and the formed head.

Tensile tests were performed to evaluate the welding schedule and the
parent material in the tank with the tensile properties used in the design of
the tanks. The metallurgical analysis included one of the tensile specimens
that failed prematurely.

I. DISCUSSION

The fracture that occurred in the tank liner is shown in Figure H-1.
Much of the fracture area could not be examined because the two surfaces
rubbed together, producing a galled or disturbed metal surface.

The Y-shaped weld nugget was produced with a two-step welding schedule.
The depth of penetration and breadth of beam are shown in Figure H-2.

Figure H-3 shows the microstructure of the weld adjacent to the fracture.
The grains in the weld are relatively coarse and have directional orientation.
The directionality develops during the first welding pass because the tank
liner and boss act as a heat sink. This forces directional solidification
from the outer edges to the center of the weld nugget. The grains produced
in the second pass are also directional, but are radlially oriented, about
the center line of the nugget produced in the first pass. Radilal orientation
occurs because the heat sinks include that nugget as well as the liner and
boss.

The grains in the narrow heat-affected zone are coarser than in the
parent metal away from the weld (see Figures H-3 to H-5). Figures H-4 and
H-5 show the lcocation of the fracture in relation to the weld.

Figure H-6 is a macrophotographic view of the fracture surface of a
longitudinally welded tensile specimen (No. L-6). The ductility was approxi-
mately 5 to 6% less than that exhibited by a.similar sample. During examina-
tion of the fracture surface, a gas hole in the weld nugget was found (see
Figure H-6).

Figure H-T7 illustrates the microstructure albng the length of the weld
and the depth of the gas hole, which is approximately 0.005 in. in diameter
and 0.004 in. deep.

The highly directional orientation of the weld grains is clearly
evident ‘in Figure H-7. The lower portion of each microphotograph shows the

H-1




structure that developed during the first weld pass and the upper portion the
second weld pass. -

1T, CONCLUSIONS

A, Fracture in the Inconel X-750 tank occurred at the interface
between the heat-affected zone of the liner and the weld nugget joining the
liner to the boss.

B. No defects were found, but the possibility of a localized weld
undercut could not be fully evaluated because of plastic deformation.

C. Based on the microstructure and normal conditions (e.g., equal
cross section and lack of defects), the probable cause of failure was the
abrupt change in microstructure at the interface between the parznt-metal

heat-affected zone and the weld.

D. Grain refinement in the heat-affected zone and weld would force
random failures to occur in the liner, but can be accomplished only by working

the areas.



Figure H-1. Fracture Surface Between Boss and Tank Liner
(Note: Straight cut edges in liner are saw cuts.)

Etchant: 10% oxalic acid 50X
Figure H-2. Microstructure of Boss-to-Iiner Weld

Figures H-1 and H-2




Etchant: 104 oxalic acid 50X

Figure H~3. Microstructure of Tank Weld Adjacent to Fracture
(Liner material at left, weld nugget center, and boss right,
Note the coarse grain structure in the heat-affected zone
and the directional grain orientation in the weld nugget.)

Etchant: 104 oxalic acid - 50X

Figure H-k. Microstructure of Weld Nugget
and Location of Fracture in Tank
(Fracture occurred along interface between
metal liner and weld nugget.)

Figures H~3 and H-L



Etchant: 104 oxalic acid 50X

Figure H-5. Microstructure of Metal Liner
(Note that the heat-affected-zone grain structure is
coarser than the rest of the parent material.)

Figuré H-6. Macrophotographs of Tensile Specimen L-6
(Note: Near left edge of each piece, in weld nugget,
is a gas hole, photographed as a black circle.)

Figures H-5 and H-6
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