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PREFACE
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EXECUTIVE SUMMARY

The overall objective of the Common Ada Missile Packages (CAMP) program has been to
demonstrate the feasibility and value of reusable Ada soltware parts in DoD mission-critical, real-time,
cmbedded (RTE) applications. As the name of the program implies, the domain chosen for this
demonstration was missile operational flight software. Software applications within this domain are
typically constrained in lerms of memory and timing, and involve a great deal of direct hardware control.
As such, if reusable Ada parts could be shown (o be suitable for these applications, they would be suitable
for use in most other RTE applications.

CAMP is a mulli-year research program which has been sponsored by the Air Force Armament
Laboratory at Eglin Air Force Base, and performed by the McDonnell Douglas Astronautics Company -
St. Louis (MDAC-STL). The program was partially funded by the Air Force Armament Division, the
DoD Software Technology for Adaptable, Reliable Systems (STARS) Program Office, the Air Force
Electronic Systems Division, and the Ada Joint Program Office (AJPO).

The ability to reuse pre-existing software components to build new applications has been identified
by most software engineering organizations as a key element in their plans to reduce software develop-
ment costs and schedules. However, prior to the mid-1980s, few organizations have been able to achieve
wide-spread, systematic reuse of software. One of the major barriers to software reuse has been that
traditional programming languages were not designed with reuse in mind. With the adoption of Ada as
the DoD standard computer programming language for mission-critical computer systems, many DoD
software engineers believed that meaningful, systematic software reuse was feasible for the first time,

Ada promotes reuse of software in two ways. First, it is a highly transportable language. Software
written in Ada can be moved from one type of computer to another relatively easily. This property of
Ada facilitates reusing software between applications hosted on different computers. Second, specific
features were built into the Ada language to allow a user to construct powerful software components that

are transportable between applications.

When Ada was released. many software managers and engineers quickly saw the advantages in
developing standard reusable parts or components that could be used across a spectrum of applications
and computer types. Their vision was to treat software engineering the same way other engineering
disciplines are treated — build customized components only when needed and reuse standard parts when-

ever possible.

However, onc very important portion of the software engincering community expressed a great deal
of skepticism with the concept of reusable software — software engineers building RTE applications.
These applications are characterized by severe memory and timing constraints and the need to have direct
control over the computer and its attached cquipment.  The RTE software community needed to be
convinced that reusable Ada parts could be developed which were both sufficiently effective and efficient
for the types of applications they needed to build. In the rush to exploit the potential of Ada for reusable
software in general, no onc was addressing these R'TE applications. There was a very good reason for this
— developing reusable software parts for RTE applications is much more difficult than building reusable

software parts for non-RTE applications.



Given the pervasiveness of RTE applications within the DoD, there was an urgent need to examine
whether reusable Ada parts could be byilt which were suitable for use in RTE applications. In 1984, the
U.S. Air Force addressed this need by initiating the CAMP program.

The first phase of the CAMP program, the CAMP-1 project, was a 12-month effort with {wo major
objectives.

* To determine the feasibility and value of reusable Ada software paris for missile flight software

¢ To determine the feasibility and value of automating (fully or partially) the process of building new

missile flight software systems using parts

CAMP-1 started with a study to determine if sufficient commonality existed within missile flight
software applications to warrant the development of reusable parts. After studying the operational flight
software from ten existing missile systems, the CAMP team identified 250 common parts (during
CAMP-2 this number grew to 454). Once these common parts were identified, their requirements were
specified and their architectural designs were developed in accordance with DoD-STD-2167.

Concurrent with the identification, specification, and design of the reusable parts, the CAMP team
perforined an investigation to determine which aspects of building new software systems from parts could
be automated. This investigation resulted in the definition and design of a tool known as a parts composi-
tion system (PCS) which would consist of three major subsystems.

¢ A Parts Identification subsystem which would help the user find parts applicable to his new ap-

plication
» A Parts Catalog subsystem which would help the user understand and manage the available parts

¢ A Component Construction subsystem which consists of a set of tools to automatically generate
reusable Ada code in situations where generated code was needed for reasons of efficiency,
reusability, or ease of use. It also assists in the use of complex generic reusable Ada parts.

While CAMP-1 was primarily a feasibility study, CAMP-2 was primarily a technology demonstra-
tion. The main goal of the 30-month CAMP-2 project was to demonstrate the technical feasibility and
value of reusable Ada missile parts and a PCS by building and using them on a realistic application.

The first major task in CAMP-2 was the construction of the reusable parts identified during
CAMP-1. A total of 454 production-quality, reusable, Ada parts were coded, tested, and documented in
accordance with DoD-STD-2167. The parts, together with their test code, consist of over forty thousand
lines of Ada code. When completed. these parts were distributed to over 120 government agencies and
contractors. Sections I, I11, and VI of Volume I of this Final Technical Report discuss the construction of

the CAMP parts in more detail.
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A prototype of the parts composition system tool defined in CAMP-1 was also constructed, tested,
and documented in accordance with DoD-STD-2167. To illustrate the utility of this tool, a user can spend
3 minutes describing his requirements for a Kalman filter subsystem and the tool will generate and as-
semble over 1900 lines of Ada code which efficiently implements this subsystem. Section IV of Volume
I of this Final Technical report describes the construction of this prototype in more detail.

An important part of the CAMP-2 project was the construction of a real missile navigation and
guidance system using the CAMP parts and the prototype PCS toci. This software, known as the //th
Missile Application’, consisted of over 21,000 Ada statements of wh.ch 18%'! was obtained by reusing the
CAMP parts. This software was cross-compiled using an Ada/1750A compiler and executed on 1750A
processors within a missile simulation. The 11th Missile Demonstration served as a proving ground not
only for the CAMP parts and the parts composition system tool, but also for Ada/1750A compiler tech-
nology. Volume Il of this Final Technical Report describes the 11th Missile Demonstration in more

detail.

Another CAMP-2 task was the development of a suite of benchmarks that could be used to measure
the effectiveness of Ada compilers for armonicsiii applications. These benchmarks are standard Ada
software units which test a compiler’s ability to deal with realistic armonics situations. Volume HI of this
Final Technical Report describes the armonics benchmarks in more detail.

All of the CAMP products — the parts, the prototype PCS tool, and the Armonics Benchmarks —
are available to U.S. government agencies and qualified government contractors.

Given the pathfinding nature of the CAMP program, it is not surprising that many lessons were
learned concerning Ada, reuse, and the status of Ada compilers. Section VIII contains a detailed discus-

sion of these conclusions.

The good news is that the Ada programming language was proven to be a good language for RTE
applications and for achieving reuse within these applications. The entire 11th Missile Application was
constructed using only 21 lines of assembly code. and the reuse of standard parts shows the potential for
improving productivity by 15%. Use of the parts and the parts composition system showed the potential
for even greater productivity gains (up to 28% when the PCS Kalman Filter Constructor was used in

addition to the parts).

The bad news is that many current generation Ada compilers still have problems correctly and
efficiently handling the more advanced features of Ada. Of particular concem to the CAMP team were
the problems surrounding the handling of Ada generic units (see Section VII). If not corrected, these
problems with generic units could have serious detrimental impacts on reuse within DoD RTE applica-
tions. Two actions are needed to solve this problem. First. the Ada validation process must be amended
to include more stringent tests concerning a compiler’s ability to properly handle complex use of generic

The CAMP team used 10 missiles to identify parts and saved an | 1th missile to verify the parts, hence the teminology.
"This number increases 1o 22% if the parts that were modificd are also counted.

i ARMament electrONICS
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units. Second, Ada compilers must include more powerful global optimization techniques. Until the
problems are corrected, DoD mission-critical RTE Ada projects should establish a contractual relation-
ship with their compiler developer in order to reduce risk to the project.

Tasking throughput is currently another potential problem area in Ada compiler code generation.
Although there does not appear to be anything inherently inefficient in the Ada language requirements
with respect to tasking, work on the 1ith Missile Application revealed that care should be given fto
selecting the kinds of tasking facilities used in an application.

The CAMP program marks the first practical application of reusable Ada parts to DoD mission-
critical RTE applications. The program demonsirated that, given mature Ada compilers, the benefits of
software reuse — reduced software development cost and schedules and higher software quality — can
be achieved without sacrificing efficiency. If these benefits can be achieved in the 1nissile domain, they
can be achieved in other RTE domains.
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SECTION 1
INTRODUCTION

I. PURPOSE

This report contains a description of the work performed, the results achieved, and the lessons
learned on the Common Ada Missile Packages Phasc 2 (CAMP-2) project. CAMP was a multi-year
research effort in which the McDonnell Douglas Astronautics Company-St. Louis (MDAC-STL)
demonstrated the feasibility and value of reusable Ada software parts in embedded, real-time, mission-
critical, DoD applications. This was accomplished by (a) building a library of efficient and reusable Ada
parts for missile flight applications, (b) building a prototype parts composition system (PCS), and (c)
testing the parts and the PCS by using them on an actual missile application.

The CAMP project has been sponsored by the Air Force Armament Laboratory at Eglin Air Force
Base, and partially funded by the Air Force Armament Division; the DoD Software Technology for
Adaptable, Reliable Systems (STARS) Program Office; and the Air Force Electronic Systems Division.
The Ada Joint Program Office (AJPO) sponsored the initial distribution of CAIMP software to 120
Government agencies and contractors. This software is now available through the Air Force Defense
Analysis Center for Software (DACS) at Griffiss Air Force Base, New York.

2. BACKGROUND

Reusable software is rapidly becoming a key element in the plans of many Department of Defense
(DoD) organizations to bring about a new software engineering environment that will result in higher
quality software at a lower cost. The recently formed Software Engineering Institute (SEI) believes that
"a significant portion of the transition of new software cngineering technology, the goal of the SEI, will
be embodied in reusability and automation concepts” (Reference 1). In a similar vein, the DoD Software
Technology for Adaptable, Reliable Systems (STARS) program intends to "develop a significant foun-
dation of reusable Ada software ... for ... applications and software engineering support” (Reference 2).
Software reusc has even been identified as a major management issue by a DoD directive (Reference 3)
on the management of computer resources in defense systems.

While many factors have influenced the recent wide-spread adoption of reusable software within the
DoD, the most important factor has certainly been the Ada mandate. In 1983, the DoD mandated
(Reference 4) the use of Ada as the standard programming language for mission-critical computer sys-
tems. This mandate was recently formalized in a pair of DoD directives (References 5 and 6).

Many software cngineers who in the past have doubted the practicality of software reusability saw
that, with a standard language such as Ada, meaningful levels of software reuse were within reach for the
first time. However, not everyone wilhin the DoD community believes that software reusability is
feasible. One very important group that is not convinced of the practicality of reusability is the real-lime
embedded (RTE) software engineering community.

It has been a long-held tenet of the RTE community that software parts (i.e., components specifically



written to be reused) are not practical in real-time embedded applications. This comununity believes that
software parls must be general to be reusable and that generality implies inefficiencies. While the non-
RTE software engineer is usually willing to sacrifice some run-time efficiency for significant increases in
software quality and productivity, the RTE software engineer often cannot afford this luxury. A typical
RTE software engineer develops software for micro-computers embedded in products such as aircraft,
missiles, and satellites. He cannot freely add more memory or upgrade to a more powerful processor since
his computer must comply with severe limitations on weight, power requirements, and volume. Even
recent advances in memory and processor technologies have not been of much help to the RTE software
engineer since the demand for more functionality in his products more then account for the added
capabilities provided by these technologies.

In order to convince the RTE software engineering community ths! software parts can work ef-
ficiently in the real-lime embedded domain, it is essential that objective data be developed showing that
software reuse is feasible. It is not enough to show that reusability works well in non-RTE applications.
Given the pervasiveness of RTE computer applications within DoD mission-critical systems, il is impera-
tive that questions about the feasibility of software parts be addressed squarely within the RTE domain,
and preferably by means of a realistic demonstration. This was precisely the goal of the CAMP-2 project.

3. OVERVIEW OF THE CAMP-1 PROJECT

The CAMP program was initiated in 1984 with the award of the CAMP-1 project to MDAC-STL.
The CAMP-] project was a 12-month feasibility study with two major objectives: (a) to determine the
feasibility and value of reusable Ada software parts for missile flight software, and (b) to determine the
feasibility and value of automating (fully or partially) the process of building new missile flight software
systems using parts.

The CAMP-1 Final Technical Report contains a detailed description of the tasks performed and
results obtained during that project. It can be obtained from the Defense Technical Information Center
using the following access numbers: AD-B-102 654 (Volume 1), AD-B-102 655 (Volume 2),and AD-
B-102 656 (Volume 3). The major tasks performed during CAMP-1 were as follow:

¢ Domain Commonality Analysis: The purpose of this analysis was to determine if sufficient com-
monality existed to justify the development of reusable Ada missile parts. Ten missiles were
studied with the result being the identification of over 200 reusable Ada software parts. A Software
Requirements Specification (SRS) was prepared for these parts in accordance with DOD-

STD-2167.

o Ada Part Design: After the parts were identified, their architectural designs were developed and
documented in a Software Top-Level Design Document (STLDD) in accordance with DOD-

STD-2167.
e Part Composition System (PCS) Investigation: The purpose of this investigation was to determinc

which aspects of building new software systems from parts could be automated. The result of this
investigation was the development of an SRS for a prototype tool called the Ada Missile Parts




Engineering Expert (AMPEE) System. The goal of this tool was to help the software engineer find,
understand, use, and manage the reusable Ada missile parts.

o AMPEE Design: After the requirements were specified, the architectural design of the AMPEE
system was developed and documented in a STLDD.

4. OVERVIEW OF THE CAMP-2 PROJECT

While CAMP-1 concentrated on feasibility analyses, CAMP-2 was primarily a technology
demonstration. CAMP-2 was a 30-month project which began in September, 1985. The overall goal of
CAMP-2 was to demonstrate the technical feasibility and value of reusable Ada missile parts and a PCS
by building and using them on a realistic application. The following tasks were performed on CAMP-2:

e Parts Construction: The purpose of this task was to develop the detailed design of the parts which
were identificd during CAMP-1, and to code and test the parts. It was during this task that ad-
ditional parts were identified, bringing the total number of parts developed to 454,

o AMPEE Construction: During this task, the detailed design of the prototype parts composition

system was developed, and the system was coded and (ested.

¢ 1 1th Missile Application Development: This task involved the construction of an actual missile
application using the Ada parts and the AMPEE system, and testing of the developed system in a

1750A hardware-in-the-loop simulation.

e Armonics Benchmarks: The purpose of this task was to use the CAMP parts to develop a suite of
benchmarks that could be used to measure the effectiveness aad efficiency of Ada compilers for

armonics! applications.

The CAMP-2 products included deliverable software, software documentation, and new software
technology. CAMP software may be obtained by certified government contractors and government
agencies by writing to the Air Force Rome Air Development Center/Data and Analysis Center, (315)
336-0937. CAMP documents listed below with Air Force Armament Laboratory Technical Report num-
bers may be ordered from the Defense Technical Information Center.

TARMament electrONICS



1. PARTS PRODUCTS: Over 450 efficient, reusable Ada parts for missile flight applications.

a. User's Guide: A listing of all parts, their purpose and decomposition, other parts required
for their use, where they may be used in other instantiations, etc. (AFATL-TR-88-18,

Volume 1)

b. Version Description Document: A document containing an inventory of distribution
items, installation instructions, and other information. (AFATL-TR-88-18, Volume 2)

c. Software Product Specification: As-built versions of all specifications in accordance with
DOD-STD-2167. (AFATL-TR-88-18, Volume 3)

d. Top-Level Design Document: The architectural design (updated from CAMP-1) for the
CAMP parts documented in accordance with DOD-STD-2167. (AFATL-TR-88-18,

Volumes 4-6)

e. Detailed Design Document: The detailed design for the CAMP parts documented in ac-
cordance with DOD-STD-2167. (AFATL-TR-88-18, Volumes 7-12)

f. Test Plan: The plan by which the parts were tested in accordance with DOD-STD-2167.
(AFATL-TR-88-22)

g. Test Procedure: The procedures by which the parts where tested in accordance with DOD-
STD-2167. This was tailored to include information that would usually be found in the
Software Test Description and the Software Test Report. (AFATL-TR-88-23, Volumes

1-8)
h. Software _Development Files: The working development notebooks containing source

code listings, test plan, test procedure, test code, and test results for the CAMP parts in
accordance with DOD-STD-2167.

i. Parts Tape: An ANSII standard tape containing source code for the parts, test code and
utilities, and design documents in machine readable form.

j- Parts Sizing List: A microfiche containing sizing data about all parts.

2. AMPEE SYSTEM PRODUCTS: A prototype software parts composition tool including a parts
catalog, a parts identification facility, and a component construction facility.

a. Software Product Specification: As-built versions of all specifications documented in ac-
cordance with DOD-STD-2167. This included source code listings for the AMPEE sys-
tem. (AFATL-TR-88-19, Volume 1)

b. Top-Level Design Document: The architectural design (updated from CAMP-1) for the
AMPEE system documented in accordance with DOD-STD-2167. (AFATL-TR-88-19,

Volume 2)



c. Detailed Design Document: The detailed design for the AMPEE system documented in
accordance with DOD-STD-2167. (AFATL-TR-88-19, Volume 3)

d. Parts Catalog: Printed form of all data stored in the AMPEE system catalog. (AFATL-
TR-88-20, Volumes |-4)

e. User's Manual: A manual providing the user with detailed instructions on the use of the
AMPEE system. (AFATL-TR-88-21)

f. Test Plan: The plan by which the AMPEE system was tested in accordance with DOD-
STD-2167. (AFATL-TR-88-22)

2. AMPEE Tape: A tape containing source code for the AMPEE system, utilities, and the

catalog files.

h. Training Plan: A plan which was used to develop training in the use and maintenance of

the AMPEE system.

3. 11TH MISSILE DEMONSTRATIO!. PRODUCTS: A complete missile navigation and guidance
application built using CAMP parts and the AMPEE system, and tested in a 1750A hardware-in-

the-loop simulation.

a. Software Requirements Specification: The requirements of the missile application
documented in accordance with DOD-STD-2167. (AFATL-TR-88-24, Volume 1)

b. Top-Level Design Document: The architectural design for the 11th Missile system
documented in accosdance with DOD-STD-2167. (AFATL-TR-88-24, Volume 2)

c. Test Plan: The plan by which the 11th Missile system was tested in accordance with
DOD-STD-2167.

d. Test Report:  The results of testing the application in accordance with DOD-STD-2167.

This includes ! [th Missile development evaluation.

4. ARMONICS BENCHMARK PRODUJCTS: A self-documenting set of tests to be run for evalua-
tion of Ada development and run-titne environments within armonics applications

a. Benchmark Tape: An ANSII tape containing the benchmarks, standard data files, and
VAX command procedures for execuling the benchmarks on VAX hardware.

5. OTHER PRODUCTS

a. Final Technical Report: Three volumes covering parts and PCS development, 11th Missile

Application development, and Armonics Benchmarks development

b. Monthly Status Reports and Schedule: Management reports

c. Program Status Reviews: Slides used at periodic status reviews




d. SIGAda Demonstration: Slides used at a series of one-hour presentations of CAMP tech-

-nology

¢. AFATL Demonstration: Slides used at a scries of three-hour presentations of CAMP

technology

5. ORGANIZATION OF THE REPORT

Due (o the large amount of data to be discussed in this report, it has been divided into three volumes.
The remaining sections of Volume 1 are organized as follows.

e Section I1 describes the development and testing of the CAMP parts

e Section I goes into additional detail regarding the inter-relationships between some of the CAMP

parts
e Section 1V describes the development and testing of the AMPEE system

e Section V discusses some issues concerning the Ada language and their impact on reusable

software
e Section V] describes the methodology used in designing the CAMP Ada parts

e Section VII describes a problem with current Ada compilers that potentially could have a major

adverse effect on reusable software

e Section VIII contains overall conclusions and recommendations

Volume 1l describes the development and testing of the 11th Missile Application. Volume 111
describes the development and testing of the Armonics Benchmarks.



SECTION 11
DEVELOPMENT AND TESTING OF CAMP PARTS

Prior to the CAMP program, there were no successful projects to carry the development of a general
library of reusable, real-time embedded software through the software lifecycle. In fact, except for tool
catalogs and abstract data types, no complete software library existed in Ada. Therefore, during the early
stages of the CAMP parts development, many new issues connected with the development of reusable

software had to be addressed.

These issues included: 1) definition of terms, 2) the basic structure to be used when designing the
parts, and 3) documentation standards for the parts. The CAMP team had to define a common terminol-
ogy because discussing the number of parts that had been developed or how parts had been packaged in
TLCSCs and LLCSCs has little meaning without a common understanding of what constitutes a part, a
TLCSC, and an LLCSC. Development of the parts could not proceed until the basic design approach and
structure of the parts had been decided. Finally, due to the large number of parts, it was necessary to
determine how to satisfy documentation requirements within practical limits.

I. TERMS AND STRUCTURE

One issue that was addressed during the CAMP project is what actually constitutes a part: is it a
package, is it an executable unit, is it a compilation unil, etc. Various definitions of a part had been given
in the past; for example, parts had been defined as Ada units (e.g., packages, procedures, functions),
design units, and code units, with or without test code. While these were not incorrect definitions, they
were not appropriate for CAMP. The criteria established on CAMP for determining if a piece of code
was a part are enumerated below. Using these crileria, 454 Ada parts were developed during the CAMP

program.

1. A part is a package, subprogram, or task. A part can be a Top-Level Computer Software Com-
ponent (TLCSC), Lower Level Computer Software Component (LLCSC), or unit. A TLCSC is

defined as an outer level package or procedure — one that was not nested in another package. An
LLCSC is defined as a package that is nested in some other entity, generally within another
package. Units are defined as nested procedures, functions, or tasks.

2. A part must be usable in a stand-alone fashion.

o It may with other parts.

¢ It does not depend on other packages. subprograms. or tasks encapsulated with it to perform

a single function.



Figure 1 shows an example of a generic TLCSC, Clock_Handler, that is a part. The Clock_
Handler package maintains a clock. Even though a single application may not require all of
the routines in Clock_Handler, the routines could not logically exist alone: it would make
little sense to reset a clock that is never read. Therefore, the entire TLCSC is considered a

part,

PRSI ]
i

et
7 AR

wm LR
“f>t s
R TR OO RN

Current_Time

i

Converted_Time \

Reset _Clock

l

Synchronize_Clock \

Elapsed_Time

1

0 .2 Indicates  a part
aawawe  indicates 8 generic unit

Figure 1. A Generic TLCSC Can Be A Part

Figure 2 shows an example of a generic LLCSC, Latitude_Integration, that is a part. This
package maintains a latitude. The LLCSC is designated as a part because, although the
Integrate function could exist on its own, the Reinitialize procedure could not.
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Figure 2. Generic LLCSCs and Functions Can Be Parts

Figure 2 also shows an example of a generic procedure, Compute_Coriolis_Acceleration,
which is a part. Figure 3 shows an example of a generic package, Vector_Operations,



which contains several subroutines, each of which is a part. In these cases, the procedures,
rather than any encapsulating packages, are designated as parts since the procedures can

logically exist on their own.
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Figure 3. A Nongeneric Unit Can Be A Part

e A part may require types or objects that have been encapsulated with it: The subroutines
shown in Figure 3 are parts even though they require the data type, Vectors, defined by the

Vector_Operations package.

3. Organizational packages are not parts; and package bodies are never parts, even if they have

processing within them

Given the large number of parts typically identified during any domain analysis, it is useful to
develop some (ype of software parts taxonomy. This taxonomy provides a means of classifying parts; it
helps not only domain analysts, but also helps users identify available parts. Table 1 lists the categories in
the CAMP parts taxonomy, and includes a description of the classes and a listing of the TLCSCs belong-
ing to each class.

2. PARTS DEVELOPMENT METHODS

CAMP-| included a domain analysis to identify comnionality between ten missiles which were
studied. Following the domain analysis. requirements were defined for the common functions that were
identified. and parts development began. Development was completed during CAMP-2. The develop-
ment cycle included top-level design, detailed design. coding, testing, and documentation. These
development activities are further discussed in the following paragraphs.



TABLE 1. CAMP PARTS TAXONOMY

CATEGORY

TLCSC NAME

DESCRIPTION

Data Constants

W@GS72_Ellipsoid_Engineering_Data
WG@S72_Ellipsoid_Metric_Data
WGS72_Ellipsoid_Unitless_Data
Universal_Constants
Conversion_Factors .

TLCSCs which provide data constants used
in a typical missile application

Data Types

Basic_Data_Types
Kalman_Filter_Dsata_Types
Autopitot_Data_Types

TLCSCs which provide data types used in
other TLCSCs or in a user application

Equipment Interfaces

Missile_Radar_Altimeter
Missile_Radar_Altimeter_with_Autopower_On
Clock_Handler

TLCSCs which provide standard interfaces
to specific hardware components or to
generat classes of hardware

Navigation Common_Navigation_Parts TLCSCs  which provide the basic
Wander_Azimuth_Navigation_Parts functionality of a navigation subsystem
North_Pointing_Navigation_Parts
Direction_Cosine_Matrix_Operations

Kalman Filter Kalman_Filter_Common_Parts TLCSC TLLCSCs which provide common Kalman

Katman_Filter_Compact_H_Parts TL.CSC
Kalman_Filter_Complicated_H_Parts TLCSC

filier functions

Guidance and Control

Waypoint_Steering
Autopilot

TLCSCs  which provide the  basic
functionality of a guidance and control sub-
system

Nonguidance Control

Air_Data_Parts TL.CSC
Fuel_Control_Parts TL.CSC

TLCSCs which provide the basic
functionality of a control subsystem for
operations outside of the guidance ares

Mathematical

Coordinate_Vector_Matrix_Algecbra
General_Vector_Matrix_Algebra

Standard_Trig

Geometric_Operations

Signal_Processing

Polynomials

General_Purpose_Math

Unit_Conversions
External_Form_Conversion_Twos_Complement
Quaternion_Operations

TLCSCs which provide a variety of useful
mathematical functions such as coordinate
and matrix algebra, trigonometric, and sig-
nal processing functions

Abstract Mechanisms

Abstract_Data_Structures

TLCSCs which provide abstract data struc-
tures and processes

General Utilities

General_Utilities
Communication_Parts

TLCSCs which provide other functions
needed for missile or other weapons system
operation

a. Design and Code

On CAMP, top-level design consisted of the package specifications for all the CAMP parts
TLCSCs, including the specifications for all exported LLCSCs and units, as well as the definition of all

exported data types, constants, and exceptions.

Detailed design and coding phases were merged through the use of Ada as the design language.
The primary purpose of the program design language (PDL), Ada design language (ADL), and/or pseu-
docode developed during detailed design is to improve understanding of the software by providing ad-
ditional information that is an appropriate level of abstraction above the code. The key here is that
detailed design should be a higher level of abstraction than the code. If it is not, then therc may be
excessive duplication of effort during the detailed design and coding phases. There were certain charac-

10



teristics of the CAMP project which led to the conclusior that it was appropriate to go directly from
top-level design to code for development of the CAMP parts. These characteristics are discussed below.

¢ Low-level requirements: The requirements for many of the parts were specified at a very low level.
The algorithms to be used in many of the math parts, for example, were completely specified during
the requirements phase. There was, therefore, no need to repeat these algorithmic requirements in

the detailed design.

e Parts were built of other parts: Many of the high-level CAMP parts were designed to accept other
parts as generic parameters. The highest level parts directly instantiate the CAMP parls required 1o
perform lower level operations. These design aspects of the CAMP parts are further discussed in

Sections 111 and VI.

An example of parts instantiating other parts is shown in Figure 4 which contains the detailed
design/code for the Kalman_Filter_Complicated_H_Parts.Sequentially_Updated_Covariance_
Matrix_and_State_Vector.Update procedure. The English pseudocode for this procedure would be
similar to the following:
for each measurement in the state vector loop
compute K (Kalman gain)
update P (error covariance matrix)

update X (state vector)
cnd loop

The actual code for this procedure would be very similar to the pseudocode if, as in the CAMP
parts, the calculations of a new K, P, and X consisted simply of calls to other routines. This
similarity can be seen by comparing the above pseudocode with the actual code, shown in Figure 4,

which contains nothing more than a loop and three subroutine calls.

e Parts are small: The CAMP parts tend to be small, less than 36 lines of code on average, and,
therefore, relatively simple. The need for high-level comments frequently decreases as the
simplicity of the code increases. This can be seen in Figures 5 and 6 which contain simple and
relatively complex routines, respectively. Figure 5 shows a piece of code which sets all elements of
a symmetric, full-storage matrix to 0.0. The code for this procedure is quite simple and self-
explanatory; it, therefore, contains no comments other than those in its code header. Figure 6, on
the other hand, contains a more complicated piece of code which subtracts a symmetric, full-storage
matrix from an identity matrix. Because of the complexity of this code, high-level comments, in
addition to those contained in its code header. were required. This ratio of comments to code for

this piece of code is better than 1:2.

While this merging of the detailed design and coding phases, hereafter referred to as delailed
design, is not appropriate for all applications, it was appropriate for development of the CAMP parts.

The primary steps during the design phases are shown in Table 2.

Design watkibroughs were attended by all members of the CAMP parts team and occasionally



package body Kalman Filter Complicated H Parts

function Compute_ Kalman Gain ...
procedure Update Error Covariance Matrix
procedure Update State Vector ...

ise

package body Sequentially Update_Covariance Matrix and State Vector is

K : K_Column Vectors;

function Compute K is new Compute_ Kalman Gain
procedure Update P is new Update Error_Covariance Matrix ...
procedure Update X is new Update_State Vector ...

procedure Update (P
X
z
Complicated B
Measurement Variance :

begin

for Measurement_ Number in Meas:irement

K :'= Compute K (P
Measurement_ Number
Complicated H

in ocut P_Matrices;

: in out State_Vectors;

: in Measurement_Vectors;
: in 8 Matrices;
in Measurement_Variance_Vector) is

Indices loop

=> P,
=> Measurement Number,
=> Complicated H,

Measurement_Variance => Measurement Variance);

Opdate_P (P = P,
Measurement Number => Measurement_ Number,
K => K,
Complicated H => Complicated H);
Opdate X (X => X,
4 -> %,
K => K,
Measurement Number => Measurement Number,
Complicated H => Complicated B);
end loop;
end Update;

end Sequentially Update Covariance_Matrix and_State Vector;

end Kalman Filter_ Complicated H Parts;

Figure 4. For High-Level Parts, Detailed Design is Code

begin

end Set _To_Zero Matrix;

separate (General Vector Matrix Algebra.
Symmetric Full Storage_Matrix Operations_Unconstrained)
procedure Set_To_fero Matrix (Matrix :

Matrix := (others => (others => 0.

out Matrices) is

0)):

Figure 5. Simple Parts Require Few Comments




funation Subtract from Identity (Input : Matrices) return Matrices is

-~ --declaration seation

war : Matrioces (Input/RANGE(1l), Input'RANGR(2)):

Ane

Col : Col Indices;
Col_Count : POSITIVR;
Row : Row_Indices;
Row_Count : POSTrIVE:

8 _Col : Col lndlc.l'
8 Row : Row_Indices;

begin

if

--make sure 1n:ut matriz is & square matrix

Input’ (1) = Input’ (2) then

--will eubtract input matriz from an identity matrix bx first
--subtracting sll elements from 0.0 and then edding 1.0 to the

~-diagonsl e nts;
wvhen doing the subtraction, will only caloulate the resainder

~-for the elements in the bottom half of the matrixz and will “1:'
--deo l:;lgl-mtl for the symmetrioc alemsnts in the top half of t|
--maty

Row_Count := 1;

--8 Col will go aorcss the columms as Rov goes down the rows;
--wIll mark column aontsining the diasgonal element for this row
Row :w Input'FIRST(1);

8_Col := Input't!ll‘! 2);

Do, _Bvery Row

Col._Count = 1;

--8 Row will go down the rows as Col goes across the columms;
--when paired vlth 8_Col will n:h the symmetric count. .rt
--to the el being d in the bottom half of
--matrix
Col = Input’/FIRST(2):
8 Row 1= Input/PTIRST(1);
Sibtxact_Elements_Prom Sero:
loop ~

--perform subtraction on elemsnt in bottom half of matrix
Answer (Row,Col) :=m - Input (Row,Col):;

--azit loop after disgonal element has been reached
axit Subtract_Rlements_From fero when Col Count =
Wow_Count;

--assign values to @ tric elements in top half of matrix
--(done after check for diagonal, since diagonal elemente
-~ don’t have a tric counterpart)

Ansver(S_Row,8 Col) := Answer(Row, Col):;

~--inorement veriables

Col Count := Col Count + 1:

Col™ i= Col_ Indices’sUCC(Col):
8_Row := Row_Indices’ SUCC (S Row);

end loop Subtract Elements From Zero;

~-add one to the diagonal element
Answer (Row, Col) :m= swer (Row, 8 Col) + 1.0;

exit Do_Every Row when Row_Count = Input’LENGTA(1):
Row_Count := Kow Count + 17

Row :m Rov Indices’SUCC(Rov);

8_Col := Col !ndloo' socCc(s_ Col) ;

end loop Do_Every Fow;

elsa

reise Dimension Error:

end if;

return Answar;

and Subtract_from Idantity;

Figure 6. Complicated Parts Requite More Comments




TABLE 2. DESIGN STEPS

STEP DESCRIPTION
1. Assignment of requirements to the TLCSC
2. Completion of top-level design, along with header information (see Section
1L.2.0)

kB Preparation of a software development file (SDF) (sce Section I1.2.)

4. Top-level design walkthrough

s. Com'{lction of detailed design, along with header information (sec Section
.2,

6. Preparation of test procedure/plan (see Section I1.2.b)

7. Detailed design walkthrough

by members of the parts composition team. The design presented for walkthrough was reviewed to
ensure conformance with requirements, conformance of design with existing design and coding standards,
consistency with other parts, completeness of documentation, and conformance of code headers to docu-

ment generation tool requirements (see St n I1.2.e.(4)).

b. Testing

The testing phase of the life cycle began after completion of detailed design and prior to the
detailed design walkthrough. During this phase, a test plan and procedure for the TLCSC were prepared
for later review by the CAMP parts team at the detailed design walkthrough. Following completion of all
design walkthroughs and implementation of walkthrough action items, a part was given (o a tester for
unit/integration testing.

Unit and integration testing of the CAMP parts were combined into a single phase because of
the bottom-up approach taken to testing. All parts requiring other parts directly or designed to use them
through generic parameters were actually tested using the supporting parts which had already passed
testing. This approach shortened the testing phase by eliminating the need to write code stubs and by
eliminating the need to first test a part in isolation and then retest it using the parts themselves.

Most parts required several iterations through the testing cycle illustrated in Figure 7. The
majority of testing errors resulted from errors in the test procedures. Much less frequently, errors were
found in the parts. On rare occasions, errors were found in the supporting parts which had already been
tested. If an error were found in a part, whether directly or indirectly, it was returned to the original
designer for modifications and sent through the testing cycle again. When a TLCSC successfully passed
testing, it was placed under configuration control (see Section 11.2.d) and compiled into the main CAMP

parts library.



Designer Part given Prepare
prepares test fo tester ’ test code
procedure
un the tes
emor(s) Modty | .| Return part
detected? test code to tester
Lok
>———in test code — |
}->—————in test procedure ) Prepars SOR | _ [Return Modity part
l on part "t to tost procedure
f———in part under test being tested 5:3
. Suspend Prepare SOR Correct
= in asupporting pat ———>——— testing on on supporting supporting
current part part part
Update | . Place part under |~ ..} Complle part
SOF configuration into baseline
management Ada fibrary

Figure 7. CAMP Parts Testing Cycle

¢. Maintenance

During the CAMP project, parts were modified to provide both enhancements and corrections.
Changes to the CAMP parts were governed by a Configuration Change Control Board (CCCB) that was
put into cffect after parts development was complete. The CCCB consisted of the program manager and
the heads of the 1 1th Missile and parts development teams. On occasion, members of the parts composi-
tion system team and additional members of the parts development teams participated in board discus-
sions. The CCCB was tasked to determine whether a proposed modification/enhancement to a part should
be made. The outcome of the decision was based on:

e The scope of the change: Was it a minor change or a major one? Was it specific to the 11th

Missile or general enough to be relevant (o other missile sysiems?

e Purpose of the change: Was il to correct an error (errors were always corrected) or provide an
y

enhancement?

e Schedule constraints

The need for corrections to the CAMP parts was determined at several points during the life
cycle of the parts. Corrections due to errors detected during unit and integration testing are discussed in
Section 11.2.b. Occasionally, errors were detected in parts that had been successfully unit and integration
tested. These crrors were generally due to incorrect requirements and were identified through the 11th



Missile Application use of the CAMP parts, as well as through reviews of the parts by other McDonnell
Douglas software projects for potential use in their systems. These errors were corrected as they were
discovered. The affected parts were then retested and baselined again.

During the development of the 11th Missile Application, it was found that some parts, while not
incorrect, were inappropriate for use on that project. Some of these inadequacies were due (o require-
ments and some were due to design decisions. These prot iems were handled in one of the following

ways:
* Basclined parts were modified: This course of action was chosen if it was determined that the parts

were inappropriate not only for the 11th Missile Application, but also for other missile applications.
For example, all the Kalman filter packages were modified because it was found that the generic

parameters did not allow sufficient flexibifity.

¢ Additional parts were created: The algorithms for some of the parts made assumptions that were
not appropriate for the 11th Missile Application. For example, some of the navigation parts take
advantage of the fact that for smail angles, the sine of the angle is approximately equal to the angle
itself. This assumption increases efficiency by eliminating the need to calculate an arcsine and

produces satisfactory results for some missile applications. This assumption, however, was not
appropriate for the 11th Missile Application and potentially not for other missiles either. Con-

sequently, new parts were created which used the arcsine instead of the approximation.

¢ 11th Missile team modified their own versions of the parts: In some cases, the required modifica-
tions were specific to the | Ith Missile Application and, therefore, did not warrant modifications to
the baselined CAMP parts. In these instances, the 11th Missile team modified their own versions ol

the parts as required. A further discussion of this can be found in Volume II.

d. Configuration Management

Two libraries were created to aid in configuration management of all CAMP parts. These
libraries were created under the DEC Ada Compilation System (ACS) and Configuration Management
System (CMS). The ACS tibrary contained compilations of the current versions of all baselined CAMP
parts. The CMS library contained the ASCI! files for all baselined CAMP parts. Both of these libraries
were controlled by one member of the parts team: the parts librarian. Read access was given to all
members of the CAMP (eam, but only the CAMP librarian could place elements in these libraries. The
ACS and CMS tools are further discussed in Sections 11.2.e.(1) and 11.2.e.(3), respectively.

The CAMP librarian was responsible for baselining all CAMP TLCSCs. A TLCSC was
baselined when it had successfully passed its testing phase, all source code documentation had been
updated to include testing information, and the Software Development File (SDF) (see Section 11.2.f) had
been brought up 1o date.



When a TLCSC was first placed under configuration control, all files pertaining to the TLCSC
were placed in the CMS library; these files included those listed in Table 3. The TLCSC was then

compiled into the ACS library.

TABLE 3. ITEMS UNDER CONFIGURATION MANAGEMENT

CONTENTS
1. Al source code files for TLCSC

2. Test procedure

3 Test plan

4. All source code files containing test code

S, Input data for tests

6. Expected results for tests

7 Results of testing

8. DEC/Test Manager command files used to organize tests

If a TLCSC required modifications, the CAMP librarian would reserve the files requested by
the person responsible for making the modifications. The files were checked back into CMS when the
modifications were complete, the TLCSC was successfully retested, and the source code documentation
and SDF were updated.

When rebaselining a modified TLCSC, the modified files were placed back into the CMS
library; new files, if any, were placed under configuration control by placing them in the CMS library; the
modified TLCSC was compiled into the ACS library; and any TLCSCs whose compilativns depended
upon the newly compiled TLCSC were recompiled.

¢. Tools

Software tools were used by all members of the CAMP team during all phases of the project.
This was a critical component in the increased productivity experience on the CAMP project. Some of
the tools were provided by commercial vendors and satisfied standard needs such as library management,
configuration management, symbolic debugging, editing, and text processing. In other areas, such as
document production, requirements for tools were identified which could not be met with commercial
products, and in-house tools were developed.
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(1) Design and Code Development Tools

All CAMP Ada development took place using the Ada programming support environment
(APSE) provided by Digital Equipment Corporation (DEC). This development environment includes: 1)
the VAX Ada compiler; 2) the Ada Compilation System (ACS) which serves as the program library
manager and provides an interface to the compiler and linker; and 3) a symbolic debugger.

The development environment provided by the Ada Compilation System facilitated the
development of parts by multiple engineers. The ability to create sublibraries aliowed the creation of one
parent library containing all tested, baselined parts, and separate sublibraries for the untested software
under control of the parts developers. The use of one parent and multiple sublibraries allowed all parts
developers immediate access to baselined CAMP parts. It also gave the developers immediate access to
all parts which were modified and, therefore, recompiled.

Unlike other development environments, ACS does not impose the restriction of requiring
library unit specifications and bodies to be compiled into the same library. The compilation system also
allows unils to be entered via pointers from one library or sublibrary into another. This allows parts
physically located in another library to be shared by reference. This method of entering rather than
compiling a referenced unit into a library has the advantage of avoiding the problem of compiling against

an obsolete version.

The usefulness of DEC’s Ada Compilation System is enhanced by its integration with both
the DEC Code Management System (CMS) and the symbolic debugger. This allows ACS to fetch files
from the CMS library for recompilations. It also allows the symbolic debugger to fetch files from the
Ada library in order to display source code lines during a debugging session. Both of these features were

used extensively during CAMP.

Another useful and frequently used feature, is the ability of the ACS library manager to
automatically perform recompilations of obsolete units. When invoking this feature, it is possible to
indicate that a unit is to be considered obsolete if, in addition to the normal rules of compilation, the
creation date of the latest source code file is more recent than the latest object code. This, along with
integration of ACS with CMS, allows the library manager to retrieve files from CMS for recompilation
whenever a new version of the part is baselined.

(2) Testing Tools

The testing phase of a part’s life cycle included the identificalion and organization of
required (ests, preparation of a test plan and procedure, preparation of test code, and actual testing of the
part. The tools which were used to assist with all of these phases are discussed below.

Test Manager

The VAX DEC/Test Manager (DTM) is a tool developed by DEC (o assist in the organiza-
tion of tests, selection of tests for execution, and review/verification of test results. It was used on CAMP

to organize tests and assist in preparation of the test plan.



Tests were generally organized by creating a group of tests for each TLCSC and then
creating subgroups for each LLCSC within a given TLCSC. The tests and groups were created by writing
job control files containing the apprcpriate DTM commands and then submitting these files to the test
manager. While DTM does have interactive capability, it was felt that the number and size of the re-
quired commands were too great for this capability to be practically applied, particularly consideting the
number of tests required for even a medium-sized TLCSC.

Following creation of the appropriate tests and groups for a TLCSC, DTM could be
queried to show all the tests and groups for a particular case. A tool was written to take this output and
create the tables which were used to document the tests for the test plan document.

An attempt was made to use the DEC/Test Manager for testing of the CAMP parts, but
DTM proved unacceptable since it allowed no tolerance in the output. The results of a test had to be
exactly what were expected or the test failed. For example, if the expected result was 2.0 and the actual
result was 1.9999999999 or 2.00000000001, the test failed. Therefore, use of DTM for the execution of

tests was discontinued

Record Results and Retrieval Operations packages

During the early stages of CAMP parts testing, tools were developed to assist with the
execution of tests. These tools consisted of the Record_Results and Retrieval_Operations packages.

The Record_Results package was designed to control the output file, retrieve data from the
expected results file, format output to the results file, and check the results of each test. It consisted of
several subroutines and several generic packages. The subroutines dealt with initializing the recording
operations, opening and closing the output file, textual output to the file, formatting the file, and tailoring
heading information. The generic packages were designed to handle floating point, integer, and enumera-
tion data types and contained the actual recording/analysis routines.

The recording/analysis routines were overloaded to allow for variations in the recording
operations themselves: whether the description was to be a textual description or simply a running count
of the number of tests performed; whether the expected value was being sent to the routine or should be
read from an expected results file. Each of the routines had a parameter controlling the tolerance to be
used for judging every value recorded for each test. A value was considered acceptable if:

abs (Actual - Expected) <= abs(Expected) * Tolerance



The recording routines were able to skip over extraneous text when retrieving data from
the expected results file. Figure 8 shows an excerpt from the expected results file used for testing the
Waypoinl_Steering TLCSC. It was created by retaining applicable sections from the test procedure. The
recording routines had the capability to go into a file such as the example, skip over the extraneo.is text,
read the floating point values for UN_B, again skip over extraneous text, and read the enumeration values
for the Start_Test function without having any knowledge of the textual format of the file. Being able to
do this had several benefits:

e Testing was simplified: Since the expected results file was a trimmed-down version of the lest

procedure, complete with pertinent paragraph headings, it was easy to tell whether the numbers

being read for a particular test were the ones that were supposed to be read.

¢ Time was saved: There were definite advantages 1o being able to have extra text in the expected
results file, but it would have been inconvenient to have required a rigid format or 1o have had the
test code know the textual layout of the file. By creating routines capable of skipping over super-
fluous data without knowing the format. time was saved. Additional time savings were also real-
ized by creating a tool capable of assisting in the job of stripping the test procedure to create the

expecled results file.

2.2 FORMAL TEST X.X.X - UPDATE PROCEDURE

x.2.2.5 OUTPUT
Execution should generate the following vutput:

--first set of results
0.287_603_734_197 0.197_187_132_186 -0.937_536_930_976 --UN_B values

x.9.2 FORMAL TEST X.X.X - START_TEST FUNCTION

x.9.2.5 OUTPUT
Execution should gencrate the following output:

Not_Turning

Tuming

Figure 8. Sample Expected Results File

Text Formatter

Digital Standard Runoff (DSR) is a text formatting tool supplied by the Digital EQuipment
Corporation. It processes source files into formatted text, optionally creating a table of contents. DSR was
used on CAMP for the creation of test procedures, the top-level design document, and the detailed design

documenn.

Symbolic Debugger

The DEC Ada Compilation System includes a symbolic debugger  The functions of the
VAX symbolic debugger include the ability to run programs, set breakpoints, and execute individual
instructions; examine, set, and cvaluate program data; and show a trace of active calls at the current
program counter location. It permits debugging in a screen mode which placed source code in one
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window and debugger commands and output in another. Since the debugger recognizes Ada constructs, it
was possible to ask for the current value of a component of an array or record, or to ask it to evaluate the

attribute for some object or type.
The symbolic debugger did have a few limitations:
e Variable initialization: The symbolic debugger apparently initializes some variables when it is

invoked:; this causes difficulties in locating program errors. For example, one program was abnor-
mally terminating due (o a constraint error. When an attempt was made to identify the problem

using the symbolic debugger, the program ran successfully. It took several iterations of
running/debugging before it was realized that the program ran successfully in the debugger because
the debugger was correctly initializing an otherwise uninitialized variable.

e Scope:  On occasion, particularly if the program was large and contained many instantiations, the
debugger would not show the source code for a unit because some other unit (one not being stepped
through) was not in its active scope. This frequently made it impossible to debug the routine using
the debugger.

In spite of these problems, the debugger was a useful tool and was used frequently during
CAMP by both the parts and 11th Missile teams.

(3) Configuration Management Tools

The Code Management System (CMS) provided by Digital Equipment Corporation was
used for configuration management of the CAMP parts. This tool and its use are further discussed in

Section IL.2.d.

(4) Documentation Tools

Tools to aid in the creation of top-level and detailed design documents were needed for the
following reasons:

o It was anticipated that the top-level and detailed design documents for the CAMP parts would be
very large due to the number of CAMP parts and the amount of documentation on each one.

e It was desirable to eliminate the need to maintain three sets of documentation: source code files,
top-level design document, and detailed design document. Since all of the information was already
contained in the source code files. it was preferable o maintain only them and simply recreate the

design documents as necessary.



For these reasons, comment extractor tools were developed to “elp create Section 3.6
(Top-Level Design) of the DoD-STD-2167 Top-Level Design Document and Section 3.3 (Detailed
Design) of the DoD-STD-2167 Detailed Design Document. The comment extractors generate the Digital
Standard Runoff (DSR) text formatting commands required to produce for the design documents and
extract the appropriate information from the source code headers for each of the paragraphs. Figures 10
and 11 show which sections of the source code headers were placed in the design documents.

(5) Miscellaneous Tools/Aids

Naming Convention

A naming convention was established and used for all CAMP files. The primary com-
ponent of this naming convention was a two-part prefix (i.e., xxx_yyy_). The first part of the prefix (xxx)
consisted of the TLCSC identification number (e.g., 621 for Basic_Data_Types, 684 for Geometric_
Operations, 001 for Common_Navigation). This part of the prefix was used on all files (e.g., test proce-
dure, test plan, test results) pertaining to a particular TLCSC. The second part of the prefix (yyy) was
used to indicate level of nesting of the part contained in the file and was also indicative of compilation
order for that TLCSC. This two-part prefix was used for all Ada source code files implementing the

TLCSCs.

The use of this naming convention was found to have several benefits. It simplified the
use of CMS. For example, by simply specifying "001*.*", a list of all baselined files dealing with the
Common_Navigation_Parts TLCSC could be obtained. It also facilitated the development of tools to help
with the compilation of parts. This naming convention has now been adopted by several other Ada

projects within McDonnell Douglas.
Code Counter

A code counter was developed to help count lines of code and documentation for each of
the CAMP parts. The code counter was able to analyze the structure of an Ada source code file and break
down the counts among the individual Ada components in the file. For example, the code counter could
take the code shown in Figure 9 and tell the user that:

Coordinate_Vector_Matrix_Algebra has 2 lines of code and 4 lines of header (not including items nested in it)
Vector_Operations has 6 lines of code and 4 lines of header (not including items nested in it)
Yy has 2 lines of code and O lines of header
has 2 lines of code and 0 lines of header

and that:
Coordinate_Vector_Matrix_Algebra has 12 lines of code and 8 lines of header (including items nested in it)
Vector_Operations has 10 lines of code and 4 lines of header (including items nested in it)

This tool has proved very useful, both on CAMP and other projects.
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v Y e D
-=-#*TLCSC WAME:

--* Coordinate Vector Matrix Algebra

e e rmrc r e Er —r e — - .- ———————— - —_————
package Coordinate Vector Matrix Algebra is

T e o o o = > - = . ——————
-=*--LLCSC NAME:
--%-- Vector Operations
W —_————_—————————————
genaric
type Elements is digits <>;
type Indices is (<);
package Vector Operations is
type Vectors is array (Indices) of Elements:;
function "+" (Left : Vectors;
Right : Vectors) return Vectors;
function "~-" (Left : Vectors;
Right : Vectors) return Vectors;
ond Vector_Operations;

end Coordinate_Vector Matrix Algebra;

Figure 9. Sample Code Counter Input

f. Documentation

All CAMP parts are extensively documented for the following reasons:

e External users of the parts are not familiar with them and therefore need a significant amount of

information.

e The CAMP parts make extensive use of generic units, and most users are relatively unfamiliar with
the advanced featurcs of generic units. A sample instantiation is included in the code headers of
gencric parts which shows how other CAMP parts can be used to provide the required generic
actual data types, objects, and/or subprograms. In some cases, the sample usage section shows how
the generic formal parameters can be used to tailor the part; for example, how to tailor a matrix
multiplication routine for use with dynamically sparse matrices. During part development, this
portion of the documentation was time-consuming to produce and easily affected by modifications
to the part. Later, however, it tumed out to be one of the more useful pieces of documentation for
the engineers developing the 11th Missile Application since they were unfamiliar with the use of

the part.

A Software Development File (SDF) was prepared for all CAMP TLCSCs. Table 4 shows the
sections contained in each SDF, along with the information that was maintained in each section.

All of the documentatio on a part is contained in its top-level and detailed design headers. A
software tool (see Section 11.2.e.(4)) was developed to extract information from appropriate sections of
the headers for placement in the design documents. Figures 10 and 11 identify the information contained
in the CAMP top-level and detailed design headers, and indicate which of these sections are extracted for

use in the top-level or detailed design documents.



TABLE 4. SOFTWARE DEVELOPMENT FILE CONTENTS

SECTION CONTENTS

Requirements Requirements for this part

Top-level design Package specification for the TLCSC

Detailed design Body for the TLCSC

Test plan/procedure ‘Test procedure/plan for the TLCSC, along with the test code

Teat results Latest set of test resulta

Problem reports and | Software discrepancy reports (SDRs) for this TLCSC, along with
log disposition

Change orders and Software enhancement proposal/software change proposal forms
log (SEP/SCP), along with disposition

Miscellancous Walkthrough records *

EXTRACTED FOR
HEADER CO! TENTS DESION DOCUMEST
Name
Identification Number
Security Level
Purpose
Requirements trace
Context
Utilization of external elements
Packages
Subprograms and task entries
Exceptions
Data types
Data objects
Input/output
Generic parameters
Data types
Data objects
Subprograms
Formal parameters
Exported exceptions/types/objects
Exceptions
Data types
Data objects
Exceptions raised
Calling sequence/timing/priority
Interrupt handling
Sample usage
Decomposition
Local entities contained in package body

L ® B 8 F &

L I O R I

Figure 10. Top-Level Design Header Information

The main benefit of using code design headers to produce design documents is that only one set
of documentation needs to be maintained. This allows a part to be modified without also modifying
documents immediately or trying to remember at a later date which sections of the document need to be
updated. When it is time to produce an updated document, the text merely has to be re-extracted. This
allows time 1o produce extensive, high-quality documentation by eliminating tedious and often error-

ridden duplication.
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EXTRACTED FOR
HEADER CONTENTS DESION

Name .

Identification Number
Sccurity Level
Purpose
Requirements trace
Context
Utilization of external elements
Packages
Subprograms and task entries
Exceptions
Data types
Data objects
Uitilization of other elements in top-level component
Packages
Subprograms and task entries
FExceptions
Data types
Dala objects
Input/output
Generic parameters
Data typex
Data objects
Subprograms
Formal parameters
1.ocal exceptions/types/objects
Exceplions
Data types
Data objecis
Local entities
fixceptions raiscd
Calling sequence

*

LN R S T I K R TR S

*» 0w

. s

Figure 11. Detailed Design Header Information

3. CAMP PARTS PROCESS ANALYSIS

In order to assess productivity for parts development on the CAMP project, effort data was collected
from all members of the CAMP team in the areas of domain and requirements analysis, architectural
design, detailed design. coding. testing. etc. This was then combined with sizing data to determine
productivity. Productivity figures can be misleading, and sometimes impossible to compare because of
the many ways they can be calculated. Productivity is gencrally quoted in terms of lines of code per
man-month, but authors frequently don’t define terms or specify what is included in code counts.

The size of the CAMP parts was determined using two metrics: lines of code and Ada statements. A
line of code was defined as any line in the source code file which contained al! or part of an Ada
statement. If a single Ada statement occupied three lines in the source code file, then it was counted as
threc lines of code. A statement count, on the other hand. counted whole Ada stalements: in effect
counting semicolons. The difference between these two methods of delermining code size is illustrated in

Figure 12.

The 1otal size of the CAMP parts. in units ol lines of code and Ada statements, is shown in Figure
13. As shown in this ligure, over 43,000 lines of Ada code were developed during CAMP; this included
over 16,000 lincs of cude for the parts themsclves and over 27.500 lines of test code. Using Ada state-
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package General Vector Matrix Algebra is

generic
type Left Elements is digits <>;
type Right Elements is digits <>;

type Output Elements is digits <>;
type Laft_Col Indices is (<>);
type Left Row_Indices is (<>);
type Right Col Indices i1s (<>);
types Right Row Indices 1is (<>);
type Output Col Indices is (<>);
type Output Row_Indices is (<>);
type Left Matrices is array (Left_Row_Indices,
Left_Col_Indices) of Left_ Elements;
type Right Matrices is array (Right Row_Indices,
Right_Col_Indices)
of Right_Elements;
type Output Matrices is array (Output_Row_Indices,
OQutput_Col_Indices)
of Output Elements;
with function "*" (Left : Left_ Elements;
Right : Right_Elaments)
return Output_Elements is <>;
package Matrix Matrix Transpose Multiply Unrestricted is

function "*" (Left : Left Matrices;
Right : Right Matrices) return Output_Matrices;

end Matrix Matrix Transpose_Multiply Unrestricted;

end General Vector_ Matrix Algebra;

Counting the above code, using lines of code and Ada statements as the metrics, yields the
following results:

Lines of Code  Ada Statements
27 16

Figure 12. Lines of Code versus Ada Statements

ments as the sizing metric, over 28,000 Ada statements were developed during CAMP with over 10,000
of these being part code and almost 18,000 being test code.

STZE

LINES OF ADA LINES OF
ADA CODE  STATEMENTS _ COMMENTS
PART CODE 16,001 10,203 91,553
TEST CODE 27,584 17,991
TOTAL 43,675 28,194

Figure 13. CAMP Parts Sizing Data



On any software project, source code must be developed and documented. Section 11.2.f discusses
the vital role extensive documentation plays in the successful use of reusable software. This is reflected
in the sizing data contained in Figure 13 which shows that the ratio of lines of comments to lines of code
is approximalely 5.7:1 and the ratio of lines of comments to Ada statements is almost 9:1.

Code size is not the only factor in determining productivity; effort must also be assessed. Effort data
for development of the CAMP parts is shown in Figure 14. [t includes the number of hours expended for
all phases of the CAMP parts life cycle, from domain analysis through maintenance. A total of 9734
man-hours of effort went towards the development of the CAMP parts, with 6557 of these hours ex-

pended during the design and testing phases.

ACTUALS AT
COMPLETION
DOMAIN ANALYSIS 1153
REQUIREMENTS SPEC. 1428
DESIGN 4010
TEST PLANNING 1334
CODING 516
TOTAL 97N
TESTING 697
MAINTENANCE 596 DESIGN-TESTINO 6557
(N MAN-HOURS)

Figure 14. CAMP Parts Effort Data

The productivity statistics for development of the CAMP parts, using several metrics, is shown in
Figure 15. The importance of knowing how productivity is being measured can be seen in this figure
which shows that productivity figures from 164 statements/man-month to 1039 lines of code/man-month
can be justified. depending on how and what code is counted and what is included in the man-month
figures.

Figure 16 gives an overall picture of the development statistics for the CAMP parts development
effort. The data includes the most conservative numbers shown in Figure 15, using code counts for paris
code only and man-month figures for the entire CAMP effort. It can be seen from this figure that the

productivity experienced during CAMP parts development was approximately 61% greater than that
predicted by COCOMO for embedded software development. Several factlors contributed to this in-

creased producitivity:

e Ada: The Ada language itself contributes to increased productivity. Strong data typing, for ex-
ample, helps 1o ensure that many errors are found during compilation rather than being found

during testing when they would he more time consuming and costly to correct.

e Good people:  All members of the CAMP parts development team had at least some Ada ex-
pericnce prior to joining the project, and all received training in software engineering practices
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| PRODUCTIVITY I

DESICN-TESTING
EFFORT

ALL EFFORT

PART CODE ONLY

PART & TEST CODE

LOCMM 283 LOCMM 1039
STMT/MM | 243 STMT/MM 4

MHAOC 0.407 MHLOC 0.150
MH/STMT 0.643 MH/STMT 0.233

LoCMM 258 LOCMM 750
STMT/MM 164 STMT/MM 452

MHLOC 0.605 MHLOC | 4203
MH/STMT 0.954 MH/STMT | oa45

(156 MHMM)

Figure 15. CAMP Parts Productivity Data

SIZE
PRODUCTIVITY

EXPECTED
PRODUCTIVITY
(COCOMO)

DELTA

16,091 10,203
L STMTS
258 164
Locmv| STMTSMM
160
LOC/MM
61% | ADA
GOOD PEOPLE
GOOD TOOLS

REUSE

Figure 16. CAMP Paris Development Statistics

either before or after joining the project. In addition, several members of the team had extensive
Ada experience and were available 1o help train new people. There was also continuity of person-
nel between CAMP-1 and CAMP-2, with key members of the CAMP-1 team remaining throughout
CAMP-2. This provided increased consistency in the overall design philosophy of the parts and

increased the ability to pass on the lessons leamed during earlier phases of development.

¢ Good tools:

As discussed in Section Il1.2.e, various tools were used throughout the CAMP

program; they made a significant contribution to increased productivity.
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¢ Code reuse: During CAMP, not only was reusable code developed, but it was used in the develop-
ment of more reusable code. It was often possible to use previously developed specifications
and/or bodies 10 create new reusable parts. A simple example of this involves matrix addition and
subtraction routines. Since the differences between the two are minor, the matrix addition routine
can be developed and completely documented, and then the subtraction routine can be created
simply by copying and making minor modifications (o the addition routine.
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SECTION 111
INTER-RELATIONSHIPS BETWEEN CAMP PARTS

An important aspect of the design of the CAMP parts is the way various parts were designed (o build
o:i other parts, work together, and facilitate using other parts. These relationships between the parts are
further discussed in the following paragraphs. Figure 17 shows how these relationships come into play
when developing a small portion of a navigation system.

1. PARTS BUILD ON OTHER PARTS

One example of parts building on other parts involves the Polynomials, Standard_Trig, and Basic_
Data_Types TLCSCs as illustrated in Figure 18. The Polynomials TLCSC lies at the bottom of the build
and provides an extensive set of polynomial solutions to various transcendental functions. The generic
Standard_Trig TLCSC forms the second layer by exporting trigonometric data types and operations.
Standard_Trig uses the Polynomials package Lo obtain the required polynomial solutions to its exported
transcendental functions. The Basic_Data_Types TLCSC provides the final layer. In addition 1o provid-
ing a set of dalta types and operations typical of a navigation implementation, Basic_Data_Types instan-
tiates the Standard_Trig package. This design approach offers several advantages:

¢ Minimal functionality is added from one step to the next.

e Users of the higher level packages, such as Basic_Data_Types, frequently will not need to reference

the lower level packages, such as Polynomials.

¢ Finally, combining the parts saves work for the user.

In this example, a user merely needs to import Basic_Data_Types in order to obtain a full set of
navigation data types (such as various forms of distances, velocities, accelerations, elc.), operators upon
these types, trigonometric data types (such as radians, degrees, etc.), and a full set of trigonometric func-
tions.
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pkg VelSqRt  Is new GPMath.Square_Root ...
pkg AngVelSqRt Is new GPMath.Square_Root ...
pkg AccelSqRt is new GPMath.Square_Root ...
pkg DistSqRt  is new GpMath.Square_Root ...

pkg VelVOpns Is new CVMA Vector_Opns ...
pkg AngVelVopns Is new CVMA Vector_Opns ...
pkg AccelVOpns Is new CVMA Vector_Opns ...
pkg DistVOpns Is new CVMA.Vector_Opns ...

fn CrossProd_AVV_VV is new CVMA.Cross_Product ...

fn  CorAccel Is new NPNav.Compute_Coriolis_Acceleration
pkg RadOfCurv Is new NPNav.Radlus_of_Curvature ...
pkg Latint is new NPNav.Latltude_integration ...

1. A total of 1) packages must he compiled into the user’s library. The user himself requires six of these (indicated by arrows into
the user application): the six packages require an additional four.

2. The user must do the following before instantiating the navigation parts:

o Instantiate four versions of the square root package (GPMath.Square_Root) using data types and operators supplied by
the hasic data types (BDT) package.

¢ [nstantiate four versions of the vector operations package ((VMA Vector_Opns) uxing data types and operators
supplied by BDT and the square root functions contained in the packages previously instantiated by the user.

« Instantiate a cross product function using scalar data types and operations supplied by BDT, along with vector data
types and operations obtaincd from three separate instantiations of CVMA Vector_Opns.

3. The three navigation parts can then be instantiated using:
o Scalar data types and operators supplied by BDT.

* Scalar data types and trigonometric functions supplied by an instantiation of the standard trig package contained in BDT
(BDT . Trig).

o Vector types and opesations supplied by the four instantiations of CVMA Vector_Opns.

« Data constants supplicd by the WGS72 cllipsoid metric data package (WGS72) and the WGS72 ellipsoid unitless data
package (WGS72U0.

o User-defincd data types and objects,

Figure 17. Assembling a North-Pointing Navigation System
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2. PARTS WORK TOGETHER

Parts were also designed to work together, using low-level parts to support more complex operations.
This design approach differs from the approach previously discussed in that functionality is added with
each step and the lower TLCSCs are frequently required by the user. An example of this interrelationship
can be seen in the Geometric_Operations and Waypoint_Steering TLCSCs shown in Figure 19. The
Waypoint_Steering TLCSC exports the Steering_Vector_Operations package which handles the in-
itialization and updating of waypoint steering vectors. In order to perform its operations, the Steering_
Vector_Operations package instantiates two subroutines from the Geometric_Operations package which
are designed to calculate unit radial vectors, unit normal vectors, and course segments. This design

methodology has several benefits:

e Since the geometric operations are not placed in the package body of the Waypoint_Steering
TLCSC, they are also available 1o the user.
¢ Not duplicating the Geometric_Operations code within the Waypoint_Steering TLCSC improves

maintainability.

¢ Performing the instantiations of the Geometric_Operations parts within the Steering_Vector_
Operations LLCSC instead of bringing them in as generic subroutines saves the user the work of

finding the additional parts and doing the insiantiations.
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3. CAMP PARTS FACILITATE USE OF OTHER PARTS

Finally, parts were designed to facilitate using other parts by providing the requisite generic actual
parameters. An example of this is shown in Figure 20. In order to instantiate the generic Compute_
Segment_and_Unit_Normal_Vector procedure, the only data type the user needs to define is a discrete
type for Indices. The remaining scalar types can be obtained from the Basic_Data_Types package, along
with the multiplication and division operators; the vector type and operations on that type (i.e., Vector_
Length and Cross_Product) can be obtained by instantiating the Vector_Operations package in the
"1.CSC,; and a value for the radius of the Earth can be found in the
WGS72_Ellipsoid_Engincering_Data TLCSC. This kind of support can be found in most of the CAMP

Coordinate_Vector_Matrix_Algebra

parts.
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Figure 20. CAMP Parts Facilitate Use of Other Parts

When designing the CAMP parts, a primary consideration was how to provide low-level operations,

such as linear algebra and transcendental functions, to the more complex routines. There were several
oplions:

1. In-line the required operations directly into the higher level routine: This option was considered

unacceptable since it would have caused the parts to become excessively large. Also, in-lining
would have increased testing time and brought about the potential for a maintenance nightmare.

. Place the required code in subroutines located in package bodies: This option, while an improve-

ment over option 1, would also increase the size of the parts, lengthen testing time, and increase

maintenance difficulties.

. Instantiate a required operation from another CAMP part. In a few cases, this option was chosen.

This method was considered desirable if: 1) only one method existed for implementing the re-
quired operation; or 2) the instantiating part were a very high-levei part, such as a Kalman update
package, designed to provide one possible solution to a problem by bringing together one possible

combination of lower level parts.

This option was not considered acceptable if the required operation was a very basic one, such as a
trigonometric function, and there was no way of knowing ahead of time which algorithm would

provide optimal performance.

4. Bring in_the required operations via generic_paramelers: This option was chosen in the vast

majority of cases.

The use of generic formal subprograms to import required operations is an important design feature
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of the parts. It has the advantage of providing great flexibility to the user by providing CAMP parts to
supply low level operations or allowing the user to define his own, as shown in the following examples.
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¢ Example |

In this example, assume the user wishes to instantiate both of the parts contained in the Geomeltric_
Operations TLCSC shown in Figure 21. Each parl requires a sine/cosine procedure as a generic
parameter. If the user has imported the Basic_Data_Types (BDT) package, he already has access to
the sine/cosine procedure provided indirectly ¢ty BDT’s instantiation of Standard_Trig (Trig). If
this procedure is satisfactory for his computations, the user need not specify il in his instantiation
since the BDT version will be selected by default. If, however, the user feels his calculations
require more accuracy or speed, he may construct a different sine/cosine procedure by building one
from the over 25 sine functions provided by the Polynomials TLCSC or by writing his own. This
new sine/cosine procedure may then be used in one of the following ways:

- If he wishes to use this new procedure throughout his application for all sine/cosine calcula-
tions, the procedure can be specified in such a way as to hide the sine function contained in
BDT.Trig. He can then let the generic actual subroutines default to this new procedure. This

is illustrated in Figure 22,

- If the newly created sine/cosine procedure is to be used only for certain calculations, it can be
designed in such a way as to not hide the one contained in BDT.Trig. In this case, the special
procedure would have to be explicitly specified in instantiations where it was to be used.
Using this method. it is possible for the user to create multiple sine/cosine procedures — a
fast one, a highly accurate one, and a general purpose one — to meet his needs. This is

illustrated in Figure 23.
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generic
type Angle Is digits <>:
type Trig_Ratio s digits <>:
package Standard_Trig s

type Radians Is new Angle:

type Sin_Cos_Ratio  Is new Trig_Ratio range -1.0..1.0:

procedure Sin_Cos (Input tin Radians:
Sin_Result :  out Sin_Cos_Ratio;

Cos_Result :  out Sin_Cos_Ratio);

end Standard_Trig:

with SYSTEM:
with Standard_Trig:
package Basic_Data_Types is

typeReal s dights SYSTEM.MAX_DIGITS:
type Mcters Is dights SYSTEM.MAX_DIGITS:

package Trig Is new Standard_Trig
(Angle => Real,
Trig_Ratio => Real):

type Earth_Position_Radians Is new Trig Radians:
function "*" (Left  : Meters:
Right : Trig.Sin_Co=_Ratio}

return Meters;

end Basic_Data_Types:

package Geometric_Operations is

generic
type Indices (<)
type Earth_Positions s digits <>;
type Sin_Cos_Ratio s digits <>:

type Unit_Vectors  ls array (Indices)
of Sin_Cos_Ratio:

X : in Indices = Indices’ FIRST;

Y : In Indices = Indices’ SUCC(X);

7 : in Indices = Indices’ LAST;

with procedure Sin_Cos
(Input tin Earth_Ponitions;
Sine . out Sin_Cos_Ratio;
Cosine out Sin_Cos_Ratio)
Is <>;

function Unit_Radial_Vector

(Lat_of_Point  : Earth_Positions;
Long_of_Point : Earth_Positions)
return Unit_Vectors;

generic
type Earth_Distances Is digits <>;
type Earth_Positions Is digits <>;

type Segment_Distances s digits <>;
type Sin_Cos_Ratio Is digits <>;
Earth_Radius : in Barth_Distances:
with function "*" (Left : Earth_Distances;
Right : Sin_Cos_Ratio)
return Segment_Distances Is <>:
with function Sqrt (Input : Sin_Cos_Ratio)
retura Sin_Cos_Rstio Is <>:
with procedure Sin_Cos
(Input tin Earth_Positions;
Sine :  out Sin_Cos_Ratio;
Cosine out Sin_Con_R:io)
s <>
package Great_Circle_Arc_Length Is

function Compute

(Latitude_A  : Earth_Positions;
Latitude_B  : Earth_Positions:
Longitude_A : Earth_Positions;
Longitude_B : Earth_Positions)

return Segment_Distances;
end Great_Clircle_Arc_Length:

end Geometric_Opsrations:

Figure 21. Required Operations Obtained Through Use of Generic Formal Parameters
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with Basic_Data_Types:

with Geometric_Operations:

with WGS72_Ellipsoid_Metric_Data:
procedure User_Application is

use Basic_Data_Types:;

package BDT  renames Basic_Data_Types:
package GEO  renames Geometric_Operations:
package WGS72 renames WGS72_Ellip<oid_Metric_Data:

type Indices Is (X, Y, Z):
type Unit_Vectors Is array (Indices) of BDT.Trig.Sin_Cos_Ratio;

function Sqrt (Input : BDT.Trig.Sin_Cos_Ratio)
return BDT.Trig.Sin_Cos_Ratio;

- --new Sin_Cos procedure to override that provided hy BDT.Trig
procedure Sin_Cos (Input :in BDT.Earth_Position_Radians;
Sine : out BDT.Trig.Sin_Cos_Ratio;
Cosine:  out BDT.Trig.Sin_Cos_Ratio);

function U_Radial_Vector is new GEO.Unit_Radial_Vector
(Indices => [ndices,
Earth_Pusitions  => BDT.Earth_Position_Radians,
Sin_Cos_Ratio  => BDT.Trig.Sin_Cos_Ratio,
Unit_Vectors => Unit_Vectors);
- --Sin_Cos defaulis to new Sin_Cos procednre

package Oreat_Circle_Arc_Len is new GEO.Great_Circle_Arc_Length
(Earth_Distances  => BDT.Meters,
Earth_Positions => BDT.Earth_Position_Radians,
Segment_Distances => BDT.Meters,
Earth_Radius => WGS72.Earth_Equatorial_Radius,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio):
- --Sin_Cos defaults to new Sin_Cos procedure

begin

end User_Application;

Figure 22. Sample Instantiations of Geometric_Operations Parts
Using Default Routines
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with Basic_Data_Types:

with Geometric_Operations:

with WGS72_Ellipsoid_Metric_Data;
procedure User_Application is

use Baxic_Data_Typex:

pnckage BDT  renames Basic_Data_Types:
package GEO  renames Geometric_Operations:
package WGS72 renames WGS72_Ellipsoid_Metric_Data:

type Indices is (X, Y, Z):
type Unit_Vectors Is array (Indices) of BDT.Trig.Sin_Cos_Ratio:

function Sqrt (Input : BDT.Trig.Sin_Cos_Ratio)
return BDT.Trig.Sin_Cos_Ratio:

--additional Sin_Cos procedure

procedure Fast_Sin_Cos (Input : In BDT.Earth_Position_Radians:
Sine : out BDT.Trig.Sin_Cos_Ratio:
Cosine: out BDT.Trig.Sin_Cos_Ratio):

function U_Radial_Vector Is new GEO.Unit_Radial_Vector
(Indices => Indices,
Earth_Positions => BDT.Earth_Position_Radians,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio,
Unit_Vectors  => Unit_Vectors,
Sin_Cos => Fast_Sin_Cos):

package Great_Circle_Arc_Len Is new GEO.Great_Circle_Arc_Length
(Earth_Distances => BDT.Meters,
Earth_Positions => BDT.Earth_Position_Radians,
Segment_Distances => BDT Meters,
Earth_Radius => WQS72.Earth_Equatorial_Radius,
Sin_Cos_Ratio => BDT.Trig.Sin_Cos_Ratio);
--Sin_Cos defanlts to BDT.Trig.Sin_Cos

hegin

end User_Application:

Figure 23. Sample Instantiations of Geometric_Operations Parts
Using Specialized Sin_Cos Procedure



o Example Il
In this example, the user wishes to construct a Kalman filter using a complicated-H matrix. If he
uses the Kalman_Filter_Data_Types package and all the dala types it provides, all generic formal
subroutines required by instantiations of any of the parts contained in the Kalman_Filter_Common_
Parts and Kalman_Filter_Complicated_H_Part TLCSCs will properly default. If however, he
wishes to use reduced storage rather than full storage matrices, it is possible for him (0 define his
own data types and operations and still use the Kalman filter parts without making any modifica-
tions to the parts themselves. This latter option is the one that was chosen for the 11th Missile

Application.
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SECTION IV

DEVELOPMENT AND TESTING
OF A
PARTS COMPOSITION SYSTEM (PCS)

The major problems associated with software reuse efforts have been the lack of information on the
availability and applicability of reusable parts and the lack of information on how to use those parts.
During the CAMP-1 feasibility study, it was concluded that software reuse would not come to fruition if
there were not some mechanism for assisting the potential user in identifying, locating, and using avail-
able software parts. One such mechanism is a parts composition system (PCS) which can facilitate the
use of existing software parts by providing tools to perform some of the mechanical tasks associated with

software reuse.

The objective of the CAMP-1 feasibility study, with respect to parts composition systems, was to
determine the feasibility and value of automating some, or all, of the process of using and managing
software parts. The study involved an investigation of both short and long-term possibilities. Feasibility
was clearly established (Reference 7), and the requirements and top-level design of a parts composition
system were specified during CAMP-1.

During CAMP-2, a protolype parts composition system was implemented and tested, and then used
by the 11th Missile development team to demonstrate its utility and value. This prototype, which is
referred to as the Ada Missile Parts Engineering Expert (AMPEE) system, alleviates many of the
problems associated with software reuse by providing the user with an expert assistant to advise him on
the availability and relevance of CAMP reusable Ada software paris to his application, and to aid in the
development of software systems by automatically generating the required code for particular operations
or subsystems of the application, e.g., navigation, Kalman filter, or autopilot operations.

. PCS FUNCTIONALITY

Although much of the AMPEE system is CAMP-specific, the underlying principles are applicable to
a variety of domains. The AMPEE system established the functions required of a parts composition
system to assist the user in using reusable software parts.

A three-pronged approach was taken in assisting the user with the reusable CAMP sofiware parts.
This approach is embodied in the three major subsystems of the AMPEE system — Parts Catalog, Parts
Identification, and Component Construction. The Parts Catalog subsystem is similar to an automated
card catalog for books. i.e., it is used to locate reusable software parts and obtain information about those
parts. This subsystem also provides a means to maintain the catalog in an up-lo-date form. The Parts
Identification subsystem provides the user with access to the on-line parts catalog at a very high level.
Unlike the Parts Catalog subsystem which requires the user to have some idea of the types of parts that he
is looking for, the Parts Identification subsystem provides the user with access to the information in the
catalog based solely on his knowledge of his own application, i.e., before he knows about specific parts.
The Component Construclion subsystem provides the user with a means cf generating tailored Ada com-
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ponents based on reusable meta-parts that are in the Parts Catalog. Mela-parts were described in the
CAMP-1 Final Technical Report 7, and are discussed further in Section IV.1.c. - Each of these subsys-
tems is discussed in greater detail in the following paragraphs.

a. Parts Catalog

The backbone of the AMPEE system is a software parts catalog for the CAMP reusable Ada
missile software parts. Earlier research (during the CAMP feasibility study) indicated that a major limit-
ing factor in the widespread acceptance and use of off-the-shelf software was the lack of reliable infor-
mation describing the parts in adequate detail to determine their applicability lo a particular software
project. Under the CAMP project, a catalog was developed that provides the type of information that is
needed to make informed decisions about parts. Each reusable software part is described by numerous
attributes; these are enumerated in Figure 24, and described in detail in Appendix B.

GENERAL
Part Number Revision Number
Part Name Functional Abstract
Mode Taxonometric Category
Class Keywords
Last Change Date of Entry Project Usage
Government Security (‘lassification (pan) Corporate Sensitivity Level (part)
Government Sccurity Classification (entry) Corporate Sensitivily Level (entry)
Remarks
DEVELOPMENT
Design Issues Revision Notes
Development Date Developer
Development Status Developed For
Requir Docun i Design Documentation
USAGE
Location of Source Code Access Notes
Withs Withed By
Implemented By Implements
Built From Used to Build
Sample Usage Hardware Dependencics
Restrictions
PERFORMANCE
Source Size/Complexity Characterizations Fixed Object Code Size
Timing Accuracy

Figure 24. Catalog Attributes

It is important to distinguish between the CAMP parts themselves and the software entities that
are cataloged. Parts were defined in Section IL.1. There is not a one-to-one correspondence between
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CAMP parts and catalog entries. Although parts are cataloged, Ada package bodies are cataloged
separately from their specifications; encapsulating packages are also cataloged. Thus, although ap-
proximately 450 CAMP Ada parts have been implemented and tested to date, there are over 1100 catalog
entriecs. An examination of the catalog attribute class provides a clearer distinction between parts and
catalog entries. The class attribute identifies the type of entity that can be cataloged; it encompasses
software entities such as package specifications. package bodies, generic task specifications, generic task

bodies, generic formal parts, and context clauses.

1t should be noted that there is a hardcopy form of the CAMP software catalog as well as the
on-line version that is incorporated into the AMPEE Parts Catalog subsystem. The hardcopy form is
useful for those who do not have access to the AMPEE system. The on-line version provides specific
information on available reusable software parts from within the AMPEE system.

(1) Design

The AMPEE Parts Catalog subsystem allows a user of the AMPEE system to access and
maintain the CAMP parts catalog entries. Maintenance functions include functions to add entries for new
or revised reusable software entities, and to modify or delele entries. Locating functions include func-
tions to search for catalog entries based on various attribute values, examine both catalog entries and Ada
part source code. and to generate printed versions of the catalog entries. Catalog interaction is carried out
via a structured dialog between AMPEE and the user: the user provides all information necessary for the
system to implement his catalog requesi. Figure 25 depicts the functions that comprise the Parts Catalog

subsystem.
PARTS CATALOG
MAINTENANCE LOCATING
FUNCTIONS FUNCTIONS
[ l [ l I l
b MODIZY DELATR RXANINE EXAMING PRINT
PART PART PART SRARCH PART SOURCE PART
DESCRIPTION| |pRsCRIPTION [pgscrrpTION pascripTION! | copx DESCRIPTION

Figure 25. Parts Catalog Functions

For operations that can be performed on an existing catalog entry, the user can provide a
specific part id. request a menu of all part ids, or request a menu of part ids in the current search list. The
search list, if it exists. is a list of the part ids that have satisfied the search criteria specified during the
most recent search operation, or have been returned by one of the Parts Identification functions.

The Add Part Description function allows the user to add an entry to the CAMP parts
catalog for a new or revised CAMP software part. This can be done in one of three ways:

e A new part description of a new part is entered (i.c., "from scratch”)



» A new part description for a revision of an existing part is entered

o A new part description of a new part is entered by copying the part description of an existing part

and modifying it as needed.

A unigue part id is generated for each part that is entered. The part id consists of a part
number and a revision number, and is not intended 1o have any semantic meaning. The user is led
through the addition of required and recommended atiributes for each part entry that is added to the
catalog. Required atributes are those which have been deemed to be essential in providing the catalog
user with sufficient information to make an informed decision as to the appropriateness of a given CAMP
Ada part. Required attributes are enumerated in Figure 26. Two additional attributes, withs and withed
by, are defined as required, but because they may not always be applicable, it is the user’s responsibility
to provide them. Recommended attributes are those that, although they provide useful information, are
not usually critical to making a determination as to the appropriateness of a part.

The AMPEE system provides the values of some attributes such as the revision number,
date of change of the catalog entry, and values for inverses (e.g., if the user enters built from data, the
system will automatically update the appropriate other catalog entries with used ro build data). Other
attribute values must be explicitly provided by the user.

Part Number
Revision Number
Part Name
Taxonometric Category
Functional Abstract
Class
Mode
Last Change Date of Entry
Development Date
Developer
Development Status
Qovernment Security Classification of Part
Government Security Classification of Entry
Corporate Sensitivity Level of Part
Corporate Sensitivity Level of Entry

Figure 26. Required Catalog Attributes

The Modify Part Entry function allows the user to modify an existing entry in the CAMP
software parts catalog. After indicating which part entry is to be modified, the user is allowed to select
the attributes that are to be modified. He then provides the system with the new data so that the catalog

entry can be updated.

The Delete Part Entry function allows the user to delete an entry from the CAMP software
parts catalog. The user must indicate which part entry is to be deleted; that entry is then deleted from the
current catalog. In order for the deletion to be permanent. the user, upon exiting the AMPEE system,
must indicate (hat all catalog changes made during the cunent session are (o be saved.

The Search function allows the user to explore the reusable software parts that are avail-
able to him. Inquiry can take place along a number of lines (e.g., keywords or other attributes), and

multiple selection criteria are supported.
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For the keyword search, the user must identify the keywords and/or phrases that are to be
used as the selection criteria. Within the parts catalog, keywords are generally entered for high-level parts
only (this reduces thc number of parts that will be returned by a search, thus making it more meaningful);
other attributes, such as built from, can be used to obtain related parts. For the searches on other at-
tributes, the user must identify both the attribute name and value to be used as the selection criteria. The
searchable attributes are enumerated in Figure 27.

If any matches are found during the search, their part ids are displayed for the user, and the
list of part ids for the matches is kept for further manipulation. The user can specify further search
criteria to be applied to the parts in the search list, or he can select part ids from the list for further
processing (e.g., deletion, examinativil of catalog entry or source code). If no matches are found, then a
message is displayed indicating this.

Part Name
Mode (Bundled, Unbundled, or Schematic)
Taxonometric Category
Class
CGloverninent Security Class of Part
Government Security Class of Entry
Corporate Sensitivity Level of Part
Corporate Sensitivity Level of Entry
Project Usage
Last Change Date of Entry
Implements
Implemented By
Withs
Withed By
Built From
Used to Build
Location of Source Code
Developer
Developed For
Devele.pment Date
Development Status

Figure 27. Searchable Catalog Attributes

The Examine Part Description function allows a user to retrieve and examine a catalog
entry lor a specified part in the CAMP parts catalog. The user must identify the part entry that is to be
examined. He can then view the basic atiributes (i.e., part id, name, last change date of entry, develop-
ment date, development status, developer, mode, class, taxonometric category, and government and cor-
porate sensitivity levels of the part and part entry), or select additional attributes to view.

The cataloged software parts are classified in part by their mode (i.e., whether they are
bundled. unbundled. or schematic parts); Appendix B describes this attribute in more detail. The Ex-
amine Source Code function allows the AMPEE system user (o examine the actual source code for
reusable CAMP parts that are classified as either bundled or unbundied parts. Schematic parts cannot be
examined because there is no actual source code until a component is constructed via the AMPEE system.

The Print Catalog Entry function provides the user with the ability to obtain a formatted
hardcopy of onc or more catalog entries. The user can process the entire catalog, entries obtained from a
search list, or individually identified entries. Output may be sorted in ascending order by part id or
alphabetically by taxonometric category. The user has two options in directing the output: he can have it
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print to both the screen and to a file. or just to a file. Formatting is performed via the text processing
program Scribe. Because of limitations of the Scribe system, it is not possible to view text interactively
after it is formatied by the Scrise processor; thus the output displayed on the screen is nor identical to that

produced for printing.

(2} Testing and Operational Evaluation
The AMPEE Parts Catalog subsystem underwent several levels of testing:

e Testing by the subsystem developer
® Use for entry of catalog data
o Use by the AMPEE system training class

Testing was performed by the subsystem developer to eliminate both programming etrors,
and interface errors or inconsistencies. Although this type of testing is important, it cannot uncover all of

the problems that may exist.

The Parts Catalog subsystern was used for the entry of data into the catalog. This data
entry was performed by a number of persons with varying backgrounds, including a high school student
with no previous exposure to the system; a college student with no software engineering training, a
member of the PCS development team who had not worked on this particular subsystem, and the senior
member of the parts developmert team. All of these users were able to successfully use the system with
very little instruction, and some with very little background knowledge of the project itself. Although
these users were able to easily pick up the knowledge needed to perform data entry, they did uncover
inconsistencies in the interface, and highlighted some areas for improvement. As a result of this use,
several additional subfunctions were added (e.g., add new part by copying existing entry).

This subsystem was also used by the AMPEE system training class for instructional pur-
poses. These users also found the interaction to be relatively straightforward, but they also uncovered
several inconsistencies and a few minor errors that had not been previously identified.

Overall, the AMPEE Parts Catalog subsystem was found to be useful, although several
problems were identified. These were mostly a result of the prototype nature of the system, and included
items such as response time and start-up time. Some users also thought the system could be improved by
providing greater carry-over between the functions within the AMPEE system.
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b. Parts Identification

The Parts Identification subsystem provides the user with two capabilities for determining the
availability of potentially applicable parts for a given software system; the functions map software re-
quirements (o software parts. The user, who would generally be a missile system engineer or a missile
software requircments engineer, can provide the system with his requirements and determine the parts
that may be applicable to his project. Although the Parts Catalog subsystem also provides information on
the potential applicability of parts, the Parts Identification functions provide this information at a higher
level, i.e., the user'does not need to know about specific parts to obtain information; he need only provide

information about his application.

The Parts Identification functions are intended for use early in the development cycle — as
early as the missile system requirements/design phase, or in the pre-software development phase. Their
use this early can help drive the design in a direction that can make maximum use of existing software. If
software designers wait until after the requirements and design phase (o start exploring options for reuse
of existing software, it is gencrally too late. At that point, the design may be such that certain parts are
excluded from reuse. In addition to driving the design, the Parts Identification functions can also be used
to facilitate sofiware cost estimates, sizing and timing studies, and make-or-buy trade-off studies.

During the CAMP study, two approaches to software parts identification were identified. One
is an application approach, that looks at overall system requirements. By viewing the system as a whole,
the user can see the effect of various trade-offs in algorithms. Consistency can also be provided by
ensuring that parts identified for the user are not incompatible. The architcctural approach looks at the
subsystems that are nceded in a particular missile system. This approach is based on hierarchical models
of missile flight software. The user provides information on his application and a model is presented for
his viewing. He can then see the subsystems and parts may be needed. Both approaches have been
incorporated into the AMPEE system — the application apptoach is embodied in Application Explora-
tion, and the architectural approach is embodied in Missile Model Walkthrough.

(1) Application Approach

The application approach to parts identification is embodied in the Application Exploration
function within the AMPEE system. Application Exploration provides the user with the capability of
mapping high-level requirements to available software parts. It is intended for use early in a software
development project to identify software parts with potential applicability to the user’s current needs. The
user is asked a number of questions about his application, and a list of potentially applicable parts is
generated. For each part in the list, the part id, part name. and the missile subsystem to which the part
belongs is displayed. The generated list of parts can be carried over into the Parts Catalog subsystem, i.e.,
given the list of parts returned by this function. the user can enter the Parts Catalog subsystem and
examine the part entries or source code, print the eatries, or perform other catalog functions. Figure 28
depicts a high-level view of this function; Table S describes the user inputs.

The data required from the user includes information on the launch platform, target and
warhead type, whether an aiding subsystem is needed, routing, seeker, the type of aerodynamic control,
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Figure 28. Application Exploration

the navigational range, and the type of interfaces. Application Exploration includes both rule-based and
parts-based reasoning. For example, if the user indicates that the targei is a ship, then the AMPEE system
will ccnclude that a seeker is needed in the system. If a seeker is needed, the AMPEE system knows that
there are no specific seeker parts, but recommends the use of math parts. the Data Bus Interface Construc-
tor, and the Finite State Machine Constructor for construction of the req. ired seeker software. Figure 29
shows an example of the inputs and outputs of Application Exploration.

(2) Architectural Approach

The architectural approach to parts identificaon is embodied in the Missile Model
Walkthrough function within the AMPEE system. Missile Model Walkthrough provides the user with the
ability to walk through a hierarchical model of missile fligh! software. The models used by this function
are hierarchical models of missile flight software based on knowledge of the paris required for missiles of
various types (e.g., it has been determined that anti-ship missiles require a particular set of software parts,
and it is this set of parts that form a hierarchical model of software parts required for this type of missile).
The user can traverse the model, going up, down, or sideways. The model displayed for the user shows
the subsystems, functions, and CAMP parts that may be applicable for the missile described by the user.
Figure 30 depicts a high-level view of this function.
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TABLE 5. APPLICATION EXPLORATION — REQUIRED USER INPUTS

USER INPUTS DESCRIPTION

Launch Type Air | Ground | Surface-Sea | Submeryed-Sea

Warhead Type Conventional-Submunition | Conventional -Unitary | Multiple-
Muclear | Singular-Nuclear

Target Type Air | Fixed-Wing Air | Helicopter Air | Strategic-Missile Air |
Tactica!-Conventional Air | Tactical-Nuclear Air | Fixed Ground !
Mobile Ground ! Surface-Sea | Submerged-Ses

Range An integer representing nautical miles. Applicable if target is any
type of air.

Is aiding wanted

Applicable if target type is ground (fixed or mobile) and launch
type is sea.

Aiding, sceker, or
both

Applicable if target type is not mobile-ground, launch type is not
air, warhcad is conventional unitary, and no aiding or sccker kas
been specified.

Type of aiding

GPS | Terrain M::r | Digital Scene Map | Laser Radar | Doppler
Velocity 1 Infrared User ix queried for thit information if target
type is ground (fixcd or mobike) or sca, or if aiding subsystem is
wanted.

Secker

Applicable if 1) User specified secker is wanted (in query above);
2) Target type is surface-sea, warhead is not conventional unitary,
and  no aiding or sccker has been specified: 3) Launch type 1s
air, target ty %s mobile ground, and warhead is  conventional
unitary: 4) Target type is any type of air and no secker has yet
been specified.

Type of seeker (non-
air targets)

Imaging Infrared | Radar { Optical

Type of sceker (air
targeis)

Infrarcd | Imaging Infrared | Passive Radar | Active Radar

I< ship in harbor

Applicable if target type is surface-sea.

Routing

Land | Sea Applicable if target type is ground or sca.

Control Dynamics

This can be cither classical or modern, but is determined by
querying the user as to the required performance, robustness, and
stability of his missile.

Kalman filter in-
cluded

Applicable if it is determined that modem control dynamics is
being vsed.

Error estimation

| state | 2+ states Applicable if Kalman filter is to be included in
system using modern control dynamics.

Navigation near the
poles

Yes | No

Type of navigation

North-Pointing | Wander-Azimuth Applicable if navigation is not
taking place near the poles.

Interface Require-
ments

1553 1 K82 { [EEE488 t RS-232
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Advanced Medium Range Air—to-~Ailr Missile
(AMRAAM)

Launch Alr

Target Alr

Range 25+ W

Warhead Conventional

Aiding No

Routing Alr

Seeker :  Active Radar

Aerodynamics : Standard

Navigation :  Standard

Intoghcn : Data Link Parts Selected
Navigation
Kalman Filter
Autopilot
Communications
Air Data
Coordinate V/M Algebra
Signal Processing

Data Source: Jene's Weapon Systems, 1986-1987, pp198-200

Figure 29. Application Exploration Example
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Figure 30. Missile Model Walkthrough
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Missile model selection is based on the user-provided values for target type and type of
warhead; CAMP work to date has indicated that launch type is not a factor in missile model selection.
Additional information may be requested from the us:r. Once the user has provided the information
requested, he will be be able to view and traverse a graphical representation of the missile software

structure.

The missile software systems examined during the CAMP domain analysis all contained
certain subsystems regardless of the target type; additional subsystems were needed based on the target
category. For instance, if the target type is some form of air target, the missile may require the following
subsystems in addition to the standard ones: Kalman filter, waypoint steering, telemetry, data link, seeker.
If the target category is sea and it is located in a harbor, then an aiding subsystem will be identified in
addition to the usual missile software subsystems. Missiles whose targets are stationary land may require
data link and aiding subsystems, while imobile land targets may also require a seeker subsystem.

The missile software hierarchy is captured within the Missile Model Walkthrough function
via ART schemata and inheritance relations. Inheritance relations allow properties to be attributed to a
particular class of objects and to have those properties hold true for a subclass that inherits from the
original class of objects. A schema is used to capture the basic information about all missile software
systems: this is then inherited by missiles of a particular type, such as air-to-air or air-to-sea. The par-
ticular missiles generally require software subsystems in addition to those required by the basic missile

soltware system.

ART rules are used to check the user’s input for consistency. For example, if the user
indicates a targel type of air and a warhcad type of nuciear, a warning will be issued to the user to teli him
that this is probably not allowed under the Anti-Ballistic Missile Treaty. Rules also direct portions of the
user interface, controlling when the user is queried for different types of information.

(3) Testing and Operational Evaluation

Like the Parts Catalog subsystem, the Parts Identification subsystem underwent several
types of informal testing and use. Development involved close collaboration between an experr and the
subsystem developer; thus the first level of testing involved both the expert and the developer. Develop-
ment and testing were iterative. The developer was able to detect and correct programming errors, while
the expert was able (o detect errors in the knowledge base. The subsystem underwent further user testing
during the PCS training class. Few problems were detected with the system.

Although this subsystem was not heavily used during CAMP-2, it has high potential within
the software development arena. One reason for its lack of use during the CAMP project, was the
familiarity of the engincering staff with the CAMP parts -— there was no need to use this function.
Additionally, because the AMPEE system is a prototype, the Missile Model Walkthrough function took
advantage of the ART Studio for the display of the model; this was sufficient to convey the information to

the user, but it was less than optimal in clarity.
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¢. Component Constructors

The Component Construction subsystem is the third major subsystem of the AMPEE system; it
comprises a number of component constructors. A component construclor is a software system that
facilitates the development of application software by producing software components based on user
requirements. Each constructor in the AMPEE system is based on a CAMP meta-part.

A mera-part may be either a complex Ada generic or a schematic part. A complex generic parl
may require data types, operalors, and/or subprograms for instantiation, and may include a complex
defaulting scheme; simple generic parts require only a small number of daita types for instantiation.
Schematic parts are parts whose design is well known, but that cannot be implemented via the Ada
generic facility alone. Schematic parts consist of a blueprint for construction, and a set of construction
rules for building a specific instance of the part. With schematic parts, there is no actual, complete,
compilable piece of code until a specific instance is generated for the user. Constructors for complex
generic parts assist the user in defining types, objects, and subprograms needed to instantiate the parts,
and then produce the code that includes those types, objects and subprograms, as well as the
instantiation(s) of the CAMP part(s). Constructors for schematic parts obtain input from the user,
generate the needed code based on both the user’s input and the schematic design that is incorporated into
the constructor. The difference in forms is transparent to the AMPEE system user; implementation dif-
ferences are discussed in Section IV.2.d. Examples of meta-parts follow.

The finite state machine is a schematic part for which a constructor has been developed. Cer-
tain types of finite state machines allow procedures to be invoked, therefore, this part cannot be captured
via the Ada generic facility because procedures cannot be passed as parameters. Additionally, the vari-
able number of states and transitions in a finite state machine are difficult to capture in generic units. Ail
of this aside, most software engineers have a good idea of how a finite state machine can be implemented.
This type of situation led to the concept of schematic parts. The Finite State Machine Constructor allows
the user to specify an initial state, terminal states, state-transitions, and any actions that may be associated
with either the states or transitions, and then generates the Ada code that implements this machine.

The CAMP autopilot parts are complex generic parts, and a constructor is provided to assist the
user in the correct instantiation of those parts. Various data type, data object and subprogram definitions
are required. The constructor has specific knowledge of the complex generic part and prompts the user for
the information needed to define the types, objects, and subprograms required for the instantiations.

The Kalman Filter Constructor combines elements of both complex generic units and
schematics depending on the options selected by the user. In the simplest case, the user can choose to let
most of the data types information default: to the extent possible, CAMP parts will be used for types and
operators. When efficiency is of concern. the user can let the constructor help him define special purpose
data types (i.e., special forms of matrices) that will be incorporated into the Kalman filter code that is
generated. These special-purpose matrices capture the active elements of a sparse matrix and unfold the
operations. This eliminates the overhead involved in using full-storage matrices that operate on ali ele-

ments in a matrix.

Although the CAMP component constructors generate code, they do not perform universal code
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gencration, but rather code generation in a limited domain, i.e., within he confines of the meta-part
requirements. During the CAMP-1 feasibility study, it was determined that, because of efficiency re-
quirements, universal code generation was not yet feasible in real-time embedded applications. The
AMPEE system component constructors produce code that is as efficient as possible given the input

supplied by the user.

The constructors reduce the user’s need for both detailed Ada knowledge (because the code
itself is generated for the user) and for detailed knowledge about the software parts on which the con-
structors are based. A straightforward user-interface is provided to facilitate requirements specification by
the user. These requirements are analyzed by the constructor and tailored Ada code is produced. The
constructors are intended for use by application developers, and can be used both for trying out what ifs

and for actual software development.

The user must have some knowledge of Ada because he will often be prompted to provide
information needed (o define data types, data objects, and subprograms. He must also have some
familiarity with the application area in order to be able to produce meaningful output. The AMPEE
system parts catalog can be used to obtain delailed information on the parts on which the constructors are
based, thus the user will not need to be intimately familiar with the parts themselves.

The constructors provide the user with the ability to generate tailored Ada components, modify
the component requircments (either in place or after making a copy) and regenerate the component, and
delete the requirements upon which the components are based. Component regeneration may be neces-
sary if, after a user has generated a component, he realizes he must alter some of the requirements.

Although each meta-part is associated with its own component constructor which guides the
software generation process, and each constructor has its own requirements and design, the top-level
design of all of the constructors follows the basic paradigm of inputs-processing-outputs (see Section
1V.2.d). The inputs are the component requirements provided by the user, and the major output is the
tailored Ada software component. Processing consists of interacting with the user, checking of input data,
internal processing to transform the data into a usable form, and writing out the application-specific Ada

code.



The constructors that comprise the AMPEE system are summarized below,

o Kalman Filter Constructor: The Kalman Filter Constructor provides the user with a tailored version
of the CAMP Kalman filter parts, plus the data types that are needed to support Kalman filter

operations.

¢ Finite State Machine: The Finite State Machine Constructor will construct one of three varicties of
finite state machines (Mealy machine, Moore machine, or a finite state machine with no actions).

¢ Pitch_Autopilot Constructor: The Pitch Autopilot Constructor provides an Ada pitch autopilot

component, plus the required data types, filters, and a limiter.

¢ Lateral/Directional Autopilot Constructor: The Lateral/Directional Autopilot Constructor provides

an Ada implementation of a lateral/directional autopilot, plus the required data types, filters, and

limiters.

e Navigation Subsystem Constructor: The Navigation Subsystem Constructor provides a single

navigation subsystem composed of selected navigation computations.

» Navigation Component Constructor: The Navigation Component Constructor provides a set of

individual navigation computation components.

e Data Bus Interface Constructor: The Data Bus Interface Constructor provides the user with a

general-purpose interface to a data bus.

e Data Type Constructor: This constructor assists the user in the definition of various Ada data types.

e Abstract Processes Constructors: There are four constructors in this category: a Task Shell Con-

structor, Time- and Event-Driven Sequencer Constructors, and a Process Controller Constructor.

(1) Design Paradigms

A standard paradigm for constructor design and a methodology for component constructor
development was developed under CAMP-2. The standard design paradigm promotes consistency, ease
of integration, and standardization of user interfaces. The standard methodology facilitates the develop-
ment process; it stresses many informal reviews as work progresses, and is iterative in nature. The
paradigm for constructor design covers three areas:

e The user interface
® The processing or analysis phase
¢ The code generation or synthesis phase

The need for constructors can be identified either by projects who recognize the need for a
constructor or through domain analysis performed by a parts group. The constructors that comprise the
AMPEE system were identified during the domain analysis of CAMP-1. Constructors can be develcped
both to assist in the use and tailoring of complex Ada generic parts, and to produce tailored Ada code



from schematic designs. Once it is thought that a new constructor is needed, an intensive analysis should
be performed to delermine if there is sufficient demand for such a constructor to warrant the non-trivial
development cost. For example, the Kalman Filter Constructor comprises some 8000 lines of Lisp/ART

code and has access to another 2700 lines of code in common utilities.
The user interface front-end elicits requirements from the user for the software component

that is to be generated; the processing portion then converts the requirements into an internal represen-
tation; and the back-end, or synthesis phase, generates the required Ada code for he user. Figure 31

illustrates this design paradigm.
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KNOWLEDGE BASE
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Figure 31. Constructor Design Paradigm

The user's requirements undergo analysis for completeness and consistency, and are then
stored in an intermediate form. The synthesis phase generates the Ada code from the requirements
provided by the user. The code can consist of generated Ada components, instantiations of complex Ada
generic unils, or a combination of instantiations and generated code.

Early in the development process, the constructor developer formulates preliminary re-
quirements and questions for the expert, i.e., the Ada parts developer. The parts developer must then
consider these requirements with the following issues in mind:

* What CAMP parts can or should be used?

e What alternatives should the user be presented with (e.g., Should he only be able to put together
CAMP parts when constructing the component or should he also be able to provide his own
parts?)?

® What information should be elicited from the user (i.e.. the wording of the interface is important —

it should be in the domain language)?
e What are the implications of different choices made by the user?



Following this preliminary work, the constructor developer and the parts team member
responsible for the design of the corresponding Ada part should meet to delineate the scope of the con-
structor, clarify requirements (inputs, processing, and outputs), and determine acceptance criteria. Afler
this initial meeting, the construclor developer begins defining the dialog that will be conducted with the
user. This process iticludes the development of preliminary screen flow diagrams. These diagrams depict
the actual user interface for the constructor. Early development of these diagrams helps to point out
omissions in the requirements and misunderstandings between the intent of the Ada part designer and the

constructor designer.

After several iterations on the preliminary screen flow diagram, the constructor developer
produces a complete screen flow diagram that depicts the user interface for the four constructor functions
— Generate, Browse/Modify, Copy/Modify, and Delete. A standard symbology for the screen flow
diagrams has been developed (see Figure 32).

USER CONSOLE DISPLAY ’ ’ SCROLIED AREA
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Q CONNECTOR TO PREVIOUS DISPLAY

Figure 32. Screen Flow Symbology

A second diagram depicting the high-level view of the constructor is also produced. This
diagram depicts the CAMP parts that will be used, the packages that will be provided by the user, and the
packages that will be output from this constructor. It shows the major options available to the user. As
an example, Figure 33 depicts the top-level view of the Kalman Filter Constructor. The user has several
choices to make. He can choose belween using Compact or Complicated H parts. He also has a choice in
the provision of required data types, operators, and subprograms: he can allow the data types to default to
those provided by the constructor, he can provide his own package, or he can define his own data types
interactively. The oulput from this constructor consists of a data types package and the actual Kalman

filter component.

Once these two diagrams are completed, they s w.d be reviewed by a team that consists
of the Ada parts designer, the constructor developer, and the chief Ada designer. The constructor design
generally encompasses several options for construction of the component (these are clearly identified in
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Figure 33. Kalman Filter Constructor — High-Level View

the screen flow diagram). During the review meetings. a deterinination is made of which options will be
implemented first, and the priority of the other options. If it is determined that the screen flow meets the
requirements of the constructor, then the PCS developer may proceed with further design and implemen-
tation of the component constructor. This process of diagram development and review may be iterative,

Upon successful completion of the diagrams, the constructor developer should produce a
program design language (PDL) description of the constructor and the data structures required for im-
plementation. These may be reviewed informally prior to implementation. Onc: the <esign is complete,
the constructor developer can begin implementation, concentrating on the options that were assigned the
highest priority.

The entire design and development process is iterative in nature. The approach developed
during CAMP-2 emphasizes many informal reviews along the way. This serves several purposes: it
ensures that the constructor developer is on rrack with the requirements and design of the constructor, and
it facilitates communication with the parts team (i.e., they are kept informed of activities within the

component construction tcam).
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2) Constructor Implementation

A standard structure has been developed for implementing constructors; this not only
facilitates integration but also reduces the development time for new constructors. Common routines
have been developed for AMPEE system cntry and exit, and common constructor functions. Utilities
consist of routines that perform error checking. and low-level processing. User-interface functions
provide common routines that handle different types of menus and forms that are widely used. The
AMPEE system user interface utilizes host facilities known as presentation types to control the type of
input that the user may provide. This facility is an extension to Common Lisp, the language used for
AMPEE system implementation. The presentation rype facility allows data types and error checking
routines to be defined to limit the range of valid inputs.

The constructors are controlled by a constructor executive that is constructor-dependent.
The executive is responsible for evaluating the functions in the function list that consists of the Lisp
functions that must be executed for the particular constructor function (i.e., Generate, Browse and
Modify, Copy and Modify, and Delete). A global variable is used to keep track of the current location in
the function list.

() Types of Constructors

Although all of the constructors follow the same basic design paradigm, there are
implementation differences between constructors for complex generic units and schematics; these are
transparent to the end-user. Constructors for complex generic parts encode knowledge about instantiation
of those generic parts; this includes information on the data types, operators, and subprograms that are
needed for instantiation. Constructors for schematic parts encode a blucprint or schematic of the com-
ponent that is to be generated; knowledge about Ada coding procedures and efficiency issues is also
encoded in the constructors, e.g., within the Finite State Machine Constructor a decision is made on
whether to use a case statement or an if-then-clse based on the number of options that will be processed.

{b) Code Generation

Once all of the information needed to generate a component has been obtained from
the user, code generation begins. The data is extracted from the requirements schemata, and the ap-
propriate generic units are instantiated, or needed code is generated based on an existing blueprint.

The code generation phase requires no further interaction with the user. It is driven
by requirements provided by the user and encoded in the constructor itself. The code generation process
is unique for each constructor: the complexity varies considerably among constructors. In general, the
data type definitions are generated first, followed by instantiations of CAMP parts and/or production of

new code.
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(3) Testing and Operational Evaluation

The individual constructors and the entire Component Construction subsystem underwent
various levels of testing, as did the other subsystems that comprise the AMPEE system. Constructor

testing consisted of the following:

¢ Interface and operational testing by the developer

o Informal user testing performed by the PCS development team

¢ Code inspection periormed by a combination of the PCS team and the parts team
¢ Compilation testing which was generally performed by the constructor developer

o User testing by the the PCS training class

Several of the constructors were subjected to further testing and use, including formal

lesting via the CAMP Ada parts test procedures. and use by the |1th Missile team. When formal testing
was performed on the output from a constructor. il was conducted by a member of the CAMP parts team.

Overall. users found the constructors to be a useful concept. The major drawback is that
their implementation is closely linked to the meta-parts they represent, therefore, changes to the meta-
parts generally necessitate changes to the constructors. This is an implementation problem, not a problem
with the concept of component constructors. Additionally, the constructors require more domain specific
knowledge to run than the Paris Catalog subsystem, but that is to be expected.

2. PCS IMPLEMENTATION

The AMPEE system was originally conceived as an expert system, but it was found that for the most
part an cxpert system was not required. This divergence from the original concept resulted from a
combination of factors, including one that is quite common. In reviewing the literature, it is evident that
as a problem becomes better understood, a sequential solution is often found to a problem that was
originally thought to be non-deterministic.

a. System Architecture

The AMPEE system is implemented using ART (the Automated Reasoning Tool from In-
ference, Corp.), a commercially available expert system shell, and Common Lisp. It is hosted on a
Symbolics 3620 computer, a single-user Lisp workstation, and takes advantage of Symbolics extensions
to Common Lisp. Figurc 34 depicts this architecture.

A Lisp machine differs from a conventional workstation such as the DEC MicroVAX, in that its
architecture has been developed to support the Lisp programming language (although it can be used for
other languages as well), i.e.. it is intended more for symbolic computation than arithmetic processing.
Symbolics provides an cxtensive integrated devclopment environmemt. This includes on-line help,
documentation, and debugging facilities. and incremental compilation of functions in the editor. Exten-
sive user interface facilities are also provided in the form of extensions to Common Lisp.

An expert system shell is a software system that provides a means for capturing knowledge, and



an inferencing mechanism (o work on that knowledge: the application developer provides application-
specific knowledge in the form of facts and rules.

The AMPEE system was originally hosted on a DEC MicroVAX and utilized DEC Common
Lisp and beta versions of VAX-compatible ART. The advantages and disadvantages of each implemen-
tation will be discussed in the following paragraphs.

RMFER STS5TIM

Figure 34. AMPEE System Architecture

(1) Hardware

The CAMP-1 PCS feasibility study included an evaluation of an off-the-shelf expert sys-
tem tool for use in the PCS. CAMP-1 also required the use of a widely available processor both in the
evaluation of the expert system tool and the PCS feasibility study, thus the DEC VAX family of com-

puters was selected.

The VAX implementation of AMPEE, which began as a proof-of-concept implementation
under CAMP-1 and continued into the prototype stage under CAMP-2, made use of DEC Common Lisp,
DEC Forms Management System (FMS) for the uscr interface, and ART for the knowledge structuring.
ART was selected in light of the hardware selection (at the time of the CAMP-1 contract — September
84-85 — Inference appeared closest to producing a full-scale, production quality, expert system develop-
ment tool for the VAX).

DEC FMS was used for the interface in part because the beta versions of ART did not
provide adequale tools for the development of a full-screen user interface. Although FMS provided a
significant imj-rovement over developing an interface from scratch, it required a considerable initial effor
to use. The CAMP PCS team developed utilities (or use with the FMS forms; these handled things such
as forward and backward scrolling. cursor positioning, etc. The Lisp-compatible version of FMS did not
provide automatic type checking of user-provided data, thus, all such processing had to be performed in
the application code. Additionally, a graphic interface was not possible.
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In comparison to other VAX languages, VAX Lisp was slow and consumed large amounts
of space. Additionally, a production quality version of ART was never available during the time AMPEE
was hosted on the VAX; expected delivery dates slipped continually, and the versions that were available
were nol error-free. The problems experienced with ART drove the AMPEE implementation deepzr into
Lisp.

The main advantage of the VAX implementation of AMPEE was that it was hosted on
widely available hardware, and thus could be used by a larger audience. FMS was relatively inexpensive,
and hence was not a deterrent (0 using the AMPEE system.

The application was ported to a Symbolics during CAMP-2. A major factor in the move
from the VAX platform to the Symbolics was that the VAX version of ART, which had been im-
plemented in VAX Common Lisp. was being re-hosted in C. Inference Corp. intended to provide a subset
of Common Lisp that could be called from ART. but, at least initially, the full Lisp functionality that the
PCS development team had come to rely on would not be available. Thus, a decision had to be made to
cither port to the C-based version of ART on the VAX, or port to a Lisp machine. Porting to the C-based
version would require rewriting significant quantities of Lisp code and reworking parts of the application.
Porting to a Lisp machine would require redevelopment of the user interface, but presumably a complete
implementation of ART and Lisp would be available.

' The port from the VAX to the Symbolics required not only a complete re-implementation
of the user interface, but also a change in the type of interface. On the VAX, the forms and menus were,
for the most parl, full screen, whereas on the user interface developed for the Symbolics version consisted
of pop-up menus and forms that generally filled only a portion of the screen.

The Symbolics provided a good development environment. Rapid development of
prototype interfaces was possible. although more work was required for development of custom inter-

faces.

(2) Software

Both ART and Lisp were used in the implementation of the AMPEE system. ART is a
programming language that bears some resemblance to Lisp, although its functionality is quite different.
As mentioned previously, ART is an expert system shell intended for both rapid prototyping and produc-
tion of expert systems. It provides a means of capturing knowledge in the form of rules and schemalta,
and a mcans of invoking, or firing. those rules. Although the basics of ART are fairly simple to master, it
is a complex tool. Before utilizing such a tool, it would be teneficial to determine which of its features
are likely to be needed. and determine if some or all of the nceded features are available in a simpler and

more portable package or language.
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The AMPEE system makes only limited use of ART functionality. It is used throughoul
the AMPEE system for data structuring (via the ART schema system), and within the Parts Identification
subsystem f{or consistency checking and interface control (via a small number of simple forward-chaining
rules), and for display of the missile software hierarchy within the Missile Model Walkthrough function.
ART provides many more features that are not used in the AMPEE system, such as backward chaining
rules and the ability to explore alternative scenarios via the viewpaoint mechanism.

The use of ART for system development imposes a number of limitations on deployment
of the final system:

e Portability: Although it is available on a fairly wide range of processors, its use does cut down on

the portability of the application.

e Cost: There has been a gencral downward trend in the cost of high-end expert systems, but, the
cost of such a tool can be prohibitive to some potential users. Some vendors, including Inference,

also markel a run-time system separately from the development environment.

e Compatibility: ART must stay current with the operating system under which the user’s machine is
running.

The PCS team developed a significant quantity of reusable software that was used through-
out the AMPEE system. This benefitted not only the developers but also the end-user. Much of the
reused code was for user interface functions, thus the user was presented with a more uniform interface

than might otherwise have been possible.

(3 User Interface

There are scveral basic types of data entry/display used in the AMPEE system inlerface.

They are explained below.

e Single-choice menu: The user mouses on his selection. Most of these menus include Pop as a

selection; this allows the user to backup to previous screens to examine or re-enter data.

¢ Multiple-chuice menu: These are two part menus. whereby the user selects as many of the items in

the choice portion of the menu as he would like, and then selects the action option from an em-
bedded menu. The action options are Do It (take the options selected by the user), None (no

options desired), All (select all of the options), and Quir (exit this screen).

e Fill-in-the-blank field: The data type of the response. or a default value is generally displayed in

the ficld. The user mouses on the response area for the field, enters a value, and presses the rerrn

key to proceed to the next field. If the user is unable {0 mouse on a field, it is not changeable.

o Multiple-choice field: All of the options are displayed to the user; he can make or change a

selection by mousing on item. Default values are displayed in bold-face type.
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» Display-only form: These are used 1o provide instructions, or to display information to the user that

he is unable to alter.

e Scrollable list/menu: This is a fist of data that may be more than one windowful in length. It may

be scrolled by clicking left or right after the scroll arrows are visible. The scroll arrows can be
made visible by knocking the mouse arrow into the left margin. For menus of this type, the nexr

action choices (i.c., Done, Pop) generally appear as menu choices.

e Scrollable form: This is a form that is used to display a list of data items or text that may be more
than one windowful in length. The user may scroll either by using the scroll key or the mouse. At
the bottom of the form are two option boxes, Done and Pop. To exit from this type of form, the
user must mouse on one of these (wo boxes. If more mode is in use, the user must scroll past all of

the more prompts before his choice of Done or Pop will be processed.

e List-input form: This type of form allows the user to provide one or more values of a particular
type. The user is prompted for only one item at a time. Data is entered by mousing on the prompt,
supplying a value, and pressing the return or end key. Another prompt line will appear. To
terminate processing the user can either mouse on the end option at the bottom of the form, or press
the end key. In general, a user can pop from this type of form by entering pap on the last prompt
line. To delete entries, the general procedure requires the user to mouse on the entry to be deleted,

and then enter nil. Specifics may vary somewhat from form to form,

h. Parts Catalog

The basic goals of a software parts catalog are to facilitate reuse of pre-built software parts.
facilitate configuration control, and provide a foundation for a parts composition system. It is basically a
data base application, although the AMPEE Parts Catalog has been implemented using ART schemata
and Lisp in order to provide the user with a single integrated parts composition system.

ART schemata are used to capture the actual catalog data. There is one schema for each catalog
entry, and one schema s/or for each catalog entry attribute. A slor is comprised of a slot name and a slot
value, thus, the stot name represents the catalog attribute (e.g.. date-of-last-change-of-entry), and the slot
value represents the attribute value for a particular catalog entry (e.g., 12-02-87).

Some of the catalog entries are textual, therefore, their value is not actually stored in the catalog
schema. Textual attributes are used to capture attribute values that are of indeterminate length. Their
actual value is stored in a file, and the name of the file is stored in the schema slot associated with that
particular attribute. When a user wants to view a textual aitribwte, the contents of the file are fetched and
displayed. When textual attributes are added or modified. the AMPEE system user is put into an editor.
Deletes of textul attributes do not physically take place until the user exits the AMPEE system and

confirms that he wants the catalog changes to be saved.

The remainder of the Parts Catalog subsystem is implemented using Lisp. The ART data
structures are accessed via Inference-provided Lisp functions. This subsystem also makes use of an editor



for the entry of information for textual attributes. Additionally, the print function makes use of a com-

mercially available text processing program to format the catalog entries.

There are several deficiencies in the current implementation. Among them is the fact that there
can be as many as fourteen textual attributes provided per catalog entry. Access to textual attributes is
relatively slow compared to access to other attributes because the request must go through the file system.
The file system can also become cluttered with attribute files, particularly if there is a minimum size
imposed on all {iies by the operating system. The textual attribute files also contribute significantly to the
overall time needed to exil from the AMPEE system. If the user chooses to not save the catalog changes
from the current session, the AMPEE system exit routines examine the attribute files, deleting any that

were created during the current session.

Another problem with the current implementation is the amount of time needed to load the
catalog initially, and to save il after compieting a session. Both times are directly tied to the number of
catalog entries. Perhaps a re-examination of what is cataloged is in order.

c. Parts ldentification

The Parts Identification subsystem is the only portion of the AMPEE to use ART for anything
more than data structuring. It makes use of both simple forward chaining rules and facilities within the
ART Studio. The ART Studio contains several functions for browsing the current state of an ART
knowledge base, including onc that permits viewing of the inheritance network; it is this function that is
used for the display and traversal of the missile models in the Missile Model Walkthrough function.
Although this function serves its purpose in a prototype implementation, clarity of the display for this
application is less than optimal.

d. Component Constructors

Each constructor within the Component Constructer subsystem incorporates one or more ART
schemata that capture the requirements needed to generate a specific component for a user. Thesc
schemata are referred to as requirements sets. they are accessed by Inference-provided Lisp functions that
are called from within the constructor. Storage of the requirements sets allows them to be recalled at
some future session, and either modified or used as is to generate additional components.

J. FUTURE DIRECTIONS

The prototype PCS developed under CAMP has proven that tools can be developed to facititale the
use of reusable software. Development of this prototype has pointed out both potential problem areas
within the current implementation, and areas for further development and investigation. Listed below are

some areas for further work/investigation.

o Parts Catalog

- Restructure the parts catalog.  Currently, almost anything can be cataloged; this has not
proven to be necessary, or particularly useful. It can result in confusion on the part of the
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user when he is confronted with 1100+ catalog entries when there are only about 450 parts.
This discrepancy is the result of cataloging specificaions and bodies separately, and of also
cataloging encapsulating packages which are not classified as parts by the definition
developed during CAMP-2. 0t is also possible to catalog generic formal parts and context

clauses, in addition to generic and non-generic package, task, and subprogram specifications

and bodies.

Restructuring the catalog could benefit the Parts Catalog in another area -— within the Ex-
amine Part function, This function allows the user to examine the source code for the
cataloged entity. If the entity is a part that is encapsulated within a package, the user is
presented with the entire file that contains the particular entity of interest (the user does have
the option of having the header comments stripped out of the file before it is displayed). This
can be both an annoyance and a deterrent to use. It is inconvenient to step through a large
file to find a deeply embedded entity. Additionally, it can be confusing, and cause the user to
think that the system is not operating correctly.

- It might be beneficial to provide the user with functions that act more directly on the part
hicrarchy. Currently, the user can obtain information on the hierarchical structure of the parts
via an examination of the huilt from and used to build attributes. There should be a more

straightforward way to obtain this information (perhaps graphically).

e Parts Identification

- Extract the essence of the Parts Identification functions so that the basic mechanism can be

applied to domains other than those covered by the CAMP work.
- Expand the missile models to permit finer granularity in the identification of parts for the
user.

- Expand the knowledge base to incorporate more domain knowledge, the goal being the iden-

tification of parts that can he used to build nceded parts.
- Smooth the transitions between PCS functions, and provide greater carry-over between them,

¢ Component Constructors
- The concepl of component constructors is a valuable one, but the approach to implementation
of constructors is an area that could benefit from further work. The approach used in the
AMPEE system tics the constructors (for complex generic parts) intimately to parts that they
utilize. This can be a problem if the part(s) on which the constructor is based change in areas

that are relevant to the production of code by the constructor,

An alternative that bears further exploration is the concept of a constructor constructor, i.e., a

generalized software constructor that would gencrate specific constructors. One way to do
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this would be by embedding commands within the reusable parts themselves that would
indicate the information that would be required from the user in order to gencrate the tailored
Ada components that are needed. The parts could then be run through a preprocessor to
produce the appropriate user queries. Code generators and facilities to permit data type
definition or provision outside of the construclor would also be required. In essence, this

would be a smarter constractor, where less of the information is hard-coded in the constructor

itself.

¢ General
- The entire AMPEE system, as it is currently implemented, is not very portable. Although it
has been implemented using ART and Lisp. the majority of the interface is implemented
using Symbolics extensions to Common Lisp. Additionally, the use of ART limits the polcn-

tial users to those who have a compatible version of ART available to them.

It is a time-consuming process to load all of the files associated with the AMPEE system, but
certain things can be done to alleviate this problem. Provided the user has sufficient disk
space on his machine, he can load all of the AMPEE system files, and create a file that
captures the current machine environment; it is then possible to avoid loading all but the
user-changeable AMPEE system files each time the user wants to run the AMPEE system.
The user-changeable files include the catalog itself, and the collection of requirements sets
created by the user. Both of these files can be updated by the user, therefore, it is not
recommended that they be made a part of the entvironment that is saved (i.e., they should be
loaded each time the user starts a new session. The extent of the inconvenience of doing this
is somewhat dependent upon the amount of memory that the user has on his machine. In the
AMPEE system development environment, loading the catalog took in excess of fifteen

minutes (note that load time is also dependent upon the number of catalog entries).

Response time is another potential problem area. Users have been conditioned to expect a
fairly rapid response when interacting with a computer. Some of the items that factor into
AMPEE system response time are the location of the files that are accessed (i.e., is there
aclivity across the network or are all of the required files resident on the host machine), the
number of catalog entries (for various AMPEE Parts Catalog functions), whether or not the
underlying Lisp code has been compiled or rot, and the amount of memory on the host
machine. The AMPEE system. as it is currently implemented, can leave the user hanging

while various user requests are fulfilled.

Another arca that could be improved to enhance usability, is the interconnectivity of AMPEE
system functions. Although there is some carry-over between functions. it is limited, ¢.g.,

there is carry-over from the catalog scarch function to other catalog functions that operale on

existing catalog entries.
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SECTION V
THE ADA LANGUAGE AND SOFTWARE REUSABILITY

Support for reusability has been a key zoal of *he Ada language since its development began in the
1970's. Reusability includes the ability to transport code between different machines and the ability to
transport code between applications. Standardization on a single ianguage specification and prohibition of
modifications to create subsels or supersets of the language have largely achieved the first component.
Complete Ada applications have been transported between widely disparate machines, with minimal
changes to the source code. The success of this type of reusability is, of course, limited by machine
dependencies of the code and the type of application involved.

For reusability to truly succeed, Ada code must be transportable not only between machines, but also
hetween applications.  While there have been successful cases of this type of reusability, the CAMP
project has concluded that portions of the current Ada standard inhibit *he ability to transport and reuse
code between applications.  These conclusions are based on problems . acovered during the implemen-
tation of the CAMP parts and the 11th Missile Application; therefore, the problems are seen as valid
issues which must be addressed, and not as conjectural speculation on potential use of the language or as
the result of a specific effort to find fault with the language.

Ada language issues raisced during CAMP include language definition and language restrictions. In
some cases, the standard leaves to the compiler implementor key decisions which can affect the ability of
a compiler to handle code developed for reuse. Furthermore. as discussed in Section VII, the Ada valida-
tion capability does not adequately test all of the standard Ada features which are required for implemen-
tation of reusable software. Additionally, the standard lacks certain specific features which could further

cnhance reusability. especially for the design of special interfaces.
This section of the report discusses arcas where Ada’s support for reusability of code between ap-

plications can be improved; examples from CAMP implementations will illustrate the problems. Recom-
mendations are also made for implementing these improvements as a part of the Ada 9X revision process.

LSEPARATE COMPILATION AND GENERIC UNITS

Ada generic units form the key constructs of reusable software.  Sections II and VI of this report
discuss the use of generic units in CAMP parts development and in the CAMP development methodol-
ogy.

Part of the CAMP development methodology includes the separate compilation of generic subunits.
This approach facilitates development and maintenance by reducing the size of compilations and the
requirements for recompilation should subunits change. This approach is also consistent with the goal of

Ada to support modularity.
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The development of reusable software based on generic units is impeded by ambiguity in the Ada
language standard. Suppont for separate compilation of generic units is not a required Ada feature:
therefore, it is not addressed in the Ada Compiler Validation Capability (ACVC) tests. The exact slate-
ment on this issuc occurs in Section 10.3, Paragraph 9 of the Ada Reference Manual:

"An implementation may require that a generic declaration and the corresponding proper body be part of

the same compilation. whether the generic unit is itself separately compiled or is local to another compila-

tion unit. An implementation may also require that subunits of a generic unit be part of the same

compifation.” (Reference R)

This statement is somewhal ambiguous. An implementor could provide a compilation system which
would require that an entire package be placed in one compilation. Since on most systems a compilation
would correspond 1o a file. the file would contain the main unit and unit body plus all subunits, where the
unit is a generic package or subprogram, or any combination of nested packages or subprograms within
the main unit. Any change anywhere within the unit would require recompilation of the entire unit and
body.

The effect of this requirement would be disastrous for the developers of a reusable software library.
such as the CAMP parts library. Figure 35 illustrates potential compilation structures for a simple pack-
age encapsulating two generic units. (Note: This is an extremely simple case; generally, library packages
will be far more complex. Also, the compilation system assumed here will perform recompilations.
whether or not units have changed. More sophisticated systems could permit incremental compilation,
which would only affect units which actually require recompilation.)

¢ Compilation 1 is the most desirable structure, allowing specifications, bodies, and separate units o
be physicaily located in separate source code files. This structure supports case of development and

maintainability through separate compilation of specifications and bodies.

e Compilation 2 allows the specification 1o be located in a separate file, but requires all bodies to be

located in the same source code file. This structure increases compilation and maintenance time,

bui has no affect on package use.

e Compilation 3 has the same result as Compilation 2. This structure would be required by a system

that did not permit separate subunits of a generic unit.

e Compilation 4 requires a specification and all corresponding bodies to be located in the same
source code file. This structure requires complete recompilation of the specification and body
whenever any part of B or C changes. In addition, because units which import A are rendered

obsolete by the recompilation of A, the importing units have to be recompiled, as well.

¢ Compilation 5 does not make use of packaging and. therefore, each of the units can be located in
separate source code files. This obviates the need for extensive recompilation. Orly B or C need to
be recompiled if they change. and any units importing the changed unit also require recompilation.

However, the library would become unmanageable because of the number of units,

For the CAMP library, the requirement to structure compilations according to Compilation 4 would
typically mean recompilation of from 500 10 2000 lincs of code, depending on the specific unit, any time
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Figure 35. Ada Gencric Compilations
an encapsulated unit was changed. 1If specifications and bodies must be in a single compilation, the entire
C'AMP software library could potentially be affected as a result of a single change in the bo«v of a basic

unit. Compilation 5 would split up large units into small constituents; however, this would require mas-
sive context clauses and would enlarge the already complex CAMP configuration management task.
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For users of a reusable Ada software library. the compilation restriction would be equally serious. If
the specification 1o a library package changes for any reason, all software dependent on that package.
would have 1o be recompiled. 1t is hoped. however. that changes to a specification in a reusable library
would be extremely rare. However. if an Ada compilation system required that the specification and body
of a generic unit be in a single compilation. as in Compilation 4. a change 10 a single statement in the
body would require recompilation of the specification as well. The resulting recompilations could ripple
through the user’s system and require extensive, if not complete, recompilation of the user’s software.

The ambiguity of the standard in this area also permits implementors to exaggerate their claims
about their compiler. Because no standard on separate compilation of generic units exists, an implemen-
tor can claim support for the feature. yet may have almost no support beyond separating specification and
body into two separate compilations. Attempts to separately compile units beyond this level can result in
any number of compiler errors, as reported in Section VII. The fact that nearly every implementor does
claim support for this feature indicates that it is a feature desired by most compiler users.

The CAMP experience establishes the need for making separate compilation of generic units a re-
quired feature of Ada. In order to provide continued support for software reuse. the 9X revision must
consider this need.  Numerous tests of support for the facility were developed during the CAMP-2
project. these tests can be used to measure the claims of compiler implementors in the interim. These
tests form part of the CAMP Armonics Benchmarks described in Volume 11 of this 1report.

2.0PTINHZATION

The success of Ada requires the availability of optimizing compilers. Without significant optimiza-
tion, Ada will never achieve the throughput or memory restrictions imposed by requirements for most
embedded software systems. Additional optimization to address generic units will also be needed be-
cause of the heavy use made of generic units in reusable software.

Of particular concern to developers of optimizing compilers is the issue of optimization across unil
boundaries. Several optimization issues must be addressed:

® How will an individual user utilize the objects in a package?

* Will all users of the same package require the same optimizations?

® Where another unit imports objects from the original. what effect will use of the objects of the
original unit have on optimization of the user's ohjects?

With generic units these requirements become even more difficult to address. By design. the generic
unit must meet the needs of numerous end-users. These needs must be tailored by data structures and
specific sets of operations on the data. While the CAMP parts have been designed to address many ol the
typical efficiency needs of embedded systems to limit or even eliminate inefficiency due to reusability,
the success of reusability itself depends on compilers optimizing the final code once the generic unit is

instantiated.

Another form of optimization 1s the generation of code based on the actual paramelters in a generic
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instantiation. Presently, the actual parameters do not affect the code generation; compilers either generate
new code for each instantiation, even if actual parameters are the same, or they generate only one body
regardless of the number of instantiations. In the former case, size can grow even though each instance is
a mere copy. In the latter, the compiler must generate additional code to handle specific calls to each
instance. The additional code will be gencrated even if there is, in fact, only a single instantiation.

Figure 36 shows these two methods plus a hybrid method that overcomes the deficiencies of the
other two. This different hodv method will perform three types of instantiations:

A TYPE X IS DIGITS <>
T

—
SINGLE MULTIP DIFFE
BODY BODY BODY

EXTENDEQ
FLOATING
POINT SHORT

TYPED FLOATNG

AS PONT

NEEDED

EXCELLENT : POOR : GOOD <—— STORAGE
POOR f EXCELLENT - EXCELLENT ¢—— THROUGHPUT

Figure 36. Mecthods of Generic Instantiation

e Generate multiple bodies for truly distinct instances

* Generate a single body, with no additional case-specific code, if there is only a single instantiation

e Generate a single body for multiple instantiations using the same actual parameter types

This approach assumes global optimization across packages. Because it is not generally possible to
know in advance how a potential user would use the generic unit. the optimization must occur following

all instantiations.

The CAMP parts library provides compiler developers with an excellent set of examples for dealing
with optimization issues. Within the parts structure itself, there is extensive reuse of objects belween
parts. Optimization addressing the needs of the parts themsclves could address many concerns that arise
in the development of a library of parts. The 1th Missile Application demonstrates the use of parts in
building an application, and can provide guidance to compiler developers in meeting the needs of the

end-user of the parts.
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3. TASK PRIORITIES

Task prioritics are used to indicate the relative priority of one task over another in the allocation of
system resources. In general. those things that have (o be done quickly or on a precise time schedule are
given the highest priority. For example, within the I 1th Missile Application. the interrupt handlers which
process messages to and from the 1553B bus are given the highest priority in the system because the
interrupts can come as often as every few hundred microseconds. and each must be handled before the

next one comes in.

Tasks with low priority generally occur relatively infrequently and do not have tight timing con-
straints. For example, within the 11th Missile Application, the ISA.Monitor querics the ISA status every
minute. 1f the actual delay belween queries is 62 seconds instead of 60, no major problems will result.
Similarly, the Status_Generator runs twice a second to generate an operator status display. I one or more
runs get skipped, there is no adverse effect on the system. Neither of these tasks can be allowed to delay

the completion of the higher priority tasks.
Currently, the Ada language standard requires that task priority be established by a staric value, thus,
not only must the priority be fixed, it must be fixed by a simple constant expression. Reusability could be

enhark ed by the following changes:
o For tasks declared within a generic package, allow task priority to be specified as a generic
parameter. This would have been useful for the 1553B bus interfaces of the 11th Missile Applica-
tion. One of the 1750A processors has two bus interfaces; the code for the interfaces was identical

except for task priorities and command port zddresscs.

* Allow task prioritics to be specified dvnamically. This would be particularly useful for multi-
window user-interface software, in which an instantiation of a generic task is created for each
window. The task that is currently interacting with the user would then be able lo elevate its

priority (or have it elevated).

4. ADDRESS CLAUSES

Address clauses allow objects to be tied to specific addresses (for example, 1/O ports). Currently, the
Ada language standard requires that an address clause be "immediately within the same declarative part,
package specification, or task specification” as the object it references. The address is required to be a

simple expression.
Reusability would be enhanced by the following changes:

¢ Allow addresses to be specified as a generic parameter.  As noted in the previous section, the
15538 bus interfaces in the 1 1th Missile Application were identical except for task prioritics and

command port addresses.

o Allow the address of a specification ilem to be specificd in the body. This would allow a package

(or task) specification to have multiple bodies, with each body mapping items declared in the



specification to addresses as required. Since the specification would not be affected, the code using

the package (or task) would not have to be recompiled.

5. IMPLEMENTATION OF REDUCED-PRECISION FLOATING POINT TYPES

The use of strong data typing in real-time embedded applications supports reusability but at a cost to

the developer and user of reusable software in these applications. As detailed in Section VI, these applica-
tions require large numbers of mathematical operators for the different types of data. This subsection
discusses the inadequacy of the Ada standard in addressing the needs of applications with large numbers

of operators.

The application developer has two choices in maintaining strong data typing in a real-tine embedded

system:

» Create a few base types and declare subtypes. The strong data typing results from establishing and
enforcing rules in the use of the subtypes. This implicit form of strong data typing must be im-
posed because there will be no matching between parameters in assignments or subprograms other
than that of range. If two objects have the same base type they can be treated as if they are of the

same type. unlcss an object assignment is out of range.

The lack of strong type checking simplifies the end-user’s job. The user does not have to create
large numbers of operators to deal with the subtypes unless operations are between different base
types: however, the user must understand that any opcrations on subtypes will be those of the base
type. For example, a subtype which restricts the range and precision of a doub!z precision base to
single precision will have the same operators as the base type so the user will get double precision

operators on single precision subtypes.

Create a few parent types and declare derived types. Derived types prevent any operations between
types other than those explicitly declared or existing as derived operations. The strong data typing
rules are explicitly enforced. The user of derived types must create his own operators for operations

between these types, whether or not they are derived from the same parent.

CAMP supports the user of derived types by supplying many of the operations between data types
which are likely to occur in applications using the CAMP parts. This reduces the need for user-
created operators, assuming the CAMP opcrators meet his requirements. The CAMP parts cannot,
however, address the low-level operator needs of all end-users. In particular, real-time embedded
applications frequently mix single and double precision data types for similar objects. For ex-
ample, there may be multiple measurements of acceleration, e.g.. gravitational acceleration, missile
vertical acceleration, missile horizontal acceleration. These objects may differ in precision; thus, to
strictly maintain strong data typing, they should be of different types, though all are derived from

the same parent.

In general, CAMP parts do not account for this strong data typing where precision is the discriminat-
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ing feature. It is a problem both for subtypes. where the user obtains the same operator regardless of the
precision of the subtype, and for derived types, where the user is required lo create operators which the
CAMP parts cannot provide. To explicitly support derived types of all precision would require an explo-
sion in the number of generic formal types and generic formal subprograms, plus the number of
predefined types and operators to be used as actual parameters in instantiations. The user, in this case,
must either use subtypes and enforce strong data typing implicitly through strict management of the
developmen! process, or must create his own operators.

Compilers may not allow a choice of operators for derived types. The compiler can legallv generate
code such that all numerical operations result in the generation of code of the highest precision for the
target machine. The Ada standard places conformance requirements on the final result of a computation,

not on intermediate results.

Ada does not provide any support for the use of subtypes to account for different precisions. Math-
ematical operations on a subtype are exactly those of the base type (Reference 8, pp 3-23, Section 3.5.2,
paragraph 16). In order to modify the precision of the operation generated for the target, the user must
perform explicit type conversions. Of course. this will work only if the compiler gencrates internal math-
ematical operations based on the precisions of the types.

An obvious solution to this problem is to eliminate the restriction from the Ada standard that opera-
tions on sublypes be those of the base type. It would be possible for a compiler to recognize subtype
attributes and generate code to maich. For exar.ple, Figure 37 shows a double precision base type and
double and single precision subtypes. Ada will permit mixing of these types in operations but all opera-
tions will be double precision. The recommended languag: change would generate code such thal the

operalions follow the precision of the result type.

package Basic Types is

Double : constant := 9;
Single : constant := &

type Double Precisions is digits Double:
subtype Single_Precisions is Double Precisions digits Single;
-- -- Double precision operations

function "*" (Left: Double Precisions;
Right: Single_Precisions) return Double_Precisions;

~- -- 8ingle precision operations

function "*" (Left: Doublo_Prociaiona:
Right: Single_ Precisions) return Single_Precisions;

end Basic__’ry-pos;

Figure 37. Subtypes Should Support Reduced-Precision Operations
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6. PROCEDURAL DATA TYPES

At the present time, Ada has no facility for defining procedural data types. As a result, subprograms
(procedures and functions) cannot be passed as parameters. There are, however, two contexts in which
this capability is not only desirable, but practically indispensable. The first context is state machine
applications where the states and transitions are either dynamic or unknown at compile-time; the second

context is that of artificial intelligence (Al) applications.

In the state machine context, the user often wishes to be able to dynamically control states of an
application, adding or subtracting states as needed. The inability to define procedural data types presents a
considerable handicap since this requires all procedures to be known at compile-time: any time a new
state and transition needs to be added or deleted, the whole state machine must be recompiled. The ability
to pass subprograms as parameters would allow an application to dynamically specify transi-.ons and
actions associated with new states. User interface systems often fit this category of applica’ « u1s. In a
finite state machine, where the number of states remains fixed. often the actions associated with states or
transitions need to change dynamically. The ability to pass subprograms would make possible this type
of dynamic allocation for these applications as well as in more general state machines.

In the area of Al systems. the ability to pass subprograms as parameters is aiso highly desirable.
Because artificial intelligence applications rely heavily “on the ability to use procedures as storable,
denotable objects” (Reference 9). the lack of this ability in Ada considerably diminishes the capability to
express Al paradigms.

7. DYNAMIC BINDING OF BODIES TO SPECS

Currently. only a one-to-one relationship between package bodies and specifications is permitted ty
the Ada language. In most instances, this is sufficient, but there are cases where a many-lo-one relation-
ship would be useful. This would allow multiple package bodies for a single package specification to
exist simultaneously in the same Ada library. Which body should be used by the compiler for code
generation would be specified when the user imported the package via a with statement.

One instance where this would be useful is when working with the CAMP Standard_Trig package: a
partial specification for the Standard_Trig TLCSC is shown in Figure 38. This package defines a st of
standard trigonometric operations for a system. In order to implement the supplied functions. the package
body of Standard_Trig instantiates portions of the Polynomials package.

Figure 39 contains a partial package specification for the Polynomials TLCSC. This package con-
tains a large number of polynomial solutions to various transcerd=r«al functiois. It also provides access
to the transcendental functions provided by the VAX Ada environment,

During the CAMP parts development effort. the package bndy of Standard_Trig instantiated portions
of the Polynomials.System_Functions LLCSC in order to obtain access to the VAX-supplied transcen-
Lontal functions (see Figure 40). While this package body would be useful for anyone doing development
using VAX Ada. it would not be appropriate for an application designed to run in an embedded environ-
ment. A modification that would allow this part to be used in an embedded environment would involve
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generic

type Angle is digite <>;
type Trig Ratioc is digits <>;
Pi_Value : in Angle;
package 3tandard Trig is
type Radians is naw Angle;
type Sin_Cos_Ratio is new Trig Ratio range -1.0 .. 1.0;
type Tan_Ratio is new Trig Ratio;

function Sin (Input : Radians) return Sin_Cos_Ratio;

function Cos (Input : Radians) return Sin_Cos_Ratio;

function Tan (Input : Radians) return Tan_Ratio;
end Standard Trig;

Figure 38. Partial Standard_Trig Package Specification

package Polynomials is
package Hastings is

generic
type Radians is digits <>;
type Sin_Cos_Ratio is digits <
package Bastings_Radian_Operations is
function Sin R 4term (Input : Radians) return Sin_Cos_Ratio;
function Sin_R_5term (Input : Radians) return Sin_Cos_Ratio;
end Hastings_Radian Operations;

end Hastings;
package System Functione is
generic
type Radians is digits <>;
type Sin_Cos_Ratio is digits <>;
package Radian Operations is
function Sin (Input :@ Radians) return Sin_Cos_Ratio;
end Radian_Operations;

end System Functions;

end Polynomials;

Figure 39. Partial Polynomials Package Specification

selecting polynomial solutions from the Polynomials TLCSC and instantiating them accordingly. If the
application required the selection of algorithms for multiple precisions, the required modifications would
be more extensive since the Standard_Trig package has been designed to provide overloaded operations

for different units, but r t for different precisions.

76



with Polynomials;
package body Standard_Trig is

package Radian_Opns is new Polynomials.System Functions.Radian Operations
(Radians => Radians,
Sin_Cos_Ratio => 3in_Cos_Ratio);

function Sin R (Input : Radians)
return 8in_Cos_Ratic renames Radian_Opns.Sin;

function Sin (Input : Radians) return Sin_Cos_Ratio is
begin

return Sin R (Input => Input);
end Sin;

end Standard Trig;

Figure 40. System Functions Version of Standard_Trig Package Body
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Under the current definition of the Ada language, the problem of modifying the Standard_Trig pack-
age to provide trigonometric functions for multiple precisions could be solved in one of the following

ways:
1. Duplicate packages could be provided for each precision. This is the approach that was taken on

the 11th Missile Application. It involved duplicating package specification code, giving each
package its own unique name, and then implementing the bodies for the different precisions (see
Figures 41 and 42). This method has the disadvantage of requiring the creation of packages which

are identical except for their names.

with Polynomials;
package body Standard Trig is
package Radians Opns is new Polynomials.Hastings.Hastings_Radian Operations
(Radians => Radians,
Sin_Cos_Ratio => 9in_Cos_Ratio);
function Sin R (Input : Radians)
return Sin_Cos_Ratio renames Radians Opns.Sin R 4Term;
function Sin (Input : Radians) return Sin Cos_Ratio is
begin

return Sin R (Input => Input):
end Sin;
end Standard_Trig;

Figure 41. Single Precision Version of Standard_Trig Package Body

with Polynomials;
package body Standard Trig is
package Radians_Opns is new Polynomials.Hastings.Hastings_ Radian Opsrations
(Radians => Radians,
Sin_Cos_Ratio => Sin Cos_Ratio);
function Sin R (Input : Radians)
return Sin_Cos_Ratioc renames Radians_Opns.Sin_R 5Term;
function Sin (Input : Radiane) return Sin_Cos_Ratio is
begin

return Sin R (Input => Input):
end €in;
end Standard Trig;

Figure 42. Extended Precision Version of Standard_Trig Package Body

2. The package specification for Standard_Trig could be modified to allow for multiple precisions as
shown in Figure 43. This method is less desirabie than Solution 1 because it requires major

modifications to the package specification, as wetl as creation of a new body.

3. The baseline CAMP Standard_Trig package could be modified in & manner similar to that dis-

cussed in Solution 2 and shown in Figure 43, This approach has the following disadvantages:

* It requires the user to instantiate the package and possibly receive code for multiple preci-

sions even if only one precision was required.
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generic
type Angle Single Precision is digits <>;
type Angle Extended Precisiocn is digits <>;
type Trig Ratio_Single Precision is digits <>;
type Trig Ratio Extended Precision ie digits <>;
P{ Value SP : in Angle_Single Precision;
Pi Value EP : in Angle Extended Precision;

package Standard Trig is

type Radians_SP is new Angle_Single Precieion;
type Radians_EP is new Angle_Extended Precision;

type Sin_Cos_Ratio SP is new Trig Ratio_Single_Precision range -1.0 .. 1.0
type Sin_Cos_Ratio EP is new Trig Ratioc Extended Precision range -1.0 .. 1.0;

type Tan_Ratio_SP is new Trig Ratio Single Precision;
type Tan_Ratio_ EP is new Trig Ratioc_Extended Precision;

function Sin (Input : Radians_SP) return Sin Cos_ Ratio_SP;
function Sin (Input : Radians_EP) return 9in Cos_Ratio EP;

function Cos (Input : Radians_SP) return Sin_Cos_Ratio_3P;
function Cos (Input : Radians_EP) return Sin_Cos_Ratio EP;

function Tan (Input : Radiens_SP) return Tan_Ratio_ SP;
function Tan (Input : Radians EP) return Tan_Ratio EP;

end Standard Trig;

Figure 43. Multiple Precision Version of Standard_Trig Package Specification

¢ [t does not solve the problem of what to do if more than two precisions are required.

The preferred solution would permit a single package specification to have multiple bodies. The
Standard_Trig package specification code would then not require modification; the user would create
multiple bodies. all of which would cxist in the program library at the same time, and then specify which
body was to be used at the time the Standard_Trig package was imported. This approach has the advan-
tage of increasing the reusability of the Standard_Trig package specification since it would require no
maodifications, regardless of the number of bodies required. It also decreases the effort to use the part.

8. SEPARATION OF REPRESENTATION CLAUSES

Flexibility and ease of use are key auributes of good reusable software. Ideally, the design of a
rcusable part should be sufficiently flexible to permit tailoring without modification of the source code
itself. It source code modifications are required. modification of the body is preferable to modification of
the specification since this increases the reusability of the specification, avoids modification of the exter-
nal interface provided by the specification, and potentially eliminates the need to recompile othier portions
of the system which arc dependent upon the modified part. One aspect of tailoring which cannot be
accounted for through good dcsigﬁ is the need for representation clauses.

"Representation clauses specify how the types of the language are to be mapped onto the underlying
machine. They can be provided to give more efficient representation or to interface with features that are
outside the domain of the language (for example, peripheral hardware)” (Reference 8, pp 13-1). One
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example of the use of representation clauses in the I1th Missile Application is in the definition of mes-
sages sent across the data bus and in size specifications for objects of certain types. An example of this is
shown in Figure 44 where the contents and storage representation of a BIM_Error_Message are defined.
A further explanation of the contents and storage representation of this message can be found in Table 6.
The current definition of the Ada language states thal "a representation clause and the declaration of the
enlity to which the clause applies must both occur immediately within the same declarative part, package
specification, or task specification” (Reference 8, pp 13-1). While the need for representation clauses can
be anticipated. their form cannot be since they are application-specific. As a result, whenever a user
wishes to apply a representation clause to an entity defined in the package specification of a reusable part,
the source code for the specification must be modified.

with BIM Interface;

with Bus_Terminals;

with Representation_Parameters;
package Bus_Messages is

package BI renames BIM Interface;
package BT renames Bus_Terminals;
package RP renames Representation_Parameters;

type Dummy Array is array (BI.Word Counts rangs <>) of BI.Data_Words;

type Short_Boolean is new BOOLEAN;
for Short_Boolean’'SIZE use 1;

type Short_ Feet is new INTEGER range -(2%*15)..(2%*15)-1;
for Short_Faet’SIZE use 16;

BIM Error_ Word Count : constant BI.Nord_Count' = 1;

BIM Error_Dummy Size : constant BI.Word Counts
:w BI.Message Size Wordse -
BIM Error Word Count;

type BIM Error_ Messages is

record
Word Count ¢ BI.Word Counts;
Source : BT.Terminals;
Destination : BT.Terminals;
Message_Number : BI.Message Numbers;
Status : BI.Status Words;
Dummy : Dummy Array(l..BIM Error Dummy Hire);

end record;

for BIM Error_ Messages use

record
Word_Count at O *RP.Storage Units_per Word range 0..15;
Source at 1 *RP.Storage Units_per Word range 0..3;
Destination at 1 *Rp.Storage Units_per Word range 4..7;
Message_ Number at 1 *RP.Storage Units_per_ Word range 8..15;
Status at 2 *RP.Storage Units_per Word range 0..15;
Dummy at 3 *RP.Storage_Units_per Word

range 0..BIM Error_Dummy Size *
RP .Message_Word Size-1;

end record;

end Bus_Messages:

Figure 44. 11th Missile Application Use of Representation Clauses
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TABLE 6. BIM_ERROR_MESSAGES CONTENTS AND STORAGE REPRESENTATION

Message Storage
Component Description Representation
Word_Count Number of words in the message Located in bits 0-15 of the word offset 0

words from the beginning of the data struc-
ture

Source Where the message came from Located in bits 0-3 of the word offset | word
from the beginning of the data structure
Destination Where the message is being sent Located in bits 4-7 of the word offset | word
from the beginning of the data structure
Message_Number Used 1o distinguish between messages of the | Located in bits 8-15 of the word offset |
same type word from the beginning of the data struc-
ture
Status The error itsell Located in bits 0-15 of the word offset 2

words from the beginning of the data struc-
ture

Dummy A “filler array used to keep the overall ize | Starts in bit 0 of the word offset 3 words
of all messages the same from the beginning of the data structure and
continues for the number of words required
to completely fill the message structure

Allowing represemtation clauses (o be specified in a package body for entities declared in the pack-
age specification would increase the reusability of the specification. In cases where the reusable software
consists of only the package specification with the body being user-defined, a representation clause could
be defined in the Ada body without any modifications to the reusable specification code. In cases where a
body already cxisted. permitting the modification to be made to the body instead of the specification
could potentially eliminate the need to recompile other portions of the system. The placement of
representation clauses in package bodies would be consistent with the specification (Ada data structure)

versus body (implementation) split which exists throughout the Ada language.
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SECTION VI
PARTS DESIGN METHODOLOGY

1. DESIGN REQUIREMENTS

The development of reusable software presents the designer with a conflicting set of design require-
ments. In addition to being reusable on a number of different real-time embedded applications, the design

of reusable parts must address the following issues:
* Well-defined interfaces
o Efficient implementations
¢ Strong data typing to minimize inappropriale use
¢ Availability of mathematical operations on different data types
o Simplicity of use

These conflicting requirements have led some to the conclusion that "since the generality .eeded for
flexibility and portability will increase software overhead and, consequently, decrease the software’s ef-
ficiency . . . it is very difficult to construct reusable missile software that is still viable.” (Reference 10, p
105). This is not the conclusion from the CAMP project.

The CAMP project developed a design methodology to address these conflicting issues and produce
reusable parts for missile applications. A set of reusable part goals — flexibility, efficiency, ease of use,
and protection against misuse — form the basis of this method. Flexibiliry is the extent to which parts
can be modified or tailored to the specific needs of an individual application. Although parts may be
reusable, if they are not flexible and easily tailored, then the cost of using a part may be prohibitively
large and it may be less expensive to develop a new part than to try to tailor or modify an existing part.
The issue of efficiency is one which has long plagued reusability: the contention is that parts which are
reusable can never atlain the required efficiency for use in real-tine embedded applications. The parts
must also be easy to use because difficulty of use increases cost of reuse and may mean that the part will
never be reused. Protection against misuse refers to providing the user with protection from choosing the
wrong part for a given requircment or calling the part with improper parameters. The use of the Ada
generic feature and strong data typing prevents misuse to some extent. However, there are other features
which may be included in the design of parts to guard against misuse.

The CAMP design methodology meets the reusability goals and supports parts which are well-tested
and may be used off-the-shelf. The methodology utilizes several of Ada’s special, though standard,
programming fecatures. including derived types and subprograms, generic instantiation and subprogram
overloading. The CAMP team belicves that this design approac. will be equally appropriate for non-

missile applications outside the CAMP domain.



2. DESIGN METilODS

Six methods for the design of reusable parts were considered on the CAMP program. Figure 45
illustrates these methods. In discussing the competing methads, a specific CAMP part will serve as an
cxample. This part, Compute_Earth_Relative_Horizontal_Velocities, has three inputs:

¢ Nominal_East_Velocity (VELyg)

* Nominal_North_Velocity (VELyp)

e Wander_Angle (WA)

It processes these inputs through the following equations:
® VELg := VEL\g * cos (WA) - VEL g * sin (WA)

¢ VELy = VELyy * cos (WA) + VELyg * sin (WA)
prorucing the following outputs:

e True East Velocity (VEL)

* True North Velocity (VELy)
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Figure 45. Reusable Parts Methods

The computations performed in this example require trigonometric functions on Wander_Angle plus
multiplication and subtraction operators. In addition, the multiplication operator must perform its opera-
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tion on data of different types, namely, a velocity type and a sine- or cosine-of-an-angle type. These
mathematical functions must also be provided for all possible combinations of data types for velocities
and angles. For examrle, if velocity is measured in feet-per-second and angle is in radians, the following

mathematical operations are required:
¢ Sine and cosine operations on radians;

e Multiplier for feet-per-second by the result of the sine and cosine operations; and.

e Subtractor for the result type of the multiplier.

The discussion will explain the methods for parts design and eveluate their effectiveness with regard

to the following four evaluation criteria:

1. Efficiency and appropriateness of the interface;
2. Control for prevenling misuse;
3. Availability of needed mathematical operators and functions; and,

4. Degree (0 which the user’s job is simplified.

Following the presentation of the six methods, this section will focus on the method chosen on the
CAMP program for parts design, and the implications of that method for a generalized parts development

environment.

a. Typeless Method

The rypeless method assumes that all data objects and actual parameters will be of the universal
float type. The benefit of this approach is to alleviate the need for special mathematical operators and
functions since they are already defined in standard packages. The severe disadvantage is that the com-
piler and runtime system cannot perform type checking to prevent misuse of the part.

The failure of an SDI-related experiment in 1985 illustrates the problems which can result
without strong typing. The experiment required an orbiting receiver to track a ground-based laser. The
transmitter was positioned at an elevation of approximately 10000 feet and this elevation was to be
entered into the flight computer of the receiver’s orbiting platform. The flight computer was programmed
to accept ground elevation in naurical miles not feet, however, so when 10000 was entered, the platform
oriented the receiver to point to a position 10000 miles above the surface of the earth, exactly 180 degrees
from the correct location, 10000 feet above the surface.

Strong typing of parameters could alleviate this problem. Figure 46 illustrates the data type and

object declarations which would apply.
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type Nautical Miles is digite 6;
subtype Ground Elevation is Nautical Miles range -1.0 .. 6.0;

Transmitter Elevation : Ground Elevation;

Figure 46. Strong Data Typing Example

This would restrict the input values of Transmitter_Elevation to a reasonable range for units of

nautical miles.

The specilication shown in Figure 47 illustrates the typeless method. A user application access-
ing this procedure could pass any object of the type float as actual parameters. The compiler could not
perform type checking to prevent possible type mismatching and there could be no runtime checking to
assure correct ranges [or the actual parameters. This method produces parts which are easy to use, but

ofters no protection against misuse.

procedure Compute Earth_Relative_ Horizontal Velocities

(Nominal East Velocity : in FLOAT;
Nominal North Velocity : tn FLOAT;
Wander Angle : in FLOsT;
East_Velocity 8 out FLOAT;
North Velocity g out FLOAT);

Figure 47. Typeless Method

b. Overloaded Method

To allow a greater choice in data typing, the overloaded method provides the user a separate
version of each part to allow for the different combination of data types which the part user might require.
The code segment shown in Figure 48 illustrates the overloaded method applied to the example when the
velocities are of type Feet_Per_Scecond and Meters_Per_Second and Wander_Angle is in Radians.

package Overloaded Method is

procedure Compute_Earth _Relative_Horirontal Velocities

(Nominal East_Velocity : in Feet_Per_Second;
Nominal North Velocity : in Feet_Per Second;
Wander Angle : in Radians;

East_Velocity 8 out Feet Per_ Second;
North_Velocity : out Feet_ Per Second);

procedure Compute Earth_Relative Horizontal Velocities

{Nominal East Velocity : tn Mot.tl_?or_Soccnd;
Nominal North Velocity : in Meters_Per_ Second;
Wander Angle : in Radians;

East_Velocity : out Meters_Per Second;
North_Velocity : out Meters Per Second);

and Overloaded Method;

Figure 48. Overloaded Method
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Other overloaded subprograms would allow Wander_Angle in degrees and semicircles. This is
the method used by Ada packages such as STANDARD, CALENDAR, and TEXT_IO to provide iden-

tical opeiations on different data types.

The overloaded method offers the protection of strong data typing with simplicity of design and
use of parts. The designer will decide which combinations of data types (o allow for each part and will
explicitly declare the parameter interfaces 171 each overloaded subprogram. He will also define all of the
mathematical parts which the subprograms will use: sine and cosine for Wander_Angle, and the mul-
tiplication and subtraction operators. Strict type checking will assure that actual and formal parameters
match and that the values of the actual parameters fall within ranges allowed by the type.

Because Ada supports this overloading of subprogram definitions, the user need not call a
version of a part specific 1o a given combination of data types; the Ada disambiguation feature will
resolve the call. In fact, should user requirements change and a different combination of data types result,
the call need not be changed. the Ada language will resolve the new reference. This method therefore
provides simplicity of use with the protection associated with strong data typing.

The major disadvantage of this method is the large number of parts declared at the architectural
level. For the data types stated above (Feet_Per_Second and Meters_Per_Second for velocities and
Radians, Degrees, and Semicircles for angles), the Compute_Earth_Relative_Horizontal_Velocities pro-
cedure would require six specifications and bodies to accommodate the different combinations of data
types. A navigation package encapsulating a complete set of reusable navigation parts could easily grow
1o over 100 subprograms. Thus, the overloaded method. while simple to use, would be almost impossible
to develop and maintain,

¢. Generic Method

The generic method uses Ada generic units to provide parts which are tailorable to user-defined
data types. Figure 49 shows the generic method applied to the Compute_Earth_Relative_Horizontal_
Velocities procedure using generic formal types for Velocities, Angles, and Sin_Cos_Ratio (the type
retuined by a call to Sine or Cosine), and generic formal subprograms for the required trigonometric
functions and the multiplication opcrator. The subiraction operator operates only on the generic velocity

type and is implicit from the generic definition.

The generic formal subprogram parameters are used within the body of the part to perform
mathematical operations on objects of the generic data types. For example, the sine and cosine operations
on Wander_Angle are performed by the functions supplied as actual parameters for the generic Sin and
Cos. The user must define operators to perform these functions on objects of the actual type for Angles
returning an object of the Sin_Cos_Ratio type. This large number of generic parameters could place an
enormous burden on the part user, requiring him (o create and supply all of the needed actual parameters,
both types and subprograms. For the example. the user must supply three data types plus three sub-
programs as actual parameters.

A method which uses default parameters could alleviate some of this overhead from the part’s
user. If the total parts design includes typical data types and provides functions for typical combinations
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type Sin Cos_Ratioc is digits <>/
type Velocities is digite <;
type Angles is digite <
with function "*" (Left : Velocities;
Right : Sin_Cos_Ratio) ieturn Velocities is <>;

with function Sin (In_Angle : Angles) return Sin_Cos_Ratio is <;
with function Cos (In_Angle : Angles) return Sin_Cos_Ratio is <;
procedure Compute Earth Relative Horizontal Velocities
(Nominal East Velocity : in Velocities:
Nominal North _Velocity : in Velocities;
Wander_Angle : in Angles;
East_Velocity $ out Velocities;
North_Velocity $ out Velocities);

Figure 49. Generic Method

of these data types. then the user could provide predefined types as actual type parameters and the actual
subprogram parameters will default to the predefined functions. Figure S0 illustrates this method. Using
the same cxample, the design could incorporate a separate data types par. supplying a Radians type and
trigonometric operations on Radians. The multiplication operator could be similarly predefined. This
approach yields a tunneling of parameters, where explicit use of a type allows tunneling of operators on
that type. The advantage of this method is clear the user obtains (he protection associated with strong
data typing and the flexibility of using a choice of data types without the need to define his own types or
operaltors.
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Figure 50. Tunneling of Parameters
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d. Abstract State Machine Method

The abstract state machine method affords the part user a very high-level interface to reusable
parts. In this method, the interface is a package structure defining all of the characteristics of the missile
state relevant to a group of navigation operations. In a stare machire, the interface is strictly through the
operations, as the user does not have direct access to or knowledge of the data structure on which the
operations work (Reference 11, pp 202). The state machine allows the underlying structure to change
without the users’ knowledge.

The state machine impiementation of a navigation system would provide all of the operations
needed to perform the navigation function, both those changing the state and those reporting the state.
One such function would be the Compute_Earth_Relative_Horizonal_Velocities operation which would
both update and report the velocity. Figure 51 contains a code segment to illustrate the abstract state

machine method.

genaric

type Sin_Cos_Ratio is digits <>;

type Vealocities is digits <>;

type Angles is digits <>;

type Altitudes is range <>;

with function "*" (Left : Velocities;

Right : Sin_Cos_Ratio) return Velocities is <>;

with function Sin (In_Angle : Angles) return Sin_Cos_Ratioc is <>;
with function Cos (In_Angle : Angles) return Sin_Cos_Ratio is <>;

package Navigation_ State_Machine is

procedure Compute_Earth Relative_Horizontal Velocities

(Nominal East_Velocities : in Velocities;
Nominnl_North_Volociticl : in Velocities;
Wander_ Angle : in Anglee;
East_Velocities 8 out Velocities;
North Velocities 8 out Velocities);

procedure Update_Altitude
(Vertical Velocities : in Velocities;
Current_Altitude 8 out Altitudes);
-- ~--operations to provide state information
function Current Fast Velocities return Velocities;

function Current_North Velocities return Velocities;

end Navigation State Machine;

Figure 51. State Machine Method

The abstract state machine approach utilizes generic units (o tailor operations to the user's
requirements. Like the generic method, this approach enforces strong data typing and protection against
misuse. However, because all operaiions are encapsulated in a single package, the user is presented with
an "all or nothing" solution: specify all of the generic parameters for all operations, whether needed or

not, or don't use the package.

An altemnative approach would be to encapsulate the data typing and structure within the pack-
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age, forcing the part user to convert his typing to conform (o that of the abstract state machine. While
defining all internal data type: and operations makes the part easier to use, the overhead of conversion io
the intcrnal data structurce would be prohibitive. This conversion would entail not only data typing, but
also unit conversion, from meters 1o feet, radians to degrees. etc. The package could provide interfaces to

simplify the unit conversion, but could do little to alleviate the overhead.

The state machine approach does offer an advantage of creating morc than one body for a single
specification. Because all data is controlled within the body, a part user may use only the specification
and write his own body. defining data according to his own choice. Similarly, the parts designer may
provide multiple bodies for a single specification, thus alleviating the efficiency issues by creating bodies
which are efficient for a particular situation. Like the overloaded method, this increases the cost of creat-
ing parts, yet is an effective method when the choice of a data structure cannot, for reasons of efficiency

or simplicity, he established in the package specification.

¢. Abstract Data Type Method

Like the abstract state machine method, the ahsrract data type method offers the part user a
high-level interface to reusable parts. This interface consists of a predefined set of operations on a data
structure, and, unlike the abstract state machine, the interface includes the data structure itself. The user,
therefore, knows the structure he is dealing with and. depending on the implementation, may even be able
10 access the structure directly. In the abstract data type method the user is aware of changes to the state
of the structure which are effected by the exported operations.

In most implementations, an abstract data type restricts access 1o objects of the abstract type to
operations defined in the package specification. In contrast to the abstract state machine, this type is part
of the specification, and the package body must operate on that unique structure. If a part user wishes to
use the operations of the abstract data type but use a different data structure, then he must not only rewrite
the body which will operate on the data structure, but also rewrite the specificalion which defines the
structure. This method is used cxtensively in abstract data structures such as vectors and matrices, stacks
and queues, but is less appropriate for more complex data structures such as those used by a navigation

system or Kalman filter.

A package which implements the navigation system according to the abstract data type method
looks quite similar to that of the abstract state machine. (See Figure 52.) The major distinction is the
private section of the specification which defines the abstract data structure.
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generic

type Sin_Cos Ratioc 1s digits <>;

type Velocities is digits <>;

type Angles 1s digite <>:

type Altitudes is range <>;

with function "*" (Left : Velocitlies;

Right : Sin Cos_Ratioc) return Velocities is <>;

with function Sin (In_Angle : Angles) return Sin Cos_Ratio is <>;
with function Cos (In_Angle : Angles) return Sin_Cos_Ratio is <>;

package Navigation State Machine is
type Navigation Model is private;
procedure Update_Earth Relative Horizontal Velocities
(Nominal Fast_Velocity : in Velocities;

Nominal North Velocity : in Vealocities);

procedure Compute Earth Relative Horizontal_ Velocities
(Opdating : in out Navigation_Model);

procedure Update Vertical Velocity)
(Vertical Velocity : in Velocities);

procedure Compute Altitude
(Updating : in out Navigation_Model);

~- --operations to information from data structure

function Current East Velocity
(Based _On : Navigation Model) return Velocities;

function Current North Velocity
(Based On : Navigation Model) return Velocities;

private -- Definition of Navigation Abstract Data Structure
type Navigation Model is
record
Missile Velocity : Velocities;
Missile Altitude : Altitudes;
end record

end Navigation_State Machine;

Figure 52. Abstract Data Type Method

This method is simitar to the abstract state machine approach in that it utilizes generic units to
tailor operations (o the user’s requirements. It uses these generic units to enforce strong data typing and
protect against misuse. However, the user is again presented with an "all or nothing” solution. Again, the
abstract data type offers an alternative approach which would define data types in the package specifica-
tion, eliminating all of the generic units. While defining all internal data types and operations will ease
the use of the part. the overhead of conversion to the internal data structure would be prohibitive.
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f. Skeletal Code Method

The skeletal code method provides the part user with code templates, which may be manipu-
lated in an editor or through some other tool. This approach gives the part user the flexibility of generic
units, without the complexity of the generic instantiation. A sample template, as shown in Figure 53 for
the Compute_Earth_Relative_Horizontal_Velocities, would look similar to the code for the typeless

method.

procedure Compute_ Earth _Relative Horirontal Velocities
(Nominal East Velocity : in ;
Nominal North Velocity : in

Wander_Angle : in 8
E-lt_Volocity 8 out 8
North_Velocity B out Y

Figure 5§3. Skeletal Code Template Method

This approach would add complexity by requiring the part user to complete much of the en-
vironment. Outside the part, he must edit the skeletal code into his existing design, inserting data types
and overloaded operators as required. While the generic method provides a generic specification, and
forces conformity through the Ada generic matching rules, the skeletal method can only provide user
documentation (o suppori creation of the environment. In addition, if two or more designers are using
similar parts, they may choose different values for completing the templates, duplicating parts of the
cnvironment. There would also be a tendency to avoid strong data typing to alleviate the overhead
attached to creation of overloaded operators and functions.

An expert system, interfacing to the code templates, could support use of the skeletal code
method. The expert system could prompt the user for information it needs to fill in the blanks, but rules,
stored in the expert system knowledge base, would allow the system to complete the environment, filling
in additional types, operators. and any additional subprograms. The expert system approach offers the
long-term solution to the difficulties of the skeletal method by building the environment as a by-product

of the user dialogue.

J.USE OF THE GENERIC METHOD

The CAMP program conducted a thorough analysis of each method for design of reusable parts.
Figure 54 summarizes the results of this analysis and compares advantages and disadvantages of methods.
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The analysis focused on the generic method as providing the greatest potential for the design of
rcusable parts. Prior Data Sciences, a Canadian firm specializing in the development of reusable, real-
time software, has summarized the difficulties in developing reusable software based on generic units and
of employing parts created using generic units.

o "Library generic units are very difficult to write . . . the effort required to properly generalize them

is usually significant.”

o "Generic units are also difficult to use, especially when they have many interrelated parameters.

The parameter matching rules can be very subtle.” (Reference 12, p 70)

Although generic units add complexity to the interfacing mechanism, the flexibility and protection
against misuse which they afford weigh heavily in their favor. Generic units also provide flexibility for

tailoring to the requirements of a specific application.

The CAMP parts development team conducted an analysis to determine the best methods for support
of complex operators inside the body of parts and for simplification of the use of parts developed using
the generic method. The CAMP project has been unique in its investigation of these areas. Most
reusabilily studies have focused primarily on abstract data types, which require only simple generic
operators, e.g., inleger incrementation, data structure iterators, etc. While some reusability efforts have
addressed the needs of the scientific and engineering communities for mathematical software, the result-
ing parts support neither strong data typing nor user selection of mathematical operators called internal to
the part. The following two subsections address two key issues of the CAMP project:

 The approach developed on CAMP for the design of reusable parts using the generic method; and,

¢ The use of those parts in constructing an application from reusable software.

a. Using the Generic Method to Design Parts

Effective use of generic units for the creation of reusable parts requires reconciliation between
the complexity of the genceric specification and the desired case of use of the part. The presentation of the
generic method discussed the conflict. In fact, the conflict entails the same trade-offs as those required to
create reusable software: generality vs. efficiency and ease of use.

The CAMP parts fully exploit the Ada generic facility. Low-level parts are designed as generic
packages or subprograms. Higher-level parts are built from aultiple levels of these generic units. The
user supplies actual parameters to instantiate the generic parts and tailor them to his application. The
CAMP part architecture, with multiple layers of generic units provides the part user with a broad choice
in his sclection of parts for an application: he may use low-level parts to implement low-level features of
(the individual objects of his design or choose high-level parts to themselves serve as objects in his design.

A generic part uses its generic formal parameters for tailoring the part to a specific application.
The Compute_Earth_Rclative_Horizontal_Velacities part may be tailored for velocity type (feet per
second, meters per second, miles per hour, knots) and for angle type (radians, degrees, semicircles). In
addition, the tailoring can extend to the return type of a sine or cosine operator.
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In order to complete the tailoring, the part must also allow tailoring for operators essential for
the enforcement of strong data typing. Generally, operators are merely overloadings of predefined opera-
tions ("+", "-", "*", "/"). For more complex operations, the user must create his own subprograms, such as
sine and cosine, filters, matrix operations, etc. For these user—reated operations, there are no language-
defined constructs and the generic specification cannot fully describe the required operation. Only part
documentation and the user’s familiarity with the part’s internal design can support creation of actual
parameters to match the formal generic. Those features of a part which are truly common belween
applications, and are captured in the body of the part, include:

o the use of generic data types
o the sequence of operations

e data types and operations not parameterized through the generic

Figure 55 shows the use of generic plus non-generic features of a part body. The formal data
types and Sin and Cos operations are generic and, hence, tailorable. The multiplication operator is also
generic. The subtraction and addition operations are not generic. Of course, the sequence of operations
to calculate the output velocities is also non-generic.

procedure Compute_ Earth_Relative_BRorizontal Velocities

(Nomin:l_tnl t_Velocity : in Velocities;
Nominal North_Velocity : in Velocities;
Wander_Angle : An Angles;
East_Valocity : out Velocities;
North_Velocity : out Velocities) is

Sin W A : Sin Cos_Ratio;
Cos_W A : Sin_Cos_Ratio;

begin

Sin W A := Sin (Current_Wander_Angle):
Cos_W A := Cos (Current Wander_Angle);

East_Velocity := Nominal East_Velocity * Cos_W A -
Nominal North Velocity * Sin W A;

North Velocity := Nominal North Velocity * Cos W A +
Nominal East Velocity * Sin W A;

end Computo_l.rth__kolnt ive Horizontal Velocities;

Figure §5. Commonalily Captured in the Generic Part Body
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b. Using Parts to Construct an Application

The difficulty of the generic method stems from the large number of data types required by a
part and the resulting large number of operators on objects of those types. In the example introduced
above, the thiec data types lead to only three required operators. In addition, part use is further simplified
by the defaulting mechanism of Ada generic units. Because the three operators exist for a limited range
of data types, the CAMP parts structure can provide default versions for each operator. Now, when the
user supplies actual types for his instantiation, the operators can default through the tunneling mechanism
depicted in Figure 50. The user may, however, wish to override the system’s tunneling of parameters by
supplying his own operators. CAMP parts also support overriding defaults by providing a selection of
such common operators as trigonometric functions. Figure 56 depicts the mechanism of overriding
defaults. Here, the user chooses his own cosine function from the CAMP Polynomials package to over-
ride the default from Standard_Trig. The user could also write his own cosine function to override the
default. The Ada mechanism to accomplish the default overriding is explained in Section II.

[— COMPUTE_EARTH_RELATIVE_
"~ HORIZONTAL_VELOCITES

w

Wi iy

BASIC_DATA TYPES -~

Feel_per_Second /l

s | i

TRIG j

Sin_Cos_Ratio ,.1

Figure 56. Mechanism for Overriding Defaults

Where the mix of data types and operators grows beyond a manageable level, the need to
provide additional assistance to the part user also grows. The generic formal part of the CAMP
Lateral/Directional Autopilot (Figure 57), for example, includes:

¢ twelve formal data types

e ten formal data objects
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generic

--types for Aileron Loop

type Roll_Commands Is digits <>;
type Roll_Attitudes is digits <>:
type Roll_Command_Gains is digits <>:

--types for Rudder Loop

type Rudder_Cmd_Roll_Rate_Gains is digits <>:
Is diglts <>;
is digits <>;
type Gravitational_Accelerations  Is dights <>:
Is digits <>:
is digits <>:

type Missile_Accelerations
type Acceleration_Gains

type Velocities
type Trig_Value

--types for both loops

type Feedback _Rate_Gains Is dights <>:
type Fin_Deflections ts digits <>:
type Feedback_Rates is digits <>:

--Initial values for aileron control loop

Initial_Aileron_Integrator_Gain
In Roll_Command_Qains:

Initial_Aileron_Integrator_Limit
tn Fin_Deflections;

Initial_Roll_Command_Proportional_Gain :

In Roll_Command_Qains:
Initial_Roll_Rate_Qain_For_Aileron
in Feedback_Rate_Gains:
Initial_Yaw_Rate_Gain_For_Aileron
In Feedback_Rate_Clains:

--Initial values for rudder control loop

Initial_Rudder_Integrator_Gain

In Acceleration_Qains:
Initial_Rudder_Integrator_Limit

in Fin_Deflections:
Initial_Yaw_Rate_Qain_For_Rudder

in Feedback_Rate_Qains:
Initial_Roll_Rate_Gain_For_Rudder

in Rudder_Cmd_Roll_Rate_Gains:
Initial_Acceleration_Proportional_Gain

in Acceleration_Gains:

--Aileron control loop limiters and filter

with function Roll_Error_Limit
(Roll_Command : Roll_Commands)
return Roll_Commands bs <>:

with function Aileron_Command_Limit
(Fin_Defcction : Fin_Deflections)
return Fin_Deflections Is <>:

with function Roll_Command_Filter
(Roll_Command ' foll_Commands)
return Roll_Comn ands s <>;

--Rudder control loop limiters. filters. and trig finction

with function Rudder_Command_Limit
(Fin_Deflection : Fin_Deflections)
return Fin_Deflectiont bs <>:

with function Yaw_Rate_Filter
(Yaw_Rate: Fecdback_Rates)
return Feedback_Rates bs <>

with function Acceleration_Filter
(Lateral_Acceleration: Missile_Accelerations)
return Missile_Accelerations Is <>;

with function Sin (Angle: Roll_Attitudes)
return Trig_Valve is <>;

--Aileron control loop gain and updater functions

with function "-" (Left  : Roll_Commands;
Right : Roll_Attitudes)
return Roli_Commands is <>:

with function “*" (Left : Roll_Commandx:
Right : Roll_Command_Gains)
return Fin_Deflections s <>;

with function "*" (Left : Feedback_Rates:
Right : Feedback_Rate_Gains)
return Fin_Deflections Is <>;

--Rudder control loop gain and updater fiunctions

with function "*" (Left  : Missile_Accelerations;
Right : Acceleration_Gains)
return Fin_Deflections is <>;

with function "*" (Left : Feedback_Raten;
Right : Rudder_Cmd_Roll_Rate_Qsins)
return Feedback_Raten s <>;

with function "*" (Left  : Gravitational_Accelerations;
Right : Trig_Valuc)
return Gravitational_Accelerations s <>;

with function "/ (Left  : Gravitational_Ac ~elerations;
Right : Velocities)
return Feedback_Rates is <>:

package Lateral_Directional_Autopilot is

type Aileron_Rudder_Commands is record
Aileron_Command : Fin_Deflections;
Rudder_Command : Fin_Deflections:
end record:

procedure Initialize_Lateral_Directional_Autopilot
(Initial_Aileron_Command : In Fin_Deflections;
Initial_Rudder_Command : in Fin_Deflections;
Gravitational_Acceleration : in Gravitational_Accclerations;
Roll_Command : in Roll_Commands;
Roll_Attitude : in Roll_Attitudes;
Roll_Rate : In Feedback_Rates;
Yaw_Rate : in Feedback_Rates;
Missile_Velocity : In Velocities;
Lateral_Acceleration : in Missile_Accelerationn);

function Compute _Aileron_Rudder_Commands
(Roll_Command * in Roll_Commanda;

Roll_Attitude : In Roll_Attitudes:
Roll_Rate : in Feedback_Rates:
Yaw_Rate : n Feedback_Rates;
Lateral_Acceleration : In Missile_Accelerations;
Missile_Vetocity : In Velocities:

Gravitational_Acceleration : in Gravitational_Accelerations)
return Aileron_Rudder_Commands:

end Lateral_Directional_Autopilot;

Figure 57.

Autopilot Part Generic Specification



¢ seven language-independent operations

* seven language-defined operations

The CAMP design structure eases the burden of the part user by supplying packages of standard
data types which may serve as actual types for the generic forma! types, packages of standard operators to
supply actual subprograms for the generic formal subprogram operations, and a mix of operators over-
loading the language-defined operations. The user’s task is now reduced to selecting the proper combina-
tion of data types and operators from the parts base. He may create his own, if the CAMP parts base is
deficient in some area, but an attempt has been made to cover a high degree of variability. Furthermore,
the parts base is easily extended to allow for new standard types and operators. Figure S8 shows the
range of selections open to the CAMP parts user.
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Figure 58. Selections from CAMP Parts for Instantiation
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4. SEMI-ABSTRACT DATA TYPE

The combination of high-level parts with lower level support packages providing actual types and
operators leads to the creation of a complete environment for use of a part. The CAMP program has
established that it is essential to provide support for a complete environment to incorporate reusable
software into a design. Others have noted the importance of the environment because "{t}he very concept
of reusability must be defined . . . in terms of the cC2pendence of the component on enclosing or higher
level environments” (Reference 13, p 550). The CAM . method uses the term parr bundle to describe the
environment that consists of a combination of packages required to support a part plus the context clause
the user must specify to obtain the environment.

The part bundle allows the user access to a predefined packaging structure. Availability of this
structure eases part use by providing the user the environment he needs to use a part. Figure 59 shows the
complete bundle required to support the Autopilot package part. In order to use this package, the user
must first import the Autopilot part itself. In addition, he needs data types supplied by the Basic_ and
Autopilot_Data_Types parts, and signal processing and trigonometric operations supplied by the Signal_
Processing and Polynomial parts, respectively. The user is unaware of bundles which exist to support the
lower level packages: for example, Signal_Processing bundles General_Purpose_Math, and Basic_Data_
Types bundles Standard_Trig, Conversion_Factors, and Universal_Constants.
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Figure 59. Autopilot Bundle Structure

While the bundle gives the user an environment for use of a part, the user must still extract entities
provided by the bundle for tailoring the part to his application. In addition, the user may modify the
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bundle, overriding aspects of the bundle by supplying other CAMP parts from CAMP packages or his
own parts. This open architecture — the ability of the user to supply his own data types and operators —
is one of the key design features of CAMP parts use.

The term semi-abstract data type is used to formally describe this open architecture of the CAMP
generic method. As opposed to the abstract data type which deflines an abstract data structure and opera-
tions on that structure for its use, the semi-abstract data type is very much under user control.

The use of the Autopilot bundle illustrates the capabilities of the semi-abstract data type. Were the
Autopilot part defined as an abstract data type, all data structures and operations would be encapsulated
and hidden within the part, with the user tailoring the part through the generic formal parameters. As
previously described under the abstract data type method. the user could not gain access to any of the
part's facilities, data structures or operations, without going through the part. In contrast, the semi-
abstract data type allows the user access to a bundle, which also provides access to all the part’s facilities.
In addition, the bundle allows access, on an individual basis, to data types from the types packages and to
functional parts from the Signal_Processing or Polynomial packages. The user is free to use these lower
level parts independently of the Autopilot part, or even use them to build his own autopilot, keeping the
bundle but not using any of the CAMP Autopilot parts. Alternatively, he may use only a subset of the
part’s facilities, supplying other required facilities with his own packages. These methods of use address
the reuse techniques identified by Standish (Reference 14, p 496):

* Direct reuse of concrete modules [= high level reuse]
® Reuse after refinement {= lower level reuse)

¢ Reuse after modification |= independent reuse]

Actual use of CAMP parts has proven the effectiveness of the semi-abstract method. Most of the
parts are themselves constructed from other parts; this is illustrated by the background bundling of
Signal_Processing or Basic_Data_Types in the Aultopilot bundle. Also, applications using CAMP parts
have, in some cases, found that the higher level part is not complete for some special operations. In these
situations, the CAMP users access the bundle, taking as much from the high level part as possible and
building the rest from lower level entities in the bundle. The CAMP Kalman filter bundle, for example,
contains a General_Vector_Matrix_Algebra part (see Figure 60.) This part is used extensively in the
instantiation of CAMP Kalman filter parts. A user of the CAMP parts, needing additional functions not
built into them, can build the required functions out of the General_Vector_Matrix_Algebra parts or
dcvelop his own operators to perform the same functions. Such was the case in the 11th Missile Applica-
tion, where special-purpose matrix operations were required to meet performance constraints (see Volume
II, Section III). By buiiding these special operations with interfaces conforming to the CAMP General_
Vector_Matrix_Algebra parts. the 11th Missile development team was able to use the high-level Kalman
filter parts without modification.
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Figure 60. Kalman Filter Bundle Structure

5. SUMMARY

Use of CAMP parts in additional applications will demonstrate the complete potential of the CAMP
method. Applying this method to parts in other domains will also show the power of the CAMP approach
to an integrated parts base. The ease with which parts can be fit into an application has already shown the
method to be extremely effective and a significant boost te productivity (see Volume II). Parts have been
easy to maintain, and the CAMP parts base has been extended as applications discover the need for
additional parts. The CAMP team has applied the reusable parts method for the development of parts to
meet current needs and will continue to apply this method as the parts base matures.
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SECTION VII
ADA COMPILER VALIDATION AND SOFTWARE REUSABILITY

I. INTRODUCTION

An important part of the CAMP project was the development of a part design methodology by which
Ada parts can simultaneously be reusable, transportable, flexible, efficient, easy to use, and protected
against misuse. These seemingly conflicting design goals are achieved by exploiting many of the ad-
vanced features of Ada, such as derived types and subprograms, generic units with default formal
parameters, and subprogram overloading. Section VI discussed these features as they apply to design of
the CAMP parts. This section discusses the impact of these features on parts implementation and com-

piler selection.

2. DISCUSSION

To achieve these design goals. the CAMP design method included the use of generic units, strong
data typing, and generic object and subprogram parameter defaults.

¢ Generic_units: The primary facility Ada provides which promotes reusability is thie generic unit.
Although some people in the Ada community have expressed a "fear” of this feature, MDAC-STL
has embraced it wholeheartedly. Without generic units, reusability in Ada would not be achievable
at a meaningful level. However, there is a risk associated with using generic units — Ada com-

pilers must be able to implement them efficiently and correctly.

¢ Strong data typing: Among the most important capabilities in Ada is the ability to strongly type
data. However, strong data typing has two characteristics which unnecessarily cause many people

(including some part developers) to avoid it:
- The use of strong data typing makes the dcsign of generic packages and subprograms more

complex.

- The interaction of Ada typing rules with other Ada features such as generic units is non-

trivial to master.

For these reasons. some software developers have developed Ada parts in a typeless fashion. We
believe this is a mistake. Parts which are rypeless are very prone to misuse. It is only reasonable
that if the parts being developed are intended for long-term use, then it should be worth the effort to

build them in the most protected fashion.

e Generic_object and subprogram parameter defaults:  As previously mentioned, the use of strong
data typing causecs generic units to be more complex. Specifically, the generic packages and sub-

programs must now import many operations and functions which would otherwise be visible to
them implicitly through the scoping rules of Ada. If this drawback could not be overcome, it would
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be a good argument against strong data typing. However, Ada provides a feature — the specifica-
tion of defaults for generic object and subprogram parameters — which negates the drawback while
still retaining the advantages. This feature, the generic unit, and its use for part design is further

discussed in Section VI1.3.a.

a. A Sample System

The complexity of reusable generic parts can range from extreme simplicity (see Figure 61) to
considerable complexity (see Figures 62 and 63), with most falling somewhere in between (see Figure

64).

with CALENDAR;
generic
package Clock Handler 1is
function Current_Time return STANDARD.DURATION;

function Converted Time (Clock_Time : in CALENDAR.TIME)
return STANDARD .DURATION;

procedurs Reset Clock;
procedurs Synchronize_Clock

{New_Time : in STAMDARD . DURATION;

Clock Time : in CALENDAR.TIME := CALENDAR.CLOCK);
function Elapsed Tims return STANDARD.DURATION;

end Clock_Handler;

Figure 61. Generic Units Can Be Very Simple

While most generic units have minimal complexity in and of themselves, their use in the
development of a system can become quite involved. This is because even though an individual generic
unit may be relatively independent of othei generic units, it has probably been designed to be used in
conjunction with other generic units.

Figure 65 illustrates the parts that may be required in the design of a smail portion of a naviga-
tion system. In order to instantiate three north-pointing navigation parts (Coriolis_Acceleration,
Radius_of_Curvature, and Latitude_Integration) using strong data typing where all floating point types
are separate Ada data types, the following must occur:

1. Ten packages must be compiled into the user’s library. The user himself requires six of these
(indicated by the arrows going into the user application). These six require an additional four.
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generic
type Left_Indices 1s (<)
type Right_Indices is (<)
type Result Indices is (<>);
type Left_ Elements is private;
type Right Elements 1is private;
type Result Elaments is private;
type Left Vectors is private;
type Right Vectors is private;
type Result Vectors is private;

X1 : in Lott Indices ‘= Left_Indices’FIRST;

Yl : in Lott_Indicon := Left_Indices’SUCC(Left_Indices’'FIRST);

21 : in Left_ Indices := Left_ Indices’LAST;

X2 : in Right_Indices := Right_Indices’FIRST;

Y2 : in Right_Indices := Right Indices’SUCC(Right_Indices’FIRST):
22 : in Right_Indices := Right_Indices’ LAST;

X3 : in Result_Indices := Result_Indices’FIRST;

Y3 : in Result_Indices := Result Indices’SUCC(Result_ Indices’FIRST);
z3 : in Result “Indices :m= Result_Indices’ LAST;

with function "+" (Left : Result_Elements;
Right : Result Elements) return Result Elements is <>;

with function "-" (Left : Result_Elements;

Right : Result Elements) return Result Elements is <;
with function "-" (Right : Result Elements) return Result Elements is <>;
with function "*" (Left : Left Elaements;

Right : Right_Elements) return Result Elaments is <>;

with function Retrieved | llc-l‘nt

(Voctor : Left_Vectors;

Index : Left_ Indices) return Left _Elaments is <>;
with function Retrieved Elament

(Vector : Right Vectors;

Index : Right Indices) return Right Elements is <>;
with procedure Set_Element

(Index : in Result_Indices;

Value : in Result_Elements;

Vector : out Result Vectors) is <;
funotion Generic_Cross_Product (Left : Left Vectors;

Right : Right Vectors)
return R.-ult_v.ctorl;

Figure 62. Some Generic Units Can Be Very Complex

2. The user must do the following before instantiating the navigation parts:
¢ Instantiate four versions of the square root package (GPMath.Square_Root) using data types

and operators supplied by the basic data types (BDT) package.

¢ Instantiate four versions of the vector operations package (CVMA .Vector_Opns) using data
types and operators supplied by BDT and the square root functions contained in the

packages previously instantiated by the uscr.

e Instantiat. a cross product function using scalar data types and operations supplied by BDT,
along with vector data types and operations obtained from three separate instantiations of
CVMA . Vector_Opns.

3. The three navigation parts can then be instantiated using:

¢ Scalar data types and operators supplied by BDT.
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package Direction_Cosine_Matrix Oparations is

generic
type Earth_Axes is (<)
type Navigation Axes is (<>);
type Sin_Cos_Ratio is digits <>;
type Real is digite <>;
with function Sqrt (Value : Sin Cos_Ratio) return Sin_Cos_Ratio is <>;
with function "*" (Left : Sin Coe_Ratio;
Right : Sin_Cos_Ratic) return Real is <>;
with function "“*" (Left : 8in_Cos_Ratio;
Right : Roll) return 8in_Cos_Ratio is <>;
Greenw : in Earth Axes := Parth Axes 'I'IR!T
Right : in Earth_Axes := tlrth_hxol ! SUCC (Earth_Axes’ FIRST);
Polar : in Earth_Axes := Earth_Axes ’'LAST;

East : in Navigation_Axes := Navigation_Axes 'FIRST;
North : in Navigation Axes := Navigation_Axes ‘SUCC(Navigation_Axes’'FIRST);
Op in Navigation Axes := Navigation Axes ’'LAST;

package CN! Opo:ntion- ie

type CNE Matrices 1s array (Earth_Axes, Navigation Axes) of 8in Cos Ratio;

function CNE_Initialized From Reference (Ref CNE_2 1 : Sin_Cos_Ratio;
Ilot Cl!l 2 2 : 8in Cos_Ratio;
RQ!_C‘I'I 3_1 : 8in_Cos_Ratio;
Ref CNE_3 2 : 8in Cos_Ratio;

Sign_of_2_3 : INTEGER;
Sign_of 3 3 : INTEGER)
return CNE Matrices;

generic

type Earth_Positions ie digits <>;

type Angles 1s digite <>;

with procedure Sin_Cos (Input : in Angles;
Sin_Value : out 8Sin_Cos_Ratio;
Cos_Value : out 8in_Cos_Ratio) 18 <>;

with procedure Sin_Cos (Input : in Earth_Positions;
8in_Value : out Sin_Cos_Ratio;
Cos_Value : out Sin_Cos_Ratioc) 1is <>;

function CNE_Initialized from Earth Reference
{(Wander_Angle : Angles;
Latitude : Earth_Positions;
Longitude : Earth _Positions) return CN!_Hntzicu;

end CNE_Operations;

end Direction_ Cosine Matrix Operations;

Figure 63. Nested Generic Units Can Be Very Complex

o Scalar data types and trigonomelric functions supplicd by an instantiation of the standard

trig package contained in BDT (BDT.Trig).
e Vector types and operations supplied by the four instantiations of CVMA Vector_Opns.

e Data constants supplied by the WGS72 ellipsoid metric data package (WGS72) and the
WGS72 ellipsoid unitless data package (WGS72U).

¢ User-defined data types and objects.
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generic
type Unit Vectors is privatae;
type 8in_ Cos _Ratio is digits <>;
with funotion "/" (Left : Onit_Vectors;
Right : Sin_Cos_Ratio) return Unit_Vectors is <>;
with function Cro.l_Ptoduct (Left : Unit Vectors;
Right : DOnit_ Vectors)
return Unit_Vectors is <>;
with function Vector_Length (Input : Unit_Vectors)
return Sin_Cos_Ratio is <;
function Unit Normal Vector
(Onit_Radial A : OUnit_Vectors;
Onit Radial B : Unit_Vectora) return Unit_Vectors;

Figure 64. Most Generic Units Have Minimal Complexity

StdTrig

i _:__H' .——.—_I
/,__,._-'-' --..,H“_‘"" F -

NPNav USER APPLICATION PROGRAM

pkg VelSqRt  is new GPMath.Square_Root ...
pkg AngVelSqRt Is new GPMath.Square_Root ...
pkg AccelSqRt is new GPMath.Square_Root ...
pkg DistSqRt  Is new GpMath.Square_Root ...

pkg VelVOpns Is new CVMA.Vector_Opns ...
pkg AngVelVopns Is new CVMA.Vector_
pkg AccelVOpns Is new CVMA.Vector_Opns ...
pkg DistVOpns Is new CVMA.Vector_Opns ...

fn  CrossProd_AVV_VV Is new CVMA.Cross_Product ..

fn  CorAccel Is new NPNav.Compute_Corlolis_Acceleration
pkg RadOfCurv Is new NPNav.Radius_of_Curvature ...
pkg Latint Is new NPNav Latitude_Integration ...

Figure 65. Assembling a North-Pointing Navigation System
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b. CAMP Experience With Ada Compilers

The development and use of truly good. flexible, reusable software will succeed only if generic
units are fully supported by Ada compilers. Yet, during the CAMP project, we observed that validated
Ada compilers frequently cannot handle anv but the simplest generic units.

During the CAMP project, there were many opportunities to see how compilers handled generic
units. Three compilers were used on the CAMP project (two validated and one prevalidated, of which
two were 1750A-targeted), and versions of the CAMP parts were submitted to three additional validated
compilers. Of these six Ada compilers, only one validated compiler was able to handle the parts sub-
mitted to it, and even that one was able to do so only after a year and a half of the CAMP (eam working

with the vendor.

While various problems were encountered, they all had one thing in common — they involved
the use of generic units. Some of these problems are enumerated below.

¢ Difficulties in bandling a multitude of instantiations. Using the code represented in Figure 65 as an
example, one compiler was able to compile all of the CAMP parts required to develop the user
application. However, when an attempt was made to compile the user code, tiie compiler crashed.

(It should be noted that the user code was legal Ada and did compile on another validated

compiler.)

o Difficulties in declaring derived real types when the base type was a generic formal type, par-
ticularly if a range constraint was added (see Figure 66). Attempting to do this sent one compiler
into an infinite loop. Another compiler allowed the derived type to be declared, but encountered an
internal error when an attempt was made to restrict the range of the newly declared derived type.

o Incorrect passing of the value of a generic actual object to a generic actual subprogram — the
compiler sent a value of 0.0 regardless of the actual value of the object. The generic actual object
was a named number defined in a package which had to be imported by the user application. This
error occurred only when strong data typing was employed (i.e., a differenit generic actual type was
specified for each of the generic formal data types), not occurring when FLOAT was used for all
actual types., Additionally, even when strong data typing was employed, this error did not occur if
an explicit type conversion was performed on the object at the time it was used in the instantiation

and also did not occur if a literal was used instead of the named number.

e Inability 1o resolve overloading of operators when a gencric formal subprogram ("+" in this case)

matched an operator already defined by the language (see Figure 67).

o Inability to identify generic actual subprograms to be used as defaults even though they were
directly visible. Two variations of this problem occurred and are illustrated in Figure 68. In the
first, the correct subprogram was directly visible as the result of 'with’ and ’use’ clauses on the
subprogram’s package. In the second casc, the correct subprogram was directly visible since it was

a generic actual subprogram to the part where problems were encountered.
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¢ An inability to handle scparate compilation of generic units, even though compiler documentation

indicated this optional feature was implemented.

This code sent one compiler into an infinite loop:

generic

tyre Angles is digits <>;

type Ratios 1is digits <>;

Pi : in Angles;
package StdTrig is

type Radians is new Angles; >
end 9tdTrig;

¢ - This statement caused the problem

This code caused another compiler to encounter an internal error:

generic

type Angles ia digits <>;

type Ratios is digits <>;

Pi : in Angles;
package StdTrig is

type Radians is new Angles;

type Sin Cos_Ratio is new Ratiocs range -1.0..1.0; [ ]
end StdTrig;

# - This statement caused the problem

Figure 66. Some Compilers Couldn’t Handle Type Derivations
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Specification:

generic
type M _Indices is (<>);
type N_Indices is (<)
type P_Indices is (<)

type Left_Elements is digits <>;
type Right_Elementa 1is digits <>;
type Result Elements is digits <>;
type Laft Matrices is array (M Indices, N_Indices) of Left_Elements;
type Right Matrices is array (N_Indices, P_Indices) of Right Elements;
type Result Matrices is array (M_Indicol, P_Indices) of Result_ Elaments;
with function “*" (Left : Left_Elements;
Right : Right Elaments) return Result_Elements is <>;
with function "+" (Left : Result_ Elements;
Right : Result_Elaements) return Result Elements is <>;
function Matrix Matrix Multiply
(Left : Left Matrices;
Right : Right Matrices) return Result Matrices;

Body:
function Matrix Matrix Multiply
(Left : Left Matrices;
Right : Right Matrices) return Result Matrices is
Answer : Result Matrices:
begin
for M in M _Indices loop
for P in P_Indices loop
Answer(M,P) := 0.0;
for N in N_Indices loop
Answer (M,P) := Answer(M,P) + [ ]
Left (M,N) * Right(N,P);
end loop;
end loop;
end loop;
return Answer;
end Matrix Matrix Multiply;

# - Compiler was unable to resolve this overloading

NOTE: Contrained arrays were used in the design of this part in order to improve the efficiency of the part. While it was
recognized that unconstrained arrays would have made the part more flexible and hence more reusable, the need for

efficiency for real-time embedded applications was considered of greater importance.

Figure 67. Overloaded Operator Caused Problems for Compiler
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When attempting to instantiate the following generic:

generic
type Angles is digits <>;
type Inputs is digits <
type Outputs is digits <;

type Sin _Cos_Ratio is digits <>;
with function Sin (Input : Angles) resturn Sin_Cos_Ratio is <>;
function Example (Input : Inputs) return Outputs;

One compiler couldn’t resolve the default even though the appropriate subprogram was directly
visible through 'with’ and 'use’ clauses:

generic
type Angles is digits <>;
type Ratios ie digits <>;
package StdTrig ie
type Radianse is new Angles;
type Sin Cos_Ratio is new Ratios range -1.0..1.0;
funotion Sin (Input : Radians) return sin_Coa_ﬁatlo;
end StdTrig;

with StdTrig,;
package BDT ies
type Real is digits 9;
package Trig is new StdTrig (Angles => Real,
Ratios => Real);
end BDT;

with BDT; use BDT;
with Example;
procedure User Application 1is

use BDT.Trig;

funotion Attempted Instantiation is new Example \
(Angles => BDT.Trig.Radians, \ problem encountered
Inpute => BDT.Real, >  with this
Outputs => BDT.Real, / Instantiation

Sin_Cos_Ratio => BDT.Trig.S9in_Cos_Ratio); /
begin

end User Application;

Another compiler couldn't resolve the default even though it was visible as a generic formal
subprogram:

generic
type Angles is digits <>;
type Inputs 1s digits <>;
type Outputs is digits <>;

type 8in_Cos_Ratioc is digits <>;
with function Sin (Input : Angles) return Sin_Cos_Ratio is <>;
package Sample is

end Sample;

with Example;

package body Sample is

function Attampted_Instantiation is new Example \

(Angles => Angles, \ problem encountered
Inputs => Inputs, >  with this
Outputs => Outputs, / Instantiation
Sin_Cos_Ratio => Sin Cos_Ratio); /

end Sample;

Figure 68. Compilers Had Problems Finding Default Subprograms
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¢. Compiler Validation

The Ada Compiler Validation Capability (ACVC) test suite is designed to ensure a certain level
of quality and confidence in Ada compilers, and to a large extent has succeeded. The CAMP experience,
however, indicates that notable inadequacies exist in the area of generic units. These inadequacies could
have a significant negative impact on the future development and use of reusable software.

The use of generic units is vital to the development of good reusable parts, yet we have found
that it is one area where even validated compilers often are lacking. Based on the CAMP experience,
most validated Ada compilers seem to be able to handle simple generic units, many are unable to handle
complex generic constructs, and most are unable to handle the complex mix of generic units that is
required to assemble a software system from a collection of reusable generic parts.

The tests in tt ~ “VC test suile seem (0 be geared to test or demonstrate only a single objec-
tive. While this has ensured that validated compilers can generally handle simple generic units, it is
probably why an Ada compiler can de validated though unable to handle complex generic units, and is
certainly why a complex mix of generic units is beyond the ability of most validated Ada compilers.
While this approach may have been appropriate in the beginning when there was a desire to get an initial
set of validated compilers, we feel the time has come to modify this approach.
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SECTION VI
CONCLUSIONS AND RECOMMENDATIONS

Given the pathfinding nature of CAMP-2, it is not surprising that many lessons were learned con-
cerning the use of Ada to develop reusable software for real-lime, embedded (RTE) applications. One of
the primary benefits of the CAMP-2 project has been in sharing these "lessons learned" with the DoD
software engineering community. This section discusses the major conclusions reached during the
CAMP-2 project and presents recommendations based on these conclusions.

I. ON THE APPROPRIATENESS OF ADA FOR REUSABLE SOFTWARE

A primary design goal of the Ada programming language was to promote reuse of software. The
designers of Ada addressed this geal in two ways. First, Ada was designed to facilitate transporting
applications between different computer architectures. Second, Ada was designed to facilitate the
development of code units which could be transported between different applications.

Conclusion #1
With a few minor exceptions, Ada achieves its reusability design goal.

Conclusion #1 is substantiated by two facts. First, many Ada applications have been transported
between different computer architectures at a small fraction of the cost traditionally associated with
rehosting non-Ada applications. Second, Ada parts are rapidly becoming available from a variety of
sources (including CAMP) and these parts are being reused. The CAMP parts have been distributed to
over 120 DoD agencies and contractors who are exploring their utility in a wide spectrum of applications
(e.g., avionics, ballistic missiles, space station control, etc.). McDonnell Douglas is in the process of
using the CAMP parts on a number of applications.

There are several primary factors which have led to Ada’s success in the area of reusability.
¢ The DoD has rigidly adhered to a standard language definition

® Ada’s package feature provides the user with the means to encapsulate machine and application

dependencies

e Ada’s generic unit feature provides the ability to broaden the domain applicability of reusable

components
e Ada allows the underlying machine architecture to be hidden
However, there are some aspects of Ada which need to be improved from the perspective of

reusability. Section V describes the rationale for these recomnendations in more detail.

Recommendation #1
The definition of Ada should be changed to allow address objects to be
passed as generic parameters.

3}



Recommendation #1 will promote reuse of machine control and communication software. For ex-
ample, during the CAMP-2 11th Missile Demonstration, a Bus Interface Module component was
developed which could be reused between the Guidance computer TLCSC and the Navigation computer
TLCSC. The only difference was the actual physical address of the bus discretes. Since address objects
cannot be generic paramelers, manual changes had to be made to the component in order reuse it.

Recommendation #2
The definition of Ada should be changed to allow representation clauses
to be defined within a package body.

Recommendation #2 will uncouple the physical and logical definitions of Ada entities and hence
promote reuse. The current requirement to define a representation clause within the same declarative
scope as the entity declaration, means that if a different application wants to reuse a component with the
same logical representation but a different physical representation, it must manually change the com-

ponent.

Recommendation #3
The definition of Ada should be changed 1o allow a single, unmodified
Ada specification to be used with multiple bodies within a single
application.

Recommendation #3 will increase the degree to which Ada specifications can be reused without
manual modifications. For example, currently, to use two different bodies to implement a single abstract
data structure within an application, the specification must be copied and manual name changes must be

made to it.

Recommendation #4
The definition of Ada should be changed to require a compiler to support
separate compilation of generic units and subunits.

Recommendation #4 will decrease compilation overhead when software components are reused.
This change will have a significant beneficial impact on reuse since there are real advantages (o separate
compilation in the areas of configuration management, project management, and compilation time.

Recommendation #5
The definition of Ada should be changed to allow procedural data types.

Recommendation #5 will promote reuse within applications that require dynamic reconfiguration
and within Artificial Intelligence applications.



2. ON THE APPROPRIATENESS OF ADA FOR REAL-TIME EMBEDDED REUSABLE
SOFTWARE
Another Ada design goal was that it be suitable for use in RTE applications. This implies that Ada
must not only provide efficient higher-order language (HOL) features, but must also allow the program-
mer, when needed, to have direct control over the representation of Ada entities, access the computer

hardware directly, trade-off space and execution time, closely control and be able to characterize the
dynamic behavior of a program, and in general, to perform operations which a non-RTE programmer

might consider "unsafe”.

The appropriateness of Ada for RTE applications depends on four factors. These factors are dis-

cussed in the following subsections.
¢ Is Ada an effective language for RTE applications?
e Are there any features in Ada which must be used in RTE applications but are inherently in-
efficient?
e Are Ada compilers sufficiently effective for RTE applications?
» Is the code produced by Ada compilers sufficiently efficient for RTE applications?

Obviously, when one addresses either of the last two issues, it must be done based on experience
with a particular set of compilers during a specific period of time. Thus, the conclusions reached on the
CAMP-2 project concerning Ada compilers are dependent upon the specific compilers used and the time
period in which they were used.

a. On the Effectiveness of Ada

A determination of the effectiveness of the Ada language for RTE applications is essentially a
determination as to whether all the functional requirements of RTE applications can be achieved within
the language. In other words, if there are operations that an RTE application typically needs to perform,
and cannot do so using the language, then Ada would be judged ineffective 10 some degree.
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Conclusion #2
Ada is an effective language for real-time embedded applications.

Conclusion #2 is based on the CAMP-2 11th Missile Application experience. The 11th Missile
Application was constructed using only 21 assembly language statements; this equates to 0.1% of the
total software (see Volume II for more details). With the exception of two small functions, all the
functional requirements of the 11th Missile Application were achieved using Ada. In fact, the 2} as-
sembly language statements could have been coded using Ada’s machine code insertion feature. In the
case of the 11th Missile Application, the functions which required the use of assembly language had to do
with operating system idiosyncracies. But, every RTE system tends to have its own idiosyncracies. The
reassuring fact is that Ada can handle all these situations, assuming that machine code insertion is sup-
ported. In existing RTE applications that use HOLs, the percentage of assembly language used for
functional reasons? is usually much higher than that experienced on CAMP.

A common myth concerning Ada, which needs to be dispelled, is that Ada stops a programmer
from doing certain operations which are considered to be "unsafe" but which RTE programmers need to
do. If this myth were true, it would indeed be a major problem with Ada. The reality is that the software
engineering discipline has recognized that certain programming paradigms are dangerous (i.e., their use
frequently leads to errors) and in most cases these paradigms can be avoided. In some languages, like
Pascal, a dogmatic approach has been adopted and these paradigms are outlawed completely. This is not
the case with Ada. Ada tries to balance the goal of promoting sound software engineering principles and
the reality that upon occasion a programmer nceds to do something that is dangerous. Thus, Ada allows
the programmer (o use "dangerous” paradigms, but doesn’t make their use too easy — a suitable com-
promise in the authors’ opinions. An example of an operation which is often considered dangerous but
which is essential in an RTE application is overlaying two data structures on the same data.

Conclusion #3
A full implementation of the Chapter 13 features of Ada is essential in
real-time, embedded applications.

Conclusion #3 highlights the fact that the effectiveness of Ada for RTE applications is highly
dependent upon the extensive use of Ada features which are defined in the Language Reference Manual
as optional. These features are popularly called the "Chapter 13 features” of Ada. Projects must be
sensitive to the fact that in RTE applications, the Chapter 13 features of Ada should not be considered

optional.

2In addition to using assembly language for functional reasons, RTE applications frequently have to replace HOL code with
assembly code for performance reasons.
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h. On the Inherent Efficiency of Ada

There has been a great deal of debate within the DoD software engineering community concem-
ing the efficiency of the Ada language. Much of this debate has concentrated on the efficiency of Ada
features, such as tasking, exception handling, and generic units, which are not in our traditional RTE

languages.

Conclusion #4
There appears to he no Ada features which are inherently inefficient.

While it is true that the efficiency of the advanced Ada features as implemented by the current
generation of Ada compilers lcaves something to be desired, a preliminary analysis indicates that there is
nothing withir: the definition of the Ada language which requires them to be inefficiently implemented.
The inefficiently results mainly from a lack of global optimization in most of the current Ada compilers.

Conclusion #5
There are Ada features which require a global optimizer to be suf-
ficiently efficient for severelv constrained RTE applications.

For example, consider Ada generic units. When a generic is compiled, the compiler is unaware
of the values of the generic parameters and must, therefore, generate code which can handle any situation.
This results in code that will be relatively inefficient. However, if a compiler had a sufficiently powerful
global optimizer, it could use the information known at the point(s) of instantiation and optimize the code

for the generic unit.

In every situation where inefficiencies were encountered on CAMP, we were able to determine
that a sufficiently powerful optimizer could have corrected the situation. Unfortunately, few, if any, of
the current generation of Ada compilers implement optimizers which are sufficiently powerful for
severely constrained RTE applications. The next two subsections discuss Ada compiler issues in more
detail.

¢. On the Effectiveness of Ada Compilers

Given that the Ada language is effective for reusable RTE software, a determination of the
cffectiveness of Ada compilers for the same type of software is based on two factors. First, the compiler
must properly handle all mandatory Ada features. The ability to properly handle Ada generic units is of
special importance given the crucial role that generic v..its play in reusability. Second, the compiler must
handle all Chapter 13 features in Ada. As previously discussed, in RTE applications these features are

essential.

Conclusion #6
Ada compilers do exist which are effective for real-time embedded
application.

Conclusion #6 is based on the fact that the CAMP 1 1th Missile Application, a true RTE system,
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was implemented using only 21 assembly language statements. This system was (ested in a hardware-in-
the-loop simulation environment on a 1750A processor. The particular 1750A Ada compiler used for this
demonstration had an cxcellent implementation of the Chapter 13 features of Ada. This is not to imply
that these compilers handle all Ada language constructs efficiently. For example, even the 1750A Ada
compiler used for the 11th Missile demonstration had diffliculties with complex generics and efficient

throughput for tasking.

Recommendation #6
The DoD nceds to enhance its Ada Validation process.

Too many validated compilers have detectable errors. Recommendation #6 is based on the fact
that many DoD project managers mistakenly believe that if the DoD says a compiler is validated, then it
must be OK to use. It is important to note that it was only in the final months of the CAMP-2 project that
we had a 1750A Ada compiler that met most of our RTE effectiveness requirements (the exception was in
the area of generic units). We spent a significant amount of time and effort testing compilers, reporting
problems, and working with the compiler developers to correct the problems. During a large portion of
this time the compilers were validated.

Recommendation #7
During the next few years, DoD mission-critical real-time embedded Ada
projects should establish a contractual relationship with their compiler
developer to reduce risk.

Until Ada compilers are fully mature, critical RTE Ada projects will be well served to acquire
the highest level of maintenance support from their compiler developer or to put them under a special
contract. If problems are found with the compiler, it is unrealistic to expect major projects to wait for the
next scheduled release to get the problems fixed. On CAMP-2, it was mutually advantageous for McDon-
nell Douglas and the selected 1750A Ada compiler supplier to work closely together.

Conclusion #7
Ada compilers do exist which are effective for applications that want to
use reusable software components.

Conclusion #7 is based on the fact that there exist compilers which handic Ada generic units
effectively. The CAMP project has had a great deal of success with the DEC VAX Ada compiler.

Conclusion #8
CAMP data indicates that the current generation of Adall750A com-
pilers do not support generic units well and this lack of support will
hinder real-time embedded applications thar want to use reusable
software components.

Conclusion #8 is a disappointing result based on the present immaturity of 1750A Ada com-
pilers. Obviously, we can only extrapolate the situation with 1750A Ada compilers to other RTE com-
pilers. The basic problem is that many validated Ada compilers, especially those which target RTE
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computers, do not handle generic units correctly. Most validated compilers handle simple generic units in
an adequate fashion, but a great majority of Ada compilers will have problems with non-trivial generic
units. Section VII discusses the types of situations which cause most compilers to have problems.

With the particular 1750A Ada compiler used on the 11th Missile Application (which we
believe is one of the best of its type), we spent a significant amount of time and effort working with the
compiler developer to overcome problems associated with generic units. Even after all this effort, the
result was that all the CAMP generic parts compiled, most of them linked, but many of them caused
abnormal program execution due to compiler errors. To overcome these compiler problems, we had to
manually instantiate approximately 42% of the CAMP parts used on the 11th Missile Application.

Recommendation #8
The Ada Validation suite must be changed to incorporate tougher tests
on generic units.

During CAMP-2, a benchmark was developed which rigorously tests a compiler’s ability to
deal with non-trivial Ada generic units (see Volume I11) . A test based on this benchmark would give Ada
compiler developers the incentive to effectively handle generics — if they don’t, they would lose their
validated status.

d. On the Zfficiency of Ada Compilers

While the efficiency of the code produced by Ada compilers is important to all types of applica-
tions, it is critical for RTE applications. The performance requirements of RTE applications are typically
non-negotiable. Thc RTE software enginecr cannot trade-off run-time speed for a more maintainable
software system, nor can she arbitrarily accept a larger object code size for the sake of reusability.

Another aspect of efficiency which is important to RTE applications and which many non-RTE
software engineers often fail to understand is that of micro-level efficiency. In other words, in addition to
being concerned with macro-level efficiency issues such as the selection of appropriate algorithms, the
RTE software engineer is often concerned with the efficiency of specific language constructs. The au-
thors have had frequent conversations with other researchers in the area of reusability in which the other
researchers could not understand why the CAMP parts were designed as semi-abstract parts as opposed to
being developed as pure abstract data structures. In their value system, the benefits of pure abstract parts
more than accounted for a "few more assembly language statements." However, in many RTE applica-
tions, such as missile guidance and navigation systems. a few more statements in a high rate (e.g., 100
hertz) task can make the difference between an effective weapon system and one that doesn’t achieve its

operational requircments.

Conclusion #9
CAMP data indicates that curren: implementations of Ada tasking are
sufficiently inefficient to cause concern in severvelv constrained RTE
applications.

The speed of an Ada task rendezvous on most compilers is such that a RTE programmer should
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avoid its use for any fast loops or high rate interrupts. Some RTE Ada compiler developers have recog-
nized this problem and provided an alternative method of handling interrupts.

Conclusion #10
CAMP data indicates that current implementations of Ada generics are
sufficiently inefficient to cause concern in severcly constrained RTE

applications.

Currently, there are two approaches used by Ada compiler developers to implement generics:
the single body approach and the mudltiple body approach. With the single body approach, a single unit of
code is generated that can handle any type of instantiation; this approach trades speed for a smaller code
size. With the muitiple body approach, a separate set of code is generated for each instantiation; this
approach trades code size for better speed. In general, we believe that the multiple-body approach is
better. Our preference is based on the observation that most parts are instantiated only once within an
application. Thus, using the multiple body approach provides both a speed and storage advantage.
However, both approaches suffer from the inability of most compilers to perform global optimization.

Recommendation #9
Ada compilers should be able to alternate between single body and mul-
tiple body generic implementation based on either implicit or explicit
information.

In the best case, the compiler should be able to use both the single body and the multiple body
implementation of generic units. Ideally, the compiler would make the choice of the implementation
mechanism based on data provided by pragmas and/or a global optimization analysis.

Conclusion #11
CAMP data indicates that current implementations of Ada exceptions are
sufficiently inefficient to cause concern in severely constrained RTE

applications.

Because of the semantics of Ada exceptions, some Ada compilers generate code which waste a
significant amount of storage. In effect, they keep extra copies of data until it can be verified whether or
not an exception has been raised. In many cases this extra storage is not significant, but in some cases
where the data being duplicated is extensive, e.g., an Kalman filter arrays, this method can cause severe

memory problems.

Conclusion #12
With the exception of the incfficiencies due to generic units, tasking, and
exception handling, current Ada compilers appear to have efficiency
equivalent to other HOL compilers used in RTE applications.

When one ignores the advanced features of Ada, computational-intensive benchmarks show that

Ada compilers perform as well as JOVIAL compilers.
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Conclusion #13
The ability of Ada compilers to perform global optimizations is critical to
the successful use of Ada and the reuse of Ada parts in RTE applications.

If there is one major message concerning compiler efficiency that was quite clear on CAMP, it
is that Ada compilers need a global optimizer to be sufficiently efficient for RTE applications, with or
without reuse. This need is driven by several factors.

¢ Ada’s features promote design of highly modularized software, thus, Ada software 1s usually im-
plemented by means of a high number of small units. If an Ada compiler cannot optimize across

unit boundaries, a large amount of potential optimization will be lost.

¢ Reusable parts and data are typically bundled together into cohesive packages to make their use and
maintenance easier. If a compiler cannot perform global analysis to identify and eliminate dead
code and dead dara, some of the benefits of reusable parts will be lost when the user has to

manually eliminate these items.

o The Ada generic unit is an extremely powerful concept, but to make use of it on RTE applications,
the compiler must be able to optimize the code generated based on the context of the instantiation.

e Like generic units, Ada’s exception handling features are very useful, but compilers must not penal-

ize the user who has decided not to use the features.

Given that few, if any, Ada compilers currently implement a sufficiently powerful global op-
timizer for RTE applications, an important question is whether an application can avoid inefficiencies by
avoiding certain Ada features. The answer is not always. Certainly an application can avoid generics and
hence avoid the overhead of a generic. However, this is not the case with exceptions. Whether or not an
application uses exceptions, it will pay the costs associated with detecting and communicating exceptions
because without a global optimizer, the compiler cannot know that an exception handler is not declared at

a higher level.

3. ONTHE DEVELOPMENT OF THE CAMP PARTS

During CAMP-2, McDonnell Douglas developed 454 parts consisting of over 16,000 lines of opera-
tional Ada code and another 27,000 lines of Ada test code. From this work, we developed a number of
conclusions concerning the use of Ada and the development of parts.

Conclusion #14
The use of Ada results in improved development productivity.

MDAC-STL carcfully collected data concerning the effort expended and the resulting size of the
CAMP parts. This data shows that overall productivity for developing the CAMP parts was 258
LOC/MM. One soltware cost estimating model, COCOMO, cstimated productivity at 160 LOC/MM.
Section 1I of this volume describes the productivity analysis for the CAMP parts development in greater
detail. We attribute this increased produclivity to four factors.
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¢ The use of Ada

¢ The use of good people
o The use of good tools
e The reuse of software

Few people have doubled that Ada would increase the productivity of the software maintenance
process, but one of the unresolved questions within the Ada software engineering conmmunity has becn
whether the use of Ada would help developmental productivity on the first set of projects on which it was
used. We believe the use of Ada was the primary factor behind cur higher than expected productivity on
the CAMP parts development task. In addition to providing a complete set of structured control con-
structs and a highly readable language, the Ada package featured allowed us to identify clear interfaces
between the different people working on the parts, and hence, promoted a high degree of parallelism in
the parts development.

Conclusion #15
Ada's support for programming-in-the-large is one of its chief ad-
vantages from a management perspective.

It is worthwhile noting that one important reason that the use of Ada was a benefit to our develop-
mental productivity was that we had an excellent compiler to develop the parts — the DEC VAX Ada
compiler. If one had to struggle with an immature compiler, productivity would be severely decreased.

Conclusion #16
The use of smongly ryped sofnvare parts has significant benefits to the
parts user, but complicates the development of parts.

One of the primary decisions the CAMP (eam had to make very early in the development of the
CAMP parts was how extensively to use data typing. The chief advantage of making the parts strongly
typed was the high degree of protection against misuse of the parts such typing would provide. The
disadvantage of using strong typing was the increased complexity of developing the parts. The inter-
actions between types and generics are much more complex than they appear to a casual user of Ada.

Initially, we had some doubts about the use of strong typing. Was it worth the extra effort to avoid
data typing errors? We surveyed some of our on-going missile projects and asked them if data typing
errors were a problem. Somewhat to cur surprise, we found that the misuse of data was considered (o be
a significant problem area. Given the large number of different types of data used in a missile applica-
tions, programmers sometimes made "stupid” mistakes (e.g.. mixing radians and degrees) and these types
of errors were [requently not detected until the software was tested; al this point they were very difficult
to isolate. Based on this information, we decided to use strong typing in the development of the CAMP
parts. After all. the parts would be developed once, but used many times.

Conclusion #17
It costs more to develop reusable parts than to develop custontized

software.
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While Conclusion #17 is hard to quantify, it is our observation that, depending on the experience of
the part developer, it costs about 5% to 10% more to develop good reusable parts than it costs to develop
a customized unit of software. The part developer has to not only meet the functional requirements of a
specific application, he also has to think about how to make the part general enough for a set of applica-
tions without losing a significant degrec of efficiency.

Recommendation #10
Parts should be developed by a parts development team driven by project
needs.

We envision three ways in which parts could be developed.
¢ By projects
¢ By an independent parts development group

® By a project-directed parts development group

The problem with the first approach is that few projects have the extra resources to make good parts.
The typical DoD software project has a short schedule and a tight budget, and few project managers will
divert their people from their primary task of meeting the contract requirements. Additionally, the first
approach does not allow an organization to develop a cadre of parts development expertise which will
result in lower parts development costs. The problem with the second approach is that, over time, such a
group tends to lose touch with projects’ needs and will eventually start producing parts that no one wants.
The third approach is based on projects providing the parts developers with draft parts and part needs.
This approach is the one we prefer. It allows an organization to develop a cadre of expert part developers
but provides direction for them from the projects.

Conclusion #18
Software parts for RTE applications must be developed to be
semi-abstract.

The developer of reusable parts for real-time, embedded applications must be sensitive to the fact
that frequently the conceptual elegance of a part has to be sacrificed to obtain the required degree of
cfficiency. While academicians might insist that all parts be developed as pure abstract objects (i.e., the
internal structure is hidden from the user), the realities of RTE applications frequently demand that a user
access the intemnal structure of a part. Fortunately. the choice is not between an abstract part and a
non-abstract parl. A design approach cxists, which we refer to as semi-abstraction, in which a part
provides the user with both an abstract interface and a mechanism for directly accessing the internal
structure. Section VI of this volume discusses thi: issue in greater detail.



4. ON THE BENEFITS OF USING PARTS

Conclusion #19
The use of Ada software parts can increase productivity.

MDAC-STL collected data on the effort expended and the resulting size of the 11th Missile Applica-
tion. This data shows that overall productivity was 419 LOC/MM, and indicates that produclivity can be
increased by up to 15% by using the CAMP parts.

Productivity on the 11th Missile Application was lowered by difficulties with Ada/1750A compilers.
Separate statistics on the amount of time spent trouble-shooting the selected compiler were not kepl, so it
is impossible to tell precisely the effect on productivity. However, we do know that, of 153 sofiware
errors found during testing, 96 were compiler errors and 57 were errors in CAMP-developed code. It
seems reasonable, therefore, to assume that half the testing time was spent debugging the compiler. In-
corporating this assumption, the productivity of the 1lth Missile development would rise to 572

LOC/MM.

Section 1l of Volume II describes the productivity analysis for the 11th Missile Application in
greater detail.

5. ON THE COST-EFFECTIVENESS OF CAPTURING SCHEMATIC
COMMONALITY

Conclusion #20
Some important types of commonality cannot be captured in Ada.

Early in the CAMP program, we realized that there were types of commonality that existed within
most domains that either could not be captured using Ada alone, or could not be captured efficiently using
Ada alone. We refer to this type of commonality as schematic commonality. To capture this type of
commonality requires a tool which can build Ada code when given the requirements of a particular
application. We refer to these tools as schematic component constructors; several of these construciors
were built and used on CAMP. Section IV describes this work in more detail.

Conclusion #21
Schematic Component Constructors have high value.

As an example of the utility of a schematic component constructor, consider the case of the CAMP
Kalman Filter Consiructor. A novice user can specify his requirements for a new Kalman filler in about
two minutes using this constiuctor. It takes the constructor about another minute (o generate the Ada
code. In a typical situation, the Kalman Filter Constructor will generate 387 Ada LOC and use another
1553 CAMP pasts LOC. The bottom line is that the user gets 1940 LOC for three minules of work.

Based on the number of lines of code generated by the Kalman Filter Constructor for the (1th
Missile Application, we estimate that a 28% productivily improvement could be obtained just from using

the Kalman Filter Constructor.



Recommendation #11
More research needs to be performed to develop an approach for build-
ing schematic component constructors.

Although we believe that the utility of schematic component constructors is high, the currert ap-
proach to their construction requires a large development effcrt and the resulting tool is not easily
modified. One potential solution to these problems is to develop a constructor-constructor, i.e., a (ool that
would be capable of generating a wide variety of schemalic component constructors. One approach to
such a constructor-constructor would involve the use an interactive Ada pre-processor,

6. ON THE CATALOGING OF PARTS

During CAMP-2, MDAC-STL built a prototype Ada parts catalog. We drew two major conclusions
from this work.

Conclusion #22
Cataloged Ada parts should be classified by logical operations, not
physical Ada units.

The CAMP parts catalog was implemented so that the basic units being cataloged were Ada units,
Upon reflection, and after having used this catalog, we believe this approach has two significant dis-

advantages.
e When viewing parts, the user gets entire Ada units and then has to locate the portions of interest;

this is less than optimal.

e Too many entities are cataloged under the current scheme. This can lead to user frustration and

result in the parts not being used.

We believe that a better approach would have been to catalog the logical parts, not the physical Ada
code units. For example, the catalog should tell the user that it has an entry for a unbounded LIFO queue,
not that it has a package specification called LIFO_QUE and a package body with the same name. Using
this paradigm, the user would search for logical parts and then, if needed, the user could examine the Ada

structure of these parts.

Conclusion #23
The taxonomy(ies) used hy an Ada parts catalog should be soft-coded.

A software parts taxonomy” is an important component of every software parts catalog. One of the
lessons learned on CAMP-2 was that regardless of the time and effort spent in developing the taxa®, the
taxonomy will change over time. No one can foresee all possible classes of parts. Likewise, the distinc-

3A mechanism for classifying software pans

“The calegories into which parts are classified



tion of taxa is an extremely subjective activity. Given these factors, we recommend that software parts
libraries "soft-code” their taxonomies so that they can naturally evolve over time.
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APPENDIX A
PARTS DATA BASE

1. INTRODUCTION AND BACKGROUND

During development of the CAMP parts, certain information about the parts needed to be gathered
and reports generated from this information. One of the most basic needs was for a simple listing of all
the parts, categorized by their TLCSCs. Size (number of lines of code) data was also needed.

The sizing information report was originally produced on an IBM PC. Two line count utilities
written by a member of the parts team provided the input to this report. The first line counter simply
counted the number of lines of Ada code in a file. This soon proved to be inadequate, however, since
more detailed information was needed. There was a need for a separate line count for specifications and
bodies, and a separate count of CAMP header comments and comments embedded in the code. Although
a single file often contained more than one Ada structure, the original line counter only gave a total for all
the Ada structures. An advanced code counter was developed that analyzed a file’s Ada structure and
kept separate counts for each Ada structure for both the specifications and bodies. Since the first counter
did no analyzing of the Ada structure, it ran considerably faster and remained in use for Ada files contain-

ing single Ada structures.

Although these tools automated the information gathering, the information itself was still entered
into the report by editing the report file. This meant that each time the parts were updated, a new part was
added, or the structure of the parts changed, the report file had to be edited again. This was cumbersome
because the formatting had to be manually redone every time the file was edited. As a result, information
changes were not made as quickly as required and the report became out of date.

In order to address these difficulties, an ORACLE data base was developed to store this information.
Reports can now be generated through the use of SQL*Report, an ORACLE utility which allows the
generation of reports. SQL*Forms was used as to facilitate data entry.

2. ORACLE RELATIONS

ORACLE is a relational data base with information stored in tables. The parts’ sizes were stored in
two tables. The first table, named TLCSC, stored information about the TLCSCs. The second table,
named Adalevel, stored information about all of the lower-level Ada structures. The information about
the TLCSCs and lower structures varied slightly. which is why separate tables were created.

The TLCSC relation (table), its fields and descriptions are given in the Table A-1 and the AdaLevel
relation, its fields and descriptions are given in Table A-2.
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TABLE A-1. COLUMNS IN THE TLCSC RELATION

TLCSC Relation
Column Name Description
Partno This is the surrogate part number. Each entry was assigned an arbitrary number to be used as
the prime key for that entry.
Tname TLCSC name of the Ada structure
Require Requirement number (reference SRS)
Type Type of Ada structure (procedure, generic package etc.)
Parent The part number of its parent in the Ada hierarchy. This uses the surrogate numbering
scheme as used by the partno field.
Speccodesize Number of lines of specification code
Bodycodesize Number of lines of body code
Speccomsize Number of lines of the header for the spec
Bodycomeize Number of lines of the body comments
Testcodesize Number of lires of test code
Part Indicates whether or not the entry is a part
Uned Indicates whether or not this entry was used by the | 1th Missile Application
Subcategory Subcategory to which TLCSC belongs
TABLE A-2. COLUMNS IN THE ADALEVEL RELATION
AdaLevel Relation
Column Name Description
Partno This is the surrogate part number. Each entry was assigned an arbitrary number (0 be used as
the prime key for that entry.
Liname Ada name of LLCSC or unit
Require Requirement number (reference SRS) .
—'_l'ypc Type of Ada structure (procedure, generic package etc.)
Parent The part number of its parent in the Ada hierarchy. This uses the surrogate numbering
scheme as used by the partno ficld.
Speccodesize Number of lines of the specification code
Bodycodesize Number of lines of the body code ~
Speccomsize Number of lines of the header for the specification
Bodycomsize Numbser of lines of body comments
Part Indicates whether or not the entry is a part
Used Indicates whether o5 not this entry was used by the 11th Misxile Application
Levelnum Hicrarchy number for this unit
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These tables were used to generate two reports. The first is a list of all the parts divided into their
source file components. Along with this list is sizing information, whether it is a part, and whether it was
used in the 11th Missile Application. The second report is a list of all the parts used in the 11th Missile
Application and their respective code sizes. The second report is discussed in the Appendix of Volume 2.

The parts size report is contained in Table A-3.
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TABLE A-3. CAMP PARTS SIZING LIST

(1 of 14)

TLCSC | TLCSC Name [} Code Size # CommentSize l Part | 11th Wl

No. | Lower Level Units W Spec | Body ! Test M Spec | Body It I Use ¥

POOI | Common Navigation Parts ] 10 | 101 2218 1t 281 108 ) N |} Y "

{  Altitude Integration n 12 1 71 o104 1 B3y Y 1Y 0

t  Rcinitialize n 21 71 L] 0| 1ng 4 N ! Y #

I Integrate L] 31 131 n (O] 2748 N | Y ¥

| Compute Ground Velocity n 10 4 LI 1 83 | 1K Y 1+ Y

| Compute Gravitationa) Acceleration Lat In n 2t 13 1 " 19 1 720 Y N

I Comprite Gravitational Acceleration Sin Lat In n 19 1 131 [ L 156 Y t+ Y 0

| Compute Heading ] 10 ) 6 | ] LU muw Y 1 N W

| Update Velocity " 20 1 LI f 138 | 183 W Y 1 Y ]

I Reinitia ize It 11 s | [} (] 020 N ! Y [}

I Update [ 4 16 ! ] 0! 1721 N | Y n

I Current Velocity ] | 5| fi 0| g3t N 1Y 1

| Scalar Velocity L] 9 | 6 | ] 84 | o n Y 1 N 0

| Compute Rotation Inc " 1" 8 | [ 9 | m2an vy | N It
SUBTOTALS 124 115 2,218 813 1,683 ] 9

Poo2 | Wander Azimuth Navigation Parts " 16 | 16 | 617 It 234 ) 19 0 N | Y [l

t  Compute Earth Relative Horizontal Velocities [} 16 1 16 1 n 108 | 1321 Y | N "

| Compute Tota! Angular Velocity n 12 1 71 L] 98 | ngn y | N

| Compute Coriolis Acceleration [} 19 1 12 1 o2 160 Y Y 0

| Total Platform Rotation Rate [} 1" 91 ] 90 | Hoew Y Y ¢

| Earth Roiation Rate ] 12 71 ] 121 1 160 Y | Y "

I Compute H 41 11 " (] nmu N 1Y

I Compute Barth Relative Navigation Rotation Rate " 18 1 151 16 tren Y & Y #

I Compute Wander Azimuth Angle [} 12 1 71 ] 101 ) 120 Y + N &

t  Compute Latitude f 71 6 | n 70 9% N Y | N ]

I Compute Latitude Using Arctan [l 16 1 121 f 108 | )y Y + N N

I Compute Fast Velocity with Sin Cos In " "\ 131 [} 97 1 g N Y 1+ Y &

t  Compute Longitude ) 131 71 n 971 nme e Y 1 N

t  Compute Curvaturea " 3t 30 o a6 Y 1Y

1 Compute East Velocity (] | L 12 1 oo 3K Y + N

I Compute North Velocity ] 14 1 12 1 ] 1011 1330 Y | N L]

I Coriolis Acceleration from Total Rates ] 121 71 [ 121 1 00 Y 1 N

I Compute L} 4t 1ni " o1 60 N 1 N "

| Compute North Velocity with Sin Cos In il o 13 1 i 9 ! 3 n Y | Y "

| Compute Earth Relative Horizontal Velocities n 1 | ] | n | [

I With Sin Cos In [} 131t 15 1 it 106 | te iy | N L]

I Compute Latitude Using Two Value Arctangent ] 14 1 16 | it 100 e n Yy + Y #

I Compute Longitude using Two Value Arctangent " (R [ [} 88 | sy | Y o

| Compute Wander Azimuth Angle using Two Value ] ! | [ | [ | []

| Arctangent " 10 1 12 1 f 9 i sty ! Y "
SUBTOTALS 285 261 677 2,066 2,691 20 "

PO03 | North Pointing Navigation Parts fl 9| 91 410 190 | e N 1N

| Compute Coriolis Acceleration [ 17 1 14 ] 102 1 1420 Y + N M

| Total Platform Rotation Rates i 1| 91 [ 82 i 040 Y | N

| Earth Rotation Rate I 16 | 71 ] 114 | 48 0 Y | N ]

I Compute 1 2 12 ] 0 648 N 1 N M

| Earth Relative Navigation Rotation Rate 1] I8 1 71 I 134 | 1554 Y + N N

I Compute " 41 1\ [l 0| 6 0 N | N [}

| Latitude Integration [} 134 6 1 L] 100 | 14740 Y 1 N 1

I Reinitislize ] 21 71 [ 01 1218 N 1 N b

I Integrate ] 31 12 1 || 0| 3N N | N L]

| Longitude Integration " 18 | 43 | [l 12! 164 01 Y 1 N ¥

I Reinitialize n 31 8 1 ] 01 13 0 N | N n

! Inegrae " 4 1 16 | (] 01 1499 0 N | N n

I Radius of Curvature " 25 1 71 n 121 ) 193 0 Y J N n

I Compute n 2 25 0 n [ 3] 6l N + N N
SUBTOTALS 138 184 541 ™m 1.606 7 0

P61 | General Utilities [ 3 31 o 69 1 63 F N 1 N

| Instruction Set Test " 6 6 i [ 751 N Y + N
SUBTOTALS 6 6 o 78 90 1 0

P601 I Asynchronoux Control ] 2.1 (U] (U] (U on Y Y N H

I Data Driven Task Shell " 21 0 [ [ ] o N | N n
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TABLE A-3. CAMP PARTS SIZING LIST (2 OF 14)

TLCSC | TLCSC Name ] Code Size I CommentSize # Pann | (ith |

No. | Lower Level Units i Spec | Body ! Test N Spec | Body ¥ I Use |

t Interrupt-Dyiven Task Shell [} 5 (U] [ 01 o N | N

| Aperiadic Task Shell " 31 (U] [ 0| o N | N

I Continuous Tak Shell ] 21 0 [} (U] 0N N | N 0

I Periodic Task Shell " 3 01 ] 01 on N | N ]
SUBTOTALS 15 0 0 0 [ 0 0

P62 I Communication Parts [} 3 3 296 1t 81 e N | N

| Update Exclurion " 9 1 3 [} 126 | S h Y N

I Read Updnte " 5| 29 ) ] 0! on N 1 N W

| Atwempt Read [ 2 i [ ] 0t on N I N 1

I Atlempt Resd Wait 0 2. 6 | it (U] on N | N 0

I Attempt Rend Delny ] 3 12 1 ] 0\ on N | N L]

I Atiempt Start Update ] 31 13 ) ] (] on N )+ N ¥

I Attempt Start Update Wait L] 3 8t ] 01 on N | N ]

1 Attempt Start Update Delay " 4 1 14 # [} 0 N | N N

| Attempt Complete Update ] 3 15 4 ] (L] [} N | N ]
SUBTOTALS 34 1o 296 129 93 t [

P61l | WGST2 Ellipsoid Metric Data " 29 i 01 96 128 1 ot Y + M *#

P612 | WQS72 Ellipsoid Engincering Data n 301 (] 92 1 143 | on Y I M

P63 | WQS72 Ellipsoid Uniticss Data It [ RIS [} 160 1 70 L} Y ! Y "

P614 | Conversion Factors L[] 41 | (] 200 W 121 on Y I Y

P61S | Universal Constants [} 91 (] 129 ¥ 721 on Y Y 0

P62t | Basic Data Types " 138 | 185 | 331 . 182 | 460N Y 1 M 1

P622 | Kalman Filter Data Types " 213 | 40 | 186 0 87 2270 Y | N 0

P623 | Autopilot Dutn Typen n LI 92 | 267 1 145 | 2800 Y | N

P63l | Missile Rndar Altimeter Handler Parte [} 15 1 25 on 22010 I Y + N

I Power On L] 1 22 | ] 01 170 N 1 N

| Power Off ] 11 41 ] (U} [ ] N | N ]

I Qoto Transmit Mode ] (] 41 " (L] on N ! N "

I Goto Standby Mode ] [ 41 t [} o N | N L]

| Perform Built In Test n 41 71 ] (U] oKW N & N

i Perform Built In Test Sequence (] 4 71 [ 01 oW N I N #

| Read Altitude Feet I 4 f 71 ] [} on N { N 1l

I Read Altitude Integer ] 4 1 719 1 (L] (U} N | N ]
SUBTOTALS 20 62 0 0 17 o 0

P632 | Missile Rodar Altimeter Hondter Auto " 15 1 25 (U] 190 ) T Y |+ N

t  Gnto Transmit Mode 1 11 22 1 [ (U] 170 N N

{ Uoto Standby Mode [ 1 4 | " [ on N |1 N 0

I Perform Built In Test ] 4 1 71 ] [} O H N | N ]

I Perform Built In Test Sequence ] 4 1 71 n (U] on N 1 N ]

| Read Altitude Feet n 4 1 71 ] 0| N N | N

I Read Altitude Integer ] 4 1 T ] [} (] N ! N ]
SUBTOTALS IR 54 0 0 17 s 0

P633 | Bus Interface Parts ] 6 | 0! o 229 | on Y i M

| Send Message Using Address No Wait n 4 [ ] 0| o N | N

{  Send Message Using Address Wait [ 51 0| ] (] on N + N N

t  Data Transfer No Wait " s | ot ] (U] (L] N | N L}

I Data Transfer Wait ] 6 | 01 L] 0t on N 1 N &

I Petform Built In Te<t ] 3 (U] [ (U] on N | N ]

I 1interface " 18 | (U] ] 6 1 on N | N ]

I Update Retry Count li [ (U] It (U] o N | N I

| ] ) [} L] 0| (U] N | N "

Send Command Wait
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TABLE A-3. CAMP PARTS SIZING LIST (3 OF 14)

TLCSC | TLCSC Name 1] Code Size I CommentSize Il Part 1 1lth I
No. | Lower Level Units i Spec | Body | Test W Spec | Body I Use N
I Send Message No Wit 1 41 0| [ (O] o N I M
I Send Message Wait " 51 (U} 0 0! on N | N
SUBTOTALS 54 0 0 6 ] 0 [
P634 1 Clock Handler ] 51 I LB | 112 1 I Y ¢+ Y n
1 Current Time n (B 5 ] L M N Y
| Converted Time ] 3 | 6 | ] o 0oy n N | N 0
I Reset Clock ] (A | L " B L | N 1 N ]
I Synchronize Clack It i | T K 0| wma N Y
I Elapsed Time " (A | 21 ] LR 1z n N | N ]
SUBTOTALS 8 32 203 0 506 0 2
P644 | Direction Cosine Matrix Operations " 5t st 41 158 I 3N N 1Y B
| DCM General Operations ] 11 (A [} 86 1 921 N | Y
I DCM Initialized From Reference I} 23 | 62 | o203 210 Y 1 Y 0
{  DCM Trapezoidal Integration n 26 71 no2081 2000 Y | N
| Reinitialize Angular Velocities ] 31 81 [ [ 129 1 N | N ]
! Perform_Trapezoidal_Integration of DCM [ 51 44 | [} 01 2% 4 N t+ N 0
I Perform Rectangular Integration of DCM [ 24 | 27 1 [] 174 1 et Y Y
I Reorthonormalize DCM ] 23 331 [ 169 1 184 0 Y | Y "
| Frame Misalignment fl 29 ! 18 1 o188 | 1940 Y | Y ¥
I Aligned DCM Matrix 1] 291 26 | no186 1 230 Y 1Y
| DCM From Quaternion ] 26 | 71 o167 930 Y t Y
I Compute First Row from Orthonormal fi 16 1 1" w4t B3 Y Y
| CNE Operations ] 29 | % | 27t 230 N 1Y M
I Reorthonormalize CNE " 1 41 ] 0\ onw Y 1 Y 0
I CNE Initislized From Earth Position " 151 28 | e 15T Y 1Y
| CNE Integration (] 14 1 21 o35 23 4 Y b Y
| Perform Trapezoidal_Integration of CNE n b 91 ] (U} oW N I Y 1
| Reinit Ang Vel For Trapex Integ of CNE [} 31 8 I fl 0| on N 1 Y
| Perform Rectangular Integration of CNE [ 5 71 ] 0l on N + Y &
I Alignment Pants 1 18 1 21 o101 2080 Y I Y
| Frame Misalignment of ONE ] 41 71 ] 0| o8 N | Y 0
| Aligned CNE Matrix ] 41 71 [l 0! [} N t Y ]
I CNE From Quaternion " 13 1 1" ] 140 | 160 1 Y | Y 1
! Compute CNE ] 31 6 | n 0| ok N ) Y
| Compute Fir«t Row of CNE Fror. Orthonormal I 2| 51 ] 0! on Y | Y 0
I CNE Initislized From Reference 0 81 17 1t ] (U] on Y i Y 0
SUBTOTALS 339 461 541 2,297 2982 15 22
P651 ! Kalman Filter Common Parts [] g 1 6 | a6 1 16 1 &5 1 Mo Yo
| State Transition And Process Noise Matrices [] | [ I | ] | n
{ Manager it L1 | (LI} ] 142 1 140 W Y 1 h | L]
| Initiatize ] (| [ | ] (U | a1 m N ] ¥ B
| Propagate i} 31 m i (] no 13 8 ] 1 Yy ™
I Get_Current L} L | | n o 0 B M ! Y "
| Propagated_Phi " I 5 ] nrosmm O NOI¥ N
t  Error Covariance Matrix Manager ] 15 1 L | ] L e Y | Y N
t Initialize ] 1 51 ] LU LI | N | ¥ ]
| Propagate " e 6 i L] L] aR i M | ¥ "
I P " [ LI L] LU ma N 1Y M
{  State Transition Matrix Manager h L B I n 85 1 1o Y | Moon
| Propagated_Phi ] (| L il i L] N | M (]
| Initialize ] (] 51 ] LU | T30 N 1 N "
! Propagate " (I | 31 ] LU | L L | N ] N L]
SUBTOTALS 7 85 406 34 1,279 3 9
P652 | Kalman Filter Compact H Pans ] LI 25 1 462 0 136 | 69 H N + Y ¥
| Compute Kalinan Gain " 19 1 18 1 ] 96 | 100 W Y | Y "
| Update Error Covarirnce Matrix ] 22 ) 12 1 1} 96 | 9N Y | N
I Update State Vector " 20 131 [ 95 | 94 Y 1Y N
I Sequentially Update Covariance Matrix and Siate [ | I ] | [ | [
! Vector " 30 1 28 0 " "7 1 134 1 Y I N [
I Update ] 6 | 24 | " [ ] 104 @ N | N "

130



TABLE A.3. CAMP PARTS SIZING LIST (4 OF 14)

TICSC | TLCSC Name " Code Size I’ CommentSize # Part | 1ith I
No. | Lower Level Units I Spec | Body | Test N Spec | Body N I Use I
t  Kalman Update n 44 1 2t [T Y A | 1628 Y | N 0
| Update ) 8 1 23 1 I 0| HrH N + N 8
| Update Error Covariance Matrix General Form " 29 1 171 [ 123 | 128 1 Y | Y
SUBTOTALS 178 156 462 674 938 6 3
P653 1 Kalman Filter Complicated H Parts fl LI 2100 451 0 130 | 2K N Y W
| Compute Kalinan Gain ] 3o 20 | [} 113 1 123 ¢ Y | Y 0
! Update Error Covariance Matrix L} 251 13t L] 110 | "3l u Y | N [}
I Update State Vector f 26 1 14 1 noo108 1 1o vy 1+ Y 0
| Sequentinlly Updste Covariance Matrix and State ] ! | " [ ] I L
| Vector ] 40 1 21 t 134 0 1% 04 Y + N 0
I Update " 6 | 24 | ] (] 068 N | N
| Kalman Update n 53 1 20 [} 161 | 182 0 Y | N (]
| Update " 71 21 [} 0| nmzauan N | N 0
| Update Error Covariance Matrix General Form L] 35 171 [ 126 | 1268 Y Y ¥
SUBTOTALS 222 162 437 749 1,028 6 3
P661 | Waypoint Sicering " 131 28 1 1022 0 176 ) 108 h N | Y &
| Distance to Current Waypoint " 151 1" [ it ne & Y ! N 1
| Compute Tumning and Nontuming Distances " 12 1 14 ) ] 9% | 1290 Y + Y
! Tum Test Operations [ S| 14 1 L] 8 1 93 Y t+ Y
| Stop Test " 4 | 13 1 " 0t 1o # N | Y []
| Start Test [ 4 | 131 L] (U] 14 N Y N
! Steering Vector Operntion: ] 22 1 40 N0 170 Y 1 N M
I Initislize ] 12 1 4a ] (U] 174 W N 1 N ¥
| Update [] L] 24 | ] 0| 1son N 1 N #
I Steering Vector Operations with Arcnin n 24 23 1 o174 1670 Y 1Y 0
I Initialize " 12 1 40 | ] (] 7t N 1Y N
I Update ] 8 i 23 ] 01 I N Y N
I Compute Tum Angle and Direction ] 18 1 24 | L] 116 1 Is5nh Y | Y
I Crosstrack and Heading Error Operations n 37 B N8 60 Y 1Y N
| Compute When not Tuming n 6 | 23 [} 0t 18508 N | N
I Compute ] 12 1 36 | ] 01 1ss8h N 1+ N I
I Computc When Tuming n 1" a1 L] [} 28 N 1Y
I Distance to Current Waypoint with Arcsin " 19 1 [ I [ 17 1 150 0 Y t Y 1
SUBTOTALS 229 426 1,022 1.056 2,582 11
P662 | Autopilot ] 5| 6 1 2553 1 146 | 64 ¥ N Y W
| Integrat Plus Proportional Gain ] 12 1 71 s 100+ Y | N f
[ Integrate " 1 5! (] 01 141 0 N ! N ]
t  Update Propertionnt Gain " 1 5 ] (U] mzan N + N
| Pitch Autopilot n 47 ) 311 o233 1438 Y 1+ N
I Initalize Pitch Autopilot " 51 21 [} [ 138 N | N 0
{  Compute Elevator Command " (L] 23 | ] 0| 151 0 N t N 0
| Update Pitch Rote Gnin ] 0 b ] 01 89 I N | N "
| Update Acceleration Gain " (] 51 # (U] 99n N |+ N
I Update Integrator Gain L] 0 s | [ 0| 9 N N | N #
| Update Integrator Limit ] 01 5 ] L] 9| N 1 N N
| Update Proportional Gain " 21 71 L] 01 9 N | N »
I Latera! Directional Autopilot " 64 | 59 1 o392 1 210 Y | N
| TInitislize Latersl Directional Autopilot [ 10 1 38 | n [} 207 | N | N
| Compute Aileron Rudder Commands ] 91 42 L] 0 230 1 N ! N
| Update Aileron Integrator Gain ] 2 | 6 ! [ 01 96 N 1+ N %
I Update Aileron Integrator Limit ] 21 71 ] 0| 99 N N | N
| Update Roll Command Proportional Gain " 2 6 | ] ot 97 N ! N It
! Update Roll Rate Gain For Alleron ] 21 6 | " 0! 99 H N | N #
! Update Yaw Rate Gain For Aileron [ 2 6 | " [ ] 91 M N I N ]
| Update Rudder Intcgrator Gnin ] 21 6 ! ] (U] 98 N ! N ]
! Update Rudder Integrator Limit [ 21 71 " (U 98 # N | N
I Update Feedback Rate Gain For Rudder ] 21 6 | ] (U] 91 W N | N ]
1 Update Roll Rate Gain For Rudder " 2 6 | ] 0 91 1l N | N ]
I Update Acceleration Proportional Gain " 21 6 | [ 01 9 It N | N
SUBTOTALS i 320 2,353 740 2098 3 [
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TABLE A-3}. CAMP PARTS SIZING LIST (S OF 14)

TLCSC | TLCSC Name " Code Size . CommentSize Il Part | 1ith 1
No., t Lower Level Units # Spec 1| Body | Test N Spec | Body I I Use 1
P671 | Air Data Parte ] 91 23 ) 288 1t 90 | 610 N | N
| Compute Outside Air Temnperature n 16 | 91 ] 100 ) YN Y | N )
| Compute Preseure Rotio n 12 1 1 [} 9 | %0 n Y | N N
| Compute Mach " 12 1 6 | ] 95 ! 94 Y 1 N i
! Compute Dynamic Pressure it | 91 (] 8s | 84 Y o N
t  Compute Speed of Sound ] 13 1 71 " 91 1 93 N Y ! N
{  Barometric Altitude Integration " 19 1 LI ] 1ns | oa n Y | N I
| Compute Baronietric Altitude ] 41 27 | " (U] 21 N O N
SUBTOTALS 87 m 288 578 690 6 (4
P672 | Fuel Control Parts ] 41 6 | 402 R4 | 70 N | N
I Throttle Command Manager " 20 | 62 | ] n7T A0 Y ) N ¥
I Compute Throttle C d ] 41 17 ] 0| nrn N ! N 1]
| Update Mach Error Limit " 2. s ] 0! Bl H N N 1
I Updnate Mach Error Integrol Limit " 2 6 | " 01 L7 2 I B N
| Update Throttle Rate Limit " 21 6 1 ] 0| 821 N | N
I Updote Throttle Command Limits (] 3 g | ] 01 84 I N [ N ¢
{  Update Mach Error Guin 1 2 s | " 01 80 I N I N L]
I Update Throttle Bandwidth " 24 6 | ] 0| 82 1 N 1 N ]
SUBTOTALS kY 118 402 17 819 [
P61 I Coordinate Vector Matrix Algebra ] 10 17 ) 858 Il 109 | 9 N | Y []
| Matrix Operations ] LI 20 ] 101 | 9 H N 1 N "
[ L] 2 16 | [] 0! Ton Y N
Lo n 2 16 | n 0t Ton Y | N
[ n 2 16 | " 0| 70 Y N
[ ] 21 16 | n 0| 70 Y | N
I Set_to_ldentity Matrix ] [} 6 1 (] (U] 50 0 Y ! N ]
| Set to_Zero Matrix ] P 6 | [] (] ston Y ! N ]
I Vector Scalnr Operations " 14 1 91 L] 135 1 07 h N | Y 1
1. ] 2 10 1 n 0 st Y | Y
| Sparse_X_ Vector_Scalar_Multiply ] 3 11 ] 0| 121 0 Y | N []
[ ] 21 10 1 ] 01 nmon Y Y o
| Matrix Scalar Operstions " 14 91 n 116 | 6 " N I N
[ ] 2 16 | ] ot 720 Y ! N ]
o ] 21t 16 | [] 0| na Y ! N
1 Cros< Product ] 14 1 41 ] 128 ) A ) Y 1 Y &
I Matrix Vector Multiply ] 16 1 21 fi 124 | 74 0 Y | N ]
I Matrix Matrix Multiply " 14 | 391 ] 110 | R Y N
| Vector Operations " "ot 21 ) ] 130 | 165 W N | Y 0
I Sparse_Right_XY_Subtract ] 2t 10 1 L} (U] 1"mn Y ! Y
Set_to_Zero Vector ] 11 51 ] o 98 1 Y | N ]
e [] 21 10 | " 0! 15 0 Y | Y
[ ] 2 ) 10 ] (L] 14 Y | Y ]
I Vector_Length ] 11 51 L] (U] n Y ! N []
| Dot_Product ] 21 10 1} ] 0| nzou Y t Y "
| Sparse_Right Z_Add L 21 10 1 L} (] fzn Y 1 Y
I Spare_Right_X _Add n 21 10 ¢ [ 0t moae Yy N
SUBTOTALS 126 343 838 844 2,407 22 10
P6R2 | Qeneral Vector Matrix Algehm L] 331 43 1 37921 “7 17701 N Y W
| ABA_Trans_Dynam_Spare_Matrix_Sq_Matrix ] 16 | 50 9 ] 133 | 148 4§ N | N
I ABA_Transpose ] 31 12 t ] 0| 6N Y i N "
| ABA_Trans_Vector_Sq Matrix L} 16 | 331 ] 121 | 191 N | N ¥
| ABA_Transpose [ 2 1 " 0| 60 Y | N i
| ABA_Trans_Vector _Scalor ] 14 1 4 ) n 120 | 164 0 N | N
! ABA_Transpose L} 21 10 ) (] [/ 2] 6l Y i N ]
| Column_Matrix_Operations [ 12 1 71 [ 123 ) 100 N ! Y
I Set_Diagonal_and_Subtract_from_Identity ] 31 17 1 ] (U] 91 0 Y | Y
| ABA_Transpose " 9 | 33 it (L] 121 it Y | N ]
t ABA_Symm_Transpose ] g 1 kYA ] 0t 133 0 Y ! Y [l
I Dot Product Operations Unrestricted ] 131 9| ] 131 1200 N | N
I Dot Product " 21 19 i Il 0 102 1 Y i N ]
t Dot Product Opemtions Restricted [l 13 ) 14 | I 1R s H Y | N
| Dingonal 7ull Matrix Add Unrestricted ] 15t 121 (] 149 | 18 N | N ”
[ ] 21 KLEN ] [ ] 135 h Y i N ]
| " 101 2t ] H2 1 103 0 Y | Y ]

Diagen .1 Full Matrix Add Restricted



TABLE A-3. CAMP PARTS SIZING LIST (6 OF 14)

TLCSC | TLCSC Name ] Code Size It CommentSize I Part | 11th 0
No, | Lower Level Units W Spec | Body | Test I Spec | Body I I Us |l
{ Matrix Scalar Operations Constrained 1 15 1 51 1 135 4 0 N 1 N 0
| ren n 2 14 n 0 T Y o+ N O
[ [} 21 14 | " o! 109K Y 1 N ¥
I Diagonal Matrix Scalar Operations [} 15 1 11 [ 182 | mue N &Y
[ ] 2 I8 [} 0| 04 0 Y 1Y K
[ (] 2t 18 [ 0 974 Y + N ®
| Matrix Vector Multiply Unrestricted ] 21 10 1 no215 1 1498 N I N
[ ] 21 31 [ 0| 133 4 Y | N It
I Matrix Vector Multiply Restricted " 19 18 ) noo252 1 1210 Y | N
! Vector Matrix Multiply Unrestricted n 2t 10 ¢t W 2731 1e0n N t N
| ren [} 21 271 " 0| 6nh Y | N
| Vector Matrix Multiply Restricted [} 19 1 16 ) N 254 | 1304 Y | N
I Vector Vector Transpose Multiply Unrestricted it 2 1 10 ! i 153 1 136 8 N | N 0
[ fn 21 28 n 01 9 0 Y + N 0
| Vector Vector Transpose Multiply Reatricted fn 16 | 16 1 L] 136 1 M3 Y + Y W
I Matrix Matrix Multiply Unrestricted (] 25 ni N 266 1 4798 N 1 N O
| e ] 21 4 1 [l 01 48 Y + N
| Matrix Matrix Multiply Restricted ] 18 I 201 240 1 1230 Y Y 0
| Mutrix Matrix Transpose Multiply Unrestricted I 23 1 [l 150 MK N | N 1
[ [ 219 41 | [ 01 00 Y 1 N
| Matrix Mntrix Transpose Multiply Restricted ] 16 | 2t [l 131 14 nre Y 1+ oy
| Symmetric Full Stornge Matrix Operations ] | | L] | ] ! ]
| Constrained n 8 i 1519 ] 124 1 102 # N i Y
I Change Elenent ] 4 17 (] 0 niEe Y t N O
I Set_to_ldentity_Matrix [l 11 16 | ] ot+r 1w Y t N W
I Set_to_Zero_Matrix L] |} 51 ] (] B3 r Y | Y #
| Add_to_ldentity L] 11 |LI f 0! oo Y + N
| Subtract_from_ldentity [l t 28 ! " (U} B Yy 1 N 0
[ [l 21 30 ¢ [l o1l 126N Y I Y ¥
[ ] 21 30 ! " oy 1260 Y 1 N ¥
| Diagonal Matrix Operations " 13 1 47 1 ] 153 1 20008 N N i
I Identity_Mauix n | 5| [ [} 95 K Y + N
1 Zero_Matrix [} 1 5 ] [} 940 Y + N
| Change_Element [ 4| 12 1 n ot 138 Y + N
| Retrieve Element [l 31 10 1 ] (L} 218 Y + N
I Row_Slice L] 21 12 1 ] oFr I M Y | N W
I Column_Slice fl 21 121 L] 0t 1398 Y + N
1 Add_to_Identity L] 2 ) 1"t n ot My Y 1 N 0
I Subtract_from_Identity L] 2 ) (R n (] mhas vy N 0
| f 21 (A [ ey 20 Y . N
[ I 21 11 1} o+ 14n Y I N 0
| Vector Sealor Operations Unconstrained n 5 1 LI [] 142 | mu» N | N |1
I L] 21 20 L] ol 1290 Y 1 N W
[ ] 2 20 | f ot f29m Y + N N
| Vector Scalar Operations Constrained ] 14 | 5| " 139 S H N | Y
I e [} 21 11 " ot 1038 Y 1 Y
[ L[] 21 11 " ot 103 0 Y ! Y #
| Matria Scalar Operations Unconatrained ] 19 | s | L] 141 | nmer N N 1
e " 2 34 ) " 0| 1348 Y | N
T n 21 M ] [} s Y I N
! Symmetric Half Storage Matrix Operations # 12t 53 It 148 | 200 N N
I Initiolize [ 3 19 1 ] 0| 454 N | N
I Identity_Matrix ft Lt 5 n 0t 87 n Y ! N #
| Zero_Matrix i 11 51 I 0| K Y | N 1
! Change_Element " 4 14 1 ] (] 1320 Y | N
I Retrieve Element [} 3 151 ] 0| nsHE Y N 0
I Row_Slice f 21 18 1 " (] 1M W Y I N
I Column_Slice it 2 1 [ " [} 137 1 Y | N 1
I Add_to_ldentity " [ 131 ] 01 " Yy + N
| Subtract_from_Identity it ot 16 | 1l 01 43 1 Y | N
[ it 21 1" ] (U] 143 Y | N n
t o ] 21 1m ] 01 144 1 Y | N 1]
I Swap_Col " (U} 7t n [ 83 W N ! N 0
I Swap Row ] (U] T n (U] 83 It N ! N ]
I Symmetric Full Storage Matrix Operations ] f | ] | ] | ]
| Unconstrained n to [T ] 124 1 90 N i N
I Change_Element ] 41 24 ] 0 | 135 0 Y t N 1
I Set_to_ldentity_Matrix ] 11 20 | [l 01 1410 Y | N
I Set_to_Zero_Matrix ] [ S| 1] 01 89 It Y } N ]
| ] 11 22 [} [ 133 1 Y | N 1

Add _to_ldentity
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TABLE A-3. CAMP PARTS SIZING LIST (7 OF 14)

TLCSC | TLCSC Name ] Code Size 0 CommenmtSize W Pant | 1tth 0
No. t Lower Level Unita N Spec ! Body | Test H Spec | Body M I Use
| Subtract_from_Identity ] 11 40 | fl (] 174 0 Y | N
[ ] 21 48 | f [ ] 1220 Y + N |
[ ] 21 a | n 0 151 Y + N 0
! Matrix Operations Unconstrained ] 91 1n 1 ] 131 ) m3n N | N 0
[ " 2 3410 L] (U] 138 1l Yy N
[ " 21 M0 " (U] 13T Y N &
[ L] 21 14 | L[] 01 n2zHas Yy i N
P ] 21 14 | " 01 M Yy 1+ N
I Set_to_ldentity_Matrix L] 11 20 | L] 0t 14201 Y | N #
I Set_to_Zeto_Matrix [} 11 s | L] ot 97N Y 1 N ¢
e ] 2} s 0 01 101 Y 1 N 0
I Matrix Operations Constrained fi 91 9 | ] 1ns 1 9% 0 N | N
[ ] 21 15 1 ] 0 97 0 Y I N »
| i’ [} 2 15 1 L 01 9% KN Y | N
[ " 21 14 ) ] (] 97101 Y N 0
I - h 2! 14 | ] [ 970 Y 1 N
b Set_to_ldentity_Matrix L] 1 20 ¢t [l 0 1N Y + N
I Set_to_Zero_Matrix [l 1) 51 [} [ ] BN Y + N W
| Dynamically Sparse Matrix Operations [} | | ] | ] | ]
| Unconstrained H 91 9 i ] 110 1 10008 N | N 0
1 Set_to_Identity_Matrix [ 1t 20 1 n [ ] 1”3y N
I Set_to_Zero_Matrix ] 11 s [l (] %1 Y 1 N 0
| Add_to_ldentity I 1 26 | n o | 1320 Y | N W
| Subtract_from_ldentity [ [ 3] 331 " 01 328 Y t N W
[ L] 21 44 | " (L} mae Yy N
[ ] 2 “ | n 0ot " Y |+ N ¥
| Dynamically Sparse Matrix Operations Conatrained f 8! 91 " 1o | RS 0 N | N
! Set_to_Zero_Matrix ] P 51 ] 0 84 8 Y | N
I Add_to_ldentity ] [ 26 | " 0! Hnru Yy | N
t  Subtract_from_ldentity ] 11 33t L[] (] ns .y N
[ [} 21 25 fl (U] sk Y + N
[ L] 2 25 1 ] [ ] s n Y | N ¥
I Set_to_ldentity_Matrix [ [ 20 | " 0 mu Yy + N #
| Vector Operations Unconstrained ] 131 8 | ] 131 4 s H N 1 N &
e ] 21 22 | 0 [ 3] 12K Y | N
[ L] 2. 22 " (] 1240 Y | N
{ Dot_Produet ] 2 12 1 n [ 3] 1k Y + N
| Vector_Length | 11 23 1 ] (3] 49 % Y | N I
1 Vector Operations Constrained ] 131 7 L] 120 ¢ s H N 1Y
I Dot_Product L] 2! 12 1 H (] "mH Y | N W
| Vector_Length H 1 12 1 " 01 miae y N It
[ n 2 1 1 ] (] 9Tk Y 1t Y
[ " 2 1" n (U] /N Y I N
SUBTOTALS 670 2,361 3.792 5.144 14,791 97 17
P6R3 | Standard Trig I 13 79 ! 685 1t 189 | 400 N VY 0
I Arctan2 n 1" 27 1 n (] 2sr Y 1Y 8
I Sin it Pt s 1 1 [} 9K Y + N
! Sin n 11 41 " 01 o Yy ¢ N #
I Sin [ 11 4 ] o oOH Y | N #
| Cos ] 11 S ] [ ] 93N Y | N &
I Cos ] | ] 4 1 " 0| o# Y 1 N
I Cos ] 11 41 " [ o Y | N
I Sin_Con " 3 21 [l 0! 4001 Y 1 N
t Sin_Cos ] 3 26 | (] 0! 1nmHe Y + N
I Sin_Cos n 31 26 1 " [ "mnNr Y + N
I Tan n 1 54 ] 0! 9N Y I N
t Tan ] 11 4| (] (U] on Y | N
I Tan | 11 41 " (L] [ ] Y i N
I Arcsin ] 11 S| ] (U] 9t N Y 1 N
I Arcsin L | 4 1 [ [ ] el Y | N
I Arcsin [ [} 4 1 [ [ on Y | N
1 Arccor " 11 A (] (U] 91 M Y | N ]
I Arccos ] 1 4 4 " 0 o Y 1+ N
| Arccos It [} 4 " 0| on Y | N
1 Arcsin_Arccos ] 3| 10 (] [ B} 17 » Y | N ]
! Arcsin Arccos L] 3 91 ] [ ] on Y | N ]
I Arcrin_Arccos [} 3 91 ] (U] o Y | N []
} It 11t 51 ] (O} 91 Y | N ]

Arctan
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TABLE A.3. CAMP PARTS SIZING LIST (8 OF 14)

TLCSC | TLCSC Name n Code Size I CommentSize H Part 1 1ith I
No. | Lower Level Units I Spec ! Body | Test W Spec | Body # I Use 0
| Arctan n 11 41 n [ ] oN Y 1 N ¥
t Arctan L] t 41 L] [ ] oM Y t N
SUBTOTALS 47 m 683 0 956 28 ]
7684 | Geometric Operations (] 71 2t 392 0 109 | 9% HN N I Y #
| Unit Radinl Vector [ 151 21 [} 107 1 N Y 1Y R
) Unit Normal Vector " 14t 131 n 101 ) 1730 Y t N
I Compute Segment and Unit Normal Vector [] 21 1 16 | n 126 1 400 Y 1 N 0
| Compute Segment and Unit Normal Vector w/ Arcsin n 231 16 | " 130 | 13y I Y W
I Great Circle Are Length [ 14 1 2910 [} 122 1 220 Y I N N
I Compute ] 41 18t ] 01 8 N 1+ N 0
SUBTOTALS 91 114 392 386 152 L] 2
P68 | Signal Processing L} 141 I8 1 1180 0 225 0 e N 1Y
| General First Order Filter " (LI} 14 ) L] o8 | “r Y | M
1 Update Coefficients ] (O] 91 n (] YN N I N 0
t  Filter n (U] o H L] ns " N I N L]
! Reinitialize ] [N LI L] (] & N + N
| Tustin Lead Lag Filter ] 14 ) 121 ] 105 | 488 Y 1+ N
| Update Coefficients [ (] 71 " (U] 98 N (| N
t Filer f [} 12 ¢ [} [ ] 1208 N | N
| Reinitislize [ 0| 6 | [ o 778 N I N
| Tustin Lag Pilter ] 14 1 13 [ 104 | 1430 Y 1 N 0
I Update Cocfficients ] (U] 7 n 0| 9N N I N
| Filer n 0 101 [ [ ] 1260 N I N @
I Reinitialize [} 0 9 1 ] [ ] &1k N 1 N N
| Second Order Filter [l 16 1 251 " 113 ) 15648 Y 1 N
! Redefine Coefficients [ 01 17t " 0 W N 1N
I Fiter ] (] 15 L] (U] 2308 N 1 N W
| Reinitialize L] 01 8 | 0 (] 41 N | N
| Tustin Integmtor With Limit ] 16 | 26 ) [} 132 1 200 Y 1 N 0
I Update Limit " 11 51 L] 0| 109 # N ! N ]
I Update Gain " 1t 51 " [} 1008 N | N ]
| Integrate n 11 29 1 L] (L 1708 N 1 N 0
I Reset [ 2 10 | ] L] 9708 N + N
I Limit Flag Setting ] 1 5 ] 0| 7208 N t+ N
I Tustin Integrator With Asymmetric Limit ] 17 4 291 n 139 1 1608 Y | N M
| Update Limits [ 2 91 [l 0 40 N 1 N
| Update Gain ] 14 3 n 0t 67T H N 1 N
I Integrate 1 ] 36 | n 0 new N + N W
I Reset ] 21 10 1 (] [ &t h N |1 N &
I Limit Flag Setting ] [ s [} (U] 621 N t N
I Upper Lower Limiter ] 8 12t n 9t | 129 Y 't Y 0
I Update Limits ] 2 1" ] 0 9T H N I Y
I Limit [ 11 131 " 0| 21 N 1 Y
I Upper Limiter n 6 | 71 " 791 L2 I ¢ ! Y
t Updatel imit [ 1t s | n [ ] 8 K N | Y
I Limit " [ "t n 0| 94 0 N ! Y
I Lower Limiter ] 6 ! 71 ] 79 9 N Y 1+ Y
{ Update Limit It 11 6 | n 01 8 I N | Y ]
1 Limit 1 11 1o n (U] 9490 N 1 Y
| Absolute Limiter n 6 | 71 ] 80 | 107 1Y | Y
1 Update Limit " 1 5t ] (] Q2K N I Y 0
t Limit ] 1 151 0 0| NN 1Y N
| Absolute Limiter With Flag [} 6 | 91 n 86 | 2z Yy + N
I Limit Fing Setting ] 11 s | [} (U] N N 1 N H
I Limit n 11 18 | n ot 106 4 N | N #
! Update Limit # [ 5| 0 (] 95t N I N
SUBTOTALS 152 304 1.180 1.116 4721 1" 12
P6R7 | Greneral Purpose Math [] (LI} 31 1061 1 178 1| 2210 N t Y 0
| Intcgrator ] 12 91 ] 91 | nsuw Yy + N0
I Reinitislize ] 21 71 I 01 65" N t N M
| Update it 1t s fl 0| 60 I N I N ]
I Integrate n 41 11 L] 01 758 N I N 1
I Interpolate or Extrapolate ] 14 1 41 " 82 | 3 Y |+ N 0
1 Square Root [ 7t LI [ 79 1 o n y M



TABLE A-3. CAMP PARTS SIZING LIST (9 OF 14)

TLCSC | TLCSC Name ] Code Size I CommentSize # Part | (lth I
No, ) Lower Leve! Units W Spec | Body | Test Il Spec ! Body I I Use 0
I Sqrt " 11 6 | [l 0| on N 1 M
I Root Sum Of Squares [ 1n 91 ] L7 M0 Y 1Y b
I Sign n S 12 1 ] 68 | 92N Y | N
| Mean Value ] 6 1 10 1 ] 75t 99 0 Y I N 0
t  Mean Absolute Difference L] 71 19 1 [} 75t 104 0 Y I N W
| Two Way Table Lookup 0 2819 121 ] 127 1 " Y 1 N »
I Initislize [} 4 8 | It 01 ot N I N #
I LookupY [ 21 54 | (] 01 on N I N
I Lookup X (] 21 54 | n 01 ohn N | N #
| Lookup Table Even Spacing f 121 14 | 1] 130 ! 1480 Y 1 N
| Initialize " 3 7t [} [ s9 6 N | N
I Lookup ] [ 33 [ 0| foTH N | N W
| Lookup " 71 46 | n 0| o8 N | N
| Lookup Table Uneven Spacing 0 151 71 " 120 | wrn Y |1 N
I Initialize " 4t [ { ] ] (U] 60 N N | N
I Lookup n 6 1 24 | 0 (U] 94 1 N I N 0
I Lookup [} 7t 361 [} 0| 994 N I N
| Incrementor n 71 8 | ] 794 o2 N Y | N
I Reinitialize " 2 71 ] 0| AN | N I N 0
I Increment 1 11 6 [ [} ST 0 N I N 0
I Decrementor it 71 8 ] 91 1S 4 Y | N 0
| Reinitialize [ 21 71 [ 01 620 N | N
I Decrement f 11 6 | " 0| s74# N | N 0
! Running Average L] 91 91 " 83 | s N Yy t+ N W
I Reinitialize n 2t 74 fl (U] 6t N + N 0
I Reinitislize n 11 51 (] 0 $6 N t N
t Current Average ] 1t 71 L] (] 598 N | N ¥
I Accumulator L] 6 | 91 ] 71 0" Y 1 Y
I Reinitialize n 11 st It 0 T N 1Y M
I Accumulate [ (I 51 " (U] 6 N 1 Y
| Accumulate [l 21 LI n 0 63 N 1 Y 1
| Retrieve f 11 5| " [} 60t N I Y
I Change Calculator " (] LI ] 73t 870 Y | N
! Reinitialize [} 1 51 [ 0t 57H N | N
! Change ] 1 81 ] 0 7K N 1 N
| Retrieve Value L] 1 s " [} s4n N 1+ N ¥
I Change Accunlstor ] 71 12 n 86 | 90 Y + N
I Reinitialize h 11 L n 01 57 1 N I N
I Reinitialize a 21 71 ] [} 52 0 N I N
i Accumulate Change n [ 6 | " (] 6 N I N 0
| Accumulate Change ] 2 91 " [} 74 N I N 0
I Retrieve Accumulation [} 1t 5| ] (U] 4N N 1 N
I Retrieve Previous Value " 1 51 ] 01 40 N 1 N
SUBTOTALS 2 592 1,061 1,408 31629 16 6
P6sa | Polynomials L] 131 1S 1 4813 1 254 1 12900 N 0 Y 0
I Reduction Operations L] T4 4 ] 9s | 9N N I Y
1 Sine Reduction [} 1 131 fl 01 40 Y 1Y
I Cosine Reduction f bt 6 1 [l 01 M40 Y 1Y 0
I Taylor Series n 6 | L] " 129 221 N | N
I Taylor Natural Log i 8 171 [] 89 | o8 . N | N 0
| Nat Log Bterm [} 11 181 ] 01 oW Y | N
| Nat Log Tterm f [ 171 ] (U] on Y 1 N
| Nat Log 6term ] [ 16 | ] (] oHn Y I N
| Nat Log Sterm " 1) 15 [} [} on Y I N i
! Nat Log 4term [} 11 14 1 n 0t oK Y 1 N
! TaylosrLog Base N n 9t 6 | ] 9 | fnmon N | N
| Log Base N fierm " 1) 4 1 01 (i ] Y I N 0
! Log N Sterm ] 11t 4 | ] (] on N t N
I Log Base N Tierm [] 21 41 ] 01 (] Y |+ N
| Log N Tterm L] [ 41 ] [} on N I N 0
| Log Base N 6term " 21 41 f (U] on Y t N
1 Log N 6term ] 11 4 1 [l 0| on N | N
t Log Base N Sterm ] 2 4| " 0\ [} Y I N D
| Log N Sierm (] 1 4 " (U] on N I N W
| Log Base N dterm (] 21 4 " (U] on Y I N
! Log N dterm " 1t 4t ] (U] (L] N I N
I Taylor Degree Operations n 10 54 | " 151 1 20608 N | N
| Mod Cos D dterm n 11 321 ] 01 on Y I N 0
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TABLE A-3. CAMP PARTS SIZING LIST (10 OF 14)

TLCSC 1 TLCSC Name " Code Size X CommentSize N Part | fith
No. [ Lower Level Units I Spec | Body | Test H Spec | Body I Use W
! Tan D 8term [} 11 17 1 ] ot oN Y + N &
{ Mod Tan D Rierm n t s " (O] on Y | N
! Mod Tan D Tterm " it L] [] 0| en Y | N
t Mod Tan D 6term H 11 5t L] (U] on Y ' N
| Mod Tan D Sterm (] 11 51 [} (U] on Y | N W
| Mod Ton D dterm ] 11 S ] 0t on Y | N #
! SinD8term " 1 17 0 01 on Y |« N8
1 Sin D Tterm ] [ 16 | n 0| on Y + N W
| Sin D 6term ] 11 15 1 ] 0| ot Y 1 N
| Sin D Sterm [] 11 14 | n 01 on Y I N @
| Mod Sin D Sterm [ 11 34 It [ oNn Y t+ N #
t Mod Sin D Tterm L] 11 321 [ (] on Y I N
| Mod Sin D 6term " 11 30 | ] L] on Y | N n
| Mod Sin D Sterm n 11 28 | (] 01 ofll Y 1 N ¥
| Mod Sin D 4term [ 1 26 | " [ ] on Y + N 1
| Cos D Bterm [) 1 25 1 " 0\ oM Y I N
i Coa D Tterm [] [ 24 1 " (L] onr Y | N
I Cos D 6lerm ] i) 23 ) ] ot on Y | N W
[ Cox D Sterm ] 1t 221 " (] on Y | N ¥
1 Cos D dtemn ] 0 27 1 " (] onN N | N
[ Mod Cos D 8term n 11 40 1] [ ok Y | N 1
| Mod Cos D Term ] 11 kL ] [ ] o Y I N #
| Mod Con 1) 6term ] 11 36 | [} (] oN Y + N
| Meod Cos D Sterm ] [ 34 L] 0t oW Y N 0
| Sin D 4term ] (U] 19 | ] 0| 0O% N | N N
I Taylor Radian Operations fn 13t 90 | "m0 U930 N 1 N
1 Arctan R Tterm [ 11 21 " 0 o Y { N 0
! Arctan R ferm ] 11 211 " (U] oW Y t N I
1 Arctan R Sterm ] 1 20 | ] 0| on Y I N W
| Arctan R dterm n t 19 1 n 0| on Y 1 N ¥
| Alt Arctan R Rierm n 1 16 1 N (] oNn Y 1 N
' Alt Arctan R Tiemn " [ 151 ] (U] CH Y + N ¥
| Alt Arctan R 6term [} 11 141 ] 0| on Y | N &
I Alt Arctan R Sterm n 1 131 ] 0| o Y I N
| Al Arctan R dierm L] 1 12 1 ] (] on Y | N O
! Mod Sin R 6term " 11 29 | ) (U] on Y | N 0
| Mod Sin R Sterm L] 11 27 1 n ] o Y 1 N 0
| Mod Sin R 4term L] 1 251 n 0 on Y o+ N &
| Con R fterm ] 11 25t n (] oXx Y I N
| Cos R Tterm 1] [} 24 | N (] oN Y | N
| Cos R 6term ] 11 231 n 0| onN Y N 0
| Cos R Sterm ] 1 2! i 0 | oN Y t N 0
| Cos R dterm ] 1 211 i (] o# Y I N #
f Mod Cos R 8term f 1 39 1 1 (] on Y | N
| Mod Cox R Tterm " 11 371 ] [ ] oW Y I N
| Mod Con R 6term [} 11 351 ] 0| on Y + N
| Med Con R Sterm ] 11 330 ] 0t on Y | N 0
! Mod Cos R 4term f 11 3 n 01 ohN Y I N &
| Ten R 8ierm ] | 16 | ] 0| L} Y | N
| Mod Tan R 8term ] | 5| ] (U} on Y t N
| Mod Ten R term ] 11 S| ] (L [} Y | N
| Meod Toan R 6term ] 11 s " 0| oW Y I N M
| Mod Ten R Sterm [ i 51 " 0| oN Y 1 N
| Mod Tan R dterm " 1 51 [ 0| oK Y I N 0
| Arcsin R Rterm ] [ 16 | ] 0 oM Y t N
| Arcain R Tierm ] 11 151 ] [} [ ] Y | N
! Arcsin R 6term ] 11 141 1] 0! on Y I N 10
| Arcsin R Sterm " 1 131 [} [ ] on Y 1 N
] Arccos R 8term ] 11 16 1 ] [ o Y t N
1 Arccos R Tterm (] 1 15t ] [ o Y | N
| Arccos R 6term [ 11 14 n 09 on Y 1 N #
t Arccos R Sterm " il 3t L] 0| (U] Y ! N #
| Arcton R fterm ] 11 23 " 0| (U] Y i N N
t Sin R 8ierm ] 11 16 | " 01 on Y | N
1 Sin R Tterm ] 11 15 | ] 01 on Y | N
| Sin R 6tenn 1} 14 14 | 0 (U on Y I N W
| Sin R Stern " 1t 13 1 L] (U] (] Y ! N 1
| Sin R 41em ] 11 12 1 L] (L} (L] Y | N It
| Mod Sin R fterm " o M ] 09 on Y | N
! Mod Sin R 7term ] 11 3 fi (U} (L] Y | N i
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TABLE A-3. CAMP PARTS SIZING LIST (11 OF 14)

TLCSC | TLCSC Name ] Code Size I CommentSize H Part | 1lth
No. | Lower Leve! Units H Spec | Body | Test H Spec | Body |l I Use
| Modified Newton Raphson (] 3 8 | n 76 13N N Y
| SqRt f 41 B ] (] on Y Y
| Newton Raphson ] 3 91 ] 76 1 139 N | N 10
I SqRt ] 4 REI] ] [ ] on Y 1 N
| System Functions n 15 1 10 1 ] 721 624 N | N 1
! Semicircle Operations n 13 | 21 ] 114 | 41 N | N 1
| Sin n 11 171 n 0 i 4l Y 1 N
| Cos 0 11 71 [} [ ] fHa Y | N
i Tan " 11 8| n o) 116 1 Y | N
| Arcsin [ 11 8| I (U] 1228 Y 1 N &
| Arccos (] o L] ] o1 129 1 Y ! N
| Arctan " 11 71 " 0! 1228 Y t N ¥
| Degree Operations ] 71 A4 fn 90 | 1228 N 1 N N
1 Sin " 11 8| ] [ sk Y | N
| Cox L] | 8! " o | 107 0 Y | N
! Tan ] 11 L] n [ ] o8 Y | N
J Aresin [} 11 L] n [} mow Y 1 N N
| Arccos [ 11 LI [} (] 1oy Y 1IN W
i Arctan (] 11 74 n 0 wsHh Y 10N 0
! Square Root [} 6 | L] ] 74 1 138 Y 1 N 0
| Sqrt ] 11 L} " 0t 1088 N | N
I Basc 10 Logarithm [} 71 81 " 731 103k Y 1t N @&
| Log 10 ] 11 L] ] ot 108 K N t N 0
| Base N Logarithm 1l 1" 141 [l 97 ! 15618 Y + N
| Log N ] | ] 101 [ [} 1256 N 1 N ¥
I Radian Operations [} 71 2t | [} 90 | 4 N I N
| Sin L) t 71 n [} 48 Y + N @
! Cox ] 1t 71 (] o | 104 1 Y | N
| Tan ] 11 8| ] [ ] 1084 Y + N
| Arcsin ] 11 LI ] 01 110 # Y | N 0
! Arccos [} 1 L] [] 01 now Y t N
| Arctan n 1 71 n [} 40 Y 1 N W
| Cody Waite " 41 61 " 50 | "8 N 1 N O
I Cody Natural Log # 8 141 [ 82 | 14 & N I N %
| Nat Log [ 1t 3N (] [} oW Y I N
! R ] [ 6 I ] (] oM N 1 N 1
| Defloat n 04 42 1 N [} o N 1 N
| Cody Log Basc N ] 91 6 | ] 91 | 10901 N 1 N W
! Log Base N [ 21 4t ] 0! on Y + N
| logN ] 11 41 it (] oK N I N
I Continued Fractions n 31 51 it 50 | %0 N I N 0
I Continued Radian Op ] 91 41 fl 98 | 03K N [ N 0
i Tan R 1l 3t 20t [ [ ] o Y | N
| Arctan R ] 31 25 1 " (] ou Y I N I
I Fike ] 3 51 ] 50 1 oN N 1Y
I Fike Semicircle Operations ] 8 | 10 1 n 91 | 12808 N I Y 0
| Arcsin S 6term [} [ kI it 0 on Y t Y &
| Arccos S 6term [ 11 321 ] (] on Y + Y
| General Polynomial [} 16 | 41 o126 1 1348 N t N ¥
| Polynomial [ 1 12 1 n (] on Y 1 N
| Hant L] 4} 6 1 ] 55 1 82 N H N n
| Hart Radian Operations (] " 9! [ 97 | 1228 N | N
| Cos R Sterm [l 1 22 1 0 (] on Y I N
| Hart Degree Operations ] 91 91 (] 95 | B3N N | N
| Cos D Sterm n 1 21 f (] on Y I N
| Hastings ] 51 6 1 ] 55 1 831 N | N 1
! Hastings Degree Operations L] 10 1 181 L AT | 1608 N + N
| Sin D Sterm n 1 14 1 fh [ oW Y I N
t Sin D dierin n 1 13 1 1] [ ] on Y I N
| Cos D Sterm [} 1t 16 1 f [ oHn Y I N
! Cos D 4term ] 11 151 [} 01 o Y 1 N
t ‘Tan D Sterm ] 1 121 [l [} oNn Y 1+ N
! Tan D dterm [} 1t 121 I (U] oNn Y 1IN
I Hastings Radian Operations I 12 1 46 | [l 140 216 N ! Y |
| Cos R Sterm " 11 16 | ] [} on Y Vv Y
1 Cos R 4term L] (] 15 1 1] 01 or Y I Y 0
| Tan R Sterm [ [ 1 [} (] on Y 1 Y
[ Tan R 4term ] 1 121 ] 0| on Yy ! Y
I Arctan R 8term It [ 18 1 ] (U] o Y | Y
| Arctan R Tierm ] [ ] 171 ] 0 on Y I N W
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TABLE A-3. CAMP PARTS SIZING LIST (12 OF 14)

TLCSC | TLCSC Name L] Code Size N CommentSize % Part 1 11th )
No. | Lower Level Unitx N Spec | Body | Test N0 Spec | Body M I Use )
| Arctan R 6term L] [ 16 | L] (U] oN Y Y 0
| Mod Arcten R 8term ] 11 28 L] o oN Y | N
! Mod Arctan R Tterm " t 27 " (U] on Y 1 N
| Mod Arctan R Gterm " 1 26 | [] [ ] on vy | N 0
| Sin R Sterm [} 11 14 1 ] 01 oW Y | Y #
{ Sin R 4term ] 11 13 ) 0 01 on Yy ! Y
| Chebyshev n 5t 71 ] 59 | 7K N 1 N W
| Chebyshev Radian Operations " 10 1t L] 103 | 1258 N & N 0
| Sin R Sterm [ 1 26 1 [} (U] oN Y | N
! Chebyshev Degree Operntions fl 91 "1 [} 91 12648 N | N &
| Sin D Sterm n 1 26 | ] 01 oW Y 1 N
I Chebyshev Semicircle Operations " 91 101 ] 91 | 1258 N | N
1 Sin § Sterm n 1t 26 ! ] [ ] on Y | N
SUBTOTALS 424 2,893 4813 3,073 6.513 133 8
P691 | Abstract Data Structures [ 8 | 11 3344 0 185 1 tos 8 N | Y
| Bounded Stack " 21 | 91 n 138 | 1M Y | N
I Clear_Stack " 11 5 " 0! 938 N | N
| Add_Element ] 21 121 [} [ ] 1378 N N &
| Retrieve_Element ] 21 12 1 [] 01 1398 N + N
| Peeck ] 1t 10 1 n [ | e N § N
| Stack_Status ] 11 14 1 ] [ ] 1254 N t N N
I Stack_Length n 11 51 L] (] 938 N | N
| Unbounded Stack n 25 ) 10 1 ] 152 | " Y 1 N
I Initlalize " [ 16 | ] [ ] 1248 N | N &
| Clear_Stack ] 11 L] ] [ 3] 420 N 1 N
I Free_Memory ] 11 131 ] (] 10ty N I N
| Add_Element ] 29 16 | ] (U] 148 8 N | N
I Retrieve_Element ] 21 181 ] 0! 5o N 1 N 0
I Peck n 1l 12 " (] 1328 N ) N &
| Stack_Status " [ ] 14 ) " 0! fman N t+ N 1
| Stack_Length ] 11 91 [} (] s i N I N
| Dot_Next L] 11 L] ] [ ] 87 H N I N |
| Set_Next ] 21 6 | " 0! %N N | N |
| Unbounded FIPO Buffer " 25 ) 52 1 " 160 | 23 Y 1 N
I Initialize_Buffer L] 11 16 ) ] (U] N 1 N
I Clear_Buffer [] 11 174 L] o1 1268 N | N
| Free_Memory L} 119 121 ] 04 1320 N | N
I Add_Element n 21 16 1 [ ot 144 8 N ' N I
I Retrieve_Element ] 21 18 1 ] (] 1568 N | N
b Peek n 1 121 ] [ ] 124 8 N | N
| Buffer_Status fl i 141 f 0! 106 1 N | N
I Buffer_Length 1] [ 9! ] 0t o8N N 1 N W
I Dot_Next " (B 51 " 01 820 N 1 N
I Set_Next ] 21 6 | [] 01 RO N t N
| Nonblocking Circular Buffer n 20 1 91 ] 147 | 440 Y 1Y ¥
I Clear_Buffer (] 1 101t n [} 100 N N ! Y &
| Add_Element ] 21 26 | ] [ ] 124 N Y 0
I Retrieve_Element ] 2 19 1 [ 0 i M4 N Y
| Peek ] ot 17 1 [} (] 450 N Y
| Buffer_Status it 1t 14 1| ] 01 123 o N I Y
I Buffer_Length f 1 LI ] (] 921 N | Y |
I Unbounded Priority Queuc ] 28 | 521 " 174 | 2520 Y | Y 0
| Queuc_Status ] | 14 1 " 01 106 1 N ' Y i
I Queue_Length " 11 91 " 01 M3IAN N I Y
! Dot_Next n [ s [} oI g7 n N t+ Y
I Set_Next [ 2 6 | " 01 8 H N 1 Y I
I Initialize [] 11 16 | [ (U] nr e N Y
| Clenr_Queue L] 11 18 | [} 01 14 0 N | Y
I Free_Memory " 11 121 ] (U 11 4 N | Y
| Add_Element 0 3t 29 | 1 0| 1201 N Y
I Retrieve Element ] 21 (L [ (] 143 0 N | Y
I Peek n 11 12 1 [} (U] 1Rt N Y
| Bounded FIFO Buffer [ 21 91 ] 168 | “sny i Y @
i Peek " [ 18 1 " [} 41 N Y M
! Buffer Status [ 1 151 ] [0 1248 N 1t Y D
| Buffer_Length ] 1 b ] oI 92 N N | Y |1
| Clear_Buffer It it 10 | ] 0t 9 1l N ! Y |
I Add_Element ] 21 19 | [} 0t 143 0 N | Y
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TLCSC |

No.

TABLE A-3. CAMP PARTS SIZING LIST (13 OF 14)

TLCSC Name g
Lower Level Units

Spec

Code Size

Body

Tent

11th
Ure

]
n

Retrieve_Element
Available Space List Operations
New Node
Save Node
Save List

19

6
17
10
12

RN ]

ZZ2ZZZ

< e

SUBTOTALS

812

939

~

9

P692

Abstract Processes
Finite State Machine
Mealy Machine
Event-Driven Sequencer
Time-Driven Sequencer
Sequence Controller

w N oo AN § ooQooON

Z2ZZ2Z22Z<

Z22ZZZX

SUBTOTALS

(=4
-]

oo oooco

oo SO0Q

P85]

Unit Conversions

Kilograms per Meter Squared and Pounds per Foot

Squared
Conversion to Pounds per Foot2
Conversion to Kilograms per Meter2
Radians and Semicircles per Second
Conversion to Semicircles per Second
Conversion to Radians per Second
Degrees and Semicircles
Conversion to Semicircles
Conversion to Degrees
Degrees and Seinicircles per Second
Conversion to Semicircle« per Second
Conversion to Degrees per Second
Seconds and Minutes
Conversion to Minutes
Conversion to Seconds
Centigrade and Fahrenheit
Conversion to Fahrenheit
Conversion to Centigrade
Centigrade and Kelvin
Conversion to Kelvin
Conversion to Centigrade
Fahrenbeit and Kelvin
Conversion to Kelvin
Conversion to Fahrenheit
Kilograms and Pounds
Conversion to Kilograms
Conversion to Pounds
Meters and Feet per Second
Conversion to Feet per Second
Conversion to Meters per Second
Meters and Feet per Second Squared
Conversion to Feet per Second2
Conversion to Meters per Second2
Gees and Meters per Second Squared
Conversion to Meiers per Second2
Conversion to Gees
Gees and Feet per Second Squared
Conversion to Feet per Second2
Conversion to (iees
Radisns and Degrees
Conversion to Degrees
Conversion lo Radians
Radians and Degrees per Second
Conversion to Degrees per Second
Conversion to Radians per Second
Radians and Semicircles
Converzion to Semicircles
Conversion to Radians
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TABLE A.3. CAMP PARTS SIZING LIST (CONCLUDED)

TLCSC | TLCSC Name n Code Size I CommentSize ¥ Part | 1lth W
Ne. 1 Lower Level Units N Spec | Body f Test N Spec | Body K I Use I
| Meters and Feet " 51 2 ] 0 on N | N 1
1 Conversion to Feet " 11 41 n (] ot Y | N 0
I Conversion to Meters ] [ 41 L] o1 oR Y 1 N 0
SUBTOTALS 141 202 961 0 [ 34 s
P852 1 External Form Conversion Twos Complement [} 351 200 4t N 2361 421 N 1 Y 0
| Scale " 21 91 ] 01 S0 Y t N
t  Unscale L] 2 LI ] 0! 40 Y oy
SUBTOTALS 4 17 u1 0 299 2 1
P80 I Quaternion Operations " 20 | 9| 194 0 163 | 720 N | Y #
{  Quatemion Computed From Euler Angles ] 15 1! 26 1 o128 0 s8¢ Y | Y 0
| Nommalized Quatemion (] 31 18 L] 65 | 1Sty Y N #
[ ] 4\ 4! ] 63 | 126 6 Y I Y 0
SUBTOTALS 22 68 194 258 475 3 2
TOTALS 3196 11,768 29,043 29,887 63,532 453 173
CODE TOTALS 16,964 29,043 95,419
GRAND TOTAL 141,428
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3. DATA BASE ISSUES

Due to the definition and nature of the parts, some difficulties arose concerning the storage of infor-
mation about parts in the data base. Parts may be TLCSCs, LLCSCs, or units. This means that counting
the code for each part can become problematical because a part is not synonymous with an Ada structure.
For example, a package may contain three parts. Obviously the specification and body for each part are
counted with the part, but what about code for the encapsulating package. Can that be allocated to each
part in the same way? The problem was solved by representing each Ada structure in the data base,
whether part or encapsulating structure, and designating whether or not an entry was a part. This allows
maximum flexibility as to parts designation while at the same time allowing all the Ada code to be
represented and counted in the data base.

Another difficulty which arose concemed the hierarchical nature of the parts. Because the parts are
implemented as a collection of TLCSCs, and the TLCSCs are packages in Ada, the parts are expressed as
a hierarchy of packages and units. In order for the parts to be represented in the data base, this hierarchy
must be represented in some way. This may be done in a relational data base, but it is somewhat
awkward. ORACLE provides a way for a hierarchy to be expressed, but in order to do so, the parent unit
of each part needed to be recorded in the data base. This awkwardness made the generation of reports
more difficult and less flexible.

Because no single field could uniquely identify an entry in the relations, surrogates were used. A
surrogate is an arbitrary field, usually a number, which is used as the prime key in a data base. The
partno column in each of the relations confained this surrogate number. The surrogate number was also
used 10 identify an entry’s parent. Because the surrogates enabled entries to be identified uniquely by the
use of only one field, the hierarchy structure was considerably simpler than if more than one field had to
be used as a prime key. The relations were also indexed to provide more speed in referencing.

4. CONCLUSIONS AND RECOMMENDATIONS

The use of the data base enhanced CAMP report capabilities in several areas. The first was the
amount of time spent on the reports, particularly editing and formatting. The time spent ediling and
reformatting the reports must be balanced against the lime spent learning the particular data base used and
then designing the data base. This learning time, however, was a one-time expenditure while formatting
and editing tasks were repeated over and over.

Report availability was also greatly enhanced by the use of the data base. Before the data base
method was used, up-lto-date reports were not often available and out-of-date reports were used because
of the time required to redo the report. With the data base method, a new up-to-date report could be
generated very quickly simply by running the report program. In addition, updates were very easy and
could be made as they occurred, rather than waiting to have enough to justify spending the time to
reformat the entire report.

The number of reports was increased by using the data base. Because the report generating language
had to be learned only once, additional reports took only a fraction of the time to write than the initial

report.
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The utilities and correlative programs also made the use of the ORACLE data base productive.
ORACLE has a full range of associated programs available with it which are extremely helpful. In
particular, SQL*Forms made the data base interface particularly easy and productive to use. Time spent
on data entry was considerably reduced and new people were able to use the interface with minimal

instruction (less than I hour).

SQL*Plus, the data definition and manipulation language, also made the use of the data base produc-
tive. SQL*Plus, based on the standard SQL language, is a very rich, yet relatively easy to use, product.
Its use made many data base tasks such as the relation definition easy. Again, productivity needs to be
measured against the time spent learning the language, but SQL is relatively standard and can be learned
relatively easily by a novice and very easily by anyone with experience with other relational data base
query languages. On the other hand, SQL*Plus has a full range of capabilities which can satisfy even the
most complex relational application requirements.

'The use of a data base for these types of report and information storage needs is highly recom-
mended. A number of lessons conceming the use of the data base came to light during the CAMP usage.

¢ Data base design should take its place with other software design tasks from the beginning of the
project. On CAMP, the use of the data base began after the project was under way. Because of
this, there was a duplication of effort when the change was made from using a hand-edited report to
a data base. To avoid this type of duplication of effort, it is recommended that a project start with
the data base from the beginning.

o Careful attention is required during the intial design and layout phase. The nature and extent of the
data already collected when data base use began constrained this phase during CAMP. As a result,
the first set of data base relations were designed with little knowledge of how they might need to be
expanded or used at a later date with other data base relations. This resulted in less flexibility and
more difficult generation of reports later on. Careful data base design at the beginning of the

project will reward the extra time spent with fewer problems later on.

¢ The use of ORACLE is recommended for this type of data base use. The CAMP project iound
ORACLE easy to use, extremely powerful, and with an excellent set of utilities and cor :lative
programs. ORACLE has the added advantage of using SQL, which is as close to a standard as
exists for query languages, and is available on a wide range of equipment.
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APPENDIX B
CATALOG ATTRIBUTES

A detailed explanation of each attribute of the CAMP software parts catalog is presented here. For each
attribute the following information is provided (as applicable):

1. The name of the attribute.

2. The data type of the attribute. The type of an attribute can be NUMERIC (e.g., Part Number is a
numeric aftribute), STRING (c.g., Part Name is of type string), SET (e.g., the Withs attribute may
have a set of one or more values), TEXT (e.g., the value of Abstract is of type text), or
ENUMERATION (e.g., the Mode attribute must have a value of bundled, unbundled, or

schematic).
3. The domain of an ENUMERATION type.

4. The status of the attribute. This is either REQUIRED (i.e., all parts must be supplied a value for
this attribute) or RECOMMENDED (i.e., the attribute is recommended for completeness but not

required).

5. A description of the attribute’s meaning, including mention of any default values and the source

(user or system) of attribute entry.
6. An example of a valid value is shown for each attribute.

The catalog attributes are enumerated in Figure B-1.
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GENERAL

Part Number Revision Number
Part Name Functional Abstract
Mode Taxonometric Category
Class Keywords
Last Change Date of Entry Project Usage
Government Security Classification (part) Corporate Sensitivity Level (part)
Government Security Classification (entry) Corporate Sensitivity Level (entry)
Remarks

DEVELOPMENT
Design Issues Revision Notes
Development Date Developer
Development Status Developed For
Requirements Documentation Design Documentation

USAGE

Location of Source Code Access Notes
Withs Withed By
Implemented By Implements
Built From Used to Build
Sample Usage Hardware Dependencies

Restrictions

PERFORMANCE
Source Size/Complexity Characterizations Fixed Object Code Size
Timing Accuracy

Figure B-1. Catalog Attributes
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Y e ——— Numeric
STATUS ..ot Required
DESCRIPTION ............. Part Number is an integer which together with the value of the Revision Number

attribute uniquely identifies a catalog entry. The Part Number is not required to
be unique (i.e., the same number would be used for all revisions of a given part).
The Part ID code will consist of the letter P followed by the Part Number
hyphenated with the Revision Number, and will be generated by the system. The
part number should not contain leading zeroes.

EXAMPLE.................... 16

ATTRIBUTE NAME ...... Revision Number

T I E—————————— Numeric
STATUS......covvvvcvvninnnn Required
DESCRIPTION ............. The Revision Number is an integer used to uniquely identify revisions of a par-

ticular part. The revision number will be generated by the system. The first
entry will always to be 0, with subsequent revision values incrementing by 1.
This value together with the Part Number form a unique key called the Part ID.

EXAMPLE....................§

ATTRIBUTE NAME ...... Part Name

TYPE ....covvrvrceriinanns String
STATUS ....coveinvetrvnrnnnn Required
DESCRIPTION ............. A valid Ada identifier which provides a brief, and not necessarily unique,

descriptive name for a part (e.g., a package may have more than one body, in
which case both bodies would have the same name but they would be uniquely
identifiable by the Part ID).

EXAMPLE..................... Missile_Launch_Platform

ATTRIBUTE NAME ......Government Security Classification of Part

TYPE ......ooceoeveveiviceannnnn, Enumeration

DOMAIN...................... {Unclassified, Confidential, Secret, Top_Secret)

STATUS .....ccoveeverreenen Required

DESCRIPTION ............. Specifies the DoD security classification of the part. The default value is Un-
classified.

EXAMPLE..................... Unclassified

ATTRIBUTE NAME ......Corporate Sensitivity Level of Part

TiY/ 2 Epoms———— Enumeration

DOMAIN. ............cccc..... (Unclassified, Private, Sensitive, Proprietary)

STATIU/SjRomm——. Required

DESCRIPTION ............. Specifies the corporate sensitivity level of the part. The default value is Unclass-
ified.

EXAMPLE..................... Sensitive
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ATTRIBUTE NAME ......Government Security Classification of Catalog Entry
TYPE ..o Enumeration

DOMAIN..............uun.... (Unclassified, Confidential, Secret, Top_Secret)

STATUS.......cconevveiinne. Required

DESCRIPTION ............. Specifies the DoD security classification of a part’s catalog entry, this may be
different from the security classification of the part itself. The default value is
Unclassified.

EXAMPLE............ccconn.. Secret

ATTRIBUTE NAME ......Corporate Sensitivity Level of Catalog Entry

L { i Enumeration

DOMAIN..................... (Unclassified, Private, Sensitive, Proprietary)

STTATIULSS—— Required

DESCRIPTION ............. Specifies the corporate sensitivity level of a part’s catalog entry; this may be

different from the corporate sensitivity level of the part itself. The default value
i5 Unclassified.

EXAMPLE..................... Proprietary

ATTRIBUTE NAME ...... Taxonometric Category

TYPE ......cccooveirinnnns Concatenation of enumeration values

DOMAIN ... see Figure B-2

STATUS.........ooevinivannne Required

DESCRIPTION ............. Specifies the taxonometric classification of the part. This can be a multi-leveled
specification, using periods to separate the different levels of classification.

EXAMPLE.................... Primary Operation.Navigation

ATTRIBUTE NAME ...... Functional Abstract

TYPE ..., Text

STATUS.......ocvviirenn Required

DESCRIPTION ............ A brief (no greater than 500 words) explanation of the purpose and func.tionality
of the part. This attribute is intended to provide the user with a quick overview
of the unit.

EXAMPLE.................... The bounded FIFO buffer performs buffering of data in a first-in first-out fash-

ion. The part will limit the number of items which may be in the buffer at any
one time and will raise an exception if an attempt is made to add to an already
full buffer. The part can be used to buffer incoming Mission Data, TERCOM
processing, or DSMAC updates. In addition, this part can be used for message
passing between components of a system.

ATTRIBUTE NAME ......Design Issues

TYPE ......ocovvivrnirivcanne Text
STATUS.......coovvirnininens Recommended
DESCRIPTION ............. This attribute should briefly discuss the rationale for design decisions such as the

selection of data structures and algorithms to be used. The user should be
referred to extemal design documentation for a lengthy discussion of the issues.
This field should contain information on the use of pragma inline for the part
under consideration.

EXAMPLE..................... Since the telemetry sampling rate changes depending upon the values of the input
data, the quantity of data to be buffered is impossible to know in advance. For
this reason, dynamic buffers have been used for telemetry data storage buffering.
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1 A3 ccooerooeoeraromonoer Text

STATUS....ovvverieernenne Recommended

DESCRIPTION ............. This attribute should briefly describe the reason for revision, and any changes in
functionality that have occurred as a result of the revision.

EXAMPLE..................... The matrix multiply of the H and J matrices was changed. A diagonal matrix

multiply routine is now utilized rather than the more general matrix multiply
routine previously used. This was found to be appropriate for every case and the
change does not aftect functionality, but results in a more efficient part.

ATTRIBUTE NAME ......Class

TV B Ep—————— Enumeration

DOMAIN ... (Package Specification, Package Body, Task Specification, Task Body, Sub-
program Specification, Subprogram Body, Generic Package Specification,
Generic Package Body, Generic Task Specification, Generic Task Body, Generic
Subprogram Specification, Generic Subprogram Body, Generic Formal Part,
Context Clause)

STATUS....ccocvvieneirnnnen Required

DESCRIPTION ............. This attribute specifies the type of the part. The word rype is not used for this
attribute in order 1o avoid confusion with Ada types.

EXAMPLE..................... Task Body

ATTRIBUTE NAME ......Keywords

A& ccoromorranrrayoererrer Set of 0 or more Strings

STATUS .....ccoovniiivnnrninne Recommended

DESCRIPTION ............. This attribute contains one or more keywords or phrases that can be used to

locate a part. Keywords narrow the search for a desired part. Keywords can be

used to describe functionality of the part, or task area. Keywords are entered for

the top-level specification only, although they apply to the lower levels as well.
EXAMPLE...................... (autopilot, navigation)

ATTRIBUTE NAME ......Mode

L { i PR Enumeration

DOMAIN ...............c....... (Bundled Code, Unbundled Code, Schematic)

STATUS ...ccoocrvvvirvirnninen Required

DESCRIPTION ............. This attribute indicates the part’s usage mode. Bundled parts come complete

with an environment. Unbundled parts consist of the part itself; the user must
establish the environment in which it is to be used. Schematic parts must be
constructed from the constructors provided.

EXAMPLE..................... bundled code

ATTRIBUTE NAME ......Last Change Date of Entry

T Eps—— String

STATUS....ovvvirviinninns Required

DESCRIPTION ............. This attribute provides the date that the catalog entry was last changed; it will be
supplied by the system.

EXAMPLE................... 07-30-85
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ATTRIBUTE NAME ......Development Date

TYPE ..., String

STATUS........cooovvvrrrrnan. Required

DESCRIPTION ............. This attribute provides the date that the original part or revision was developed; it
will be supplied by the user.

EXAMPLE................. 02-22-85

ATTRIBUTE NAME ......Developer

TiY R P — String

STATUS......covvivririrenane Required

DESCRIPTION ............. This entry identifies the name of the organization that developed the part. The
default is McDonnell Douglas Astronautics Co.

EXAMPLE..................... McDonnell Douglas Astronautics Co.

ATTRIBUTE NAME ......Developed For

TYPE ......oovvivcvvrianens Set of strings

STATUS.......coocceninnnn Recommended

DESCRIPTION ............. This attribute should identify the project and type of software for which the part
was originally developed. Multiple entries are allowed for this attribute.

EXAMPLE..................... Tomahawk (BGM-109AS) Flight Software

ATTRIBUTE NAME ......Development Status

THHE EF s m— Enumeration

DOMAIN..................... (Specified, Designed & Coded, Tested, Verified)

STATUS.........ccveveeen. Required

DESCRIPTION ............. This attribute indicates the development status of the unit. If the value is

Specified, this indicates that the need for and purpose of the part have been iden-
tified and the requirements have been specified (all required attributes except for
Mode, Withs, and Withed By should be supplied for a part in this state). If
Designed & Coded, the requirements for the part have been refined and used to
specify the part for coding in Ada so that compiled code is now available (all
remaining attributes may now be supplied). A part with development status of
Tested indicates that this part has passed the tests of the developer and found to
be in working condition. Status of Verified indicates that the part has been ac-
cepted and verified by the customer for which it was originally developed.
EXAMPLE.............cnn.. Tested

ATTRIBUTE NAME ......Source Size/Complexity Characterizations

TYPE ..o Text

STATUS.......vvirirvinn Recommended

DESCRIPTION ............. This attribute provides the size of the Ada part in terms of lines of source code
(LOC), and other complexity characterizations.

EXAMPLE..................... Lines of Source Code:

15 lines executable
2 lines type declarations
5 lines object declarations
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Recommended

This attribute provides the fixed (static) size of the Ada part in terms of bytes of
object code. It is environment-dependent, therefore, the conditions under which
the figure was obtained must be provided.

720 bytes when compiled on VAX 11/780 using the VAX Ada compiler.

Location of Source Code

String

Recommended

This entry should specify the file name, library, and compuiter system where the
source code for the part or part constructor is located. A value for this attribute is
entered for the top-level specification only, although it applies to the lower levels

as well,
USERDISK5:[CAMP2.ABSTRACT]FSM.ADA

Access Notes
Text

Recommended
This attribute provides access information for a particular part. To deal with

actual Ada parts, information is given to aid in applying the Ada compilation
rules for part use, such as what other parts must be withed. For schematic parts,
information is given on how to get to a particular part, such as how to invoke the
schematic constructor.

Include the statement "with Matrix_Types".

Requirements Documentation

Text

Recommended

This attribute identifies the requirements documentation and indicates its
availability.

Cruise Missile Advanced Guidance Computer Program Development Specifica-
tion for the Inertial Navigation System, Specification #70H541092

Design Documentation

Text

Recommended

This attribute identifies the design documentation and indicates its availability.
Software Detailed Design Document for the Missile Software Parts of the Com-
mon Ada Missile Packages Project

Withs

Set of identifiers composed of Part IDs

Required

This attribute contains an enumeration of other units within the catalog that this
unit withs.

(P160-2, P161-2)
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ATTRIBUTE NAME .....Withed By

TYPE ..., Set of identifiers composed of Part IDs

STATUS.......coonvreeren, Required

DESCRIPTION.............. This attribute contains an enumeration of other units within the catalog that with
this unit.

EXAMPLE ..................... P70-0

ATTRIBUTE NAME ......Project Usage

TYPE ..........cvvvvirvines Set of strings
STATUS......ccvvvirirnnen. Recommended
DESCRIPTION ............. This attribute enumerates the projects and systems that use this particular part.

The places where components generated via constructors are used should also be
enumerated. The usage attribute aids in tracking systems which have *checked a
part out of the library’. Such an entry facilitates maintenance in the event that an
error is found in a part.

EXAMPLE................ (AGM-109H, AGM-109L, Harpoon)

ATTRIBUTE NAME ...... Sample Usage

TYPE ......ooovevrccene. Text
STATUS........cccce v, Recommended
DESCRIPTION ............. This attribute provides the user with the information necessary to use the part

(i.e., how, when, and where the part should be used). Potential usage of this part
in the applications of an organization may be discussed here.

EXAMPLE.............. This part is generally a candidate for use in any missile which has a throttleable
engine and which requires the control of mach number.

ATTRIBUTE NAME ......Accuracy

TYPE ..o Text

STATUS.......ccooviiaas Recommended

DESCRIPTION ............. This field contains information on the algorithmic accuracy or precision of
numerical results computed by the part. If this information is not relevant, it
should be left blank.

EXAMPLE ..................... The distance returned has an accuracy of 15 significant digits.

ATTRIBUTE NAME .....Timing

I | £ of Text
STATUS......cccovirvernnn Recommended
DESCRIPTION ............. This field contains information on execution time for sample invocations or in-

stantiations of the part. The run-time conditions that produced the timing results
must be specified in order to make this information relevant.

EXAMPLE................. This part averaged an execution time of 0.52 milliseconds when called 200 times
from a continuous loop on a dedicated Microvax II.

ATTRIBUTE NAME .....Implements

TYPE ........ccovevvvvrnnn. Set of identifiers composed of Part IDs

STATUS......covvvvvviiinns Recommended

DESCRIPTION ............. This attribute is valid only for a body, and identifies the specification portion that
it implements.

EXAMPLE................ P603-5

152



ATTRIBUTE NAME .....Implemented By

111443 ererrorrecmnoanooa: Set of identifiers composed of Part IDs

STATUS....coovuvvvvvirnininns Recommended

DESCRIPTION ............. This attribute is valid only for a Specification, and identifies the body or bodies
that implement it.

EXAMPLE.................... P603-5

ATTRIBUTE NAME ......Built From

THH R Espm— Set of identifiers composed of Part IDs

STATUS ..o, Recommended

DESCRIPTION ............. This attribute consists of an enumeration of other units within the catalog which

are encapsulated within this unit; these are the parts which this unit is built from.
The entries must be the Part IDs of these parts. Table B-1 provides guidelines for
determining possible built from relationships for parts.

EXAMPLE................ P603-5

ATTRIBUTE NAME ......Used to Build

TYPE ..o, Set of identifiers composed of Part [Ds
STTATIU SToems— Recommended
DESCRIPTION ............. This attribute consists of an enumeration of other units within the catalog which

encapsulate this unit; these are the parts which are used to build the current part.

The entries must be the Part IDs of these parts. Table B-1 provides guidelines for

determining possible used to build relationships for parts.
EXAMPLE................... P603-5

ATTRIBUTE NAME .....Hardware Dependencies

TEY [ em————— Text
STATUS........ccovvvvennne, Recommended
DESCRIPTION ............. This entry contains an elaboration of any hardware dependencies of the part

which would limit its transportability. If there are no dependencies, this attribute
will show None.
EXAMPLE............... 1553B data bus

ATTRIBUTE NAME ......Restrictions

TYPE ...coovvnvvninnn. Text

STATUS ......ccovvvinn, Recommended

DESCRIPTION ............. This attribute indicates any usage restrictions such as proprietary rights and
copyrights.

EXAMPLE.................. This part is not to be used without the express written permission of McDonnell

Douglas Astronautics Company.

ATTRIBUTE NAME .....Remarks

TEH I Le———— Text

STATUS.....ovvveveinnnnn, Recommended

DESCRIPTION ............. This field is for any general remarks concerning the part, or for continuations of
other fields.

EXAMPLE............. It is anticipated that future missiles will use the structures contained in this part to

control external message handling and to support dynamic task priorities in Ada.
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* Data Package Parts
- Data Constant Parts
- Data Types Parts

* Equipment Interface Parts
- General Purpose Equipment Interface Parts
- Specific Equipment Interface Parts

* Primary Operation Parts
- Navigation Parts
- Kalman Filter Parts
- Guidance & Control Parts
- Non-guidance Control Parts

* Mathematical Parts
- Coordinate Vector/Matrix Algebra Parts
- General Vector/Malrix Algebra Parts
- Trigonometric Parts
- Geometric Operations Parts
- Data Conversion Parts
- Signal Processing Parts
- General Purpose Math Parts
- Polynomial Parts
- Sparse Matrix Algebra Parts
- Quaternion Algebra Parts

* Abstract Mechanism Parts
- Abstract Data Structure Parts
- Abstract Process Parts

* Process Management Parts
- Asynchronous Control Parts
- Communication Parts

* General Utility Parts

Figure B-2. CAMP Parts Taxonomy
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TABLE B-1. 'USED TO BUILD' AND 'BUILT FROM’ ATTRIBUTE RELATIONSHIPS

Part Class Used to Build Built From
Package Specification Package Specification Package Specification
Subprogram Body Subprogram Specification
Package Body Task Specification
Task Body
Package Body Package Specification Package Specification
Subprogram Specification
Task Specification
Subprogram Specification | Package Specification
Package Body
Task Body
Subprogram Body Subprogram Specification | Packuge Specification
Subprogram Specification
Task Specification
Task Specification Package Specification Task Body

Subprogram Body
Package Body
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1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number AD Number

{. 88-18-Vol-4 ADB 120 251
2. 88-18-Vol-5 ADB 120 252
3. 88-18-Vol-6 ADB 120 253
4. 88-25-Vol-1 ADB 120 309
8. 88-25-Vol-2 ADB 120 310
. 88-62-Vol-1 ADB 129 568
9. 88-62-Vol-2 ADB 129 569
R. 88-62-Vol-3 ADB 129-570
9. 85-93-Vol-1 ADB 102-654 —
40. 85-93-Vol-2 ADB 102-655
44, 85-93-Vol-3 ADB 102-656
2. 88-18-Vol-1 ADB 120 248
13, 88-18-Vol-2 ADB 120 249
14, 88-18-Vol-7 ADB 120 254
1S, 88-18-Vol-8 ADB 120 255
46, 88-18-Vol-9 ADB 120 256
{7. 88-18-Vol-10 ADB 120 257 %
18,88-18-Vol-11 ADB 120 258
19. 88-18-Vol-12 ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

%" { ’Ud""? 1 atch

Chief, Scientific and Technical AFDIC/PA Ltr, dtd 30 Jan 92
Information Branch

ERRATA



DEPARTMENT OF THE AR FORCE
HEADQUARTERS AIR FORCE DEVELOPMENT TEST CENTER (AFSC)
EGUIN AIR FORCE BASE, FLORIDA 32542.6000

ATTNOF.  PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: Clearance for Public Release

TO: VVL/MNA

v
The following technical reports have been reviewed and are approved for
public release: AFATL~-TR-88-18 (Volumes 1 & 2), AFATL-TR-88-18 (Volumes
4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2), AFATL~TR-88-62 (Volumes 1 thru 3)
and AF. TR-85-93 (Volumes 1 thru 3).

mﬁ%ﬂ a // q_
INJA N. PRIBYLA, Lt Col,
Chief of Public Affairs

AFDTIC/PA 92-039



