
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB129568

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; MAR
1988. Other requests shall be referred to Air
Force Armament Lab., Eglin AFB, FL 32542. This
document contains export-controlled technical
data.

AFSC Wright Lab at Eglin AFB, ltr dtd 13 Feb
1992

OTIC FILE COPY ^voi
AFATL-TR-88-62, VOL I

Common Ada Missile Packages—Phase 2
(CAMP-2)

^ Volume I. CAMP Parts and Parts Composition System

i DMcNichoii AD--B129 568
S Cohen
C Palmer, et al.

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY
P O BOX 516
ST LOUIS, MO 63166

is««aM

ELECTb]
|^DtCi2i988| NOVEMBER 1988

E

FINAL REPORT FOR PERIOD SEPTEMBER 1985-MARCH 1988

cmnicAL x£CENOLoar

Distribution authorized to U.S. Government agencies and their contractors only;
thic report docmrrgnts teat üMü evaluationi distribution limitation applied March 1988.
Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542-5434.

DESTRUCTION NOTICE - For classified documents, follow the procedures
in DoD 5220.22-M, Industrial Secvity Manual, Section II-19 or DoD 5200.1 -R,
Information Security Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

AIR FORCE ARMAMENT LABORATORY
Air Force Systems Command■ United States Air Force lEglin Air Force Base, Florida

«8 1 rt) '■ -•■, n 1 r\

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Government-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the Government may have formulated
or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication, or otherwise as in any manner construed,
as licensing the holder, or any other person cr corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

<*jJL~^ c - jC-
STEPHEN C. KORN
Chief, Aeromechanics Division

Even though this report may contain special release rights held by
the controlling office, please do not request copies from the Air Force
Armament Laboratory. If you qualify as a recipient, release approval
will be obtained from the originating activity by DTIC. Address your
request for additional copies to:

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

If your address has changed, if you wish to be removed from our mailing
list, or if your organization no longer employs the addressee, please notify
AFATL/FXG, Eglin AFB, FL 32542-5434, to help us maintain a current mailing
list.

Do not return copies of this report unless contractual obligations or
notice on a specific document requires that it be returned.

UNCLASSIFIED
seguftiVY CTmrggTjCTi gg THIS g^i

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-01 SB

1i. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

^WALTECHNOLO(Y
2«. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

3 . DISTRIBUTION/AVAILABILITY OF REPOST
Distribution authorized to U.S. Government
Agencies and their contractors; thim nyertn
MMiLuiiijF LILUL gafeSBEhliMti (OVER)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFATL-TR-88-62, Volume I

(a. NAME OF PERFORMING ORGANIZATION

McDonnell Douglas
A<;tronaijtir.<; Cnmnanv

6b. OFFICE SYMBOL
(If »ppllabh)

7a. NAME OF MONITORING ORGANIZATION
Aeromechanics Division
Guidance and Control Branch

6c ADDRESS (Oty, Stat«, and ZIPCoth)

P.O. Box 516
St Louis MO 63166

7b. ADDRESS (Oty, State, tnd ZIP Code)

Air Force Armament Laboratory
Eglin Air Force Base, Florida 32542-5434

. NAME OF FUNDING/SPONSORING
ORGANIZATION

STARS Joint Program Office

8b OFFICE SYMBOL
(If »ppllcabli)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F08635-86-C- 002 5
8c ADDRESS (C/ty, State, and ZIP Code)

Room 3D139 (1211 Fern St)
The Pentagon
Washington DC 20301-3081

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

63756D

PROJECT
NO

921D

TASK
NO

GT

WORK UNIT
ACCESSION NO.

02

ii. TITLE c»nc/«*s«cürttyC>a««cat/ofl) Common Ada Missile Packages-Phase 2 (CAMP-2).
Volur.ie I: CAMP Parts and Parts Composition System

12. PERSONAL AUTHOR(S)
D.G. McNicholl, S.G. Gohen, C. Palmer, J.F. Mason, C.S. Herr, and J.H. Lindley

13a. TYPE OF REPORT

Final
13b TIME COVERED

FROM Sep 85 TO Mar 88
14. DATE OF REPORT {Yt»r. Month. Day)

November 1988
15. PAGE COUNT

180
16. SUPPLEMENTARY NOTATION

Availability of this report is specified on verso of front cover. (OVER)
17. COSATI CODES

FIELD GROUP SUB-GROUP

1B. SUBJECT TERMS (Contfnu* on revtrta if necessary and identify by block number)

Reusable Software, Missile Software, Software Generators,
Ada parts, Composition, Systems, Software Parts

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The CAMP project, primarily funded ty the STARS Joint Program Office, sponsored by the Air
Force Armament Laboratory, and performed by McDonnell Douglas, has taken a pragmatic
approach to demonstrating the feasibility and utility of the concept of software reuse for
real-time embedded missile systems, CAMP products include: 452 operational flight software
parts in Ada for tactical missiles, and a prototype parts engineering system to support
parts identification, cataloging and construction. In order to demonstrate the value of the
reuse concept, a missile subsystem was built using the CAMP parts. Results indicate a
significant increase in software productivity when developing systems using parts, Ada,
modern software engineering practice, robust software tools, and knowledgeable software
engineers.

This report is documented in three volumes: Volume I - CAMP Parts and Parts Composition
System, Volume II - llth Missile Demonstration^and Volume III - CAMP Armonics Benchmarks.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

D UNCLASSIFIED/UNLIMITED 13 SAME AS RPT Q DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL

Christine M. Anderson
22b. TELEPHONE (Include Area Code)

(904) 882-2961
22c OFFICE SYMBOL

AFATL/FXG
DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

distribution limitation applied March 1988. Other requests for this document
must be referred to the Air Force Armament Laboratory (FXG), Eglin Air Force
Base, Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

TRADEMARKS

The following table lists the trademarks used throughout this document:

1 TRADEMARK TRADEMARK OF |

|ACT Advanced Computer Techniques

JART Inference Corporation

ART Studio Inference Corporation j

jCMS Digital Equipment Corporation

JDEC Digital Equipment Corporation j

Mikros Mikros, Inc.

1 Oracle Oracle Corporation

1 Scribe Scribe Systems |

1 Symbolics Symbolics. Inc.

Symbolics 3620 Symbolics, Inc.

TLD TLD Systems Ltd

VAX Digital Equipment Corporation j

VMS Digital Equipment Corporation j

UNCLASSIFIED

PREFACE

This report describes the work performed, the results obtained, and the conclusions reached during

the Common Ada Missile Packages Phase-2 (CAMP-2) contract (F08635-86-C-0025). This work was

lormed by the Software and Information Systems Department of the McDonnell Douglas AsUonauücs

Company St. Louis. Missouri (MDAC-STL). and was sponsored by the United States A.r Force Ar-

mament Laboratory (FXG) at Eglin Air Force Base, Florida. This contract was performed between Sep-

tember 1985 and March 1988.

The MDAC-STL CAMP program manager was:

Dr. DanidG. McNicholl
TecHnology Branctr
Software and Information Systems Department
McDonnell Douglas Astronautics Company
P.O. 80x516
St. Louis. Missouri 63166

The AFATL CAMP program manager was:

Christine M. Anderson
Guidance and Control Branch
Aeromechanics Division
Air Force Armament Laboratory
Eglin Air Force Base. Florida 32542-5434

This report consists of three volumes. Volume I contains information on the development of the

CAMP parts and the Parts Composition System. Volume II contains the results of the 11th M.ss.le

Application development. Volume III contains the results of the CAMP Annonics Benchmarks Suite

development.

Commercial hardware and software products mentioned in this report are sometimes identified by

manmacturer or brand name. Such mention is necessary for an understanding of the R & D effort, but

does not constitute endorsement of these items by the U.S. Government.

ACKNOWLEDGEMENT

Special thanks to the Armament Division Deputy for Armament Control Office; to the Software

Technology for Adaptable. Reliable Systems (STARS) Joint Program Office; to the Ada Joint Program

Office (AJPO); and to the Air Force Electronic Systems Division. Computer Resource Management
Technology Program Office for their support of this project. Accession For

"NTIS GRA&I
DTIC TAB
Unannounced
Justlfioatlon_

D

By
Distribution/

Availability Codes

Dipt

in

£'*

Avail and/or
Special

TRADEMARKS

The following lable lists the trademarks used throughout this document:

| TRADEMARK TRADEMARK OF

ACT Advanced Computer Techniques j

|ART Inference Corporation j

1 ART Studio Inference Corporation

jCMS Digital Equipment Corporation j

|DEC Digital Equipment Corporation

1 Mikros Mikros, Inc. '

Oracle Oracle Corporation i

Scribe Scribe Systems j

Symbolics Symbolics, Inc. |

Symbolics 3620 Symbolics, Inc. j

TLD TLD Systems Ltd j

VAX Digital Equipment Corporation

VMS Digital Equipment Corporation j

iv

EXECUTIVE SUMMARY

The overall objective of the C'omnum Ada Missile Packages (CAMP) program has been to

demonstrate the feasibility and value of reusable Ada software parts in DoD mission-critical, real-time,

embedded (RTE) applications. As the name of the program implies, the domain chosen for this

demonstration was missile operational flight software. Software applications within this domain are

typically constrained in terms of memory and timing, and involve a great deal of direct hardware control.

As such, if reusable Ada parts could be shown to be suitable for these applications, they would be suitable

for use in most other RTE applications.

CAMP is a multi-year research program which has been sponsored by the Air Force Armament

Laboratory at Eglin Air Force Base, and performed by the McDonnell Douglas Astronautics Company -

St. Louis (MDAC-STL). The program was partially funded by the Air Force Armament Division, the

DoD Software Technology for Adaptable, Reliable Systems (STARS) Program Office, the Air Force

Electronic Systems Division, and the Ada Joint Program Office (AJPO).

The ability to reuse pre-existing software components to build new applications has been identified

by most software engineering organizations as a key element in their plans to reduce software develop-

ment costs and schedules. However, prior to the mid-1980s, few organizations have been able to achieve

wide-spread, systematic reuse of software. One of the major barriers to software reuse has been that

traditional programming languages were not designed with reuse in mind. With the adoption of Ada as

the DoD standard computer programming language for mission-critical computer systems, many DoD

software engineers believed that meaningful, systematic software reuse was feasible for the first lime.

Ada promotes reuse of software in two ways. First, it is a highly transportable language. Software

written in Ada can be moved from one type of computer to another relatively easily. This property of

Ada facilitates reusing software between applications hosted on different computers. Second, specific

features were built into the Ada language to allow a user to construct powerful software components that

are transportable between applications.

When Ada was released, many software managers and engineers quickly saw the advantages in

developing standard reusable parts or components that could be used across a spectrum of applications

and computer types. Their vision was to treat software engineering the same way other engineering

disciplines are treated — build customized components only when needed and reuse standard parts when-

ever possible.

However, one very importanl portion of the software engineering community expressed a great deal

of skepticism with the concept of reusable software — software engineers building RTE applications.

These applications are characterized by severe memory and liming constraints and the need to have direct

control over the computer and its attached equipment. The RTE software community needed to be

convinced that reusable Ada pails could be developed which were both sufficienlly effective and efficient

for the types of applications they needed to build. In (he rush to exploit the potential of Ada for reusable

software in general, no one was addressing these RTE applications. There was a very good reason for this

— developing reusable software parts for RTE applications is much more difficult than building reusable

software parts for non-RTE applications.

Given the pervasiveness of RTE applications within the DoD, there was an urgent need to examine

whether reusable Ada parts could be built which were suitable for use in RTE applications, bi 1984, the

U.S. Air Force addressed ibis need by initiating the CAMP program.

The first phase of the CAMP program, the CAMP-1 project, was a 12-month effort with two major

objectives.

• To determine the feasibility and value of reusable Ada software parts for missile flight software

• To determine the feasibility and value of automating (fully or partially) the process of building new

missile flight software systems using parts

CAMP-1 started with a study to determine if sufficient commonality existed within missile flight
software applications to warrant the development of reusable parts. After studying the operational flight

software from ten existing missile systems, the CAMP team identified 250 common parts (during

CAMP-2 this number grew to 454). Once these common parts were identified, their requirements were

specified and their architectural designs were developed in accordance with DoD-STD-2167.

Concurrent with the identification, specification, and design of the reusable parts, the CAMP team

perfonned an investigation to determine which aspects of building new software systems from parts could

be automated. This investigation resulted in the definition and design of a tool known as a parts composi-

tion system (PCS) which would consist of three major subsystems.

• A Parts Identification subsystem which would help the user find parts applicable to his new ap-

plication

• A Parts Catalog subsystem which would help the user understand and manage the available parts

• A Component Construction subsystem which consists of a set of tools to automatically generate

reusable Ada code in situations where generated code was needed for reasons of efficiency,

reusability, or ease of use. It also assists in the use of complex generic reusable Ada parts.

While CAMP-1 was primarily a feasibility study, CAMP-2 was primarily a technology demonstra-

tion. The main goal of the 30-month CAMP-2 project was to demonstrate the technical feasibility and

value of reusable Ada missile parts and a PCS by building and using them on a realistic application.

The first major task in CAMP-2 was the construction of the reusable parts identified during

CAMP-1. A total of 454 production-quality, reusable, Ada parts were coded, tested, and documented in

accordance with DoD-STD-2167. The parts, logelher with their lest code, consist of over forty thousand

lines of Ada code. When completed, these parts were distributed to over 120 government agencies and

contractors. Sections II. Ill, and VI of Volume I of this Final Technical Report discuss the construction of

the CAMP parts in more detail.

VI

A protolype of (he parts composition system tool defined in CAMP-1 was also constructed, tested,

and documented in accordance with DoD-STD-2167. To illustrate the utility of this tool, a user can spend

3 minutes describing his requirements for a Kaiman filter subsystem and the tool will generate and as-

semble over 1900 lines of Ada code which efficiently implements this subsystem. Section IV of Volume

I of this Final Technical report describes the construction of this prototype in more detail.

An important part of the CAMP-2 project was the construction of a real missile navigation and

guidance system using the CAMP parts and the prototype PCS loci. This software, known as the Uth

Missile Application', consisted of over 21,000 Ada statements of whxh 18%" was obtained by reusing the

CAMP parts. This software was cross-compiled using an Ada/1750A compiler and executed on 1750A

processors within a missile simulation. The Uth Missile Demonstration served as a proving ground not

only for the CAMP parts and the parts composition system tool, but also for Ada/1750A compiler tech-

nology. Volume II of this Final Technical Report describes the Uth Missile Demonstration in more

detail.

Another CAMP-2 task was the development of a suite of benchmarks that could be used to measure

the effectiveness of Ada compilers for armonicsu' applications. These benchmarks are standard Ada

software units which test a compiler's ability to deal with realistic armonics situations. Volume III of this

Final Technical Report describes the armonics benchmarks in more detail.

All of the CAMP products — the parts, the prototype PCS tool, and the Armonics Benchmarks —

are available to U.S. government agencies and qualified government contractors.

Given the pathfinding nature of the CAMP program, it is not surprising that many lessons were

learned concerning Ada, reuse, and the status of Ada compilers. Section VIII contains a detailed discus-

sion of these conclusions.

The good news is that the Ada programming language was proven to be a good language for RTE

applications and for achieving reuse within these applications. The entire 11th Missile Application was

constructed using only 21 lines of assembly code, and the reuse of standard parts shows the potential for

improving productivity by 15%, Use of the parts and the parts composition system showed the potential

for even greater productivity gains (up to 28% when the PCS Kaiman Filter Constructor was used in

addition to the parts).

The bad news is that many current generation Ada compilers still have problems correctly and

efficiently handling the more advanced features of Ada. Of particular concern to the CAMP team were

the problems surrounding the handling of Ada generic units (see Section VII). If not corrected, these

problems with generic units could have serious detrimental impacts on reuse within DoD RTE applica-

tions. Two actions are needed to solve (his problem. First, the Ada validation process must be amended

to include more stringent tests concerning a compiler's ability to properly handle complex use of generic

'The C'AMI'Icnm used 10 missiles In identify purls and s;ivcd nn 1 llh missile lo verify the parts, hence the tenninology.

This number increnses lo 22% if the parts thai were modified are also tounled.

'"ARMnmenl eleclrONlCS

VII

units. Second, Ada compilers must include more powerful global optimization techniques. Until the

problems are corrected. DoD mission-critical RTE Ada projects should establish a contractual relation-

ship with their compiler developer in order to reduce risk to the project.

Tasking throughput is currently another potential problem area in Ada compiler code generation.

Although there does not appear to be anything inherently inefficient in the Ada language requirements

with respect to tasking, work on the 11th Missile Application revealed that care should be given to

selecting the kinds of tasking facilities used in an application.

The CAMP program marks the first practical application of reusable Ada parts to DoD mission-

critical RTE applications. The program demonstrated that, given mature Ada compilers, the benefits of

software reuse — reduced software development cost and schedules and higher software quality — can

be achieved without sacrificing efficiency. If these benefits can be achieved in the missile domain, they

can be achieved in other RTE domains.

VIII

Table of Contents

Section Tille Page

I INTRODUCTION 1

1. Purpose I

2. Background 1

3. Overview of Ihe CAMP-1 Project 2

4. Overview of the CAMP-2 Project 3

5. Organization of the Report 6

II DEVELOPMENT AND TESTING OF CAMP PARTS 7

1. Terms and Structure 7

2. Parts Development Methods 9

a. Design and Code 10

b. Testing 14

c. Maintenance 15

d. Configuration Management 16

e. Tools 17

(1) Design and Code Development Tools 18

(2) Testing Tools 18

(3) Configuration Management Tools 21

(4) Documentation Tools 21

(5) Miscellaneous Tools/Aids 22

f. Documentation 23

3. CAMP Parts Process Analysis 25

HI INTER-RELATIONSHIPS BETWEEN CAMP PARTS 30

1. Parts Build On Other Paris 30

2. Parts Work Together 32

3. CAMP Parts Facilitate Use of Other Parts 33

IV DEVELOPMENT AND TESTING OF A PARTS COMPOSITION SYSTEM (PCS) 41

1. PCS Functionality 41

a. Parts Catalog 42

(1) Design 43

(2) Testing and Operational Evaluation 46

b. Pails Identification 47

(1) Application Approach 47

(2) Architectural Approach 48

(3) Testing and Operational Evaluation 51

c. Component Constructors 52

IX

Table uf Contents (cont'd)

Section Tille Page

(1) Design Paradigms 54

(2) Construclor Implementation 58

(a) Types of Constructors 58

(b) Code Generation 58

(3) Testing and Operational Evaluation 59

2. PCS Implementation 59

a. System Architecture 59

(1) Hardware 60

(2) Software 61

(3) User Interface 62

b. Parts Catalog 63

c. Parts Identification 64

d. Component Constructors 64

3. Future Directions 64

V THE ADA LANGUAGE AND SOFTWARE REUSABILITY 67

1. Separate Compilation and Generic Units 67

2. Optimization 70

3. Task Priorities 72

4. Address Clauses 72

5. Implementation of Reduced-Precision Floating Point Types 73

6. Procedural Data Types 75

7. Dynamic Binding of Bodies to Specs 75

8. Separation of Representation Clauses 79

VI PARTS DESIGN METHODOLOGY 82

1. Design Requirements 82

2. Design Methods 83

a. Typeless Method 84

b. Overloaded Method 85

c. Generic Method 86

el. Abstract State Machine Method 88

e. Abslracl Data Type Method 89

f. Skeletal Code Method 91

3. Use of the Generic Method 91

a. Using the Generic Method to Design Parts 93

b. Using Parts to Construct an Application 95

Table of Contents (cont'd)

Section Tille Page

4. Semi-Abstract Data Type 98

5. Summary 100

VII ADA COMPILER VALIDATION ANfD SOFTWARE REUSABILITY 101

1. Introduction 101

2. Discussion 101

a. A Sample System 102

b. CAMP Experience With Ada Compilers 106

c. Compiler Validation 110

VIII CONCLUSIONS AND RECOMMENDATIONS 111

1. On The Appropriateness of Ada for Reusable Software 111

2. On The Appropriateness of Ada for Real-Time Embedded Reusable Software 113

a. On the Effectiveness of Ada 113

b. On the Inherent Efficiency of Ada 115

c. On the Effectiveness of Ada Compilers 115

d. On the Efficiency of Ada Compilers 117

3. On The Development of the CAMP parts 119

4. On The Benefits of using Parts 122

5. On The Cost-Effectiveness Of Capmring Schematic Commonality 122

6. On the Cataloging of Parts 123

xi

Table of Contents (CONCLUDED)

Appendix Title Page

A PARTS DATA BASE 125

1. Introduction and Background 125

2. ORACLE Relations 125

3. Data Base Issues 142

4. Conclusions and Recommendations 142

B CATALOG ATTRIBUTES 145

References 157

xii

List of Figures

Figure Tille Page

1 A Generic TLCSC Can Be A Part 8

2 Generic LLCSCs and Functions Can Be Parts 8

3 A Nongeneric Unit Can Be A Part 9

4 For High-Levcl Parts, Detailed Design is Code 12

5 Simple Parts Require Few Comments 12

6 Complicated Parts Require More Comments 13

7 CAMP Parts Testing Cycle 15

8 Sample Expected Results File 20

9 Sample Code Counter Input 23

10 Top-Level Design Header Information 24

11 Detailed Design Header Information 25

12 Lines of Code versus Ada Statements 26

13 CAMP Parts Sizing Data 26

14 CAMP Parts Effort Data 27

15 CAMP Parts Productivity Data 28

16 CAMP Parts Development Statistics 28

17 Assembling a North-Pointing Navigation System 31

18 Some Parts Build On Other Parts 32

19 Parts Work Together 33

20 CAMP Parts Facilitate Use of Other Parts 34

21 Required Operations Obtained Through Use of Generic Formal Parameters 37

22 Sample Instantiations of Geometric_Operation" Parts Using Defpult Routines 38

23 Sample Instantiations of Geometric_Operations Parts Using Specialized Sin_Cos Pro-

cedure 39

24 Catalog Attributes 42

25 Parts Catalog Functions 43

26 Required Catalog Attributes 44

27 Searchable Catalog Attributes 45

28 Application Exploration 48

29 Application Exploration Example 50

30 Missile Model Walkthrough 50

31 Constructor Design Paradigm 55

32 Screen Flow Symbology 56

33 Kaiman Filler Constructor — High-Levcl View 57

xiii

List of Figures (cont'd)

Figure Tille Page

34 AMPEE Syslem Architecture 60

35 Ada Generic Compilations 69

36 Methods of Generic Instantiation 71

37 Subtypes Should Support Reduced-Precision Operations 74

38 Partial StandardJTrig Package Specification 76

39 Partial Polynomials Package Specification 76

40 System Functions Version of Slandard_Trig Package Body 77

41 Single Precision Version of Standard_Trig Package Body 78

42 Extended Precision Version of Standard_Trig Package Body 78

43 Multiple Precision Version of StandardJTrig Package Specification 79

44 1 Ith Missile Application Use of Representation Clauses 80

45 Reusable Parts Methods 83

46 Strong Data Typing Example 85

47 Typeless Method 85

48 Overloaded Method 85

49 Generic Method 87

50 Tunneling of Parameters 87

51 State Machine Method 8«

52 Abstract Data Type Method 90

53 Skeletal Code Template Method 91

54 Comparison of the Six Reusable Parts Methods 92

55 Commonality Captured in the Generic Part Body 94

56 Mechanism for Overriding Defaults 95

57 Autopilot Part Generic Specification 96

58 Selections fiom CAMP Parts for Instantiation 97

59 Autopilot Bundle Structure 98

60 Kaiman Filter Bundle Structure 100

61 Generic Units Can Be Very Simple 102

62 Some Generic Units Can Be Very Complex 103

63 Nested Generic Units Can Be Very Complex 104

64 Most Generic Units Have Minimal Complexity 105

65 Assembling n North-Pointing Navigation System 105

66 Some Compilers Couldn't Handle Typo Derivations 107

67 Ovcrloadeil Operator Caused Problems for Compiler 108

68 Compilers Had Problems Finding Default Subprograms 109

xiv

List of Figures (cont'd)

Figure TiUe Page

B-l Catalog Allributes 146

B-2 CAMP Parts Taxonomv 154

xv

List of Tables

Table Tille Page

1 CAMP Parts Taxonomy 10

2 Design Steps 14

3 Items Under Configuration Management , 17

4 Software Development File Contents 24

5 Application Exploration — Required User Inputs 49

6 BIM_EiTor_Messagcs Contents and Storage Representation 81

A-I Columns in the TLCSC Relation 126

A-2 Columns in the Adalevel Relation 126

A-3 CAMP Parts Sizing List 128

B-l Used to Build' and Built From' Attribute Relationships 155

xv i

List of Acronyms

ACS Ada Compilation System

ACVC Ada Compiler Validation Capability

AdaJUG Ada/Jovial Users Group

ADL Ada Design Language

AFATL Air Force Armament Laboratory

AFB Air Force Base

AI Artificial Intelligence

AJPO Ada Joint Program Office

AMPEE Ada Missile Parts Engineering Expert (System)

AMRAAM Advanced Medium Range Air-to-Air Missile

ANSI American National Standards Institude

APSE Ada Programming Support Environment

Armonics Armament Electronics

ART Automated Reasoning Tool

ASCII American Standard Code for Information Interchange

BC Bus Controller

BDT Basic Data Types

BIM Bus Interface Module

CAD/CAM Computer-Aid Design/Computer-Aided Manufacturing

CAMP Common Ada Missile Packages

CCCB Configuration Change Control Board

CDRL Contractual Data Requirements List

CMS Code Management System

ConvFactors Conversion_Factors (TLCSC)

CPDS Computer Program Development Specification

CPPS Computer Program Product Specification

CSC Computer Software Component

CSCI Computer Software Configuration Item

CVMA Coordinale_Vecior_Mairix_Algebra (TLCSC)

DACS Defense Analysis Center for Software

DBMS Data Base Management System

DCL DIGITAL Command Language

DDD Detailed Design Document

DEC Digital Equipment Corporation

DMA Direct Memory Access

DoD Department of Defense

xvi i

DoD-STD Department of Defense Standard

DPSS Digital Processing Subsystem

DSR Digital Standard Runoff

DTM DEC /Test Manager

FMS Foms Management System

FORTRAN FORmula TRANslation

GPMath General_Purpose_Math (TLCSC)

HOL Higher-Order Language

Hr Hour

I/O Input/Output

ISA Ineitial Sensor Assembly

JOVIAL Jules Own Version of International Algebraic Language

LISP List Processing (language)

LLCSC Lower Level Computer Software Component

LOC Lines of Code

MDAC McDonnell Douglas Astronautics Company

MDAC-HB McDonnell Douglas Astronautics Company - Huntington Beach

MDAC-STL McDonnell Douglas Astronautics Company - St. Louis

MDC McDonnell Douglas Corporation

MIL-STD Military Standard

MRASM Medium Range Air-to-Surface Missile

NM Nautical Miles

NPNav North_Pointing_NavigatJon_Parls (TLCSC)

OCU Operator Control unit

Opns Operations

PC Personal Computer

PCS Parts Composition System

PDL Program Design Language

R&D Research and Development

RT Remote Terminal

RTE Real-Time Embedded

SDF Software Development File

SDI Strategic Defense Inilintive

SDN Software Development Notebook

SDR Software Disctepancy Report

SEAFAC System Engineering Avionics Facility

SEI Software Engineering Institute

XVI Xl

SEP/SCP Software Enhancement Proposal/Software Change Proposal

SIGAda Special Interest Group on Ada

SRS Software Requirements Speci6cation

STARS Software Technology for Adaptable, Reliable Systems

stmt statement

SURMOS Start-Up Real-time Multi-tasking Operating System

TLCSC Top-Level Computer Software Component

TLDD Top-Level Design Document

UnivConst Universal_Constants (TLCSC)

VAX Virtual Address Extension

VMS Virtual Memory System

WGS72 World Geodetic System, 1972

xix/xx (Blank)

SECTION I

INTRODUCTION

«.PURPOSE

This report contains a description of the work performed, the results achieved, and the lessons

learned on the Common Ada Missile Packages Phase 2 (CAMP-2) project. CAMP was a multi-year
research effort in which the McDonnell Douglas Astronautics Company-St. Louis (MDAC-STL)
demonstrated the feasibility and value of reusable Ada software parts in embedded, real-time, mission-
critical, DoD applications. This was accomplished by (a) building a library of efficient and reusable Ada
parts for missile flight applications, (b) building a prototype parts composition system (PCS), and (c)
testing the parts and the PCS by using them on an actual missile application.

The CAMP project has been sponsored by the Air Force Armament Laboratory at Eglin Air Force
Base, and partially funded by the Air Force Armament Division; the DoD Software Technology for
Adaptable, Reliable Systems (STARS) Program Office; and the Air Force Electronic Systems Division.
The Ada Joint Program Office (AJPO) sponsored the initial distribution of CAMP software to 120
Government agencies and contractors. This software is now available through the Air Force Defense
Analysis Center for Software (DACS) at Griffiss Air Force Base, New York.

2. BACKGROUND

Reusable software is rapidly becoming a key element in the plans of many Department of Defense
(DoD) organizations to bring about a new software engineering environment that will result in higher
quality software at a lower cost. The recently formed Software Engineering Institute (SEI) believes that
"a significant portion of the transition of new software engineering technology, the goal of the SEI, will
he emhodied in rcusahility and automation concepts" (Reference 1). In a similar vein, the DoD Software
Technology for Adaptable, Reliable Systems (STARS) program intends to "develop a significant foun-
dation of reusable Ada software ...for ... applications and software engineering support" (Reference 2).
Software reuse has even been identified as a major management issue by a DoD directive (Reference 3)
on the management of computer resources in defense systems.

While many factors have influenced the recent wide-spread adoption of reusable software within the
DoD, the most important factor has certainly been the Ada mandate. In 1983, the DoD mandated
(Reference 4) the use of Ada as the standard programming language for mission-critical computer sys-
tems. This mandate was recently formalized in a pair of DoD directives (References 5 and 6).

Many software engineers who in tlie past have doubled the practicality of software reusability saw

that, with a standard language such as Ada. meaningful levels of software reuse were within reach for the
first time. However, not everyone wiiliin the DoD community believes that software reusability is
feasible. One very important group thai is not convinced of the practicality of reusability is the real-time
embedded (RTE) software engineering community.

It has been a long-held tenet of the RTE community that software parts (i.e., components specifically

written to be reused) are not practical in real-time embedded applications. This community believes that

software parts must be general to be reusable and that generality implies inefficiencies. While the non-

RTE software engineer is usually willing to sacrifice some run-time efficiency for significant increases in

software quality and productivity, the RTE software engineer often cannot afford this luxury. A typical

RTE software engineer develops software for micro-computers embedded in products such as aircraft,

missiles, and satellites. He cannot freely add more memory or upgrade to a more powerful processor since

his computer must comply with severe limitations on weight, power requirements, and volume. Even

recent advances in memory and processor technologies have not been of much help to the RTE software

engineer since the demand for more functionality in his products more then account for the added

capabilities provided by these technologies.

In order to convince the RTE software engineering community tlui; software parts can work ef-

ficiently in the real-time embedded domain, it is essential that objective data be developed showing thai

software reuse is feasible. It is not enough to show that reusability works well in non-RTE applications.

Given the pervasiveness of RTE computer applications within DoD mission-critical systems, it is impera-

tive that questions about the feasibility of software parts be addressed squarely within the RTE domain,

and preferably by means of a realistic demonstration. This was precisely the goal of the CAMP-2 project.

3. OVERVIEW OF THE CAMP-I PROJECT

The CAMP program was initiated in 1984 with the award of the CAMP-I project to MDAC-STL.

The CAMP-I project was a 12-month feasibility study with two major objectives: (a) to determine the

feasibility and value of reusable Ada software parts for missile flight software, and (b) to determine the

feasibility and value of automating (fully or partially) the process of building new missile flight software

systems using parts.

The CAMP-1 Final Technical Report contains a detailed description of the tasks performed and

results obtained during that project. It can be obtained from the Defense Technical Information Center

using the following access numbers: AD-B-102 654 (Volume 1), AD-B-102 655 (Volume 2),and AD-

B-102 656 (Volume 3). The major tasks performed during CAMP-1 were as follow:

• Domain Commonality Analysis: The purpose of this analysis was to determine if sufficient com-

monality existed to justify the development of reusable Ada missile parts. Ten missiles were

studied with the result being the identification of over 200 reusable Ada software parts. A Software

Requirements Specification (SRS) was prepared for these parts in accordance with DOD-

STD-2167.

• Ada Pail Design: After ihe parts were identified, their architectural designs were developed and

documeniecl in a Software Top-Level Design Document (STLDD) in accordance with DOD-

STD-2167.

• Pari Composition System (PCS) Investigation: The purpose of this investigation was to determine

which aspects of building new software systems from parts could be automated. The result of this

investigation was the development of an SRS for a prototype tool called the Ada Missile Parts

Engineering Expert (AMPEE) System. The goal of this tool was to help the software engineer find,

understand, use, and manage the reusable Ada missile parts.

• AMPEE Design: After the requirements were specified, the architectural design of the AMPEE

system was developed and documented in a STLDD.

4. OVERVIEW OF THE CAMP-2 PROJECT

While CAMP-1 concentrated on feasibility analyses, CAMP-2 was primarily a technology

demonstration. CAMP-2 was a 30-month project which began in September, 1985. The overall goal of

CAMP-2 was to demonstrate the technical feasibility and value of reusable Ada missile parts and a PCS

by building and using them on a realistic application. The following tasks were performed on CAMP-2;

• Parts Construction: The purpose of this task was to develop the detailed design of the parts which

were identified during CAMP-1, and to code and test the parts. It was during this task that ad-

ditional parts were identified, bringing the total number of parts developed to 454.

• AMPEE Construction: During this task, the detailed design of the prototype parts composition

system was developed, and the system was coded and tested.

• Ulli Missile Application Development: This task involved the construction of an actual missile

application using the Ada parts and the AMPEE system, and testing of the developed system in a

1750A hardware-in-the-loop simulation.

• Armonics Benchmarks: The purpose of this task was (o use the CAMP parts to develop a suite of

benchmarks thai could be used to measure the effectiveness and efficiency of Ada compilers for

armonics' applications.

The CAMP-2 products included deliverable software, software documentation, and new software

technology. CAMP software may be obtained by certified government contractors and government

agencies by writing to the Air Force Rome Air Development Center/Data and Analysis Center, (315)

336-0937. CAMP documents listed below with Air Force Armament Laboratory Technical Report num-

bers may be ordered from the Defense Technical Information Center.

ARMamenl eleclrONICS

I. PARTS PRODUCTS: Over 450 efficient, reusable Ada parts for missile flight applications.

a. User's Guide: A listing of all parts, their purpose and decomposition, other parts required

for their use, where they may be used in other instantiations, etc. (AFATL-TR-88-18,

Volume 1)

b. Version Description Document: A document containing an inventory of distribution

items, installation instructions, and other information. (AFATL-TR-88-18, Volume 2)

c. Software Product Specification: As-built versions of all specifications in accordance with

DOD-STD-2167. (AFATL-TR-88-18, Volume 3)

d. Top-Level Design Document: The architectural design (updated from CAMP-1) for the

CAMP parts documented in accordance with DOD-STD-2167. (AFATL-TR-88-18,

Volumes 4-6)

e. Detailed Design Document: The detailed design for the CAMP parts documented in ac-

cordance with DOD-STD-2167. (AFATL-TR-88-18, Volumes 7-12)

f. Test Plan: The plan by which the parts were tested in accordance with DOD-STD-2167.

(AFATL-TR-88-22)

g. Test Procedure: The procedures by which the parts where tested in accordance with DOD-

STD-2167. This was tailored to include information that would usually be found in the

Software Test Description and the Software Test Report. (AFATL-TR-88-23, Volumes

1-8)

h. Software Development Files: The working development notebooks containing source

code listings, lest plan, test procedure, test code, and lest results for the CAMP parts in

accordance with DOD-STD-2167.

i. Parts Tape: An ANSI1 standard tape containing source code for the parts, test code and

utilities, and design documents in machine readable form.

j. Paris Sizing List: A microfiche containing sizing data about all parts.

2. AMPEE SYSTEM PRODUCTS: A prototype software parts composition tool including a parts

catalog, a parts identification facility, and a component construction facility.

a. Software Product Specificalion: As-built versions of all specifications documented in ac-

cordance with DOD-STD-2167. This included source code listings for the AMPEE sys-

tem. (AFATL-TR-88-19, Volume I)

b. Top-Level Design Documeni: The architectural design (updated from CAMP-1) for the

AMPEE system documcnled in accordance with DOD-STD-2167. (AFATL-TR-88-19,

Volume 2)

c. Detailed Design Document: The detailed design for the AMPEE sjslem documented in

accordance with DOD-STD-2167. (AFATL-TR-88-19, Volume 3)

d. Parts Catalog: Printed form of all data stored in the AMPEE system catalog. (AFATL-

TR-88-2(). Volumes 1-4)

e. User's Manual: A manual providing the user with detailed instructions on the use of the

AMPEE system. (AFATL-TR-88-21)

f. Test Plan: The plan by which the AMPEE system was tested in accordance with DOD-

STD-2167. (AFATL-TR-88-22)

g. AMPEE Tape: A tape containing source code for the AMPEE system, utilities, and the

catalog files.

h. Training Plan: A plan which was used to develop training in the use and maintenance of

the AMPEE system.

3. 1ITH MISSILE DEMONSTRAT101 ■ PRODUCTS: A complete missile navigation and guidance

application built using CAMP parts and the AMPEE system, and tested in a 1750A hardware-in-

the-loop simulation.

a. Software Requirements Specification: The requirements of the missile application

documented in accordance with DOD-STD-2167. (AFATL-TR-88-24, Volume 1)

b. Top-Lcvel Design Document: The architectural design for the 11th Missile system

documented in accordance with DOD-STD-2167. (AFATL-TR-88-24, Volume 2)

c. Test Plan: The plan by which the 11th Missile system was tested in accordance with

DOD-STD-2167.

d. Test Report: The results of testing the application in accordance with DOD-STD-2167.

This includes 11th Missile development evaluation.

4. ARMONICS BENCHMARK PRODUCTS: A self-documenting set of tests to be run for evalua-

tion of Ada development and run-time environments within armonics applications

a. Bencluuark Tape: An ANS1I tape containing the benchmarks, standard data files, and

VAX command procet'ures for executing the benchmarks on VAX hardware.

5. OTHER PRODUCTS

a. Final Technical Report: Three volumes covering parts and PCS development, 11th Missile

Application development, and Armonics Benchmarks development

b. Monthly Status Reports and Schedule: Management reports

c. Program Status Reviews: Slides used at periodic status reviews

d. SIGAda Demonstration: Slides used al a series of one-hour presentations of CAMP tech-

nology

c. AFATL Demonstration: Slides used at a scries of three-hour presentations of CAMP

technology

5. ORGANIZATION OF THE REPORT

Due to the large amount of data to be discussed in this report, it has been divided into three volumes.

The remaining sections of Volume 1 are organized as follows.

• Section 11 describes the development and testing of ihe CAMP parts

• Section 111 goes into additional detail regarding the inter-relationships between some of the CAMP

parts

• Section IV describes the development and testing of the AMPEE system

• Section V discusses some issues concerning Ihe Ada language and their impact on reusable

software

• Section VI describes the methodology used in designing the CAMP Ada parts

• Section VIl describes a problem with current Ada compilers that potentially could have a major

adverse effect on reusable software

• Section V11I contains overall conclusions and recommendations

Volume II describes the development and testing of the 11th Missile Application. Volume 111

describes the development and testing of the Armonics Benchmarks.

SECTION II

DEVELOPMENT AND TESTING OF CAMP PARTS

Prior to the CAMP program, there were no successful projects to carry (he development of a general

library of reusable, real-time embedded software through the software lifecycle. In fact, except for tool

catalogs and abstract data types, no complete software library existed in Ada. Therefore, during the early

stages of the CAMP parts development, many new issues connected with the development of reusable

software had to be addressed.

These issues included: 1) definition of terms, 2) the basic structure to be used when designing the

parts, and 3) documentation standards for the parts. The CAMP team had to define a common terminol-

ogy because discussing the number of parts that had been developed or how parts had been packaged in

TLCSCs and LLCSCs has little meaning without a common understanding of what constitutes a part, a

TLCSC, and an LLCSC. Development of the parts could not proceed until the basic design approach and

structure of the parts had been decided. Finally, due to the large number of parts, it was necessary to

determine how to satisfy documentation requirements within practical limits.

I. TERMS AND STRICTURE

One issue that was addressed during the CAMP project is what actually constitutes a part: is it a

package, is it an executable unit, is it a compilation unit, etc. Various definitions of a part had been given

in the past; for example, parts had been defined as Ada units (e.g., packages, procedures, functions),

design units, and code units, with or without test code. While these were not incorrect definitions, they

were not appropriate for CAMP. The criteria established on CAMP for determining if a piece of code

was a part are enumerated below. Using these criteria. 454 Ada parts were developed during the CAMP

program.

1. A part is a package, subprogram, or task. A part can be a Top-Level Computer Software Com-

ponent (TLCSC), Lower Level Computer Software Component (LLCSC). or unit. A TLCSC is

defined as an outer level package or procedure — one that was not nested in another package. An

LLCSC is defined as a package that is nested in some other entity, generally within another

package. Units are defined as nested procedures, functions, or tasks.

2. A part must be usable in a stand-alone fashion.

• ll may with other parts.

• ll does not depend on other packages, subprogiams. or tasks encapsulated with it lo perform

a single function.

Figure 1 shows an example of a generic TLCSC, Clock_Handler, that is a part. The Clock_

Handler package maintains a clock. Even though a single application may not require all of

the routines in ClockJUandler. the routines could not logically exist alone: it would make

little sense to reset a clock that is never read. Therefore, the entire TLCSC is considered a

part.

;lc
■'W-^liVfi"^

? \
fc Current Tlm9 > I '
| ConvertsdJTlm«

^

| Reset Clock >

^ Synchronize Clock N ^

j ' | I \ |
^ Elapsed_Tlme > |

;.;;::.:, hdlcatM apart
WWNW hdicatm a ganartc unit

Figure 1. A Generic TLCSC Can Be A Part

Figure 2 shows an example of a generic LLCSC. Lalitude.Integration, that is a part. This

package maintains a latitude. The LLCSC is designated as a part because, although the

Integrate function could exist on its own, the Reinitialize procedure could not.

NORTH_POINTlNG_r4AVIGATION_PARTS

4

& Latitude Integration a ^

Reinitialize

Integrate N

MC6mpuie_Corloiis_ !;^
Acceleration i|

■:<■■ Indlcat« a part
vwvw- Indien'«« a gwwtr. untl

Figure 2. Generic LLCSCs and Functions Can Be Farts

Figure 2 also shows an example of a generic procedure, Compute_Coriolis_Acceleralion.

which is a part. Figure 3 shows an example of a generic package, Vector_Operations,

which contains several subroutines, each of which is a part. In these cases, the procedures,

rather than any encapsulating packages, are designated as parts since the procedures can

logically exist on their own.

COORaNATE_VECTOfi_MATRIX_ALGEBRA

Voctor Operations

Vectors)

Vector.J-ehotti I

Indlcalts ■ pari
\V<\v\N- InHtcat« ■ g«n«rtr unit

Figure 3. A Nongeneric Unit Can Be A Part

• A part may require types or objects that have been encapsulated with it: The subroutines

shown in Figure 3 are parts even though they require the data type. Vectors, defined by the

Vcctor_Operations package.

3. Organizational packages are not parts; and package bodies are never parts, even if they have

processing within them

Given the huge number of parts typically identified during any domain analysis, it is useful to

develop some type of software parts taxonomy. This taxonomy provides a means of classifying parts; it

helps not only domain analysts, but also helps users identify available parts. Table 1 lists the categories in

the CAMP parts taxonomy, and includes a description of the classes and a listing of the TLCSCs belong-

ing to each class.

2. PARTS DEVELOPMENT METHODS

CAMP-1 included a domain analysis to identify commonality between ten missiles which were

studied. Following the domain analysis, requirements were defined for the conunon functions that were

identified, and parts development began. Development was completed during CAMP-2. The develop-

ment cycle included top-level design, detailed design, coding, testing, and documentation. These

development activities are further discussed in the following paragraphs.

TABLE 1. CAMP PARTS TAXONOMY

1 CATEGORY 1 TLCSC NAME | DESCRIPTION
Data Constants 1 WaS72_Ellipsoid_Engineering_Dala

WaS72 Ellipsoid_Metric_Data

WGS72_Ellipsoid_Unitless_Data
Universal_Con»Unls
Conversion_Factofs

TLCSCs which provide data constants used
in a typical missile application

1 Data Types Basic.DaU.Types
Kalman_Filter_Data_Types

Autopilot_Data_Types

TLCSCs which provide data types used in
other TLCSCs or in a user application

Equipment Interfaces Missile_Radar_Altinieter

Missile_Radar_Altimeler_wilh_Autopower_On
Clock_Handler

TLCSCs which provide standard interfaces

general classes of hardware

Navigation Common_Navigalion_Pai1s
Wander_Ai;imuth_Navigation_Parts
Norlh_Pointing_Navigation_Par1s
Direction_Coi!ine_Matrix_Operations

TLCSCs which provide the basic
functionality of a navigation subsystem |

1 Kaiman Filler Kalman_Filler_Common_Parts TLCSC

Kalman_Filter_Compact_H_ParlsTl.CSC
Kalman_Filter_ComplicatedlH_Parts TLCSC

TLCSCs which provide common Kaiman
filter functions

Guidance and Control Wayp«inl_Steering
Autopilot

TLCSCs which provide the basic
functionality of a guidance and control sub-
system

Nonguidance Con rol Air_DaU_Parla TLCSC
Fuel_Conirol_Parl! TLCSC

TLCSCs which provide the basic
functionality of a control subsystem for
operations outside of the guidance area

Mathematical Coordinate_Veclor_Malrix_Algebra
Oeneral_Veclor_Matrix_Algebra

Stand ard_Trig
Oeomelric_Operations

Signal_Processing
Polynomials

Oeneral_Purpose_MaUi
Unit_Conversions

njtternal_Fomi_Coiiversinii_Twos_C'omplenient 1
Ouatemion_C)perations

TLCSCs which provide a variety of useful 1
mathematical functions such as coordinate
and matrix algebra, trigonometric, and sig-
nal processing functions

Abstract Mechanisms Abstract_Data_Stnictures | TLCSCs which provide abstract data struc-
tures and processes

General Utilities GeneraLUtilities
Commun!cation_Parts

TLCSCs which provide other funct ore«
needed for missile or other weapons system
operation

a. Design and Code

On CAMP, top-level design consisted of the package specifications for all the CAMP parts

TLCSCs, including the specifications for all exported LLCSCs and units, as well as the definition of all

exported data types, constants, and exceptions.

Detailed design and coding phases were merged through the use of Ada as the design language.

The primary purpose of the program design language (PDL), Ada design language (ADL), and/or pseu-

docode developed during detailed design is to improve understanding of the software by providing ad-

ditional information thai is an appropriate level of abstraction above the code. The key here is that

detailed design should be a higher level of abstraction than the code. If it is not, then there may be

excessive duplication of effort during the detailed design and coding phases. There were certain charac-

10

leristics of the CAMP project which led to the conclusiot that it was appropriate to go directly from

top-level design to code for development of the CAMP parts. These characteristics are discussed below.

• Low-level requirements: The requirements for many of the parts were specified at a very low level.

The algorithms to be used in many of the math parts, for example, were completely specified during

die requirements phase. There was, therefore, no need to repeat these algorithmic requirements in

the detailed design.

• Paris were built of other parts: Many of the high-level CAMP parts were designed to accept other

parts as generic parameters. The highest level parts directly instantiate the CAMP parts required lo

perform lower level operations. These design aspects of the CAMP parts are further discussed in

Sections 111 and VI.

An example of parts instantiating other parts is shown in Figure 4 which contains the detailed

design/code for the Kalman_Filter_Complicated_H_Parts.Sequentially_Updated_Covariance_

Malm_and_Stale_Veclor.Update procedure. The English pseudocode for this procedure would be

similar to the following:

for each mensuremenl in Ihe slate veclor loop
compute K (Kaiman gain)
update P (error covariance matrix)

update X («tale vector)
end loop

The actual code for this procedure would be very similar to Ihe pseudocode if, as in the CAMP

parls, the calculations of a new K, P, and X consisted simply of calls lo other routines. This

similarity can be seen by comparing the above pseudocode with the actual code, shown in Figure 4,

which contains nothing more than a loop and three subroutine calls.

• Pails are small: The CAMP parls tend to be small, less than 36 lines of code on average, and,

therefore, relaiively simple. The need for high-level comments frequently decreases as the

simplicity of the code increases. This can be seen in Figures 5 and 6 which contain simple and

relatively complex routines, respectively. Figure 3 shows a piece of code which sets all elements of

a symmetric, full-storage matrix to 0.0. The code for this procedure is quite simple and self-

explanatory; it, therefore, contains no comments other than those in its code header. Figure 6, on

the other hand, contains a more complicated piece of code which subtracts a symmetric, full-storage

matrix from an identity matrix. Because of the complexity of this code, high-level comments, in

addition to those contained in its code header, were required. This ratio of comments to code for

this piece of code is better than 1:2.

While this merging of the detailed design and coding phases, hereafter referred lo as detailed

design, is not appropriate for all applications, it was appropriate for development of the CAMP parts.

The primary steps during the design phases are shown in Table 2.

Design walkthroughs were attended by all members of the CAMP parts team and occasionally

II

paekkg* body Kalinan_riltar_Conpllcat«d_B_Parta la

function Coinputa_Kalman_Saln . . .
procadura Opdata_Error_Covarlanca_Matrlx . . .
procadura Opdata_Stata_Vactor . . .

paokaga body Saquantlally_Dpdata_Covarlanca_Matrlx_a.->d_Stata_Vactor la

K : K_Column_Vaotora;

function Conputa_K la naw Coii4nita_Kalman_0aln . . .
procadura Opdata P la naw npdata_Error Covarlanoa_Matrlx . . .
procadura Opdata_X la naw üpdata_Stata_Vaator ...

procadura Opdata (P
X
z
Conpllcatad_B

In out P_Matrloaa;
In out Stata_Vactora;
In MaaauEamant_Vaotora;
In B Matrlcaa;

Maaauramant_Varlanca : In MaaauraBant_Varlanoa_Vaotor) la

bagln

for Maaaurainant_Nunibar In Maaa.'iraniant_Indlcaa loop

K :« Coraputa_K (P "> P,
Maaauranant_Nuinbar •> Maaauranant Munbar,
ConpIlcatad_B ■> Compllcatad_B,
Maasuramant_Varlanca -> Maaauraaant_Varlanca) ;

Opdata_P (P "> P,
Maaauraniant_Hunibar => Maaauraniant_Nuiiibar,
K -> K,
Compllcatad_H => Compilcatad_B) ;

Opd«ta_X (X -> X,
2 -> I,
K «> K,
Maasurantant_Munibar •> Maaauramant_Numbac,
Conplleatad_B => Conpllcatad_B) ;

and loop;

and Dpdata;

•nd 3aquantlally_0pdata_Covarlanca_MatrlJt_and_3tata_Vaotor;

and Kaliiian_rlltar_roinpllcatad_B_Parta ;

Figure 4. For High-Level Paris, Detailed Design is Code

aaparata (aanaral_Vactor_Matrlx_Algabra.
Syii«»atrlc_rull_9toraga_Matrlx_Oparatlona_Dnoonatralnad)

procadura Sat_To_Zaro_Matrlx (Matrix : out Matrlcaa) la

bagln

Matrix := (othara => (othars => 0.0));

and Sat To Zaro Matrix;

Figure 5. Simple Paris Require Few Commenls

12

funotlon aubtrtot JPro«i_I<*«itlty (Input : Matrlo««) rstura Nfttrio*« 1«

-- --d*al«r*tion ■•atlon

Anawsr : Natrla«■ (Input'
Col : Col Indio«*;
Colj3ount : POSTtlVB;
Row'"' : How India««;
RowjCount : »0«TriVl;
S Col : Col India««;
8"Vow : Row~lndla««;

(l), Input'IUülOB(2));

--b«gln funatlon Subtr«at_fro«^Id«ntlty

b«9in

--■nk« «ur« input »atzis i« « «quor« »ntrix
if Input'LBlianifl) ■ Input'XJaR3TH(2) than

--will «ubtraot input antrix fro» «n idantity Matrix by firat
.t« from 0.0 and than adding 1.0 to th«

indar
11 m

t« in th« top half of

--•ubtraotina all al
—diagonal a'■■ant«
--whan doing th« «ubtraatlon, will only calaulat« th«
--for th« alaaant« in th« botto» half of th«

«trio «1«
.trim and will mim*lj

--do aaalgnaant« for th« •'
--■atrim

Row_Count ;■= 1;

--■ Col will go aoro«« th« aoluan« a« Row go«« down th« row«;
--wTll nrnxk aolum aontoining th« diagonal «l«a«nt for thi« row
Row ;■ Input' rilUIT(l);
8 Col :■ Input'riMTU);
I>ö_l*ary__llow:

loop ""

Col Count :* 1;

--8 Row will go down th« rev« «a Col go«« aoreaa th« ooluMta;
--wfian pairad with 8jCol will Bark th« aymatrio oount«rpart
--to th« «lanant b«ing r«f«r«noad in th« bottoa half of th«
--aatrlx
Col :■ Inpat'rZR8T(2) ;
8 Row IM Input'riRJT(1);
8ülbtraat_Sl«aMntajrraB_l«ro:

loop ~ "

--parform «ubtraatlon on alaannt in botteai half of aatris
Anawar (Row,Col) ;■ - Input (Row, Col) ;

--•sit loop aft«r diagonal alaaant baa baan raaohad
asit 8ubtraat_Blaai«nt«_rroai_8«ro whan Col Count m

ItowjCeunt ;

--aaaign valua« to «wiMatrla ala«ant« in top half of matrix
--(dona aftar oh«ofc for diagonal, aino« diagonal alaaanta

Anawar(fl_Row, 8_Ce.
iymM«trio oo'
1) :■ Anaw«; «(Row.Colj ;

--inoraaaat ▼arlabl««
Col_Count :■ Col Count + I;
Col :■ Col Indla««'80CC(Col) ;
fl_Row : m Row_Indla««' 80CC (S_Row) ;

and loop SubtraatJKl«M«nt«_jrroaJE«ro;

--add on« to th« diagonal «lamant
An«war(Rowf Col) tm Anaw«r(Rowr 8_Col) + 1.0;

axit Do^Brary Row whan Row_Count « Input'LKN<9TK(l) ;
Row_Count : = Row Count + 1*
Row :■ Rov ^Indioaa'8tx:c(Row) ;
8 Col :■ Col 'kIndio«a'80CC(8 Col) ;

and loop Do_ET«ry_row;

•la«
raia« Dl»an«ion Error;

and if;

rotum An«w«r;

«nd 8ubtract^_fro«_ld«ntity;

Figure 6. Complicaled Paris Require More Commenls

13

TABLE 2. DESIGN STEPS

1 STEP DESCRIPTION |

Assignmenl of requircmcnls to the TLCSC

Complelion of lop-level design, along with header informalion (ace Sect on
11.2.0

Preparation of a software development file (SDF) (see Section 11.2.0

Top-level design walkthrough

Completion of detailed design, along with header information (see Section
•i.2.0

6. Preparation of test procedure/plan (sec Section I1.2.h)

7. Detailed design walkthrough

by members of the parts composition team. The design presented for walkthrough was reviewed to

ensure conformance with requirements, conformance of design with existing design and coding standards,

consistency with other parts, completeness of documentation, and conformance of code headers to docu-

ment generation tool requirements (see St. «n II.2.e.(4)).

b. Teslinj;

The testing phase of the life cycle began after completion of detailed design and prior to the

detailed design walkthrough. During this phase, a test plan and procedure for the TLCSC were prepared

for later review by the CAMP parts team at the detailed design walkthrough. Following completion of all

design walkthroughs and implementation of walkthrough action items, a part was given to a tester for

unit/integration testing.

Unit and integration testing of the CAMP parts were combined into a single phase because of

the bottom-up approach taken to testing. All parts requiring other parts directly or designed to use them

through generic parameters were actually tested using the supporting parts which had already passed

testing. This approach shortened the testing phase by eliminating the need to write code stubs and by

eliminating the need to first test a part in isolation and then retest it using the parts themselves.

Most parts required several iterations through the testing cycle illustrated in Figure 7. The

majority of testing errors resulted from errors in the test procedures. Much less frequently, errors were

found in the parts. On rare occasions, errors were found in the supporting parts which had already been

tested. If an error were found in a part, whether directly or indirectly, it was returned to the original

designer for modifications and sent through the testing cycle again. When a TLCSC successfully passed

testing, it was placed under configuiation control (see Section II.2.d) and compiled into the main CAMP

parts library.

14

1 Designer
prepares lest
procedure

Part given
lo tester

^ Prepare 1
lest code

Run the lest

error(s)
delected?

yds

Modify
lest code

-In lesl code ■

Return part
to tester

-in lesl procedure

-in part under lesl zy Prepare SDR
on part
being tested

Return
part lo
designer

ModHy part/
test procedure

in a supporting part
Suspend
testing on
current part

Prepare SDR
on supporting
part

Correct
supporting
part

Update
SDF

Place part under
configuration
management

Compile part
kilo baseline
Ada library

Figure 7. CAMP Paris Testing Cycle

c. Mainlenance

During the CAMP project, parts were modified to provide both enhancements and corrections.
Changes to the CAMP parts were governed by a Configuration Change Control Board (CCCB) that was
put into effect after parts development was complete. The CCCB consisted of the program manager and
the heads of the 11th Missile and parts development teams. On occasion, members of the parts composi-
tion system team and additional members of the parts development teams participated in board discus-
sions. The CCCB was tasked to determine whether a proposed inodificaticn/enhancemenl to a part should
be made. The outcome of the decision was based on:

> The scope of the change: Was it a minor change or a major one? Was it specific to the 11th

Missile or general enough lo be relevant to other missile systems?

• Purpose of the change: Was ii (o correct an error (errors were always corrected) or provide an

enhancement?

• Schedule conslraiiits

The need for corrections to the CAMP parts was determined at several points during the life
cycle of the parts. Corrections due to enors detected during unit and integration testing are discussed in
Section 11.2.b. Occasionally, errors were detected in parts that had been successfully unit and integration
tested. These errors were generally due to incorrect requirements and were identified through the 11th

15

Missile Application use of the CAMP parts, as well as through reviews of the parts by other McDonnell
Douglas software projects for potential use in their systems. These errors were corrected as they were
discovered. The affected parts were then retested and baselined again.

During the development of the 11th Missile Application, it was found that some parts, while not
incorrect, were inappropriate for use on thai project. Some of these inadequacies were due to require-
ments and some were due to design decisions. These prol .ems were handled in one of the following
ways:

• Baselined parts were modified: This course of action was chosen if it was determined that the parts

were inappropriate not only for the 1 Ith Missile Application, but also for other missile applications.

For example, all the Kaiman filter packages were modified because it was found that the generic

parameters did not allow sufficient flexibility.

• Additional parts were created: The algorithms for some of the parts made assumptions that were

not appropriate for the 11th Missile Application. For example, some of the navigation parts take

advantage of the fact that for small angles, the sine of the angle is approximately equal to the angle

itself. This assumption increases efficiency by eliminating the need to calculate an arcsine and

produces satisfactory results for some missile applications. This assumption, however, was not

appropriate for the Ulli Missile Application and potentially not for other missiles either. Con-

sequently, new parts were created which used the arcsine instead of the approximation.

• llth Missile team modified their own versions of the parts: In some cases, the required modifica-

tions were specific to the 11th Missile Application and, therefore, did not warrant modifications to

the baselined CAMP parts. In these instances, the 11th Missile team modified their own versions of

the parts as required. A further discussion of this can be found in Volume II.

d. Configuration Management

Two libraries were created to aid in configuration management of all CAMP parts. These
libraries were created under the DEC Ada Compilation System (ACS) and Configuration Management
System (CMS). The ACS library contained compilations of the current versions of all baselined CAMP
parts. The CMS library contained the ASCII files for all baselined CAMP parts. Both of these libraries
were controlled by one member of the parts team; the parts librarian. Read access was given to all
members of the CAMP team, but only the CAMP librarian could place elements in these libraries. The
ACS and CMS tools are further discussed in Sections II.2.e.(I) and II.2.e.(3), respectively.

The CAMP librarian was responsible for baselining all CAMP TLCSCs. A TLCSC was
baselined when it had successfully passed its testing phase, all source code documentation had been
updated to include testing information, and the Software Development File (SDF) (see Section II.2.0 had
been brought up to date.

16

When a TLCSC was first placed under configuration control, all files pertaining to the TLCSC

were placed in the CMS library; these files included (hose listed in Table 3. The TLCSC was then

compiled into the ACS library.

TABLE 3. ITEMS UNDER CONFIGURATION MANAGEMENT

1 CONTENTS |

i All source code files for TLCSC |

2. Test procedure

.1. Test plan 1

4. All source code files containing test code 1

5. Input data for tests

fi. Expected results for test»

7. Results of testing

R. DnC'/Test Manager command files used to iirgani/.e tests

If a TLCSC required modifications, the CAMP librarian would reserve the files requested by

the person responsible for making the modifications. The files were checked back into CMS when the

modifications were complete, the TLCSC was successfully retested, and the source code documentation

and SDF were updated.

When rebaselining a modified TLCSC, the modified files were placed back into the CMS

library; new files, if any, were placed under configuration control by placing them in the CMS library; the

modified TLCSC was compiled into the ACS library; and any TLCSCs whose compilations depended

upon the newly compiled TLCSC were recompiled.

c. Tools

Software tools were used by all members of the CAMP team during all phases of the project.

This was a critical component in the increased productivity experience on the CAMP project. Some of

the tools were provided by commercial vendors and satisfied standard needs such as library management,

configuration management, symbolic debugging, editing, and text processing. In other areas, such as

document production, requirements for tools were identified which could not be met with commercial

products, and in-house tools were developed.

17

(i) Design and Code Development Tools

All CAMP Ada development look place using the Ada programming support environment

(APSE) provided by Digital Equipment Corporation (DEC). This development environment includes: 1)

the VAX Ada compiler; 2) the Ada Compilation System (ACS) which serves as the program library

manager and provides an interface to the compiler and linker; and 3) a symbolic debugger.

The development environment provided by the Ada Compilation System facilitated the

development of parts by multiple engineers. The ability to create sublibraries allowed the creation of one

parent library containing all tested, baselined parts, and separate sublibraries for the untested software

under control of the parts developers. The use of one parent and multiple sublibraries allowed all parts

developers immediate access to baselined CAMP parts. It also gave the developers immediate access to

all parts which were modified and, therefore, recompiled.

Unlike other development environments, ACS does not impose the restriction of requiring

library unit specifications and bodies to be compiled into the same library. The compilation system also

allows units to be entered via pointers from one library or sublibrary into another. This allows parts

physically located in another library to be shared by reference. This method of entering rather than

compiling a referenced unit into a library has the advantage of avoiding the problem of compiling against
an obsolete version.

The usefulness of DEC'S Ada Compilation System is enhanced by its integration with both

the DEC Code Management System (CMS) and the symbolic debugger. This allows ACS to fetch files

from the CMS library for recompilations. It also allows the symbolic debugger to fetch files from the

Ada library in order to display source code lines during a debugging session. Both of these features were

used extensively during CAMP.

Another useful and frequently used feature, is the ability of the ACS library manager to

automatically perfonn recompilations of obsolete units. When invoking this feature, it is possible to

indicate that a unit is to be considered obsolete if, in addition to the normal rules of compilation, the

creation date of the latest source code file is more recent than the latest object code. This, along with

integration of ACS with CMS, allows the library manager to retrieve files from CMS for recompilation

whenever a new version of the part is baselined.

(2) Testing Tools

The testing phase of a parts life cycle included the identification and organization of

required tests, preparation of a lest plan and procedure, preparation of test code, and actual testing of the

part. The tools which were used to assist with all of these phases are discussed below.

Test Manager

The VAX DEC/Test Manager (DTM) is a tool developed by DEC to assist in the organiza-

tion of tests, selection of tests for execution, and review/verification of test results. It was used on CAMP

to organize tests and assist in preparation of the lest plan.

IX

Tests were generally organized by creating a group of tests for each TLCSC and then

creating subgroups for each LLCSC witbin a given TLCSC. The tests and groups were created by writing

job control files containing the appropriate DTM commands and then submitting these files to the test

manager. While DTM does have interactive capability, it was felt that the number and size of the re-

quired commands were too great for this capability to be practically applied, particularly considering the

number of tests required for even a medium-sized TLCSC.

Following creation of the appropriate tests and groups for a TLCSC, DTM could be

queried to show all the tests and groups for a particular case. A tool was written to take this output and

create the tables which were used to document the tests for the lest plan document.

An attempt was made to use the DEC/Tesl Manager for testing of the CAMP parts, but

DTM proved unacceptable since it allowed no tolerance in the output. The results of a test had to be

exactly what were expected or the test failed. For example, if the expected result was 2.0 and the actual

result was 1.9999999999 or 2.00000000001, the test failed. Therefore, use of DTM for the execution of

tests was discontinued

Record Results and Retrieval Operations packages

During the early stages of CAMP parts testing, tools were developed to assist with the

execution of tests. These tools consisted of the Record_Results and Retrieval_Operalions packages.

The Record_Results package was designed to control the output file, retrieve data from the

expected results file, format output to the results file, and check the results of each lest. It consisted of

several subroutines and several generic packages. The subroutines dealt with initializing the recording

operations, opening and closing the output file, textual output to the file, formatting the file, and tailoring

heading information. The generic packages were designed to handle floating point, integer, and enumera-

tion data types and contained the actual recording/analysis routines.

The recording/analysis routines were overloaded to allow for variations in the recording

operations themselves: whether the description was to be a textual description or simply a running count

of the number of tests performed; whether the expected value was being sent to the routine or should be

read from an expected results file. Each of the routines had a parameter controlling the tolerance to be

used for judging every value recorded for each test. A value was considered acceptable if:

abs (Actual - Expected) <= abs(Expecled) * Tolerance

19

The recording routines were able lo skip over extraneous text when retrieving data from
the expected results file. Figure 8 shows an excerpt from the expected results file used for testing the
WaypoinLSteering TLCSC. Il was created by retaining applicable sections from the test procedure. The
recording routines had the capability to go into a file such as the example, skip over the extraneois text,
read the floating point values for UN_B, again skip over extraneous text, and read the enumeration values
for the Slart_Test function without having any knowledge of the textual format of the file. Being able to
do this had several benefits:

• Testing was simplified: Since the expected results file was a trimmed-down version of the test

procedure, complete with pertinent paragraph headings, it was easy to tell whether the numbers

being read for a particular test were the ones that were supposed to be read.

• Time was saved: There were definite advantages to being able to have extra text in the expected

results file, but it would have been inconvenient to have required a rigid formal or to have had the

test code know the textual layout of the file. By creating routines capable of skipping over super-

fluous data without knowing the format, time was saved. Additional time savings were also real-

ized by creating a tool capable of assisting in the job of stripping the test procedure to create the

expected results file.

j x.2.2 FOR MAI. TEST X.X.X UPDATE PROCEDURE

%.2.2.* OUTPUT

Excculiun should generate Ihc following uulpul:

--firs! sei of rcsulls

0.287_60.1_7?4_197 0.197_1(I7_I32_I8S -0,')37_5.16_9SO_976 •-UN_B values

x.9.2 FORMAL IBfT X.X.X - START TEST FUNCTION

x.9.2.* OUTPUf

Execution should generate the following output:

Not__Turning

Turning

Figure 8. Sample Expected Results File

Text Formatter

Digital Standard Runoff (DSR) is a text formatting tool supplied by the Digital Equipment

Corporation. It processes source files into formatted text, optionally creating a table of contents. DSR was
used on CAMP for the creation of test procedures, the lop-levcl design document, and the detailed design
document.

Symbolic Debugger

The DEC Ada Compilation System includes a symbolic dcbuggei The functions of the
VAX symbolic debugger include the ability to run programs, set breakpoints, and execute individual
instructions; examine, set, and evaluate program data; and show a trace of active calls at the current
program counter location. It permits debugging in a screen mode which placed source code in one

20

window and debugger commands and oulpul in anolher. Since the debugger recognizes Ada constructs, it

was possible to ask for the current value of a component of an array or record, or to ask it to evaluate the

attribute lor some object or type.

The symbolic debugger did have a few limitations:

• Variable inilialization: The symbolic debugger apparently initializes some variables when it is

invoked; this causes difficulties in locating program errors. For example, one program was abnor-

mally terminating due to a constraint error. When an attempt was made to identify the problem

using the symbolic debugger, the program ran successfully. It took several iterations of

running/debugging before it was realized that the program ran successfully in the debugger because

the debugger was correctly initializing an otherwise uninitialized variable,

• Scope: On occasion, particularly if the program was large and contained many instantiations, the

debugger would not show the source code for a unit because some other unit (one not being stepped

through) was not in its active scope. This frequently made it impossible to debug the routine using

the debugger.

In spile of these problems, the debugger was a useful tool and was used frequently during

CAMP by both the parts and I llh Missile teams.

(3) Configuration Management Tools

The Code Management System (CMS) provided by Digital Equipment Corporation was

used for configuration management of the CAMP parts. This tool and its use are further discussed in

Section 11.2x1.

(4) Doaimenlalion Tools

Tools to aid in (he creation of top-level and detailed design documents were needed for the

(ollowing reasons:

• II was anticipated that the top-level and detailed design documents for the CAMP parts would be

very large due to the number of CAMP parts and the amount of documentation on each one.

• It was des:rable to eliminate the need to maintain three sets of documentation: source code files,

lop-level design document, and detailed design document. Since all of the information was already

contained in the source code files, it was preferable to maintain only them and simply recreate the

design documents as necessary.

21

For these reasons, comment extractor tools were developed to ielp create Section 3.6

(Top-Level Design) of the DoD-STD-2167 Top-Level Design Document and Section 3.3 (Detailed

Design) of the DoD-STD-2167 Detailed Design Document. The comment extractors generate the Digital

Standard Runoff (DSR) text formatting commands required to produce for the design documents and

extract the appropriate information from the source code headers for each of the paragraphs. Figures 10

and 11 show which sections of the source code headers were placed in the design documents.

(5) Miscellaneous Tools/Aids

Naming Convention

A naming convention was established and used for all CAMP files. The primary com-

ponent of this naming convention was a two-part prefix (i.e., xxx_yyy_). The first part of the prefix (xxx)

consisted of the TLCSC identification number (e.g., 621 for Basic_Dala_Types, 684 for Geometric_

Operations, 001 for Common_Navigation). This part of the prefix was used on all files (e.g.. test proce-

dure, test plan, lest results) pertaining to a particular TLCSC. The second part of the prefix (yyy) was

used to indicate level of nesting of the part contained in the file and was also indicative of compilation

order for that TLCSC. This two-part prefix was used for all Ada source code fdes implementing the

TLCSCs.

The use of this naming convention was found to have several benefits. It simplified the

use of CMS. For example, by simply specifying "001*.*", a list of all baselined files dealing with the

Common_Navigation_Parts TLCSC could be obtained. It also facilitated the development of tools to help

with the compilation of parts. This naming convention has now been adopted by several other Ada

projects within McDonnell Douglas.

Code Counter

A code counter was developed to help count lines of code and documentation for each of

the CAMP parts. The code counter was able to analyze the structure of an Ada source code file and break

down the counts among the individual Ada components in the file. For example, the code counter could

take the code shown in Figure 9 and tell the user that:

Coordinale_Veclor_Matrix_Algebra has 2 lines of code and 4 lines of header (not including items nested in it)
VeclnrOpcralions has 6 lines of code and 4 lines of header (not including items nested in il)

"+" has 2 lines of code and 0 lines of header
has 2 lines of code and 0 lines of header

and that:

Coordinale_Veclor_Malrix_Algcbra has 12 lines of code and R lines of header (iiKluding items nested in it)
Vector_Operations has 10 lines of code and 4 lines of header (including items nested in it)

This tool has proved very useful, both on CAMP and other projects.

22

--*TLCSC NAME:
--* Coordln«t»_y«Gtor_M«trtx_Alg«bra
.-*
packag* Coordlniit«_V«ctor_Matrlx_Alg«br« 1«

— *—ttCSC NAME:
__*•_ v«ator_Op«ratlona
__*

ganarlc
typ» Elwnanta la digit« <>;
typ* Indloa« la (<>);

packag* Vactor_Oparatlon» la
typ« Vactora la array (Indlcaa) of El
function "+" (Laft : Vactora;

Right
function "-" (taft

Right
and Vactor_Oparatlona;

ant a;

Vactora) ratum Vactora;
Vactora;
Vactora) ratum Vactora;

and Coordlnata_Vaotor_Matrlx_Algabra;

Figure 9. Sample Code Counter Input

f. Ducunienlulion

All CAMP parts are extensively documented for the following reasons:

• External users of the parts are not familiar with them and therefore need a significant amount of

information.

• The CAMP parts make extensive use of generic units, and most users are relatively unfamiliar with

the advanced features of generic units. A sample instantiation is included in the code headers of

generic parts which shows how other CAMP parts can be used to provide the required generic

actual data types, objects, and/or subprograms. In some cases, the sample usage section shows how

the generic formal parameters can be used to tailor the part; for example, how to tailor a matrix

multiplication routine for use with dynamically sparse matrices. During part development, this

portion of the documentation was time-consuming to produce and easily affected by modifications

to the part. Later, however, it turned out to be one of the more useful pieces of documentation for

the engineers developing the 11th Missile Application since they were unfamiliar with the use of

the part.

A Software Development File (SDF) was prepared for all CAMP TLCSCs. Table 4 shows the

sections contained in each SDP, along with the information that was maintained in each section.

All of (lie clocumenlatio i on a part is contained in its lop-level and detailed design headers. A

software tool (see Section 11.2.e.(4)) was developed to extract information from appropriate sections of

the headers for placement in the design documents. Figures 10 and 11 identify the information contained

in the CAMP top-level and detailed design headers, and indicate which of these sections are extracted for

use in the top-level or detailed design documents.

23

TABLE 4. SOFTWARE DEVELOPMENT FILE CONTENTS

| SECTION CONTENTS

Requirements Requirements for this part

Top-level design Package specificalion for the TLCSC

Delniled design Body for the TLCSC

Ten! plan/procedure Test procedure/plan for the TLCSC, along with the lest code

Tem resulls Latest set of test results

Problem reports and
log

Software discrepancy reports (SDRs) for this TLCSC, along with
disposition

Change orders and
log

Software enhancement proposal/software change proposal forms
(SEP/SCP), along with disposition j

Miscellaneous Walkthrough records *

EXTRACTED FOR
HEADER COMTENTS

Name
Identification Number
Security Level
Purpose
Requirements trace
Context

Utilization of external elements
Packages
Subprograms and task entries
Exceptions
Data types
Data objects

Input/output
Generic parameters

Data types
Data objects
Subprograms

Formal parameters
Exported exceplions/types/objecls

Exceptions
Data types
Data objects

Exceptions raised
Calling sequence/timinp/priorify
Interrupt handling
Sample usage
Decomposition
Local entities contained in package body

Figure 10. Top-Level Design Header Information

The main benefit of using code design headers to produce design documents is that only one set
of documentation needs to be maintained. This allows a part to be modified without also modifying
documents immediately or trying to remember at a later dale which sections of the document need to be

updated. When it is time to produce an updated document, the text merely has to be rc-cxtracted. This
allows lime to produce extensive, high-quality documenlalion by eliminating tedious and often error-
ridden duplication.

24

HEADER CONTCNTS

Nntnc
Iclriitifii nlion Numhtr

Security IJCVCI

Purpose
Rcquircmciil.'; trace
Context

UlilizotlOH of external elements
Pnckagcs
Subprograms and task entries
Hxceplions
Data types
Data objects

Utilization of other elements in top-level compoi»ent
Packages
Subprograms and task entries
Bxceptions
Data types
Data objects

Input/output
Oencric parameters

Data types
Data objects
Siibprograms

l:ornial parameters
I.(Kal cxceptions/lypes/objects

Exceptions
Data types
Data objects

Local entities
iixtcptions raiscil
Calling sequence

EXTRACTED FOR
DtSION DOCUMENT

Figure II. Detailed Design Header Information

3. CAMP PARTS PROCESS ANALYSIS

In order to assess productivity for parts development on the CAMP project, effort data was collected
from all members of the CAMP team in the areas of domain and requirements analysis, architectural
design, detailed design, coding, testing, etc. This was then combined with sizing data to delemiine
productivity. Productivity figures can be misleading, and sometimes impossible to compare because of
the many ways they can be calculated. Productivity is generally quoted in terms of lines of code per
man-month, but authors frequently don't define terms or specify what is included in code counts.

The size of the CAMP parts was determined using two metrics: lines of code and Ada statements. A
line of code was defined as any line in the source code file which contained al! or part of an Ada
statement. If a single Ada statement occupied three lines in the source code file, then it was counted as
three lines of code. A statement count, on the other hand, counted whole Ada statements: in effect
counting semicolons. The difference between these two methods of determining code size is illustrated in
Figure 12.

The total si/e of the CAMP parts, in units of lines of code and Ada statements, is shown in Figure
13. As shown in this figure, over 43,000 lines of Ada code were developed during CAMP; this included
over 16,000 lines of u/dc for the parts themselves and over 27.500 lines of test code. Using Ada stale-

2.S

packag« aan*ral_V«ctor_Matrlx_Alg*bra 1«

9*narlc
typ«

typ*
typ«

typ»
typ«
typ«
typ«
typ«
typ«
typ«

typ«

typ«

L«ft_El«in«nt»
Rlght_Elainanta
Output_Elanant■
Laft_cöl_Indiaa»
Laft Row Indicaa
Rlght_CoT_Indloa«
Rlght_Row_Indica«
Output_Col_Indlca»

with

packaga

la digit« <>;
la dlgl«-a <>,
la digit« <>;
la «»;
1« «»;
1« «»;
1« «»;
i« «»;

Output_Row_Indlcaa la (<>) ;
Laft_Matrlcaa 1« array <Laft_Row_Indlcaa,

Laft_Col_lndloa«) of Laft_BlMianta
Rlght_Matrlc«« 1« array (Rlght_Row_Indlca«,

Rlght_Col_Indlaa«)
of Rlght_Elamanta;

Output_Matrlca« 1« array (Output_Row_Indloa»,
Output_Col_Indlca«)

of Output_Elamanta;
function "*" (Laft : Laft_Elani«nt«;

Right : Rlght_Elamant«)
raturn Output_Elamant« 1« <>;

Matrlx_Matrlx_Tran«po«a_Multlply_Dnraatrlctad 1«

function "*" (Laft : Laft_Matrlca«;
Right : Rlght_Matrlea«) raturn Output_Matrlaa«;

and Matrlx_Matrlx_Tran«po«a_Multlply_Dnra«trlatad;

and aanaral_Vactor_Matrlx_Xlgabra;

Cmmling Ihr above code, using lines of code and Ada slalemenls as ill« metrics, yields the
following results:

Lines of Code Ada Slalemenls
27 16

Figure 12. Lines of Code versus Ada Siaiements

ments as the sizing metric, over 28,000 Ada statements were developed during CAMP with over 10,000
of these being part code and almost 18.000 being test code.

SIZE

PART CODE

TEST CODE

TOTAL

LINES OF
ADA CODE

ADA
STATEMEMTS

LINES OF
COMMENTS

16,091 10,203 91,553

27,584 17,991

43,675 28,194

J
Figure 13. CAMP Parts Sizing Data

On any software project, source code must be developed and documented. Section II.2.f discusses

the vital role extensive documentation plays in the successful use of reusable software. This is reflected

in the sizing data contained in Figure 13 which shows that the ratio of lines of comments to lines of code

is approximately 3.7:1 and the ratio of lines of comments to Ada statements is almost 9:1.

Code size is not the only factor in determining productivity; effort must also be assessed. Effort data

for development of the CAMP parts is shown in Figure 14. It includes the number of hours expended for

all phases of the CAMP parts life cycle, from domain analysis through maintenance. A total of 9734

man-hours of effort went towards the development of the CAMP parts, with 6557 of these hours ex-

pended during the design and testing phases.

ACTUALS AT
COMPLETION

DOMAIN ANALYSIS

REaummons SPEC.

DESION

TESTPLANNNQ

COONQ

TESTING

MANTBMNCE

1153

1428

4010

1334

516

697

596

TOTAL 9734

DESION-TESTINa 6557

(IN MAN-HOURS)

Figure 14. CAMP Parts Effort Data

The productivity statistics for development of the CAMP parts, using several metrics, is shown in
Figure 15. The importance of knowing how productivity is being measured can be seen in this figure

which shows that productivity figures from 164 statements/man-month to 1039 lines of code/man-month

can be justified, depending on how and what code is counted and what is included in the man-month

figures.

Figure 16 gives an overall picture of the development statistics for the CAMP parts development

effort. The data includes the most conservative numbers shown in Figure 15, using code counts for parts

code only and man-month figures for the entire CAMP effort. It can be seen from this figure that the

productivity experienced during CAMP parts development was approximately 61% greater than that

predicted by COCOMO for embedded software development. Several factors contributed to this in-
creased produclivlty:

• Ada: The Ada language itself contributes to increased productivity. Strong data typing, for ex-

ample, helps to ensure that many errors are found during compilation rather than being found

during testing when they would be more time consuming and costly to correct.

• Good people: All members of the CAMP parts development team had at least some Ada ex-

perience prior to joining ihc project, and all received training in software engineering practices

27

PRODUOTIVITY I

DBSIGS-TKSTINC
»TORT

ALL EFFORT

PART CODE OHLY PART (TEST CODE

LOC/MM

STMT/MM

MH/LOC

MH/STMT

LOC/MM

STMT/MM

MH/LOC

MH/STMT

383 1039

243 671

0,407 0.150

0,643 0,233

LOC/MM

STMT/MM

MH/LOC

MH/STMT

LOC/MM

STMT/MM

MH/LOC

MH/STMT

258 750

1 164 452

0,605 0.223

0954 0345

(ISSMHMM)

Figure 15. CAMP Parts Productivity Data

SIZE

PRODUCTIVITY

EXPECTED
PRODUCTIVITY
(COCONO)

DELTA

1 16,091
LOG

10,203 1
STMTS

258
LOC/MM

164
STMTS/MM|

160

LOC/MM

61% 1 V^ "

Figure 16. CAMP Parts Development Statistics

either before or after joining the projecl. In addition, several members of the team had extensive

Ada experience and were available to help train new people. There was also continuity of person-

nel between CAMP-1 and CAMP-2, with key members of the CAMP-1 team remaining throughout

CAMP-2. Tills provided increased consistency in the overall design philosophy of the parts and

increased the ability to pass on the lessons learned during earlier phases of development.

• Good tools: As discussed in Section II.2.e. various tools were used throughout the CAMP

program; they made a significant contribution to increased productivity.

28

• Code reuse: During CAMP, not only was reusable code developed, but i(was used in the develop-

ment of more reusable code. It was often possible to use previously developed specifications

and/or bodies to create new reusable parts. A simple example of this involves matrix addition and

subtraction routines. Since the differences between the two are minor, the matrix addition routine

can be developed and completely documented, and then the subtraction routine can be created

simply by copying and making minor modifications to the addition routine.

29

SECTION III

INTER-RELATIONSHIPS BETWEEN CAMP PARTS

An imporlant aspect of the design of the CANfP parts is the way various parts were designed to build
on other parts, work together, and facilitate using other parts. These relationships between the parts are
further discussed in the following paragraphs. Figure 17 shows how these relationships come into play
when developing a small portion of a navigation system.

I. PARTS BUILD ON OTHER PARTS

One example of parts building on other parts involves the Polynomials, Standard_Trig, and Basic_
Datatypes TLCSCs as illustrated in Figure 18. The Polynomials TLCSC lies at the bottom of the build
and provides an extensive set of polynomial solutions to various transcendental functions. The generic
Standard_Trig TLCSC forms the second layer by exporting trigonometric data types and operations.
Standard _Trig uses the Polynomials package to obtain the required polynomial solutions to its exported
transcendental functions. The Basic_Data_Types TLCSC provides the final layer. In addition to provid-
ing a set of data types and operations typical of a navigation implementation, BasicJDataJTypes instan-
tiates the SlandardJTrig package. This design approach offers several advantages:

• Minimal functionality is added from one step lo the next.

• Users of the higher level packages, such as Basic_Data_Types, frequently will not need to reference

the lower level packages, such as Polynomials.

• Finally, combining the parts saves work for (he user.

In this example, a user merely needs lo import Basic_Data_Types in order to obtain a full set of
navigation data types (such as various forms of distances, velocities, accelerations, etc.), operators upon
these types, trigonometric data types (such as radians, degrees, etc.), and a full set of trigonometric func-
tions.

30

^

ConvFactors

UnlvConst

^.

$ WQS72
£ WGS7?L

wimv

J

USER APPLICATION PROGRAM

pkg VelSqRt Is new GPMath.Square_Root...
pkg AngVelSqRl Is new GPMath.Square Root...
pkg AceelSqRt Is new GPMath.Square_Root...
pkg DIstSqRt Is new GpMath Square Root...

pkg VelVOpns Is new CVMA.Vector_Opn8 ...
pkg AngVelVopns Is new CVMA VectorOpns ...
pkg AccelVOpns Is new CVMA.\/ec(or_Opnt...
pkg DlstVOpns Is new CVMA.Vector Opns ...
fn Cro»sProd_AW_VV Is new CVMA.Crossl'roduct...

fn CorAccel Is new NPNav.Compufe_Corlolls_Acceteratlon
pkg RadOfCurv Is new NPNav.Radlu8_of_Cuivature ...
pkg Latlnt Is new NPNav.LatltudeJntegratlon ...

1. A (»ml «f Kl packages must he compiled inln the user's library. The user himself requires six of these (indicated by arrows into
the user application): the six packages require an additional four.

2. The user must do the following before instantiating the navigation parts:

• Instantiate four versions of the square root package fOPMalh.Squarc_Rooi) using data types and operators supplied by
the basic data lypi-s (BUT) package.

• Instantiate four versions of the vector operations package (rVMA.Veclor_Opns) using data type« and operators
supplied by BDI and the square root functions contained in the packages previously instantiated by the user.

• Instantiate a cross product function using scalar data types and operations supplied by BDT, along with vector data
types and operations obtained from three separate instantiations of CVMA.Veclor_Opn5,

.1. The three navigalion parts can then be instantiated using:

• Scalar dnia types and operators supplied by BDT.

• Scalar data types and trigonometric functions supplied by an instantiation of the standard trig package contained in BDT
(BDT.Trig).

• Vector types and operations supplied by the four instantiations of CVMA.Veclor_Opns,

• Data constants supplied by the WOS72 ellipsoid metric data package (WOS72) and the WOS72 ellipsoid unilless data
package (W(iS72l!».

• I Iser-defincd data types and objects

Figure 17. Assembling a Norlh-Poinling Navigation System

il

Syslem_Functlons

Radlan_Op»rallons ^

Polynomials

CV\V\\V\\\\\\\\\X\VV\V«.\>to.\V!

$ SlandardTrlg

| Radians)

| Sln_Cos_Ratlo)

^Tan Ratio)

.V\\X\\\\\\\\V\VKI.\V\V

Ba»lc_Data_Typ»s

1 Meiers) |
s

Melers_per Second I
^

Seconds)

f ' Srlg

/z\ i
J ^

instantiatoo

■.- Irtdkat«! ■ g»mrk unit

Figure 18. Some Parts Build On Other Parts

2. PARTS WORK TOGETHER

Parts were also designed to work together, using low-level parts to support more complex operations.
This design approach differs from the approach previously discussed in that functionality is added with
each step and the lower TLCSCs are frequently required by the user. An example of this interrelationship
can be seen in the Geometric_Operations and Waypoint_Steering TLCSCs shown in Figure 19. The
Waypoinl_Steering TLCSC exports the Steering_Vector_Operations package which handles the in-
itialization and updating of waypoint steering vectors. In order to perform its operations, the Steering.
Vector_Operalions package instantiates two subroutines from the Geometric_Operalions package which
are designed to calculate unit radial vectors, unit normal vectors, and course segments. This design

methodology has several benefits:

• Since the geometric operations are not placed in the package body of the Waypoint_Sleering

TLCSC, they are also available to the user.

• Not duplicating the neometric_Operations code within the Waypoint_Steering TLCSC improves

maintainability.

e Perfonning the instantiations of the üeomelric_Operalions parts within the Sleering_Vector_

Operations LLCSC instead of bringing them in as generic subroutines saves the user the work of

finding (he additional pails and doing the instantiations.

32

Q9n9ral_Purposo_Math

| of Squares-1

Coordlnate_Vector
Matrlx_Algebra

^ V9Ctor_Operatlons
"^ (Veclora

/Cross Product^
S\SS\N\\\SSS\NWXV\\\SSS>

Qeometric_Ope rations

Vector

5^ areat_Clrcle_Arc_Lflngtn

^ ^^^j—, /Compute ^

Waypolnt_Steerlng

Sleerlng_Vector_
Operations

^VNN\V>NSN\N\SNSNN\NN\SN\\\\\NS(

Basic_ Datatypes

Meters] j

Trig

^

^
s h3ealM ■ gtmrte unl

Figure 19. Parts Work Together

3. CAMP PARI S FACILITATE USE OF OTHER PARTS

Finally, pans were designed to facilitate using other parts by providing the requisite generic actual

parameters. An example of this is shown in Figure 20. In order to instantiate the generic Compute_

Segment_and_Unil_Nonnal_Vector procedure, the only data type the user needs to define is a discrete

type for Indices. The remaining scalar types can be obtained from the Basic_Data_Types package, along

with the multiplication and division operators; the vector type and operations on that type (i.e., Vector_

Length and Cioss_Product) can be obtained by instantiating the Vector_Operations package in the

CoordinateJVeclor_Matrix_Algebra ^.CSC; and a value for the radius of the Earth can be found in the

WGS72_Ellipsoid_Engineering_Data TLCSC. This kind of support can be found in most of the CAMP

parts.

33

^i*vx\x\\\\xvy

\V\X^\N*X\»*>J

WOSTZ atipsoc
METMC n*TA

Figure 20. CAMP Parts Facilitate Use of Other Parts

When designing the CAMP parts, a primary consideration was how to provide low-level operations,

such as linear algebra and transcendental functions, to the more complex routines. There were several

options:

1. In-line the required operations directly into the higher level routine: This option was considered

unacceptable since it would have caused the parts to become excessively large. Also, in-lining

would have increased testing time and brought about the potential for a maintenance nightmare.

2. Place the required code in subroutines located in package bodies: This option, while an improve-

ment over option 1, would also increase the size of the parts, lengthen testing lime, and increase

maintenance difficulties.

3. Instantiate a required operation from another CAMP part. In a few cases, this option was chosen.

This method was considered desirable if: 1) only one method existed for implementing the re-

quired operation; or 2) the instantiating part were a very high-level part, such as a Kaiman update

package, designed to provide one possible solution to a problem by bringing together one possible

combination of lower level parts.

This option was not considered acceptable if the required operation was a very basic one, such as a

trigonometric function, and there was no way of knowing ahead of time which algorithm would

provide optimal performance.

4. Bring in the required operations via generic parameters: This option was chosen in the vast

majority of cases.

The use of generic formal subprograms to import required operations is an important design feature

34

of (he parts. It has the advantage of providing great flexibility to the user by providing CAMP parts to
supply low level operations or allowing the user to define his own, as shown in the following examples.

35

• Example 1

In this example, assume the user wishes to instantiate both of the parts contained in the Geometric,

Operations TLCSC shown in Figure 21. Each part requires a sine/cosine procedure as a generic

parameter. If the user has imported the Basic_Data_Types (BDT) package, he already has access to

the sine/cosine procedure provided indirectly by BDT's instantiation of Standard_Trig (Trig). If

Ulis procedure is satisfactory for his computations, the user need not specify it in his instantiation

since the BDT version will be selected by default. If, however, the user feels his calculations

require more accuracy or speed, he may construct a different sine/cosine procedure by building one

from the over 25 sine functions provided by the Polynomials TLCSC or by writing his own. This

new sine/cosine procedure may then be used in one of the following ways:

- If he wishes to use this new procedure throughout his application for all sine/cosine calcula-

tions, the procedure can be specified in such a way as to hide the sine function contained in

BDT Trig. He can then let the generic actual subroutines default to this new procedure. This

is illustrated in Figure 22.

- If (he newly created sine/cosine procedure is to be used only for certain calculations, it can be

designed in such a way as to not hide the one contained in BDT.Trig. In this case, the special

procedure would have to be explicitly specified in instantiations where it was to be used.

Using this method, it is possible for the user to create multiple sine/cosine procedures — a

fast one, a highly accurate one, mid a general purpose one — to meet his needs. This is

illustrated in Figure 23.

36

generic
typt Angle Is digits <>:
type Trig..Ratio Is digits <>:

package StandardJIrig Is

hrpe Radians Is new Angle:
type Sin_Cos_Raiio Is new Trig_Ratio range -1.0.. 1,0:

procedure Sin.C'o'i (Input
Sin_Resull
Cos_Resull

end Slaiidar(l_Trig;

In Radians:
out Sin_C<w_Ralio:
out Sin_Cos_Ratio»:

wlthSYSTHM:
with SlandardTrig;
package Basic _Dala_Types Is

»rpe Real Is digits SYSTEM.MAX_DIOn S:
type Meiers Is digits SYSTEM.MAX.DiaiTS;

package Trig Is new Slandard_Trig
(Angle => Real,
Trig_Ralio => Real):

type Earlh_Posilion_Radians Is new Trig.Radians:

function "♦" (Left : Meiers:
Right : Trig.Sin_Cos_Ratio)

return Meters;

end Basic_Data_Typcs;

package Oeomelric_Operalion» Is

genetic
type Indices Is (<>);
type Earlli_Posilions Is digits <>
type Sin_Co»_Ralio Is digits <>
type Unit_Veclors is array (Indices)

of Sin_Co8_Ratio;
= Indkes'FIRST;
»Indices'SUCqX):
= Indices'LAST;

Ear1h_Poitilion«;
out Sin_Coi_Ratio;
out Sin_Cos_Ralio)

X : In Indices
Y ; In Indices
'/. - In Indices
with procedure Sin_Cos

(Input
Sine
Cosine
bo;

function Unit_R*dial_Vector
(Lal_of_Poinl ; Earth_Po»itions;
Long_of_Poinl : Earth_Posilions)

return Unil_Vectors;

generic
type Eartli_Dislances is digits <>;
type Earth.Posilions Is digits <>;
type Segmenl_Distances is digits <>;
type Sin_Coa_Ratio is digits <>;
Earth_Radtus : In Eai1h_Distanccs;
with function "♦" (Left : Earth.OisUnces;

Right : Sin_Co»JUlio)
return Segfnent_Distances Is <>;

with function Sqrt (Input: Sin_Cos_R»tlo)
return Sin_Coa_Ruio is <>:

with procedure Sin_Cos
(Input
Sine
Cosine
bo:

package CJreal_Circle_Arc_Lenglh Is

In Earth.Positions;
out Sm_Co«_Ratio;
out Sin_Co«_R<'io)

function Compute
(Lalilude_A
I,aiitude_B
Loiigilude_A
Longitude_B

Earth.Positions;
Earlh_Posilions:
Earth.Positions;
Earth.Positions)

return Scgmenl_Distances;

end (lreat_Cjrcle_Arc_I,ength:

end Cieonwtric_Op*-rations;

Figure 21. Required Operations Oblained Through Use of Generic Formal Parameters

37

wtth BiMic_D«U_Typefi;
with Oeoinelric_Operatioiis;
with WOS72_EIH(moid_Melric_Dala:
procedure U»er_Applicaiion b

use Basic_Dala_Types;

package BDT renames Basic_Daia_Typcs;
package OEO renames Ocomelric_Opcralions:
package WaS72 renames WaS72_Ellip«oid_Melric_Data;

type Indices b (X, Y, Z):

type lJnil_Veclors Is array (Indices) of BDT.Trig.Sin_Cos_Ralio;

function Sqrl (Input: BDT.Trig.Sin_Cos_Ralio)
return BDT.Trig.Siii_Cos_Ralio;

-- --«?«• 5(n Cos procedure lo override thai provided hy BOTTrig
procedure Sin_Cos (Input

Sine
Cosine

In BDT.Earth.Position.Radians;
out BDr.Trig.Sin_Cos_Ralio:
out BDT.Trig.Sin_Cos_Ratio);

function U_Radial_Veclor Is new GEO.UnicRadial_Vector
(Indices «> Indices,
Uarlh_P<)siiions => BDT.Earth_Positioii_Rodians,
Sin_C'o»_Ratio => BDT.Trig.Sm_Cos_Ralio,
Unil_Vecloni => Unit_Vectors);

- —SinjCos defaults to new Sin Cos procedure

package Of«al_Circle_Arc_Len b new OEO.Oreal_Circle_Arc_Length
(Eiiilh_DisUnces => BDT.Meter«,
Earth_Posilions => BDT.Earth_Position_Radian5,
Segment .Distances »> BDT.Meters,
Earth_Radius => WOS72.Earth_Equalorial_Radius,
Stn_Cos_Ralio => BDT.Trig.Sin_Cos_Ralio):

— Sin Cos defaults lo neu1 SinCos procedure

begin

end User_Applicalioii;

Figure 22. Sample Instantiations of Geometric_Operations Parts
Using Default Routines

38

with B>«ic_Data_Types:
with Oeometric_Opetalionn:
with WaS72_nilipv)id_Melric_Dala:
procedure lIiier_Applicalion Is

use Ba»ic_Dala_Type*;

pnrkngc BDT renmnes Ba«ic_Dala_Typc»i;
pnrkage (!Iit) renames GeonKtric_Operalions'.
package WOS72 renames WGS72_Ellipsoid_Melric Data;

type Indices Is (X, Y, Z):

type lJnil_Veclor» Is array (Indkea) of BDT.Tiig.Sin_Coii_Raiio;

function Sqrt (Input: BD1.I rig.Sin_C'os_Ralio)
return BDT.Trig.Sin.CovRalio;

-addilional SinjCos prorrdiue
procedure Fast_Sin_Co« (Input

Sin«
Cosine

In BDT.Earth_Po«ilion_Radian8:
nut BDT.Trig.Sin_Cos_Ratio;
out BDT.Trig.Sin_Co«_Ratio):

function U_Radial_Vector Is new OEO.Unit_Radial_Vector
(Indices "> Indices,
Earth_Positiom => BDT.Earih_Posiiion_Radians,
Sin_Cos_Ralio => BDT.Trig.Sin_Co«_Ratio,
Unit_Veclors => UnU_Vectora,
Sin_Cos «> Fast_Sin_Co8);

packag» (jreat_Circle_Arc_Len b new OEO.Oreat_Circle_Arc_Lenglli
(Earth.Dislances => BDT.Meters,
Earth_Positions
Segnient_Dislances
Earth.Radius
Sin Cos Ratio

- --.Vifi Cos Jrfanlls to BDT.Tri%.Sin_Cos

begin

end User_Application:

=> BDT.E»rth_Po»ition_R«di»iis,
•> BDT.Melers,
•> WaS72.Earth_Equatorial_Ridius,
=> BDT.Trig.Sin_CosJUlio7;

Figure 23. Sample Instantiations of Geomelric_Operations Parts
Using Specialized Sin_Cos Procedure

39

• Example II

In this example, the user wishes to construct a Kaiman filler using a complicaled-H matrix. If he

uses the Kalman_Filier_Daia_Types package and all the data types it provides, all generic formal

subroutines required by instantiations of any of the parts contained in the Kalman_Filter_Common_

Parts and Kalman_Filter_Complicated_H_Parl TLCSCs will properly default. If however, he

wishes to use reduced storage rather than full storage matrices, it is possible for him to define his

own data types and operations and still use the Kaiman filter parts without making any modifica-

tions to the parts themselves. This latter option is the one thai was chosen for the llth Missile

Application.

40

SECTION IV

DEVELOPMENT AND TESTING
OF A

PARTS COMPOSITION SYSTEM (PCS)

The major problems associated with software reuse efforts have been the lack of information on the

availability ami applicability of reusable parts and the lack of information on how to use those parts.

During the CAMP-1 feasibility study, it was concluded that software reuse would not come to fruition if

there were not some mechanism for assisting the potential user in identifying, locating, and using avail-

able software parts. One such mechanism is a parts composition system (PCS) which can facilitate the

use of existing software parts by providing tools to perform some of the mechanical tasks associated with

software reuse.

The objective of the CAMP-1 feasibility study, with respect to parts composition systems, was to

determine the feasibility and value of automating some, or all, of the process of using and managing

software parts. The study involved an investigation of both short and long-term possibilities. Feasibility

was clearly established (Reference 7), and the requirements and top-level design of a parts composition

system were specified during CAMP-1.

During CAMP-2, a prototype parts composition system was implemented and tested, and then used

by the 11th Missile development team to demonstrate its utility and value. This prototype, which is

referred to as the Ada Missile Parts Engineering Expert (AMPEE) system, alleviates many of the

problems associated with software reuse by providing the user with an expert assistant to advise him on

the availability and relevance of CAMP reusable Ada software parts to his application, and to aid in the

development of software systems by automatically generating the required code for particular operations

or subsystems of the application, e.g., navigation, Kaiman filter, or autopilot operations.

I. PCS FUNCTIONALITY

Although much of the AMPEE system is CAMP-specific. the underlying principles are applicable to

a variety of domains. The AMPEE system established the functions required of a parts composition

system to assist the user in using reusable software parts.

A three-pronged approach was taken in assisting the user with the reusable CAMP software parts.

This approach is embodied in the three major subsystems of the AMPEE system — Parts Catalog, Parts

Identification, and Component Construction. The Parts Catalog subsystem is similar to an automated

card catalog for books, i.e., it is used to locale reusable software parts and obtain information about those

parts. This subsystem also provides a means to maintain the catalog in an up-to-date form. The Parts

Identification subsystem provides the user with access to the on-line pails catalog at a very high level.

Unlike the Paris Catalog subsystem which requires the user to have some idea of the types of parts that he

is looking for. the Parts Idenlilicalion subsystem provides the user widi access to the information in the

catalog based solely on his knowledge of his own application, i.e., before he knows about specific parts.

The Component Construction subsystem provides the user with a means cf generating tailored Ada com-

41

ponenls based on reusable mela-paris that are in Ihe Parts Catalog. Meta-parts were described in the
CAMP-1 Final Technical Report 7, and are discussed further in Section IV.l.c. Each of these subsys-
tems is discussed in greater detail in the following paragraphs.

a. Parts Catalog

The backbone of the AMPEE system is a software parts catalog for the CAMP reusable Ada
missile software parts. Earlier research (during the CAMP feasibility study) indicated that a major limit-
ing factor in the widespread acceptance and use of off-the-shelf software was the lack of reliable infor-
mation describing Ihe parts in adequate detail to determine their applicability to a particular software
project. Under the CAMP project, a catalog was developed that provides the type of information that is
needed to make informed decisions about parts. Each reusable software part is described by numerous
attributes; these are enumerated in Figure 24, and described in detail in Appendix B.

(JENERAL

Pan Number Revision Number
Part Name l-'unctional Abstract

Mode Taxonomctric Category
1 Class Keywords

Last Change Date of Entry Project Usage

Gnvcmmenl Security Classification (part) Corporate Sensitivity Ijevel (part)

1 Government Security Classification (entry) Corporate Sensitivity Level (entry)
Remarks

DEVELOPMENT

Design Issues
Development Date
Development Status
Requirements Documenlalion

Location of Source Code
Will»

Implemented By
Built Front
Sample Usage
Restrictions

USAGE

Revision Notes
Developer
Developed For
Design Documentation

Access Notes
Withed By
Implements
Used to Build
Hardware Dependencies

PERFORMANCE

Source Size/Complexity Cliaracterizalions

Timing

Fixed Object Code Size

Accuracy

Figure 24. Catalog Attributes

It is important to distinguish between the CAMP parts themselves and the software entities that
are cataloged. Parts were defined in Section 11.1. There is not a one-to-one correspondence between

42

CAMP parts and catalog entries. Although parts are cataloged, Ada package bodies are cataloged
separately from their specifications; encapsulating packages are also cataloged. Thus, although ap-
proximately 450 CAMP Ada parts have been implemented and tested to date, there are over 1100 catalog
entries. An examination of the catalog attribute class provides a clearer distinction between parts and
catalog entries. The class attribute identifies the type of entity that can be cataloged: it encompasses
software entities such as package specifications, package bodies, generic task specifications, generic task

bodies, generic formal parts, and context clauses.

It should be noted that there is a hardcopy form of the CAMP software catalog as well as the
on-line version that is incorporated into the AMPEE Parts Catalog subsystem. The hardcopy form is
useful for those who do not have access to the AMPEE system. The on-line version provides specific
information on available reusable software parts from within the AMPEE system.

(11 Design

The AMPEE Parts Catalog subsystem allows a user of the AMPEE system to access and
maintain the CAMP parts catalog entries. Maintenance functions include functions to add entries for new
or revised reusable software entities, and to modify or delete entries. Locating functions include func-
tions to search for catalog entries based on various attribute values, examine both catalog entries and Ada
part source code, and to generate printed versions of the catalog entries. Catalog interaction is carried out
via a structured dialog between AMPEE and the user; the user provides all information necessary for the
system to implement his catalog request. Figure 25 depicts the functions that comprise the Parts Catalog
subsystem.

PARTS CATALOG;

MAINTENANCE
rUNCTIONS

fEB~
PART
DBICRIPTION

LOCATING
FUNCTIONS

FART
DBBCRIPTIOH

Diun
PART
DI8CRJPTI0M

SEARCH
tXAMIMB ■xMoin PRMI
PART some* PARI
DISCRIPTIOH COD« DMCRZPTIOR

Figure 25. Parts Catalog Functions

For operations that can be performed on an existing catalog entry, the user can provide a
specific part id. request a menu of all part ids, or request a menu of part ids in the current search list. The
search list, if it exists, is a list of the part ids that have satisfied the search criteria specified during the
most recent search operation, or have been relurned by one of the Parts Identification functions.

The Add Part Description function allows the user to add an entry to the CAMP parts
catalog for a new or revised CAMP software part. This can be done in one of three ways:

• A new part description of a new part is entered (i.e., "from scratch")

43

• A new pari description for a revision of an existing part is entered

• A new part description of a new part is entered by copying the part description of an existing part

and modifying it as needed.

A unique part id is generated for each part that is entered. The part id consists of a part
number and a revision number, and is not intended to have any semantic meaning. The user is led
through the addition of required and recommended attributes for each part entry that is added to the
catalog. Required attributes are those which have been deemed to be essential in providing the catalog
user with sufficient information to make an informed decision as to the appropriateness of a given CAMP

Ada part. Required attributes are enumerated in Figure 26. Two additional attributes, willis and withed
by, are defined as required, but because they may not always be applicable, it is the user's responsibility
to provide them. Recommended attributes are those that, although they provide useful infonnation, are
not usually critical to making a determination as to the appropriateness of a part.

The AMPEE system provides the values of some attributes such as the revision number,
date of change of the catalog entry, and values for inverses (e.g., if the user enters built fiom data, the
system will automatically update the appropriate other catalog entries with used to build data). Other
attribute values must be explicitly provided by the user.

Part Number
Revision Number

Part Name
Taiconomelric Category

FutKtinnal Abstract
Class
Mode

Last Change Date of Entry

Development Date
Developer

Development Status
Oovernment Security Classification of Part

Government Security Classification of Entry
Corporate Sensitivity Level of Part

Corporate Sensitivity Level of Entry

Figure 26. Required Catalog Attributes

The Modify Part Entry function allows the user to modify an existing entry in the CAMP
software parts catalog. After indicating which part entry is to be modified, the user is allowed to select

the attributes that are to be modified. He then provides the system with the new data so that the catalog

entry can be updated.

The Delete Part Entry function allows (he user to delete an entry from the CAMP software
parts catalog. The user must indicate which part entry is to be deleted; that entry is then deleted from the
current catalog. In order for the deletion to be permanent, the user, upon exiting the AMPEE system,
must indicate that all catalog changes made during the cuntnt session are to be saved.

The Search function allows the user to explore the reusable software parts that are avail-

able to him. Inquiry can take place along a number of lines (e.g., keywords or other attributes), and

multiple selection criteria ate supported.

44

For the keyword search, the user must identify the keywords and/or phrases that are to be

used as the selection criteria. Within the parts catalog, keywords are generally entered for high-level parts
only (this reduces the number of parts that will be returned by a search, thus making it more meaningful);
other attributes, such as built from, can be used to obtain related parts. For the searches on other at-
tributes, the user must identify both the attribute name and value to be used as the selection crileria. The

searchable attributes are enumerated in Figure 27.

If any matches are found during the search, their part ids are displayed for the user, and the
list of part ids for the matches is kept for further manipulation. The user can specify further search
criteria to be applied to the parts in the search list, or he can select part ids from the list for further

processing (e.g., deletion, examinaliun of catalog entry or source code). If no matches are found, then a
message is displayed indicating this.

Port Name
Mode (Bundled, Unbundled, or Schematic)

Taxonomelric Category
Class

Government Security Class of Part
Government Security Class of Entry
Corporate Sensitivity Level of Part

Corporate Sensitivity Level of Entry
Project Usage

Last Change Date of Entry
Implements

Implemented By
Withs

Wilhed By
Built From

Used to Build
Location of Source Code

Developer
Developed For

Develcpmenl Date
Development Status

Figure 27. Searchable Catalog Attributes

The Examine Part Description function allows a user to retrieve and examine a catalog
entry lor a specified part in the CAMP parts catalog. The user must identify the part entry that is to be
examined. He can then view the basic attributes (i.e., part id, name, last change date of entry, develop-
ment date, development status, developer, mode, class, taxonomelric category, and government and cor-
porate sensitivity levels of the part and part entry), or select additional attributes to view.

The cataloged software parts are classified in part by their mode (i.e., whether they are
bundled, unbundled, or schematic parts); Appendix B describes this attribute in more detail. The Ex-
amine Source Code function allows the AMPEE system user to examine the actual source code for
reusable CAMP parts that are classified as either bundled or unbundled parts. Schematic parts cannot be
examined because there is no actual source code until a component is constructed via the AMPEE system.

The Print Catalog Entry function provides the user with the ability to obtain a formatted
hardcopy of one or more catalog entries. The user can process the entire catalog, entries obtained from a
search list, or individually identified entries. Output may be sorted in ascending order by part id or
alphabetically by taxonomelric category. The user has two options in directing the output: he can have it

45

print to both the screen and (o a file, or jusl to a file. Formatting is performed via the text processing

program Scribe. Because of limitations of the Scribe system, it is not possible lo view text interactively

after it is formalled by the Scribe processor; thus the output displayed on the screen is not identical to that

produced for printing.

(21 Testing and Opcralioiuil Evaluation

The AMPEE Parts Catalog subsystem underwent several levels of testing:

• Testing by the subsystem developer

• Use for entry of catalog data

• Use by (he AMPEE system training class

Testing was performed by the subsystem developer to eliminate both programming errors,

and interface errors or inconsistencies. Although this type of testing is important, it cannot uncover all of

the problems that may exist.

The Parts Catalog subsystem was used for the entry of data into the catalog. This data

entry was performed by a number of persons with varying backgrounds, including a high school student

with no previous exposure to the system; a college student with no software engineering training, a

member of the PCS development team who had not worked on this particular subsystem, and the senior

member of the parts development team. All of these users were able to successfully use the system with

very little instruction, and some with very little background knowledge of the project itself. Although

these users were able lo easily pick up the knowledge needed to perform data entry, they did uncover

inconsistencies in the interface, and highlighted some areas for improvement. As a result of this use,

several additional subfunctions were added (e.g., add new part by copying existing entry).

This subsystem was also used by the AMPEE system training class for instructional pur-

poses. These users also found the interaction to be relatively straightforward, but they also uncovered

several inconsistencies and a few minor errors that had not been previously identified.

Overall, the AMPEE Parts Catalog subsystem was found to be useful, although several

problems were identified. These were mostly a result of the prototype nature of the system, and included

items such as response lime and start-up lime. Some users also thought the system could be improved by

providing greater cany-nvci between the functions within the AMPEE system.

46

I). Parts Identilicutiun

The Parts Identification subsystem provides Ihe user with two capabilities for determining the

availability of potentially applicable parts for a given software system; the functions map software re-

quirements to software parts. The user, who would generally be a missile system engineer or a missile

software requirements engineer, can provide the system with his requirements and determine the parts

that may be applicable to his project. Although (he Parts Catalog subsystem also provides information on

the potential applicability of parts, the Parts Identification functions provide this information at a higher

level, i.e., the usei'does not need to know about specific parts to obtain information; he need only provide

information about his application.

The Parts Identification functions are intended for use early in the development cycle — as

early as Ihe missile system requirements/design phase, or in the pre-software development phase. Their

use this early can help drive the design in a direction that can make maximum use of existing software. If

software designers wait until after the requirements and design phase to start exploring options for reuse

of existing software, it is generally loo late. At that point, Ihe design may be such that certain parts are

excluded from reuse. In addition to driving the design, Ihe Parts Identification functions can also be used

to facilitate software cost estimates, sizing and timing studies, and make-or-buy trade-off studies.

During the CAMP study, two approaches to software parts identification were identified. One

is an application approach, that looks at overall system requirements. By viewing the system as a whole,

ihe user can see the effect of various trade-offs in algorithms. Consistency can also be provided by

ensuring that parts identified for the user are not incompatible. The architectural approach looks at the

subsystems that are needed in a particular missile system. This approach is based on hierarchical models

of missile flight software. The user provides information on his application and a model is presented for

his viewing, He can then see the subsystems and parts may be needed. Both approaches have been

incorporated into the AMPEE system — the application approach is embodied in Application Explora-

tion, and the architectural approach is embodied in Missile Model Walkthrough.

(I) Applicutiun Approach

The application approach to parts identification is embodied in the Application Exploration

function within ihe AMPEE system. Application Exploration provides the user with the capability of

mapping high-level requirements to available software parts. It is intended for use early in a software

development project to identify software parts with potential applicability to the user's current needs. The

user is asked a number of questions about his application, and a list of potentially applicable parts is

generated. For each part in Ihe list, Ihe part id, part name, and the missile subsystem to which the part

belongs is displayed. The generated list of parts can be carried over into the Parts Catalog subsystem, i.e.,

given the list of parts relumed by lliis function, the user can enter the Parts Catalog subsystem and

examine the pail entries or source code, print Ihe entries, or perform other catalog functions. Figure 28

depicts a high-level view of this function; Table 5 describes Ihe user inputs.

Tiie data required from ihe user includes information on the launch platform, target and

warhead type, whether an aiding subsystem is needed, routing, seeker, the type of aerodynamic control.

47

/ COMVTOTIOHJO.
V NXRBEXD

Figure 28. Application Exploration

the navigational range, and the type of interfaces. Application Exploration includes both rule-based and
pam-based reasoning. For example, if the user indicates that the target is a ship, then the AMPEE system
will conclude that a seeker is needed in the system. If a seeker is needed, the AMPEE system knows that
there are no specific seeker parts, but recommends the use of math parts, the Data Bus Interface Construc-
tor, and the Finite State Machine Constructor for construction of the required seeker software. Figure 29
shows an example of the inputs and outputs of Application Exploration.

(2) Architectural Approach

The architectural approach to parts identification is embodied in the Missile Model
Walkthrough function within the AMPEE system. Missile Model Walkthrough provides the user with the
ability to walk through a hierarchical model of missile flight software. The models used by llm function
are hierarchical models of missile flight software based on knowledge of the parts required for missiles of
various types (e.g., it has been determined that anti-ship missiles require a particular set of software parts,
and it is this set of parts that form a hierarchical model of software parts required for this type of missile).
The user can traverse the model, going up, down, or sideways. The model displayed for the user shows
the subsystems, functions, and CAMP parts that may be applicable for the missile described by the user.
Figure 30 depicts a high-level view of this function.

48

TABLE 5. APPLICATION EXPLORATION — REQUIRED USER INPUTS

1 USER INPUTS | DESCRIPTION

Launch Type Air 1 Ground 1 Surface-Sea 1 Submerged-Sea

WarlieadTypr Convenlional-Submunition 1 Conventional UniUry 1 Multiple-
Nuclear 1 Singular-Nuclear

Targcl Type Air 1 Fixed-Winj Air 1 Helicopter Air 1 Strategic-Missile A r 1
Tatlica! Conventional Air 1 Tactical-Nuclear Air! Fixed Ground 1
Mobile Ground 1 Surface-Sea 1 Submerged-Sea

Range An integer representing nautical miles. Applicable if target is any
1 type of air.

Is aiding wanted Applicable if target type is ground (fixed or mobile) »nd launch
type is sea.

Aiding, seeker, or
boll)

Applicable if target type is not mobile-ground, launch type is not
air, warhead is conventional unitary, and no aiding or seeker has {
been specified.

Type of aiding GPS 1 Terrain Map 1 Digital Scene Map 1 Laser Radar 1 Doppler
Velocity 1 Infrared User is queried for this information if target
type is ground (fixed or mobile) or se«, or if aiding subsystem 1»
wanted.

Seeker Applicable if 1) User specified seeker is wanted (in c^uery above):
2) Target type is surface-sea, warhead is not conventional uniUry.

and no aiding or seeker has been specified: 3) Launch type is
air, target type is mobile ground, and warhead is conventional
unitary: 4) target type is any type of air and no seeker has yet
been specified.

Type of «ekcr (non-
air targets)

Imaging Infrared 1 Radar 1 Optical

Type of seeker (air
targets)

Infrared 1 Imaging Infrared 1 Passive Radar 1 Active Radar

Is ship in harbor Applicable if target type is surface-sea.

Routing Land 1 Sea Applicable if target type is ground or sea.

Control Dynamics Tliis can be either classical or modern, but is determined by
querying the user as to the required performance, robustness, and
stability of his missile.

Kaiman filter in-
cluded

Applicable if it is determined that modem control dynamics is
being used.

Tirror estimation | 1 state 1 2+ states Applicable if Kaiman filter is to be included in
system using modem control dynamics.

Navigation near the
poles

Yes 1 No

Type of navigation North-Pointing 1 Wander-Azimuth Applicable if navigation is not
taking place near the poles.

Interface Require-
ments

155.11 K82 1IEEE488 1 RS-2.12 1

49

Aclvanc«ci Mecü-vam Rang
(A.MR.AAM)

e A±r —to—A±x: Missile

Launch Air
Targat
Rang«
Harhaad

Air
25+ MM
Convantlonal

Aiding
Routing
Saakar

Mo
Air
Actlva Radar

Aarodynamlca
Mavlgatlon
Intarfacaa

Standard
Standard
Data Link

Pairts Solöcted

Mavlgatlon
Kalaan FUtar
Autopilot
CoiMunlcatlona
Air Data
Coerdlnata V/M Alg^sra
Signal Proeaaalng

Data Source; Janas Weapon Systams. 1986-1987, pp198-200

Figure 29. Application Exploration Example

SOflWARE MODEL

PARTS
CATALOG

UST OF PARTS
M CATEGORY

PART D: P37-0

PART D: P514-1

PART D: PS17-0

Figure 30. Missile Model Walkthrough

so

Missile model selection is based on Ihe user-provided values for target type and type of

warhead; CAMP work to dale has indicated that launch type is not a factor in missile model selection.

Additional information may be requested from the US-T. Once the user has provided the information

requested, he will be be able to view and traverse a graphical representation of the missile software

structure.

The missile software systems examined during the CAMP domain analysis all contained

certain subsystems regardless of the target type; additional subsystems were needed based on the target

category. For instance, if the target type is some form of air target, the missile may require the following

subsystems in addition to the standard ones: Kaiman filter, waypoint steering, telemetry, data link, seeker.

If the target category is sea and it is located in a harbor, then an aiding subsystem will be identified in

addition to the usual missile software subsystems. Missiles whose targets are stationary land may require

data link and aiding subsystems, while mobile land targets may also require a seeker subsystem.

Tlie missile software hierarchy is captured within the Missile Model Walkthrough function

via ART schemata and inheritance relations. Inheritance relations allow properties to be attributed to a

particular class of objects and to have those properties hold true for a subclass that inherits from the

original class of objects. A schema is used to capture the basic information about all missile software

systems; this is then inherited by missiles of a particular type, such as air-to-air or air-to-sea. The par-
ticular missiles generally require software subsystems in addition to those required by the basic missile

software system.

ART rules arc used to check the user's input for consistency. For example, if the user

indicates a target type of air and a warhead type of nuclear, a warning will be issued to the user to tell him

that this is probably not allowed under the Anti-Ballistic Missile Treaty. Rules also direct portions of the

user interface, controlling when the user is queried for different types of information.

(3) Tesliti}» iiiul Ope i.it ion a I Evaluation

Like the Parts Catalog subsystem, the Parts Identification subsystem underwent several

types of informal testing and use. Development involved close collaboration between an expert and the

subsystem developer; thus the first level of testing involved both the expert and the developer. Develop-

ment and testing were iterative. The developer was able to detect and correct programming errors, while

Ihe expert was able lo detect errors in the knowledge base. The subsystem underwent further user testing

during Ihe PCS training class. Few problems were detected with the system.

Although this subsystem was not heavily used during CAMP-2, it has high potential within

the software development arena. One reason for its lack of use during Ihe CAMP project, was Ihe

familiarity of the engineering staff with the CAMP parts — there was no need to use this function.

Additionally, because Ihe AMPEE system is a prototype. Ihe Missile Model Walkthrough function took

advantage of the ART Sludio for Ihe display of Ihe model; this was sufficient lo convey the information lo

the user, but it was less than optimal in clarity.

51

c. Component Constructors

The Component Construction subsystem is the third major subsystem of the AMPEE system; it

comprises a number of component constructors. A component constructor is a software system that

facilitates the development of application software by producing software components based on user

requirements. Each constructor in the AMPEE system is based on a CAMP meta-part.

A meta-part may be either a complex Ada generic or a schematic part. A complex generic part

may require data types, operators, and/or subprograms for instantiation, and may include a complex

defaulting scheme; simple generic parts require only a small number of data types for instantiation.

Schematic parts are parts whose design is well known, but that cannot be implemented via the Ada

generic facility alone. Schematic parts consist of a blueprint for construction, and a set of construction

rules for building a specific instance of the part. With schematic parts, there is no actual, complete,

compilable piece of code until a specific instance is generated for the user. Constructors for complex

generic parts assist the user in defining types, objects, and subprograms needed to instantiate the parts,

and then produce the code that includes those types, objects and subprograms, as well as the

instantiation(s) of the CAMP part(s). Constructors for schematic parts obtain input from the user,
generate the needed code based on both the user's input and the schematic design that is incorporated into

the constructor. The difference in forms is transparent to the AMPEE system user; implementation dif-

ferences are discussed in Section IV.2.d. Examples of meta-parls follow.

The finite state machine is a schematic part for which a constructor has been developed. Cer-

tain types of finite state machines allow procedures to be invoked, therefore, this part cannot be captured

via the Ada generic facility because procedures cannot be passed as parameters. Additionally, the vari-

able number of slates and transitions in a finite state machine are difficult to capture in generic units. All

of this aside, most software engineers have a good idea of how a finite state machine can be implemented.

This type of situation led to the concept of schematic parts. The Finite State Machine Constructor allows

the user to specify an initial state, terminal states, state-transitions, and any actions that may be associated

with either the states or transitions, and then generates the Ada code that implements this machine.

The CAMP autopilot parts are complex generic parts, and a constructor is provided to assist the

user in the correct instantiation of those parts. Various data type, data object and subprogram definitions

are required. The constructor has specific knowledge of the complex generic part and prompts the user for

the information needed to define the types, objects, and subprograms required for the instantiations.

The Kaiman Filter Constructor combines elements of both complex generic units and

schematics depending on the options selected by the user. In the simplest case, the user can choose to let

most of the data types information default: to the extent possible, CAMP parts will be used for types and

operators. When efficiency is of concern, the user can let the constructor help him define special purpose

data types (i.e., special forms of matrices) that will be incorporated into »he Kaiman filter code that is

generated. These special-purpose matrices capture the active elements of a sparse matrix and unfold the

operations. This eliminates the overhead involved in using full-storage matrices that operate on all ele-

ments in a matrix.

Although the CAMP component constructors generate code, they do not perform universal code

52

generation, but rather code generation in a limited domain, i.e., within me confines of the meta-part

requirements. During the CAMP-1 feasibility study, it was determined that, because of efficiency re-

quirements, universal code generation wa< not yet feasible in real-time embedded applications. The

AMPEE system component constructors produce code that is as efficient as possible given the input

supplied by the user.

The constructors reduce the user's need for both detailed Ada knowledge (because the code

itself is generated for the user) and for detailed knowledge about the software parts on which the con-

structors are based. A straightforward user-interface is provided to facilitate requirements specification by

the user. These requirements arc analyzed by the constructor and tailored Ada code is produced. The

constructors are intended for use by application developers, and can be used both for trying out what ifs

and for actual software development.

The user must have some knowledge of Ada because he will often be prompted to provide

infonnation needed to define data types, data objects, and subprograms. He must also have some

familiarity with the application area in order to be able to produce meaningful output. The AMPEE

system parts catalog can be used to obtain detailed infonnation on the parts on which the constructors are

based, thus the user will not need to be intimately familiar with the parts themselves.

The construciors provide the user with the ability to generate tailored Ada components, modify

the component requirements (either in place or after making a copy) and regenerate the component, and

delete the requirements upon which the components are based. Component regeneration may be neces-

sary if, after a user has generated a component, he realizes he must alter some of the requirements.

Although each meta-part is associated with its own component constructor which guides the

software generation process, and each constructor has its own requirements and design, the top-level

design of all of the constructors follows the basic paradigm of inputs-processing-outputs (see Section

IV.2.d). The inputs are the component requirements provided by the user, and the major output is the

tailored Ada software component. Processing consists of interacting with the user, checking of input data,

internal processing to transform the data into a usable form, and writing out the application-specific Ada

code.

53

The constructors that comprise the AMPEE system are summarized below.

• Kaiman Filter Constructor: The Kaiman Filter Constructor provides the user with a tailored version

of the CAMP Kaiman filler parts, plus the data types that are needed to support Kaiman filter

operations.

• Finite State Machine: The Finite State Machine Constructor will construct one of three varieties of

finite state machines (Mealy machine, Moore machine, or a finite stale machine with no actions).

• Pitch Autopilot Constructor: The Pitch Autopilot Constructor provides an Ada pitch autopilot

component, plus the required data types, filters, and a limiter.

• Lateral/Directional Autopilot Constructor: The Lateral/Directional Autopilot Constructor provides

an Ada implementation of a lateral/directional autopilot, plus the required data types, filters, and

limiters.

• Navigation Subsystem Constructor: The Navigation Subsystem Constructor provides a single

navigation subsystem composed of selected navigation computations.

• Navigation Component Constructor: The Navigation Component Constructor provides a ?et of

individual navigation computation components.

• Data Bus Interface Constructor: The Data Bus Interface Constructor provides the user with a

general-purpose interface to a data bus.

• Data Type Constructor: This constructor assists the user in the definition of various Ada data types.

• Abstract Processes Constructors: There are four constructors in this category: a Task Shell Con-

structor, Time- and Event-Driven Sequencer Constructors, and a Process Controller Constructor.

(I) Design Paradigms

A standard paradigm for constructor design and a methodology for component constructor

development was developed under CAMP-2. The standard design paradigm promotes consistency, ease

of integration, and standardization of user interfaces. The standard methodology facilitates the develop-

ment process; it stresses many informal reviews as work progresses, and is iterative in nature. The

paradigm for constructor design covers three areas:

• The user interface

• The processing or analysis phase

• The code generation or synthesis phase

The need for constructors can be identified either by projects who recognize the need for a

constructor or through domain analysis perfonned by a parts group. The constructors that comprise the

AMPEE system were identified during die domain analysis of CAMP-1. Constructors can be developed

both to assist in the use and tailoring of complex Ada generic parts, and to produce tailored Ada code

54

from schematic designs. Once it is thought that a new constructor is needed, an intensive analysis should

be performed to detennine if there is sufficient demand for such a constructor to warrant the non-trivial

development cost. For example, the Kaiman Filter Constructor comprises some 8000+ lines of Lisp/ART

code and has access to another 2700 lines of code in common utilities.

The user interface front-end elicits requirements from the user for the software component

that is to be generated; the processing portion then converts the requirements into an internal represen-

tation; and the back-end, or synthesis phase, generates the required Ada code for ihe user. Figure 31

illustrates this design paradigm.

Ik
E
Q
rj
I
R
E
M
E
N
T
S

X \
T \
R \
A. '
C
T /
O /

-- - - - — ~---- -..

) S-N
■rH

ANALYSIS REQUIREMENTS
KNOWLEDGE BASE

1—■ —'

Figure 31. Constructor Design Paradigm

Tl\e user's requirements undergo analysis for completeness and consistency, and are then

stored in an intermediate form. The synthesis phase generates the Ada code from the requirements

provided by the user. The code can consist of generated Ada components, instantiations of complex Ada

generic units, or a combination of instantiations and generated code.

Early in the development process, the constructor developer formulates preliminary re-

quirements and questions for Ihe expert, i.e., the Ada pans developer. The parts developer must then

consider these requirements with the following issues in mind:

• What CAMP parts can or should be used?

• What alternatives should the user be presented with (e.g., Should he only be able to put together

CAMP parts when constructing the component or should he also be able to provide his own

parts?)?

• What information should be elicited from the user (i.e.. the wording of the interface is important —

it should be in the domain language)?

• What arc the implications of different choices made by Ihe user?

55

Following this preliminary work, the constructor developer and the parts team member

responsible for the design of the corresponding Ada part should meet to delineate the scope of the con-

structor, clarify requirements (inputs, processing, and outputs), and determine acceptance criteria. After

this initial meeting, the constructor developer begins defining the dialog that will be conducted with the

user. This process includes the development of preliminary screen flow diagrams. These diagrams depict

the actual user interface for the constructor. Early development of these diagrams helps to point out

omissions in the requirements and misunderstandings between the intent of the Ada part designer and the

constructor designer.

After several iterations on the preliminary screen flow diagram, the constructor developer

produces a complete screen flow diagram that depicts the user interface for the four constructor functions

— Generate, Browse/Modify, Copy/Modify, and Delete. A standard symbology for the screen flow

diagrams has been developed (see Figure 32).

r

DSRR COMSOLB DISPUY

MEPEATID D8BR CONSOLE DISPLAY

ED aCSOLLID AREA

TOOOL1 VALUE

)- USER RESPONSE POR
NEXT ACTION SYSTEM-PROVIDED PIELD

SYST. : CONDITION FOR
NEXT ACTION

OSER-ENTRY PIELD

CONNECTOR TO PREVIODS DISPLAY

Figure 32. Screen Flow Symbology

A second diagram depicting the high-level view of the constructor is also produced. This

diagram depicts the CAMP parts that will be used, the packages that will be provided by the user, and the

packages that will be output from this constructor. It shows the major options available to the user. As

an example. Figure 33 depicts the lop-level view of the Kaiman Filter Constructor. The user has several

choices to make. He can choose between using Compact or Complicated H parts. He also has a choice in

the provision of required data types, operators, and subprograms: he can allow the data types to default to

those provided by the constructor, he can provide his own package, or he can define his own data types

interactively. The output from this constructor consists of a data types package and the actual Kaiman

filler component.

Once these iwo diagrams are completed, they s, u.d be reviewed by a team that consists

of the Ada parts designer, the constructor developer, and the chief Ada designer. The constructor design

generally encompasses several options for construction of the component (these are clearly identified in

56

OSIR IHPDTS CAMP PARTS

Utw-Provldad
Data Typ*«

UMT'« Dal*
Typ* Raqulramanls

 15
ComplloaUd H

Part*

KF
Data
Typ»*

KF
Component

Figure 33. Kaiman Filter Constructor — High-Level View

the screen flow diagram). During the review meetings, a determination is made of which options will be
implemented first, and the priority of the other options. If it is determined that the screen flow meets the
requirements of the constructor, then the PCS developer may proceed with further design and implemen-
tation of the componeni constructor. This process of diagram development and review may be iterative.

Upon successful completion of the diagrams, the constructor developer should produce a
program design language (PDL) description of the constructor and the data structures required for im-
plementation. These may be reviewed informally prior to implementation. One; the design is complete,
(he constructor developer can begin implementation, concentrating on the options that were assigned the
highest priority.

The entire design and development process is iterative in nature. The approach developed
during CAMP-2 emphasizes many informal reviews along the way. This serves several purposes: it
ensures that the constructor developer is on track with the requirements and design of the constructor, and
it facilitates communication with the parts team (i.e., they are kept informed of activities within the
component construction team).

57

(2) Cunslruclur Implemenlalion

A standard struclure has been developed for implementing constructors; this not only
facilitates integration but also reduces the development lime for new constructors. Conunon routines
have been developed for AMPEE system entry and exit, and common constructor functions. Utilities
consist of routines that perform error checking, and low-level processing. User-interface functions
provide common routines that handle different types of menus and forms that are widely used. The
AMPEE system user interface utilizes host facilities known as presentation types to control the type of
input that the user may provide. This facility is an extension to Common Lisp, the language used for
AMPEE system implementation. The presentation type facility allows data types and error checking
routines to be defined to limit the range of valid inputs.

The constructors are controlled by a constructor executive that is constructor-dependent.
The executive is responsible for evaluating the functions in the function list that consists of the Lisp
functions that must be executed for the particular constructor function (i.e.. Generate, Browse and
Modify, Copy and Modify, and Delete). A global variable is used to keep track of the cunent location in
the function list.

(n) Tvpes of (Junslruclors

Although all of the constructors follow the same basic design paradigm, there are
implementation differences between constructors for complex generic units and schematics; these are
transparent to the end-user. Constructors for complex generic parts encode knowledge about instantiation
of those generic parts; this includes information on the data types, operators, and subprograms that are
needed for instantiation. Constructors for schematic parts encode a blueprint or schematic of the com-
ponent that is to be generated; knowledge about Ada coding procedures and efficiency issues is also
encoded in the constructors, e.g., within the Finite State Machine Constructor a decision is made on
whether to use a case statement or an if-then-rlse based on the number of options that will be processed.

(b) Code (lenerutiun

Once all of the infonnation needed to generate a component has been obtained from
the user, code generation begins. The data is extracted from the requirements schemata, and the ap-
propriate generic units are instantiated, or needed code is generated based on an existing blueprint.

The code generation phase requires no further interaction with the user. It is driven
by requirements provided by the user and encoded in the constructor itself. The code generation process

is unique for each constructor; the complexity varies considerably among constructors. In general, the
data type definitions are generated first, followed by instantiations of CAMP parts and/or production of
new code.

58

(3) Testing and Operational Evaluation

The individual constructors and the entire Component Construction subsystem underwent
various levels of testing, as did the other subsystems that comprise the AMPEE system. Constructor
testing consisted of the following:

• Interface and operational testing by the developer

• Informal user testing performed by the PCS development team

• Code inspection peiformed by a combination of the PCS team and the parts team

• Compilation testing which was generally performed by the constructor developer

• User testing by the the PCS training class

Several of the constructors were subjected to further testing and use, including formal
testing via the CAMP Ada parts test procedures, and use by the I llh Missile team. When formal testing
was performed on the output from a constructor, it was conducted by a member of the CAMP parts team.

Overall, users found the constructors to be a useful concept. The major drawback is that
their implementation is closely linked to the meta-parls they represent, therefore, changes to the meta-
parts generally necessitate changes to the constructors. This is an implementation problem, not a problem
with the concept of component constructor. Additionally, the constructors require more domain specific
knowledge to run than the Parts Catalog subsystem, but that is to be expected.

2. PCS IMPLEMENTATION

The AMPEE system was originally conceived as an expert system, but it was found that for the most
part an expert system was not required. This divergence from the original concept resulted from a
combination of factors, including one that is quite common. In reviewing the literature, it is evident that
as a problem becomes better understood, a sequential solution is often found to a problem that was
originally thought to be non-deterministic.

a. System Architecture

The AMPEE system is implemenled using ART (the Automated Reasoning Tool from Di-
lerence, Corp.), a commercially available expert system shell, and Common Lisp. It is hosted on a
Symbolics 3620 computer, a single-user Lisp workstation, and takes advantage of Symbolics extensions
to Common Lisp. Figure 34 depicts this architecture.

A Lisp machine differs from a conventional workstation such as (he DEC MicroVAX, in that its
architcclure has been developed to support the Lisp programming language (although it can be used for
other languages as well), i.e.. it is intended more for symbolic compulation than arithmetic processing.
Symbolics provides an extensive integrated development environment. This includes on-line help,
documentation, and debugging facilities, and incremental compilation of functions in the editor. Exten-
sive user interface facilities are also provided in the form of extensions to Common Lisp.

An expert system shell is a software system that provides a means for capturing knowledge, and

59

an inferencing mechanism lo work on that knowledge; the application developer provides application
specific knowledge in the form of facts and rules.

The AMPEE system was originally hosted on a DEC MicroVAX and utilized DEC Common
Lisp and beta versions of VAX-compatible ART. The advantages and disadvantages of each impiemen-
lation will be discussed in the following paragraphs.

Figure 34. AMPEE System Architecture

11) Hardware

The CAMP-1 PCS feasibility study included an evaluation of an off-the-shelf expert sys-
tem tool for use in the PCS. CAMP-1 also required the use of a widely available processor both in the
evaluation of the expert system tool and the PCS feasibility study, thus the DEC VAX family of com-
puters was selected.

The VAX implementation of AMPEE, which began as a proof-of-concepl implementation
under CAMP-1 and continued into the prototype stage under CAMP-2, made use of DEC Common Lisp,
DEC Forms Management System (FMS) for the user interface, and ART for the knowledge structuring.
ART was selected in light of the hardware selection (at the time of the CAMP-1 contract — September
84-85 — Inference appeared closest to producing a full-scale, production quality, expert system develop-
ment tool for the VAX).

DEC FMS was used for the interface in part because the beta versions of ART did not

provide adequate tools for the development of a full-screen user interface. Although FMS provided a
significant i'r.j rovement over developing an interface from scratch, it required a considerable initial effort
lo use. The CAMP PCS team developed ulililics for use with the FMS forms; these handled things such
as forward and backward scrolling, cursor positioning, etc. The Lisp-compatible version of FMS did not
provide automatic type checking of user-provided data, thus, all such processing had to be performed in
the application code. Additionally, a graphic interface was not possible.

60

In comparison to other VAX languages. VAX Lisp was slow and consumed large amounts
of space. Additionally, a production quality version of ART was never available during the time AMPEE
was hosted on the VAX; expected delivery dates slipped continually, and the versions that were available
were not error-free. The problems experienced with ART drove the AMPEE implementation deeper into

Lisp.

The main advantage of the VAX implementation of AMPEE was that it was hosted on
widely available hardware, and thus could be used by a larger audience. FMS was relatively inexpensive,
and hence was not a deterrent to using the AMPEE system.

The application was ported to a Symbolics during CAMP-2. A major factor in the move
from the VAX platform to the Symbolics was that the VAX version of ART, which had been im-
plemented in VAX Common Lisp, was being re-hosted in C. Inference Corp. intended to provide a subset
of Common Lisp that could be called from ART. but, at least initially, the full Lisp functionality that the
PCS development team had come to rely on would not be available. Thus, a decision had to be made to
either port to the C-based version of ART on the VAX, or port to a Lisp machine. Porting to the C-based
version would require rewriting significant quantities of Lisp code and reworking parts of the application.
Porting to a Lisp machine would require redevelopment of the user interface, but presumably a complete
implementation of ART and Lisp would be available.

The port from the VAX to the Symbolics required not only a complete re-implementation

of the user interface, but also a change in the type of interface. On the VAX, the forms and menus were,
for the most part, full screen, whereas on the user interface developed for the Symbolics version consisted
of pop-up menus and forms that generally filled only a portion of the screen.

The Symbolics provided a good development environment. Rapid development of
prototype interfaces was possible, although more work was required for development of custom inter-
laces.

(2) Software

Both ART and Lisp were used in the implementation of the AMPEE system. ART is a
programming language that bears some resemblance to Lisp, although its functionality is quite different.
As mentioned previously, ART is an expert system shell intended for both rapid prototyping and produc-
tion of expert systems. It provides a means of capturing knowledge in the form of rules and schemata,
and a means of invoking, or firing, those rules. Although the basics of ART are fairly simple to master, it
is a complex Ux)l. Before utilizing such a tool, it would be beneficial to determine which of its features
are likely to be needed, and determine if some or ail of the needed features are available in a simpler and
more portable package or language.

61

The AMPEE system makes only limited use of ART functionality. It is used throughout
the AMPEE system for data slrucluiing (via the ART schema system), and within the Parts Identification
subsystem for consistency checking and interlace control (via a small number of simple forward-chaining
rules), and for display of the missile software hierarchy within the Missile Model Walkthrough function.
ART provides many more features that are not used in the AMPEE system, such as backward chaining
rules and the ability to explore alternative scenarios via the viewpoint mechanism.

The use of ART for system development imposes a number of limitations on deployment
o(the final system;

• Portability: Allhough it is available on a fairly wide range of processors, its use does cut down on

the portability of the application.

• Cost: There has been a general downward trend in the cost of high-end expert systems, but, the

cost of such a tool can be prohibitive to some potential users. Some vendors, including Inference,

also market a run-time system separately from the development environment.

• Compatibility: ART must stay current with the operating system under which the user's machine is

running.

The PCS team developed a significant quantity of reusable software that was used through-
out the AMPEE system. This benefilled not only the developers hut also the end-user. Much of the
reused code was for user interface functions, thus the user was presented with a more uniform interface
than might otherwise have been possible.

(3l User luterfiice

There arc several basic types of data entry/display used in the AMPEE system interface.
They are explained below.

• Single-choice menu: The user mouses on his selection. Most of these menus include Pop as a

selection; this allows the user to backup to previous screens to examine or re-enter data.

• Multiple-choice menu: These are two part menus, whereby the user selects as many of the items in

the choice portion of the menu as he would like, and then selects the action option from an em-

bedded menu. The action options arc Do It (take the options selected by the user). None (no

options desired). All (select all of the options), and Quit (exit this screen).

• Fill-in-the-blank field: The data type of the response, or a default value is generally displayed in

the field. The user mouses on the response area for the field, enters a value, and presses the return

key to proceed to the next field. If the user is unable to mouse on a field, it is not changeable.

• Multiple-choice field: All of the options are displayed to the user; he can make or change a

selection by mousing on item. Default values arc displayed in bold-face type.

62

• Display-only form: These arc used lo provide inslruclions, or to display information to the user that

he is unable to alter.

• Scrollable list/menu: This is a list of data that may be more than one windowful in length. It may

be scrolled by clicking left or right after the scroll arrows are visible. The scroll arrows can be

made visible by knocking the mouse arrow into the left margin. For menus of this type, the next

action choices (i.e., Done. Pop) generally appear as menu choices.

• Scrollable form: This is a form that is used to display a list of data items or text that may be more

than one windowful in length. The user may scroll either by using the scroll key or the mouse. At

the bottom of the form are two option boxes. Done and Pop. To exit from this type of form, the

user must mouse on one of these two boxes. If more mode is in use, the user must scroll past all of

the more prompts before his choice o(Done or Pop will be processed.

• List-input form: This type of form allows the user to provide one or more values of a particular

type. The user is prompted for only one item at a time. Data is entered by mousing on the prompt,

supplying a value, and pressing the return or end key. Another prompt line will appear. To

terminate processing the user can either mouse on the end option at the bottom of the form, or press

the end key. In general, a user can pop from this type of form by entering pop on the last prompt

line. To delete entries, the general procedure requires the user to mouse on the entry to be deleted,

and then enter nil. Specifics may vary somewhat from form to form.

I). Paris C'iilalofi!

The basic goals of a software parts catalog are to facilitate reuse of pre-built software parts,
lacililate configuration control, and provide a foundation for a parts composition system. It is basically a
data base application, although the AMPEE Parts Catalog has been implemented using ART schemata
and Lisp in order to provide the user with a single integrated parts composition system.

ART schemata are used to capture the actual catalog data. There is one schema for each catalog
entry, and one schema slot for each catalog entry attribute. A slot is comprised of a slot name and a slot
value, thus, the slot name represents the catalog attribute (e.g.. date-of-last-change-of-entry), and the slot
value represents the attribute value for a particular catalog entry (e.g., 12-02-87).

Some of the catalog entries arc textual, therefore, their value is not actually stored in the catalog
schema. Textual attributes arc used to capture attribute values that are of indeterminate length. Their
actual value is stored in a file, and the name of the file is stored in the schema slot associated with that
particular attribute. When a user wants lo view a textual attribute, the contents of the file are fetched and
displayed. When textual attributes are added or modified, the AMPEE system user is put into an editor.
Deletes of textual attributes do not physically lake place until the user exits the AMPEE system and
confirms that he wants the catalog changes lo be saved.

The remainder of the Paris Catalog subsystem is implemented using Lisp. The ART data
structures are accessed via Inference-provided Lisp functions. This subsystem also makes use of an editor

63

for [he entry of information for textual attributes. Additionally, the print function makes use of a com-
mercially available text processing program to formal the catalog entries.

There are several deficiencies in the current implementation. Among them is the fact that there
can be as many as fourteen textual attributes provided per catalog entry. Access to textual attributes is
relatively slow compared to access to other attributes because the request must go through the file system.
The file system can also become cluttered with attribute files, particularly if there is a minimum size
imposed on all files by the operating system. The textual attribute files also contribute significantly to the
overall time needed to exit from the AMPEE system. If the user chooses to not save the catalog changes
from the current session, the AMPEE system exit routines examine the attribute files, deleting any thai
were created during the current session.

Another problem with the current implementation is the amount of time needed to load the
catalog initially, and to save it after completing a session. Both limes are directly tied to the number of
catalog entries. Perhaps a re-examination of what is cataloged is in order.

c. Paris Idenlificatiun

The Parts Identification subsystem is the only portion of the AMPEE to use ART for anything
more than data structuring. It makes use of both simple forward chaining rules and facilities within the
ART Studio. The ART Studio contains several functions for browsing the current slate of an ART
knowledge base, including one that permits viewing of the inheritance network; it is this function that is
used for the display and traversal of the missile models in the Missile Model Walkthrough function.
Allhough this function serves its puiposc in a prototype implementation, clarity of the display for this
application is less than optimal.

tl. Compunenl Constructors

Each constructor within the Component Constructor subsystem incorporates one or more ART
schemata that capture the requirements needed to generate a specific component for a user. These
schemata are referred to as requirements sets: they are accessed by Inference-provided Lisp functions thai
are called from within the constructor. Storage of the requirements sets allows them to be recalled at
some future session, and either modified or used as is to generate additional components.

3. FUTURK DIRECTIONS

The prototype PCS developed under CAMP has proven that tools can be developed to facilitate the

use of reusable software. Development of this prototype has pointed out both potential problem areas
within the current implementation, and areas for further development and investigation. Listed below are
some areas for further work/investigation.

• Parts Catalog

- Restructure the parts catalog. Currently, almost anything can be cataloged; this has not

proven to be necessary, or particularly useful. It can result in confusion on the part of the

64

user when he is confronted with 1 i(K)+ catalog entries when there are only about 450 parts.

Tills discrepancy is the result of cataloging specifications and bodies separately, and of also

cataloging encapsulating packages which are not classified as parts by the definition

developed during CAMP-2. It is also possible to catalog generic formal parts and context

clauses, in addition to generic and non-generic package, task, and subprogram specifications

and bodies.

Restructuring the catalog could benefit the Parts Catalog in another area — within the Ex-

amine Part function. This function allows the user to examine the source code for the

cataloged entity. If the entity is a part that is encapsulated within a package, the user is

presented with the entire file that contains the particular entity of interest (the user does have

the option of having the header comments stripped out of the file before it is displayed). This

can be both an annoyance and a deterrent to use. It is inconvenient to step through a large

file to find a deeply embedded entity. Additionally, it can be confusing, and cause the user to

think that the system is not operating correctly.

- It might be beneficial to provide the user with functions that act more directly on the part

hierarchy. Currently, the user can obtain information on the hierarchical structure of the parts

via an examination of the built from and used to build attributes. There should be a more

straightforward way to obtain this information (perhaps graphically).

• Pans Identification

- Extract the essence of the Parts Identification functions so that the basic mechanism can be

applied to domains other than those covered by the CAMP work.

- Expand the missile models to permit finer granularity in the identification of parts for the

user.

- Expand the knowledge base to incorporate more domain knowledge, the goal being the iden-

tification of parts that can be used to build needed parts.

- Smooth the transitions between PCS functions, and provide greater carry-over between them.

• Component Constructors

- The concept of component constructors is a valuable one, but the approach to implementation

of constructors is an area that could benefit from further work. The approach used in the

AMPEE system tics the constructors (for complex generic parts) intimately to parts that they

utilize. This can be a problem if the parl(s) on which the constructor is based change in areas

that are relevant to the production of code by the constructor.

At) alternative that bears further exploration is the concept of a constructor constructor, i.e., a

generalized software constructor that would generate specific constructors. One way to do

65

this would be by embedding commands within the reusable parts themselves that would

indicate the information that would be required from the user in order to generate the tailored

Aila components that are needed. The parts could then be run through a preprocessor to

produce the appropriate user queries. Code generators and facilities to permit data type

definition or provision outside of the constructor would also be required. In essence, this

would be a smarter constructor, where less of the information is hard-coded in the constructor

itself.

• General

- The entire AMPEE system, as it is currently implemented, is not very portable. Although it

has been implemented using ART and Lisp, the majority of the interface is implemented

using Symbolics extensions to Common Lisp. Additionally, the use of ART limits the poten-

tial users to those who have a compatible version of ART available to Ihem.

- It is a time-consuming process to load all of the files associated with the AMPEE system, but

certain things can be done to alleviate this problem. Provided the user has sufficient disk

space on his machine, he can load all of the AMPEE system files, and create a file thai

captures the cunent machine environment; it is then possible to avoid loading all but the

user-changeable AMPEE system files each time the user wants to run the AMPEE system.

The user-changeable files include the catalog itself, and the collection of requirements sets

created by the user. Both of these files can be updated by the user, therefore, it is not

recommended that they be made a part of the environment that is saved (i.e., they should be

loaded each time the user starts a new session. The extent of the inconvenience of doing this

is somewhat dependent upon the amount of memory that the user has on his machine. In the

AMPEE system development environment, loading the catalog took in excess of fifteen

minutes (note that load time is also dependent upon the number of catalog entries).

- Response lime is another potential problem area. Users have been conditioned to expect a

fairly rapid response when interacting with a computer. Some of the items that factor into

AMPEE system response time are the location of the files that are accessed (i.e., is there

activity across the network or are all of the required files resident on the host machine), the

number of catalog entries (for various AMPEE Parts Catalog functions), whether or not the

underlying Lisp code has been compiled or not. and the amount of memory on the host

machine. The AMPEE system, as it is currently implemented, can leave the user hanging

while various user requests are fulfilled.

■ Another area that could be improved to enhance usability, is the interconnectivity of AMPEE

system functions. Although there is some cany-over between functions, it is limited, e.g.,

there is carry-over from the catalog search function to other catalog functions that operate on

existing catalog entries.

66

SFXTION V

IHK ADA LAN(;LIA(;F ANDSOM VVARK REUSABILITY

Support for reusability has been a key goal of 'he Ada language since its development began in the
I97()'s. Reusability includes the ability to transport code between different machines and the ability to
transport code between applications. Standardization on a single language specification and prohibition of
modifications 10 create subsets or supersets of the language have largely achieved the first component.
Complete Ada applications have been transported between widely disparate machines, with minimal
changes to the source code. The success of this type of reusability is, of course, limited by machine
dependencies of the code and the type of application involved.

For reusability to truly succeed, Ada code must be transportable not only between machines, but also

between applications. While there have been successful cases of this type of reusability, the CAMP
project has concluded that portions of the current Ada standard inhibi' "he ability to transport and reuse
code between applications. These conclusions arc based on problems ncovered during the implemen-
tation of the CAMP parts and the llth Missile Application; therefore, the problems are seen as valid
issues which must be addressed, and not as conjectural speculation on potential use of the language or as
the result of a specific effort to find fault with the language.

Ada language issues raised during CAMP include language definition and language restrictions. In
some cases, the standard leaves to the compiler implemcntor key decisions which can affect the ability of
a compiler to handle code developed for reuse. Furthermore, as discussed in Section VII, the Ada valida-
tion capability does not adequately test all of the standard Ada features which are required for implemen-
tation of reusable software. Additionally, the standard lacks certain specific features which could further
enhance reusability, especially (or the design of special interfaces.

This section of the report discusses areas where Ada's support for reusability of code between ap-

plications can be improved; examples from CAMP implementations will illustrate the problems. Recom-
mendations are also made lor implemenling these improvements as a part of the Ada 9X revision process.

I. Si:i'ARATi; (OMI'ILA I ION AND (JENERIC UNITS

Adii generic units form the key constructs of reusable software. Sections II and VI of this report
discuss the use ol generic units in CAMP parts development and in the CAMP development methodol-
ogy.

Part of the (AMP development methodology includes Hie separate compilation of generic subunits.
This approach facilitates development and maintenance by reducing the size of compilations and the
requirements for recompilation should subunits change. This approach is also consistent with the goal of
Ada to support modularity.

67

The clevelopmenl of reusable software based on generic unils is impeded by ambiguity in the Ada

language standard. Support for separate compilation of generic units is not a required Ada feature;

therefore, it is not addressed in the Ada Compiler Validation Capability (ACVC) tests. The exact state-

ment on this issue occurs in Section 10.3, Paragrapli 9 of the Ada Reference Manual:

"An implementation may require that a generic declaralion and the corresponding proper body be part of
the same compilation, whether the generic unit is itself separately compiled or is local to another compila-
tion unit. An implementation may also require that subunils of a generic unit be part of the same
compilation." (Reference 8)

This statement is somewhat ambiguous. An implemenlor could provide a compilation system which

would require that an entire package be placed in one compilation. Since on most systems a compilation

would correspond to a file, the file would contain the main unit and unit body plus all subunits, where the

unit is a generic package or subprogram, or any combination of nested packages or subprograms within

the main unit. Any change anywhere within the unit would require recompilation of the entire unit and

body.

The effect of this requirement would be disastrous for the developers of a reusable software library,

such as the CAMP parts library. Figure 35 illustrates potential compilation structures for a simple pack-

age encapsulating two generic unils. (Note: This is an extremely simple case; generally, library packages

will be far more complex. Also, the compilation system assumed here will perform recompilations.

whether or not units have changed. More sophisticated systems could permit incremental compilation,

which would only affect units which actually require recompilation.)

• Compilation I is the most desirable structure, allowing specifications, bodies, and separate units to

be physically located in separate source code files. This stmcture supports case ol development and

maintainability through separate compilation of specifications and bodies.

• Compilation 2 allows the specification to be located in a separate file, but requires all bodies to be

located in the same source code file. This structure increases compilation and maintenance lime,

but has no affect on package use.

• Compilation 3 has the same result as Compilation 2. This structure would be required by a system

that did not permit separate subunits of a generic unit.

• Compilation 4 requires a specification and all corresponding bodies to be located in the same

source code file. This structure requires complete recompilation of the specification and body

whenever any part of B or C changes. In addition, because units which import A arc rendered

obsolete by the recompilation of A. the importing units have to be recompiled, as well.

• Compilation 5 does not make use of packaging and, therefore, each of the units can be located in

separate source code files. This obviates the need for extensive recompilation. Only B or C need to

be recompiled if they change, and any units importing the changed unit also require recompilation.

However, the library would become unmanageable because of the number of units.

For the CAMP library, the requirement to structure compilations according to Compilation 4 would

typically mean recompilation of from 500 to 2000 lines of code, depending on the specific unit, any time

68

rroMP I LAT I ' >N FILE .STRUCTURE

1 . A (spec) A (body)

m Mparat»

C lr, Mparat«

H
A (spec)

A II 1. A
B

—-'
c

1 B '

c!

« [Doayj

6 19 separat»

C is separate

,

4 .

A (spec) A (body)

B ' B;

c C;

A (spec)

[B;
c A(bod^

fl:
C:

Q U

Figure 35. Ada Generic Compilations

an encapsulated unit was changed. If specifications and bodies must be in a single compilation, the entire
CAMP software library could potentially be affected as a result of a single change in the boi^' of a basic
unit. Compilation 5 would split up large units into small constituents; however, this would require mas-
sive context clauses and would enlarge the already complex CAMP configuration management task.

69

For users of ;i reusable Ada software librar>. the compilation resirkrlion would be equally serious. If
the specification to a library package changes for any reason, all software dependent on that package,
would have to be recompiled, ft is hoped, however, that changes to a specification in a reusable library
would be extremely rare. However, if an Ada compilation system required that the specification and b<xl>
of a generic unit be in a single compilation, as in Compilation 4. a change to a single statement in the
body would require recompilation of the specification as well. The resulting recompilations could ripple
through the user s system and require extensive, if not complete, recompilation of the user s software.

The ambiguity of the standard in this area also permits implementors to exaggerate their claims
about their compiler. Because no standard on separate compilation of generic units exists, an implemen­

tor can claim support for the feature, yet may have almost no support beyond separating specification and
body int*> two separate compilations. Attempts to separately compile units beyond this level can result in
any number of compiler errors, as reported in Section VII. The fact that nearly every implementor does
claim support for this feature indicates that it is a feature desired by most compiler u.sers.

The CAMP experience establishes the need for making separate compilation of generic units a re­
quired feature of Ada. In order to provide continued support for software reuse, the 9X revision must
consider this need. Numerous tests of support for the facility were developed during the CAMP-2
project; these tests can be used to measure the claims of compiler implementors in the interim. Tlicse
tests form part of the CAMP Armomes Benchmarks described in Volume III of this leport.

2. OmMIZATION

The success of Ada requires the availability of optimizing compilers. Without significant optimiza­
tion. Ada will never achieve the throughput or memory restrictions imposed by requirements for ntost
embedded software systems Additional optimization to address generic units will also be needed be­
cause of the heavy use made of generic units in reusable software.

Of particular concern to developers of optimizing compilers is the issue of optimization across unit
boundaries. Several optimization issues must be addressed;

• How will an individual user utilize the objecls in a package?

• Will all users of the same package require the same optimiz.iiiions’’

• Where another unit imports objects from the original, what effect will use of the objects of the

original unit have on optimization of the user's objects''

Witii generic units these requirements become even more difficult to address. By design, the generic
unit must meet the needs of numerous end-users. These needs must be tailored by data sinKiiires aiul
specific sets of operations on the data. While the C AMP parts have been designed to addre.ss many ol the
typical efficiency needs of embediled systems to limit or even eliminate inefficiency due to reusability,
the .success of reusability itself depends on compilers optimizing the final code once the generic unit is
instantiated.

Another form of optimization is the generation of code based on the actual parameters in a generte

inslanlialion. Presenlly, the actual parameters do not affect the code generation; compilers either generate

new code for each instantiation, even if actual parameters are the same, or they generate only one body

regardless of the number of instantiations. In the former case, size can grow even though each instance is

a mere copy. In the latter, the compiler must generate additional code to handle specific calls to each
instance. The additional code will be generated even if there is, in fact, only a single instantiation.

Figure 36 shows these two methods plus a hybrid method that overcomes the deficiencies of the
other two. This different body method will perform three types of instantiations:

EXTENDEQ
FLOATING
POINT

TYPE X IS DIGITS <>:

r x X

TYPED
AS

NEEDED

| EXTENDED
SINGLE ■

SHORT
FLOATING
POINT |-J

EXCELLENr

POOR

POOR

EXCELLENT

GOOD -*-

EXCELLENT <-

•STORAGE

• THROUGHPUT

Figure 36. Methods of Generic Instantiation

• Generate multiple bodies for truly distinct instances

• Generate a single body, with no additional case-specific code, if there is only a single instantiation

• Generate a single body for multiple instantiations using the same actual parameter types

This approach assumes global optimization across packages. Because it is not generally possible to
know in advance how a potential user would use the generic unit, the optimization must occur following
all instantiations.

The CAMP parts library provides compiler developers with an excellent set of examples for dealing
with optimization issues. Within the parts structure itself, there is extensive reuse of objects between
parts. Optimization addressing the needs of the parts themselves could address many concerns that arise
in the development of a library of parts. The 11th Missile Application demonstrates the use of parts in
building an application, and can provide guidance to compiler developers in meeting the needs of the
end-user of the parts.

71

J.TASKPRIORHIKS

Task priorities are used lo indicate the relative priority of one task over another in the allocation ol

system resources. In general, those tilings that have to be done quickly or on a precise lime schedule are

given the highest priority. For example, within the 1 lüi Missile Application, the interrupt handlers which

process messages to and from the 1553B bus are given Uie highest priority in the system because the

interrupts can come as often as every few hundred microseconds, and each must be handled before the

next one comes in.

Tasks with low priority generally occur relatively infrequently and do not have tight timing con-

straints. For example, within the 11th Missile Application, the IS A.Monitor queries the ISA status every

minute. If the actual delay between queries is 62 seconds instead of 60, no major problems will result.

Similarly, the Status_Generator runs twice a second to generate an operator status display. If one or more

runs get skipped, there is no adverse effect on the system. Neither of these tasks can be allowed to delay

the completion of the higher priority tasks.

Currently, the Ada language standard requires that task priority be established by a static value, thus,

not only must the priority be fixed, it must be fixed by a simple constant expression. Reusability could be

enhanced by the following changes:

• For tasks declared within a generic package, allow task priority to be specified as a generic

parameter. This would have been useful for the I553B bus interfaces of the llth Missile Applica-

tion. One of the 175()A processors has two bus interfaces; the code for (he interfaces was identical

except for task priorities and command port addresses.

• Allow task priorities to be specified dynamically. Tins would be particularly useful for multi-

window user-interface software, in which an instantiation of a generic task is created for each

window. The task that is currently interacting with the user would then be able lo elevate its

priority (or have it elevated).

4. ADDRESS CLAUSES

Address clauses allow objects lo be tied to specific addresses (for example, I/O ports). Currently, the

Ada language standard requires that an address clause be "immediately within the same declarative part,

package specification, or task specification" as the object it references. The address is required to be a

simple expression.

Reusability would be enhanced by the following changes:

• Allow addresses to be specified as a generic parameter. As noted in the previous section, the

1553B bus interfaces in the I Ith Missile Application were identical except for task priorities and

command port addresses.

• Allow the address of a specification item to be specified in the body. This would allow a package

(or task) specification lo have multiple bodies, with each body mapping items declared in the

72

specification to addresses as required. Since the specification would not be affected, the code using

the package (or task) would not have to be recompiled.

5. IMPLEMENTATION OF REDUCED-PRECISION FLOATINC POINT TYPES

The use of strong data typing in real-time embedded applications supports reusability but at a cost to
the developer and user of reusable software in these applications. As detailed in Section VI, these applica-
tions require large numbers of mathematical operators for the different types of data. This subsection
discusses the inadequacy of the Ada standard in addressing the needs of applications with large numbers

of operators.

The application developer has two choices in maintaining strong data typing in a real-time embedded
system:

• Create a few base types and declare subtypes. The strong data typing results from establishing and

enforcing rules in the use of the subtypes. This implicit form of strong data typing must be im-

posed because there will be no matching between parameters in assignments or subprograms other

than that of range. If two objects have the same base type they can be treated as if they are of the

same type, unless an object assignment is out of range.

The lack of strong type checking simplifies the end-user's job. The user does not have to create

large numbers of operators to deal with the subtypes unless operations are between different base

types; however, the user must understand that any operations on subtypes will be those of the base

type. For example, a subtype which restricts the range and precision of a double precision base to

single precision will have the same operators as the base type so the user will get double precision

operators on single precision subtypes.

• Create a few parent types and declare derived types. Derived types prevent any operations between

types other than those explicitly declared or existing as derived operations. The strong data typing

rules are explicitly enforced. The user of derived types must create his own operators for operations

between these types, whether or not they are derived from the same parent.

CAMP supports the user of derived types by supplying many of the operations between data types

which are likely to occur in applications using the CAMP parts. This reduces the need for user-

created operators, assuming the CAMP operators meet his requirements. The CAMP parts cannot,

however, address the low-level operator needs of all end-users. In particular, real-time embedded

applications frequently mix Fingle and double precision data types for similar objects. For ex-

ample, there may be multiple measurements of acceleration, e.g., gravitational acceleration, missile

vertical acceleration, missile horizontal acceleration. These objects may differ in precision; thus, to

slriclly maintain strong data typing, they should be of different types, though all are derived from

the same parent.

In general, CAMP parts do not account for this strong data typing where precision is the discriminat-

7?

ing feature. It is a problem both for subtypes, where the user obtains the same operator regardless of the
precision of the subtype, and for derived types, where the user is required to create operators which the
CAMP parts cannot provide. To explicitly support derived types of all precision would require an explo-
sion in the number of generic formal types and generic formal subprograms, plus the number of
predefined types and operators to be used as actual parameters in instantiations. The user, in this case,
must either use subtypes and enforce strong data typing implicitly through strict management of the
development process, or must create his own operators.

Compilers may not allow a choice of operators for derived types. The compiler can legally generate

code such that all numerical operations result in the generation of code of the highest precision for the
target machine. The Ada standard places conformance requirements on the final result of a computation,
not on intermediate results.

Ada does not provide any support for die use of subtypes to account for different precisions. Math-
ematical operations on a subtype are exactly those of the base type (Reference 8, pp 3-23, Section 3.5.3.
paragraph 16). In order to modify the precision of the operation generated for the target, the user must
perform explicit type conversions. Of course, this will work only if the compiler generates internal math-
ematical operations based on the precisions of the types.

An obvious solution to this problem is to eliminate the restriction from the Ada standard that opera-

tions on subtypes be those of the base type. It would be possible for a compiler to recognize subtype
attributes and generate code to match. For exar;.ple, Figure 37 shows a double precision base type and
double and single precision subtypes. Ada will permit mixing of these types in operations but all opera-
tions will be double precision. The recommended language change would generate code such that the
operations follow the precision of the result type.

packaga Ba«lo_Typa« la

Doubla : constant :» 9;
Singla : constant :» 6;

typa DoublaPraclalon» 1» digit« Doubla;

aubtypa Singla Praclalona la Doubla_Pr«clalona digit« Singla;

i _- „_ Doubla praclalon oparatlona

! function "*" (Laft: Doubla_Praclslona;
Right: Slngla_Praoi»lona) raturn Doubla_Pracl«lon«;

-- -- Singla praclalon oparatlon«

function "*" (Laft: Doubla_Pr«cl«lon«;
Right: Singla Praclalon«) raturn Slngla_Fraclalon«;

•nd Basic Typa«;

Figure 37, Subtypes Should Support Reduced-Precision Operations

74

6. PROCEDURAL DATA TYPES

At (he present time. Ada has no facility for defining procedural data types. As a result, subprograms

(procedures and functions) cannot be passed as parameters. There are, however, two contexts in which

this capability is not only desirable, but practically indispensable. The first context is state machine

applications where the states and transitions are either dynamic or unknown at compile-time; the second

context is that of artificial intelligence (Al) applications.

In the stale machine context, the user often wishes to be able to dynamically control states of an

application, adding or subtracting states as needed. The inability to define procedural data types presents a

considerable handicap since this requires all procedures to be known at compile-time; any time a new

state and transition needs to be added or deleted, the whole state machine must be recompiled. The ability

to pass subprograms as parameters would allow an application to dynamically specify trans ions and

actions associated with new stales. User interface systems often fit this category of applica'. .is. In a

finite state machine, where the number of states remains fixed, often the actions associated with slates or

transitions need to change dynamically. The ability to pass subprograms would make possible this type

of dynamic allocation for these applications as well as in more general state machines.

In the area of AI systems, the ability to pass subprograms as parameters is also highly desirable.
Because artificial intelligence applications rely heavily "on the ability to use procedures as storable,

denotable objects" (Reference 9). the lack of this ability in Ada considerably diminishes the capability to

express AI paradigms.

7. DYNAMIC BINDING OF BODIES TO SPECS

Currently, only a one-to-one relationship between package bodies and specifications is permitted l.y

the Ada language. In most instances, this is sufficient, but there are cases where a many-to-one relation-

ship would be useful. This would allow multiple package bodies for a single package specification to

exist simultaneously in the same Ada library, Which body should be used by the compiler for code

generation would be specified when the user imported the package via a with statement.

One instance where this would be useful is when working with the CAMP Standard_Trig package; a

partial specification for the Standard_Trig TLCSC is shown in Figure 38. This package defines a sa of

standard trigonometric operations for a system. In order to implement the supplied functions, the package

body of Standard_Trig instantiates portions of the Polynomials package.

Figure 39 contains a partial package specification for the Polynomials TLCSC. This package con-

tains a large number of polynomial solutions to various transce' deml functions. It also provides access

to the transcendental functions provided by the VAX Ada environment.

During the CAMP parts development effort, the package body of StnndardJTrig instantiated portions

of the Polynomials.System_Functions LLCSC in order to obtain access to the VAX-supplied transcen-

!erital functions (see Figure 40). While this package body would be useful lor anyone doing development

using VAX Ada. it would not be appropriate for an application designed to run in an embedded environ-

ment. A modification that would allow this part to be used in an embedded environment would involve

75

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUILIC RELIAH

UNDER DOD DIRECTIVE 5200.20 AND

Nu RESTRICTIONS ARE IMPOSED UPO»

ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUILIC RELIASEj

DISTRIBUTION UNLIMITED.

% \

g»n»ric
typ« Aiigl« is digits <>:
typ« Trlg_R*tlo 1» digits <>;
PI V«lu» ; i n Angla;

packag* at«ndard_Trig is
typ« Radiana la naw Angl«;
typ« Sin Coa Ratio is naw Trig Ratio rang« -1 0 .. 1.0;
typ« Tan Ratd o la naw Trig Ratio;
function Sin (Input : Radi ana) r«turn Sin Coa Ratio;
function Coa (Input : Radl ana) raturn Sin Cos Ratio;
function Tan (Input : Radi ana) r«turn Tan Ratio;

•nd Standard Trig;

Figure 38. Partial S(nn(lard_Tiig Package Specification

packag« Polynomials la

packag« Bastings is

g«n«rlc
typ« Radians Is digits <>;
typ« gin_Cos_Ratlo is digits <>;

packag« Baatlnga_Radian_Oparatlona is
function Sln_R_4t«nn (Input : Radians) raturn 91n_Cos_R«tlo;
function Sin_R_5t«nn (Input : Radlana) raturn 31n_Coa_R«tlo;

•nd Hastlnga_Radlan_Op«ratlons;

«nd Bastings;

packag« 3yst«m_Functlons is

g«n«rlc
typ« Radlana is diglta <>;
typ« Sln_Coa_R«tlo is digits <>;

packag« Radlan_Op«ratlons la
function Sin (Input : Radlana) raturn Sln_Coa_Ratlo;

•nd Radlan__Oparatlons;

•nd Syat«m_Function«;

•nd Polynomials;

Figure 39. Partial Polynomials Package Specification

selecting polynomial solutions from the Polynomials TLCSC anil instantiating them accordingly. If the

application required the selection of algorithms for multiple precisions, the required modifications would
be more extensive since the Slandar(l_Trig package has been designed to provide overloaded operations
for different units, but r I for different precisions.

76

with Polynomlala;
package body Standard_Trlg la

packaga Radian Opna Is naw Polynomial
(Radiana «> Radiana,
Sin_Co»_Ratlo -> 3in_Co«_

s .Systain

Ratio);

runotlons .Radian Oparations

function Sln_R (Input : Radians)
caturn Sin Cos Ratio ranamas Radian Opns Sin;

1 function Sin (Input : Radians) raturn
bagln

raturn Sin R (Input »> Input);
and Sin;

Sln_Coa_ Ratio la

and 3tandard_'rrlg;

Figure 40. System Funclions Version of Slandard_Trig Package Body

77

Under (he currenl definition of the Ada language, the problem of modifying the StandardJTrig pack-
age to provide trigonometric functions for multiple precisions could be solved in one of the following
ways:

1. Duplicate packages could be provided for each precision. This is the approach that was taken on

the 11 Ih Missile Application. It involved duplicating package specification code, giving each

package its own unique name, and 'hen implementing the bodies for the different precisions (see

Figures 41 and 42). This method has the disadvantage of requiring the creation of packages which

are identical except for their names.

with Polynomial«;
packaga body 3t«ndard_Trlg la

packaga Radlana_Opna la naw Polynomials . Hastlnga . Baatlnga_Radlan_Oparatlona
(Radlana ■> Radian«,
Sln_Co«_K«tlo => Sln_Co«_Ratlo) ;

function Sin_R (Input : Radian«)
raturn Sin Coa_Ratlo ranama« Radiana_Opn« . Sln_R_4Tann;

function Sin (Input : Radian«) raturn Sln_Co8_Ratlo 1«
bagln

raturn Sin_R (Input «> Input);
and Sin;

and Standard_Trig;

Figure 41. Single Precision Version of StandardJTrig Package Body

with Polynomials;
paekaga body Standard_Trlg la

packaga Radian«_Opns la naw Polynomial« . Haatlnga . Ba«tlngs_Hadlan_Oparatlona
(Radian« "> Radian«,
Sin_Co«_Ratlo «> Sin_Co«_Ratlo) ;

function Sin_R (Input : Radians)
raturn Sln_Co«_R«tlo ranana« Radlana_Opna . Sln_R_5Tarm;

function Sin (Input : Radian«) raturn Sln_Co«_Ratio 1«
bagln

raturn Sin_R (Input => Input) ;
and Sin;

and Standard Trig;

Figure 42. Extended Precision Version of StandardJTrig Package Body

2. The package specification for StandardJTrig could be modified to allow for multiple precisions as

shown in Figure 43. This method is less desirable than Solution 1 because it requires major

modifications to the package specification, as well as creation of a new body.

3. The baseline CAMP Standard. Trig package could be modified in a manner similar to that dis-

cussed in Solution 2 and shown in Figure 43, This approach has the following disadvantages:

• It requires the user to instantiate the package and possibly receive code for multiple preci-

sions even if only one precision was required.

78

ganarla
typ« Angl«_Slng]«_Pr«clBlon is digits <>;
typ« Angl*_Ext*nd«<l_Pr«clslon la digits <>;
typ* Trig Ratio Slngl*_Prac:l.slon is digits <>;
typ» Trlg_R«tlo_Ext«nd«d_Pr«iolsicn is digits <>;
Pi_V«lu«SP : in Angl*_Slngl*_Pracialon;
Pl_Vslu«_EP : in Aitgl*_Extandad_Praalslon;

packag« Standard_Trlg la

typ» Radians_3P
typa Radlana_EP

is na« Angla_Singla Pcacislon;
is naw Angla Extandad_Prnciaion;

typa Sin Coa_Ratio_SP is naw Trig_Ratlo_Slngla_Praalalon ranga -1.0
typa Sln_Coa_Ratlo_EP la naw Trig_Ratio_Extandad_Praolsion ranga -1.0

1.0;
10;

typ» Tan_Ratio_SP
typa Tan_Ratlo_EP

function Sin (Input
function Sin (Input

function Cos (Input
function Cos (Input

function Tan (Input
function Tan (Input

»nd Standard_Trlg;

la naw Trlg_Ratio_Slngla_Pracision;
is naw Trig_R«tio_Ext«ndad_Praclsion;

Radians_9P) raturn Sln_Cos_Ratio_aP;
P«'lian8_EP) raturn Sln_Cos_Ratio_EP;

Radians St) raturn Sln_Coa_Ratlo_3P;
Radiana_EP) raturn Sln_Coa_R«tlo_EP;

Radiana_SP) raturn Tan_Ratlo_SP;
Radians EP) raturn Tan Ratio EP;

Figure 43. Multiple Precision Version of Slandard_Trig Package Specification

• It does not solve the problem of what to do if more than two precisions are required.

The preferred solution would permit a single package specification to have multiple bodies. The

Siundaril Trig package specification code would then not require modification; the user would create
multiple bodies, all of which would exist in the program library at the same time, and then specify which
body was to be used at the time the Standard_Trig package was imported. This approach has the advan-
tage of increasing the reusability of the SlandardJTYig package specification since it would require no

modifications, regardless of the number of bodies required. It also decreases the effort to use the p:irl.

S. SEPARATION ()l REPRESENTATION CLAUSES

Flexibility and ease of use are key attributes of good reusable software. Ideally, the design of a
reusable part should be sufficiently flexible to permit tailoring without modification of the source code
itself. II source code modifications are required, modification of the body is preferable to modification of
the specification since this increases the reusability of the specification, avoids modification of the exter-
nal interface provided by the specification, and potentially eliminates the need to recompile other portions

of the system which are dependent upon the modified part. One aspect of tailoring which cannot be
accounted for through good design is the need for representation clauses.

"Representation clauses specify how the types of the language are to be mapped onto the underlying
machine. They can be provided to give more efficient representation or to interface with features that are
outside liie domain of the language (for example, peripheral hardware)" (Reference 8, pp 13-1). One

7()

example of the use of represeniation clauses in the I Itli Missile Application is in the definition of mes-

sages sent across the data bus and in size specifications for objects of certain types. An example of this is

shown in Figure 44 where the contents and storage representation of a BIM_Error_Message are defined.

A further explanation of the contents and storage representation of this message can be found in Table 6.

The current definition of the Ada language states thai "a representation clause and the declaration of the

entity to which the clause applies must both occur immediately within the same declarative part, package

specification, or task specification" (Reference 8, pp 13-1). While the need for representation clauses can

be anticipated, their form cannot be since they are application-specific. As a result, whenever a user

wishes to apply a representation clause to an entity defined in the package specification of a reusable part,

the source code for the specification must be modified.

with BIM_Intarf«ca;
with Bu«_T«miln«l« ;
with R«pr«a«ntatlon_Parani*tara;
packaga Bu«_Maaaagaa la

packaga BI ranamaa BIM_Intarfaca;
packaga BT ranamaa Bua_Tannlnala;
packaga RP ranamaa Rapraaantatlon_Paranatara;

typa Duini\y_Array la array (BI .Nord_Counta ranga <>) of Bl .Data_Mor<la;

typa Short_Boolaan la naw BOOLEAN;
for 9hort_Boolaan'SIZE uaa 1;

typa ShortJTaat la naw INTEGER ranga - (2**15) .. (2**15)-1;
for Short_Faat'SIZE uaa 16;

BIM_Error_Hord_Count : conatant BI.Nord_Counta := 1;
BIM_Error_Duii«ny_Sl»a ; conatant BI .Word_Counta

:■ BI.Maaaaga Slia_Morda -
BIM Error Word Count;

typa BIM_Error_Maaaagaa la
racocd

Hord_Count
Sourca
Daatlnatlon
MaaaagaNuinbar :
Status
Dumny

and racord;

for BIM_Error_Maasagaa uaa
racord

Herd Count at 0

Sourca at 1
Daatlnatlon at 1
Maaaaga Numbar at 1
Statua at 2

Dummy at 3

and racord;

BI.MvrJ_Counta;
BT.Tarmlnala;
BT.Tamlnala;
BI. Maaaaga_Numbara;
Bl.StatuaJforda;
Dummy_Array (1. .BIM_Error_Dumry_Si«a) ,

*RP . Storaga_Dnlta_par_1lord ranga
*RP. Storaga_Dnlta_par_llord ranga
*RP .3toraga_Onlta_par_lford ranga
*RP .Storaga_tJnlta_par_1lord ranga
*RP. Storaga_Onlta_par_Hord ranga
*RP. Storaga_(Jnlta t>ar_1lord

ranga 0. .BIM_Error_Duiifny_91«a
RC.Maaaaga_Nord_Slza-

0. .15
0. .3;
4. ■ 7;
s. .15
0. .15

«nd Bu8_Mafl8Agaa;

Figure 44. 11th Missile Applic;ilion Use of Representation Clauses

80

TABLE 6, BIM ERROR MESSAGES CONTENTS AND STORAGE REPRESENTATION

Message
Component Description

Storage 1
Representation

Word_Counl Number of words in (he message Located in bits 0-15 of Ihe word offset 0
words from the beginning of the data struc
(ure

Source Where Ihe message came from Located in bits 0-3 of (lie word offset 1 word
from Ihe beginning of the data structure

I>"tin.ilion Where the message is being sent Located in bit» 4-7 of the word offset 1 word
from Ihe beginning of the data structure

Mcss.igc_.Nunibrt Used (o distinguish between messages of the
same type

Located in bits 8-15 of the word offset
word from the beginning of the data struc
ll.rc

Simus The error ilseK Located in bits 0-15 of the word offset 2
word» from the beginning of the data »true
ture

Duniniy A filler' array used to keep the overall sire
of all messages the same

Starts in bit 0 of the word offset 3 words
from Ihe beginning of Ihe data structure and
continues for the number of words required
to completely fill the message structure

Allowing representation clauses to be specified in a package body for entities declared in the pack-

age specification would increase the reusability of Ihe specification. In cases where the reusable software
consists of only the package specification with the body being user-defined, a representation clause could

be defined in (he Ada body without any modifications to the reusable specification code. In cases where a

body already existed, permitting the modification (o be made to the body instead of the specification

could potentially eliminate Ihe need to recompile other portions of the system. The placement of

representation clauses in package bodies would be consistent with the specification (Ada data structure)

versus body (implementation) split which exists throughout the Ada language.

SI

SECTION VI

PARTS i)i:si(;N METHODOLOGY

I. DESIGN REQUIREMENTS

The development of reusable software presents the designer with a conflicting set of design require-

ments. In addition to being reusable on a number of different real-time embedded applications, the design

of reusable parts must address the following issues:

• Well-defined interfaces

• Efficient implementations

• Strong data typing to minimize inappropriate use

• Availability of mathematical operations on different data types

• Simplicity of use

These conflicting requirements have led some to the conclusion that "since the generality .»ceded for

flexibility and portability will increase software overhead and, consequently, decrease the software's ef-

ficiency ... it is very difficult to construct reusable missile software that is still viable." (Reference 10, p

105). This is not the conclusion from the CAMP project.

The CAMP project developed a design methodology to address these conflicting issues and produce

reusable parts for missile applications. A set of reusable part goals — flexibility, efficiency, ease of use.

and protection against misuse — form the basis of this method. Flexibility is the extent to which parts

can be modified or tailored to the specific needs of an individual application. Although parts may be

reusable, if they are not flexible and easily tailored, then the cost of using a part may be prohibitively

large and it may be less expensive to develop a new part than to try to tailor or modify an existing part.

The issue of efficiency is one which has long plagued reusability: the contention is that parts which are

reusable can never attain the required efficiency for use in real-time embedded applications. The parts

must also be easy to use because difficulty of use increases cost of reuse and may mean that the part will

never be reused. Protection against misuse refers to providing the user with protection from choosing the

wrong part for a given requirement or calling the part with improper parameters. The use of the Ada

genetic feature and strong data typing prevents misuse to some extent. However, there are other features

which may be included in the design of parts to guard against misuse.

The CAMP design methodology meets the reusability goals and supports parts which are well-tested

and may be used off-the-shelf. The methodology utilizes several of Ada's special, though standard,

programming features, including derived types and subprograms, generic instantiation and subprogram

overloading. The CAMP team believes that this design approach will be equally appropriate for non-

missile applications milsidc the CAMP domain.

S2

2. DESKJN METHODS

Six methods (or ihc design of reusable parts were considered on the CAMP program. Figure 45

illustrates these methods. In discussing the competing methods, a specific CAMP part will serve as an

example. This part. Compule_Earth_Rclative_Horizontal_Vclocities, has three inputs:

• Nominai_East_Velocily (VEL,^)

• NominaLNorth_Velocity (VELNN)

• W;inder_Angle (WA)

!l processes these inputs through the following equations:

• VELE := VELNE * cos (WA) - VEL^, * sin (WA)

• VELN := VELNN * cos (WA) + VELNE ♦ sin (WA)

producing the following outputs:

• True East Velocity (VELE)

• True North Velocity (VELN)

TYPHfSS APPROACH OVERLDADED APPROACH QEICFIC APPROACH

x : (loal:
y : float:
z : float:

x- A:
y.B:
z: C:

x: A:
y:B
z: C

x: A;
y:B;
z: C; Q\

t\ A
y:B
z: C

A, B 4 C ^

GENEHC PARAMETERS

ABSTOACT DATA TYPE 8
ABSTOACT STATE MACHINE APPROACHES SKELETAL APPROACH

o
CALCULATE ...>

GETZ ^.
COt^VER'

PUTX
CONVERlK

x : <A>
y :
z : <C> Q\

<A>,.<C>

'COMPONWT
.CONSmjCTOH

Figure 45. Reusable Pails Methods

The compulations performed in this example require trigonometric functions on Wander_Angle plus

multiplication and subtraction operators. In addition, the nuiltiplicalion operator must perform its opera-

83

tion on data of different types, namely, a velocity type and a sine- or cosine-of-an-angle type. These

mathematical functions must also be provided for all possible combinations of data types for velocities

and angles. For example, if velocity is measured in feet-per-second and angle is in radians, the following

mathematical operations arc required:

• Sine and cosine operations on radians;

• Multiplier for feet-per-second by the result of the sine and cosine operations; and,

• Subtraclor for the result type of the multiplier.

The discussion will explain the methods for parts design and evaluate their effectiveness with regard

to the following four evaluation criteria:

1. Efficiency and appropriateness of the interface;

2. Control for preventing misuse;

3. Availability of needed mathematical operators and functions; and,

4. Degree to which the user's job is simplified.

Following the presentation of the six methods, this section will focus on the method chosen on the

CAMP program for parts design, and the implications of that method for a generalized parts development

environment.

a. Typeless Method

The tvpelcss method assumes that all data objects and actual parameters will be of the universal

float type. The benefit of this approach is to alleviate the need for special mathematical operators and

functions since they are already defined in standard packages. The severe disadvantage is that the com

piler and runtime system cannot perform type checking to prevent misuse of the part.

The failure of an SDl-related experiment in 1985 illustrates the problems which can result

without strong typing. The experiment required an orbiting receiver to track a ground-based laser. The

transmitter was positioned at an elevation of approximately 10000 feet and this elevation was to be

entered into the flight computer of the receiver's orbiting platform. The flight computer was programmed

to accept ground elevation in nautical miles not feet, however, so when 10000 was entered, the platform

oriented the receiver to point to a position 10000 miles above the surface of the earth, exactly 180 degrees

from the correct location, 10000/m above the surface.

Strong typing of parameters could alleviate this problem. Figure 46 illustrates the data type and

object declarations which would apply.

84

typ« NautlcalMll«« !■ digits 6;

auhtyp« Ground_El«v«tlon la Nautical Mil«» rang« -1.0 .. 6.0;

Tranamlttar Elevation : Ground Elavatlon;

Figure 46. Strong Data Typing Example

This would restrict the input values of Transmitter_Elevation to a reasonable range for units of

nautical miles.

The specification shown in Figure 47 illustrates the lypeless method. A user application access-

ing this procedure could pass any object of the type float as actual parameters. The compiler could not

perform type checking (o prevent possible type mismatching and there could be no runtime checking to

assure correct ranges lor the actual parameters. This method produces parts which are easy to use, but

offers no protection against misuse.

pcocadura Coiiipute_Earth Ralatlva Borlcontal_V«loaltiaa
(Horalnal_Eaat_y«loelty
HomlnalNorthValoolty
tlandar_Angla
Eaat_Valoclty
North_Valoclty

in FLOAT;
in FLOAT;
in FLOtii;

out FLOAT;
out FLOAT);

Figure 47. Typeless Method

h. Overloaded Method

To allow a greater choice in data typing, the overloaded method provides the user a separate

version of each part to allow for the different combination of data types which the part user might require.

The code segment shown in Figure 48 illustrates the overloaded method applied to the example when the

velocities are of type Feet_Per_Second and Meters_Per_Second and Wander_Angle is in Radians.

packaga Ovarloadad Mathod la

procadur« Computa Earth Ralatlva Horizontal Valocltiaa
(Nominal East Valoclty in Faat Par Sacond;
Nominal North Valooity in Faat Par Sacond;
Nandar Angla in Radians ;
East Valoclty out Faat Par Sacond;
North_Valocity out Faat_Par_Sacond);

1 procadura Computa Earth Ralatlva Horizontal Valocltiaa
(Nominal_Eaat_Valocity in Matars Par Sacond;
Nominal North Valoclty in Matars Par Sacond;
Nandar Angla in Radians;
East Valoclty out Matars Par Sacond;
North Valoclty out Matars Par Sacond);

and Ovarloadad Mathod;

Figure 48. Overloaded Method

85

Other overloaded subprograms would allow Wander_Angle in degrees and semicircles. This is

the method used by Ada packages such as STANDARD. CALENDAR, and TEXTJO to provide iden-

tical operations on different data types.

The overloaded method offers the protection of strong data typing with simplicity of design and

use of parts. The designer will decide which combinations of data types to allow for each part and will

explicitly declare the parameter interfaces lor each overloaded subprogram. He will also define all of the

mathematical parts which the subprograms will use: sine and cosine for Wander_Angle, and the mul-

tiplication and subtraction operators. Strict type checking will assure that actual and formal parameters

match and that the values of the actual parameters fall within ranges allowed by the type.

Because Ada supports this overloading of subprogram definitions, the user need not call a

version of a part specific to a given combination of data types; the Ada disambiguation feature will

resolve the call. In fact, should user requirements change and a different combination of data types result,

the call need not be changed, the Ada language will resolve the new reference. This method therefore

provides simplicity of use with the protection associated with strong data typing.

The major disadvantage of this method is the large number of parts declared at the architectural

level. For the data types stated above (Feet_Per_Second and Meters_Fer_Second for velocities and

Radians, Degrees, and Semicircles for angles), the Compute_Earth_Relative_Horizontal_Velocities pro-

cedure would require six specifications and bodies to accommodate the different combinations of data

types. A navigation package encapsulating a complete set of reusable navigation parts could easily grow

to over 100 subprograms. Thus, the overloaded method, while simple to use, would be almost impossible

to develop and maintain.

c. (ieneric Met hud

The generic method uses Ada generic units to provide parts which are tailorable to user-defined

data types. Figure 49 shows the generic method applied to the Compute_Eimh_Relative_HorizontaL

Velocities procedure using generic formal types for Velocities, Angles, and Sin_Cos_Ratio (the type

retumed by a call to Sine or Cosine), and generic formal subprograms for the required trigonometric

functions and the multiplication operator. The subtraction operator operates only on the generic velocity

type and is implicit from the generic definition.

The generic formal subprogram parameters are used within the body of the part to perform

mathematical operations on objects of the generic data types. For example, the sine and cosine operations

on Wander_Angle are performed by the functions supplied as actual parameters for the generic Sin and

Cos. The user must define operators to perform these functions on objects of the actual type for Angles

returning an object of the Sin_Cos_Ratio type. This large number of generic parameters could place an

enormous burden on the part user, requiring him to create and supply all of the needed actual parameters,

both types and subprograms. For the example, the user must supply three data types plus three sub-

programs as actual parameters.

A method which uses default parameters could alleviate some of this overhead from the part's

user. If the total parts design includes typical data types and provides functions for typical combinations

86

yMMsle

tjp» «tii_Co«_**tlo la dibits o;
typa Valooltlaa ia dlylta O:
tjj>» Anglaa la dlglta O:
•1th function ■*■ (Laft ; Valoeltiaa;

Right : 81n_Coa_Ratlo) laturn Valoeltiaa la <>;
with function Sin (In_Angla : Anglaa) raturn Sln_Coa_Ratlo la O;
with function Coa (Zn_Angla : Rnglaa) raturn Sln_Coa_Ratlo la O;

prooadura Coa^ta_Barth_Ralatlva_lorlaontal_Valoeltlaa
(Hcu>lB«l_BMt_V*leeltr la Valoeltiaa;

Moailnal_Marth_V*loeltg la Valoeltiaa;

!lundar_Angl« la Anglaa;

Xaat_Valoclty out Valoeltiaa;

Morth_V*loclty out Valoeltiaa);

Figure 49. Generic Method

of these dau types, then the user coukJ provide predefined types as actual type parameters and the actual
subprogram parameters will default to the predefined functions. Figure 50 illusuates this method. Using
the same example, the design could incorporate a separate data types pai. supplying a Radians type and
trigonometric operations on Radians. The multiplkaiion operator could be similarly predefined. This
approach yields a twineling of parameters, where explicit use of a type allows tunneling of operators on
that type. Tlie advantage of this method is clear the user obuins the protection associated with strong
data typing ami the flexibility of using a choice of data types without the need to define his own types or
operators.

th Uftru
T MofleoNTk.vKocffo

1

d. AbslracJ Slate Machine Method

The abstract state machine method affords the part user a very high-level interface to reusable

parts. In this method, the interface is a package structure defining all of the characteristics of the missile

state relevant to a group of navigation operations. In a state machine, the interface is strictly through the

operations, as the user does not have direct access to or knowledge of the data structure on which the

operations work (Reference 11, pp 202). The state machine allows the underlying structure to change

without the users' knowledge.

The state machine implementation of a navigation system would provide all of the operations

needed to perform the navigation function, both those changing the stale and those reporting the state.

One such function would be the Compute_Earth_.Relative_Horizonal_,VeIocities operation which would

both update and report the velocity. Figure 51 contains a code segment to illustrate the abstract state

machine method.

ganarlc
typ« Sln_Co«_IUtlo 1* digit« <>;
typ* Valooltl*« la digits <>;
typ« Anglas la digit« <>;
typ« Altltudaa la rang« <>;
with function "*" (L«ft : V«locltl«a;

Right : Sln_Coa_Ratlo) r«turn Valocltl«« 1« <>;
with function Sin (In_Angl« : Anglaa) return 91n_Coa_Ratlo la <>;
with function Co« (In_Xngl« ; Anglaa) r«turn Sln_Coa_R«tlo la <>;

packag« NBvlgatlon_Stat«_Machln« la

procadur« Coi(f>uta_Earth_R«latlv«_Borl(ontal_V«locltl««
{Nominal JEaat_V«locltl«a
Nomlnal_Morth_V«locltl««
Hand«r_Angl«
Ea«t_V«locltl«a
North Valocltlaa

In Valocltlaa;
In Valocltlaa;
In Angle«;

out Valocltlaa;
out Valocltlaa);

procadura Dpdata_Altltuda
(V«rtlcal_Valocltlaa
Currant Altltuda

In Valocltlaa;
out Altltuda«);

-- --oparatlon« to provlda «tata Information

function Currant_Ea«t_Valocltla« raturn Valocltlaa;

function Currant_North Valocltla« raturn Valocltlaa;

and Navlgatlon_StBta_Machlna;

Figure 51. State Machine Method

The abstract stale machine approach utilizes generic units to tailor operations to the user's

requirements. Like the generic method, this approach enforces strong data typing and protection against

misuse. However, because ail operaiions arc encapsulated in a single package, the user is presented with

an "all or nothing" solution: specify all of the generic parameters for all operations, whether needed or

not, or don't use the package.

An alternative approach would be to encapsulate the data typing and structure within the pack-

88

age, forcing the part user (o convert his typing to conform to that of the abstract stale machine. While

defining nil internal data type: and operations makes the part easier to use, the overhead of conversion to

the internal <lala structure would be prohibitive. This conversion would entail not only data typing, but

also unit conversion, from meters to feet, radians lo degrees, etc. The package could provide interfaces to

simplify the unit conversion, but could do little to alleviate the overhead.

The stale machine approach does offer an advantage of creating more than one body for a single

specification. Because all data is controlled within the body, a part user may use only the specification

and write his own body, defining data according to his own choice. Similarly, the parts designer may

provide multiple bodies for a single specification, thus alleviating the efficiency issues by creating bodies

which are efficient for a particular situation. Like the overloaded method, this increases the cost of creat-

ing parts, yet is an effective method when the choice of a data structure cannot, for reasons of efficiency

or simplicity, be established in the package specification.

c. Abstrad Data Tvpe Method

Like the abstract stale machine method, the abstract data type method offers the part user a

high-level interface to reusable parts. This interface consists of a predefined set of operations on a data

structure, and. unlike the abstract state machine, the interface includes the data structure itself. The user,

therefore, knows the structure he is dealing with and. depending on the implementation, may even be able

to access the structure directly. In the abstract data type method the user is aware of changes to the stale

of the structure which are effected by the exported operations.

In most implementations, an abstract data type restricts access to objects of the abstract type to

operations defined in the package specification. In contrast lo the abstract state machine, Ihis type is part

of the specification, and the package body must operate on that unique structure. If a part user wishes to

use the operations of the abstract data type but use a different data structure, then he must not only rewrite

the body which will operate on the data structure, but also rewrite the specification which defines the

structure. This method is used extensively in abstract data structures such as vectors and matrices, stacks

and queues, but is less appropriate for more complex data structures such as those used by a navigation

system or Kaiman filter.

A package which implements the navigation system according to the abstract data type method

looks quite similar to that of the abstract state machine. (See Figure 52.) The major distinction is the

private section of the specification which defines the abstract data structure.

8')

9*n*rlc
typ« Sln_Co«_R«tlo 1« digits <>;
typ* V«looltl«o la digit« <>;
typ« Angl«a la digits <>:
typ« Altltud«« la rang« <>;
with function "*" (L«ft : Valocltlaa;

Right : Sln_Coa_R«tlo) raturn V«locltl«a la <>;
with function Sin (In_Xngl« : Anglaa) raturn Sin_Coa_Ratlo la <>;
with function Co« (In_Angla : Angl«a) raturn Sln_Coa_Ratlo la <>;

packaga Navlgatlon_Stat«_Machln* la

typa Mavlgatlon_Modal la privata;

procadura Dpdat*_Earth_Ralatlva_Borlsontal_V«locltl*«
(Nomlnal_I!a«t_V«loclty : In Valooltla«;
Noralnal_North_Valoclty : In Valooltla«);

procadura Coinputa_Earth_Ralatlva_Borlzontal_Valocltla«
(Updating : In out Navlgatlon_Modal) ;

procadura Opd*ta_Vartlcal_Valoclty)
(V«rtlc«l_Valoclty : In Valocltlaa) ;

procadura Coinput*_Altltuda
(Updating : In out Navlgatlon_Modal);

--oparatlona to information from data atruotura

function Currant_Eaat_Valoclty
(Ba«*d_On : Havlgatlon_Modal) raturn Valocltlaa;

function Currant_Horth_Valoalty
(Ba««d_On : Navlgatlon_Modal) raturn Valocltlaa;

privata Dafinltlon of Navigation Abatract Data Structura

typa Mavlgation_Modal la
racord

Mlaaila_Valocity : Valocltlaa;
Mlaalla_Xltltuda : Altltudaa;

and racord

and Navlgatlon_Stata_Maehlna;

Figure 52. Abstract Data Type Method

This method is similar to the abstract state machine approach in that it utilizes generic units to
tailor operations to the user's requirements. It uses these generic units to enforce strong data typing and
protect against misuse. However, the user is again presented with an "all or nothing" solution. Again, the
abstract data type offers an alternative approach which would define data types in the package specifica-
tion, eliminating all of the generic units. While defining all internal data types and operations will ease
the use of (he part, the overhead of conversion to the internal data slmclure would be prohibitive.

90

f. Skeletal Code Method

The skeletal code method provides the pari user with code lemplales, which may be manipu-
lated in an editor or through some other tool. This approach gives the part user the flexibility of generic
units, without the complexity of the generic instantiation. A sample template, as shown in Figure 53 for
the Conipute_Eaith_Relalive_Horizonial_Velocitie.s, would look similar to the code for the lypeless
method.

procadur* Conput* Earth Ralatlva Horizontal Valooltlaa
(nominal Eaat Valoclty : In
Nominal North Valoclty : In
Nandar Angla : In
East Valoclty out
North Valoclty out ;

Figure 53. Skeletal Code Template Method

This approach would add complexity by requiring the part user to complete much of the en-
vironment. Outside the part, he must edit the skeletal code into his existing design, inserting data types
and overloaded operators as required. While the generic method provides a generic specification, and
forces conformity through the Ada generic matching rules, the skeletal method can only provide user
documentation to support creation of the environment. In addition, if two or more designers are using
similar parts, they may choose different values for completing the templates, duplicating parts of the
environment. There would also be a tendency to avoid strong data typing to alleviate the overhead
attached to creation of overloaded operators and functions.

An expert system, interfacing to the code templates, could support use of the skeletal code
method. The expert system could prompt the user for information it needs to fill in the blanks, but rules,
stored in the expert system knowledge base, would allow the system to complete the environment, filling
in additional types, operators, and any additional subprograms. The expert system approach offers the
long-term solution to the difficulties of the skeletal method by building the environment as a by-product
of the user dialogue.

3. USE OF THE (JENERIC METHOD

The CAMP program conducted a thorough analysis of each method for design of reusable parts.
Figure 54 summarizes the results of this analysis and compares advantages and disadvantages of methods.

l)|

METHODS

TYPELESS APPROACH

-> K : float;
y : float;
2 : float; 0

OVERLOADED APPROACH

*—

> : A:
y B;
J: C; (9 ^,

>
*-

x : A:
y :B;
i: C; 6^

^^N

«■

_ I : C; 0

ADVANTAGES

No need to define new
operators

Simple interface

All operators provided
Flexible
Protected against

misuse

DISADVANTAGES

No protection
misuse

against

Too many parts
Maintenance night-

mare

GENERIC APPROACH

x: A;
y:B;
z: C; 0

A, B » 07
ÖBJERIC PARAMETERS

Flexible for new data
types

Protected against
misuse

User must provide
all operators

Complex interface
(generics)

ABSTRACT DATA TYPE &
ABSTRACT STATE MACHINE APPROACHES

Protected against "All or nothing at
misuse all" approach

Inefficient
Complex interface

(instantiate entire
package even if
only one subpro-
gram needed)

SKELETAL APPROACH

x : <A> n y : <B3 / j
z^^Cj vy

Flexible

, <A>..<C>

£6MPOf»IT
boNsmproR

User must create
data environment

User must build in
own protection

Requires automated
assistance for
productive use

Figure 54. Comparison of (he Six Reusable Paris Methods

^2

The analysis focused on ihe generic method as providing Ihe greatest potential for the design of

reusable parts. Prior Data Sciences, a Canadian firm specializing in the development of reusable, real-

lime software, has summarized the difficulties in developing reusable software based on generic units and

of employing parts created using generic units.

• "Library generic units arc very difficult to write . . . the effort required to properly generalize them

is usually significant."

• "Generic units are also difficult to use. especially when they have many interrelated parameters.

The parameter matching rules can be very subtle." (Reference 12, p 70)

Although generic units add complexity to the interfacing mechanism, the flexibility and protection

against misuse which they afford weigh heavily in their favor. Generic units also provide flexibility for

tailoring to the requirements of a specific application.

The CAMP parts development team conducted an analysis to determine the best methods for support

of complex operators inside the body of parts and for simplification of the use of parts developed using

the generic method. The CAMP project has been unique in its investigation of these areas. Most

reusability studies have focused primarily on abstract data types, which require only simple generic

operators, e.g., integer incrementation, data structure iterators, etc. While some reusability efforts have

addressed the needs of the scientific and engineering communities for mathematical software, the result-
ing parts support neither strong data typing nor user selection of mathematical operators called internal to

the part. The following two subsections address two key issues of the CAMP project:

• The approach developed on CAMP for the design of reusable parts using the generic method; and,

• The use of those parts in constructing an application from reusable software.

a. llslnj; Ihe (Jeneric Method Ut Design Paris

Effective use of generic units for the creation of reusable parts requires reconciliation between

the complexity of the generic specification and the desired case of use of the part. The presentation of the

generic method discussed the conflict. In fact, Ihe conflict entails the same trade-offs as those required to

create reusable software: generality vs. efficiency and ease of use.

The CAMP parts fully exploit the Ada generic facility. Low-level parts are designed as generic

packages or subprograms. Higher-level parts are built from multiple levels of these generic units. The

user supplies actual parameters to instantiate the generic parts and tailor them to his application. The

CAMP part architecture, with multiple layers of generic units provides the part user with a broad choice

in his selection of parts for an application: he may use low-level parts to implement low-level features of

Ihe individual objects of his design or choose high-level parts to themselves serve as objects in his design.

A generic part uses its generic formal parameters for tailoring the part to a specific application.

The Compulc..Earth_Relative_Horizontal_Velocities part may be tailored for velocity type (feel per

second, meters per second, miles per hour, knots) and for angle type (radians, degrees, semicircles). In

addition, the tailoring can extend to the return type of a sine or cosine operator.

93

In order to complete the tailoring, the part must also allow tailoring for operators essential for

the enforcement of strong data typing. Generally, operators are merely overloadings of predefined opera-

lions ("+","-", "♦", "/")• For more complex operations, the user must create his own subprograms, such as

sine and cosine, fillers, matrix operations, etc. For these user-created operations, there are no language-

defined constructs and the generic specification cannot fully describe the required operation. Only part

documentation and the user's familiarity with the part's internal design can support creation of actual

parameters to match the formal generic. Those features of a part which are truly common between
application.;, and are captured in the body of the part, include:

• the use of generic data types

• the sequence of operations

• data types and operations not parameterized through the generic

Figure 55 shows the use of generic plus non-generic features of a part body. The formal data

types and Sin and Cos operations are generic and, hence, tailorable. The multiplication operator is also

generic. The subtraction and addition operations are not generic. Of course, the sequence of operations

to calculate the output velocities is also non-generic.

procadura Coiiiput«_E«rth_R«l«tlv«_Horl«ont«l_V«locltla»
(Nomlnäl_E>at_Valoclty : In Valooltlaa;
Nomlnal_Herth_Valoolty : In Valooltlaa;
Nandarjlngla : In Anglaa; j
East Valoclty out Valooltlaa;
HorthValoclty out Valooltlaa) la

Sln_M_A : Sln_Co«_Ratlo;
Co«_V_A : 31n_Coa_lUtlo;

bagin

SinWA :- Sin (Currant Handar_Angla) ;
Co»_tl_A :- Coa (Currant_Wandar_Angla);

Ea»t_Valoolty :- Momlnal_Eaat_Valoolty * Coa_1l_A -
Hominal_Morth_Valoclty * Sln_ll_A;

HorthValoclty :■ Nominal North Valoclty * Coa W A +
Nomlnal_Eaat_Valoolty * Sin_W_A;

and Conputa_Earth _Ralatlva_Borliontal_Valocltlaa;

Figure 55. Commonality Captured in the Generic Part Body

')4

b. lisin|> Parts lo Construct an Application

The difficulty of the generic method stems from the large number of data types required by a

part and the resulting large number of operators on objects of those types. In the example introduced

above, the Ihiee data types lead to only three required operators. In addition, part use is further simplified

by the defaulting mechanism of Ada generic units. Because the three operators exist for a limited range

of data types, the CAMP parts structure can provide default versions for each operator. Now, when the

user supplies actual types for his instantiation, the operators can default through the tunneling mechanism

depicted in Figure 50. The user may, however, wish to override the system's tunneling of parameters by

supplying his own operators. CAMP parts also support overriding defaults by providing a selection of

such common operators as trigonometric functions. Figure 56 depicts the mechanism of overriding

defaults. Here, the user chooses his own cosine function from the CAMP Polynomials package to over-

ride the default from Standard_l rig. The user could also write his own cosine function to override the

default. The Ada mechanism to accomplish the default overriding is explained in Section II.

BASC DATA TYPES

COMPirTE EARTHRELATIVE
HORIZONTAL VELOCTTIES

Fe»l_p«r_Second f\

Radians /

TRIG

POLYNOMIALS

HASTINGS

Figure 56. Mechanism for Overriding Defaults

Where the mix of data types and operators grows beyond a manageable level, the need to

provide additional assistance to the part user also grows. The generic formal part of the CAMP

Lateral/Directional Autopilot (Figure 57), for example, includes:

• twelve formal data types

• ten formal data objects

95

generic

■- —types for Aileron L«>p

typt Roll_C'ommands Is dlglls <>:
typt RolLAniludes is digits <>:
typt RolLCommand_Gains Is dlglls <>;

— --types for RiiJder Loop

typt Rud(l«r_Cmd_Roll_Rale_Gain.s b dlglls <>:
typt Misstle_Acceleralioiis b dlglls <>;
type Acreleralion_Oams is dlglls <>:
type Oravilalionat_Accekralions Is digits <>;

type Velocities Is dlglls <.>:
type Trig_Valuc Is digits <>:

— -types for hnlh loops
type Feedbacl(_Ra(e_GainR Is digits <>:
typeFin.Deflectiom Is dlglls <>:
type Feedback_Ratcs Is digits <>:

— —Initial values for aileron ronlrol loop

lnitial_Aileron_lnlegralor_Oain
In Roll_Coinmaiid_Oains:

Initial_Aileron_lnlegraior_Limil

In Fin_DefleciionH:
Initial_Roll_Con>niaiid_Proporlioiial_Oain :

In Roll_Command_(Jaim;
liiilial_Roll_Ralc_Oain_For_Aileron

In Feedback_Rale_Oaiiis:

Initlal_Yaw_Rate_Oain_For_Aileron
In Feedback_Rale_Oains;

-- --Initial values for rudder control loop

Iniliat_Rudder_Inlegnlor_Qain
In Acceleralion_Oams:

lnitial_Rudder_lnlegrator_Liniii
In Fiii_Defleclions;

lnilial_Yaw_Rate_Oain_For_Rudder
In Feedhack_Rate_aains;

Initial_Roll_Rale_Ciain_For_Rudder
In Rudder_Cnid_Roll_Rale_Oaim:

Initial_Acceleralioii_Proporlional_Oain
In Acceleration (iains;

-- —Aileron control loop limiters anti filter

with hinctlnn Roll_Error_Umil
(RoM_C'omiTiand : Roll_Conimands)
return Roll_Coinniands Is <>:

with function Aileron_C'onimand_Limil

(Fin_Dencttion : Fin_Denections)
return Fin_Def1eclions Is <>:

with function Roll_Coipniand_Filler
(Roll_Coinmaiid • i<oll_Commands)
return Roll Conm nnds Is <>:

with function Acceleratlon_Filter
(Laleral_Acce1eration: Missile.Acceleratiom)

return Missik_Accelerations Is <>;

with function Sin (Angle: Roll Altitudes)

return Trig_Value Is <>;

- --Aileron control loop gain and updater functions

with function "-" (Left ; Roll_Commanda:
Right ; Roll_Attitudes)

return RoMCommands Is <>:

with function "*" (Left : Roll_Commandi:

Right : Roll_Command_Oains)
return Fin_Deflections Is <>:

with function "*" (Left : Feedback_R«e»:
Right : Feedback_Rate_Oainft)

return Fin_Deflections Is <>:

•- -Rudder control loop gain and updater fimtions

with function "*" (Left : Missile.Acceleraliom;
Right : Acceleralion_Gain«)

return Fin_Defleciionii Is <>:

with function "*" (Left : Feedback_Rates;
Right : Rüdder_CnKlJ<ull_R»le_Oains)

return Fecdback_Raica b <>;

with function "•" (Left : OravilalionalAcceleralion»;
Right :Trig_Value)

return Oravitalional_Acccleralions b <>:

with function "/" (Ijeft : Oravitalional_Ai'eleration»;
Right : Velocities)

return Feedback_Ralea h <>:

package Laleral..Directional_Autopilot b

type Aileron_Rudder_Commands b record
Aileron_Command ; Fin_Defleclion»:
Rudder_C'ominand : Fin_Defleclions:

end record:

procedure Iniiialize_I,ateral_Direciional_Autopilot

(Initial_Aileron_Cominand
Initial_Rudder_Cominaid

Gravilational_Acceleralion
Roll_Command
Roll_Attitude
Roll_Rate

Yaw_Ralc
Missile_VeliKity
Lateral Acceleration

: In Fin_Deneclion«;
: In Fin.Defleclions:
: In Oraviution«l_AcceleralioiM:

: In Roll_Coinmands;
: In Roll_Atiiludes:

: In Fcedback_Rales;

: In Feedback_Rale«;
: In Velocities;
: In Missile_Acceleratioi»):

fiinc'lonCompulc_Aileron_Rudder_Coinmands

—Rudder control loop limiters. fillers, and Irigfimction

with function Rudder_("omniaiid_Liinil
(Fin_Dcnection : Fin_Denections)
return Fin_Deflections h <>:

with function Yaw_Raie JMIICI

(Yaw_R»le: l:ecdbacl(_Ralcs)

return Feedback Rales b <>;

(Roll_Comm«nd

RolLAllitude
Roll_Rate
Yaw_Rale
Laleral_Acceleralion

Missile_Velocity
Gravitational Acceleration

In RollCommand«:
In Roll_Altitudcs:
in Feedback_Rates:

In Feedback_Ralea;
In Missile Accelerations:

In Velocities:
In OravilationaLAcceleralions)

return Aileron_Rudder_Coniniands:

end Lateral_Directional_Autopilot:

Figure 57. Autopilot Part Generic Specification

96

• seven language-independent operations

• seven language-defined operations

The CAMP design structure eases the burden of the part user by supplying packages of standard

data types which may serve as actual types for the generic forma! types, packages of standard operators to

supply actual subprograms for the generic formal subprogram operations, and a mix of operators over-

loading the language-defined operations. The user's task is now reduced to selecting the proper combina-

tion of data types and operators from the parts baue. He may create his own, if the CAMP parts base is

deficient in some area, but an attempt has been made to cover a high degree of variability. Furthermore,

the parts base is easily extended to allow for new standard types and operators. Figure 58 shows the

range of selections open to the CAMP parts user.

OBJECTS

LATERAL

DIMCTIOMAL

ADTOPILOT

FART

OBJECTS

Figure 58. Selections from CAMP Parts for Instantiation

07

4. SEIVH-ABSTRACT DATA TYPE

The combination of high-level parts with lower level support packages providing actual types and

operators leads to the creation of a complete environment for use of a part. The CAMP program has

established that it is essential to provide support for a complete environment to incorporate reusable
software into a design. Others have noted the importance of the environment because "ll]he very concept

of reusability must be defined ... in terms of the dependence of the component on enclosing or higher

level environments" (Reference 13. p 550). The CAM method uses the \txm part bundle to describe the

environment that consists of a combination of packages required to support a part plus the context clause

the user must specify to obtain the environment.

The part bundle allows the user access to a predefined packaging structure. Availability of this

structure eases part use by providing the user the environment he needs to use a part. Figure 59 shows the

complete bundle required to support the Autopilot package part. In order to use this package, the user

must first import the Autopilot part itself. In addition, he needs data types supplied by the Basic_ and

Autopilot_Data_Types parts, and signal processing and trigonometric operations supplied by the Signal_
Processing and Polynomial parts, respectively. The user is unaware of bundles which exist to support the

lower level packages; for example. SignaLProcessing bundles GeneraLPurpose_Math, and Baslc_Data_

Types bundles Standard_Trig, Conveision_Factors, and Universal_Constants.

S UNIVERSAL
CONSTANTS

£ CONVERSION
FACTORS

Figure 59. Autopilot Bundle Structure

While the bundle gives the user an environment for use of a part, the user must still extract entities

provided by the bundle for tailoring the part to his application. In addition, the user may modify the

98

bundle, overriding aspects of the bundle by supplying other CAMP parts from CAMP packages or his

own parts. This open architecture — the ability of the user to supply his own data types and operators —

is one of the key design features of CAMP parts use.

The term semi-ahstract data type is used to formally describe this open architecture of the CAMP

generic method. As opposed to the abstract data type which defines an abstract data structure and opera-

tions on that structure for its use, the semi-abstract data type is very much under user control.

The use of the Autopilot bundle illustrates the capabilities of the semi-abstract data type. Were the

Autopilot part defined as an abstract data type, all data structures and operations would be encapsulated

and hidden within the part, with the user tailoring the part through the generic formal parameters. As

previously described under the abstract data type method, the user could not gain access to any of the

part's facilities, data structures or operations, without going through the part. In contrast, the semi-

abstract data type allows the user access to a bundle, which also provides access to all the part's facilities.

In addition, the bundle allows access, on an individual basis, to data types from the types packages and to

functional parts from the Signal_Processing or Polynomial packages. The user is free to use these lower

level parts independently of the Autopilot part, or even use them to build his own autopilot, keeping the

bundle but not using any of the CAMP Autopilot parts. Alternatively, he may use only a subset of the

part's facilities, supplying other required facilities with his own packages. These methods of use address

the reuse techniques identified by Standish (Reference 14, p 496):

• Direct reuse of concrete modules (= high level reuse]

• Reuse after refinement |= lower level reuse]

• Reuse after modification |= independent reuse]

Actual use of CAMP parts has proven the effectiveness of the semi-abstract method. Most of the

parts are themselves constructed from other parts; this is illustrated by the background bundling of

Signal_Processing or Basic_Data_Types in the Autopilot bundle. Also, applications using CAMP parts

have, in some cases, found that the higher level part is not complete for some special operations. In these

situations, the CAMP users access the bundle, taking as much from the high level part as possible and

building the rest from lower level entities in the bundle. The CAMP Kaiman filter bundle, for example,

contains a General_Veclor_Matrix_Algebra part (see Figure 60.) This part is used extensively in the

instantiation of CAMP Kaiman filter parts. A user of the CAMP parts, needing additional functions not

built into them, can build the required functions out of the General_Vector_Matrix_Algebra parts or

develop his own operators to perform the same functions. Such was the case in the 11th Missile Applica-

tion, where special-purpose matrix operations were required to meet performance constraints (see Volume

II, Section III). By building these special operations with interfaces conforming to the CAMP GeneraL

Vector_Matm._Algebra parts, the 1 llh Missile development team was able to use the high-level Kaiman

filter parts without modification.

99

(generaled
via schematic
conalruclor)

KAIAWN .FLTERSUBSYSTB^

PnOPOQATE_PHI_ANO_Q

KAIMAN UPDATE

Figure 60. Kaiman Filter Bundle Structure

5. SUMMARY

Use of CAMP parts in additional applications will demonstrate the complete potential of the CAMP

method. Applying this method to parts in other domains will also show the power of the CAMP approach

to an integrated parts base. The ease with which parts can be fit into an application has already shown the

method to be extremely effective and a significant boost to productivity (see Volume II). Parts have been

easy to maintain, and the CAMP parts base has been extended as applications discover the need for

additional parts. The CAMP team has applied the reusable parts method for the development of parts to

meet current needs and will continue to apply this method as the parts base matures.

100

SECTION VII

ADA COMPILER VALIDATION AND SOFTWARE REUSABILITY

1. INTRODUCTION

An important part of the CAMP project was the development of a part design methodology by which

Ada parts can simultaneously be reusable, transportable, flexible, efficient, easy to use, and protected

against misuse. These seemingly conflicting design goals are achieved by exploiting many of the ad-

vanced features of Ada, such as derived types and subprograms, generic units with default formal

parameters, and subprogram overloading. Section VI discussed these features as they apply to design of

the CAMP parts. This section discusses the impact of these features on parts implementation and com-

piler selection.

2. DISCUSSION

To achieve these design goals, the CAMP design method included the use of generic units, strong

data typing, and generic object and subprogram parameter defaults.

• Generic units: The primary facility Ada provides which promotes reusability is the generic unit.

Although some people in the Ada community have expressed a "fear" of this feature, MDAC-STL

has embraced it wholeheartedly. Without generic units, reusability in Ada would not be achievable

at a meaningful level. However, there is a risk associated with using generic units — Ada com-

pilers must be able to implement them efficiently and correctly.

• Strong data typing: Among the most important capabilities in Ada is the ability to strongly type

data. However, strong data typing has two characteristics which unnecessarily cause many people

(including some part developers) lo avoid it:

- The use of strong data typing makes the design of generic packages and subprograms more

complex.

- The interaction of Ada typing rules with other Ada features such as generic units is non-

trivial to master.

For these reasons, some software developers have developed Ada parts in a typeless fashion. We

believe this is a mistake. Parts which are typeless are very prone lo misuse. It is only reasonable

that if the parts being developed are intended for long-term use, then it should be worth the effort to

build them in the most protected fashion.

• Generic object .and subprogram paramelei defaults: As previously mentioned, the use of strong

data typing causes generic units (o be more complex. Specifically, the generic packages and sub-

programs must now import many operations and functions which would otherwise be visible to

them implicitly through the scoping rules of Ada. If this drawback could not be overcome, it would

101

be a good argumenl against strong data typing. However, Ada provides a feature — the specifica-

tion of defaults for generic object and subprogram parameters — which negates the drawback while

still retaining the advantages. This feature, the generic unit, and its use for part design is further

discussed in Section VI.3.a.

a. A Sample System

The complexity of reusable generic parts can range from extreme simplicity (see Figure 61) to

considerable complexity (see Figures 62 and 63), with most falling somewhere in between (see Figure

64).

with CALKMDAR;
ganarlc
paokag« Clock_Handl«r la

function Currant_Ilm raturn STJWDARO.DDIt&IIOH;

function ConvartadTlma (ClockJTlma : In CXUMMR.TIMB)
ratum STAHDARD.DOTATION,

procadura Raaat_Clook;

procadura Synahronlia_Clock
(NawTlma : In STANDARD.DOTATION;
ClockJTlma : In CALENDAR. TIME :• CALENDAR.CLOCK);

function Elapaad_Tlna raturn STANDARD.DURATION;

and Clock Bandlar;

Figure 61. Generic Units Can Be Very Simple

While most generic units have minimal complexity in and of themselves, their use in the

development of a system can become quite involved. This is because even though an individual generic

unit may be relatively independent of othei generic units, it has probably been designed to be used in

conjunction with other generic units.

Figure 65 illustrates the parts that may be required in the design of a simti portion of a naviga-

tion system. In order to instantiate three north-pointing navigation parts (Coriolis_Acceleration,

Radius_oLCurvature, and Latitude_Integration) using strong data typing where all floating point types

are separate Ada data types, the following must occur:

I. Ten packages must be compiled into the user's library. The user himself requires six of these

(indicated by the arrows going into the user application). These six require an additional four.

102

ganarlc
typ* Laft_Indlc«a la (<>) ;
typ* Right_Indlaaa 1* (<>) ;
typ« Raault_Indlcaa la (<>) ;
typ* L*ft_Elam*nta la privat«;
typ* Rlght_Kl*m*nta la privat*;
typ* R*ault_El*iMnta la privat*;
typ* L*ft_V*atora la privat*;
typ* Rlght_V*ctorB la privat*;
typ* R*ault_V*atora la privat*
XI
Tl
Zl
X2
Y2
Z2
X3
Y3
Z3

In L*ft_Indlo*a
In L*ft_Indlc*a
In L*ft_Indlcaa
In Rlght_Indio««
In Rlght_Indlc««
In Rlght_Indlc«a
In R*ault_Indlo*a
In R*ault_Indlc*a
In Raault Indlaaa

with function

:- L*ft_Indlo*a'FIRST;
:> L*ft_Indlo*a' SOCC(L*f tlndloa»'riMT) ;
:- L*ft_Indlo*a'LAST;
:- Rlght_Indic*a' FIRST;
: - Rlght_Indlo*a' SOCC (Rlghtlndloaa' FIRST) ;
:■ Rlght_Indlc*a'LAST,
:- R*ault_Indlc*a'FIRST;
:- Raault Indlcaa' SncC(R*ault_Indla*a'FIRST) ;
:- R*ault~Indla*a'L*ST;
: R*ault_El*iB«nta,

inta) ratum Raault Blaawnta la <>;
with function

with function "-"
with function "*"

RaaultKl«
R*ault_El*m*nta ;
R*ault_Elaannta) raturn Raault_Elaat*nta la O;
RaaultElamanta) raturn Raault_Ela«*nta la <>;
L*ft_BlMMnta;
Rlght_ElaB>anta) raturn Raault_Ela anta la <>;

anta la <>;

(Laft
Right
(Laft
Right
(Right
(Laft
Right

with function R«trl«v*d_El*mant
(Vaotor : Laft_V*oto.ra;
Indax : Laft_Indlcaa) raturn Laft_Bl

with function R*trlavad_Elaa*nt
(Vaotor : Rlght_Vaotora;
Indax : Rlght_Indlcaa) raturn Rlght_Blaaianta la <>

with procadura Sat_Blam*nt
(Indax : In R*ault_Indlcaa;
Valua : In Raault_El*m*nta;
Vactor : out Raault_V*ctora) la <>;

function S«narlc_Croaa_Product (Laft : Laft_V*otora;
Right : Rlght_V*otora)
raturn Raault Vactora;

Figure 62. Some Generic Units Can Be Very Complex

2. The user must do the following before instantiating the navigation parts:

• Instantiate four versions of the square root package (GPMath.Square_Root) using data types

and operators supplied by the basic data types (BDT) package.

• Instantiate four versions of the vector operations package (CVMA.Vector_Opns) using data

types and operators supplied by BDT and the square root functions contained in the

packages previously instantiated by the user.

• Instantiate a cross product function using scalar data types and operations supplied by BDT,

along with vector data types and operations obtained from three separate instantiations of

CVMA.Vcctor_Opns.

3. The three navigation parts can then be instantiated using:

• Scalar data types and operators supplied by BDT.

103

packag* Dlr*atlon_Cosln«_Matrlx_Op*r«tlona la

ganarlc
typ* Earth_Ax*a la (<>) ;
typ* Havlgatlonjlxaa la (<>);
typ* Sln_Coa_R»tlo la digit« <>;
typ* R*al la digit« <>;
with function Sqrt (Valu* ; Sln_Co«_IUtlo) raturn 31n_Co»_R«tlo la <>;
with function "*" (L*ft : Sln_Coa_IUtlo,

Right I Sln_Coa_Ratlo) ratum Raal la <>;
with function "*" (L*ft : Sln_Coa_Ratlo;

Right : Raal) r*tum Sln_Coa_R*tlo la <>;
Sr**nw : In Earth_Ax*a ;- EarthAxa« ' FIRST,
Right : In Earth_Ax*a :• Barth_Xx*a ' 9DCC(Earth_Ax*a'FIRST),
Polar : In EarthAxaa !■ Earth_Ax*a 'LAST;
Eaat : In Mavlgatlon_Ax*a :■ Mavlgatlon_Jtx*a 'FIRST;
North : In HavlgatlonXxa» :> Navlgatlonjtxaa ' SOCCdlavlgatlonJbcaa'FIRST);
Op : In Mavlgatlon_Axaa :■ Navlgatlon_Xx*a 'LAST;

packag* Cinc_Oparatlona la

typ* CHE_Matrlc*a la array (Earth_Ax*a, Mavlgatlon_Ax*a) of 81n_Co»_Ratlo;

function CNE_Inltlalls*d_From_R*f*ranc* (R*f_CIIE_2_l : 81n_Coa_Ratlo;
R*f_a«l_2_2 : Sln_Coa_IUtlo;
R*f_CllE_3_l : Sln_Coa_Ratlo;
R*f_Cm_3_2 : »ln~Coa_R«tlo;
3ign_of_2_3 ; IMTKUIK;
Slgn_of_3_3 : IHTEOER)
ratum CHE_M*trloaa;

g*n*rlo
typ* Earth_Poaltlona la dlglta <>;
typ* Angl*a la dlglta <>;
with procadur* Sln_Coa (Input : In Anglaa;

Sln_Valua : out 31n_Coa_R*tlo;
Coa_Valua ; out 91n_Coa_Ratlo) la <>;

with procadur* Sin Coa (Input : in Earth_Poaltlona;
Sln_yalua : out Sln_Coe_R«tlo;
Coa_Valua : out Sln_CoB_Ratlo) la <>;

function CNC_Inltlalliad_from_Earth_R*f*r*nc*
(irandar_Angla : Anglaa ;
Latltud* : Earth_Poaltlona;
Longltuda : Earth_Poaltlona) ratum CNE_Matrloaa;

and CNE_Oparatlona;

and Dlr*ctlon_Coaln*_Matrlx Oparatlona;

Figure 63. Nested Generic Units Can Be Very Complex

• Scalar data types and trigonometric functions supplied by an instantiation of the standard

trig package contained in BDT (BDT.Trig).

• Vector types and operations supplied by the four instantiations of CVMA.Vector_Opns.

• Data constants supplied by the WGS72 ellipsoid metric data package (WGS72) and the

WGS72 ellipsoid unitless data package (WGS72U).

• User-defined data types and objects.

1(14

1 ganailc

1 '»* Onlt_Vactor« 1* prlvata;
typ« 31n_Co«_R«tlo la digit« <>;
with funotlon "/" (Laft : Onlt Vactor«;

Right ; Sin Co« Ratio) ratum Onlt Vactor« 1« <>;
with function Cro«« Product (Laft : Onlt Vactor«;

Right : Onlt_Vactor«)
raturn Onlt Vactor« 1« <>;

1 with funotlon Vactor_Langth (Input : Onlt_Vaotor«)
raturn Sin Co« Ratio 1« <>;

function Unit Normal Vactor
(Onlt Radial A : Onlt Vactor«;
Onlt_Radlal_B t Onlt_Vactor«) ratum Dnlt_Vaator«;

Figure 64. Most Generic Units Have Minimal Complexity

NPNav USER APPLICATION PROGRAM

pkg VelSqRt Is new GPMath.SquarePoot...
pkg AngVelSqRt Is new GPMath.SquareRoot...
pkg AccelSqRt Is new GPMath.SquareRoot...
pkg DIslSqRf Is new GpMath.Square Root...

pkg VelVOpns Is new CVMA.Vectof_Opns ...
pkg AngVelVopns Is new CVMA.Veclor_Opn8 ...
pkg AccelVOpns Is new CVMA.Veetor_Opns ...
pkg DlstVOpns Is new CVMA.Vector_Opns ...
fn GrossProd_AW_VV Is new CVMA CrossJ'roduct...

fn CorAccel Is new NPNav.Compute_Corloll8_Acceleratlon
pkg RadOfCurv Is new NPNav. Radlusot Curvature ...
pkg Latlnt Is new NPNav.Latltudeintegratlon ...

Figure 65. Assembling a North-Pointing Navigation System

105

b. CAMP Experience With Ada Compilers

The development and use of truly good, flexible, reusable software will succeed only if generic

units are fully supported by Ada compilers. Yet. during the CAMP project, we observed that validated

Ada compilers frequently cannot handle any but the simplest generic units.

During the CAMP project, there were many opportunities to see how compilers handled generic

units. Three compilers were used on the CAMP project (two validated and one prevalidated, of which

two were 1750A-targeted), and versions of the CAMP parts were submitted to three additional validated

compilers. Of these six Ada compilers, only one validated compiler was able to handle the parts sub-

mitted to it, and even that one was able to do so only after a year and a half of the CAMP team working

with the vendor.

While various problems were encountered, they all had one thing in common — they involved

the use of generic units. Some of these problems are enumerated below.

• Difficulties in handling a multitude of instantiations. Using the code represented in Figure 65 as an

example, one compiler was able to compile all of the CAMP parts required to develop the user

application. However, when an attempt was made to compile the user code, the compiler crashed.

(It should be noted that the user code was legal Ada and did compile on another validated

compiler.)

• Difficulties in declaring derived real types when the base type was a generic formal type, par-

ticularly if a range constraint was added (see Figure 66). Attempting to do this sent one compiler

into an infinite loop. Another compiler allowed the derived type to be declared, but encountered an

internal error when an attempt was made to restrict the range of the newly declared derived type.

• Incorrect passing of the value of a generic actual object to a generic actual subprogram — the

compiler sent a value of 0.0 regardless of the actual value of the object. The generic actual object

was a named number defined in a package which had to be imported by the user application. This

error occurred only when strong data typing was employed (i.e., a different generic actual type was

specified for each of the generic formal data types), not occurring when FLOAT was used for all

actual types. Additionally, even when strong data typing was employed, this error did not occur if

an explicit type conversion was performed on the object at the time it was used in the instantiation

and also did not occur if a literal was used instead of the named number.

• Inability to resolve overloading of operators when a generic formal subprogram ("+" in this case)

matched an operator already defined by the language (sec Figure 67).

• Inability to identify generic actual subprograms to be used as defaults even though they were

directly visible. Two variations of this problem occurred and are illustrated in Figure 68. In the

first, the correct subprogram was directly visible as the result of 'with' and 'use' clauses on the

subprogram's package. In the second case, the correct subprogram was directly visible since it was

a generic actual subprogram to the part where problems were encountered.

I(K)

• An inability to handle separate compilation of generic units, even though compiler documentation

indicated this optional feature was implemented.

This code sent one compiler into an infinite loop:
ganarlc

typ« Anglaa la digit* <>;
typ« Ratio« la digit* <>;
Pi : in Anglaa;

pack«g« StdTrig ia
typ« Radiana ia n«w Angl««, *

•nd StdTrig;

* - Iliii Malcnicnl caused the problem

This code caused another compiler to encounter an internal error:
g«n«rlc

typ« Anglaa la digit« <>;
typ« Ratio« ia digit« <>;
Pi : in Anglaa;

paokag« StdTrig ia
typ« Radian« ia n«w Angl««;
typ« Sin_Co«_R«tlo 1« n«w Ratio« rang« -1.0..1.0; #

•nd StdTrig;

- This stalemenl caused the problem

Figure 66. Some Compilers Couldn't Handle Type Derivations

107

Specification:

ganaric
typ« M_Indio«»
^VP* N_Indlc*a
typa P_Indla*a
typa Laft_Elamanca
typa Rlght_Elamantn
typa R*ault_Clan«nta
typa Laft_Matricaa
typa IU.9ht_Matrlca«

i» «»;
i» «»;
la «»;
ia dlglta <>;
la dlglta <>;
la dlglta <>;
la array (M_Indlcaa, N_Indlcaa)
la array (H_Indlcaa, P_Indlaaa)

typa RaaultJMatricaa la array (M_Indlea(, P_Indleaa)
with funotlon "*" (Laft : Laft_ilanant(;

Right : Rlght_Elaaiant») raturn R*ault_El«
with funotlon "4" (Laft : RaaultElamant»; ~

Right : Raault_Claa>anta) raturn Raault_ElaiBanti
function Matrlx_M<itrix_Multlply

(Laft : Laft_MBtrloaa;
Rlght : Right Matrleaa) raturn Raault Matrlcaa;

of LaftKlan*
of Rlght_Elai
of RaaultEl.

anta

inta ;

wnta;
awnta;

la <>;

la <>;

Body:

function MatrlxMatrixMultiply
(Laft : Laft_Matrlcaa;
Right : Rlght_Matrlcaa) raturn Raault_Matrlaaa 1*

Anawar ; RaaultJMatricaa;
bagin

for M in M_Indicaa loop
for P In P_Indlcaa loop

Anawar(M,P) :- 0,0;
for H in H_Indioaa loop

Anawar(M.P) :- Anawar(M,P) + #
Laft(M,N) • Right (N,P);

and loop;
and loop;

and loop;
raturn Anawar;

and MatrixMatrlxMultiply,

- Compiler was unable to resolve this overloading

NOTE' Conlrained arrays were used in the design of this pan in order lo improve the efficiency of the pari. While it wa»
recognized thai unconstrained arrays would have made the par! more flexible and hence more reusable, the need for
efficiency for real-time embedded applications was considered of greater importance.

Figure 67. Overloaded Operator Caused Problems for Compiler

108

When attempting to instantiate the following generic:

gansrlo
typa Anqlaa la digit« <>;
typ« Input* la digita <>;
typ« Outputa la dlglta <>;
typ« Sln_Coa_IUtlo la dlglta <>;
with function Sin (Input : Anglaa) return Sln_Coa_Ratlo la <>;

function Exanpl« (Input : Inputa) raturn Outputa;

One compiler couldn't resolve the default even though the appropriate subprogram was directly
visible through 'with' and 'use' clauses:

g«n«rla
typ« Anglaa la dlglta <>;
typ« Ratloa la dlglta <>;

packag« StdTrlg la
typ« Radians la n«w Anglaa;
typ« Sln_Coa_Itatlo la now Ratloa rang« -1.0.. 1.0;
function Sin (Input : Radian«) raturn 81n_Coa_Ratlo;

and StdTrlg;

with StdTrlg;
packag« BDT la

typ« R«al la dlglta 9;
packag« Trig la naw StdTrlg (Anglaa «> Raal,

Ratloa ■> Raal);
«nd BDT;

with BDT; ua« BDT;
with Bxanpl«;
procadura Oaar_Appllaatlon la

uaa BDT.Trig;

function Att«npt«d_Inatantlatlon la naw Exanpla
(Anglaa -> BDT.Trig.Radian»,
Inputa -> BDI.Raal,
Outputa -> BDT.Raal,
Sln_Coa_Ratlo -> BDT.Trig.Sln_Co»_R«tlo) ;

bagln

and Oaar Application;

prohlem encountered
wtthlhls
Imlanllallon

Another compiler couldn't resolve tlie default even (hough it was visible as a generic formal
subprogram:

ganarlc
typa Anglaa la dlglta <>;
typ« Inputa la dlglta <>;
typ« Outputa la dlglta <>;
typ« Sln_Coa_Ratlo la dlglta <>;
with function Sin (Input : Anglaa) raturn Sln_Coa_R«tlo la <>;

packag« Sampl« la

and Sanpl«;

with Exampla;
packaga body Sampl« la

function Attanq>tad_InatantlBtlon la naw Exampla
(Anglaa «> Anglaa,
Inputa -> Inputa,
Outputa => Outputa,
Sin Coa Ratio -> Sin Coa Ratio) ;

problem encountered
with this
instantiation

and Sanpl«;

Figure 68. Compilers Had Problems Finding Default Subprograms

KW

c. Compiler Validation

The Ada Compiler Validation Capability (ACVC) test suite is designed to ensure a certain level

of quality and confidence in Ada compilers, and to a large extent has succeeded. The CAMP experience,

however, indicates that notable inadequacies exist in (he area of generic units. These inadequacies could

have a significant negative impact on the future development and use of reusable software.

The use of generic units is vital to the development of good reusable parts, yet we have found

that it is one area where even validated compilers often are lacking. Based on the CAMP experience,

most validated Ada compilers seem to be able to handle simple generic units, many are unable to handle

complex generic constructs, and most are unable to handle the complex mix of generic units thai is

required lo assemble a software system from a collection of reusable generic parts.

The tests in |i ""VC test suite seem to be geared to test or demonstrate only a single objec-

tive. While this has ensured that validated compilers can generally handle simple generic units, it is

probably why an Ada compiler can be validated though unable lo handle complex generic units, and is

certainly why a complex mix of generic units is beyond the ability of most validated Ada compilers.

While this approach may have been appropriate in the beginning when there was a derire to gel an initial

set of validated compilers, we feel the time has come lo modify this approach.

no

SFXTION VIII

CONCLUSIONS AND RFXOMMENDATIONS

Given the palhfimling nature of CAMP-2, it is not surprising that many lessons were learned con-
cerning the use of Ada to develop reusable software for real-time, embedded (RTE) applications. One of
the primary benefits of the CAMP-2 project has been in sharing these "lessons learned" with the DoD
software engineering community. This section discusses the major conclusions reached during the
CAMP-2 project and presents recommendations based on these conclusions.

I. ON THE APPROPRIATENESS OF ADA FOR REUSABLE SOFTWARE

A primary design goal of the Ada programming language was to promote reuse of software. The
designers of Ada addressed this goal in two ways. First. Ada was designed to facilitate transporting
applications between different computer architectures. Second, Ada was designed to facilitate the
development of code units which could be transported between different applications.

Conclusion #1
With a few minor exceptions. Ada achieves its reusability design goal.

Conclusion #1 is substantiated by two facts. First, many Ada applications have been transported
between different computer architectures at a small fraction of the cost traditionally associated with
rehosting non-Ada applications. Second, Ada parts are rapidly becoming available from a variety of
sources (including CAMP) and these parts are being reused. The CAMP parts have been distributed to
over 120 DoD agencies and contractors who are exploring their utility in a wide spectrum of applications
(e.g., avionics, ballistic missiles, space station control, etc.). McDonnell Douglas is in the process of
using the CAMP parts on a number of applications.

There are several primary factors which have led to Ada's success in the area of reusability.

• The DoD has rigidly adhered to a standard language definition

• Ada's package feature provides the user with the means to encapsulate machine and application

dependencies

• Ada's generic unit feature provides the ability to broaden the domain applicability of reusable

components

• Ada allows the underlying machine architecture to be hidden

However, there are some aspects of Ada which need to be improved from the perspective of
reusability. Section V describes the rationale for these recommendations in more detail.

Recommendation #1
The definition of Ada should he changed to allow address objects to be
passed as generic parameters.

Ill

Recommendation #1 will promote reuse of machine control and communication software. For ex-

ample, during the CAMP-2 11th Missile Demonstration, a Bus Interface Module component was

developed which could be reused between the Guidance computer TLCSC and the Navigation computer

TLCSC. The only difference was the actual physical address of the bus discretes. Since address objects

cannot be generic parameters, manual changes had to be made to the component in order reuse it.

Recommendation #2
The definition of Ada should he changed to allow representation clauses
to he defined within a package body.

Recommendation #2 will uncouple the physical and logical definitions of Ada entities and hence

promote reuse. The current requirement to define a representation clause within the same declarative

scope as the entity declaration, means that if a different application wants to reuse a component with the

same logical representation but a different physical representation, it must manually change the com-

ponent.

Recommendation #3
The definition of Ada should he changed to allow a single, unmodified
Ada specification to be used with multiple bodies within a single
application.

Recommendation #3 will increase the degree to which Ada specifications can be reused without

manual modifications. For example, currently, to use two different bodies to implement a single abstract

data structure within an application, the specification must be copied and manual name changes must be

made to it.

Recommendation #4
The definition of Ada should he changed to require a compiler to support
separate compilation of generic units and subunits.

Recommendation #4 will decrease compilation overhead when software components are ieused.

This change will have a significant beneficial impact on reuse since there are real advantages to separate

compilation in the areas of configuration management, project management, and compilation time.

Recommendation #5
The definition of Ada should he changed to allow procedural data types.

Recommendation #5 will promote reuse within applications that require dynamic reconfiguration

and within Artificial Intelligence applications.

112

2. ON THE APPROPRIATENESS OF ADA FOR REAL-TIME EMBEDDED REUSABLE
SOFTWARE

Another Ada design goal was (hat it be suitable for use in RTE applications. This implies that Ada

must not only provide efficient higher-order language (HOL) features, but must also allsw the program-

mer, when needed, lo have direct control over the representation of Ada entities, access the computer

hardware directly, trade-off space and execution time, closely control and be able lo characterize the

dynamic behavior of a program, and in general, to perform operations which a non-RTE programmer

might consider "unsafe".

The appropriateness of Ada for RTE applications depends on four factors. These factors are dis-

cussed in the following subsections.

• Is Ada an effective language for RTE applications?

• Are there any features in Ada which must be used in RTE applications but are inherently in-

efficient?

• Are Ada compilers sufficiently effective for RTE applications?

• Is the code produced by Ada compilers sufficiently efficient for RTE applications?

Obviously, when one addresses either of the last two issues, it must be done based on experience

with a particular set of compilers during a specific period of time. Thus, the conclusions reached on the

CAMP-2 project concerning Ada compilers are dependent upon the specific compilers used and the time

period in which they were used.

a. On the Effectiveness of Ada

A determination of the effectiveness of the Ada language for RTE applications is essentially a

determination as to whether all the functional requirements of RTE applications can be achieved within

the language. In other words, if there are operations that an RTE application typically needs to perform,

and cannot do so using the language, then Ada would be judged ineffective to some degree.

in

Conclusion #2
Ada is an effective language for real-time embedded applications.

Conclusion #2 is based on the CAMP-2 I Ith Missile Application experience. The 1 llh Missile

Application was constructed using only 21 assembly language statements; this equates to 0.1% of the

total software (see Volume II for more details). With the exception of two small functions, all the

functional requirements of the I Ith Missile Application were achieved using Ada. In fact, the 21 as-

sembly language statements could have been coded using Ada's machine code insertion feature. In the

case of the 1 Ith Missile Application, the functions which required the use of assembly language had to do

with operating system idiosyncracies. But. every RTE system tends to have its own idiosyncracies. The

reassuring fact is that Ada can handle all these situations, assuming that machine code insertion is sup-

ported. In existing RTE applications that use HOLs, the percentage of assembly language used for

functional reasons2 is usually much higher than that experienced on CAMP.

A common myth concerning Ada, which needs to be dispelled, is that Ada stops a programmer

from doing certain operations which are considered to be "unsafe" but which RTE programmers need to

do. If this myth were true, it would indeed be a major problem with Ada. The reality is that the software

engineering discipline has recognized that certain programming paradigms are dangerous (i.e., their use

frequently leads to errors) and in most cases these paradigms can be avoided. In some languages, like

Pascal, a dogmatic approach has been adopted and these paradigms are outlawed completely. This is not

the case with Ada, Ada tries to balance the goal of promoting sound software engineering principles and

the reality that upon occasion a programmer needs to do something that is dangerous. Thus, Ada allows

the programmer to use "dangerous" paradigms, but doesn't make their use too easy — a suitable com-

promise in the authors' opinions. An example of an operation which is often considered dangerous but

which is essential in an RTE application is overlaying two data structures on the same data.

Conclusion #3
A full implementation of the Chapter 13 features of Ada is essential in
real-time, embedded applications.

Conclusion #3 highlights the fact that the effectiveness of Ada for RTE applications is highly

dependent upon the extensive use of Ada features which are defined in the Language Reference Manual

as optional. These features are popularly called the "Chapter 13 features" of Ada. Projects must be

sensitive to the fact that in RTE applications, the Chapter 13 features of Ada should not be considered

optional.

In addition lo using assembly language for funclional reasons, RTE applications frequently have to replace HOL code with
assembly code for performance reasons.

114

b. On I he Inherent Efficiency of Ada

There has been a great deal of debate within the DoD software engineering community concern-

ing the efficiency of the Ada language. Much of this debate has concentrated on the efficiency of Ada

features, such as tasking, exception handling, and generic units, which are not in our traditional RTE

languages.

Conclusion #4
There appears to he no Ada features which are inherently inefficient.

While it is true that the efficiency of the advanced Ada features as implemented by the current

generation of Ada compilers leaves something to be desired, a preliminary analysis indicates that there is

nothing within the definition of the Ada language which requires them to be inefficiently implemented.
The inefficiently results mainly from a lack of global optimization in most of the current Ada compilers.

Conclusion #5
There are Ada features which require a global optimizer to be suf-
ficiently efficient for severely constrained RTE applications.

For example, consider Ada generic units. When a generic is compiled, the compiler is unaware

of the values of the generic parameters and must, therefore, generate code which can handle any situation.

This results in code that will be relatively inefficient. However, if a compiler had a sufficiently powerful

global optimizer, it could use the information known at the point(s) of instantiation and optimize the code

for the generic unit.

In every situation where inefficiencies were encountered on CAMP, we were able to determine

that a sufficiently powerful optimizer could have corrected the situation. Unfortunately, few, if any, of

the current generation of Ada compilers implement optimizers which are sufficiently powerful for

severely constrained RTE applications. The next two subsections discuss Ada compiler issues in more
detail.

c. On the Effectiveness of Ada (Compilers

Given that the Ada language is effective for reusable RTE software, a determination of the

effectiveness of Ada compilers for the same type of software is based on two factors. First, the compiler

must properly handle all mandatory Ada features. The ability to properly handle Ada generic units is of

special importance given the crucial role that generic uuits play in reusability. Second, the compiler must

handle all Chapter 13 features in Ada. As previously discussed, in RTE applications these features are
essential.

Conclusion #6
Ado compilers do exist which are effective for real-time embedded
application.

Conclusion #6 is based on the fact that the CAMP 11th Missile Application, a true RTE system.

115

was implemenled using only 21 assembly language statements. This system was tested in a hardware-in-

the-loop simulation environment on a 1750A processor. The particular 1750A Ada compiler used for this

demonstration had an excellent implementation of the Chapter 13 features of Ada. This is not to imply

that these compilers handle all Ada language constructs efficiently. For example, even the 1750A Ada

compiler used for the 11th Missile demonstration had difficulties with complex generics and efficient

throughput for tasking.

Recommendation #6
The DoD needs to enhance its Ada Validation process.

Too many validated compilers have detectable errors. Recommendation #6 is based on the fact
thai many DoD project managers mistakenly believe that if the DoD says a compiler is validated, then it

must be OK to use. It is important to note that it was only in the final months of the CAMP-2 project that

we had a 1750A Ada compiler that met most of our RTE effectiveness requirements (the exception was in

the area of generic units). We spent a significant amount of time and effort testing compilers, reporting

problems, and working with the compiler developers to correct (he problems. During a large portion of

this time the compilers were validated.

Recommendation #7
During the next few years, DoD mission-critical real-time embedded Ada
projects should establish a contractual relationship with their compiler
developer to reduce risk.

Until Ada compilers are fully mature, critical RTE Ada projects will be well served to acquire

the highest level of maintenance support from their compiler developer or to put them under a special

contract. If problem«! are found with the compiler, it is unrealistic to expect major projects to wait for the
next scheduled release to get the problems fixed. On CAMP-2, it was mutually advantageous for McDon-

nell Douglas and the selected 1750A Ada compiler supplier to work closely together.

Conclusion #7
Ada compilers do exist which are effective for applications that want to
use reusable software components.

Conclusion #7 is based on the fact that there exist compilers which hanult Ada generic units

effectively. The CAMP project has had a great deal of success with the DEC VAX Ada compiler.

Conclusion #8
CAMP data indicates that the current generation of Ada/1750A com-
pilers do not support generic units well and this lack of support will
hinder real-time embedded applications that want to use reusable
software components.

Conclusion #8 is a disappointing result based on the present immaturity of 1750A Ada com-

pilers. Obviously, we can only extrapolate the situation with I750A Ada compilers to other RTE com-

pilers. The basic problem is that many validated Ada compilers, especially those which target RTE

116

computers, do not handle generic units correctly. Most validated compilers handle simple generic units in

an adequate fashion, but a great majority of Ada compilers will have problems with non-trivial generic

units. Section VII discusses the types of situations which cause most compilers to have problems.

With the particular 1750A Ada compiler used on the 11th Missile Application (which we

believe is one of the best of its type), we spent a significant amount of time and effort working with the

compiler developer to overcome problems associated with generic units. Even after all this effort, the

result was that all the CAMP generic parts compiled, most of them linked, but many of them caused

abnormal program execution due to compiler errors. To overcome these compiler problems, we had to

manually instantiate approximately 42% of the CAMP parts used on the 11th Missile Application.

Recommendation #8
The Ada Validation suite must be changed to incorporate tougher tests
on generic units.

During CAMP-2, a benchmark was developed which rigorously tests a compiler's ability to

deal with non-trivial Ada generic units (see Volume III). A test based on this benchmark would give Ada

compiler developers the incentive to effectively handle generics — if they don't, they would lose their

validated status.

d. On the efficiency of Ada Compilers

While the efficiency of the code produced by Ada compilers is important to all types of applica-

tions, it is critical for RTE applications. The performance requirements of RTE applications are typically

non-negotiable. The RTE software engineer cannot trade-off run-time speed for a more maintainable

software system, nor can she arbitrarily accept a larger object code size for the sake of reusability.

Another aspect of efficiency which is important to RTE applications and which many non-RTE

software engineers often fail to understand is that of micro-level efficiency. In other words, in addition to

being concerned with macro-level efficiency issues such as the selection of appropriate algorithms, the

RTE software engineer is often concerned with the efficiency of specific language constructs. The au-

thors have had frequent conversations with other researchers in the area of reusability in which the other

researchers could not understand why the CAMP parts were designed as semi-abstract parts as opposed to

being developed as pure abstract data structures. In their value system, the benefits of pure abstract parts

more than accounted for a "few more assembly language statements." However, in many RTE applica-

tions, such as missile guidance and navigation systems, a few more statements in a high rate (e.g., 100

hertz) task can make the difference between an effective weapon system and one that doesn't achieve its

operational requirements.

Conclusion #9
CAMP data indicates that current implementations of Ada tasking are
sufficiently inefficient to cause concern in severely constrained RTE
applications.

The speed of an Ada task rendezvous on most compilers is such that a RTE programmer should

117

avoid its use for any fast loops or high rale inlerrupts. Some RTE Ada compiler developers have recog-

nized Ulis problem and provided an alternative method or handling interrupts.

Conclusion #10
CAMP data indicates that current implementations of Ada genetics ore
sufficiently inefficient to cause concern in severely constrained RTE
applications.

Currently, there are two approaches used by Ada compiler developers to implement generics:

the single body approach and the multiple body approach. With the single body approach, a single unit of

code is generated that can handle any type of instantiation; this approach trades speed for a smaller code

size. With the multiple body approach, a separate set of code is generated for each instantiation; this

approach trades code size for belter speed. In general, we believe that the multiple-body approach is

better. Our preference is based on the observation that most parts are instantiated only once within an

application. Thus, using the multiple body approach provides both a speed and storage advantage.

However, both approaches suffer from the inability of most compilers to perform global optimization.

Recommendation #9
Ada compilers should be able to alternate between single body and mul-
tiple body generic implementation based on either implicit or explicit
information.

In the best case, the compiler should be able to use both the single body and the multiple body

implementation of generic units. Ideally, the compiler would make the choice of the implementation

mechanism based on data provided by pragmas and/or a global optimization analysis.

Conclusion #11
CAMP data indicates that current implementations of Ada exceptions are
sufficiently inefficient to cause concern in severely constrained RTE
applications.

Because of the semantics of Ada exceptions, some Ada compilers generate code which waste a

significant amount of storage. In effect, they keep extra copies of data until it can be verified whether or

not an exception has been raised. In many cases this extra storage is not significant, but in some cases

where the data being duplicated is extensive, e.g., an Kaiman filter arrays, this method can cause severe

memory problems.

Conclusion #12
With the exception of the inefficiencies due to generic units, tasking, and
exception handling, current Ada compilers appear to have efficiency
equivalent to other HOL compilers used in RTE applications.

When one ignores the advanced fealures of Ada, computational-intensive benchmarks show that

Ada compilers perform as well as JOVIAL compilers.

118

Conclusion #13
The ability of Ada compilers to perform global optimizations is critical to
the successful use of Ada and the reuse of Ada parts in RTE applications.

If there is one major message concerning compiler efficiency that was quite clear on CAMP, it
is that Ada compilers need a global optimizer to be sufficiently efficient for RTE applications, with or

without reuse. This need is driven by several factors.

• Ada's features promote design of highly modularized software, thus, Ada software is usually im-

plemented by means of a high number of small units. If an Ada compiler cannot optimize across

unit boundaries, a large amount of potential optimization will be lost.

• Reusable parts and data are typically bundled together into cohesive packages to make their use and

maintenance easier. If a compiler cannot perform global analysis to identify and eliminate dead

code and dead data, some of the benefits of reusable parts will be lost when the user has to

manually eliminate these items.

• The Ada generic unit is an extremely powerful concept, but to make use of it on RTE applications,

the compiler must be able to optimize the code generated based on the context of the instantiation.

• Like generic units, Ada's exception handling features are very useful, but compilers must not penal-

ize the user who has decided not to use the features.

Given that few, if any, Ada compilers currently implement a sufficiently powerful global op-
timizer for RTE applications, an important question is whether an application can avoid inefficiencies by
avoiding certain Ada features. The answer is not always. Certainly an application can avoid genetics and
hence avoid the overhead of a generic. However, this is not the case with exceptions. Whether or not an
application uses exceptions, it will pay the costs associated with detecting and communicating exceptions
because without a global optimizer, the compile' cannot know that an exception handler is not declared at

a higher level.

3. ON THE DEVELOPMENT OF THE CAMP PARTS

During CAMP-2, McDonnell Douglas developed 454 parts consisting of over 16,000 lines of opera-
tional Ada code and another 27,000 lines of Ada test code. From this work, we developed a number of
conclusions concerning ihe use of Ada and the development of parts.

Conclusion #14
The use of Ada results in improved development productivity.

MDAC-STL carefully collected data concerning Ihe effort expended and the resulting size of the
CAMP parts. This data shows that overall productivity for developing the CAMP parts was 258
LOC/MM. One software cost estimating model, COCOMO, estimated productivity at 160 LOC/MM.
Section II of this volume describes the productivity analysis for the CAMP parts development in grea'er
detail. We attribute this increased productivity to four factors.

119

• The use of Ada

• The use of good people

• The use of good tools

• The reuse of software

Few people have doubled that Ada would increase the productivity of the software maintenance
process, but one of the unresolved questions within the Ada software engineering community has been

whether the use of Ada would help developmental productivity on the first set of projects on which it was

used. We believe the use of Ada was the primary factor behind our higher than expected productivity on

the CAMP parts development task. In addition to providing a complete set of structured control con-

structs and a highly readable language, the Ada package featured allowed us to identify clear interfaces

between the different people working on the parts, and hence, promoted a high degree of parallelism in

the parts development.

Conclusion #15
Ada's support for programming-in-the-large is one of its chief ad-
vantages from a management perspective.

It is worthwhile noting that one important reason that the use of Ada was a benefit to our develop-

mental productivity was that we had an excellent compiler to develop the parts — the DEC VAX Ada

compiler. If one had to struggle with an immature compiler, productivity would be severely decreased.

Conclusion #16
The use of strongly typed software parts has significant benefits to the
parts user, hut complicates the development of parts.

One of the primary decisions the CAMP team had to make very early in the development of the

CAMP parts was how extensively to use data typing. The chief advantage of making the parts strongly

typed was the high degree of protection against misuse of the parts such typing would provide. The

disadvantage of using strong typing was the increased complexity of developing the parts. The inter-

actions between types and generics are much more complex than they appear to a casual user of Ada.

Initially, we had some doubts about the use of strong typing. Was it worth the extra effort to avoid

data typing errors? We surveyed some of our on-going missile projects and asked them if data typing

errors were a problem. Somewhat lo our surprise, we found that the misuse of data was considered to be

a significanl problem area. Given the l;irgc number of different types of data used in a missile applica-

tions, programmers sometimes made "stupid" mistakes (e.g.. mixing radians and degrees) and these types

of errors were frequently not delected until the software was tested; at this point they were very difficult

to isolate. Based on this information, we decided lo use strong typing in the development of the CAMP

parts. After all, the parts would be developed once, but used many limes.

Conclusion #17
It costs more to develop reusable parts than to develop customized
software.

120

While Conclusion #17 is hard to quantify, it is our observation that, depending on the experience of

the part developer, it costs about 5% to 10% more to develop good reusable parts than it costs to develop

a customized unit of software. The part developer has to not only meet the functional requirements of a

specific application, he also has to think about how to make the part general enough for a set of applica-

tions without losing a significant degree of efficiency.

Recommendation #10
Parts should he developed hy a parts development team driven hy project
needs.

We envision three ways in which parts could be developed.

• By projects

• By an independent parts development group

• By a project-directed parts development group

The problem with the first approach is that few projects have the extra resources to make good parts.

The typical DoD software project has a short schedule and a tight budget, and few project managers will

divert their people from their primary task of meeting the contract requirements. Additionally, the first

approach does not allow an organization to develop a cadre of parts development expertise which will

result in lower parts development costs. The problem with the second approach is that, over time, such a

group tends to lose touch with projects' needs and will eventually start producing parts that no one wants.

The third approach is based on projects providing the parts developers with draft parts and part needs.

This approach is the one we prefer. It allows an organization to develop a cadre of expert part developers

but provides direction for them from the projects.

Conclusion #18
Software parts for RTE applications must he developed to be
semi-abstract.

The developer of reusable parts for real-time, embedded applications must be sensitive to the fact

that frequently the conceptual elegance of a part has to be sacrificed to obtain the required degree of

efficiency. While academicians might insist that all parts be developed as pure abstract objects (i.e., the
internal structure is hidden from the user), the realities of RTE applications frequently demand that a user

access the internal structure of a part. Fortunately, the choice is not between an abstract part and a

non-abstract pail. A design approach exists, which wc refer to as semi-abstraction, in which a part

provides the user with both an abstract interface and a mechanism for directly accessing the internal

structure. Section VI of this volume discusses Ihi,; issue in greater detail.

121

4. ON THE BENEFITS OF USINtJ PARTS

Conclusion #19
The use of Ada software parts can increase productivity.

MDAC-STL collected data on the effort expended and the resulting size of the 11th Missile Applica-

tion. This data shows that overall productivity was 419 LOC/MM, and indicates that productivity can be

increased by up to 15% by using the CAMP parts.

Productivity on the 11th Missile Application was lowered by difficulties with Ada/I750A compilers.

Separate statistics on the amount of time spent trouble-shooting the selected compiler were not kept, so it

is impossible to tell precisely the effect on productivity. However, we do know that, of 153 software

errors found during testing. 96 were compiler errors and 57 were errors in CAMP-developed code. It

seems reasonable, therefore, to assume that half the testing time was spent debugging the compiler, in-

corporating this assumption, the productivity of the 11th Missile development would rise to 572

LOC/MM.

Section III of Volume II describes the productivity analysis for the llth Missile Application in

greater detail.

5. ON THE COST-EFFECTIVENESS OF CAPTURING SCHEMATIC
COMMONALITY

Conclusion #20
Some important types of commonality cannot be captured in Ada.

Early in the CAMP program, we realized that there were types of commonality that existed within

most domains that either could not be captured using Ada alone, or could not be captured efficiently using

Ada alone. We refer to this type of commonality as schematic commonality. To capture this type of

commonality requires a tool which can build Ada code when given the requirements of a particular

application. We refer to these tools as schematic component constructors; several of these construciors

were built and used on CAMP. Section IV describes this work in more detail.

Conclusion #21
Schematic Component Constructors have high value.

As an example of the utility of a schematic component constructor, consider the case of the CAMP

Kaiman Filter Conslmctor. A novice user can specify his requirements for a new Kaiman filler in about

two minutes using this constructor. It takes the constructor about another minute to generate the Ada

code. In a typical situation, the Kaiman Filler Conslrucloi will generate 387 Ada LOC and use another

1553 CAMP parts LOC. The bottom line is that the user gels 1940 LOC for three minutes of work.

Based on the number of lines of code generated by the Kaiman Filler Constructor for the llth

Missile Application, we estimate that a 28% productivity improvement could be obtained jusl from using

the Kaiman Filler Constructor.

122

Recommendation #11
More research needs to be performed to develop an approach for build-
ing schematic component constructors.

Although we believe thai the utility of schematic component constructors is high, the current ap-

proach to their construction requires a large development effort and the resulting tool is not easily

modified. One potential solution to these problems is to develop a constructor-constructor, i.e., a tool that

would be capable of generating a wide variety of schematic component conslmctors. One approach to

such a constructor-constructor would involve the use an interactive Ada pre-processor.

6. ON THE CATALOGING OF PARTS

During CAMP-2, MDAC-STL built a prototype Ada parts catalog. We drew two major conclusions

from this work.

Conclusion #22
Cataloged Ada parts should he classified by logical operations, not
physical Ada units.

The CAMP parts catalog was implemented so that the basic units being cataloged were Ada units.

Upon reflection, and after having used this catalog, we believe this approach has two significant dis-

advantages.

• When viewing parts, the user gets entire Ada units and then has to locate the portions of interest;

this is less than optimal.

• Too many entities are cataloged under the current scheme. This can lead to user frustration and

result in the parts not being used.

We believe that a better approach would have been to catalog the logical parts, not the physical Ada

code units. For example, the catalog should tell the user that it has an entry for a unbounded LEFO queue,

not that it has a package specification called LIFO_QUE and a package body with the same name. Using

this paradigm, the user would search for logical parts and then, if needed, the user could examine the Ada

structure of these parts.

Conclusion #23
The ta.\onomy{ies) used by an Ada parts catalog should be soft-coded.

A software parts taxonomy^ is an important component of every software parts catalog. One of the

lessons learned on CAMP-2 was that regardless of the time and effort spent in developing the laxa4, the

taxonomy will change over time. No one can foresee all possible classes of parts. Likewise, the distinc-

A nieclii>ni<ini for classifying software patls

4The calcgories into which parts are classified

123

tion of laxa is an extremely subjective activity. Given these factors, we recommend that software parts

libraries "soft-code" their taxonomies so that they can naturally evolve over lime.

124

APPENDIX A

PARTS DATA BASE

I. INTRODUCTION AND BACKOROUND

During development of the CAMP parts, certain information about the parts needed to be gathered

and reports generated from this information. One of the most basic needs was for a simple listing of all

the parts, categorized by their TLCSCs. Size (number of lines of code) data was also needed.

The sizing information report was originally produced on an IBM PC. Two line count utilities

written by a member of the parts team provided the input to this report. The first line counter simply

counted the number of lines of Ada code in a file. This soon proved to be inadequate, however, since

more detailed information was needed. There was a need for a separate line count for specifications and

bodies, and a separate count of CAMP header comments and comments embedded in the code. Although

a single file often contained more than one Ada structure, the original line counter only gave a total for all

the Ada structures. An advanced code counter was developed that analyzed a file's Ada structure and

kept separate counts for each Ada structure for both the specifications and bodies. Since the first counter

did no analyzing of the Ada structure, it ran considerably faster and remained in use for Ada files contain-

ing single Ada structures.

Although these tools automated the information gathering, the information itself was still entered

into the report by editing the report file. This meant that each time the parts were updated, a new part was

added, or the structure of the parts changed, the report file had to be edited again. This was cumbersome

because the formatting had to be manually redone every time the file was edited. As a result, information

changes were not made as quickly as required and the report became out of date.

In order to address these difficulties, an ORACLE data base was developed to store this information.

Reports can now be generated through the use of SQL*Report, an ORACLE utility which allows the

generation of reports. SQL*Forms was used as to facilitate data entry.

2. ORACLE RELATIONS

ORACLE is a relational data base with information stored in tables. The parts' sizes were stored in

(wo tables. The first table, named TLCSC, stored information about the TLCSCs. The second table,

named Adalevel, stored information about all of the lower-level Ada structures. The information about

the TLCSCs and lower structures varied slightly, which is why separate tables were created.

The TLCSC relation (table), its fields and descriptions are given in the Table A-l and the AdaLevel

relation, its fields and descriptions are given in Table A-2.

125

TABLE A-l. COLUMNS IN THE TLCSC RELATION

TLCSC Relation

Column Name Description

Partno This is the surrogate part number. Each entry was assigned an arbitrary number to be used as
the prime key for that entry.

Tiwme TLCSC name of the Ada structure

Require Requirement number (reference SRS)

Type Type of Ada structure (procedure, generic package etc.)

Parent The part number of its parent in the Ada hierarchy. This uses the surrogate numbering
scheme as used by the partno field.

Spcccodcsizc Number of tines of specification code

Bodycodenize Number of lines of body code

Speccomsize Number of lines of the header for the spec

Bodycomnize Number of lines of the body comments

Teste odesize Number of lines of test code

Put Indicates whether or not the entry is a part

Uned Indicates whether or not this entry was used by the 1 Ith Missile Application

Subcalegory Subcategory to which TLCSC belongs

TABLE A-2. COLUMNS IN THE ADALEVEL RELATION

AdaLevel Relation

Column Name Description

Partno This is the surrogate part number. Each entry was assigned an arbitrary number to be used as
the prime key for that entry.

Llname Ada name of IXCSC or unit

Require Requirement number (reference SRS) ,

Type Type of Ada structure (procedure, generic package etc.)

Parent The part number of its parent in the Ada hierarchy. This uses the surrogate numbering
scheme as used by the partno field.

Speccodesize Number of lines of the specification code

Bodycodesize Number of lines of the body code

Speccomsize Number of lines of the header for the specification

Bodycomsize Number of lines of body comments

Part Indicates whether or not the entry is a part

Used Indicates whether or not this entry was used by the 1 Ith Missile Application

Levelnum Hierarchy number for this unit

126

These tables were used lo generate two reports. The first is a list of all the parts divided into their

source file components. Along with this list is sizing information, whether it is a part, and whether it was

used in the 11th Missile Application. The second report is a list of all the parts used in the 11th Missile

Application and their respective code sizes. The second report is discussed in the Appendix of Volume 2.

The parts size report is contained in Table A-3.

127

TABLE A-3. CAMP PARTS SIZING LIST

(1 of 14)
TLCSC 1 TLCSCNwiic II Code SI» II Comment Size 11 Part nth II
No. 1 Lower Level Unit« II Spec 1 Body 1 Teat Spec Body II Uae II

10 1 10 1 2,21; H 213 108 II N Y II
1 Altitude Inlegration 12 1 7 1 104 137 11 Y Y II
1 Reinitialize 2 1 7 1 0 118 II N Y II
1 Integrale 3 1 13 1 0 127 II N Y II
1 Compute Ground Velocity 10 1 8 1 «3 107 II Y Y II
1 Compute Oravitntiona) Acceleration Lat In 22 1 13 1 119 172 II Y N II
1 Compnte Oraviuitional Acceleration Sin Lat In 19 1 13 1 114 156 II Y Y II
1 Compute Heading 10 1 6 1 84 113 II Y N II
1 Update Velocity 20 1 8 1 133 1 183 II Y Y II
1 Reinitia ire 1 1 S 1 0 1 102 11 N Y II
1 Update 4 1 16 1 0 1 172 II N Y II
1 Current Velocity II 1 1 3 1 0 1 83 II N Y II
1 Scalar Velocity II 9 1 6 1 84 1 101 II Y N II
1 Compute Rotation Increment* II II 1 « 1 90 1 112 II Y N II

SUBTOTALS 124 113 2,213 813 1.683 8 1

P002 1 Wander Azimuth Navigation Parts II 16 1 16 1 677 234 1 119 II N 1 Y II
1 Compute Earth Relative Horizontal Velocities II 16 1 16 1 108 1 132 II Y 1 N n
1 Compute Total Angular Velocity II 12 1 7 1 98 1 118 II Y 1 N n
1 Compute Coriolis Acceleration II 19 1 12 1 121 1 156 II Y 1 Y n
1 Total Platform Rotation Rate n II 1 9 1 90 1 119 11 Y 1 Y n
1 Earth Rotiitlnn Rate n 12 1 7 1 121 1 160 II Y 1 Y n
1 Compute it 4 1 II 1 0 1 11 II N 1 Y n
1 Compute Enrlh Relative Navigation Rotation Rale ii 18 1 13 1 116 1 170 II Y 1 Y n
1 Compute Wander Azimuth Angle n 12 1 7 1 101 1 125 II Y 1 N n
1 Compute Latitude n 7 1 6 1 70 1 96 II Y 1 N n
1 Compute Latitude Using Arctnn n 16 1 12 1 108 1 141 II Y 1 N n
1 Compute R.ist Velocity with Sin C os In ii 11 1 13 1 97 1 118 II Y 1 Y »
1 Compute Longitude n 13 1 7 1 97 1 119 II Y 1 N II
1 Compute Curvatures ii 31 30 1 131 1 216 II Y 1 Y II
1 Compute East Velocity n 14 12 1 101 1 130 II Y 1 N II
1 Compute North Velocity ii 14 12 1 101 1 133 11 Y 1 N n
1 Coriolis Acceleration from Total R QtCS n 12 7 1 II 121 1 160 n Y 1 N II
1 Compute ii 4 11 1 II 0 1 6 II N 1 N n
1 Compute North Velocity with S in Cos In n II 13 1 II 99 1 123 II Y 1 Y II
1 Compute Earth Relative Horizontal Velocities ii II 1 « 1 n
1 With Sin Cos In II 13 13 1 II 106 1 119 II Y 1 N II
1 Compute Latitude Using Two Value Arctangent n 14 16 1 II 100 1 119 II Y 1 Y II
1 Compute Longitude using Two Va luc Arctangent n 11 11 1 II 88 1 103 II Y 1 V II
1 Compute Wander Azimuth Angle jsing Two Value n II 1 11 1 n
1 Arctangent n 10 12 1 II 92 1 115 II Y 1 Y n

SUBTOTALS 2M 261 677 2,066 2,691 20 11

POOS 1 North Pointing Navigation Parts ii 9 9 1 341 T~ 190 1 117 II N 1 N "IT
1 Compute Coriolis Acceleration n 17 14 1 II 102 1 142 II Y 1 N n
1 Total Platform Rotation Rales ii 11 9 1 II 82 1 104 11 Y 1 N n
1 Earth Kotnlion Rate n 1« 7 1 n 114 1 148 II Y 1 N n
1 Compute 2 12 1 II 0 1 6 II N 1 N ii
1 Earth Relative Navigation Rotation Rate IR 7 1 II 134 1 155 II Y 1 N n
1 Compute 4 11 1 n 0 1 6 II N 1 N n
1 Latitude Integration 13 1 6 1 II 100 1 147 II Y 1 N n
1 Reinitialize 2 1 7 1 n 0 1 121 II N 1 N n
1 Integrate ii 3 1 12 1 n 0 1 131 II N 1 N II
1 Longitude Integration ii 18 1 43 1 n 112 1 164 II Y 1 N II
1 Reinitialize n 3 1 8 1 II 0 1 134 II N 1 N n
1 Integrate n 4 1 16 1 II 0 1 149 11 N 1 N n
1 Radius of Curvature ii 23 1 7 1 II 127 1 193 II Y 1 N ii
1 Compute II 2 1 23 1 II 0 1 6 n N 1 N II

SUBTOTALS 138 184 541 771 1.606

P36I I General Utilities
I Instruclion Set Test

3 I
6 I

3 I
6 I

69 I
75 I

63 II
90 II

SUBTOTALS 75

P60I I Asynchronous Control
I Data Driven Tosk Shell

II 2 1 0 1 0 II 0 1 0 II Y N II
II 2 1 0 1 II 0 1 0 II N N II

128

TABLE A.3. CAMP PARTS SIZING LIST (2 OF 14)
TLCSC I
No. I

TLCSC Nome
Lower Level Units II Spec

Code Size II Comment Size II Part
I Body I Ten II Spec I Body II

llih II
Uae II

I InteTTupt-Driven Tiwk Shell
I Aperiodic Task Shell
I Conlinuoin Tiwk Shell
I Periodic Tnsk Shell

5 I
1 I
2 I
3 I

0 I
0 I
0 I
0 I

0 I
0 I
0 I
0 I

0 II N I

0 II N I

0 II N I

0 II N I

N II

N II

N II

N II

SUBTOTALS 1J 0 0 0 0

P602 I Commiinicntion Pnrl«
I Update Exclunion
I Rend Update
I Attempt Read
I Attempt Read Wail
I Attempt Rend Delay
I Attempt Start Update
I Attempt Start Update Wait
I Attempt Start Update Delay
I Attempt Complete Update

3 I
3 I

29 I
10 I
6 I

12 I
13 I

8 I

14 I

15 I

29« II
II
II
II
II
II
II

Rl I
126 I

0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I

73
95
0
0
0
0
0
0
0
0

N
N
N
N
N
N
N
N
N
N

SUBTOTALS 34 110 296 126 95 i 0

Pfill 1 WOS72 Ellipioid Metric Data 29 1 0 1 9« II 125 1 0 II Y M It

P«I2 1 WOS72 Ellipsoid Engineering Data 30 1 0 1 92 II 143 1 0 n Y M II

P«I3 1 WOS72 Ellipsoid Unltless Data II 1 0 1 160 II 70 1 n Y Y II

P6I4 1 Conversion Factors 41 1 0 1 200 II 121 1 0 n Y Y II

P6I5 1 Universal Constants 9 1 0 1 129 II 72 1 0 H Y Y It

P621 1 Basic Data Types 135 1 185 1 331 H 182 1 436 ii Y M II

P«22 1 Kaiman Riter Data Types 213 1 40 1 186 II 387 1 127 n Y N II

P623 1 Autopilot Data Types 88 1 92 1 267 n 145 1 228 n Y N II

P631 1 Missile Radar Altimeter Handler Parts II 15 1 25 1 o n 220 1 3 II Y 1 N n
1 Power On II 1 1 22 1 n 0 1 17 n N 1 N II
1 Power Off II 1 1 4 1 n 0 1 0 n N 1 N II
1 Goto Transmit Motte II 1 1 4 1 n 0 1 0 it N 1 N II
1 Goto Standby Mode II 1 1 4 1 n 0 1 0 n N 1 N II
1 Perlbrm Built In Test II 4 1 7 1 II 0 1 0 II N 1 N II
1 Perform Built In Test Sequence II 4 1 7 1 n 0 1 0 II N 1 N II
1 Read Altitude Fret II 4 1 7 1 n 0 1 0 n N 1 N II
1 Read Altitude Integer II 4 1 7 1 II 0 1 0 " N 1 N II

SUBTOTALS 20 62 0 0 17 0 0

P632 1 Missile Radar Altimeter H.indler Auto II IS 1 25 1 0 11 190 1 1 n Y 1 N II
1 Goto Transmit Mode II 1 1 22 1 II 0 1 17 n N 1 N II
1 Ooto Standby Mode II 1 1 4 1 n 0 1 0 n N 1 N II
1 Perform Built In Test II 4 1 7 1 II 0 1 I) II N 1 N II
1 Perform Built In lest Sequence II 4 1 7 1 n 0 1 0 n N 1 N II
1 Read Altitude Ffeet II 4 1 7 1 n 0 1 i, n N 1 N II
1 Read Altitude Integer II 4 1 7 1 II 0 1 0 II N 1 N II

SUBTOTALS 54 0

P6'3 I Bus Interface Ports
I Send Message Using Address No Wnit
I Send Message Using Address Wait
I Data Transfer No Wnil
I Data Transfer Woit
I Perform Built In Te-1
I Interface
I Update Retry Count
I Send Command Wnit

6 I
4 I

5 I

5 I

6 I

3 I

18 I

I I

0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I

0 II
II
II
II
II
II
II
II
II

229 I
0 I
0 I
0 I
0 I
0 I
6 I
0 I
0 I

Y
N

N

N

N

N

N

N

N

M
N
N
N
N
N
N
N
N

129

TABLE A.3. CAMP PARTS SIZING LIST (3 OF 14)
TLCSC I
No. I

TLCSC N«me
Lower Level Unit» Spec

Code Size
I Body I Ten»

Comment Size
Spec I Body

PMI I llih
i;*e

Send Menage No Wait
Send Meuage Wait

4 I
3 I

0 I
0 I

0 II
0 II

M
N

SUBTOTALS 54

"634 Clock Handler
Current Time
Converted Time
Reset Clock
Synchronize Clock
Elapsed Time

Y
Y
N
N
Y
N

SUBTOTALS 32 203 30«

P644 Direction Cosine Matrix Operations
DCM Oeneral Operations
DCM Initialized From Reference
DCM Trapezoidal Integration

Reinitialize Angular Velocities
Perfonn_Trapezoidal_Intcgration of DCM

Perform Rectangular Integration of DCM
Rcortlionormalize DCM
Frame Misalignment
Aligned DCM Matru
DCM From Quaternion
Compute First Row from Orlhonormal

CNE Operations
Reorthonormalize CNE
CNE Initialized From Earth Position
CNE Integration
Perform Trapezoidal.. Integration of CNE
Rcinit Ang Vel For Trapez Integ of CNE
Perform Rectangular Integration of CNE

Alignment Parts
Frame Misalignment of CNE
Aligned CNE Matrix

CNE From Quaternion
Compute CNE

Compute Fir«:! Row of CNE Fron Orlhonormal
CNE Initialized From Reference

3 I
11 I
23 I
26 I

3 I
5 I

24 1
23 I
29 I
29 I
26 1
16 I
29 I

1 I

13 I
14 I
5
3
5

18
4
4 I

13 I
3 I
2 I
8 I

3 I
II I
62 I

7 I
8 I

44 I
27 I
33 I
18 I
26 I

I

341

37
II I
26 I

4 I
28 I
21 I
9 I
8 I
7

21
7
7

II
6
5 I

17 I

138
86

203
205

0
0

174
169
188
186
167
141
227

0
116
135

0
0
0

160
0
0

140
0
0
0

103
92

221
201
129
253
199
184
194 II
213 II
193 II
133 II
213 II

0 II
137 II
233 II

0 II
0
0

203
0
0

160
0
0
0

N
N
Y
Y
N
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
N
N
N
Y
N
N
Y
N
Y
Y

Y
Y
Y
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y

SUBTOTALS 339 461 341 2,297 2.982 22

P63i 1 Kaiman Filter Common Parts
Stale Transition And Process Noise Matrices

Manager
Initialize
Propagate
Get ^Current
Propagated_Phi

Error Covariance Matrix Manager
Initialize
Propagate
P

State Transition Matrix Manager
Pmpagatcd_Phi
Initialize
Propagate

SUBTOTALS 72 85 406 334 1.279

P652 I Kaiman Filter Compact H Parts
Compute Kaiman Gain
Update Error Covaripnce Matrix
Update State Vector
Sequentially Update Covariance Matrix and S'-nte

Vector
Update

8 I
19 I
22 I
20 I

I
30 1
6 I

25 I

12 I
13 I

28 I
24 1

462 II
II

II

II

II

II

II

136 I

96 I

96 I

93 I

I

117 I

0 I

69 II
100

99

94

134
104

Y

Y
N

Y

N

N

130

TICSC
No.

TABLE A-3. CAMP PARTS SIZING LIST (4 OF 14)

TLCSC Niime
Lower Level UnilR Spec

Code Site
I Body I Test

Comment Size
Spec I Body

P.n llth II
Ute II

Kaiman Update
Update

Update Error Covarinnce Matrix Oenerai Form 29 I

21 I
23 I
17 I

147 I
0 I

123 I

162 II Y
117 II N
12« II Y

N II
N II
Y II

SUBTOTALS 17« 15« 462 674 93«

P653 I Kolman Filter Complicated II Part«
I Compute Kaiman Gain

Update Error Covariance Matrix
Update Stale Vector
Sequentially Update Covariance Matrix and State

Vector
Update

Kaiman Update
Update

Update Error Covariance Matrix General Form

5 I
30 I
25 I
26 I

I
40 I
6 I

53 I
7 I

35 I

21 I
20 I
13 I
14 I

I
32 I
24 I
20 I
22 I
17 I

457 II 130 I 72 II
113
110
105

0 I
161 I

0 I
126 I

123
113
no

156
106
1«2
112
126

N
Y
Y
Y

Y
N
Y
N
Y

Y
Y
N
Y

N
N
N
N
Y

SUBTOTALS 222 162 457 749 1.021

P6«1 Waypoint Steering
Distance to Current Waypoint
Compute Turning and Nontuming Distance*
Turn Test Operations

Stop Test
Stan Test

Steering Vector Operation
Initialize
Update

Steering Vector Operations with Arcsin
Initialize
Update

Compute Turn Angle and Direction
Crosstrack and Heading Error Operations
Compute When not Turning
Compute
Compute When Turning

Distance to Current Waypoint with Arcsin

13 I
15 I
12 I

5
4
4

22

2« I 1.022 II 176 I 105 II

12
« I

24 I
12 I
8 I

IS I
37 I

6 I
12 I
11 I
19 I

II I
14 I
14 I
13 I
13 I
40 I
41 I
24 I
23 I
40 I
23 I
24 I
33 I
23 1
3« I
43 I
II I

111 I
96 I
«5 I
0 I
0 I

170 I
0 I
0 I

174 I
0 I
0 I

116 I
187 I

0 I
0 I
0 I

117 I

116
129
91

110
104
176
174
150
167
171
147
155
169
IR5
158
228
150

N
Y
Y
Y
N
N
Y
N
N
Y
N
N
Y
Y
N
N
N
Y

Y
N
Y
Y
Y
Y
N
N
N
Y
Y
Y
Y
Y
N
N
y
Y

SUBTOTALS 229 426 1.022 1.056 2.582

P662 Autopilot
Integral Plus Proportional Gain

Integrate
Update Proporlionnl (Join

Pitch Autopilot
Initialize Pitch Autopilot
Compute Elevator Command
Update Pitch Rate Gain
Update Acceleration Gain
Update Integrator Gain
Update Integrator Limit
Update Proportional Gain

Latent Directional Autopilot
Initialize Lateral Directional Autopilot
Compute Aileron Rudder Commnnds
Update Aileron Integrator Gain
Update Aileron Integrator Limit
Update Roll Commnnd Proportional Gain
Update Roll Rate Gain For Aileron
Update Yaw Rate Gain For Aileron
Update Rudder Integrator Gain
Update Rudder Integrator Limit
Update Feedback Rate Gain For Rudder
Update Roll Rate Gain For Rudder
Update Acceleration Proportional Gain

II
II

II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
li
II
II
II
II
II
II

5 I
12 I

I I
1 I

47 I
5 I
0 I
0 I
0 I
0 I
0 I
2 I

64 I
10 I
9 I

6 I 2.553
7 I
5 I
5 I

31 1
21 1
23 I

5 I
5 I
5 I
5 I
7 I

59 I
38 I
42 I
6
7
6
6
6
6
7
6
6
6

14« I
115 I

233 1
0 I
0 I
0 I
0 I
0 I

392 I
I 0

0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I

«4 a
loo :i
141
112
143
138
151
89
91
9«
98
99

251
207 II
230 II
9« II
9V II
97 II
91 II
91 II
98 II
4« II

91
9«

91 II

N
Y
N
N
Y
N
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N

Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

SUBTOTALS 171 320 2.553 740 2.898

131

TABLE A-3. CAMP PARTS SIZING LIST (5 OF 14)
TI.CSC TI.CSC N.me II Code Sire II Comment Slit n Part 11th 11
No. l^ower Level Hulls II Spec 1 Body 1 Test H Spec 1 Body II One II

P67I Air Dwo Pun« II 9 1 23 1 28* II 90 1 «1 II N N 11
Compule OulsiHe Air Tcinperalure n 16 1 9 1 II 100 1 99 11 Y N 11
Compute Prefuure Rollo II 12 1 11 1 II 92 1 90 II V N II
Compute Mach n 12 1 6 1 II 95 1 94 II Y N II
Compule Dynamic Pressure n 11 1 9 1 II 83 1 85 II Y N 11
Compule Speed of Sound n 13 1 7 1 II 91 1 93 11 Y N 11
Borometric Altitude Intepotion n 19 1 8 1 II 115 1 108 II Y N 11
Compute Barometric Altitude ii 4 1 27 1 11 0 1 121 II N N 11

SUBTOTALS 87 77 288 578 690

P«72 Fuel Control Part«
Throttle Command Manager
Compule Throttle Command
Update Mach Error Limit
Update Mach Error Integral Limit
Update Throttle Rale Limit
Updote Throttle Command Limits
Update Mach Error Oain
11pdate Throttle Bandwidth

4 I
20 I
4 I
2 I
2 I

6 I
62 1
17 1

5 1
6 1
6 I
8 I
5 I
6 I

402 84 1
117 I

0 I
0 I
0 I
0 I
0 1
0 I

71
211
117
81

82
82
84
80
82

N
Y
N
N
N
N
N
N
N

N
N
N
N
N
N
N
N
N

SUBTOTALS 37 115 402 117 819

P681 Coordinate Vector Matrix Algebra
Matris Operations

Scl_lo_Identity. Matrix
Set. .lo_Zcro Matrix

Veclor Scalar Operations
"•"
Sparse_X_Vector_Scalar_Multiply

T
Matrix Scalar Operations

T
Cross Product
Matrix Vector Multiply
Matrix Matrix Multiply
Vector Operations

Sparse J«ighLXY_Sublrocl
ScMo_Zero Vector

Veclor^Length
Dot. Product
Sparsc_Riglit.Z_Add
Sparse Righl_X Add

10 I
I 8

2 I

2 I
2 I
2 1

1 1
1 I

14 I
2 1
3 1
2 I

14 I
2 I
2 I

14 I
16 I
14 I
II

2
1 I
2 I
2 I
1 I
2 1
2 I
2 I

17 I

20 I
16 I
16 I
16 I
16 I
6
6
9

10
11
10 I
9 I

16 I
16 I
14 I
22 1
39 I
21 I
10 I

5 1

10 I
10 I

5 I
10 I
10 I
10 1

858 II
H
II
II
II
II
II
II
II
II
II
II
II
II
11
II
II
II
II
II
II

II
II
II
II
II
II

109 I

101 I

0 I

0 1

0 I

0 I

0 I

0 I

135 1

a i
o i
o I

116 I
0 1

0 I
128 t

124 I

110 1

130 1

0 I
0

0

I

I
0 I

0 I

0 I
0 I

94

90

70

70

72
72

50

51
107

105

121

110

69
72
71
75
74
79

165
111
98

115
114
III
112
112 II
111 II

N
N
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
N
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
Y
Y
Y
Y

V
N
N
N
N
N
N
N
Y
Y
N
Y
N
N
N
Y
N
N
Y
Y
N
Y
Y
N
Y
Y
N

SUBTOTALS 126 343 858 844 2.407 22

P682 General Veclor Matrix Algebm
ABA_Tran8_Dynam_Spar«_MotTix_Sq_Matrix
ABA_Tran«posc

ABA. Trans Vector_Sq Matrix
ABA Transpose

ABA_Trans_ Vector .Scalar
ABA_TranspoRe

CoIumn._Malrix_Operalions
Sel^Diagonul^andSuhrraclfrom^Idenlily
ABA^Transpose
ABA_Symni_Transposc

Dot Product Operations Unrestricted
Dot Product

Dot Product Operations Restricted
Diagonal ^-ull Matrix Add Unresrriclcd

"♦"
Wagon .1 Pull Mnlrix Add Restricted

33 I
16 I

3 I
16 I

2 I
14 1

2 I
12 I

3 I
9 I
9 1

13 I
2 I

13 I
15 I
2 1

10 1

43 I
50 I
12 1
33 I

II I
41

3.792

I
10 I
7 1

17 I
33 I
37 I
9 I

19 I
14 1
12 I
38 I
21 I

447 1
133 I

0
121

0 1
120 1

0 I
123 1

0 I
0 I
0 1

131 1
0 I

118
149

(I
112

177
148

6
139

6
164

6
100
93

121
133
120
102
115
118
135
103

Y
N
N
N
N
N
N
Y
Y
N
Y
N
N
N
N
N
V

132

TABLE A.3. CAMP PARTS SIZING LIST (6 OF 14)
TLCSC 1 TLCSCNMIK Code Size II Comment Sin II Part i nth
No. 1 Lower Level Unit« Spec 1 Body 1 Test II Spec 1 Body 11 1 Uae

1 Matrii Scalar Operations t'omtraincd 15 1 5 1 II 135 1 97 II N 1 N
| "•" 2 1 14 1 0 1 107 II Y 1 N

i r 2 1 14 1 0 1 109 11 Y 1 N
1 Dingonal Matrix ScRlar Operations 15 1 II 1 182 1 113 II N 1 Y
1 ■•*" 2 1 18 1 0 1 104 II Y 1 Y
1 T' 2 1 18 1 0 1 97 II Y 1 N
1 Matri« Vector Multiply Unreatricted 21 1 10 1 275 1 149 II N 1 N
1 ■,*" 2 1 31 1 0 1 133 8 Y 1 N
1 Matrix Vector Multiply Restricted 19 1 18 1 252 1 121 II Y 1 N
1 Vector Matrii Multiply Untertrlcted 21 1 10 1 273 1 160 II N 1 N
I -•" 2 1 27 1 0 1 6 II Y 1 N
1 Vector Mnlri« Multiply Restricted 19 1 16 1 254 1 130 It Y 1 N
1 Vector Vector Traiwpose Multiply Unrestricted 20 1 10 1 155 1 136 II N 1 N
1 "•'■ 2 1 28 1 0 1 129 II Y 1 N
1 Vector Vector Transpose Multiply Restricted 1« 1 16 1 136 1 113 II Y 1 Y
1 Malrl« Matrix Multiply Unreatricted 25 1 II 1 266 1 147 II N 1 N
I ■••'■ 2 1 41 1 0 1 141 II Y 1 N
1 Matrii Mntrii Multiply Restricted 18 1 20 1 240 1 123 8 Y 1 Y
1 Matrii Matri« Transpose Multiply Unrestricted 23 1 II 1 150 1 113 n N 1 N
I "•" 2 1 41 1 0 1 140 8 Y 1 N
1 Matrii Matrii Transpose Multiply Restricted 16 1 21 1 131 1 117 n Y 1 Y

1 1 1 II
1 Constrained 8 1 15 1 124 1 102 H N 1 Y
1 Change Element 4 1 17 1 0 1 111 N Y N
1 S«lJo_Identity_Matrii I 1 16 1 0 1 101 8 Y 1 N
1 SetJo_Zero_Malrii 1 1 5 1 0 1 83 8 Y Y
1 Add to Identity 1 1 18 1 0 1 100 8 Y N
1 Subtracl_from_ldenlily 1 1 28 1 0 1 131 ii Y N
1 "+" 2 1 30 1 0 1 126 8 Y Y
| 2 30 1 0 1 126 8 Y N
1 Diagonal Matrii Operntions 13 47 1 153 1 200 8 N N
1 Identity, Matrii 1 5 1 0 1 95 Ii Y N
1 ZeroMntrix 1 5 1 0 1 94 11 Y N
1 Change, Element 4 12 1 0 1 133 II Y N
1 Retrieve^Element 3 10 1 0 1 121 II Y N
1 Row Slice 2 12 1 II 0 1 137 8 Y N
1 Column Slice 2 12 1 II 0 1 139 II Y N
1 Add_ to. Identity 2 11 1 II 0 1 113 II Y N
1 Subtract rrom.Identity 2 11 1 II 0 1 113 II Y N
1 "+" 2 11 1 II 0 1 112 II Y N
) 2 11 1 II 0 1 114 II Y N
1 Vector Scnlar Operations Unconstrained 15 5 1 II 142 1 117 II N N
| "•" 2 20 1 II 0 1 129 II Y N
1 "/" 2 20 1 II 0 1 129 II Y N
1 Vector Scalar Operations Constrained 14 5 1 II 139 1 95 8 N Y
1 "•" 2 11 1 II 0 1 103 8 Y Y
1 T 2 11 1 n 0 1 103 II Y 1 Y
1 Matrix Scalar Opernlion« Unconstrained 19 5 1 ii 141 1 118 II N 1 N
1 ■■••■ 2 34 1 n 0 1 134 8 Y 1 N
i ■■/•• 2 34 1 II 0 1 135 II Y 1 N
1 Symmetric Half Storage Matrii Operntions 12 53 1 n 148 1 211 II N 1 N
1 Initialire 3 19 1 n 0 1 145 8 N 1 N
1 Identity_M«lrii 1 1 5 1 n 0 1 87 8 Y 1 N
1 Zero_Matrii 1 1 5 1 II 0 1 85 II Y 1 N
1 Change^Element 4 1 14 1 n 0 1 132 II Y 1 N
1 Retrieve Element 3 1 15 1 H 0 1 135 II Y 1 N
1 Row„Slice 2 1 18 1 II 0 1 134 II Y 1 N
1 Column, Slice 2 1 18 1 II 0 1 137 II Y 1 N
1 Add_to Identity 1 1 13 1 II 0 1 138 II Y 1 N
1 Subtract,from_IdenIity 1 1 16 1 II 0 1 143 II Y 1 N
1 "+" 2 1 II 1 II 0 1 143 II Y 1 N

2 1 11 1 II 0 1 144 II Y 1 N
1 Swap_CVI 0 1 7 1 n 0 1 83 II N 1 N
1 Swap Row 0 1 7 1 II 0 1 83 II N 1 N
1 Symmetric Pull Slornpc Mntrii Operntions 1 1 n 1 II 1

1 Unconstrnincd 10 1 10 1 124 1 99 II N 1 N
1 Chonge,Eleinent 4 1 24 1 0 1 155 II Y 1 N II
1 Set_to_Idenlity_Matri« t 1 20 1 0 1 141 II Y 1 N II
1 Sct_to_Zeto_Motris 1 1 5 1 0 1 89 II Y 1 N n
1 Add Jo Jdcntity II 1 1 22 1 0 1 133 II Y 1 N II

133

TABLE A-3. CAMP PARTS SIZING LIST (7 OF 14)
TLCSC 1 TLCSCNome Code Size Commer tSi» II Part llth

No. 1 Lower Level Unit« Spec 1 Body 1 Teat II Spec 1 Body II Uae

1 Subtract. from_ Identity 1 40 1 0 1 174 II Y N

1 "+'■ 1 48 1 0 1 132 II Y N
1 ■■.■■ 1 48 1 0 1 151 II Y N

I Matrix Opcrotions Unconstrained 1 III 131 1 113 It N N

1 v 1 34 I 0 1 138 II Y N
1 1 34 1 0 1 137 II Y N

1 ■'+" 1 14 1 0 1 112 II Y N
1 1 14 1 0 1 112 II Y N

1 Sct.to IdentityMatrit 1 20 1 0 1 142 II Y N

1 SeMo_Zero_Matm 1 3 1 0 1 97 II Y N
1 ■•.•• 1 38 1 0 1 150 II Y N

1 Matril Operations Constrained 1 9 1 115 1 9« II N N

1 '•+■' 1 15 1 0 1 97 II Y N

1 1 1! 1 0 1 98 II Y N

1 "+" 1 14 1 0 1 97 II Y N
| •■.- 1 14 1 0 1 97 II Y N

1 Sci_to_ldentity_Motra 1 20 1 0 1 119 II Y N

1 Set^lo_Zero_Matriii 1 5 1 0 1 83 II Y N

1 Dynamically Spane Matrix Operations 1 1 1 n
1 Unconstrained 1 9 1 no i 100 II N N

1 Sel_lo_ldentily_Mntrix 1 20 1 0 1 137 II Y N

1 SeMo^ZeK>_Molrix 1 i 1 0 1 96 II Y 1 N

1 Add.to^ldentity 1 26 1 0 1 132 II Y N

1 Sublrnct_from_Identtty 1 33 1 0 1 132 II Y 1 N
1 ■■+'• 1 44 1 0 1 138 II Y 1 N
| 1 44 1 0 1 137 II Y 1 N

1 Dynamically Sparse Matrix Operations Constrained 1 9 1 no i 85 II N 1 N

1 SelJo_Zero^Matri« 1 5 1 0 1 84 1! Y 1 N

1 Add In Identity 26 1 0 1 117 II Y 1 N

1 SubtroclJrom_Identity 33 1 0 1 118 II Y 1 N

1 •■+'■ 2J 1 0 1 105 II Y 1 N
('■." 23 1 0 1 108 II Y 1 N

1 Set_lo_Identity_Matri« 20 1 0 1 117 H Y 1 N

1 Vector Operations Unconstrained 13 8 1 131 1 115 II N 1 N

I "+' 2 22 1 0 1 125 II Y 1 N
| 22 1 0 1 124 II Y 1 N

t Dot_Produel 2 12 1 0 1 138 II Y 1 N

1 Vector, Length 1 23 1 0 1 149 II Y 1 N

1 Vector Operations Constrained 13 7 1 120 1 105 II N 1 Y

1 DoLProduct 2 12 1 0 1 131 II Y 1 N

1 Vcctor_Ungth 1 12 1 0 1 113 II Y 1 N

1 "+" 2 II 1 0 1 97 II Y 1 Y
(".•■ 2 II 1 0 1 98 II Y 1 N

SUBTOTALS 670 2.361 3,792 5,144 14,791 97

P683 Standard Trig
Arctan2
Sin
Sin
Sin
Co«
Cos
Cos
SinCos
Sin_Co!.
Sin_Cos
Tnn
Tan
Tan
Arcsin
Arcsln
Arcsin
Arccos
Arccos
Arccos
Arcsin.Arccos

Arcsin Arccos

ArcFin_Arccos

Arctan

i 79 1 685 II 119 1 240 II N Y

27 1 0 1 125 It Y Y

5 1 0 1 93 II Y N

4 1 0 1 0 II Y N

4 1 0 1 0 II Y N

5 1 0 1 93 II Y N

4 1 0 1 0 n Y N

4 1 0 1 0 n Y N

32 1 0 1 140 n Y N

26 1 0 1 II n Y N

26 1 0 1 II n Y N

5 1 0 1 93 n Y N

4 1 0 1 0 ii Y N

4 1 0 1 0 ii Y N

5 1 0 1 91 n Y N

4 1 0 1 () II Y N

4 1 0 1 0 II Y N

5 1 0 1 91 II Y N

4 1 0 1 0 n Y N

4 1 0 1 0 n Y N

10 1 0 1 117 II Y N

9 1 II 0 1 (1 II Y N

9 1 II 0 1 0 n Y N

5 1 II 0 1 '(I II Y N

134

TABLE A.3. CAMP PARTS SIZING LIST (8 OF 14)
TI.CSC I
No. I

TLCSC Uatrw
Lower Level Unit» II Spec

CmfeSIze
I Body I Te«

Comment Size
Spec I Body

Pnt I nth
UM

I Arcttn
I Arcttn I I

4 I
4 I

0 I
0 I

0 II
0 II

SUBTOTALS 47 217 M5 936 25

PfiM I Geometric Operations
1 Unit Radiiil Vector
1 Unit Normal Vector
I Compute Segment and Unit Normal Vector
I Compute Segment nnd Unit Normal Vector w/ Arcsin
I Oreat Circle Arc Length
I Compute

7 I
15 I
14 I
21 I
23 I
14 I
4 I

21 I 392 II 109 I
22 I
13 I
I« I
I« I
29 I
18 I

107 I
101 I
126 I
130 1
122 I

0 I

93 II N
134 II
123 II
140 II
133 II
212 n

8 H

Y
Y
N
N
Y
N
N

SUBTOTALS 91 114 392 586 752

P686 Signal Processing
General First Order Filter

Update Coefficients
Filter
Reinilialije

Tustin Lend Lag Filter
Update Coefficients
Filter
Reinitialize

Tustin Lag Filter
Update Coefficient«
Filler
Reinitialize

Second Order Filler
Redefine Coefficients
Filler
Reinitialize

Tustin Integrator With Limit
Update Limit
Update Gain
Integrate
Reset
Limit Flag Setting

Tustin Integrator With Asymmetric Limit
Update Limits
Update Gain
Integrate
Reset
Limit Flog Setting

Upper Lower Limiter
Update Limits
Limit

Upper Limitcr
Update I imit
limit

Lower Limitcr
Update Limit
Limit

Absolute Limiter
Update Limit
Limit

Absolute Limitcr With Rag
Limit Fing Setting
Limit
Update Limit

II
H
II
II
II
II
II
II
II
II
II
n
II
II
II

II
II
II
II
n
II
II
II
II
II
n
II
H
N
II
II
II
II
II
II
II
II
II

II
II
II
II
II

14 I
18 I
0 I
0 I
0 I

14 I
0 I
0 I
0 I

14 I
n i
o I
o I

16 I
0 I
0 I
0 I

16 I
1 I
1 I
1 I
2 I
I I

17 I
2 I
I I
1 I
2 I
1 I
8 I
2 I
1 I
fi I
I I
I I
6 I
I I
1 I
6 I
I I
I I
6 I
I I
1 I
I I

I* I
14 I
9 I

II
8

12
7

12
6

13
7

10
9 I

23 1
17
15
8

26
3
5 I

29 I
10 I

3 I
29 1

9 I
3 I

36 I
10 I

3 I
12 I
II 1
13 I
7 I
3 I

II I
7 I
6 I

11 I
7 I
5 I

13 I
9 I
5 I

18 I
3 I

.180 II
II
II
H
II
n
it
n
n
ii
ii
n
n
n
n
n
H
H
H
II
II
8
II
It
II
II
II
II
II
II
II
II
II
II
n
n
n
n
II
n
n
n
n
n

223 1

108 I

0 I

0 I

0 1

103 I
0 I

0 I

0 I

104 1
0 1

0 I

0 I

113 I

0 I

0 I

0 I

132 I
0 I

0 I
0 I

0 I

0 I

139 I

0 I

0 I

91 I

0 I

0 I

79 I

0 I

0 I

79 I

0 I
0 I

80 I

0 I

0 I

86 I

0 I

0 I
0 I

102 11

149 II

99 II
115
81

148

95

120

77

143

95

126

81

136

101

123
84

230

109

100

173
97

72

160

74

67

138
81

«2

II
II
n

n
H
II

8
n
II
II
n
n
n
»

i
n
n
it
ii
ii
n
n
n

129 II
H
II
II

97
92
93
83 II
94 II
98 II
85 II
94 II

107 II
92 II
99 II

121 II
76 II

106 II
95 II

N
Y
N
N
N
Y
N
N
N
Y
N
N
N
Y
N
N
N
Y
N
N
N
N

N
Y
N
N
N
N
N
Y
N
N
Y
N
N
Y
N
N
Y
N
N
Y
N
N
N

Y
M
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N

SUBTOTALS 152 504 1.180 1.116 4,721

PS87 General Purpose Math
Integrator
Reinitialize
Update
Integrate

Interpolate 01 F.strapolnlr
Square Root

18 I
12 I

2 I
1 I
4 I

14 I
7 I

31 I 1.061 II
9 I
7 I
5 I

II I
14
8

178 I
91 I

0 I

0 I
82 I
79 I

82 II N
113 II
65 II
60 II
75 II

133 II
110 II

Y
N
N
N
N
N
M

135

TABLE A.3. CAMP PARTS SIZING LIST (9 OF 14)
TI.CSC 1 TLCSCNime Code Size Comment Size M Part 1 llth 11
No. 1 Lower Level Units Spec 1 Body 1 Teat II Spec 1 Body II 1 Uae 11

1 Sqr. 1 6 1 0 1 0 II N 1 M 11
1 Root Sum Of Sqmrei 114 1 89 II Y 1 Y 11
1 Sign 68 1 92 11 Y 1 N 11
1 Me.n Value 75 1 99 II Y 1 N 11

73 1 104 II Y N II
1 Two W.y T.Mc Lookup 127 1 III 11 Y N II
1 Inlliali» 0 1 n II N N n
1 Lookup Y 0 1 0 II N N 11
1 Lookup X 0 1 0 11 N N II
1 Lookup Table Even Spacing 130 1 148 II Y N 11
1 Initialize 0 1 39 II N N 11
1 Lookup 0 1 107 II N N II
1 Lookup 0 1 108 II N N II
1 Lookup Table Uneven Spacing 120 1 107 11 Y N 11
1 Initialize 0 1 60 11 N N 11
1 Lookup 0 1 94 11 N N 11
1 Lookup 0 1 97 II N N 11
1 Incremenlor 79 1 102 11 Y N II
1 Reinitialize 0 1 71 11 N N 11
1 Increment 0 1 37 11 N N II
1 Dccrementor 79 1 103 II Y N 11
1 Reinitialize 0 1 62 11 N N II
1 Decrement 0 1 57 11 N N II
1 Running Average 83 1 108 11 Y N 11
1 Reinitialize 0 1 61 11 N N 11
1 Reinitialize 0 1 36 H N N II
1 Current Average 0 1 59 11 N N 11
1 Accumulator 77 1 80 II Y Y H
1 Reinitialize 0 1 37 11 N Y 11
1 Accumulate 0 1 56 11 N 1 Y 11
1 Accumulate 0 1 63 11 N 1 Y 11
1 Retrieve 0 1 60 II N 1 Y 11
i Change Calculator 73 1 87 II Y 1 N 11
1 Reinitialize 0 1 57 N N 1 N II
1 Change 0 1 73 11 N 1 N 11
1 Retrieve Value 0 1 34 11 N 1 N 11
1 Orange Accumulator » 86 1 109 11 Y 1 N 11
1 Reinitialize ll 0 1 57 11 N 1 N 11
1 Reinitialize i. 0 1 82 11 N 1 N 11
1 Accumulate Change n 0 1 63 11 N 1 N II
1 Accumulate (hange II 0 1 70 n N 1 N 11
1 Retrieve Accumulation II 0 1 34 11 N 1 N II
1 Retrieve Pieviou» Value II 0 1 54 11 N 1 N 11

SUBTOTALS 234 392 1.061 1.408 3.629

P688 Polynomials
Reduction Operations

Sine Reduction
Cosine Reduction

Taylor Series
Taylor Natural Log

Nat Log Bterm
Nat Log 7term
Nat Log 6term
Nat Log 3ienii
Nut Log 4lerm

Taylor Log Base N
Log Base N Rlcrm

Log N Rterm
Log Base N 7term

I^og N 7teim
Log Base N 6lerm

l.og N 6term
Log Base N 5term

I-og N 3lcrm
Log Base N 4lcrin

Log N 4u.rm
Taylor Degree Opcralions

Mod Cos D 4tcrni

15 1 4.813 II 234 1 129 11 N 1
4 I

13 I
6 I
8 1

17 1
II I
17 I
16 I
13 1
14 1
6
4
4
4
4
4
4
4
4
4
4

54
J2

93 I
0 I
0 1

129 1
89 I
0 I
0 I
0 1
0 I
0 1

99 1
0 I

0 I
0 1
0 I
0 I
0 I
n i
0 I
0 I

131 I

99
74
74
82

108
0
0
0
0
0

110
0
0
0
0
0
0
0
0
0
0

206
0

N
Y
Y
N
N
Y
Y
Y
Y
Y
N
Y
N
Y
N
Y
N
Y
N
Y
N
N
Y

I

136

TABLE AO. CAMP PARTS SIZING LIST (10 OF 14)
TT.CSC 1 TLCSCNwne || Code Size Comment Size 11 Part 1 llth II
No. 1 Lower Level Unit» II Spec 1 Body 1 Test II Sp« 1 Body II 1 Use II

1 Tan D «term II 1 1 17 1 0 1 o n Y 1 N II
1 Mod Tan D «term It 1 1 3 1 n i o n Y 1 N II
1 Mod Tan D 7lcrin 11 1 1 5 1 0 1 0 II Y 1 N II
1 Mod Tan I) «term II 1 1 J 1 0 1 0 II Y 1 N II
1 Mod Tan 1) tarm H 1 1 3 1 0 1 o n Y 1 N 8

1 ModTanD4ttrm II 1 1 5 1 0 1 o n Y 1 N 8

1 Sin D «term II 1 1 17 1 0 1 0 II Y 1 U 8
1 Sin D 7tcrm II 1 1 1« 1 0 1 0 II Y 1 N 8

1 Sin D 6term n i 1 13 1 0 1 0 II Y 1 N II
1 Sin D Jterm n i 1 14 1 0 1 0 II Y 1 N II
1 Mod Sin D ftterm n i 1 34 1 0 1 0 II Y N II
1 Mod Sin D Tterm n I 1 32 1 n 0 1 o n Y N H
(Mod Sin D «term n i 1 30 1 n 0 1 o « Y N II
1 Mod Sin D Stem. n i 1 28 1 H 0 1 0 II Y N II
1 ModSinD4term ii i 1 26 1 II 0 1 0 II Y N II
1 Coa D 8teim H 1 1 23 1 II 0 1 o n Y N II
1 CoaDTlerm n i 1 24 1 II 0 1 0 N Y N 11
t Cos D fitcrm n i 1 23 1 0 1 0 II Y N 8

Co« D Stem n i 1 22 1 0 1 o n Y N 8
CoaD4tcnn II 0 1 27 1 0 1 o n N N II
Mod Co« D «term « i 1 40 1 0 1 0 II Y N 8
Mod Cm D 7term H 1 1 38 1 0 1 0 II Y N 8
ModC<>«I)6lerni n i 1 36 1 0 1 0 II Y N 8
Mod Co. D Sterm n i 1 34 1 0 1 0 11 Y N 8
Sin D 4term 11 0 1 19 1 0 1 0 « N N 8

Taylor Radian Opeialion« 11 13 1 90 1 210 1 249 8 N N 8
Arctnn R 7lcrm II i 1 22 1 0 1 0 II Y N 8
Arclan R Olerm n i 1 21 1 0 1 0 II Y N II
Arctan R Slerm n I 1 20 1 0 1 0 II Y N II
Arclan R 4term n I 1 19 1 0 1 0 8 Y N 8
All Anrtan R «term n i 1 16 1 0 1 0 8 Y N II
Alt Arctan R 7tenii it i 1 13 1 0 1 C II Y N 8
All Arctan R 6tcnn n i 1 14 1 0 1 0 8 Y N II
Ah Arclan R Stemi n i 1 13 1 0 1 0 II Y N 8
Ah Arctan R 4lenn n i 1 12 1 0 1 0 II Y N 8
Mod Sin R «term n i 1 29 1 0 1 o n Y N 8
Mod Sin R Sterra n i 1 27 1 0 1 0 8 Y N 8
Mod Sin R 4term n I 1 23 1 0 1 o n Y N II
Co« R «term II i 1 23 1 0 1 0 II Y 1 N 8
Cos R 7tcrm n i 1 24 1 0 1 0 II Y N II
Cos R fiterm n i 1 23 1 0 1 0 8 Y 1 N II
Cos R 5tetm II i 1 22 1 0 1 0 II Y 1 N 8
Cos R 4term n i 1 21 1 0 1 0 II Y 1 N 8
Mod Cos R «term n i 1 39 1 0 1 0 II Y 1 N 8
Mod Co« R 7tetir n I 1 37 1 0 1 0 II Y 1 N 8
Mod Co« R «term n I 1 33 1 0 1 0 II Y 1 N 8
Mod Co« R Sterm n i 1 33 1 0 1 0 II Y 1 N 8
Mod Cos R 4lcnn II i 1 31 1 0 1 0 II Y 1 N II
Tan R «term ii i 1 16 1 0 1 0 II Y 1 N II
Mod Tan R «term ii I 1 5 1 0 1 0 II Y 1 N II
Mod Tan R 7term II I 1 5 1 0 1 0 II Y 1 N II
Mod Tun R «term n i 1 3 1 0 1 0 II Y 1 N 8
Mod Ton R Jterm n i 1 3 1 0 1 0 8 Y 1 N II
Mod Tsn R 4tenn n i 1 3 1 0 1 0 II Y 1 N II
Arcsin R «term ii i 1 16 1 0 1 0 II Y 1 N 8
Arcsin R 7lerm 1 13 1 0 1 0 II Y 1 N II
Arcsin R «term 1 14 1 0 1 0 II Y 1 N 8
Arcsin R Merm 1 13 1 0 1 0 II Y 1 N II
Arcco« R «term 1 16 1 0 1 0 II Y 1 N II
Arcco« R 7term 1 13 1 0 1 0 II Y 1 N II

1 14 1 0 1 0 II Y 1 N II
Arcco« R jlerm 1 13 1 0 1 0 II Y 1 N II
Arctan R «term 1 23 1 0 1 n II Y 1 N II
Sin R «term 1 16 1 0 1 0 II Y 1 N II
Sin R 7lenn 1 13 1 n i 0 II Y 1 N II
Sin R fiicnn 1 14 1 0 1 n n Y 1 N II
Sin R Jlenn 1 13 1 0 1 0 II Y 1 N II
Sin R 4lemi 1 12 1 II 0 1 0 II Y 1 N II
Mod Sin A «term 1 33 1 II 0 1 0 II Y 1 N II
Mod Sin R 7term 1 31 i II 0 1 0 II Y 1 N 11

137

TABLE A.3. CAMP PARTS SIZING LIST (11 OF 14)
TLCSC 1 TLCSCN.me || Code Slu Comment Stee 8 Part 1 llth II
No. 1 Lower Level Unit« H Spec 1 Body 1 Teal 8 Spec 1 Body II 1 Use II

1 Modified Newton Ruphium II 1 II 1 76 1 130 II N 1 Y II
1 SqRl n 1 33 1 0 1 0 II Y 1 Y II
1 Newton Rephaon ii 1 9 1 76 1 139 II N 1 N II
i SHRt n 1 33 1 0 1 0 II Y 1 N II
1 System Functions ii 1 10 1 72 1 62 n N 1 N II
1 Semicircle Operations n 1 22 1 114 1 144 II N 1 N II
1 Sin 1 7 1 0 1 114 II Y 1 N II
1 Cos 1 7 1 0 1 114 II Y 1 N II
1 Tan 1 « 1 0 1 116 II Y 1 N II
1 Arcsin 1 8 1 0 1 129 II Y 1 N II
1 Arccos 1 8 1 0 1 129 II Y 1 N II
1 Arctan 1 7 1 0 1 123 II Y 1 N II
1 Degree Operations 1 24 1 90 1 122 II N 1 N II
1 Sin 1 8 1 0 1 108 II Y 1 N II
1 Cos 1 8 1 0 1 107 II Y 1 N II
1 Tan 1 8 1 0 1 108 II Y 1 N II
1 Arcsin 1 8 1 0 1 110 II Y 1 N II
1 Arccos 1 8 1 0 1 110 8 Y 1 N II
1 Arctan 1 7 1 0 1 105 II Y 1 N II
1 Square Root 1 8 1 74 1 103 8 Y 1 N II
1 Sqrt 1 8 1 0 1 10« II N 1 N II
1 Base 10 Logarithm 1 8 1 73 1 103 II Y 1 N II
1 Log 10 1 8 1 0 1 108 II N N II
1 Base N Logarithm 1 14 1 97 1 156 II Y N II
1 LogN 1 10 1 0 1 125 II N N II
1 Radian Operations 1 21 1 90 1 122 II N N II
1 Sin 1 7 1 0 1 104 II Y N II
1 Cos 1 7 1 0 1 104 II Y N II
1 Tan 1 8 1 0 1 108 II Y N II
1 Arcsin 1 8 1 0 1 110 8 Y N II
1 Arccos 1 8 1 0 1 110 II Y N II
1 Arctan 1 7 1 0 1 104 II Y N II
1 Cody Waite 1 « 1 SO 1 n II N N II
1 Cody Natural Log 1 14 1 «2 1 114 II N N II
1 Nat Log 1 31 1 0 1 0 II Y N II
1 R 1 6 1 0 1 0 II N N II
1 Defloal 42 1 0 1 0 II N N II
1 Cody Log Base N 6 1 91 1 109 II N N II
1 Log Base N 4 1 0 1 0 II Y N II
1 LogN 4 1 0 1 0 II N N II
1 Continued Fractions 5 1 50 1 76 II N N II
1 Continued Radian Operations 4 1 9« 1 103 II N N II
1 TanR 20 1 0 1 0 II Y N II
1 Arctan R 23 1 0 1 0 II Y N II
1 Pike 5 1 30 1 SO II N Y II
1 Hike Semicircle Operations 10 1 91 1 128 II N Y II
1 Arcsin S fiterm 31 1 0 1 0 II Y 1 Y II
t Arccos S 6term 32 1 0 1 0 II Y 1 Y II
1 General Polynomial 16 4 1 126 1 134 II N 1 N II
1 Polynomial 12 1 0 1 0 II Y 1 N II
1 Han « 1 55 1 82 II N 1 N II
1 Hart Radian Operations II 9 1 97 1 122 II N 1 N II
1 Cos R Stertn 22 1 0 1 0 II Y 1 N II
1 Hart Degree Operations 9 1 95 1 133 II N 1 N II
1 Cos D Sterm 22 1 0 1 0 II Y 1 N II
1 Hastings 6 1 55 1 83 II N 1 N II
1 Hastings Degree Operations 10 18 1 114 1 160 II N 1 N II
1 Sin D Sterm 14 1 II 0 1 0 II Y 1 N II
1 Sin D 4lerm 13 1 II 0 1 0 II Y 1 N II
1 Cos D Jtetm 16 1 II 0 1 0 II Y 1 N II
1 Cos D 4tenii 15 1 II 0 1 0 II Y 1 N II
1 Ian D 5lemi 12 1 II 0 1 0 II Y 1 N II
1 TanD4lerm 12 1 0 1 0 II Y 1 N II
1 Hastings Rodian Operations i: i 46 1 140 1 216 II N 1 Y II
1 Cos R 5term 16 1 0 1 0 II Y 1 Y II
1 Cos R 4 term 15 1 fl 1 0 II Y 1 Y II
1 Tan R 5term 12 1 0 1 0 II y i Y II
1 Tan R 4term 12 1 0 1 0 II Y 1 Y II
1 Arctan R Rlerm 18 1 0 1 0 II Y 1 Y II
1 Arctan R 7tcrm 17 1 0 1 0 II Y 1 N II

138

TABLE A-3. CAMP PARTS SIZING UST (12 OF 14)
TT-CSC TLCSC N.m. It Code Size > Comment Size II Part nth
No. Lower Level Unit« n Spec Body 1 Teat II Spec 1 Body H Uae

Arctan R 6term H 1 t« 1 0 1 0 » Y Y
Mod Arctan R Rtcrni II 1 21 1 n I 0 N Y N
Mod Arctan R 7teriti 11 1 27 1 0 1 0 II Y N
Mod Arctan R 6temi II 1 2« 1 0 1 0 11 Y N
Sin R Stemi II 1 14 1 0 1 0 11 Y Y
Sin R 4tcrm II 1 1] 1 0 1 0 11 Y y

tJwbynhev II 5 7 1 39 1 7« It N N
ChebyBhcv Radinn Opernlion« II in 10 1 II 103 1 125 11 N N
Sin R Slcnn II i 2« 1 II 0 1 0 11 Y N

Cheby^hev Degree Opernlion» II 9 II 1 II 91 1 12« II N N
Sin D Jterm II 1 2« 1 II 0 1 0 11 Y N

Chebyahev Semkircte Operations II 9 10 1 II 91 1 125 11 N N II
Sin S Stcrm n 1 26 1 H 0 1 0 11 Y N 11

SUBTOTALS 424 2.893 4,1113 3.073 6.513 133

Abstract Dntn Structures
Bounded Slack
Clear .Stark
Add Element
Retrieve_Elemcnt
Peek
Slack_Statui
Stack.Lcnglh

Unbounded Stack
Initialize
Clear Jitack
Flre_ Memory
Add.Element
Retrieve_Element
Peek
Slack .Status
Stack Lenglh
Dot_NeJt
Sel_Ne»t

Unbounded ITPO Buffer
Initialize DufTer
Clear_Buffer
F:ree„Mernory
Add_Elemcnt
Retrieve .Element
Peek
Buffer Status
Buffer J.ength
l)ot_Ne»t
Sel_Ne*t

Nonblocking C'irculnr Buffer
Clear_Buffer
Add_Elemrnl
Retrieve^Element
Peek
Buffer Status
BufferJ etiglh

Unbounded Priority Queue
Queue_Status
Queue I enplh
Do«_Next
Set_Ne«l
Initialize
Clear^Queue
Free_Memory
Add_Flement
Retrieve Element
Peek

Bounded FIFO Buffrr
Peek
Buffet Slnlu»
Buffer_Lei>([th
Clear.Buffer
Add_Elenient

11 1 II 1 3.344 11 183 1 105 11 N 1 Y
II 1 9 1 138 1 133 8 Y 1 N
II 1 5 1 0 1 93 8 N 1 N
II 1 12 1 0 1 137 11 N 1 N
II 1 12 1 0 1 139 It N 1 N
11 1 10 1 0 1 138 H N 1 N
11 1 14 1 0 1 125 11 N 1 N
H 1 3 1 0 1 93 8 N 1 N
11 1 10 1 152 1 138 11 Y 1 N
II 1 16 1 0 1 124 N N 1 N
11 1 18 1 0 1 142 8 N 1 N
N 1 13 1 0 1 101 11 N 1 N
n 1 16 1 0 1 148 8 N 1 N
ii 1 18 1 0 1 150 8 N 1 N
n 1 12 1 0 1 132 8 N N
n 1 14 1 0 1 113 II N N
n 9 1 0 1 108 11 N N
n 5 1 0 1 17 II N N
H 6 1 0 1 89 8 N N
n 25 52 1 160 1 233 11 Y N
ii 16 1 0 1 111 11 N N
n 17 1 0 1 126 11 N N
n 12 1 0 1 132 11 N N
n 1« 1 0 1 144 II N N
n 18 1 0 1 136 11 N N
n 12 1 0 1 124 11 N N
n 14 1 0 1 106 11 N N
n 9 1 0 1 108 II N N
n 3 1 0 1 87 11 N N
n 6 1 0 1 89 11 N N
n 20 9 1 147 1 144 11 Y Y
n 10 1 0 1 100 II N Y
II 26 1 0 1 123 11 N Y
II 19 1 0 1 137 11 N 1 Y
n 17 1 0 1 143 11 N 1 Y

14 1 0 1 123 II N 1 Y
5 1 0 1 92 11 N 1 Y

28 52 1 174 1 252 11 Y 1 Y
14 1 0 1 106 8 N 1 Y
9 1 0 1 113 8 N 1 Y
5 1 0 1 87 11 N 1 Y
« 1 0 1 89 11 N 1 Y

16 1 0 1 117 II N 1 Y
18 1 0 1 144 11 N 1 Y
12 1 0 1 115 II N 1 Y
29 1 0 1 172 11 N 1 Y
18 1 0 1 143 11 N 1 Y
12 1 0 1 121 II N 1 Y

■>l | 9 1 168 1 145 11 Y 1 Y
18 1 0 1 141 11 N 1 Y
15 1 0 1 124 11 N 1 Y n

3 1 0 1 92 11 N 1 Y n
10 1 0 1 99 11 N 1 Y II
19 1 0 1 143 11 N 1 Y II

139

TABLE A.3. CAMP PARTS SIZING LIST (13 OF 14)

TLCSC TLCSC N.mc Code Size Comment Size 11 Part tlth
No. Lower Level Unit« Sp« 1 Body 1 Teal Sp« Body H U«

Retrieve .Element 2 1 19 1 0 136 II N Y
Avtllable Space List Operations 0 1 6 1 0 133 II N Y
New Node 0 1 17 1 0 13* II N Y
Save Node 0 1 10 1 0 113 II N Y
Save List II 0 1 12 1 0 116 H N Y

SUBTOTALS 204 812 3,344 939 7.331 29

P692 I Abstract Proceases

I Finite State Machine

t Mealy Machine

I Event-Driven Sequencer

I Time-Driven Sequencer

I Sequence Controller

0 II

II

II

0 I

0 I

0 I

n I
o I
0 I

Y

N
N
N
N
N

M

N
N
N
N
N

SUBTOTALS 29

PR3I Unit Conversions

Kilograms per Meter Squared and Pounds per Foot

Squared

Convcnion to Pounds per Foot2

Conversion to Kilograms per Mcter2

Radians and Semicircles per Second

Conversion to Semicircles per Second

Conversion to Radians per Second

Degrees and Semicircles

Conversion to Semicircles

Conversion to Degrees

Degrees and Semicircles per Second

Conversion to Semicircles per Second

Conversion to Degrees per Second

Seconds and Minutes

Conversion to Minutes

Conversion to Seconds

Centigrade and Fahrenheit

Conversion to Fahrenheit

Conversion to Centigrade

Centigrade and Kelvin

Conversion to Kelvin

Conversion to Centigrade

I'nhrrnhcil and Kelvin

Conversion to Kelvin

Conversion to Fahrenheit

Kilograms and Pounds

Conversion to Kilograms

Conversion to Pounds

Meters ond Feet per Second

Conveision to Feet per Second

Conversion to Meters per Second

Meters and Feet per Second Squared

Conversion to Feet per Second2

Conversion to Meters per Second?

Gees and Meters per Second Squared

Conversion to Meiers per Second?

Conversion to Gees

Oees and Feet per Second Squared

Conversion to Feet per Second?

Conversion to (lees

Radians and Degrees

Conversion to Degrees

Conversion to Radians

Radians and Degrees per Second

Conversion to Degrees pet Second

Conversion to Radians per Second

Radians and Semicircles

Conversion to Semicircles

Conversion to Radians

H

II

H

II

H

II

It

II

II

H

M
II
II
II
II
II
II
II
II
II
II
II
II
il
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
n
n
n
n
ii

n
n
II
II
II

144 I
I

3 I
3 I
3 I
5 I
2 I
2 I
5 I
I I
I I
3 I
3 I
3 I
3 I
I I
1 I

5 I

2 I

2 I

3 I

1 I

1 I

5 I

1 I

I I

3 I

1 I

t I

3 I

2 I

2 I

3 I
2 I
2 I
5 I
2 I
2 I
5 I
2 I
2 I
3 I

1 I

1 I

5 I

2 I
2 I
5 I
I I
I I

216 I
I

2 I
7 I
7 I
2 I
4 I
4 I
2 I
4 I
4 I
2 I
6 I
6 I
2 I
4 I
4 I
2 I
6 I
6 I
2 I
4 I
4 I
2 I
5 I
3 I
2 I
4 I
4 I
2 I
3 I
3 I
2 I
6 I
6 I
2 I
3 1

5 I
2 I
3 I
5 I
2 I
4 I
4 I
2 I
fi I
6 I
2 I
5 I
3 I

961 II

II

1«! I

I

0

0

0

0

0

0 I

0 I

0

0

0

0

0

0

0

0

0 I

0 I

0 I

0 I

0 I

0 I

n i
o
o
0

0

0

0

o
o
0
0
o I
0 I
0 I
0 I
0 I
o I
0 I
0 I
0 I
o I
n i
« i
o I
o I
o I
o I

173

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n
0

0

0

0

0

0

0

0

0

0

0

n
o

N

Y

Y

N

Y

Y

N

Y

Y

N

Y

Y

N

Y

Y

N

Y

Y

N

Y

Y

N

Y

Y

N
Y
Y
N
Y
Y
N
Y

Y

N
Y

Y

N
Y

Y

N
Y

Y

N
Y

Y

N

Y

Y

N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
N
N
N
Y

N
N
N
N
N
N
N
N
N
N
Y

Y

Y

140

TABLE A-3. CAMP PARTS SIZING LIST (CONCLUDED)

TLCSC
No.

1 TLCSC Name
1 Lower Level Units

II
n Spec

Code Size
1 Body 1 Test

II
It

Comment Size
Spec 1 Body

II
>

Put 1
1

lllh
Use II

1 Meter» «id Feel
1 Convenlan to Feel
1 Convenlon to Meter«

a
n
n

J
1
1

1 2 1
1 4 1
1 4 1

H
n

0 1
0 1
0 1

0
0
0

II
II
II

N 1
Y 1
Y 1

N
N
N

II
II
II

SUBTOTALS 141 202 961 0 0 34 5

M« t Extern«! Form Conversion Twos Complement
1 Scale
1 Unenle

n
n
«

35
2
2

1 20 1
1 9 1
1 1 1

241
II
II

23« 1
0 1
0 1

462
143
'54

II
1
H

N 1
Y 1
Y 1

Y
N
Y

II
II

SUBTOTALS 4 17 241 0 299 2 1

PR90 I Quaternion Operation
I Quaternion Computed From Eulcr Angles
I Normalized Quaternion
I •■•••

It 20 1 9 1 194 II 163 1 72 « N 1 Y II
II 15 1 26 1 n 128 1 19« II Y 1 Y n
n 3 1 !« 1 II 65 1 151 II Y 1 N II
n 4 1 24 1 II 65 1 126 II Y 1 Y II

SUBTOTALS 22 61 194 23« 473

TOTALS

CODE TOTALS

ORAND TOTAL

5.196 11.76« 29,045 29,««7 65.532

16,964 29.045 95.419

141.42«

453 173

141

3. DATA BASE ISSUES

Due to the definition and nature of the parts, some difficulties arose concerning the storage of infor-

mation about parts in the data base. Parts may be TLCSCs, LLCSCs, or units. This means that counting

the code for each part can become problematical because a part is not synonymous with an Ada structure.

For example, a package may contain three parts. Obviously the specification and body for each part are

counted with the part, but what about code for the encapsulating package. Can that be allocated to each

part in the same way? The problem was solved by representing each Ada structure in the data base,

whether part or encapsulating structure, and designating whether or not an entry was a part. This allows

maximum flexibility as to parts designation while at the same time allowing all the Ada code to be

represented and counted in the data base.

Another difficulty which arose concerned the hierarchical nature of the parts. Because the parts are

implemented as a collection of TLCSCs, and the TLCSCs are packages in Ada, the parts are expressed as

a hierarchy of packages and units. In order for the parts to be represented in the data base, this hierarchy

must be represented in some way This may be done in a relational data base, but it is somewhat

awkward. ORACLE provides a way for a hierarchy to be expressed, but in order to do so, the parent unit

of each part needed to be recorded in the data base. This awkwardness made the generation of reports

more difficult and less flexible.

Because no single field could uniquely identify an entry in the relations, surrogates were used. A

surrogate is an arbitrary field, usually a number, which is used as the prime key in a data base. The

partno column in each of the relations contained this surrogate number. The surrogate number was also

used to identify an entry's parent. Because the surrogates enabled entries to be identified uniquely by the

use of only one field, the hierarchy structure was considerably simpler than if more than one field had to

be used as a prime key. The relations were also indexed to provide more speed in referencing.

4. CONCLUSIONS AND RECOMMENDATIONS

The use of the data base enhanced CAMP report capabilities in several areas. The first was the

amount of time spent on the reports, particularly editing and formatting. The time spent editing and

reformatting the reports must be balanced against the lime spent learning the particular data base used and

then designing the data base. This learning time, however, was a one-time expenditure while formatting

and editing tasks were repeated over and over.

Report availability was also greatly enhanced by the use of the data base. Before the data base

method was used, up-to-date reports were not often available and out-of-date reports were used because

of the lime required to redo the report. With the data base method, a new up-to-date report could be

generated very quickly simply by running the report program. In addition, updates were very easy and

could be made as they occurred, rather than waiting to have enough to Justify spending the time to

reformat the entire report.

The number of reports was increased by using the data base. Because the report generating language

had to be learned only once, additional reports took only a fraction of the time to write than the initial

report.

142

The utilities and correlative programs also made the use of the ORACLE data base productive.

ORACLE has a full range of associated programs available with it which are extremely helpful. In

particular, SQL'Forms made the data base interface particularly easy and productive to use. Time spent

on data entry was considerably reduced and new people were able to use the interface with minimal

instruction (less than 1 hour).

SQL*Plus, the data definition and manipulation language, also made the use of the data base produc-

tive. SQL*Plus, based on the standard SQL language, is a very rich, yet relatively easy to use, product.

Its use made many data base tasks such as the relation definition easy. Again, productivity needs to be

measured against the lime spent learning the language, but SQL is relatively standard and can be learned

relatively easily by a novice and very easily by anyone with experience with other relational data base

query languages. On the other hand, SQL^Plus has a full range of capabilities which can satisfy even the

most complex relational application requirements.

The use of a data base for these types of report and information storage needs is highly recom-

mended. A number of lessons concerning the use of the data base came to light during the CAMP usage.

• Data base design should take its place with other software design tasks from the beginning of the

project. On CAMP, the use of the data base began after the project was under way. Because of

this, there was a duplication of effort when the change was made from using a hand-edited report to

a data base. To avoid this type of duplication of effort, it is recommended that a project start with

the data base from the beginning.

• Careful attention is required during the intial design and layout phase. The nature and extent of the

data already collected when data base use began constrained this phase during CAMP. As a result,

the first set of data base relations were designed with little knowledge of how they might need to be

expanded or used at a later date with other data base relations. This resulted in less flexibility and

more difficult generation of reports later on. Careful data base design at the beginning of the

project will reward the extra time spent with fewer problems later on.

• The use of ORACLE is recommended for this type of data base use. The CAMP project found

ORACLE easy to use, extremely powerful, and with an excellent set of utilities and con Native

programs. ORACLE has the added advantage of using SQL, which is as close to a standard as

exists for query languages, and is available on a wide range of equipment.

143/144 (Blank)

APPENDIX B

CATALOG ATTRIBUTES

A detailed explanation of each attribute of the CAMP software parts catalog is presented here. For each
attribute the following information is provided (as applicable):

1. The name of the attribute.

2. The data type of the attribute. The type of an attribute can be NUMERIC (e.g., Part Number is a

numeric attribute), STRING (e.g.. Part Name is of type string), SET (e.g., the Withs attribute may

have a set of one or more values), TEXT (e.g., the value of Abstract is of type text), or

ENUMERATION (e.g., the Mode attribute must have a value of bundled, unbundled, or

schematic).

3. The domain of an ENUMERATION type.

4. The status of the attribute. This is either REQUIRED (i.e., all parts must be supplied a value for

this attribute) or RECOMMENDED (i.e., the attribute is recommended for completeness but not
required).

5. A description of the attribute's meaning, including mention of any default values and the source

(user or system) of attribute entry.

6. An example of a valid value is shown for each attribute.

The catalog attributes are enumerated in Figure B-l.

145

GENERAL

Part Number
Part Name
Mode
Class
I<ast Change Date of Entry
Government Security Classification (part)
Government Security Classification (entry)
Remarks

Revision Number
Functional Abstract
Taxonometric Category
Keywords
Project Usage
Corporate Sensitivity Level
Corporate Sensitivity Level

(part)
(entry)

DEVELOPMENT

Design Issues
Development Date
Development Status
Requirements Documentation

Revision Notes
Developer
Developed For
Design Documentation

USAGE

Location of Source Code
Withs
Implemented By
Built From
Sample Usage
Restrictions

Access Notes
Wilhed By
Implements
Used to Build
Hardware Dependencies

PERFORMANCE

Source Size/Complexity Characterizations
Timing

Fixed Object Code Size
Accuracy

Figure B-l. Catalog Attributes

146

ATTRIBUTE NAME Part Number
TYPE Numeric
STATUS Required
DESCRIPTION Part Number is an inleger which logelher with the value of the Revision Number

attribute uniquely identifies a catalog entry. The Part Number is not required to
be unique (i.e., the same number would be used for all revisions of a given part).
The Part ID code will consist of the letter P followed by the Part Number
hyphenated with the Revision Number, and will be generated by the system. The
part number should not contain leading zeroes.

EXAMPLE 16

ATTRIBUTE NAME Revision Number
TYPE Numeric
STATUS Required
DESCRIPTION The Revision Number is an integer used to uniquely identify revisions of a par-

ticular part. The revision number will be generated by the system. The first
entry will always to be 0, with subsequent revision values incrementing by 1.
This value together with the Part Number form a unique key called the Part ID.

EXAMPLE 5

ATTRIBUTE NAME Part Name
TYPE String
STATUS Required
DESCRIPTION A valid Ada identifier which provides a brief, and not necessarily unique,

descriptive name for a part (e.g., a package may have more than one body, in
which case both bodies would have the same name but they would be uniquely
identifiable by the Part ID).

EXAMPLE Missile_Launch_Platform

ATTRIBUTE NAME Government Security Classification of Part
TYPE Enumeration
DOMAIN (Unclassified, Confidential, Secret, Top_Secret)
STATUS Required
DESCRIPTION Specifies the DoD security classification of the part. The default value is Un-

classified.
EXAMPLE Unclassified

ATTRIBUTE NAME Corporate Sensitivity Level of Part
TYPE Enumeration
DOMAIN (Unclassified, Private, Sensitive, Proprietary)
STATUS Required
DESCRIPTION Specifies the corporate sensitivity level of the part. The default value is Unclass-

ified.
EXAMPLE Sensitive

147

ATTRIBUTE NAME Government Security Classification of Catalog Entry
TYPE Enumeration
DOMAIN (Unclassified, Confidential. Secret, Top_Secret)
STATUS Required
DESCRIPTION Specifies the DoD security classification of a part's catalog entry; this may be

different from the security classification of the part itself. The default value is
Unclassified.

EXAMPLE Secret

ATTRIBUTE NAME Corporate Sensitivity Level of Catalog Entry
TYPE Enumeration
DOMAIN (Unclassified, Private, Sensitive, Proprietary)
STATUS Required
DESCRIPTION Specifies the corporate sensitivity level of a part's catalog entry; this may be

different from the corporate sensitivity level of the part itself. The default value
is Unclassified.

EXAMPLE Proprietary

ATTRIBUTE NAME Taxonometric Category
TYPE Concatenation of enumeration values
DOMAIN see Figure B-2
STATUS Required
DESCRIPTION Specifies the taxonometric classification of the part. This can be a multi-leveled

specification, using periods to separate the different levels of classification.
EXAMPLE Primary Operation.Navigation

ATTRIBUTE NAME Functional Abstract
TYPE Text
STATUS Required
DESCRIPTION A brief (no greater than 500 words) explanation of the purpose and functionality

of the part. This attribute is intended to provide the user with a quick overview
of the unit.

EXAMPLE The bounded FIFO buffer performs buffering of data in a first-in first-out fash-
ion. The part will limit the number of items which may be in the buffer at any
one lime and will raise an exception if an attempt is made to add to an already
full buffer. The part can be used to buffer incoming Mission Data, TERCOM
processing, or DSMAC updates. In addition, this part can be used for message
passing between components of a system.

ATTRIBUTE NAME Design Issues
TYPE Text
STATUS Recommended
DESCRIPTION This attribute should briefly discuss the rationale for design decisions such as the

selection of data structures and algorithms to be used. The user should be
referred to external design documentation for a lengthy discussion of the issues.
This field should contain information on the use of pragma inline for the part
under consideration.

EXAMPLE Since the telemetry sampling rale changes depending upon the values of the input
data, the quantity of data to be buffered is impossible to know in advance. For
this reason, dynamic buffers have been used for telemetry data storage buffering.

148

ATTRIBUTE NAME Revision Notes
TYPE Text
STATUS Recommended
DESCRIPTION This attribute should briefly describe the reason for revision, and any changes in

functionality that have occurred as a result of the revision.
EXAMPLE The matrix multiply of the H and J matrices was changed. A diagonal matrix

multiply routine is now utilized rather than the more general matrix multiply
routine previously used. This was found to be appropriate for every case and the
change does not affect functionality, but results in a more efficient part.

ATTRIBUTE NAME Class
TYPE Enumeration
DOMAIN (Package Specification, Package Body, Task Specification, Task Body, Sub-

program Specification, Subprogram Body, Generic Package Specification,
Generic Package Body, Generic Task Specification, Generic Task Body, Generic
Subprogram Specification, Generic Subprogram Body, Generic Formal Part,
Context Clause)

STATUS Required
DESCRIPTION This attribute specifies the type of the part. The word type is not used for this

attribute in order to avoid confusion with Ada types.
EXAMPLE Task Body

ATTRIBUTE NAME Keywords
TYPE Set of 0 or more Strings
STATUS Recommended
DESCRIPTION This attribute contains one or more keywords or phrases that can be used to

locate a part. Keywords narrow the search for a desired part. Keywords can be
used to describe functionality of the part, or task area. Keywords are entered lor
the top-level specification only, although they apply to the lower levels as well.

EXAMPLE (autopilot, navigation)

ATTRIBUTE NAME Mode
TYPE Enumeration
DOMAIN (Bundled Code, Unbundled Code, Schematic)
STATUS Required
DESCRIPTION This attribute indicates the part's usage mode. Bundled parts come complete

with an environment. Unbundled parts consist of the part itself; the user must
establish the environment in which it is to be used. Schematic parts must be
constructed from the constructors provided.

EXAMPLE bundled code

ATTRIBUTE NAME Last Change Date of Entry
TYPE Siring
STATUS Required
DESCRIPTION This attribute provides the dale that the catalog entry was last changed; it will be

supplied by the system.
EXAMPLE 07-30-85

149

ATTRIBUTE NAME Development Date
TYPE String
STATUS Required
DESCRIPTION This attribute provides the dale that the original part or revision was developed; it

will be supplied by the user.
EXAMPLE 02-22-85

ATTRIBUTE NAME Developer
TYPE String
STATUS Required
DESCRIPTION This entry identifies the name of the organization that developed the part. The

default is McDonnell Douglas Astronautics Co.
EXAMPLE McDonnell Douglas Astronautics Co.

ATTRIBUTE NAME Developed For
TYPE Set of strings
STATUS Recommended
DESCRIPTION This attribute should identify the project and type of software for which the part

was originally developed. Multiple entries are allowed for this attribute.
EXAMPLE Tomahawk (BGM-109AS) Flight Software

ATTRIBUTE NAME Development Status
TYPE Enumeration
DOMAIN (Specified, Designed & Coded, Tested, Verified)
STATUS Required
DESCRIPTION This attribute indicates the development status of the unit. If the value is

Specified, this indicates that the need for and purpose of the part have been iden-
tified and the requirements have been specified (all required attributes except for
Mode, Withs, and Withed By should be supplied for a part in this slate). If
Designed & Coded, the requirements for the part have been refined and used to
specify the part for coding in Ada so that compiled code is now available (all
remaining attributes may now be supplied). A part with development status of
Tested indicates that this part has passed the tests of the developer and found to
be in working condition. Status of Verified indicates that the part has been ac-
cepted and verified by the customer for which it was originally developed.

EXAMPLE Tested

ATTRIBUTE NAME Source Size/Complexity Characterizations
TYPE Text
STATUS Recommended
DESCRIPTION This attribute provides the size of the Ada part in terms of lines of source code

(LOC), and other complexity characterizations.
EXAMPLE Lines of Source Code:

15 lines executable
2 lines type declarations
5 lines object declarations

150

ATTRIBUTE NAME Fixed Object Code Size
TYPE Text
STATUS Recommended
DESCRIPTION Tills attribute provides the fixed (static) size of the Ada part in terms of bytes of

object code. It is environment-dependent, therefore, the conditions under which
the figure was obtained must be provided.

EXAMPLE 720 bytes when compiled on VAX 11/780 using the VAX Ada compiler.

ATTRIBUTE NAME Location of Source Code
TYPE String
STATUS Recommended
DESCRIPTION This entry should specify the file name, library, and computer system where the

source code for the part or part constructor is located. A value for this attribute is
entered for the top-level specification only, although it applies to the lower levels
as well.

EXAMPLE USERDISK5:[CAMP2.ABSTRACT]FSM.ADA

ATTRIBUTE NAME Access Notes
TYPE Text
STATUS Recommended
DESCRIPTION This attribute provides access information for a particular part. To deal with

actual Ada parts, information is given to aid in applying the Ada compilation
rules for part use, such as what other parts must be withed. For schematic parts,
information is given on how to get to a particular part, such as how to invoke the
schematic constructor.

EXAMPLE Include the statement "with Matrix_Types".

ATTRIBUTE NAME Requirements Documentation
TYPE Text
STATUS Recommended
DESCRIPTION This attribute identifies the requirements documentation and indicates its

availability.
EXAMPLE Cruise Missile Advanced Guidance Computer Program Development Specifica-

tion for the Inertial Navigation System, Specification #70HS41092

ATTRIBUTE NAME Design Documentation
TYPE Text
STATUS Recommended
DESCRIPTION This attribute identifies the design documentation and indicates its availability.
EXAMPLE Software Detailed Design Document for the Missile Software Parts of the Com-

mon Ada Missile Packages Project

ATTRIBUTE NAME Withs
TYPE Set of identifiers composed of Part IDs
STATUS Required
DESCRIPTION This attribute contains an enumeration of other units within the catalog that this

unit withs.
EXAMPLE (P160-2.P161-2)

151

ATTRIBUTE NAME Wlthed By
TYPE Set of identifiers composed of Part IDs
STATUS Required
DESCRIPTION This attribute contains an enumeration of other units within the catalog that with

this unit.
EXAMPLE P70-0

ATTRIBUTE NAME Project Usage
7YPE Set of strings
STATUS Recommended
DESCRIPTION This attribute enumerates the projects and systems that use this particular part.

The places where components generated via constructors are used should also be
enumerated. The usage attribute aids in tracking systems which have 'checked a
part out of the library'. Such an entry facilitates maintenance in the event that an
error is found in a part.

EXAMPLE {AGM-I09H, AGM-109L, Harpoon)

ATTRIBUTE NAME Sample Usage
TYPE Text
STATUS Recommended
DESCRIPTION This attribute provides the user with the information necessary to use the part

(i.e., how, when, and where the part should be used). Potential usage of this part
in the applications of an organization may be discussed here.

EXAMPLE This part is generally a candidate for use in any missile which has a throttleable
engine and which requires the control of mach number.

ATTRIBUTE NAME Accuracy
TYPE Text
STATUS Recommended
DESCRIPTION This field contains information on the algorithmic accuracy or precision of

numerical results computed by the part. If this information is not relevant, it
should be left blank.

EXAMPLE The distance returned has an accuracy of IS significant digits.

ATTRIBUTE NAME Timing
TYPE Text
STATUS Recommended
DESCRIPTION This field contains information on execution time for sample invocations or in-

stantiations of the part. The run-time conditions that produced the timing results
must be specified in order to make this information relevant.

EXAMPLE This part averaged an execution time of 0.52 milliseconds when called 200 times
from a continuous loop on a dedicated Microvax II.

ATTRIBUTE NAME Implements
TYPE Set of identifiers composed of Part IDs
STATUS Recommended
DESCRIPTION This attribute is valid only for a body, and identifies the specification portion that

it implements.
EXAMPLE P603-5

152

ATTRIBUTE NAME Implemented By
TYPE Set of identifiers composed of Part IDs
STATUS Recommended
DESCRIPTION This attribute is valid only for a Specification, and identifies the body or bodies

that implement it.
EXAMPLE P603-5

ATTRIBUTE NAME Built From
TYPE Set of identifiers composed of Part IDs
STATUS Recommended
DESCRIPTION This attribute consists of an enumeration of other units within the catalog which

are encapsulated within this unit; these are the parts which this unit is built from.
The entries must be the Part IDs of these parts. Table B-l provides guidelines for
determining possible built from relationships for parts.

EXAMPLE P603-5

ATTRIBUTE NAME Used to Build
TYPE Set of identifiers composed of Part IDs
STATUS Recommended
DESCRIPTION This attribute consists of an enumeration of other units within the catalog which

encapsulate this unit; these are the parts which are used to build the cunent part.
The entries must be the Part IDs of these parts. Table B-l provides guidelines for
determining possible used to build relationships for parts.

EXAMPLE P603-5

ATTRIBUTE NAME Hardware Dependencies
TYPE Text
STATUS Recommended
DESCRIPTION This entry contains an elaboration of any hardware dependencies of the part

which would limit its transportability. If there are no dependencies, this attribute
will show None.

EXAMPLE 1553B data bus

ATTRIBUTE NAME Restrictions
TYPE Text
STATUS Recommended
DESCRIPTION This attribute indicates any usage restrictions such as proprietary rights and

copyrights.
EXAMPLE This part is not to be used without the express written permission of McDonnell

Douglas Astronautics Company.

ATTRIBUTE NAME Remarks
TYPE Text
STATUS Recommended
DESCRIPTION This field is for any general remarks concerning the part, or for continuations of

other fields.
EXAMPLE It is anticipated that future missiles will use the structures contained in this part to

control external message handling and to support dynamic task priorities in Ada.

153

♦ Data Package Paris
- Data Constant Parts
- Data Types Parts

♦ Equipment Interface Parts
- General Purpose Equipment Interface Parts
- Specific Equipment Interface Parts

♦ Primary Operation Parts
- Navigation Parts
- Kaiman Filter Parts
- Guidance & Control Parts
- Non-guidance Control Parts

♦ Mathematical Parts
- Coordinate Vector/Matrix Algebra Parts
- General Vector/Matrix Algebra Parts
- Trigonometric Parts
- Geometric Operations Parts
- Data Conversion Parts
- Signal Processing Parts
- General Purpose Math Parts
- Polynomial Parts
- Sparse Matrix Algebra Parts
- Quaternion Algebra Parts

♦ Abstract Mechanism Parts
- Abstract Data Structure Parts
- Abstract Process Parts

♦ Process Management Parts
- Asynchronous Control Parts
- Communication Parts

♦ General Utility Parts

Figure B-2. CAMP Parts Taxonomy

154

TABLE B-l. USED TO BUILD" AND 'BUILT FROM' ATTRIBUTE RELATIONSHIPS

Part Class Used to Build Built From

Package Specification Package Specification
Subprogram Body
Package Body
Task Body

Package Specification
Subprogram Specification
Task Specification

Package Body Package Specification Package Specification
Subprogram Specification
Task Specification

Subprogram Specification Package Specification
Package Body
Task Body

Subprogram Body Subprogiam Specification Packuge Specification
Subprogram Specification
Task Specification

Task Spcclflcailoii Package Specification
Subprogram Body
Package Body

Task Body

155/156 (Blank)

References

[I] MR. Barbacci, A.N. Habermann, and M. Shaw, "The Software Engineering Institute: Bridging
Practice and Potential", IEEE Software, November 1985.

(2) STARS, "Technical Program Plan". Tech. report, STARS Joint Program Office, June 1986.

[3] DoD, "Management of Computer Resources in Major Defense Systems", DoD Directive (Draft)
5000.29, Office of the Under Secretary of Defense, Computer Software and Systems, April 1986.

[4] R.D. DeLauer. "Interim DoD Policy on Computer Programming Languages", Letter issued by
the Under Secretary of Defense, Research and Engineering.

[5] DoD, "Computer Programming Language Policy", DoD Directive 3405.1, Department of
Defense, April 1987.

[6] DoD, "Use of Ada in Weapon Systems", DoD Directive 3405.2, Department of Defense, March
1987.

[7] D.O. McNicholI, C. Palmer, et al. "Common Ada Missile Packages (CAMP), Volume II:
Software Parts Compos.iion Study Results", Tech. report AFATL-TR-85-93. Air Force Ar-
mament Laboratory, May 1986, (Must be acquired from DTIC using access number B102655.
Distribution limited to DoD and DoD contractors only.)

[8] United States Department of Defense, Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A-1983 ed., 1983.

[9J R.L. Schwartz. P.M. Melliar-Smith, "The Suitability of Ada for Artificial Intelligence
Applications", Final Report, SRI International, May 1980.

[10] Boeing Aerospace Co., "Software Interoperability and Reusability", Tech. report RADC-
TR-83-174, Rome Air Development Center, July 1983. Volume I, p. 105

[II] G. Booch, Software Engineering with Ada, Benjamin Cummings, Menlo Park, CA, 1983, pp. 202.

[12] R. Leavitt, "Some Practical Experience in the Organization of a Library of Reuseable Ada
Units", Proceedings, Third Annual National Conference on Ada Technology, 1985, pp. 70.

[13] S.D. Litvinchouk, and A.S. Matsumolo, "Design of Ada Systems Yielding Reusable Com-
ponents: An Approach Using Structured Algebraic Specification", IEEE Transactions on
Software Engineering, Vol. SE-10, No. 5, September 1984, pp. 550.

[14] T.A. Slandish, "An Essay on Software Reuse", IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, September 1984, pp. 496.

157/158 (Blank)

INITIAL DISTRIBUTION LIST

GTE GOVERNMENT SYS CORP
ADVANCED DIGITAL SYSTEMS
AFATL/FXG
MILITARY COMPUTER SYSTEMS
LOCKHEED/O/62-81, B/563, F15
HÜGHES/FULLERTON
UNISYS/MS-E1D08
WESTINGHOUSE/BALTIMORE
AFWAL/AAAS-2
BOOZ-ALLEN & HAMILTON, INC
BOEING AEROSPACE COMPANY/MS 8H-09
BOEING AEROSPACE CO
AD/YGE
SOFTWARE PRODUCTIVITY CONSORTIUM
ARMY CECOM/AMSEL-COM-IA
NAVAL TRAINING SYS CENTER/CODE 251
SCIENCE APPLICATIONS INTL CORP
RAYTHEON/MSL SYS DIVISION
CALSPAN
KAMAN SCIENCES CORPORATION
NAVAL RESEARCH LAB/CODE 5595
CARNEGIE MELLON UNIV/SEI/SHOLOM
COLEMAN RESEARCH CORP
COLSA, INC
CONTROL DATA CORPORATION
WINTEC
CONTROL DATA/DEPT 1855
DACS/RADC/COED
RAYTHEON/EQPT DIV
BMO/ACD
DDC-I, INC
ENGINEERING & ECONOMICS RESEARCH/
DIV OFFICE

BDM CORP
AFATL/FXG/EVERS
ESD/SYW-JPMO
FORD AEROSPACE & COMM CORP/MS HÖH
UNIV OF COLORADO #202
ANALYTICS
AFWAL/FIGL
WESTINGHOUSE ELECTRIC CORP/MS 5220
GENERAL DYNAMICS/MZ W2-5530
HONEYWELL INC
TAMSCO
STARS
FORD AEROSPACE/MS 2/206
GRUMMAN HOUSTON CORPORATION
NAVAL AVIONICS CENTER/NAC-825
NASA JOHNSON SPACE CENTER/EH/GHG
BOEING AEROSPACE/MS-8Y97
HARRIS CORPORATION/GISD

1 CARNEGIE MELLON UNIV/
1 SOFTWARE ENGINEERING INST
H N0AA/ERL/R/E/AL4
1 INTERMETRICS, INC/G. RENTH
1 INTERMETRICS, INC/D.P. SMITH
1 FORD AEROSPACE/WEST DEVEL DIV
1 AD/ENE
1 R0CKWELL/MS-GA21
1 GRUMMAN CORP/MS D-31-237
1 INSTITUTE OF DEFENSE ANALYSIS
1 TELEDYNE BROWN/MS 178
1 USAF/TAWC/SCAM
1 BOEING AEROSPACE CO/D. LINDBERG
5 LOGICON
1 EASTMAN KODAK/DEFT 47
1 SYSTEMS CONTROL TECH, INC
1 E-SYSTEMS/GARLAND DIV
1 AFWAL/AAAF
1 MARTIN DEVELOPMENT
1 MA COMPUTER ASSOCIATES INC
1 IBM FEDERAL SYS DIV/MC 3206C
1 MCDONNELL DOUGLAS/INCO, INC
1 UNITED TECH, ADVANCED SYS
1 MCDONNELL AIRCRAFT CO/DEPT 300
1 WESTINGHOUSE ELEC/MS 132
1 MHP FU-TECH, INC
1 ITT AVIONICS
1 COSMIC/UNIV OF GA
1 NAVAL OCEAN SYS CENTER/CODE 123
1 NAVAL WEAPONS CTR/CODE 3922
1 ODYSSEY RESEARCH ASSOCIATES, INC

USA ELEC PROVING GRD/STEEP MT-DA
1 PATHFINDER SYS
1 BDM CORPORATION
1 PERCEPTRONICS, INC
1 PHOENIX INTERNATIONAL
1 MCDONNELL DOUGLAS ASTRO CO
1 GTE LABORATORY/RUBEN PRIETO-DIAZ
1 PROPRIETARY SOFTWARE SYSTEMS
1 ADVANCED TECHNOLOGY
1 STANFORD TELECOMMUNICATIONS, INC
1 RATIONAL
1 LOCKHEED MISSILES & SPACE CO
1 HERCULES DEFENSE ELEC SYS
1 AEROSPACE CORP
1 ROGERS ENGINEERING 4 ASSOCIATES
1 ADASOFT INC
1 ESD/XRSE
1 SANDERS/MER 21-1212
1 CSC/ERIC SCHACHT
1 COMPUTER TECH ASSOCIATES, INC

159

INITIAL DISTRIBUTION LIST (CONCLUDED)

SCIENCE APPLICATIONS INTER CORP
HQ CASE/CBRC
GOULD INC/CSD
HQ AFSPACECOM/LKWD/STOP 32
SVERDRUP/EGLIN
HONEYWELL INC/CLEARWATER
TECHNOLOGY SERVICE CORP
AEROSPACE/LOS ANGELES
SOFTWARE ARCHITECTURE & ENGIN
LORAL SYSTEMS GROUP/D/476-C2E
NADC/CODE 7033
UNISYS/PAOLA RESEARCH CTR
SIRIUS INC
GENERAL RESEARCH CORP
SOFTECH, INC/R.L. ZALKAN
SOFTECH, INC/R.B. QUANRUD
SOFTWARE CERTIFICATION INS
SOFTWARE CONSULTING SPECIALIST
SOFTWARE PRODUCTIVITY SOLUTIONS, INC
STAR-GLO INDUSTRIES INC
NADC/CODE 50C
WESTINGHOUSE/BALTIMORE
MITRE CORPORATION
SYSCON CORP/I. WEBER
SYSCON CORP/C. MORSE
SYSCON CORP/T. GROBICKI
AEROSPACE CORPORATION/M-8-026
TEXTRON DEFENSE SYSTEMS
GENERAL DYNAMICS/MZ MW
TIBURON SYSTEMS, INC
TRW DEFENSE SYS GROUP
NASA SPACE STATION
BALLISTIC MSL DBF ADVANCED/

TECHNOLOGY CENTER
IBM CORPORATION/FSD
VISTA CONTROLS CORPORATION
VITRO CORPORATION
NAVAL RESEARCH LABORATORY/CODE 5150
CACI, INC
AFSC/PLR
DIRECTOR ADA JOINT PROGRAM OFFICE
MCDONNELL DOUGLAS ASTRONAUTICS/

E i<3it/106/2/MS22
SDIO/S/PI
ADVANCED SOFTWARE TECH SPECIALTIES
DTIC-DDAC
AFCSA/SAMI
AUL/LSE

FTD/SDNF 1
AFWAL/FIES/SURVIAC 1
HQ USAFE/INATO 1
AFATL/CC 1
AFATL/CA 1
AFATL/DOIL 2
6575 SCHOOL SQUADRON 1
IITRI 1

160

SUPPLEMENTARY

INFORMATION

DEPARTMENT OF THE AIR FORCE
WRIGHT LABORATORY (AFCC)

EQLIN AIR FORCE BASE, FLORIDA, 32542-5434

ESRATu
MNOI AD'ßlthlÖVO 13Feb92

SUBJECT: Removal of Distribution Statement and Export-Control Warning Notices

REPLY TO
ATTN OF;

TO; Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number

{ . 88-18-Vol-4
Z. 88-18-Vol-5
3 88-I8-V0I-6

A. 88-25-Vol-l
5. 88-25-Vol-2

t. 88-62-Vol-l
n. 88-62-V01-2
^. 88-62-V01-3

9- 85-93-Vol-l
to. 85-93-Vol-2
M. 85-93-Vol-3

«. 88-18-
«S. 88-18-
\A. 88-18-
1S. 88-18-
Mo. 88-18-
(7. 88-18-
1&.88-18-
19.88-18-

•Vol-1
•Vol-2
•Vol-7
■Vol-8
•Vol-9
•Vol-10
•Vol-11
Vol-12

AD Number

ADB 120 251
ADB 120 252
ADB 120 253

ADB 120 309
ADB 120 310

ADB 129 568
ADB 129 569
ADB 129-570

ADB 102-654 L-
ADB 102-655
ADB 102-656

ADB 120 248
ADB 120 249
ADB 120 254
ADB 120 255^
ADB 120 256
ADB 120 257^
ADB 120 258
ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

LYNNfS. WARQO '2/Uj/r
Chief, Scientific and Technical

Information Branch

1 Atch
AFDTC/PA Ltr, dtd 30 Jan 92

ERRWR

DEPMraENTOFTNEMRFOKE
HEAOCHMmERS AM rome OEVELOPMEHT TEST CBITEI« (AF8C)

EQUN AIR FORCE BASE. FLORIDA 335424000

p£Pl_Y TO
ATTNOF: PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: clearance for Public Release

TO; "WL/MNA

The following technical reports have been reviewed and are approved for
public release: AFAIL-TR-88-18 (Volumes 1 & 2), AFATL-TR-88-18 (Volumes
4 thru 12), AFATL-TRr88-25 (Volumes 1 & 2), AFATL-TR-88-62 (Volumes 1 thru 3)
and AFAHi-TR-85-93 (Volumes 1 thru 3).

VIRGINIA N. PRIBYLA, Lt Col,
Chief of Public Affairs

AFDTC/PA 92-039

