UNCLASSIFIED

AD NUMBER

ADB120259

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; MAR
1988. Ot her requests shall be referred to Air
Force Armanent Lab., Eglin AFB, FL. This

docunent contains export-controlled technical
dat a.

AUTHORITY

AFSC/ MNOL Wight Lab Itr dtd 13 Feb 1992

THISPAGE ISUNCLASSIFIED

_ _ : 0T FILE cop:

SECUKRI IFICATION OF THIS PA
. Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
ITnelassified :
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Distribution authorized to U.S. Government
Agencies and their contractors; Q7 (over)

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFATL-TR-88-18, Vol 12

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAM: OF MONITORING ORGANIZATION
McDonnell Douglas (If applicable)

. Aeromechanics Division
Astronautics Company

6c. ADDRESS (City, State, and ZIP Code) 7b. ADORESS (City, State, and ZIP Code)
P.O. Box 516 Air Force Armament Laboratory
, St. Louis, MO 63166 Eglin AFB, FL 32542-5434
- 8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
P e aa ORGANIZATION . (If applicable)
STARS Joint Program Office F08635-86~C-0025
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Room 30138 1 {#1{"Fern so) PROGRAM PROJECT TASK WORK_UNIT
The Pentagon ELEMENT NO. I NO. NO. ACCESSION NO.,
’ N 11. TITLE (Include Security Classification)
Boiia | Common Ada Missile Package (CAMP) Project: Missile Software Parts, Vol 12:

L Q) Detail Design Documents_(Vol 7-12)
. ... CN] 12. PERSONAL AUTHOR(S)

B iy D, McNicholl, S, Cohen, C. Palmer, et al.
m 13a. TYPE OF REPORT 13b. TIME §ov5R§g Mar 88 14. DATE OF REPORT (Year, Month, Day) |[}5. PAGE COUNT
el I Technical Note rrom _S€P 89 ro AL P%) march 1988 230
s 16. SUPPLEMENTARY NOTATIO
0 Y ARY NOTATION SUBJECT TO EXPORT CONTROL LAWS.
- < Availability of this report is specified on verso of front cover. (over),
17. COSATI CODES 18. SUBJECT TERMS (Copti i nd identi block_pumbe
FIELD GROUP SUB-GROUP Reusable o?'m;;g,' ‘Missile Sottware, oftWare Generators
Ada, Parts Composition Systems, Software Parts Y
£ 3
e 19. ABSTRACT (Conti T nd identify by block numbe
e @.—aThe objggt;;;ogfm{ﬁg.bﬁﬁ?grggfagui% (o) ?dcergg’;s{{-ate the feasibility of reusahble Ada software
S parts in a real-time embedded application area; the domain chosen for the demonstration was

that of missile flight software systems. This required that the existence of commonality
within that domain be verified (in order to justify the development of parts for that domain),
and that software parts be designed which address those areas identified. An associated
parts system was developed to support parts usage.” ‘Volume, 1 of this document is the User's
Guide to the CAMP Software parts; Volume 2.is the Version Description Document; Volume 3
Y} is the Software Product-Specification; Volumes 4-6 contain the Top-Level Design Documenj
and, Volumes 7-12Q:ontainAthe Detail Design Documents. t

) Fnr’f&g | 7‘ , [E;)L_ECTE

APR 0 71988
20. DISTRIBUTION / AVAILABILITY QF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O UNCLASSIFIED/UNLIMITED SAME AS RPT. {3 oTiC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 220, TELEPH (i Area Code) | 22c¢. {CE QY
Christine Anderson ¢ 8045 $n reL K5t FRc
DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
: UNCLASSIFIED '

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

iaR, distribution limitation applied March 1988.
Other requests for this document must be referred to AFATL/FXG, Eglin AFB,
Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

>

These technical notes accompany the CAMP final report AFATL-TR-85-93 (3 Vols)

e R

UNCLASSIFIED

&;‘3{ AFATL-TR-88-18, Vol 12
SOFTVARE DETAILED DESIGN DOCUMENT
FOR THE
MISSILE SOFTVARE PARTS
OF THE

COMMON ADA MISSILE PACKAGE (CAMP)
PROJECT

CONTRACT F08635-86-C-0025

CDRL SEQUENCE NO. C007 Accession For
NTIS GRAXI O
DTIC TAB
Unannounced %
Just.ificat.ion___.ﬁ
By.
Distribution/
Avallability Codes

| Avall and/or
i0ist Special
L]

5

=l

30 OCTOBER 1987 Ie‘

Distribution authorized to U.S. Govemment agencies and their contractors only; 7—

thevepci-deosumerntatest-and-evaluationy distribution limitation applied July 1987.
Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542 - 5434.

-DESTRUCTION NOTICE - For classified documents, follow the procedures

in DoD 5§220.22 - M, Industrial Security Manual, Section Il - 19 or DoD 5200.1 - R,
Information Secunty Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

WARBNING: This document contains technical data whose export is restricted by

the Arms Export Control Act (Title 22, U.S.C., Sec. 2751, et seq.) or the Export Admin -~
istrationy Act of 1979, as amended (Title 50, U.S.C., App. 2401, et seq.). Violations

of these export laws are subject to severe criminal penalties. Disseminate in

accordance with the provisions of AFR 80 - 34.

MIR FORCE ARMAMENT LABORATORY
|

ir Force Systems CommandB United States Air Force REglin Air Force Base, Florida

88 4 6 131

- T R EER——

CAMP Software Detailed Design Document

3.3.7 ABSTRACT MECHANISMS

Page 1729

CAMP Software Detailed Design Document Page 1730

é

(This page intentionally left blank.)

CAMP Software Detailed Design Document Page 1731

3.3.7.1 ABSTRACT DATA_STRUCTURES TLCSC P691 (CATALOG #P330-0)

This package contains the bodies of the generic packages required to define and
manipulate the following abstract data structures:

o bounded FIFO buffer o unbounded FIFO buffer o nonblocking circular buffer o
unbounded priority queue o bounded stack o unbounded stack

It also contains the package required by the unbounded parts to handle the
manipulation of their available space lists.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.7.1.1 REQUIREMENTS ALLOCATION

The folloving chart summarizes the allocation of CAMP requiremerts to this
part:

Name	Requirements Allocation
Bounded FIFO Buffer	R125
Unbounded_FIFO Buffer	R164
Nonblocking_Circular Buffer	R126
Unbounded Priority Queue	R165
Bounded_Stack	R166
Unbounded_Stack	R167

3.3.7.1.2 LOCAL ENTITIES DESIGN
Packages:

The following table describes the packages maintained local to this part:

Name	Type	Description
Available Space_	generic	Contains a set of functions to retrieve a
List_Operations	package	node from and add a node to an available

| space list |

3.3.7.1.3 INPUT/OUTPUT

None.

3.3.7.1.4 LOCAL DATA

None.

N XN B PN N XX R AT

Lk = B g o= o

T T WY, . T W AR IR B BB s ™

CAMP Softvare Detailed Design Document Page 1732

3.3.7.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.6 PROCESSING
The following describes the processing performed by this part:
package body Abstract_Data_Structures is

-- --separate package bodies

package body Bounded FIFO Buffer is separate;

package body Unbounded FIFO Buffer is separate;

package body Nonblocking Circular Buffer is separate;

package body Unbounded Priority Queue is separate;

package body Bounded_Stack is separate;

pgckage body Unbounded Stack is separate;

package body Available Space List Operations is separate; c

end Abstract_Data_Structures;

3.3.7.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.8 LIMITATIONS

None.

3.3.7.1.9 LLCSC DESIGN
3.3.7.1.9.1 AVAILABLE SPACE_LIST OPERATIONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in the available space list, the node will be retrieved from
there. If not, a new node will be dynamically allocated. If no memory is
available for the allocation, a STORAGE_ERROR exception is raised.

b

CAMP Software Detailed Design Document Page 1733

The second routine, Save_Node, places a nocde in the available space list.

The third routine, Save List, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.
3.3.7.1.9.1.1 REQUIREMENTS ALLOCATION

This part helps meet CAMP requirements R164, R165, R167.

3.3.7.1.9.1.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:
Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Desecription |
| Nodes | 1imited private | A single element in the available space list

| Pointers | access Nodes | A pointer to an element in the available

| | | space list |

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calles to
the enclosed routines.

available space list
Points to the last element in the
available space list

Available Tail

| Name | Type | Value | Description |
Available_ INTEGER N/A Length of the available space list |
Length |

|

I

|

I

| | |
Available Head | Pointers | N/A | Points to the first element in the
I I |
| I I
I I I

Subprograms:

The folloving table describes the generic formal subprograms required by this
part:

CAMP Software Detailed Design Document Page 1734

| Dot _Next | function | Given a pointer to a node, this function returns a |

| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

3.3.7.1.9.1.4 LOCAL DATA

None.

3.3.7.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.1.6 PROCESSING

The folloving describes the processing performed by this part:

generic
type Nodes is limited private;
type Pointers is access Nodes;

Available Length
Available Head in out Pointers;
Available Tail in out Pointers;
wvith function Dot _Next (Ptr : in Pointers) return Pointers is <>;
vith procedure Set_Next (Ptr : in Pointers;
) Ptr_dot Next : in Pointers) is <;
package Available_Space_List_OperatTons is

in out INTEGER;

function New_Node return Pointers;

procedure Save Node (Saved Node : in Pointers);

procedure Save List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node_Count : in POSITIVE);

end Available Space List_Operations;

3.3.7.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1735

Name	When/Why Raised
STANDARD.STORAGE ERROR	Raised during elaboration of this package if an
	attempt is made to allocate memory when no more
	1is available

3.3.7.1.9.1.9 LLCSC DESIGN

None.

3.3.7.1.9.1.10 UNIT DESIGN

None.

3.3.7.1.9.2 AVAILABLE_SPACE_LIST_OPERATIONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in the available space list, the node will be retrieved trom
there. If not, a nev node will be dynamically allocated. If no memory is
available for the allocation, a STORAGE_ERROR exception is raised.

The second routine, Save Node, places a node in the available space list.

The third routine, { ive List, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.2.1 REQUIREMENTS ALLOCATION

This part hel;s meet CAMP requirements R164, R165, R167.

3.3.7.1.9.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this was
specified in the package body of Abstract_Data_Structures.

CAMP Software Detailed Design Document Page 1736

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the avaiiable
		space list

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calls to
the enclosed routines.

| Name | Type | Value | Description |
| Available_ | INTEGER | N/A | Length of the available space list

| Length I I I I
| Available Head | Pointers | N/A | Points to the first element in the

| | | | available space list |
| Available Tail { Pointers ’ N/A ’ Points to the last element in the |
I I

available space list

Subprograms:

The following table describes the generic formal subprograms required by this
part:

| Dct_Next | function | Given a pointer to a node, this function returns a |
| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

3.3.7.1.9.2.4 LOCAL DATA

None.

3.3.7.1.9.2.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1737

3.3.7.1.9.2.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract Data_Structures)
package body Available Space List Operations is

end Available Space_List Operations;

3.3.7.1.9.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.2.8 LIMITATIONS

None.

3.3.7.1.9.2.9 LLCSC DESIGN

None.

3.3.7.1.9.2.10 UNIT DESIGN

3.3.7.1.9.2.10.1 NEV_NODE UNIT DESIGN

This function returns a node to the calling routine. If nodes are available in
the space list, the node returned will be from there. If the available space
list is empty, this routine will attempt to dynamically allocate memory. If no
more memory is available on the system, a STORAGE_ERROR exception will be
raised.

3.3.7.1.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R164, R164, R176.

3.3.7.1.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.1.3 INPUT/OUTPUT

None.

3.3.7.1.9.2.10.1.4 LOCAL DATA

Data objects:

CAMP Software Detailed Design Document Page 1738

The following table describes the data objects maintained by this part:

Ptr	Pointers	N/A	Points to the node being returned
Nev Available	Pointers	N/A	Temporary variable used to mark
Head			where Available_Head will point
			when this routine is exited

———————— — —————— - ——— —— ——— —— - T — — — —————— s S o b i VD ek Y S T e o S D e S S ———————————

3.3.7.1.9.2.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.1.6 PROCESSING
The following describes the processing performed by this part:

function New_Node return Pointers is

— --declaration section

Ptr : Pointers;
New_Available Head : Pointers;

-- --begin function New_Node

begin
if Available Length > 0 then

- --get the node from the available space list and mark the node
- -~-that will nowv be the head of the available space list

Ptr := Available_Head;

New_Available Head := Dot Next(Available Head);

- --initialize node being returned

Set_Next (Ptr => Ptr,
Ptr_dot_Next => NULL);

- --adjust the available space list
Available Head := Newv_Available_Head;
Available Length := AvaTlable_Length -1;

else

- --allocate space to get the node
Ptr := NEV Nodes;

end if;

2

CAMP Software Detailed Design Document Page 1739

return Ptr;

end New Node;

3.3.7.1.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List_Operations package:

| Dot_Next | function | Given a pointer to a node, this function returns a |
| pointer to the next node in the list
| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures. Available Space -
List_Operations package.

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the available
		space list

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract Data_Structures. Available_Space -
List_Operations package.

| Name | Type | Value | Description |

| Available_ | |
| Length | |
| Available Head | Pointers | N/A
I | I

| Length of the available space list
|
l
|

|
I
Points to the first element in the |
available space list |

CAMP Software Detailed Design Document Page 1740

3.3.7.1.9.2.10.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| STANDARD.STORAGE ERROR | Raised if an attempt is made to allocate memory |
[| when no more is available |

3.3.7.1.9.2.10.2 SAVE_NODE UNIT DESIGN

This procedure returns a node to the available space list. The node returned
to the list is the one pointed to by Saved_Node.

3.3.7.1.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R164, R164, R176.

3.3.7.1.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters: o
| Name | Type | Mode | Description |
| saved_Node | Pointers | in | Pointer to the node which is to be placed |

| | | | in the available space list I

3.3.7.1.9.2.10.2.4 LOCAL DATA

None.

3.3.7.1.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Save_Node(Saved Node : in Pointers) is

CAMP Software Detailed Design Document Page 1741

begin

Set_Next (Ptr => Available Tail,
Ptr_dot_Next => Saved_Node);

Available Tail := Saved_Node;

Set Next (Ptr => Available Tail,
Ptr_dot_iNext => NULL);

Available_Length := Available Length + 1;

end Save_Node;

3.3.7.1.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List Operations package:

| Name | Type | Description |

| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data Structures. Available Space -
List_Operations package.

Name	Type	Description
Nodes	limited private	A single element in the available space list
Pointers	access Nodes	A pointer to an element in the available
	space list	

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Available_ Space -
List_Operations package.

CAMP Software Detailed Design Document Page 1742

| Name | Type | Value | Description |
| Available_ | INTEGER | N/A | Length of the available space list |
| Length I I | I
| Available Tail | Pointers | N/A | Points to the last element in the |
I | | I |

available space list

3.3.7.1.9.2.10.2.8 LIMITATIONS

None.

3.3.7.1.9.2.10.3 SAVE_LIST UNIT DESIGN

This procedures places a linked list of nodes in the available space list.

3.3.7.1.9.2.10.3.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name | Type | Mode | Descrijtion |

Saved_Head in Pointer to the first node to be placed in

the available space list

Pointers

Pointer to the last node to be placed in
Node Count | POSITIVE | in Number of nodes to be placed in the

I

I |

I Saved Tail | Pointers I in
| |

I I

I | I
I I I
| | the available space list |
I | I
| | available space list |

3.3.7.1.9.2.10.3.4 LOCAL DATA

None.

CAMP Softwvare Detailed Design Document Page 1743

Saf:
ﬁé& 3.3.7.1.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Save List (Saved_Head : in Pointers;

Saved Tail : in Pointers;
Node Count : in POSITIVE) is
begin
Set Next (Ptr => Available Tail,

Ptr_dot_Next => Saved_Head);
Available Tail := Saved_Tail;

Set_Next (Ptr a> Available Tail,
Ptr_dot_Next => Saved_Head);

Available Length := Available Length + Node_Count;

end Save List;

3.3.7.1.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available Space List Operations package:

| Name | Type | Description |

| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The folloving table summarizes the types required by this part and defined as
generic formal parameters to the Available Space List Operations LLCSC:

Name | Type | Description |

I
@b | Pointers | access Nodes | A pointer to an element in the available |
‘ | | | space list |

CAMP Software Detailed Design Document Page 1744

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Available Space List Operations LLCSC:

| Name | Type | Value | Description |
Available INTEGER N/A Length of the available space list
Length

|
Points to the last element in the |
available space list |

| | |
| Available Tail | Pointers | N/A
| | I

3.3.7.1.9.2.10.3.8 LIMITATIONS

None.

3.3.7.1.9.3 BOUNDED_FIFQO_BUFFER PACKAGE DESIGN (CATALOG #P331-0)

This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
alwvays points to a dummy node. The first node following the dummy node
contains the next piece of data to be retrieved. The tail always points to
where the next element should be added. If the tail points to the element c ‘
immediately in front of the head, the buffer is empty. If the tail points to
the same element as the head, the buffer is full. Since the buffer is
implemented as an array, the head and tail will advance through the array in a
circular fashion, but no overwriting of data currently in the buffer will be
permitted.

Empty FIFQO buffer: +-+ {-=v=ea Head +-+ 4=+ +=4 {e—eo- Tail +=+ +=4 +=4 +=-+

Full FIFQ buffer: Tail----- Pttt Lo Head +-+ +—+ +=+ +—+ +=+ +=+ +-+

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP required R125.

3.3.7.1.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.3 INPUT/OUTPUT

GENERI” PARAMETERS: ﬂ

CAMP Software Detailed Design Document Page 1745

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The folloving table summarizes the generic formal types required by this part:

| Elements | private | User defined type of data contained in the buffer |

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Buffer Size			be in the buffer at any given time

3.3.7.1.9.3.4 LOCAL DATA

None.

3.3.7.1.9.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Bounded FIFO Buffer is

end Bounded_FIFO Buffer;

3.3.7.1.9.3.7 VUTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

CAMP Softvare Detailed Design Document Page 1746

¢

The following table describes the data types which were previously defined in
this part’s specification:

| Name | Type | Range | Description [
| Buffer Range | NATURAL | O .. | Used to dimension the list of

| - | subtype | Buffer Size | elements |
| Buffer | discrete | Empty, | Used to indicate the status of |
| Statuses | type | Available, | the buffer

| l | Full | I

The following table describes the data types defined in the private part of
this part’s specification:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
Lists	array	N/A	Array of elements

Data objects:

The following table describes the data objects which were previously defined in

this part’s specification: ‘
| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial | Number of usable elements in a |

| | | Buffer_Size | buffer |

Exceptions:

The following table describes the exceptions which were previously defined in
this part’s specification:

| Name | Description |
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
| Error condition raised if an attempt is made to add |
| elements to a full buffer |

3.3.7.1.9.3.8 LIMITATIONS

None. ﬁ

oo

CAMP Software Detailed Design Document Page 1747

3.3.7.1.9.3.9 LLCSC DESIGN

None.

3.3.7.1.9.3.10 UNIT DESIGN
3.3.7.1.9.3.10.1 CLEAR_BUFFER UNIT DESIGN

This procedure clears an jnput buffer by setting its length to O and resetting
its head and tail to 0 and 1, respectively.

3.3.7.1.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | FIFO buffer being accessed |

2.3.7.1.9.3.10.1.4 LOCAL‘DATA

None.

3.3.7.1.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : out Buffers) is

— ~--declaration section

Buffer_Length : Buffer Range renames Buffer.Buffer Length;

CAMP Software Detailed Design Document Page 1748

Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

begin
Buffer Length := 0;
Head t= 03
Tail 1= 1

end Clear_Buffer ;

3.3.7.1.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.3.10.1.8 LIMITATIONS

None.

3.3.7.1.9.3.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to an input buffer if the buffer is not already
full. After the element is added, the tail is advanced one place in the buffer
and the length counter is incremented by 1.

The exception Buffer Full is raised if an attempt is made to add an element to
an already full buffer.

3.3.7.1.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

%

CAMP Software Detailed Design Document : Page 1749

| Name] Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed
| New Element | Elements | in | Element to be added to the buffer |

3.3.7.1.9.3.10.2.4 LOCAL DATA

None.

3.3.7.1.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Add _Element (New Element : in Elements;
Buffer : in out Buffers) is

— --declaration section

List : Lists renames Buffer.List;
Buffer Length : Buffer Range renames Buffer.Buffer_Length;
Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

begin

- ~-make sure buffer isn’t full
if Head = Tail then
raise Buffer Full;
end if;

List(Tail) := New_Element;
Buffer Length := Buffer Length + 1;
if Tail = Buffer Size then
Tail := 03
else
Tail := Tail +.1;
end if;

end Add_Element ;

CAMP Software Detailed Design Document Page 1750

3.3.7.1.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level compcnent:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract Data_Structures. Bounded FIFO Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data_Structures. Bounded FIFO Buffer.

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
subtype	Buffer Size	elements	

The following table describes the data types defined in the private part of the
Abstract Data Structures.Bounded FIFO Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
Lists	array	N/A	Array of elements

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer:

Name	Type	Value	Description
Buffer_Size	POSITIVE	Initial_	Number of usable elements in a
		Buffer Size	buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded FIFO Buffer:

-

X,
1

CAMP Software Detailed Design Document Page 1751

| Buffer Full | Error condition raised if an attempt is made to add |
| | elements to a full buffer |

3.3.7.1.9.3.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Buffer_Full | Error condition raised if an attempt is made to add |
| | elements tc a full buffer |

3.3.7.1.9.3.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element in the buffer if the buffer is not
empty. The head is advanced through the buffer by 1 before the element is
retrieved and the size of the buffer is decremented by 1 after the element is
retrieved. '

If the buffer is empty before calling this routine, the exception Buffer Empty
is rzised.

3.3.7.1.9.3.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed . |
| 0ld_Element | Elements | out | Element retrieved from the buffer |

CAMP Software Detailed Pesign Document Page 1752

3.3.7.1.9.3.10.3.4 LOCAL DATA

None.

3.3.7.1.9.3.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
0ld_Element : out Elements) is

Buffer Length : Buffer_ Range renames Buffer.Buffer Length;

Head : Buffer:Range renames Buffer.Head;
List : Lists renames Buffer.List;
Tail : Buffer_Range renames Buffer.Tail;

-- --begin procedure Retrieve Element

begin

- --make sure don’t have an empty buffer
if Head = (Tail-1) or else (Tail = O and Head = Buffer_Size) then
raise Buffer Empty;
end if;

if Head = Buffer Size then
Head := 0;
else
Head := Head + 1;
end if;
01d Element t= List(Head);
Buffer_Length := Buffer Length - 1;

end Retrieve Element ;

3.3.7.1.9.3.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:

o

CAMP Software Detailed Design Document Page 1753

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract_Data_Structures. Bounded FIFO Buffer
package:

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer_Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:

| Name | Type i Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information |
| Lists | array | N/A | Array of elements |
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded FIFO_Buffer:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer

3.3.7.1.9.3.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

CAMP Software Detailed Design Document Page 1754

3.3.7.1.9.3.10.4 PEEK UNIT DESIGN

This function returns the first element of the buffer if the buffer is not
empty. The status of the buffer is not changed, however, and the element
itself remains in the buffer.

The Buffer Empty exception is raised if an attempt is made to look at an empty
buffer.

3.3.7.1.9.3,10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer . | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.3.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Description |

3.3.7.1.9.3.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.4.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

&

CAMP Software Detailed Design Document Page 1755

Buffer Length : Buffer Range renames Buffer.Buffer Length;

Head g Buffer:Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
List ¢ Lists renames Buffer.List;
Spot : Buffer Range;

begin

- --make sure don’t have an empty buffer
if Head = (Tail-1) or else (Tail = O and Head = Buffer Size) then
raise Buffer Empty;

end if;

if Head = Buffer_Size then
Spot := 0;

else
Spot := Head + 1;

end if;

return List(Spot);

end Peek ;

3.3.7.1.9.3.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract Data_Structures. Bounded FIFO Buffer
package:

—— s - — — ——— > o " T o S S T e . . S e e S S e o - - —— — s e e s

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.

CAMP Software Detailed Design Document Page 1756

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

[| | information |
| Lists | array | N/A | Array of elements |
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Bounded FIFO Buffer:

| Name | Description |

| Buffer Empty | Error condition raised if an attempt is made to look at or
| | retrieve elements from an empty buffer

3.3.7.1.9.3.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description

| Buffer Empty | Error condition raised if an attempt is made to look at or
| retrieve elements from an empty buffer

3.3.7.1.9.3.10.5 BUFFER_STATUS UNIT DESIGN
This function returns the status of the buffer. If there are no elements in

the buffer, the status is empty; if there is no room for additional elements,
the status is full; otherwise, the status is available.

3.3.7.1.9.3.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

CAMP Software Detailed Design Document

3.3.7.1.9.3.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1757

3.3.7.1.9.3.10.5.4 LOCAL DATA
Data objects:

The following objects are maintained local to this part:

| Name | Type | Description

| Status | Buffer Statuses | Status of the buffer

3.3.7.1.9.3.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

— --declaration section

Head
Tail

Buffer Range renames Buffer.Head;
Buffer Range renames Buffer.Tail;

Status : Buffer_ Statuses;

-- --begin function Buffer Status

begin

CAMP Software Detailed Design Document Page 1758

if Head = (Tail-1) or else (Tail = 0 and Head = Buffer_Size) then

Status := Empty;
elsif Head = Tail then

Status := Full;
else

Status := Available;
end if;

return Status;

end Buffer Status ;

3.3.7.1.9.3.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract _Data Structures. Bounded FIFO Buffer.

| Name | Type | Range | Description |

Buffer Range	NATURAL	O .	Used to dimension the list of
	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses	type	Available,	the buffer
I | | Full I I

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIF(Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract Data_Structures. Bounded FIFO Buffer:

| Name | Type | Value | Description

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a
| | | Buffer Size | buffer

CAMP Software Detailed Design Document Page 1759

Y 3.3.7.1.9.3.10.5.8 LIMITATIONS

None.

3.3.7.1.9.3.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the length of the current buffer.

3.3.7.1.9.3.10.6.1 REQUIREMENTS ALLOCATION
This part meets CAMP requirement R125.

3.3.7.1.9.3.10.6.2 LOCAL ENTITIES DESIGN

1

None.

3.3.7.1 7 3,10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed |)

3.3’7.1.9.3.10.6.4 LOCAL DATA

None.

3.3.7.1.9.3.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.6.6 PROCESSING
The following describes the processing performed by this part:
function Buffer_Length (Buffer : in Buffers) return Buffer_ Range is
begin
return Buffer.Buffer_Length;

end Buffer Length ;

CAMP Softwvare Detailed Design Document * Page 1760

5
3.3.7.1.9.3.10.6.7 UTILIZATION OF OTHER ELEMENTS F
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:
The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:
Data types:
The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded FIFO Buffer.
| Name | Type | Range | Description |
| Buffer Range | NATURAL | O .. | Used to dimension the list of
| | subtype | Buffer_Size | elements |
The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded FIFO Buffer package:
| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |
| | | | information | é

3.3.7.1.9.3.10.6.8 LIMITATIONS

None.

3.3.7.1.9.4 UNBOUNDED_FIFO BUFFER PACKAGE DESIGN (CATALOG #P332-0) ,
This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
of the buffer always points to a dummy node. The first node following the
dummy node contains the next piece of data to be retrieved. The tail always
points to the node containing the last element added to the buffer. If the

tail points to the same node as the head, the buffer is empty.

A buffer must be initialized before it is used. If an attempt is made to use
an uninitialized buffer, the exception Buffer Not Initialized will be raised.
The Initialized Buffer procedure returns an initialized buffer. The Clear -
Buffer procedure returns the nodes of a buffer to the available space list and
then returns an initialized buffer.

An available space list is maintained local to this part. When this part is

elaborated the available space list will have a dummy node plus Initial -
Available Space _Size nodes. When nodes are added to the buffer, the Add_-

Element routine will try to get a node from the available space list before

attempting to allocate more memory. When the Retrieve Element routine is G§
called, the unused node will be returned to the available space list for later

use. The memory committed to the available space may be deallocated by calling

CAMP Software Detailed Design Document Page 1761

the Free Memory procedure.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.4.1 REQUTEMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintained local to this part’s package body.
Subprograms:

The following subprograms are contained local to this body:

Name	Type	Description
Free Node	procedure	Instantiation of UNCHECKED DEALLOCATION
Dot Next	function	Given a pointer P, this function returns
	:	the value of P.Next
Set Next	procedure	Given two points P & Q, this procedure
I I I I

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Available_Space Operations package.

| Name | Type | Description |

function | Returns a node to the calling routine; will get a |
| node from the available space list if possible, |
» | otherwvise will allocate a new node |
ave_Node | procedure | Handles placing a node in the available space list |
ave_List | procedure = Handles placing a list of nodes in the available |
|

space list

wnwn

This package body contains code to initialize the Available Space List. This
code is executed when the package is elaborated. At a minimum, this code calls
the Initialize Buffer procedure to initialize the Available Space List so it
contains a dummy node. If the generic formal object Initial Available Space -
Size is greater than or equal to 1, this routine then places the requested
number of nodes (in addition to the dummy node) in the available space list.

CAMP Software Detailed Design Document Page 1762

'

3.3.7.1.9.4.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Elements | private | User defined type of data contained in the buffer

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description |

| Initial_Available_ | NATURAL | Number of nodes to be initially placed in |
| Space_Size | | the available space list | ‘

3.3.7.1.9.4.4 LOCAL DATA

None.

3.3.7.1.9.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4'6 PROCESSING
The following describes the processing performed by this part:
with UNCHECKED DEALLOCATION;

separate (Abstract_Data_Structures)
package body Unbounded FIFO Buffer is

-~ --this variable is accessed ONLY when setting up the available space list
Initial Head : Pointers := new Nodes; Gi

Available Space : Buffers := (Current_Length => 0,
Head => Initial_Head,

CAMP Software Detailed Design Document Page 1763

Tail => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Head : Pointers renames Available _Space.Head;
Available Tail : Pointers renames Available_Space Tail;

procedure Free is new UNCHECKED DEALLOCATION
(Object => Nodes,
Name => Pointers);

procedure Free Node (Which_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

in Pointers;

procedure Set Next (Ptr
in Pointers);

Ptr_dot_Next :
package Available Space Operations is new
Available Space List_Operations

(Nodes => Nodes,

Pointers => Pointers,
Available Length => Available Length,
Available Head => Available Head,
Available_Tail =) Available_Iail),

function New Node return Pointers
renames Available_Space_Operations.Nev_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save Node;

procedure Save List (Saved Head : in Pointers:
Saved Tail ¢ in Pointers;
Node Count : in POSITIVE)

renames Available_Space_Operations.Save_List;

--begin package Unbounded FIFO Buffer
--(see header for package body for details)

-- --set up available space list if one is desired
if Initial_Available_Space_Size > O then

Add_Nodes To Available Space List:
for I In 1..Initial Available Space_Size loop
Available Tail.Next := NEW Nodes;
Available_Tail := Available Tail.Next;
end loop Add_Nodes_to_Available Space List;

Available Length := Initial Available Space Size;
end if;

CAMP Software Detailed Design Document Page 1764

&

end Unbounded FIFO Buffer;

3.3.7.1.9.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Unchecked Deallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source Description |

I
| UNCHECKED _ | generic | N/A | Used to deallocate memory
| DEALLOCATION | function | |

Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGE_ERROR | Raised when an attempt is made to dynamically allocate | ‘i
| | more memory than is available |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Packages:

The following table describes th: packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

Name	Type	Description
Available_Space_	generic	Contains the routines required to retrieve
List_Operations	package	a node from and place a node in the
		available space list

Data types:

The following data types were previously defined in this part’s package
specification:

CAMP Software Detailed Design Document Page 1765

Name	Type	Ran e	Description
Buffer_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	buffer
		Uninitialized	

The following data types were previously defined in the private portion of this
part’s package specification:

| A single entity in the buffer; contains |
| data and a pointer to the next node |
| Points to a node in the buffer |
I I
I I

| I |
I | |
| Pointers | access |
I I I
| | I

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

| Name | Description

I
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |

Buffer Not_ | |
Initialized | |

Raised if an attempt is made to use an uninitialized buffer

3.3.7.1.9.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Storage Error | Raised during elaboration of this package if an |
| attempt is made to allocate memory when no more |
| | 1is available |

3.3.7.1.9.4.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1766

3.3.7.1.9.4.10 UNIT DESIGN
3.3.7.1.9.4.10.1 INITIALIZE BUFFER UNIT DESIGN
This procedure initializes a buffer. It does this in the following manner:

1) If the buffer has never been initialized then: o places a dummy node in the
buffer and o initializes the length to O

2) else if the buffer has elements in it then: o calls the Clear Buffer
procedure

3) else if the buffer has a length of O then o does nothing

3.3.7.1.9.4.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The foliowing table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being initialized |

3.3.7.1.9.4.10.1.4 LOCAL DATA

None.

3.3.7.1.9.4.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Initialize Buffer (Buffer : in out Buffers) is

CAMP Software Detailed Design Document Page 1767

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;

begin
if Current_Length = -1 then
- --handle an uninitialized buffer
Head := New Node;
Tail := Head;
Current_Length := 0;
elsif Current_Length > O then

- --handle a buffer that has something in it
Clear Buffer(Buffer => Buffer);

else

- --current length = 0 so it is already initialized
NULL;

end if;

end Initialize Buffer ;

3.3.7.1.9.4.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded FIFO_Buffer:

Name	Type	Description
Clear_	procedure	Returns all the nodes in a buffer to the available
Buffer		space list

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

a

CAMP Software Detailed Design Document Page 1768

| Name | Type | Range | Description |
| Nodes | record | N/A | A single entity in the buffer; contains |
[| | | data and a pointer to the next node |
| Pointers | access | N/A | Points to a node in the buffer |
| Buffers | record | N/A | Record containing the value of the current |
I | I | I

length, head, and tail of the buffer

3.3.7.1.9.4.10.1.8 LIMITATIONS

None.

3.3.7.1.9.4.10.2 CLEAR_BUFFER UNIT DESIGN

This procedure returns all the elements in a buffer, except for the dummy node,
to the available space list. If this routine is sent an uninitialized buffer,
a Buffer Not Initialized exception is raised.

3.3.7.1.9.4.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.2.2 LOCAL ENTITIES DESIGN .

None.

3.3.7.1.9.4.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being cleared |

3.3.7.1.9.4.10.2.4 LOCAL DATA
Data objects:

The following table describes the objects maintained local to this part:

| Name | Type | Description |

| This_Node | Pointers | Node to be placed in the available space list |

=

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.2.6 PROCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : in out Buffers) is

Current_Length : INTEGER renames Buffer.Current_Length;

Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;
This_Node : Pointers;

-~ --begin procedure Clear Buffer

begin

- --make sure this is an initialized buffer
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;

- --placed nodes in the available space list
Save_List (Saved Head => Head.Next,
Saved Tail => Tail,
Node_Count => Current_Length);
- --reinitialize buffer variables
Current_Length := 0;
Head.Next s= NULL;
Tail := Head;

end Clear Buffer ;

3.3.7.1.9.4.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewvhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIF0 Buffer:

Page 1769

CAMP Software Detailed Design Document Page 1770

| Save_List | procedure | Handles placing a list of nodes in the available |
| | | space list |

Data types:

The following table summacizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
		N/A	A single entity in the buffer; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the buffer
I l l			
l			

Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The folloving table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

Name	Description
Buffer Not_	Raised if an attempt is made to use an uninitialized buffer
Initialized	
3.3.7.1.9.4.10.2.8 LIMITATIONS

The folloving table describes the exceptions raised by this part:

| Name | Vhen/Why Raised |

| Buffer Not_Initialized | Raised if an attempt is made to use an |
| | wuninitialized buffer |

3.3.7.1.9.4.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory occupied by the available space list.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.3.3 INPUT/CUTPUT

None.

3.3.7.1.9.4.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

Page 1771

Name	Type	Value	Description
Node_to be Freed	Pointers	N/A	Pointer to the node to be
			deallocated

3.3.7.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.3.6 PROCESSING
The following describes the processing performed by this part:

procedure Free Memory is

-- --declaration section

Node_to_be Freed : Pointers;

-~ --begin procedure Free Memory

begin

Clear Out_Available Space_List:
vhile Available Head /= Available Tail loop

Node To Be Freed := Available Head;
Available Head := Available_Head.Next;

CAMP Softvare Detailed Design Document Page 1772

Free Node (Which_Node => Node_to_be Freed);
end loop Clear Out_Available Space List;
Available Length := 0;

end Free Memory ;

3.3.7.1.9.4.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description |

| Free_Node | procedure | Instantiation of UNCHECKED_DEALLOCATION |

Data types:

The folloving table summarizes the types required by this part and defined as
generic parameters to the Abstract Data_Structures. Unbounded FIFO Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
		N/A	A single entity in the buffer; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the buffer
I | | | |
I I I I I

Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer

Data objects:

@

CAMP Software Detailed Design Document

Page 1773

The following table summarizes the objects required by this part and defined in

the package body of Unbounded FIFO Buffer:

| Name | Type | Description

Space

| List of available nodes; nodes will be added to
| 1list when Retrieve Element is called and

| retrieved from the list when Add_Element is

| called; the nodes in the list are deallocated
| when Clear Memory is called

The following table summarizes the data objects required by this part and
defined in the package body of Unbounded FIFO Buffer:

Description

Available

Available Space.

| | |

| Length | | Current_Length
| Available_ | Pointers | Available_Space.
| Head | | Head

| Available_ | Pointers | Available_Space.
| Tail | | Tail

|

Indicates the current length of
the available space list

Points to the head node in the
available space list

| Points to the tail node in the

available space list

3.3.7.1.9.4.10.3.8 LIMITATIONS

None.

3.3.7.1.9.4.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the FIFO buffer.

If the buffer has not been initialized, the exception Buffer Not Initialized is

raised.

The Storage Error exception is raised if a call to this routine requires memory
to be dynamically allocated when no more memory is available.

3.3.7.1.9.4.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.4.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1774

3.3.7.1.9.4.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |
| Buffer | Buffers | in out | FIFO buffer being accessed
| New Element | Elements | in | Element to be added to the buffer [

3.3.7.1.9.4.10.4.4 LOCAL DATA

None.

3.3.7.1.9.4.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.4.6 PROCESSING

The following describes the processing performed by this part: ‘ ' ‘i
procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is

— --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Tail : Pointers renames Buffer.Tail;

New_Tail : Pointers;

-- --begin procedure Add_Element

begin

- --make sure buffer has been initialized
if Current_Length = -1 then
raise Buffer Not Initialized;
end if;

- --nov get a node
New_Tail := New_Node;

- --nov adjust the buffer dg
Tail.Next t= New_Tail;
Tail := New_Tail;

CAMP Software Detailed Design Document Page 1775
Tail.Data := New_Element;
Current_Length := Current_Length + 1;

end Add_Element ;

3.3.7.1.9.4.10.4.7 UTILIZATION OF GTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description

I
| New_Node | function | Returns a node to the calling routine; will get a |
| | | node from the available space list if possible,
I | | otherwise will allocate a new node |

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract Data_Structures. Unbounded FIFO Buffer

package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer l

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description |

A single entity in the buffer; contains
data and a pointer to the next node

e :
Pointers | access | | Points to a node in the buffer |
I I I I
I I | |

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data Structures. Unbounded FIFO -

Buffer:

CAMP Software Detailed Design Document Page 1776

g
| Name | Description |
| Buffer Not_ | Raised if an attempt is made to use an uninitialized buffer |
| Initialized |]

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGE_ERROR | Raised whmn an attempt is made to dynamically allocate |
| | more memury than is available |

3.3.7.1.9.4.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | WVhen/VWhy Raised |

| Storage_Error.

| Raised if an attempt is made to allocate memory |
| when no more is available |
| Buffer_Not Initialized | Raised if an attempt is made to use an | i
| | wuninitialized buffer |

3.3.7.1.9.4.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the oldest element from the FIFO buffer, places the
spare node on the available space list, and updates the status of the FIFO
buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

If the buffer is empty, a Buffer Empty exception is raised.

3.3.7.1.9.4.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.5.2 LOCAL ENTITIES DESIGN

None.

e

CAMP Software Detailed Design Document Page 1777

3.3.7.1.9.4.,10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Buffer	Buffers	in out	FIFO buffer being accessed
01d_Element	Elements	out	Element retrieved from the buffer

3.3.7.1.9.4.10.5.4 LOCAL DATA
Data objects:

The following tahle describes the objects maintained local to this part:

3.3.7.1.9.4.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.5.6 PROCESSING
The following describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
01d_Element : out Elements) is

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

This_Node : Pointers;

begin

- --make sure an element is available
if Current_Length = -1 then
raise Buffer Not_Initialized;

CAMP Software Detailed Design Document Page 1778
elsif Current_Length = 0 then @
raise Buffer Empty;
end if;
- --save dummy node in the available space list
This_Node := Head;
Head := Head.Next;
Save Node (Saved Node => This_Node);

- --retrieve element (its node becomes the new dummy node)
0ld_Element := Head.Data;

- --update buffer status
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.4.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by ‘
this part and defined in the package body of Unbounded FIFO Buffer:

| Name | Type | Description |

| save_Node | procedure | Handles placing a node in the available space list |

Data type.:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Structures. Unbounded FIFO Buffer
package:

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1779

JESRN

w)
‘..I‘.’.
e o e S e o e e e

		A single entity in the buffer; contains	
		data and a pointer to the next node	
Pointers	access	N/A	Points to a node in the buffer
Buffers	record	N/A	Record containing the value of the current
			length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

| Name | Description

|
| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
Buffer Not | Raised if an attempt is made to use an uninitialized buffer |
I I

Initialized

3.3.7.1.9.4.10.5.8 LIMITATIONS

b The follcwing table describes the exceptions raised by this part:

I Name | When/Why Raised |

Buffer Empty | Raised if an attempt is made to access an empty |
| buffer |
| Raised if an attempt is made to use an |
I I

uninitialized buffer

Buffer Not_Initialized

3.3.7.1.9.4.10.6 PEEK UNIT DESIGN
This function returns the vldest element in the FIF0 buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

If the buffer is empty, a Buffer Empty exception is raised.

3.3.7.1.9.4.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1780

3.3.7.1.9.4.10.6.4 LOCAL DATA

None.

3.3.7.1.9.4.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.56.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

S --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

-- --begin function Peek

begin

- --make sure something is there to look at
if Current_Length = -1 then
raise Buffer Not Initialized;
elsif Current_Length = 0 then
raise Buffer Empty;
end if;

return Head.Next.Data;

end Peek ;

[on i
s

.
«x

i

il

CAMP Software Detailed Design Document Page 1781

3.3.7.1.9.4.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table summarizes the types required by this part and defined as

generic parameters to the Abstract_Data_Structures. Unbounded FIFO Buffer
package:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description

I
A single entity in the buffer; contains '|
data and a pointer to the next node |
I
I
I

Nodes |
I
| Points to a node in the buffer
I
I

I

I | I
I I I
| Pointers | access |
| I I
I | |

N/A
Buffers record | N/A Record containing the value of the current
length, head, and tail of the buffer
Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

Name | Description |

Buffer_Empty | Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty buffer |
Buffer Not_ | Raised if an attempt is made to use an uninitialized buffer |
I I

Initialized

3.3.7.1.9.4.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1782

| | Raised if an attempt is made to access an empty [
	buffer
Buffer Not_Initialized	Raised if an attempt is made to use an
	uninitialized buffer

3.3.7.1.9.4.10.7 BUFFER_STATUS UNIT DESIGN

This function returns the status of the buffer based on the following
algorithm:

if buffer has never been initialized then status is uninitialized elsif buffer
has no nodes in it then status is empty else status is available
3.3.7.1.9.4.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.7.4 LOCAL DATA

None.

3.3.7.1.9.4.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.7.6 PROCESSING
The following describes the processing performed by this part:

function Buffer_ Status (Buffer : in Buffers) return Buffer_Statuses is

CAMP Software Detailed Design Document Page 1783

Current_Length : INTEGER renames Buffer.Current_Length;
Status : Buffer Statuses;

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length = 0 then
Status := Empty;

else
Status := Available;

end if;
return Status;

end Buffer_Status ;

3.3.7.1.9.4.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data Structures. Unbounded FIFO_Buffer

Name	Type	Range	Description
Buffer_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	buffer
		Uninitialized	

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1784

| Buffers | record | N/A | Record containing the value of the current |
| | | | length, head, and tail of the buffer |

3.3.7.1.9.4.10.7.8 LIMITATIONS

None.

3.3.7.1.9.4.10.8 BUFFER_LENGTH UNIT DESIGN
This function returns the length of the current buffer.

If the buffer has not been initialized, a Buffer Not_Initialized exception is
raised.

3.3.7.1.9.4.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.8.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.8.4 LOCAL DATA

None.

3.3.7.1.9.4.10.8.5 PROCESS CONTROL

Not applicable.

CAMP Softwvare Detailed Design ‘Document Page 1785

[
Qﬁ$ 3.3.7.1.9.4,10.8.6 PROCESSING
The following describes the processing performed by this part:

function Buffer_ Length (Buffer : in Buffers) return NATURAL is

- --declaration section

Current_Length : INTEGER renames Buffer.Current_Length;

begin
-- --make sure the buffer has a length
if Current_Length = -1 then
raise Buffer Not_Initialized;
end if;
return Current_Length;

end Buffer Length ;

3.3.7.1.9.4.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

¢

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name	Type	Range	Description
Buffers	record	N/A	Record containing the value of the current
			length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded FIFO -
Buffer:

CAMP Software Detailed Design Document Page 1786

Name	Description
Buffer Not_	Raised if an attempt is made to use an uninitialized buffer
Initialized	
3.3.7.1.9.4.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name	When/Why Raised
Buffer Not Initialized	Raised if an attempt is made to use an
	uninitialized buffer

3.3.7.1.9.4.10.9 DOT_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

3.3.7.1.9.4.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.4.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.9.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry is to |
[| | | be returned

3.3.7.1.9.4.10.9.4 LOCAL DATA

None.

§

&

(e

CAMP Software Detailed Design Document ’ Page 1787

3.3.7.1.9.4.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.9.6 PROCESSING

The following describes the processing performed by this part:
function Dot Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;

end Dot_Next;

3.3.7.1.9.4.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

Name | Type | Range | Description

N/A A single entity in the buffer; contains
data and a pointer to the next node

record |

I
A | Points to a node in the buffer
A I

I

Nodes

N/
N/ Record containing the value of the current
length, head, and tail of the buffer

I I
I I
Pointers | access |
Buffers | record |

I I

3.3.7.1.9.4.10.9.8 LIMITATIONS

None.

3.3.7.1.9.4.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.4.10.10.1 REQUIREMENTS ALLOCATION

None.

CAMP Software Detailed Design Document

3.3.7.1.9.4.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.10.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1788

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| 1is to be modified |

| Ptr_dot_Next | Pointers | in | Value to which Ptr.Next is to be set |

3.3.7.1.9.4.10.10.4 LOCAL DATA

None.

3.3.7.1.9.4.10.10.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.10.6 PROCESSING
The following describes the processing performed by this part:
procedure Set Next (Ptr ¢ in Pointers;
Ptr_dot_Next : in Pointers) is
begin
Ptr.Next := Ptr_dot_Next;
end Set_Next;
3.3.7.1.9.4.10.10.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in

the private portion of the part’s package specification:

e

CAMP Software Detailed Design Document Page 1789

length, head, and tail of the buffer

| Name | Type | Range | Description |
| Nodes | record | N/A | A single entity in the buffer; contains |
| [| | data and a pointer to the next node l
| Pointers | access | N/A | Points to a node in the buffer |
| Buffers | record | N/A | Record containing the value of the current

l l I | |

3.3.7.1.9.4.10.10.8 LIMITATIONS

None.

3.3.7.1.9.5 NONBLOCKING CIRCULAR BUFFER PACKAGE DESIGN (CATALOG #P333-0)

This generic package defines the data type and contains the operations required
to perform circular buffering operations on incoming data. These operations
are performed in a non-blocking fashion such that if the buffer is full,
incoming data will overwrite old data. The head of the buffer always points to
a dummy node. The first node following the dummy node contains the next piece
of data to be retrieved. The tail always points to where the next element
should be added. If the tail points to the element immediately in front of the
head, the buffer is empty. If the tail points to the same element as the head,
the buffer is full. This is illustrated below.

Empty circular buffer: +-+ <{-ee—o Head +-+ +-+ +-4 {————- Tail + -+ +=+ 4=+ +=4
Full circular buffer: Tail----- demt oo Head +-+ +—4 +=+ +-4 +=4+ +=+ +~+
The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

N

CAMP Software Detailed Design Document Page 1790

§

The following table summarizes the generic formal types required by this part:

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Buffer Size			be in the buffer at any given time

3.3.7.1.9.5.4 LOCAL DATA

None.

3.3.7.1.9.5.5 PROCESS CONTROL ‘

Not applicable.

3.3.7.1.9.5.6 PROCESSING
The follow. 3z describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Nonblocking Circular Buffer is

end Nonblocking Circular Buffer;

3.3.7.1.9.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following data types were previously defined in this part’s package
specification:

CAMP Software Detailed Design Document Page 1791

Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
B	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses	type	Available,	the buffer
I I | Full | I

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Descriptio
Lists	array	N/A	Array of elements
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following data objects were previously defined in this part’s package
specification:

| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
| | | Buffer_Size | buffer |

Exceptions:

The following exceptions were previously defined in this part’s package
specification:

Name	Description
Buffer_Empty	Ervor condition raised if an attempt is made to
	look at or retrieve elements from an empty
	buffer

3.3.7.1.9.5.8 LIMITATIONS

None.

3.3.7.1.9.5.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1792

8
3.3.7.1.9.5.10 UNIT DESIGN
3.3.7.1.9.5.10.1 CLEAR_BUFFER UNIT DESIGN
This procedure clears a buffer by setting the Head to O, the Tail to 1, and the
length to 0.
3.3.7.1.9.5.10.1.1 REQUIREMENTS ALLOCATION
This part meets CAMP requirement R126.
3.3.7.1.9.5.10.1.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.5.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:
The following table describes this part’s formal parameters:
| Name | Type | Mode | Description |
| Buffer | Buffers | out | Nonblocking circular buffer being | ‘
| !

I | | accessed

3.3.7.1.9.5.10.1.4 LOCAL DATA

None.

3.3.7.1.9.5.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.1.6 PRCCESSING
The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : out Buffers) is

— --declaration section

Head
Tail
Current_Length

Buffer_Range renames Buffer.Head;
Buffer Range renames Buffer.Tail; @
Buffer Range renames Buffer.Current_Length;

CAMP Software Detailed Design Document Page 1793

-- --begin procedure Clear Buffer

begin

Head i= 03
Tail =1
Current_Length := 0

- -

.
?

end Clear Buffer ;

3.3.7.1.9.5.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffer_ Range	NATURAL	O ..	Used to dimension the list of
.	subtype	Buffer_Size	elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular_Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

3.3.7.1.9.5.10.1.8 LIMITATIONS

None.

3.3.7.1.9.5.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the buffer, overwriting old data
if the buffer is full. If data was overwritten, both the head and tail of the
buffer are adiusted to reflect the current status of the buffer. If data was
not overwritten, only the tail of the buffer is adjusted.

" CAMP Software Detailed Design Document Page 1794

\
3.%.7.1.9.5.10.2.1 REQUIREMENTS ALLOCATION)
This part meets CAMP requirement R126.
3.3.7.1.9.5.10.2.2 LOCAL ENTITIES DESIGN
None.
3.3.7.1.9.5.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:
| Name | Type | Mode | Description |
| Buffer | Buffers | out | Circular buffer being accessed
| New Element | Elements | in | Element to be added to the buffer |
3.3.7.1.9.5.10.2.4 LOCAL DATA
None. ‘
3.3.7.1.9.5.10.2.5 PROCESS CONTROL
Not applicable.
3.3.7.1.9.5.10.2.6 PROCESSING
The following describes the processing performed by this part:
procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is
- --declaration section
Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;
-- --begin procedure Add_Element
begin ﬁ

List(Tail) := New_Element;

CAMP Software Detailed Design Document Page 1795

if Head = Tail then

- --buffer was already full and an element was overwritten; therefore,
- -~both head and tail need to be advanced, but Current Length does
- --not need to be changed

if Tail = Buffer Size then
Head := 0;
Tail := 0;
else
Head := Head + 1;
Tail := Tail + 1;
end if;

else

- --buffer vas not already full; therefore, the Current_Length needs
- --to be increment and only the tail needs to be advanced

if Tail = Buffer Size then
Tail := 0;
else
Tail := Tail + 1;
end if;
Current_Length := Current_Length + 1;
end if;

end Add_Element ;

3.3.7.1.9.5.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Nonblocking Circular Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

CAMP Software Detailed Design Document Page 1796

| Buffer Range | NATURAL | O .. | Used to dimension the list of |
| | subtype | Buffer Size | elements |

The following table describes the data types defined in the private part of the
Abstract Data_Structures.Nonblocking Circular Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information I
| Lists | array | N/A | Array of elements |

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking Circular Buffer:

| Name | Type | Value | Description |
| Buffer Size | POSITIVE | Initial_ | Number of usable elements in a | ‘i
| | | Buffer Size | buffer |

3.3.7.1.9.5.10.2.8 LIMITATIONS

None.

3.3.7.1.9.5.10.3 RETRIEVE_ELEMENT UNIT DESIGN
This procedure returns the first element in the circular buffer.

If there are no elements in the buffer, a Buffer Empty exception is raised.

3.3.7.1.9.5.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.3.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document

3.3.7.1.9.5.10.3.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1797

Name	Type	Mode	Description
Buffer	Buffers	out	Circular buffer being accessed
01d_Element	Elements	out	Element retrieved from the buffer
3.3.7.1.9.5.10.3.4 LOCAL DATA

None.

3.3.7.1.9.5.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.3.6 PROCESSING
The folloving describes the processing performed by this part:

procedure Retrieve Element (Buffer : in out Buffers;
0ld_Element : out Elements) is

-- --declaration section

Head : Buffer Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

-- --begin procedure Retrieve Element

begin

- --make sure there is something there to retrieve
if Current_Length = O then
raise Buffer Empty;
end if;

-- --advance the head to get to the next element to go out
if Head = Buffer Size then
Head := O;
else
Head := Head + 1;
end if;

CAMP Software Detailed Design Document

- --nov retrieve the element and update the state of the buffer
0ld Element := List(Head);
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.5.10.3.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Data types:

Page 1798

The following table summarizes the types required by this part and defined as

generic formal types tc the Nonblocking Circular_ Buffer package:

| Name | Type | Description

| Elements | private | User defined type of data contained in the buffer

The following table summarizes the types required by this part and defined in

the package specification of the Nonblocking Circular Buffer package:

| Name | Type | Range | Description |
| Buffer_Range | NATURAL | O .. | Used to dimension the list of |
I

| | subtype | Buffer Size | elements

The following table describes the data types defined in the private part of the

Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
		information	
Lists	array	N/A	Array of elements

Data objects:

The following table summarizes the types required by this part and defined in

the package specification of Nonblocking Circular Buffer:

CAMP Software Detailed Design Document Page 1799

| Buffer Size | POSITIVE | Initial_ | Number of usable elements in a |
| | | Buffer Size | buffer |

o —— T —————— e v = = = — > = " i = ——— " " ——— ————— — —————— —— ———- " v—

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking Circular Buffer:

Buffer Empty	Error condition raised if an attempt is made to
	look at or retrieve elements from an empty
	buifer

3.3.7.1.9.5.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description "

| Buffer Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

3.3.7.1.9.5.10.4 PEEK UNIT DESIGN

This function returns the data contained in the first element in the buffer
without changing the state of the buffer (i.e., the element is not removed from
the buffer).

If there are no elements in the buffer, a Buffer Empty exception is raised.

3.3.7.1.9.5.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

CAMP Software Detailed Design Document

The following table describes this part’s formal parameters:

3.3.7.1.9.5.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

| spot | Buffer Range | N/A | Marks the spot in the buffer containing
| | the element to be looked at

3.3.7.1.9.5.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.4.6 PROCESSING
The folloving describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

- --declaration section

Head ¢ Buffer Range renames Buffer.Head;
Current_Length : Buffer Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

Spot : Buffer Range;

-- —-begin function Peek

begin

- --make sure there is something to peek at
if Current_Length = 0 then
raise Buffer Empty;
end if;

- --determine location of desired element
if Head = Buffer_Size then

CAMP Software Detailed Design Document Page 1801

Spot := O3
else

Spot := Head + 1;
end if;

-- --return requested element
return List(Spot);

end Peek ;

3.3.7.1.9.5.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The folloving table summarizes the types required by this part and defined as
generic formal types to the Nonblocking Circular_Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The follovwing table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular_Buffer package:

| Name | Type | Range | Description |

| Buffer Range | NATURAL | O .. | Used to dimension the list of |
| | subtype | Buffer Size | elements |

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking Circular_Buffer package:

| Name | Type | Range | Description |
| Buffers | record | N/A | List of data along with relevant |

| information |
| Lists | array | N/A | Array of elements |

Data objects:

The following table summarize {(he types required by this part and defined in
the package specification of Nonblocking Circular_ Buffer:

CAMP Software Detailed Design Document Page 1802

| Name | Type | Value | Description

l
| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
| I | Buffer Size | buffer |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking Circular_Buffer:

| Name | Description |
| Buffer Empty | Error condition raised if an attempt is made to |
| | look at or retrieve elements from an empty

| | buffer I

3.3.7.1.9.5.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name | Description |

|
| Buffer Empty | Error condition raised if an attempt is made to look at or |
| | retrieve elements from an empty buffer |

3.3.7.1.9.5.10.5 BUFFER_STATUS UNIT DESIGN

This function returns the current status of the buffer according to the
following algorithm:

if there are no elements in the buffer then buffer status is empty elsif if the

buffer contains the maximum number of elements buffer status is full else
buffer status is available end if;

3.3.7.1.9.5.10.5.1 REQUIREM:ENTS ALLOCATION

This part meets CAMP requirement R12€.

3.3.7.1.9.5.10.5.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1803

3.3.7.1.9.5.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

3.3.7.1.9.5.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Status | Buffer Statuses | N/A | Current status of the buffer |

3.3.7.1.9.5.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.5.6 PROCESSING
The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

Current_Length : Buffer Range renames Buffer.Current_Length;

Status : Buffer Statuses;

b - —

begin

if Current_Length = O then
Status := Empty;

elsif Current_Length = Buffer Size then
Status := Full;

else
Status := Available;

CAMP Software Detailed Design Document Page 1804

end if;
return Status;

end Buffer Status ;

3.3.7.1.9.5.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffer Range	NATURAL	O .	Used to dimension the list of
	subtype	Buffer Size	elements
Buffer_	discrete	Empty,	Used to indicate the status of
Statuses type	Available,	the buffer	
	Full ! I		

The following table describes the data types defined in the ﬁfivate part of the
Abstract_Data_Structures.Nonblocking Circular Buffer package:

Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking Circular Buffer:

| Name | Type | Value | Description |

| Buffer Size | POSITIVE | Initial . | Number of usable elements in a |
| | | Buffer Size | buffer |

3.3.7.1.9.5.10.5.8 LIMITATIONS

None.

§

CAMP Software Detailed Design Document Page 1805

3.3.7.1.9.5.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the current length of the buffer.

3.3.7.1.9.5.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed |

3.3.7.1.9.5.10.6.4 LOCAL DATA

None.

3.3.7.1.9.5.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.6.6 PROCESSING
The following describes the processing performed by this part:
function Buffer Length (Buffer : in Buffers) return Buffer Range is
begin
return Buffer.Current_Length;

end Buffer Length ;

3.3.7.1.9.5.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1806

0,
)
The following tables describe the elements used by this part but defined w
elsevhere in the parent top level component:
Data types:
The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking Circular Buffer package:
Name	Type	Range	Description
Buffer Range	NATURAL	O ..	Used to dimension the list of
	subtype	Buffer Size	elements
The following table describes the data types defined in the private part of the			
Abstract_Data_Structures.Nonblocking Circular Buffer package:			
Name	Type	Range	Description
Buffers	record	N/A	List of data along with relevant
			information
3.3.7.1.9.5.10.6.8 LIMITATIONS ‘
None.

3.3.7.1.9.6 UNBOUNDED PRIORITY QUEUE PACKAGE DESIGN (CATALOG #P334-0)

This generic package defines the data type and contains the operations required
to perform priority queueing operations on incoming data. The head of the
queue alwvays points to a dummy node. The node following the dummy node
contains the element with the highest priority. The tail always points to the
element with the lowest priority.

The elements will be ordered in the queue such that: 1) Elements wiin higher
priorities are placed before those with lower priorities. 2) Elements with the
same priority are arranged in the queue in a first-in-first-out manner.

A queue must be initialized before it is used. If an attempt is made to use an
uninitialized queue, the exception Queue Not Initialized will be raised. The
Initialized_Queue procedure returns an initialized queue. The Clear Queue
procedure returns the nodes of a queue to the available space list and then
returns an initialized queue.

An available space list is maintained local to this part. When this part is

elaborated the available space list will have a dummy node plus Initial -

Available Space_Size nodes. When nodes are added to the queue, the Add “Element

routine will try to get a node from the available space list before attempting

to allocate more memory. When the Retrieve Element routine is called, the

unused node will be returned to the available space list for later use. The Q@
memory committed to the available space may be deallocated by calling the

Free_Memory procedure.

i 3
B

CAMP Software Detailed Design Document Page 1807

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintain local to this part’s package body.
Subprograms:

The following subprograms are contained local to this body:

procedure | Instantiation of UNCHECKED DEALLOCATION

Dot_Next function Given a pointer P, this function returns
Set_Next procedure | Given two points P & Q, this procedure

| |
| the value of P.Next |
I I
I I

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Available_Space_Operations package.

Name | Type | Description |

function	Returns a node to the calling routine; will get a
	node from the available space list if possible,
	othervise will allocate a new node
Save Node | procedure | Handles placing a node in the available space list |
Save_List } procedure = Handles placing a list of nodes in the available |

I

space list

P e w

This package body contains code to initialize the Available Space List. This
code is executed wvhen the pacitage is elaborated. If the generic Iormal object
Initial Available Space_Size is greater than or equal to 1, this routine then
places the requested number of nodes (in addition to the dummy node) in the
available space list.

3.3.7.1.9.6.3 INPUT/OUTPUT
GENERIC PARAMETERS:

CAMP Software Detailed Design Document Page 1808
The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract Data Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

Name	Type	Description
Elements	private	User defined type of data contained in the queue
Priorities	private	User defined type determining the priority of the
I I | node |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description I
| Initial | NATURAL | Number of available nodes to be initially |
| Available_ | | placed in the available space list

| Space Size | | |
Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

30307.109-6.4 LOC[tL DATA
Data objects:

The following table summarizes the data objects defined by this part as the
result of renames:

- — e s > —— — — — -

Name	Type	Value	Description
Available	INTEGER	Available Space.	Indicates the current length of
Length		Current_Length	the available space list
Available	Pointers	Available Space.	Points to the head node in the
Head		Head	available space list
Available_	Pointers	Available Space.	Points to the tail node in the
Tail		Tail	available space list

&

CAMP Software Detailed Design Document Page 1809

3.3.7.1.9.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.6 PROCESSING
The following describes the processing performed by this part:

with UNCHECKED_ DEALLOCATION;
separate (Abstract_Data Structures)
package body Unbounded Priority Queue is

-- --declaration section

-- -~this pointers is accessed ONLY vhen setting up the Available_Space
Initial Head : Pointers := new Nodes;

Available Space : Queues := (Current_Length => 0,
Head => Initial Head,
Tail => Initial Head);

Available Length : INTEGER renames Available Space.Current_Length;
Available Head : Pointers renames Available _Space.Head;
Available Tail : Pointers renames Available Space.Tail;

procedure Free is new UNCHECKED DEALLOCATION
{(Object => Nodes,
Name > Pointers);

procedure Free Node (Vhich_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers);

package Available Space Operations is new
Available _Space_ List _Operations

(Nodes™ => Nodes,

Pointers =) Pointers,
Available Length => Available Length,
Available Head => Available _Head,
Available Tail => Available Tail);

function New_Node return Pointers
renames Available Space Operations.New_Node;

procedure Save Node (Saved Node : in Pointers)
renames Available _Space_Operations.Save_Node;

procedure Save_ List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node_Count ¢ in POSITIVE)

CAMP Software Detailed Design Document Page 1810

renames Available Space Operations.Save List;

--begin package Unbounded Priority Queue
--(see header for package body for details)

-- --set up available space list if one is desired
if Initial Available Space_Size > O then

Add Nodes To Available Space List:
for I In 1..Initial Available_Space_Size loop
Available Tail.Next := NEV Nodes;
Available Tail := Available_Tail.Next;
end loop Add Nodes_to_Available Space List;
Available Length := Initial_Available Space_Size;
end if;

end Unbounded Priority Queue;

3.3.7.1.9.6.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with’d by this part:
1. Unchecked Deallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

Name	Type	Source	Description
Unchecked_	generic	N/A	Used to deallocate memory
Deallocation	function		
Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| Storage Error | Raised when an attempt is made to dynamically allocate |
| | more memory than is available |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

<,

CAMP Software Detailed Design Document Page 1811
The following tables describe the elements used by this part but defined

elsevhere in the parent top level component:

Packages:

The following table describes the packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

Name	Type	Description
Available Space_	generic	Contains the routines required to retrieve
List _Operations	package	a node from and place a node in the

| available space list |

~Data types:

The following data types were previously defined in this part’s package
specification:

Name	Type	Range	Description
Queue_-	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	queue
	Uninitialized		

The following data types were previously defined in the private portion of this
part’s package specification:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I | I I I
I I I I I
| Pointers | access | A | Points to a node in the queue |
I I | N/A I I
| I I I |

N/
Queues record | N/ Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

| Name | Desecription |

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |
I I
| I

I
| Queue Not Indicates an attempt vas made to use an uninitialized queue
I

InitIalized

CAMP Software Detailed Design Document Page 1812

3.3.7.1.9.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Raised during elaboration of this package if an |
| | attempt is made to allocate memory when no more |
| is available |

3.3.7.1.9.6.9 LLCSC DESIGN

None.

3.3.7.1.9.6.10 UNIT DESIGN
3.3.7.1.9.6.10.1 INITIALIZE UNIT DESIGN

This procedure initializes a queue by placing a dummy node ir it, pointing the
head and the tail to the dummy node, and setting u:e length to O.

3.3.7.1.9.6.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.1.4 LOCAL DATA

None.

A

CAMP Software Detailed Design Document

3.3.7.1.9.6.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.1.6 PROCESSING
The following describes the processing performed by this part:

procedure Initialize (Queue : in out Queues) is

— --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head ¢ Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

begin
if Current_Length = -1 then
- --handle an uninitialized queue
Head := New Node;
Tail := Head;
Current_Length := 0;
elsif Current_Length > O then

- --handle a queue that has something in it
Clear_Queue(Queue => Queue);

else

- --current length = 0 so it is already initialized
NULL;

end if;

end Initialize ;

3.3.7.1.9.6.10.1.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

Page 1813

CAMP Software Detailed Design Document Page 1814

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded Priority Queue:

Name	Type	Description
Clear_	procedure	Returns all the nodes in a queue to the available
Queue		space list

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

Name	Type	Description
New Node	function	Returns a node to the calling routine; will get a
		node from the available space list if possible,
[otherwise will allocate a new node	

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract Data_Structures.Unbounded Priority_Queue
package:

Name | Type | Range | Description |

record | A single entity in the queue; contains |
| data and a pointer to the next node |
| Points to a node in the queue |
{ Record containing the value of the current g

length, head, and tail of the queue

I |
I I
Pointers | access |
Queues | record |

I |

3.3.7.1.9.6.10.1.8 LIMITATIONS

None.

3.3.7.1.9.6.10.2 CLEAR_QUEUE UNIT DESIGN

This procedure removes the nodes from a queue and places them in an available
space list.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized qu=ue.

3.3.7.1.9.6.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

w

*

CAMP Software Detailed Design Document Page 1815

3.3.7.1.9.6.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.2.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.2.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Value | Description |

| This Node | Pointers | N/A | Points to the node to be returned to
| | | | the available space list |

3.3.7.1.9.6.10.2.5 PROCESS CONTROL

Not applicable

3.3.7.1.9.6.10.2.6 PROCESSING
The followir: 7 *%»ibes the processing performed by this part:

procedure U hiaq uweue (Queue : in out Queues) is

- ~--declaration section

Current_Length : INTEGER renames Queue.Current_ Length;

Head ¢ Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;
This_Node : Pointers;

-- --begin procedure Clear Queue

CAMP Software Detailed Design Document Page 1816

begin

- --make sure this is an initialized queue
if Current_Length = -1 then

raise Queue Not Initialized;
elsif Current_Length > O then
- --placed nodes in the available space list
Save_List (Saved_Head => Head.Next,
Saved Tail => Tail,
Node Count => Current_Length);

- --reinitialize queue variables
Current_Length := 0;

Head.Next := NULL;
Tail := Head;
end if;

end Clear_Queue ;

3.3.7.1.9.6.10.2.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT: °

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

| Save_List | procedure | Handles placing a list of nodes in the available |
| | | space list |

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description |

record | A single entity in the queue; contains
| data and a pointer to the next node

| Points to a node in the queue
I
I

|
|
Record containing the value of the current |
I

| I |
I I I
| Pointers | access |
| Queues | record |
I I I

length, head, and tail of the queue

&

CAMP Software Detailed Design Document Page 1817

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority Queue:

| Queue Empty | Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |

3.3.7.1.9.6.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised [

| Queue_Not Initialized | Raised if an attempt is made to manipulate an |
| | wuninitialized queue |

3.3.7.1.9.6.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory taken up by the available space list.

3.3.7.1.9.6.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.6.10.3.4 LOCAL DATA
Data objects:

The following table describes the data objects maintained by this part:

CAMP Software Detailed Design Document

Page 1818

Name | Type | Value | Description
| Node to be Freed | Pointers | N/A | Points to the node to be
| | | deallocated

3.3.7.1.9.6.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.3.6 PROCESSING

The following describes the processing performed by this part:

procedure Free Memory is

--declaration section

Node_to_be Freed : Pointers;

--begin procedure Free Memory

begin

Clear Out_Available Space List:
vhile Available Head /= Available Tail loop
Node To Be Freed := Available Head;
Available Fead := Available Head.Next;
Free Node (Which_Node => Node_to_be Freed);
end loop Clear Out_Available_Space_List;

Available Length := 0;

end Free_ Memory ;

3.3.7.1.9.6.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_Queue:

* CAMP Software Detailed Design Document Page 1819

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description . |

	record	N/A	A single entity in the queue; contains
		data and a pointer to the next node	
Pointers	access	N/A	Points to a node in the queue
I I	I		
	I		

Queues record | N/A Record containing the value of the current
| length, head, and tail of the queue

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Abstract Data_Structures. Unbounded Priority Queue:

| Name | Type | Value | Description |

Available	INTEGER	Available Space.	Indicates the current length of
Length		Current_Length	the available space list
Available	Pointers	Available_Space.	Points to the head node in the
		available space list	
I	I		
I I I |

Head | Head
Available_ | Pointers | Available_Space. | Points to the tail node in the
Tail | Tail available space list

3.3.7.1.9.6.10.3.8 LIMITATIONS

None.

3.3.7.1.9.6.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the queue. The elements are added such that
the nev element is added before the first element which has a smaller priority
and after all other elements wvhich a greater or equal priority.

The Queue_Empty exception is raised if this routine is called with an empty
queue.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialJzed queue.

CAMP Software Detailed Design Document

The Storage Error exception is raised if a call to this routine requires meaory
to be dynamically allocated when no more memory is available.

3.3.7.1.9.6.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.4.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
New_Element	Elements	in	Element to be placed in the queue
New_Priority	Priorities	in	Priority of the element to be placed
		in the queue	

Queue | Queues | in out | Unbounded priority queue being |

l l I I

manipulated

3.3.7.1.9.6.10.4.4 LOCAL DATA
Data objects:

The following table describes the data objects maintainzd by this part:

Name	Type	Value	Description
Before	Pointers	N/A	Points to the element which will go before
			the new element
Here	Pointers	N/A	Points to the node to be added to the queue

3.3.7.1.9.6.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.4.6 PROCESSING
The following describes the processing performed by this part:

procedure Add_Element (New_Element : in Elements;
New Priority : in Priorities;

CAMP Software Detailed Design Document g Page 1821

Queue : in out Queues) is

Current_Length : INTEGER renames Queue.Current_Length;

Head : Pointers renames Queue.Head;
Tail ¢ Pointers renames Queue.Tail;
Before : Pointers;
Here : Pointers;

begin

- --make sure queue has been initialized
if Current_Length = -1 then
raise Queue Not Initialized;
end if; -7

- --find the nodes which are to go before and after the new element
Before := Head;
loop
exit when (Before = Tail) or else
(New_Priority > Before.Next.Priority);
Before := Before.Next;
end loop;

- --nov get a new node
Here := New Node;

- --set up the new node

Here.Priority := New_Priority; g
Here.Data t= New_Element;
Here.Next := Before.Next;

Before.Next := Here;

- --readjust the tail, if required
if Before = Tail then
Tail := Here;
end if;

- --nov adjust the queue
Current_Length := Current_Length + 1;

end Add_Element ;

3.3.7.1.9.6.10.4.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1822
The following tables describe the elements used by this part but defined

elsewvhere in the paren' top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_ Queue:

| B | | iuode from the available space list if possible,
| | | othervise will allocate a new node

The folloving table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

The folloving table describes the subroutines required by this part and defined
as generic formal subroutines to the Abstract _Data_Structures.Unbounded -
Priority Queue package:

| Name | Type | Description |
| ™" | function | Used to determine ordering of priorities |
Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded Priority_Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I I | I |
I I | I |
| Pointers | access | A | Points to a node in the queue |
I I | N/A I I
I I [I I

N/
Queues record | N/ Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The folloving table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority_Queue:

CAMP Software Detailed Design Document Page 1823

Name	Description
Storage_	Raised when an attempt is made to dynamically allocate
Error	more memory than is available
Queue Not_	Indicates an attempt was made to use an uninitialized queue
Initfalized	

3.3.7.1.9.6.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Raised if an attempt is raised to allocate memory |
| when no more is available |
Queue_Not_Initialized | Raised if an attempt is made to manipulate an |

I |

uninitialized queue

3.3.7.1.9.6.10.5 RETRIEVE_ELEMENT UNIT DESIGN
This procedure returns the first element in the queue.

The Queue Empty exception is raised if this routine is called with an empty
queue.

The Queue Not _Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.5.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

CAMP Software Detailed Design Document

| Name | Type | Mode | Description

| Queue | Queues | in out | Unbounded priority queue being
| | manipulated

| 01d_Element | Elements | out | Data retrieved from the queue

3.3.7.1.9.6.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

Page 1824

| This_Node | Pointers | N/A | Points to the node to be returned to the
| | I | available space list

3.3.7.1.9.6.10.5.5 PROCESS CONTROL

Not applicable.'

3.3.7.1.9.6.10.5.6 PROCESSING
The following describes the processing performed by this part:

in out Queues;

procedure Retrieve_ Element (Queue
out Elements) is

O0ld_Element

o --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
This_Node ¢ Pointers;

begin

- --make sure an element is available
if Curvent_Length = -1 then
raise Queue Not_Initialized;
elsif Current_Length = O then
raise Queue_Empty;
end if;

CAMP Software Detailed Design Document Page 1825

- --save dummy node in the available space list
This Node := Head;
Head := Head.Next;
Save Node (Saved Node => This_Node);

SS --retrieve element (its node becomes the new dummy node)
0ld_Element := Head.Data;

- --update queue status
Current_Length := Current_Length - 1;

end Retrieve Element ;

3.3.7.1.9.6.10.5.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority_ Queue:

| Name | Type | Description |

| Save Node | procedure | Handles placing a node in the available space list |

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Pata_Structures.Unbounded Priority_Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains
data and a pointer to the next node

I I I I l
| I | | I
| Pointers | access | | Points to a node in the queue |
I I I I I
I I I I I

N/A
Queues record | N/A Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract_Data_ Structures.Unbounded -

Priority_Queue:

CAMP Software Detailed Design Document Page 1826

| Error condition raised if an attempt is made to look at or
| retrieve elements from an empty queue

Queue Not |

I

|
_ Indicates an attempt was made to use an uninitialized queue |
Initialized |

3.3.7.1.9.6.10.5.8 LIMITATIONS

The following table describes the excentions raised by this part:

| Name | When/Why Raised |

| Queue_Empty | Raised if an attempt is made to look at or
| | retrieve from an empty queue
I
|

Queue Not Initialized | Raised if an attempt is made to manipulate an
| uninitialized queue

3.3.7.1.9.6.10.6 PEEK UNIT DESIGN

This function returns the value of the first element in the queue, but does not
change the state of the queue (i.e., the node is not actually removed from the
queue).

The Queue_Empty exception is raised if this routine is called with an empty
queue.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.6.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

b

CAMP Software Detailed Design Document Page 1827

| Name | Type | Mode | Description |
| Queue | Queues | in out | Unbounded priority queue being |
| | | | manipulated

3.3.7.1.9.6.10.6.4 LOCAL DATA

None.

3.3.7.1.9.6.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.6.6 PROCESSING
The following describes the processing performed by this part:

function Peek (Queue : in Queues) return Elements is

== --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;

-- --begin function Peek

begin
- --make sure something is there to look at
if Current_Length = -1 then
raise Queue Not Initialized;
elsif Current_Length = O then
raise Queue_Empty;
end if;
return Head.Next.Data;

end Peek ;

3.3.7.1.9.6.10.6.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

CAMP Software Detailed Design Document Page 1828

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract Data Structures.Unbounded Priority Queue
package:

A single entity in the queue; contains
data and a pointer to the next node

| I I I I
| | | | |
| Pointers | access | | Points to a node in the queue |
I | | | |
I I I I I

N/A
Queues record | N/A Record containing the value of the current
length, head, and tail of the queue
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data_Structures.Unbounded -
Priority Queue:

| . Name | Description |

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty queue |
Queue Not_ | Indicates an attempt wvas made to use an uninitialized queue |
InitTalized | |

Queue_Fmpty

3.3.7.1.9.6.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Raised if an attempt is made to look at or |
| retrieve from an empty queue |
| Raised if an attempt is made to manipulate an |
| uninitialized queue [

I
| Queue_Not_Initialized
I

3.3.7.1.9.6.10.7 QUEUE_STATUS UNIT DESIGN
This function returns the status of the queue based on the following algorithm:
if the queue has not been initialized then queue status is uninitialized elsif

no elements are in the queue then queue status is empty else queue status is
available end if;

CAMP Software Detailed Design Document

3.3.7.1.9.6.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.7.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Page 1829

Name	Type	Mode	Description
Queue	Queues	in out	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.7.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description

| Status | Queue_Statuses | N/A | Status of the queue

3.3.7.1.9.6.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.7.6 PROCESSING
The following describes the processing performed by this part:

function Queue_Status (Queue : in Queues) return Queue_Statuses is

S --declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Status ¢ Queue_Statuses;

-- --begin function Queue_Status

CAMP Software Detailed Design Document Page 1830

§

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current _Length = 0 then
Status := Empty;

else
Status := Available;

end if;

return Status;

end Queue_Status ;

3.3.7.1.9.6.10.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table describes the data types required by this part and defined i

in the package specification of Abstract_Data_Structures.Unbounded Priority -
Queue:

Name	Type	Range	Description
Queue_	discrete	Empty,	Used to indicate the status of the
Statuses	type	Available,	queue
		Uninitialized	

3.3.7.1.9.6.10.7.8 LIMITATIONS

None.

3.3.7.1.9.6.10.8 QUEUE_LENGTH UNIT DESIGN

This function returns the length of a queue.

The Queue Not Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165. &

43

CAMP Software Detailed Design Document Page 1831

3.3.7.1.9.6.10.8,2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.8.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

Name	Type	Mode	Description
Queue	Queues	in	Unbounded priority queue being
			manipulated

3.3.7.1.9.6.10.8.4 LOCAL DATA

None.

3.3.7.1.9.6.10.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.8.6 PROCESSING
The following describes the prccessing performed by this part:

function Queue_Length (Qucue : in Queues) return NATURAL is

Current_Length : INTEGER renames Queue.Current_Length;

-- --begin function Queue_Length

begin
- --make sure the queue has a length
if Current_Length = -1 then
raise Queue Not_Initialized;
end if;
return Current_Lengt!;

end Queue_Length ;

CAMP Software Detailed Design Document : Page 1832

3.3.7.1.9.6.10.8.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:
The following table describes the data types required by this part and delined

in the private portion of the Abstract_Data_Structures.Unbounded Priority Queue
package:

| Name | Type | Range | Description |

A single entity in the queue; contains |
data and a pointer to the next node

| I | I
| I I I
| Pointers | access | A | Points to a node in the queue
I | | N/A I
I I I l

I
N/ [
Queues record | N/ Record containi'ig¢ the value of the current |
length, head, and tail of the queue |
Exceptions:

The following table summarizes the exceptions required by this part and defined
elsevhere in the package specification of Abstract Data Structures.Unbounded -
Priority Queue:

| Name | Description |
| Queue Not_ | Indicates an attempt was made to use an uninitialized queue |
| InitTalized |

3.3.7.1.9.6.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/WVhy Raised |

| Queue_Not Initialized | Raised if an attempt is made to manipulate an [
| | uninitialized queue |

3.3.7.1.9.6.10.9 DOT_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

£

CAMP Software Detailed Design Document Page 1833

3.3.7.1.9.6.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.9.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry is to |
| | | | be returned

3.3.7.1.9.6.10.9.4 LOCAL DATA

None.

3.3.7.1.9.6.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.9.6 PROCESSING

The following describes the processing performed by this part:
function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;

end Dot_Next;

3.3.7.1.9.6.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this pait but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

CAMP Software Detailed Design Document Page 1834

			A single entity in the queue; contains
			data and a pointer to the next node
Pointers	access	N/A	Points to a node in the queue
Queues		N/7A	Record containing the value of the current
			length, head, and tail of the queue

3.3.7.1.9.6.10.9.8 LIMITATIONS

None.

3.3.7.1.9.6.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.6.10.10.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.10.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The following table describes this part’s formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| | is to be modified

| Ptr_dot_Next | Pointers | in | Value to which Ptr.Next is to be set |

3.3.7.1.9.6.10.10.4 LOCAL DATA

None.

3.3.7.1.9.6.10.10.5 PROCESS CONTROL

Not applicable.

Pl 3N

CAMP Software Detailed Design Document Page 1835

3.3.7.1.9.6.10.10.6 PROCESSING
The following describes the processing performed by this part:
procedure Set Next (Ptr ¢ in Pointers;
Ptr_dot_Next : in Pointers) is
begin
Ptr.Next := Ptr_dot_Next;
end Set_Next;
3.3.7.1.9.6.10.10.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part’s package specification:

|. Name | Type | Range | Description |

Nodes | A single entity in the queue; contains |

| data and a pointer to the next node |
A | Points to a node in the queue |
A i Record containing the value of the current l

length, head, and tail of the queue

I I
I I
Pointers | access |
Queues : record I

3.3.7.1.9.6.10.10.8 LIMITATIONS

None.

3.3.7.1.9.7 BOUNDED_STACK PACKAGE DESIGN (CATALOG #P335-0)

This generic package defines the data type and contains the operations required
to perform last-in-first-out stacking operations on incoming data. The top of
the stack always points to the last element added to the stack and the next
element to be removed. VWhen top equals 0, the stack is empty. When top equals
Stack_Size, the stack is full.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP require R166.

CAMP Software Detailed Design Document Page 1836

&

3.3.7.1.9.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.3 INPUT/OUTPUT
GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description [

| Elements | private | User defined type of data contained in the stack |

Data objects:

The following table summarizes the generic formal objects required by this
part:

Name	Type	Value	Description
Initial_	POSITIVE	N/A	Maximum number of elements which can
Stack_Size			be in the stack at any given time

3.3.7.1.9.7.4 LOCAL DATA

None.

3.3.7.1.9.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.6 PROCESSING
The following describes the processing performed by this part:

separate (Abstract Data_structures)
package body Bounded Stack is

end Bounded Stack;

A
e

CAMP Software Detailed Design Document

3.3.7.1.9.7.7 UTILIZATION OF OTHER ELEMENTS
UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsevhere in the parent top level component:

Data types:

The following data types were previously defined in this part’s package
specification:

Page 1837

| Name | Type | Range | Description
Stack_ POSITIVE | 1 .. Used to dimension the list of
Length_ subtype Stack_Size elements
Range
Stacks limited N/A List of data along with relevant
private information
Stack_ discrete | Empty, Used to indicate the status of
Statuses type Available, the stack
Full

The following data types were previously defined in the private part of this

part’s package specification:

Name | Type | Range | Description

information

I I
Stack_	Stack_	1..	Used to dimension the list of
Dimensions	Dimensions	‘LAST	elements
Range	subtype		
Stacks	record	N/A	List of data along with relevant
	I I I		

Data objects:

The following data objects were previously defined in this part’s package
specification:

Name	Type	Value	Description
Stack_	POSITIVE	Initial_	Number of elements in the stack
Size		Stack_Size	
Exceptions:

The following exceptions were previously defined in this part’s package
specification:

CAMP Softvare Detailed Design Document Page 1838

| Error condition raised if an attempt is made to look at or |
| retrieve elements from an empty stack |
| Error condition raised if an attempt is made to add elements |
| to a full stack |

3.3.7.1.9.7.8 LIMITATIONS

None.

3.3.7.1.9.7.9 LLCSC DESIGN

None.

3.3.7.1.9.7.10 UNIT DESIGN
3.3.7.1.9.7.10.1 CLEAR_STACK UNIT DESIGN

This procedure clears a stack by setting the top to O.

3.3.7.1.9.7.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.1.3 INPUT/OUTPUT
FORMAL PARAMETERS:

The follow<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>