
UNCLASSIFIED

AD NUMBER

LIMITATION CHANGES
TO:

FROM:

AUTHORITY

THIS PAGE IS UNCLASSIFIED

ADB120259

Approved for public release; distribution is
unlimited.

Distribution authorized to U.S. Gov't. agencies
and their contractors; Critical Technology; MAR
1988. Other requests shall be referred to Air
Force Armament Lab., Eglin AFB, FL. This
document contains export-controlled technical
data.

AFSC/MNOL Wright Lab ltr dtd 13 Feb 1992

Kinmmm
m FILE COP"

OF THIS PAGE

REPORT DOCUMENTATION PAGE
1». REPORT SECURITY CLASSIFICATION

TTTiPlflgfiifipri
2». SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION

McDonnell Douglas
Astronautics Company

6b. OFFICE SYMBOL
(If applicable)

6c ADDRESS (Gty, State, and ZIP Code)

P.O. Box 516
St. Louis, MO 63166

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

STARS Joint Program Office

i, -jJati

in
cvj

o

5
i

Q
<

\8c. ADDRESS (SI
Room

8b. OFFICE SYMBOL
(If applicable)

State, and ZIP Code) „ „
39 (1211 Fern St)

The Pentagon
Washington DC 20301-3081

&
form Approved
OMB No. 0704-0188

lb. RESTRICTIVE MARKINGS

3. DISTRIBUTION/AVAILABILITY OF REPORT

Distribution authorized to U.S. Government
Agencies and their contractors;^7"(over)

5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFATL-TR-88-18, Vol 12

7a. NAMe OF MONITORING ORGANIZATION v

Aeromechanics Division

7b. ADDRESS (C/ty, State, and ZIP Code)

Air Force Armament Laboratory
Eglin AFB , FL 32542-5434

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F08635-86-C-0025

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

63756D

PROJECT
NO.

921C

TASK
NO

GZ

WORK UNIT
ACCESSION NO.,

57
11. TITLE (Include Security Classification)

Common Ada Missile Package (CAMP) Project: Missile Software Parts, Vol 12:
Detail Design Documents (Vol 7-12)

12. PERSONAL AUTHOR(S)

f). MnMiffhnTI. S. Cohen. C. Palmer, et al.
13a. TYPE OF REPORT

Tpohm'pnl Nnts

13b. TIME
FROM ^epER|{)T0 Mar 88:

14. DATE OF REPORT {Year, Month. Day)

March 1988
IS. PAGE COUNT

230
16. SUPPLEMENTARY NOTATION

SUBJECT TO EXPORT CONTROL LAWS.
Availability of this report is specified on verso of front cover. (over)«

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reyprse.if necessary and identifv by block number)^
Reusable Software, Missile SoTfware, software Generators
Ada, Parts Composition Systems, Software Parts

19. ABSTRACT (Continue on reverse if necenary and/'denn/y by MocJr number) , „ . ,,,^ „ ,..„ Ä
-^The objective of the CAMP program is to demonstrate the feasibility of reusable Ada software

parts in a real-time embedded application area; the domain chosen for the demonstration was
that of missile flight software systems. This required that the existence of commonality
within that domain be verified (in order to justify the development of parts for that domain),
and that software parts be designed which address those areas identified. An associated
parts system was developed to support parts usage."" Volumej 1 of this document is the user's
Guide to the CAMP Software parts; Volume 2 is the Version"Description Document; Volume 3
is the Software Product-Specification; Volumes 4-6 contain the Top-Level Design Documents,
and. Volumes 7-12^containAthe Detail Design Documents. rYl lC_>

ELECTE
APR 0 71988

20. DISTRIBUTION/AVAILABILITY QEABSTRACT

D UNCLASSIFIED/UNLIMITED £§ SAME AS RPT. Q OTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL
Christine Anderson

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

^-mmwi*™™ (9C
22c •ffiftm

OO Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

UNCLASSIFIED

3. DISTRIBUTION/AVAILABILITY OF REPORT (CONCLUDED)

■dafiUlBABl^MfcNHHto^eriMiifiu^; distribution limitation applied March 1988.
Other requests for this document must be referred to AFATL/FXG, Eglin AFB, '
Florida 32542-5434.

16. SUPPLEMENTARY NOTATION (CONCLUDED)

These technical notes accompany the CAMP final report AFATL-TR-85-93 (3 Vols)

 -S-

UNCLASSIFIED

AFATL-TR-88-18, Vol 12

SOFTWARE DETAILED DESIGN DOCUMENT

FOR THE

MISSILE SOFTWARE PARTS

OF THE

COMMON ADA MISSILE PACKAGE (CAMP)
PROJECT

CONTRACT F08635-86-C-0025

CDRL SEQUENCE NO. C007 Accession For

TTIS GRA&I □"
DTIC TAB M
Unannounced □
JuGtlfication

By
Distribution/

Availability Codes

30 OCTOBER 1987

Avafl. and/or
Special

Distribution authorized to U.S. Government agencies and their contractors only;
1hJSN«pa4dd9Mment94MHm44««liwliM(distribution limitation applied July 1987.
Other requests for this document must be referred to the Air Force Armament
Laboratory (FXG) Eglin Air Force Base, Florida 32542-5434.

CT

DESTRUCTION NOTICE - For classified documents, follow the procedures
In DoD 5220.22 - M, Industrial Security Manual, Section II -19 or DoD 5200.1 - R,
Information Security Program Regulation, Chapter IX. For unclassified, limited
documents, destroy by any method that will prevent disclosure of contents or
reconstruction of the document.

WARNING: This document contains technical data whose export is restricted by
the Arms Export Control Act (Title 22, U.S.C., Sec. 2751, fiLSfifl.) or the Export Admin
istration Act of 1979, as amended (Title 50, U.S.C., App. 2401, fiLsgg.). Violations
of these export laws are subject to severe criminal penalties. Disseminate in
accordance with the provisions of AFR 80 - 34.

^MR FORCE ARMAMENT LABORATORY
''Air Force Systems Command I United States Air Force I Eglin Air Force Base, Florida

88 4 131

m
CAMP Software Detailed Design Document Page 1729

3.3.7 ABSTRACT MECHANISMS

CAMP Software Detailed Design Document Page 1730

(This page intentionally left blank.)

i

4

CAMP Software Detailed Design Document Page 1731

3.3.7.1 ABSTRACT_DATA_STRUCTURES TLCSC P691 (CATALOG #P330-0)

This package contains the bodies of the generic packages required to define and
manipulate the following abstract data structures:

o bounded FIFO buffer o unbounded FIFO buffer o nonblocking circular buffer o
unbounded priority queue o bounded stack o unbounded stack

It also contains the package required by the unbounded parts to handle the
manipulation of their available space lists.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.1 REQUIREMENTS ALLOCATION

The following chart summarizes the allocation of CAMP requiremerts to this
part:

| Name | Requirements Allocation |

BoundedFIFO Buffer
Unbounded_FI?0_Buffer
Nonblocking_Circular_Buffer
Unbounded_Prior1ty_QÜeue
Bounded_Stack
Unbounded Stack

3.3.7.1.2 LOCAL ENTITIES DESIGN

Packages:

The following table describes the packages maintained local to this part:

| Name I Type | Description |

| Available_Space_ | generic | Contains a set of functions to retrieve a
j Lis^Operations j package j node from and add a node to an available j
j j j space list

3.3.7.1.3 INPUT/OUTPUT

None.

3.3.7.1.4 LOCAL DATA

None.

CAMP Software Detailed Design Document Page 1732

3.3.7.1.5 PROCESS CONTROL ^

Not applicable.

3.3.7.1.6 PROCESSING

The following describes the processing performed by this part:

package body Abstract_Data_Structures is

-separate package bodies

package body Bounded_FIFO_Buffer is separate;

package body Unbounded_FIFO_Buffer is separate;

package body Nonblocking_Circular_Buffer is separate;

package body Unbounded_Priority_Queue is separate;

package body BoundedStack is separate;

package body Unbounded Stack is separate; *

I
package body Available_Space_List_Operatlons is separate;

end Abstract_Data_Structures;

3.3.7.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.8 LIMITATIONS

None.

3.3.7.1.9 LLCSC DESIGN

3.3.7.1.9.1 AVAILABLE_SPACE_LIST_OPERATIONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in the available space list, the node will be retrieved from
there. If not, a new node will be dynamically allocated. If no memory is
available for the allocation, a STORAGE ERROR exception is raised. .

CAMP Software Detailed Design Document Page 1733

The second routine, Save_Node, places a node in the available space list.

The third routine, SaveList, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.1.1 REQUIREMENTS ALLOCATION

This part helps meet CAMP requirements R164, R165, R167.

3.3.7.1.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

Name | Type | Description

| Nodes | limited private | A single element in the available space list |
j Pointers j access Nodes j A pointer to an element in the available
I j j space list j

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calles to
the enclosed routines.

| Name Type

INTEGER

Pointers

Pointers

Value | Description

Available_
Length

Available_Head

Available Tail

N/A

N/A

N/A

Length of the available space list

Points to the first element in the
available space list
Points to the last element in the
available space list

Subprograms:

The following table describes the generic formal subprograms required by this
part:

CAMP Software Detailed Design Document Page 1734

| Name | Type | Description

| Dot_Next | function | Given a pointer to a node, this function returns a
j { j pointer to the next node in the list
j Set Next j procedure j Given two points, A and B, sets A.Next equal to B

3.3.7.1.9.1.4 LOCAL DATA

None.

3.3.7.1.9.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.1.6 PROCESSING

The following describes the processing performed by this part:

generic
type Nodes is limited private;
type Pointers is access Nodes;
AvailableLength : in out INTEGER; ^
AvailableHead : in out Pointers?; (|
AvailableJTail : in out Pointers;
with function Dot_Next (Ptr : in Pointers) return Pointers is <>;
with procedure Set Next (Ptr : in Pointers;

Ptr_dot Next : in Pointers) is <>;
package Available_Space_List_OperatTons is

function New_Node return Pointers;

procedure Save_Node (Saved_Node : in Pointers);

procedure SaveJList (Saved_Head : in Pointers;
SavedJTail : in Pointers;
Node_Count : in POSITIVE);

end Avallable_Space_List_0perations;

3.3.7.1.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

CAMP Software Detailed Design Document Page 1735

| Name | When/Why Raised i

| STANDARD.ST0RAGE_ERR0R | Raised during elaboration of this package if an |
I j attempt is made to allocate memory when no more

is available

3.3.7.1.9.1.9 LLCSC DESIGN

None.

3.3.7.1.9.1.10 UNIT DESIGN

None.

3.3.7.1.9.2 AVAILABLE_SPACE_LIST_OPERmONS PACKAGE DESIGN

This package contains a set of routines used to manipulate an available space
list which is maintained local to the part instantiating this package.

The first routine, New Node, will return a node to the calling routine. If a
node is available in tKe available space list, the node will be retrieved from
there. If not, a new node will be dynamically allocated. If no memory is
available for the allocation, a STORAGEERROR exception is raised.

The second routine, Save_Node, places a node in the available space list.

The third routine, Save List, places a list of nodes in the available space
list.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.2.1 REQUIREMENTS ALLOCATION

This part helps meet CAMP requirements R16A, R165, R167.

3.3.7.1.9.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.3 INPUT/OUTPUT

GENERIC PARAMETER?:

The following generic parameters were previously defined when this was
specified in the package body of Abstract_Data_Structures.

CAMP Software Detailed Design Document Page 1736

Data types:

The following table summarizes the generic formal types required by this part:

| Name Type Description

| Nodes | limited private | A single element in the available space list |
I Pointers | access Nodes | A pointer to an element in the available j
| j j space list

Data objects:

The following table summarizes the generic formal objects required by this
part. All of these objects are in/out parameters and are changed by calls to
the enclosed routines.

| Name I Type

INTEGER

Pointers

Pointers

| Value | Description

Available_
Length

Available_Head

Available Tail

N/A

N/A

N/A

Length of the available space list

Points to the first element in the
available space list

Points to the last element in the
available space list

Subprograms:

The following table describes the generic formal subprograms required by this
part:

| Name | Type | Description

| Dct_Next | function | Given a pointer to a node, this function returns a |
j j j pointer to the next node in the list j
j Set_Next j procedure j Given two points, A and B, sets A.Next equal to B

3.3.7.1.9.2.4 LOCAL DATA

None.

3.3.7.1.9.2.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1737

3.3.7.1.9.2.6 PROCESSING

The following describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Available_Space_List_Operations is

end Available_Space_List_Operations;

3.3.7.1.9.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.2.8 LIMITATIONS

None.

3.3.7.1.9.2.9 LLCSC DESIGN

None.

3.3.7.1.9.2.10 UNIT DESIGN

3.3.7.1.9.2.10.1 NEW_N0DE UNIT DESIGN

This function returns a node to the calling routine. If nodes are available in
the space list, the node returned will be from there. If the available space
list is empty, this routine will attempt to dynamically allocate memory. If no
more memory is available on the system, a STORAGEERROR exception will be
raised.

3.3.7.1.9.2.10.1.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R16A, R164, R176.

3.3.7.1.9.2.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.1.3 INPUT/OUTPUT

None.

3.3.7.1.9.2.10.1.4 LOCAL DATA

Data objects:

CAMP Software Detailed Design Document Page 1738

K The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Ptr | Pointers | N/A | Points to the node being returned |
j New_Available_ j Pointers j N/A j Temporary variable used to mark j
I Head j j j where Available_Head will point j
j ill when this routine is exited j

3.3.7.1.9.2.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.1.6 PROCESSING

The following describes the processing performed by this part:

function New Node return Pointers is

—declaration section

Ptr : Pointers; f
New Available Head : Pointers;

— —begin function New_Node

begin

if Available_Length > 0 then

—get the node from the available space list and mark the node
—that will now be the head of the available space list
Ptr :■ Available_Head;
New_Available_Head :• Dot_Next(Ävailable_Head);

—initialize node being returned
Set_Next (Ptr => Ptr,

Ptr_dot_Next => NULL);

—adjust the available space list
Available_Head :■ New Available_Head;
Available Length :» Available Length - 1;

else

—allocate space to get the node .
Ptr tm NEW Nodes; <$

end if;

%

CAMP Software Detailed Design Document Page 1739

return Ptr;

end New_Node;

3.3.7.1.9.2.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available_Space_List_Operations package:

| Name | Type | Description |

| Oot_Next | function | Given a pointer to a node, this function returns a |
I j I pointer to the next node in the list j
j Set_Next j procedure | Given two points, A and B, sets A.Next equal to B j

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the AbstractDataStructures. AvallableSpace-
List_Operations package.

| Name | Type | Description |

| Nodes | limited private | A single element in the available space list |
j Pointers j access Nodes j A pointer to an element in the available
j j j space list j

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Available_Space_-
List_Operations package.

| Name | Type | Value | Description |

| Available_ | INTEGER | N/A | Length of the available space list |
I Length I i I I
| Available_Head j Pointers | N/A | Points to the first element in the |
j III available space list j

CAMP Software Detailed Design Document Page 1740

3.3.7.1.9.2.10.1.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| STANDARD.STORAGE ERROR

1 1
{ Raised if an attempt is made to allocate memory |
| when no more is available j

3.3.7.1.9.2.10.2 SAVE_N0DE UNIT DESIGN

This procedure returns a node to the available space list. The node returned
to the list is the one pointed to by Saved_Node.

3.3.7.1.9.2.10.2.1 REQUIREMENTS ALLOCATION

This part helps meets CAMP requirements R164, R164, R176.

3.3.7.1.9.2.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Saved_Node | Pointers | in | Pointer to the node which is to be placed |
j | j j in the available space list j

3.3.7.1.9.2.10.2.4 LOCAL DATA

None.

3.3.7.1.9.2.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure Save_Node(Saved_Node : In Pointers) is

CAMP Software Detailed Design Document Page 1741

begin

Set_Next (Ptr => Available_Tail,
Ptr_dot_Next => Saved_Node);

Available_Tail := Saved_Node;

Set_Next (Ptr => AvailableTail,
Ptr_dot_Next -> NULL);

Available_Length := Available_Length + 1;

end Save_Node;

3.3.7.1.9.2.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the AvaiIable_Space_List_Operations package:

| Name | Type | Description |

| SetNext | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Available_Space_-
List_Operations package.

Name | Type | Description

| Nodes | limited private | A single element in the available space list j
j Pointers j access Nodes j A pointer to an element in the available |
j j j space list j

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Available_Space_-
List Operations package.

CAMP Software Detailed Design Document Page 17A2

Name Type Value

Available_ | INTEGER | N/A
Length | j

Available Tail | Pointers | N/A

I I

Description

Length of the available space list

Points to the last element in the
available space list

3.3.7.1.9.2.10.2.8 LIMITATIONS

None.

3.3.7.1.9.2.10.3 SAVE_LIST UNIT DESIGN

This procedures places a linked list of nodes in the available space list.

3.3.7.1.9.2.10.3.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.2.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.2.10.3.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

Name | Type | Mode | Description

Saved_Head

Saved Tall

Node Count

Pointers

Pointers

POSITIVE

in

in

in

Pointer to the first node to be placed in
the available space list

Pointer to the last node to be placed in
the available space list

Number of nodes to be placed in the
available space list

3.3.7.1.9.2.10.3.4 LOCAL DATA

None.

m
CAMP Software Detailed Design Document Page 1743

3.3.7.1.9.2.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.2.10.3.6 PROCESSING

The following describe^ the processing performed by this part:

procedure Save_List (SavedJHead : in Pointers;
Saved Tail : in Pointers;
NodeCount : in POSITIVE) is

begin

Set Next (Ptr -> Available Tail,
Ptr_dot_Next -> Saved_Hea3);

AvailableTall :» SavedJTail;

Set Next (Ptr -> Available Tail,
PtrdotNext -> SavedHeaH);

Available_Length :- Available_Length + Node_Count;

end Save_List;

3.3.7.1.9.2.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table describes the subroutines required by this part and defined
as generic formal subprograms to the Available_Space_List_Operations package:

| Name | Type | Description |

| Set_Next | procedure | Given two points, A and B, sets A.Next equal to B |

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Available_Space_List_Operations LLCSC:

| Name | Type | Description |

| Pointers | access Nodes | A pointer to an element in the available |
j I I space list j

CAMP Software Detailed Design Document Page 1744

Data objects:

The following table summarizes the objects required by this part and defined as
generic formal parameters to the Available_Space_List_Operations LLCSC:

| Name | Type | Value | Description |

| Available_ | INTEGER | N/A | Length of the available space list |
I Length III I
| AvailableJTail | Pointers j N/A j Points to the last element in the j
I III available space list j

3.3.7.1.9.2.10.3.8 LIMITATIONS

None.

3.3.7.1.9.3 BOUNDED_FIFO_BUFFER PACKAGE DESIGN (CATALOG #P331-0)

This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
always points to a dummy node. The first node following the dummy node
contains the next piece of data to be retrieved. The tail always points to
where the next element should be added. If the tail points to the element
immediately in front of the head, the buffer is empty. If the tail points to
the same element as the head, the buffer is full. Since the buffer is
implemented as an array, the head and tail will advance through the array in a
circular fashion, but no overwriting of data currently in the buffer will be
permitted.

Empty FIFO buffer: +-+ < Head +-+ +-+ +-+ < Tail +-+ +-+ +-+ +-+

Full FIFO buffer: Tail >+-+ < Head +-+ +-+ +-+ +-+ +-+ +-+ +-+

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP required R125.

3.3.7.1.9.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.3 INPUT/OUTPUT

GENERIC PARAMETERS:

CAMP Software Detailed Design Document Page 1745

WS The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Value

| POSITIVE | N/A

Description

| Initial_
| Buffer Size

| Maximum number of elements which can
I be in the buffer at any given time

3.3.7.1.9.3.4 LOCAL DATA

None.

3.3.7.1.9.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.6 PROCESSING

The following describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Bounded_FIFO_Buffer is

end Bounded FIFO Buffer;

3.3.7.1.9.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

CAMP Software Detailed Design Document Page 1746

The following table describes the data types which were previously defined in
this part's specification:

Name

Buffer_Range

Buffer_
Statuses

Type Range Description

NATURAL
subtype

discrete
type

Buffer_Size
Empty,
Available,
Full

Used to dimension the list of
elements

Used to indicate the status of
the buffer

The following table describes the data types defined in the private part of
this part's specification:

| Name | Type

| Buffers | record
I I
| Lists | array

| Range | Description

| N/A | List of data along with relevant
{ I information
j N/A I Array of elements

Data objects;

The following table describes the data objects which were previously defined in
this part's specification:

| Name I Type Value | Description

| BufferSize | POSITIVE | Initial_ | Number of usable elements in a |
j j j Buffer_Size j buffer j

Exceptions:

The following table describes the exceptions which were previously defined in
this part's specification:

| Name | Description I
| Buffer_Empty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer j
j Buffer_Full j Error condition raised if an attempt is made to add j
j j elements to a full buffer j

3.3.7.1.9.3.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1747

3.3.7.1.9.3.9 LLCSC DESIGN

None.

3.3.7.1.9.3.10 UNIT DESIGN

3.3.7.1.9.3.10.1 CLEAR_BUFFER UNIT DESIGN

This procedure clears an input buffer by setting its length to 0 and resetting
its head and tail to 0 and 1, respectively.

3.3.7.1.9.3.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

(• The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | FIFO buffer being accessed |

3.3.7.1.9.3.10.1.4 LOCAL'DATA

None.

3.3.7.1.9.3.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : out Buffers) is

—declaration section

Buffer_Length : Buffer_Range renames Buffer.Buffer_Length;

CAMP Software Detailed Design Document Page 1748

i
Head : Buffer_Range renames Buffer.Head;
Tail : Buffer Range renames Buffer.Tail;

-- —begin procedure Clear_Buffer

begin

Buffer Length i = 0;
Head t =s 0;
Tail :- 1;

end Clear_Buffer ;

3.3.7.1.9.3.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.7.1.9.3.10.1.8 LIMITATIONS

None.

3.3.7.1.9.3.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to an input buffer if the buffer is not already
full. After the element is added, the tail is advanced one place in the buffer
and the length counter is incremented by 1.

The exception BufferFull is raised if an attempt is made to add an element to
an already full buffer.

3.3.7.1.9.3.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

«

•JU.

CAMP Software Detailed Design Document Page 1749

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |
I New Element | Elements j in j Element to be added to the buffer j

3.3.7.1.9.3.10.2.4 LOCAL DATA

None.

3.3.7.1.9.3.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is

—declaration section

List : Lists renames Buffer.List;
Buffer_Length : Buffer_Range renames Buffer.Buffer Length;
Head : Buffer_Range renames Buffer.Head;
Tail : Buffer'Range renames Buffer.Tail;

—begin procedure Add Element

begin

—make sure buffer isn't full
if Head - Tail then

raise BufferFull;
end if;

List(Tail) :- New_Element;
Buffer Length :■ Buffer Length + 1;
if Tail - BufferSize tHen

Tail :» 0;
else

Tail := Tail +.1;
end if;

end Add Element ;

CAMP Software Detailed Design Document Page 1750

3.3.7.1.9.3.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract_Data_Structures. Bounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_FIFO_Buffer.

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j j subtype j Buffer_Size j elements j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded_FIP0_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant
I j I I information
j Lists j array j N/A j Array of elements

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of AbstractDataStructures. BoundedFIFOBuffer:

| Name | Type | Value | Description |

| BufferSize | POSITIVE | Initial_ | Number of usable elements in a |
j j j Buffer_Size | buffer |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract Data Structures. Bounded FIFO Buffer:

«

CAMP Software Detailed Design Document Page 1751

| Name | Description |

| Buffer_Full | Error condition raised if an attempt is made to add |
j I elements to a full buffer

3.3.7.1.9.3.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description j

| Buffer_Full | Error condition raised if an attempt is made to add |
j j elements to a full buffer j

3.3.7.1.9.3.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element in the buffer if the buffer is not
empty. The hend is advanced through the buffer by 1 before the element is
retrieved and the size of the buffer is decremented by 1 after the element is
retrieved.

If the buffer is empty before calling this routine, the exception BufferJSmpty
is raised.

3.3.7.1.9.3.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.3.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed • j
j 01d_Element | Elements j out j Element retrieved from the buffer j

CAMP Software Detailed Design Document Page 1752

3.3.7.1.9.3.10.3.4 LOCAL DATA

None.

3.3.7.1.9.3.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.3.6 PROCESSING

The following describes the processing performed by this part;

procedure Retrieve_Element (Buffer : in out Buffers;
Old Element : out Elements) is

—declaration section

BufferJLength ; Buffer_Range renames Buffer.Buffer_Length;
Head : Buffer_Range renames Buffer.Head;
List : Lists renames Buffer.List;
Tail : BufferRange .renames Buffer.Tail;

— —begin procedure Retrieve_Element i
begin

—make sure don't have an empty buffer
if Head - (Tail-1) or else (Tail - 0 and Head - BufferSize) then

raise Buffer_Empty;
end if;

if Head = Buffer Size then
Head :- 0;

else
Head :■ Head + 1;

end if;
Old Element := List(Head);
BufIer_Length :« Buffer_Length - 1;

end Retrieve_Element ;

3.3.7.1.9.3.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component: *

IV

CAMP Software Detailed Design Document Page 1753

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract_Data_Structures. Bounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_FIFO_Buffer.

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j I subtype j Buffer_Size j elements j

The following table describes the data types defined in the private part of the
Abs tractDataS true tures.BoundedFIFOBuf fer package:

| Name | Type j Range | Description |

| Buffers | record | N/A | List of data along with relevant
jj jj information
j Lists | array j N/A j Array of elements

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded_FIFO_Buffer:

| Name | Description |

| BufferJEmpty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer

3.3.7.1.9,3.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description

y. | Buffer_Empty | Error condition raised if an attempt is made to look at or
^i j j retrieve elements from an empty buffer

r.

CAMP Software Detailed Design Document Page 1754

3.3.7.1.9.3.10.4 PEEK UNIT DESIGN

This function returns the first element of the buffer if the buffer is not
empty. The status of the buffer is not changed, however, and the element
itself remains in the buffer.

The Buffer_Empty exception is raised if an attempt is made to look at an empty
buffer.

3.3.7.1.9.3.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R125.

3.3.7.1.9.3.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.3.10.4.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Description

| Spot | Buffer_Range | Marks location of element to be looked at

3.3.7.1.9.3.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.4.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

CAMP Software Detailed Design Document Page 1755

s
--declaration section

Buffer_Length
Head
Tail
List
Spot

BufferRange renames Buffer.Buffer_Length;
Buffer_Range renames Buffer.Head;
Buffer_Range renames Buffer.Tail;
Lists ~ renames Buffer.List;
Buffer_Range;

— —begin function Peek

begin

—make sure don't have an empty buffer
if Head = (Tail-1) or else (Tail - 0 and Head - BufferSize) then

raise BufferEmpty;
end if;

if Head ■ BufferSize then
Spot :■ 0;

else
Spot :- Head + 1;

end if;

return List(Spot);

end Peek ;

3.3.7.1.9.3.10.4.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Abstract_Data_Structures. Bounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data Structures. Bounded FIFO Buffer.

CAMP Software Detailed Design Document Page 1756

{
| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j j subtype j Buffer_Size | elements j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Bounded_FIFO_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant
j jj information j

j Lists j array j N/A j Array of elements

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract Data Structures. Bounded FIFO Buffer:

| Name | Description

| Buffer_Empty | Error condition raised if an attempt is made to look at or
j j retrieve elements from an empty buffer

3.3.7.1.9.3.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

j Name j Description

| BufferEmpty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer j

3.3.7.1.9.3.10.5 BUFFER_STATUS UNIT DESIGN

This function returns the status of the buffer. If there are no elements in
the buffer, the status is empty; if there is no room for additional elements,
the status is full; otherwise, the status is available.

3.3.7.1.9.3.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R12S.

CAMP Software Detailed Design Document Page 1757

3.3.7.1.9.3.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.3.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.3.10.5.4 LOCAL DATA

Data objects:

The following objects are maintained local to this part:

| Name | Type | Description |

| Status | Buffer_Statuses | Status of the buffer |

3.3.7.1.9.3.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

—declaration section

Head : Buffer_Range renames Buffer.Head;
Tail : Buffer_Range renames Buffer.Tail;

Status : Buffer_Statuses;

— —begin function Buffer_Status

begin

CAMP Software Detailed Design Document Page 1758

if Head = (Tail-1) or else (Tail
Status := Empty;

elsif Head = Tail then
Status := Full;

else
Status := Available;

end if;

return Status;

end Buffer Status ;

0 and Head « Buffer Size) then

3.3.7.1.9.3.10.5.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of AbstractDataStructures. Bounded_FIFO_Buffer.

| Name

Buffer_Range

Buffer_
Statuses

Type | Range | Description

NATURAL
subtype

discrete
type

BufferSize
Emptyi
Available,
Full

Used to dimension the list of
elements

Used to indicate the status of
the buffer

The following table describes the data types defined in the private part of the
Abstract Data Structures.Bounded FIFO Buffer package:

| Name | Type | Range Description

| Buffers | record | N/A
I I I

| List of data along with relevant
| information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_FIFO_Buffer:

| Name I Type Value | Description

| BufferSize | POSITIVE | Initial | Number of usable elements in a
j | I BufferSize j buffer

CAMP Software Detailed Design Document Page 1759

M^ 3.3.7.1.9.3.10.5.8 LIMITATIONS

None.

3.3.7.1.9.3.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the length of the current buffer.

3.3.7.1.9.3.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R12S.

3.3.7.1.9.3.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1 "• ^.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

(pT | Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.3.10.6.4 LOCAL DATA

None.

3.3.7.1.9.3.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.3.10.6.6 PROCESSING

The following describes the processing performed by this part:

function BufferLength (Buffer : in Buffers) return Buffer_Range is

begin

return Buffer.Buffer_Length;

end Buffer Length ;

CAMP Software Detailed Design Document Page 1760

3.3.7.1.9.3.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract Data Structures. Bounded FIFO Buffer.

0?

I Name Type | Range Description

| Buf ferRange | NATURAL | 0 .. | Used to dimension the list of |
j j subtype j BufferSize j elements j

The following table describes the data types defined in the private part of the
Abstract Data Structures.Bounded FIFO Buffer package:

| Name | Type | Range | Description

| Buffers | record | N/A

I I I
| List of data along with relevant

information

3.3.7.1.9.3.10.6.8 LIMITATIONS

None.

3.3.7.1.9.4 UNBOUNDED_FIFO_BUFFER PACKAGE DESIGN (CATALOG #P332-0)

This generic package defines the data type and contains the operations required
to perform first-in-first-out buffering operations on incoming data. The head
of the buffer always points to a dummy node. The first node following the
dummy node contains the next piece of data to be retrieved. The tail always
points to the node containing the last element added to the buffer. If the
tail points to the same node as the head, the buffer is empty.

A buffer must be initialized before it is used. If an attempt is made to use
an uninitialized buffer, the exception Buffer_Not_Initialized will be raised.
The Initialized_Buffer procedure returns an initialized buffer. The Clear -
Buffer procedure returns the nodes of a buffer to the available space list and
then returns an initialized buffer.

An available space list is maintained local to this part. When this part is
elaborated the available sp.'.ce list will have a dummy node plus Initial -
Available_Space_Size nodes. When nodes are added to the buffer, the Ad(f_-
Element routine will try to get a node from the available space list before
attempting to allocate more memory. When the Retrieve Element routine is
called, the unused node will be returned to the availaEle space list for later
use. The memory committed to the available space may be deallocated by calling

«

CAMP Software Detailed Design Document Page 1761

the Free_Memory procedure.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.4.1 REQUnEMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintained local to this part's package body.

Subprograms:

The following subprograms are contained local to this body:

Name Type | Description

procedure | Instantiation of UNCHECKED_DEALLOCATION
function j Given a pointer P, this function returns

j the value of P.Next
procedure j Given two points P & Q, this procedure

sets P.Next ■ Q

Free Node
DotNext

Set Next

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Avallable_Space_Operations package.

Name Type Description

New Node

Save_Node
Save-List

function

procedure
procedure

Returns a node to the calling routine; will get a
node from the available space list if possible,
otherwise will allocate a new node

Handles placing a node in the available space list
Handles placing a list of nodes in the available
space list

This package body contains code to initialize the Available_Space List. This
code is executed when the package is elaborated. At a minimum, tHis code calls
the InitializeBuffer procedure to initialize the Available Space List so it
contains a dummy node. If the generic formal object InitiaT_AvaiTable_Space_-
Size is greater than or equal to 1, this routine then places the requested
number of nodes (in addition to the dummy node) in the available space list.

CAMP Software Detailed Design Document Page 1762

3.3.7.1.9.4.3 INPUT/OUTPUT ^

GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

I Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description |

| Inltial_Available_ | NATURAL | Number of nodes to be initially placed in |
I Space Size | j the available space list | *

3.3.7.1.9.4.4 LOCAL DATA

None.

3.3.7.1.9.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.6 PROCESSING

The following describes the processing performed by this part:

with UNCHECKEDDEALLOCATION;
separate (Abstract_Data_Structures)
package body Unbounded FIFO Buffer is

— —declaration section

— this variable is accessed ONLY when setting up the available space list
Initial_Head : Pointers :« new Nodes;

Available_Space : Buffers ;■ (Current_Length => 0,
Head -> Initial Head,

CAMP Software Detailed Design Document Page 1763

Tall => Initial_Head);

Available_Length : INTEGER renames Available_Space.Current_Length;
AvailableHead : Pointers renames Avallable~Space.Head;
AvailableJTail : Pointers renames Avallable_Space.Tall;

procedure Free is new UNCHECKED_DEALLOCATION
(Object => Nodes,
Name => Pointers);

procedure Free_Node (Whlch_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set_Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers);

package Available_Space_Operations is new
Av*ilable_Space_Llst_Opsratlons

(Nodes ■> Nodes,
Pointers «> Pointers,
Available_Lengch «> Avallable_Length,
Avallable_Head -> Available Head,
Available_Tall -> Avallable~Tail);

function New_Node return Pointers
renames Available_Space_Operations.New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renames AvailableSpace Operations.SaveNode;

procedure Save_List (Saved_Head : in Pointers:
Saved Tail : in Pointers;
Node_Count : in POSITIVE)

renames Available_Space_Oparations.Save_List;

—begin package Unbounded_FIFO_Buffer
—(see header for package body for details)

begin

— —set up available space list if one is desired
if Initial_Available_Space_Size > 0 then

Add Nodes To Available_Space_Llst:
lor I Tn T. .Initial_Available_Space_Size loop

Avallable_Tail.Next := NEW Nodes;
AvailableJTail :=» AvailableJTail.Next;

end loop Add_Nodes_to_Available_Space_List;

Available_Length :» In4 tial_Available_Space_Size;

end if;

CAMP Software Detailed Design Document Page 1764

end Unbounded_FIFO_Buffer;

3.3.7.1.9.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units are with'd by this part:
1. Unchecked_Deallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source | Description |

| UNCHECKED_ | generic | N/A | Used to deallocate memory
| DEALLOCATION j function j j j

Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGEERROR | Raised when an attempt is made to dynamically allocate |
j I more memory than is available

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Packages:

The following table describe.« th« packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

| Name | Type | Description |

| Available_Space_ | generic | Contains the routines required to retrieve
j List_Operations j package j a node from and place a node in the
j j j available space list

Data types:

The following data types were previously defined in this part's package
specification:

CAMP Software Detailed Design Document Page 1765

Name Type Ran e | Description

| Buffer_ | discrete | Empty, | Used to indicate the status of the |
j Statuses | type j Available, | buffer j
j j j Uninitialized j j

The following data types were previously defined in the private portion of this
part's package specification:

Name

Nodes

Pointers
Buffers

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the buffer; contains
data and a pointer to the next node
Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The following exceptions were previously defined in this part's package
specification:

| Name Description

| Bui:fer_Empty | Error condition raised if an attempt is made to look at or
| j retrieve elements from an empty buffer j
j BufferJNot j Raised if an attempt is made to use an uninitialized buffer j
1 Initialized I I

3.3.7.1.9.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name

Storage Error

| Vhen/Vhy Raised I
| Raised during elaboration of this package if an
j attempt is made to allocate memory when no more j
j is available

3.3.7.1.9.4.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1766

3.3.7.1.9.4.10 UNIT DESIGN

3.3.7.1.9.4.10.1 INITIALIZE_BUFFER UNIT DESIGN

This procedure initializes a buffer. It does this in the following manner:

1) If the buffer has never been initialized then: o places a dummy node in the
buffer and o initializes the length to 0

2) else if the buffer has elements in it then: o calls the Clear_Buffer
procedure

3) else if the buffer has a length of 0 then o does nothing

3.3.7.1.9.4.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being initialized |

3.3.7.1.9.4.10.1.4 LOCAL DATA

None.

3.3.7.1.9.4.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Initialize_Buffer (Buffer : in out Buffers) is

.. :... <
—declaration section

CAMP Software Detailed Design Document Page 1767

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;

— —begin procedure Initialize_Buffer

begin

if Current_Length = -1 then

—handle an uninitialized buffer
Head :■ New Node;
Tail :- Hea3;
Current_Length :» 0;

elsif Current_Length > 0 then

—handle a buffer that has something in it
Clear_Buffer(Buffer »> Buffer);

else

—current length > 0 so it is already initialized
NULL;

end if;

end InitializeBuffer ;

3.3.7.1.9.4.10.1.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded_FIFO_Buffer:

| Name | Type | Description |

| Clear_ | procedure | Returns all the nodes in a buffer to the available |
j Buffer j j space list

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

r'

CAMP Software Detailed Design Document Page 1768

| Name | Type | Range | Description

| Nodes record N/A |

j Pointers access N/A |
| Buffers record N/A |

A single entity in the buffer; contains
data and a pointer to the next node
Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

3.3.7.1.9.4.10.1.8 LIMITATIONS

None.

3.3.7.1.9.4.10.2 CLEAR_BUFFER UNIT DESIGN

This procedure returns all the elements in a buffer, except for the dummy node,
to the available space list. If this routine is sent an uninitialized buffer,
a Buffer_Not_Initialized exception is raised.

3.3.7.1.9.4.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being cleared |

3.3.7.1.9.4.10.2.4 LOCAL DATA

Data objects:

The following table describes the objects maintained local to this part:

| Name | Type | Description |

| This_Node | Pointers | Node to be placed in the available space list |

CAMP Software Detailed Design Document Page 1769

3.3.7.1.9.4.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure Clear Buffer (Buffer : in out Buffers) is

-declaration section

CurrentLength : INTEGER renames Buffer.CurrentLength;
Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;

This_Node : Pointers;

-- —begin procedure Clear Buffer

begin

—make sure this is an initialized buffer
if Current_Length • -1 then

raise Buffer_Not_Initiallzed;
end if;

—placed nodes in the available space list
Save_List (SavedHead -> Head.Next,

SavedJTail -> Tail,
Node_Count -> Current_Length);

—reinitialize buffer variables
Current_Length
Head.Next
Tail

end Clear Buffer ;

0;
NULL;
Head;

3.3.7.1.9.4.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded FIFO Buffer:

CAMP Software Detailed Design Document Page 1770

| Name | Type Description I
Save_List | procedure | Handles placing a list of nodes in the available |

I I space list

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

| Name

Nodes

Pointers
Buffers

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_FIFO_-
Buffer:

Name Description I
| Buffer Not | Raised if an attempt is made to use an uninitialized buffer |
I Initialized j j

3.3.7.1.9.4.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name Vhen/Vhy Raised

| Buffer_Not_Initialized | Raised if an attempt is made to use an
j ~ j uninitialized buffer

3.3.7.1.9.4.10.3 FREE_MEM0RY UNIT DESIGN

This procedure deallocates the memory occupied by the available space list.

ruh m
CAMP Software Detailed Design Document Page 1771

3.3.7.1.9.4.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.4.10.3.4 LOCAL DATA

Data objects;

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Node_to_be_Freed | Pointers | N/A | Pointer to the node to be |
| III deallocated j

3.3.7.1.9.4.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.3.6 PROCESSING

The following describes the processing performed by this part:

procedure Free_Memory is

—declaration section

Node_to_be_Freed : Pointers;

-begin procedure Free Memory

begin

Clear Out_Available_Space_List;
while Available_Head /= AvailableJTail loop

Node To Be_Freed := Available_Head;
Available Head :■ Available Head.Next;

CAMP Software Detailed Design Document Page 1772

Free_Node (Which_Node => Node_to_be_Freed);

end loop Clear_Out_Available_Space_List;

Avallable_Length := 0;

end Free_Meraory ;

3.3.7.1.9.4.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component;

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_FIFO_Buffer:

| Name | Type | Description |

| FreeNode | procedure | Instantiation of UNCHECKEDJHSALLOCATION |

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Struetares. UnboundedFIPOBuffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

| Name | Type | Range | Description

| Nodes
I
| Pointers
| Buffers

record I N/A

access
record

N/A
N/A

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Data objects:

CAMP Software Detailed Design Document Page 1773

The following table summarizes the objects required by this part and defined in
the package body of Unbounded_FIFO_Buffer:

Name I Type Description

Available_ | Buffers { List of available nodes; nodes will be added to
Space I | list when Retrieve_Element is called and

retrieved from the list when Add Element is
called; the nodes in the list ari deallocated
when Clear Memory is called

The following table summarizes the data objects required by this part and
defined in the package body of Unbounded FIFO Buffer:

| Name Type | Value | Description

| Indicates the current length of
I the available space list
I Points to the head node in the
! available space list
| Points to the tail node in the
I available space list

| Available INTEGER |
Length

Available Pointers |
Head

Available Pointers |
Tail

Avallable_Space.
Current_Length

Available_Space.
Head

Available Space.
Tail

3.3.7.1.9.4.10.3.8 LIMITATIONS

None.

3.3.7.1.9.4.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the FIFO buffer.

If the buffer has not been initialized, the exception Buffer_Not_Initialized is
raised.

The Storage Error exception is raised if a call to this routine requires memory
to be dynamically allocated when no more memory is available.

3.3.7.1.9.4.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.4.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1774

3.3.7.1.9.A.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode) Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |
j NewElement | Elements | in j Element to be added to the buffer

3.3.7.1.9.4.10.4.4 LOCAL DATA

None.

3.3.7.1.9.4.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.4.6 PROCESSING

The following describes the processing performed by this part:

procedure AddJBlement (New Element : in Elements;
Buffer : in out Buffers) is

—declaration section

CurrentLength : INTEGER renames Buffer.Current_Length;
Tail : Pointers renames Buffer.Tail;

NewTail : Pointers;

— —begin procedure Add Element

begin

—make sure buffer has been initialized
if Current_Length = -1 then

raise Buffer_Not_Initialized;
end if;

—now get a node
NewJTail := New_Node;

—now adjust the buffer
Tail.Next := NewJTail;
Tail := New Tail;

d

CAMP Software Detailed Design Document Page 1775

Tail.Data
Current_Length

end Add Element ;

!= New_Element;
!= Current Length + 1;

3.3.7.1.9.4.10.4.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component;

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_FIFO_Buffer:

| Name I Type | Description I
NewNode | function | Returns a node to the calling routine; will get a |

j I node from the available space list if possible, |
otherwise will allocate a new node

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Structures. Unbounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private [User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

Name

Nodes

Pointers
Buffers

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_FIFO_-
Buffer:

CAMP Software Detailed Design Document Page 1776

Name | Description

Buffer_Not_ | Raised if an attempt is made to use an uninitialized buffer
Initialized

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| STORAGEERROR | Raised when an attempt is made to dynamically allocate |
j j more memory than is available j

3.3.7.1.9.4.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Storage_Error | Raised if an attempt is made to allocate memory |
j j when no more is available j
j Buffer_Not_Initialized j Raised if an attempt is made to use an
I j uninitialized buffer j

3.3.7.1.9.4.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the oldest element from the FIFO buffer, places the
spare node on ihe available space list, and updates the status of the FIFO
buffer.

If the buffer has not been initialized, a Buffer_Not_Initialized exception is
raised.

If the buffer is empty, a Buffer_Empty exception is raised.

3.3.7.1.9.4.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.5.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1777

3.3.7.1.9.4.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out || FIFO buffer being accessed
j 01d_Element j Elements j out | Element retrieved from the buffer

3.3.7.1.9.4.10.5.4 LOCAL DATA

Data objects:

The following tah\o describes the objects maintained local to this part:

| Name | Type | Description |

| This_Node | Pointers | Node to be placed in the available space list |

3.3.7.1.9.4.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.5.6 PROCESSING

The following describes the processing performed by this part:

procedure Retrieve_Element (Buffer : in out Buffers;
Old Element : out Elements) is

—declaration section

Current_Length : INTEGER renames Buffer.CurrentJLength;
Head : Pointers renames Buffer.Head;

This_Node : Pointers;

-begin procedure Retrieve Element

begin

—make sure an element is available
if Current_Length = -1 then

raise Buffer Not Initialized;

CAMP Software Detailed Design Document Page 1778

elsif Current_Length = 0 then
raise Buffer_Empty;

end if;

—save dummy node in the available space list
ThisNode := Head;
Head :■ Head.Next;
Save_Node (Saved_Node => This_Node);

—retrieve element (its node becomes the new dummy node)
OldElement t- Head.Data;

—update buffer status
Current_Length :- Current_Length - 1;

end Retrieve_Element ;

3.3.7.1.9.4.10.5.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_PIFO_Buffer:

| Name | Type | Description |

| Save_Node | procedure | Handles placing a node in the available space list |

Data type..:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Structures. Unbounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

CAMP Software Detailed Design Document Page 1779

•v,Xv

Name

Nodes

Pointers
Buffers

Type Range | Description

record I N/A
I

access | N/A
record j N/A

A single entity in the buffer; contains
data and a pointer to the next node
Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_FIFO_-
Buffer:

Name Description

| Buffer_Empty | Error condition raised if an attempt is made to look at or
j j retrieve elements from an empty buffer |
j Buffer_Not_ j Raised if an attempt is made to use an uninitialized buffer j
I Initialized I I

jb, 3.3.7.1.9.4.10.5.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name

Buffer Empty

| Vhen/Vhy Raised

_ | Raised if an attempt is made to access an empty
| | buffer
j Buffer_Not_Initialized j Raised if an attempt is made to use an

uninitialized buffer

3.3.7.1.9.4.10.6 PEEK UNIT DESIGN

This function returns the oldest element in the FIFO buffer.

If the buffer has not been initialized, a Buffer_Not_Initialized exception is
raised.

If the buffer is empty, a Buffer Empty exception is raised.

3.3.7.1.9.4.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

CAMP Software Detailed Design Document Page 1780

3.3.7.1.9.4.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.6.4 LOCAL DATA

None.

3.3.7.1.9.4.10.6.5 PROCESS CONTROL

Not applicable.

i
3.3.7.1.9.4.10.6.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

—declaration section

Current_Length : INTEGER renames Buffer.CurrentLength;
Head : Pointers renames Buffer.Head;

-begin function Peek

begin

—make sure something is there to look at
if Current_Length - -1 then

raise Buffer_Not Initialized;
elsif Current_LengtH = 0 then

raise Buffer_Empty;
end if;

return Head.Next.Data; qj

end Peek ;

CAMP Software Detailed Design Document Page 1781

3.3.7.1.9.4.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic parameters to the Abstract_Data_Structures. Unbounded_FIFO_Buffer
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

| Name

Nodes

Pointers
Buffers

Type | Range | Description

record

access
record

N/A

N/A
N/A

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_FIFO_-
Buffer:

| Name Description

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer
j Buffer_Not_ j Raised if an attempt is made to use an uninitialized buffer j
| Initialized | j

3.3.7.1.9.4.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

B

CAMP Software Detailed Design Document Page 1782

| Name | When/Why Raised |

| Buffer Empty | Raised if an attempt is made to access an empty
| I buffer i
j Buffer_Not_Initialized | Raised if an attempt is made to use an |
j j uninitialized buffer j

3.3.7.1.9.4.10.7 BUFFER_STATUS UNIT DESIGN

This function returns the status of the buffer based on the following
algorithm;

if buffer has never been initialized then status is uninitialized elsif buffer
has no nodes in it then status is empty else status is available

3.3.7.1.9.4.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.7.3 INPUT/OUTPUT

FORMAL PARAMETERS!

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed I

3.3.7.1.9.4.10.7.4 LOCAL DATA

None.

3.3.7.1.9.4.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.7.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

CAMP Software Detailed Design Document Page 1783

-declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Status : Buffer Statuses;

— —begin function Buffer_Status

begin

if Current_Length - -1 then
Status r« Uninitialized;

elsif Current_Length = 0 then
Status i- Empty;

else
Status :- Available;

end if;

return Status;

end Buffer_Status ;

3.3.7.1.9.4.10.7.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Unbounded_FIFO_Buffer:

| Name | Type | Range | Description |

| Buffer_ | discrete | Empty, | Used to indicate the status of the |
j Statuses | type j Available, | buffer j
| | | Uninitialized | I

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

CAMP Software Detailed Design Document Page 1784

| Name | Type | Range | Description |

| Buffers | record | N/A | Record containing the value of the current |
j ill length, head, and tail of the buffer j

3.3.7.1.9.4.10.7.8 LIMITATIONS

None.

3.3.7.1.9.4.10.8 BUFFER_LENGTH UNIT DESIGN

This function returns the length of the current buffer.

If the buffer has not been initialized, a Buffer_Not_Initialized exception is
raised.

3.3.7.1.9.4.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R164.

3.3.7.1.9.4.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.8.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | in out | FIFO buffer being accessed |

3.3.7.1.9.4.10.8.4 LOCAL DATA

None.

3.3.7.1.9.4.10.8.5 PROCESS CONTROL

Not applicable.

i

<. w
CAMP Software Detailed Design Document Page 1785

3.3.7.1.9.A.10.8.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Length (Buffer : in Buffers) return NATURAL is

-declaration section

CurrentLength ; INTEGER renames Buffer.CurrentLength;

—begin function Buffer Length

begin

—make sure the buffer has a length
if Current_Length « -1 then

raise Buffer_Not_Initialized;
end if;

return Current_Length;

end Buffer_Length ;

3.3.7.1.9.4.10.8.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

| Name j Type | Range | Description |

| Buffers | record | N/A | Record containing the value of the current |
j III length, head, and tail of the buffer

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_FIFO_-
Buffer:

CAMP Software Detailed Design Document Page 1786

| Name | Description |

| Buffer_Not_ | Raised if an attempt is made to use an uninitialized buffer |
I Initialized | |

3.3.7.1.9.4.10.8.8 LIMITATIONS

The following table describes the except ions raised by this part:

| Name | When/Why Raised |

| Buffer_Not Initialized | Raised if an attempt is made to use an |
j " j uninitialized buffer j

3.3.7.1.9.4.10.9 D0T_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

3.3.7.1.9.4.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.4.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.4.10.9.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry is to |
j | j j be returned j

3.3.7.1.9.4.10.9.4 LOCAL DATA

None.

CAMP Software Detailed Design Document Page 1787

3.3.7.1.9.4.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.4.10.9.6 PROCESSING

The following describes the processing performed by this part:

function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

3.3.7.1.9.4.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

Name | Type | Range | Description

Nodes

I
record I N/A

Pointers | access j N/A
Buffers j record I N/A

I

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

3.3.7.1.9.4.10.9.8 LIMITATIONS

None.

3.3.7.1.9.4.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.4.10.10.1 REQUIREMENTS ALLOCATION

None.

CAMP Software Detailed Design Document Page 1788

3.3.7.1.9.4.10.10.2 LOCAL ENTITIES DESIGN *

None.

3.3.7.1.9.4.10.10.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters;

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
| | I I is to be modified j
j PtrdotNext j Pointers j in j Value to which Ptr.Next is to be set j

3.3.7.1.9.4.10.10.4 LOCAL DATA

None.

3.3.7.1.9.4.10.10.5 PROCESS CONTROL

Not applicable. "

3.3.7.1.9.4.10.10.6 PROCESSING

The following describes the processing performed by this part:

procedure Set_Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers) is

begin
Ptr.Next :- Ptr_dot_Next;

end Set_Next;

3.3.7.1.9.4.10.10.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

<8

m
CAMP Software Detailed Design Document Page 1789

Name

Nodes

Pointers
Buffers

Type

record

Range

N/A

Description

I
access | N/A
record 1 N/A

A single entity in the buffer; contains
data and a pointer to the next node

Points to a node in the buffer
Record containing the value of the current
length, head, and tail of the buffer

3.3.7.1.9.4.10.10.8 LIMITATIONS

None.

3.3.7.1.9.5 N0NBLOCKING_CIRCULAR_BUFFER PACKAGE DESIGN (CATALOG #P333-0)

This generic package defines the data type and contains the operations required
to perform circular buffering operations on incoming data. These operations
are performed in a non-blocking fashion such that if the buffer is full,
incoming data will overwrite old data. The head of the buffer always points to
a dummy node. The first node following the dummy node contains the next piece
of data to be retrieved. The tail always points to where the next element
should be added. If the tail points to the element immediately in front of the
head, the buffer is empty. If the tail points to the same element as the head,
the buffer is full. This is illustrated below.

Empty circular buffer: +-+ < Head +-+ +-+ +-+ < Tail +-+ +-+ +-+ +-+

Full circular buffer: Tail >+-+ < Head +-+ +-+ +-+ +-+ +-+ +-+ +-+

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.3 INPUT/OUTPUT

GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was •
specified in the package specification of the Abstract_Data_Structures package:

Data types:

CAMP Software Detailed Design Document Page 1790

The following table summarizes the g«neric formal types required by this part:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name Type | Value

POSITIVE I N/A

| Description

Initial_
Buffer Size

| Maximum number of elements which can |
j be in the buffer at any given time

3.3.7.1.9.5.4 LOCAL DATA

None.

3.3.7.1.9.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.6 PROCESSING

The follow, j describes the processing performed by this part:

separate (Abstract_Data_Structures)
package body Nonblöcking_Circular_Buffer is

end Nonblocking_Circular_Buffer;

3.3.7.1.9.5.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following data types were previously defined in this part's package
specification:

CAMP Software Detailed Design Document Page 1791

| Name Type Range Description |

| Buffer Range

1
| Buffer_
j Statuses

1

NATURAL
subtype

discrete
type

0 ..
BufferSlze

Empty,
Available,
Full

Used to dimension the list of
elements j

Used to indicate the status of j
the buffer |

*Xk

The following table describes the data types defined in the private part of the
Abstract Data Structures.Nonblocking Circular Buffer package:

| Name | Type | Range | Description |

Lists | array
Buffers j record

1

| N/A
j N/A

| Array of elements j
j List of data along with relevant !
j information j

Data objects:

The following data objects were previously defined in this part's package
specification:

Name Type Value | Description

| BufferSize | POSITIVE | Initial_ | Number of usable elements in a
| | | BufferSize j buffer

Exceptions:

The following exceptions were previously defined in this part's package
specification:

Name Description

| Buffer_Empty | Error condition raised if an attempt is made to
j j look at or retrieve elements from an empty
| | buffer

3.3.7.1.9.5.8 LIMITATIONS

None.

3.3.7.1.9.5.9 LLCSC DESIGN

None.

CAMP Software Detailed Design Document Page 1/92

i
3.3.7.1.9.5.10 UNIT DESIGN

3.3.7.1.9.5.10.1 CLEAR_BUFFER UNIT DESIGN

This procedure clears a buffer by setting the Head to 0, the Tail to 1, and the
length to 0.

3.3.7.1.9.5.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Node | Description |

| Buffer j Buffers | out | Nonblocking circular buffer being | *
I ill accessed

3.3.7.1.9.5.10.1.4 LOCAL DATA

None.

3.3.7.1.9.5.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Clear_Buffer (Buffer : out Buffers) is

—declaration section

Head ; Buffer_Range renames Buffer.Head;
Tail : BufferRange renames Buffer.Tail;
Current Length : Buffer Range renames Buffer.Current Length;

CAMP Software Detailed Design Document Page 1793

— —begin procedure Clear_Buffer

begin

Head ! zs 0
Tail I = 1
Current Length J s 0

end Clear_Buffer ;

3.3.7.1.9.5.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OP OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j • j subtype j BufferSize | elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant |
II jl information j

3.3.7.1.9.5.10.1.8 LIMITATIONS

None.

3.3.7.1.9.5.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the end of the buffer, overwriting old data
if the buffer is full. If data was overwritten, both the head and tail of the
buffer are adjusted to reflect the current status of the buffer. If data was
not overwritten, only the tail of the buffer is adjusted.

CAMP Software Detailed Design Document Page 1794

3.L-'.7.1.9.5.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS;

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed
j New_Element | Elements | in j Element to be added to the buffer j

3.3.7.1.9.5.10.2.4 LOCAL DATA

None.

3.3.7.1.9.5.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure Add_Element (New Element : in Elements;
Buffer : in out Buffers) is

—declaration section

Head : Buffer_Range renames Buffer.Head;
Tail : BufferRange renames Buffer.Tail;
CurrentJLength : Buffer_Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

— —begin procedure Add_Element

begin

List(Tail) :- New Element;

f

*

CAMP Software Detailed Design Document Page 1795

if Head = Tail then

—buffer was already full and an element was overwritten; therefore,
—both head and tail need to be advanced, but Current_Length does
—not need to be changed

if Tail = BufferSize then
Head := 0;
Tail := 0;

else
Head := Head + 1;
Tail := Tail + 1;

end if;

else

—buffer was not already full; therefore, the Current_Length needs
— to be increment and only the tail needs to be advanced

if Tall = Buffer_Size then
Tail :- 0;

else
Tail :- Tall + 1;

end if;

Current^Length :- Current_Length + 1;

end if;

end Add_Elemcnt ;

3.3.7.1.9.5.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Nonblocking_Circular_Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking_Circular_Buffer package:

CAMP Software Detailed Design Document Page 1796

| Name | Type | Range | Description |

| Buffer_Range | NATURAL | 0 .. | Used to dimension the list of |
j j subtype | Buffer_Size j elements j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant
jj II information
j Lists I array j N/A j Array of elements

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking_Circular_Buffer:

| Name | Type | Value | Description j

| BufferSize j POSITIVE | Initlal_ j Number of usable elements in a |
| j j BufferSize j buffer j

3.3.7.1.9.5.10.2.8 LIMITATIONS

None.

3.3.7.1.9.5.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure returns the first element in the circular buffer.

If there are no elements in the buffer, a Buffer_Empty exception is raised.

3.3.7.1.9.5.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.3.2 LOCAL ENTITIES DESIGN

None.

ftJO

CAMP Software Detailed Design Document Page 1797

3.3.7.1.9.5.10.3.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode i Description |

| Buffer | Buffers | out | Circular buffer being accessed
j Old_Element j Elements j out j Element retrieved from the buffer j

3.3.7.1.9.5.10.3.4 LOCAL DATA

None.

3.3.7.1.9.5.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.3.6 PROCESSING

The following describes the processing performed by this pfurt:

procedure Retrieve_Element (Buffer : in out Buffers;
Old Element : out Elements) is

—declaration section

Head : Buffer_Range renames Buffer.Head;
Tail : Buffer_Range renames Buffer.Tall;
Current_Length : Buffer_Range renames Buffer.Current_Length;
List : Lists renames Buffer.List;

-begin procedure Retrieve Element

begin

—make sure there is something there to retrieve
if Current_Length » 0 then

raise Buffer_Empty;
end if;

—advance the head to get to the next element to go out
if Head = BufferSize then

Head :- 0;
else

Head :■ Head + 1;
end if;

CAMP Software Detailed Design Document Page 1798

—now retrieve the element and update the state of the buffer
Old_Element := List(Head);
Current_Length := Current_Length - 1;

end Retrieve_Element ;

3.3.7.1.9.5.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types tc the Nonblocking_Circular_Buffer package:

| Name | Type | Description {

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j j subtype j Buffer_Size j elements j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant |
II jj information j
j Lists j array j N/A j Array of elements

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking_Circular_Buffer:

CAMP Software Detailed Design Document Page 1799

| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
j I | Buffer_Size | buffer |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking_Circular_Buffer:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to |
| j look at or retrieve elements from an empty
| | buffer |

3.3.7.1.9.5.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer j

3.3.7.1.9.5.10.4 PEEK UNIT DESIGN

This function returns the data contained in the first element in the buffer
without changing the state of the buffer (i.e., the element is not removed from
the buffer).

If there are no elements in the buffer, a Buffer_Empty exception is raised.

3.3.7.1.9.5.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

CAMP Software Detailed Design Document Page 1800

i The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed |

3.3.7.1.9.5.10,4.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

{ Spot | Buffer_Range | N/A | Marks the spot in the buffer containing |
jj ij the element to be looked at j

3.3.7.1.9.5.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.4.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Buffer : in Buffers) return Elements is

<

—declaration section

Head : Buffer_Range renames Buffer.Head;
CurrentLength : BufferRange renames Buffer.CurrentLength;
List : Lists renames Buffer.List;

Spot : Buffer_Range;

— —begin function Peek

begin

—make sure there is something to peek at
if Current_Length > 0 then

raise Buffer_Empty;
end if;

—determine location of desired element
if Head > Buffer Size then

CAMP Software Detailed Design Document Page 1801

Spot := 0;
else

Spot := Head + 1;
end if;

—return requested element
return List(Spot);

end Peek ;

3.3.7.1.9.5.10.4.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal types to the Nonblocking_Circular_Buffer package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the buffer |

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j I subtype j Buffer_Size j elements

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking_Circular_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant
| j j j information
j Lists j array j N/A j Array of elements

Data objects:

The following table summarize vhe types required by this part and defined in
the package specification of Nonblocking_Circular_Buffer:

CAMP Software Detailed Design Document Page 1802

| Name | Type | Value | Description |

| Buffer_Size | POSITIVE | Initial_ | Number of usable elements in a |
II | Buffer_Size | buffer |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Nonblocking_Circular_Buffer:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to |
I j look at or retrieve elements from an empty
| | buffer |

3.3.7.1.9.5.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Description |

| Buffer_Empty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty buffer

3.3.7.1.9.5.10.5 BUFFER_STATUS UNIT DESIGN

This function returns the current status of the buffer according to the
following algorithm:

if there are no elements in the buffer then buffer status is empty elsif if the
buffer contains the maximum number of elements buffer status is full else
buffer status is available end if;

3.3.7.1.9.5.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.5.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1803

3.3.7.1.9.5.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed |

3.3.7.1.9.5.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Status | BufferStatuses | N/A | Current status of the buffer |

3.3.7.1.9.5.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

—declaration section

Current_Length : Buffer_Range renames Buffer.Current_Length;

Status : Buffer Statuses;

— —begin function Buffer Status

begin

if Current_Length = 0 then
Status 7« Empty;

elsif Current_Length - Buffer_Size then
Status :« Full;

else
Status :- Available;

CAMP Software Detailed Design Document Page 1804

end if;

return Status;

end Buffer_Status ;

3.3.7.1.9.5.10.5.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblocking_Circular_Buffer package:

| Name I Type Range Description

0 ..
BufferSlze

Empty,
Available,
Full

Used to dimension the list of
elements

Used to indicate the status of
the buffer

Buffer_Range

Buffer_
Statuses

NATURAL
subtype

discrete
type

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocking_Circular_Buffer package:

Name | Type Range Description I

| Buffers | record | N/A
I I I

List of data along with relevant
information

Data objects:

The following table summarizes the types required by this part and defined in
the package specification of Nonblocking Circular Buffer:

| Name | Type | Value | Description I

| Buffer Size | POSITIVE
I " I '

Initial_ | Number of usable elements in a |
Buffer Size buffer

3.3.7.1.9.5.10.5.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1805

3.3.7.1.9.5.10.6 BUFFER_LENGTH UNIT DESIGN

This function returns the current length of the buffer.

3.3.7.1.9.5.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R126.

3.3.7.1.9.5.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.5.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Buffer | Buffers | out | Circular buffer being accessed |

3.3.7.1.9.5.10.6.4 LOCAL DATA

None.

3.3.7.1.9.5.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.5.10.6.6 PROCESSING

The following describes the processing performed by this part:

function BufferJLength (Buffer : in Buffers) return Buffer_Range is

begin

return Buffer.Current_Length;

end Buffer_Length ;

3.3.7.1.9.5.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1806

V
The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Nonblock.ing_Circular_Buffer package:

| Name | Type | Range | Description |

| BufferRange | NATURAL | 0 .. | Used to dimension the list of |
j j subtype j Buffer_Size j elements j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Nonblocklng_Circular_Buffer package:

| Name | Type | Range | Description |

| Buffers | record | N/A | List of data along with relevant {
jj II information j

3.3.7.1.9.5.10.6.8 LIMITATIONS

None.

3.3.7.1.9.6 UNBOUNDED_PRIORITY_QUEUE PACKAGE DESIGN (CATALOG #P334-0)

This genetic package defines the data type and contains the operations required
to perform priority queueing operations on incoming data. The head of the
queue always points to a dummy node. The node following the dummy node
contains the element with the highest priority. The tail always points to the
element with the lowest priority.

The elements will be ordered in the queue such that: 1) Elements with higher
priorities are placed before those with lower priorities. 2) Elements uith the
same priority are arranged in the queue in a first-in-first-out manner.

A queue must be initialized before it is used. If an attempt is made to use an
uninitialized queue, the exception Queue_Not_Initialized will be raised. The
Initialized_Queue procedure returns an initialized queue. The Clear_Queue
procedure returns the nodes of a queue to the available space list and then
returns an initialized queue.

An available space list is maintained local to this part. When this part is
elaborated the available space list will have a dummy node plus Initial-
Available Space_Size nodes. When nodes are added to the queue, the Add_Element
routine will try to get a node from the available space list before attempting
to allocate more memory. When the Retrieve Element routine is called, the
unused node will be returned to the available space list for later use. The
memory committed to the available space may be deallocated by calling the
Free Memory procedure.

I

CAMP Software Detailed Design Document Page 1807

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.2 LOCAL ENTITIES DESIGN

Data structures:

An available space list is maintain local to this part's package body.

Subprograms:

The following subprograms are contained local to this body:

Name Type Description

Free Node
Dot_Rext

Set Next

procedure
function

procedure

Instantiation of UNCHBCKED_DEALLOCATION
Given a pointer P, this function returns

the value of P.Next
Given two points P & Q, this procedure
sets P.Next > Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally Instantiated
Available Space Operations package.

Name

New Node

Save_Node
Save List

Type Description

function

procedure
procedure

Returns a node to the calling routine; will get a
node from the available space list if possible,
otherwise will allocate a new node
Handles placing a node in the available space list
Handles placing a list of nodes in the available
space list

This package body contains code to initialize the Available_Space List. This
code is executed when the package is elaborated. If the generic formal object
Initial_Available_Space_Size is greater than or equal to 1, this routine then
places The requested number of nodes (in addition to the dummy node) in the
available space list.

3.3.7.1.9.6.3 INPUT/OUTPUT

GENERIC PARAMETERS:

CAMP Software Detailed Design Document Page 1808

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name I Type Description

| Elements | private | User defined type of data contained in the queue
j Priorities | private | User defined type determining the priority of the
j j | node

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name I Type

| NATURAL

I

| Description

| Initial
j AvailaBle_
j Space Size

| Number of available nodes to be initially
j placed in the available space list

Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

| Name | Type | Description |

| ">" | function | Used to determine ordering of priorities |

3.3.7.1.9.6.4 LOCAL DATA

Data objects:

The following table summarizes the data objects defined by this part as the
result of renames:

Name | Type | Value Description

Available INTEGER Available Space.
Length Current Length

Available Pointers Available Space.
Head Head

Available Pointers Available Space.
Tail Tail

Indicates the current length of
the available space list

Points to the head node in the
available space list

Points to the tail node in the
available space list

m
CAMP Software Detailed Design Document Page 1809

3.3.7.1.9.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.6 PROCESSING

The following describes the processing performed by this part:

with UNCHECKED_DEALLOCATION;
separate (Abstract_Data_Structures)
package body Unbounded_Priority_Queue is

—declaration section

— —this pointers is accessed ONLY when setting up the Available_Space
Initial_Head : Pointers $■ new Nodes;

Available_Space : Queues :■ (Current_Length ■> 0,
Head -> Initial Head,
Tail -> Initial'Head);

AvailableLength : INTEGER renames Available_Space. Gurren t_Length;
Available_Head : Pointers renames Avallable~Space.Head;
AvailableTall : Pointers renames Avallable~Space.Tail;

procedure Free is new UNCHECKEDDEALLOCATION
(Object «> Nodes,
Name -> Pointers);

procedure FreeNode (WhichNode : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set_Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers);

package Available_Space_Opetations is new
Aval lable_Space_List_Operat ions

(Nodes ~ «> Nodes,
Pointers >> Pointers,
AvailableJLength -> AvailableLength,
Available_Head ■> AvailableHead,
Available_Tail -> Available_Tail);

function New_Node return Pointers
renames Available_Space_Operations.New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renames Avallable_Space_Operations.Save_Node;

procedure Save_List (Saved Head : in Pointers;
Saved Tail : in Pointers;
Node Count : in POSITIVE)

CAMP Software Detailed Design Document Page 1810

renames Available Space Operations.Save List;

—begin package Unbounded_Priority_Queue
—(see header for package body for details)

begin

— —set up available space list if one is desired
if Initial_Available_Space_Size > 0 then

Add Nodes To Available_Space_List!
lor I In I. .Initial~Available_Space Size loop

Available Tail.Next :- NEW Nodes?
AvailableTail :- AvallableJTail.Next;

end loop Add~Nodes_to_Avallable_Space_List;

Available_Length :- Initial_Available_Space_Size;

end if;

end Unbounded_Priority_Queue;

3.3.7.1.9.6.7 UTILIZATION OF OTHER ELEMENTS

The following library units are wlth'd by this part:
1. UncheckedDeallocation

Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source | Description |

| Unchecked_ | generic | N/A | Used to deallocate memory |
j Deallocation j function j j j

Exceptions:

The following table describes the exceptions required by this part and defined
in the Ada predefined package STANDARD:

| Name | Description |

| Storage_Error | Raised when an attempt is made to dynamically allocate |
j j more memory than is available j

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1811

% The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Packages:

The following table describes the packages required by this part and specified
in the package body of the Abstract Data Structures package:

| Name | Type | Description

| Available_Space_ | generic | Contains the routines required to retrieve
I List_Operations | package j a node from and place a node in the
I j I available space list

Data types:

The following data types were previously defined in this part's package
specification:

Name Type Range | Description

| Queue_ | discrete | Empty, | Used to indicate the status of the |
j Statuses j type j Available, | queue j
j | | Uninitialized j |

The following data types were previously defined in the private portion of this
part's package specification:

Name

Nodes

Pointers
Queues

I Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the queue; contains
data and a pointer to the next node

Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

Exceptions:

The following exceptions were previously defined in this part's package
specification:

| Name

| Queue Empty

I
| Queue Not_
j Initialized

Description I
Error condition raised if an attempt is made to look at or |
retrieve elements from an empty queue

Indicates an attempt was made to use an uninitialized queue j

I

CAMP Software Detailed Design Document Page 1812

3.3.7.1.9.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| StorageError | Raised during elaboration of this package if an |
i j attempt is made to allocate memory when no more j
j I is available j

3.3.7.1.9.6.9 LLCSC DESIGN

None.

3.3.7.1.9.6.10 UNIT DESIGN

3.3.7.1.9.6.10.1 INITIALIZE UNIT DESIGN

This procedure initializes a queue by placing a dummy node in it, pointing the
head and the tail to the dummy node, and setting use length to 0.

3.3.7.1.9.6.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Queue | Queues | in out | Unbounded priority queue being |
[j jj manipulated j

3.3.7.1.9.6.10.1.4 LOCAL DATA

None.

m
CAMP Software Detailed Design Document Page 1813

3.3.7.1.9.6.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Initialize (Queue : in out Queues) is

—declaration section

CurrentLength : INTEGER renames Queue.CurrentLength;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

 begin procedure Initialize

begin

if CurrentLength - -1 then

—handle an uninitialized queue
Head :- New Node;
Tail :- Heaü;
CurrentJLength :- 0;

elsif CurrentLength > 0 then

—handle a queue that has something in it
Clear_Queue(Queue ■> Queue);

else

—current length - 0 so it is already initialized
NULL;

end if;

end Initialize ;

3.3.7.1.9,6.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

CAMP Software Detailed Design Document Page 1814

The following table summarizes the subroutines and task entries required by
this part and defined in the package specification of Unbounded Priority Queue:

| Name | Type | Description I
| Clear_ | procedure | Returns all the nodes in a queue to the available |
| Queue j | space list j

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded Priority Queue:

| Name I Type | Description I
| New_Node | function | Returns a node to the calling routine; will get a |
j j j node from the available space list if possible, j
j j j otherwise will allocate a new node

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Priority_Queue
package: "

Name

Nodes

Pointers
Queues

Type

record

access
record

| Range | Description

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node

Points to a node In the queue
Record containing the value of the current
length, head, and tail of the queue

3.3.7.1.9.6.10.1.8 LIMITATIONS

None.

3.3.7.1.9.6.10.2 CLEAR_QUEUE UNIT DESIGN

This procedure removes the nodes from a queue and places them in an available
space list.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialized qu^ue.

3.3.7.1.9.6.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

CAMP Software Detailed Design Document Page 1815

3.3.7.1.9.6.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Queue

I
Queues j in out | Unbounded priority queue being |

I | manipulated j

3.3.7.1.9.6.10.2.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained local to this part:

| Name | Type | Value | Description |

| ThisNode | Pointers | N/A | Points to the node to be returned to |
j III the available space list j

3.3.7.1.9.6.10.2.5 PROCESS CONTROL

Not applicable

3.3.7.1.9.6.10.2.6 PROCESSING

The follow4"- hes the processing performed by this part:

procedui* j,^ ueue (Queue : in out Queues) is

—declaration section

Currc!nt_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

ThisNode : Pointers;

— —begin procedure Clear Queue

CAMP Software Detailed Design Document Page 1816

begin

—make sure this is an initialized queue
if Current_Length = -1 then

raise Queue_Not_Initialized;

elsif Current_Length > 0 then

—placed nodes in the available space list
Save List (Saved_Head ■> Head.Next,

SavedJTail => Tail,
Node_Count -> Current_Length);

—reinitialize queue variables
Current_Length :- 0;
Head.Next :- NULL;
Tail :- Head;

end if;

end Clear_Queue ;

3.3.7.1.9.6.10.2.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_Priority_Queue:

| SaveList | procedure | Handles placing a list of nodes in the available
I I j space list j

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Priority_Queue
package:

| Name Type Range | Description

Nodes

Pointers
Queues

record I N/A

access
record

N/A
N/A

| A single entity in the queue; contains
j data and a pointer to the next node
j Points to a node in the queue
j Record containing the value of the current
j length, head, and tail of the queue

•

CAMP Software Detailed Design Document Page 1817

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsewhere in the package specification of Abstract_Data_Structures.Unbounded_-
Priority_Queue:

| Name | Description |

| Queue_Empty | Error condition raised if an attempt is made to look at or |
I I retrieve elements from an empty queue j

3.3.7.1.9.6.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised

| Queue_Not_Initialized | Raised if an attempt is made to manipulate an
j j uninitialized queue

3.3.7.1.9.6.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory taken up by the available space list.

3.3.7.1.9.6.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.6.10.3.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

CAMP Software Detailed Design Document Page 1818

| Name | Type | Value | Description

| Node_to_be_Freed | Pointers | N/A | Points to the node to be
j ill deallocated

3.3.7.1.9.6.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.3.6 PROCESSING

The following describes the processing performed by this parti

procedure Free Memory is

—declaration section

Node_to_be_Freed : Pointers;

— —begin procedure Free_Memory

begin

Clear Out_Available Space_Llst:
while AvailableHead /■ Available Tail loop

Node To Be Freed :- Availablejfead;
AvaiTabTe_Head :- Avallable_Head.Next;
Free_Node (Which_Node ■> Node_to_be_Freed);

end loop Clear_Out_Ävailable_Space_List;

Available_Length :• 0;

end Free_Memory ;

3.3.7.1.9.6.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_Priority_Queue:

CAMP Software Detailed Design Document Page 1819

Name | Type | Description

Free Node | procedure | Instantiation of UNCHECKED DEALLOCATION

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Prlority_Queue
package:

Name

Nodes

Pointers
Queues

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the queue; contains
data and a pointer to the next node
Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Abstract J}ata_Structures. UnboundedPriorityQueue:

| Name Type

INTEGER

Pointers

Pointers

| Value Description

Available_
Length

Available
Head

Available
Tail

Available Space.
Current_Length
Available Space.
Head

Available_Space.
Tail

Indicates the current length of
the available space list

Points to the head node in the
available space list

Points to the tail node in the
available space list

3.3.7.1.9.6.10.3.8 LIMITATIONS

None.

3.3.7.1.9.6.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the queue. The elements are added such that
the new element is added before the first element which has a smaller priority
and after all other elements which a greater or equal priority.

The Queue_Empty exception is raised if this routine is called with an empty
queue.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialized queue.

CAMP Software Detailed Design Document s 1820

The Storage_Error exception is raised if a call to this routine requires nu:.jiory
to be dynamically allocated when no more memory is available.

^

3.3.7.1.9.6.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

Name I Type Mode Description

New_Element
New_Priority

Queue

Elements | in
Priorities j in

Queues
I
in out

Element to be placed in the queue
Priority of the element to be placed
in the queue

Unbounded priority queue being
manipulated <

3.3.7.1.9.6.10.4.4 LOCAL DATA

Data objects:

The following table describes the data objects maintain«! by this part:

Name | Type Value | Description

| Before | Pointers | N/A
I I I
j Here | Pointers | N/A

| Points to the element which will go before
j the new element
j Points to the node to be added to the queue

3.3.7.1.9.6.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.4.6 PROCESSING

The following describes the processing performed by this part:

procedure Add_Element (New_Element : in Elements;
New_Priority : in Priorities;

>- m
CAMP Software Detailed Design Document Page 1821

Queue : in out Queues) is

—declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

Before : Pointers;
Here ; Pointers;

— —begin procedure Add_Element

begin

—make sure queue has been initialized
if Current_Length - -1 then

raise Queue_Not_Initialized;
end if;

—find the nodes which are to go before and after the new element
Before :> Head;

r^ loop
(• exit when (Before ■ Tail) or else

(New_Priority > Before.Next.Priority);
Before :■ Before.Next;

end loop;

—now get a new node
Here :■ New_Node;

-set up the new node
Here.Priority
Here.Data
Here.Next
Before.Next

New Priority;
= Newjälement;
- Beföre.Next;
- Here;

—readjust the tail, if required
if Before = Tail then

Tail :- Here;
end if;

—now adjust the queue
Current_Length :» Current_Length + 1;

end Add Element ;

3.3.7.1.9.6.10.4.7 UTILIZATION OF OTHER ELEMENTS

$& UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1822

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_Priority_Queue:

Name | Type | Description

| New_Node | function | P<>turns a node to the calling routine; will get a |
j f j node from the available space list if possible,
j j j otherwise will allocate a new node j

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_Priority_Queue:

| Name | Type | Description |

| Free Node | procedure | Instantiation of UNCHECKED DEALLOCATION |

The following table describes the subroutines required by this part and defined
as generic formal subroutines to the Abstract_Data_Structures.Unbounded_-
Priority Queue package:

| Name | Type | Description

| ">" | function | Used to determine ordering of priorities

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Priority_Queue
package:

| Name

Nodes

Pointers
Queues

| Type | Range | Description

record

access
record

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node
Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsewhere in the package specification of Abstract_Data_Structures.Unbounded_-
Priority_Queue:

€

CAMP Software Detailed Design Document Page 1823

| Name | Description |

| Storage_ | Raised when an attempt is made to dynamically allocate {
{ Error j more memory than is available j
j Queue Not_ | Indicates an attempt was made to use an uninitialized queue j
I Initialized I I

3.3.7.1.9.6.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Vhen/Vhy Raised |

| Storage_Error | Raised if an attempt is raised to allocate memory |
| j when no more is available j
j Queue_Not_Initialized j Raised if an attempt is made to manipulate an j
| j uninitialized queue j

3.3.7.1.9.6.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure returns the first element in the queue.

The QueueEmpty exception is raised if this routine is called with an empty
queue.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

CAMP Software Detailed Design Document Page 1824

| Name | Type | Mode | Description |

| Queue | Queues | in out | Unbounded priority queue being |
I { ji manipulated j
j Old Element j Elements | out | Data retrieved from the queue

3.3.7.1.9.6.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name j Type j Value j Description

This_Node | Pointers | N/A | Points to the node to be returned to the |
| | I available space list

3.3.7.1.9.6.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.5.6 PROCESSING

The following describes the processing performed by this part:

procedure Retrieve_Element (Queue : in out Queues;
Old Element : out Elements) is

I

-declaration section

Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;

ThisNode : Pointers;

— —begin procedure Retrieve_Element

begin

—make sure an element is available
if CurLent_Length = -1 then

raise Queue_Not_Initialized;
elsif Current_Length = 0 then

raise Queue_Empty;
end if;

CAMP Software Detailed Design Document

—save dummy node in the available space list
This_Node := Head;
Head :■ Head.Next;
SaveNode (SavedNode => This_Node);

—retrieve element (its node becomes the new dummy node)
Old Element :» Head.Data;

Page 1825

—update queue status
Current_Length ;= Current_Length - 1;

end Retrieve Element ;

(•

3.3.7.1.9.6.10.5.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Unbounded_Prlority_Queue:

| Name | Type | Description |

| Save Node | procedure | Handles placing a node in the available space list |

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Priority_Queue
package:

Name

Nodes

Pointers
Queues

Type

record

access
record

Range | Description

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node

Point!« to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsewhere in the package specification of Abstract_Data_Structures.Unbounded -
Priority_Queue:

CAMP Software Detailed Design Document Page 1826

| Name | Description |

| Queue_Empty | Error condition raised if an attempt is made to look at or |
j j retrieve elements from an empty queue j
I Queue Not_ j Indicates an attempt was made to use an uninitialized queue |
j Initialized | j

3.3.7.1.9.6.10.5.8 LIMITATIONS

The following table describes the excretions raised by this part:

| Name | When/Why Raised

| Queue_Empty | Raised if an attempt is made to look at or
{ j retrieve from an empty queue
j Queue_Not_Initialized j Raised if an attempt is made to manipulate an
j j uninitialized queue

3.3.7.1.9.6.10.6 PEEK UNIT DESIGN

This function returns the value of the first element in the queue, but does not
change the state of the queue (i.e., the node is not actually removed from the
queue).

The QueueEmpty exception is raised if this routine is called with an empty
queue.

The Queue Not_Initialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters;

c

CAMP Software Detailed Design Document Page 1827

| Name | Type | Mode | Description |

| Queue | Queues | in out || Unbounded priority queue being |
j j || manipulated j

3.3.7.1.9.6.10.6.4 LOCAL DATA

None.

3.3.7.1.9.6.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.6.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Queue : in Queues) return Elements is

—declaration section

CurrentLength : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;

— —begin function Peek

begin

—make sure something is there to look at
if CurrentLength - -1 then

raise Queue Notlnitlalized;
elsif CurrentLength - 0 then

raise Queue_Empty;
end if;

return Head.Next.Data;

end Peek ;

3.3.7.1.9.6.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

CAMP Software Detailed Design Document Page 1828

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Priority_Queue
package:

| Name

Nodes

Pointers
Queues

Type | Range Description

record

access
record

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node

Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsewhere in the package specification of Abstract_Data_Structures.Unbounded_-
Priority Queue:

| Name | Description

| Queue_Empty | Error condition raised if an attempt is made to look at or |
I | retrieve elements from an empty queue
j Queue Not j Indicates an attempt was made to use an uninitialized queue j
I Initialized I I

3.3.7.1.9.6.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name When/Why Raised

| Queue_Empty | Raised if an attempt is made to look at or
j j retrieve from an empty queue
j Queue_Not_Initialized j Raised if an attempt is made to manipulate an
| j uninitialized queue

3.3.7.1.9.6.10.7 QUEUE_STATUS UNIT DESIGN

This function returns the status of the queue based on the following algorithm:

if the queue has not been initialized then queue status is uninitialized elsif
no elements are in the queue then queue status is empty else queue status is
available end if;

m

. iCk.

CAMP Software Detailed Design Document Page 1829

3.3.7.1.9.6.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

3.3.7.1.9.6.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.7.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Queue | Queues | in out | Unbounded priority queue being j
I ill manipulated j

3.3.7.1.9.6.10.7.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

j Name | Type | Value j Description j

| Status | QueueStatuses | N/A j Status of the queue |

3.3.7.1.9.6.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.7.6 PROCESSING

The following describes the processing performed by this part:

function Queue Status (Queue : in Queues) return Queue Statuses is

-declaration section

CurrentLength : INTEGER renames Queue.CurrentLength;
Status : Queue Statuses;

— —begin function Queue Status

CAMP Software Detailed Design Document Page 1830

begin

if Current_Length = -1 then
Status f. Uninitialized;

elsif Current_Length = 0 then
Status := Empty;

else
Status := Available;

end if;

return Status;

end Queue_Status ;

3.3.7.1.9.6.10.7.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table describes the data types required by this part and defined ä
in the package specification of Abstract_Data_Structures.Unbounded_Priority_- 1
Queue: ~

| Name | Type | Range | Description |

| Queue_ | discrete | Empty, | Used to indicate the status of the
j Statuses j type j Available, j queue
| | ! Uninitialized |

3.3.7.1.9.6.10.7.8 LIMITATIONS

None.

3.3.7.1.9.6.10.8 QUEUELENGTH UNIT DESIGN

This function returns the length of a queue.

The Queue Notlnitialized exception is raised if this routine is called with an
uninitialized queue.

3.3.7.1.9.6.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R165.

tf

CAMP Software Detailed Design Document Page 1831

3.3.7.1.9.6.10.8.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.8.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Queue | Queues | in | Unbounded priority queue being |
j III manipulated j

3.3.7.1.9.6.10.8.4 LOCAL DATA

None.

3.3.7.1.9.6.10.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.10.8.6 PROCESSING

The following describes the processing performed by this part:

function QueueLength (Queue : in Queues) return NATURAL is

—declaration section

CurrentLength : INTEGER renames Queue. Cur rent_Length;

-begin function Queue_Length

begin

—make sure the queue has a length
if Current'_Length - -1 then

raise Queue_Not_Initialized;
end if;

return Current_Lengt'';

end Queue Length ;

CAMP Software Detailed Design Document Page 1832

3.3.7.1.9.6.10.8.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table describes the data types required by this part and defined
in the private portion of the Abstract_Data_Structures.Unbounded_Prlority Qusue
package:

| Name

Nodes

Pointers
Queues

| Type | Range Description

record

access
record

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node

Points to a nodr in the queue
Record containi'ij the value of the current
length, head, and tail of the queue

Exceptions:

The following table summarizes the exceptions required by this part and defined
elsewhere in the package specification of Abstract_Data_Structures.Unbounded_-
Priority Queue:

| Name | Description I
| Queue Not_ | Indicates an attempt was made to use an uninitialized queue |
| Initialized j

3.3.7.1.9.6.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

Name When/Why Raised

| QueueNotlnitialized | Raised if an attempt is made to manipulate an
j j uninitialized queue

3.3.7.1.9.6.10.9 D0T_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

m
CAMP Software Detailed Design Document Page 1833

3.3.7.1.9.6.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.9.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.9.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

Ptr | Pointers | in

I I
Pointer to the node whose "next" entry is to
be returned

3.3.7.1.9.6.10.9.4 LOCAL DATA

..^ None.

3.3.7.1.9.6.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.6.109.6 PROCESSING

The following describes the processing performed by this part:

function DotNext (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

3.3.7.1.9.6.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
ti&P* the private portion of the part's package specification:

CAMP Software Detailed Design Document Page 183A

| Name Type Range |

| Nodes record N/A

j Pointers access N/A
| Queues record N/A |

Description

A single entity in the queue; contains
data and a pointer to the next node

Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

3.3.7.1.9.6.10.9.8 LIMITATIONS

None.

3.3.7.1.9.6.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and Q, this procedure sets P.Next equal to Q.

3.3.7.1.9.6.10.10.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.6.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.6.10.10.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description I
| Ptr | Pointers | in

I I I
| Ptr dot Next || Pointers | in

Pointer to the node whose "next" entry
is to be modified j

Value to which Ptr.Next is to be set

3.3.7.1.9.6.10.10.4 LOCAL DATA

None.

3.3.7.1.9.6.10.10.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1835

3.3.7.1.9.6.10.10.6 PROCESSING

The following describes the processing performed by this part:

procedure Set_Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers) is

begin
Ptr.Next := Ptr_dot_Next;

end Set_Next;

3.3.7.1.9.6.10.10.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

Name | Type | Range | Description

^^y

Nodes

Pointers
Queues

record

access
record

N/A

N/A
N/A

A single entity in the queue; contains
data and a pointer to the next node

Points to a node in the queue
Record containing the value of the current
length, head, and tail of the queue

3.3.7.1.9.6.10.10.8 LIMITATIONS

None.

3.3.7.1.9.7 BOUNDEDSTACK PACKAGE DESIGN (CATALOG #P335-0)

This generic package defines the data type and contains the operations required
to perform last-in-first-out stacking operations on incoming data. The top of
the stack always points to the last element added to the stack and the next
element to be removed. Vhen top equals 0, the stack is empty. When top equals
StackSize, the stack is full.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP require R166.

CAMP Software Detailed Design Document Page 1836

3.3.7.1.9.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.3 INPUT/OUTPUT

GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name Type Value Description

| Initial_
Stack Size

POSITIVE | N/A
I

| Maximum number of elements which can
I be in the stack at any given time

3.3.7.1.9.7.4 LOCAL DATA

None.

3.3.7.1.9.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.6 PROCESSING

The following describes the processing performed by this part:

separate (Abstract_Data_structures)
package body Bounded_Stack is

end Bounded Stack;

CAMP Software Detailed Design Document Page 1837

3.3.7.1.9.7.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following data types were previously defined in this part's package
specification:

| Name Type Range Description |

Stack POSITIVE 1 .. Used to dimension the list of
Length subtype Stack Size elements
Range

Stacks limited N/A List of data along with relevant
private information

Stack discrete Empty, Used to indicate the status of
Statuses type Available,

Full
the stack

The following data types were previously defined in the private part of this
part's package specification:

j Name Type Range Description

Stack_
Dimensions
Range

Stacks

Stack_
Dimensions
subtype
record

'LAST

N/A

| Used to dimension the list of
j elements
I
List of data along with relevant
information

Data objects:

The following data objects were previously defined in this part's package
specification:

| Name | Type Value Description

| Stack | POSITIVE | Initial_ | Number of elements in the stack
j Size- j j Stack Size j

Exceptions:

The following exceptions were previously defined in this part's package
specification:

CAMP Software Detailed Design Document Page 1838

| Name | Description |

| Stack_Enipty | Error condition raised if an attempt is made to look at or |
| I retrieve elements from an empty stack j
I Stack_Full j Error condition raised if an attempt is made to add elements j
j j to a full stack j

3.3.7.1.9.7.8 LIMITATIONS

None.

3.3.7.1.9.7.9 LLCSC DESIGN

None.

3.3.7.1.9.7.10 UNIT DESIGN

3.3.7.1.9.7.10.1 CLEAR_STACK UNIT DESIGN

This procedure clears a stack by setting the top to 0.

3.3.7.1.9.7.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description

| Stack | Stacks | in out | Bounded stack being manipulated

3.3.7.1.9.7.10.1.4 LOCAL DATA

None.

e>:*.

CAMP Software Detailed Design Document Page 1839

3.3.7.1.9.7.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Clear_Stack (Stack ; out Stacks) is

begin

Stack.Top := 0;

end Clear_Stack ;

3.3.7.1.9.7.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

| Name | Type | Range | Description |

| Stack_ | POSITIVE | 1 .. | Used to dimension the list of |
j Length_ | subtype j Stack_Size j elements j
I Range III I

The following data types were previously defined in the private part of this
part's package specification:

| Name | Type | Range | Description |

| Stacks | record | N/A | List of data along with relevant
j j jj information

3.3.7.1.9.7.10.1.8 LIMITATIONS

None.

m

CAMP Software Detailed Design Document Page 1840

3.3.7.1.9.7.10.2 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the top of the stack.

A Stack_Full exception is raised if this routine is called with a full stack.

3.3.7.1.9.7.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| NewJElement | Elements || in | Element to be added to the stack | .
I Stack I Stacks j in out j Bounded stack being manipulated j '

3.3.7.1.9.7.10.2.4 LOCAL DATA

None.

3.3.7.1.9.7.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure AddJSlement (New_Element : in Elements;
Stack : in out Stacks) is

—declaration section

List : Lists renames Stack.List;
Top : Stack_Length_Range renames Stack.Top;

— —begin procedure Add Element

CAMP Software Detailed Design Document Page 1841

begin

—make sure the stack is not already full
if Top = StackSize then

raise Stack_Full;
end if;

—add element to the stack
Top :» Top + 1;
List(Top) :■ New_Element;

end AddElement ;

3.3.7.1.9.7.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures.Bounded_Stack
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded Stack
package: ~

| Name | Type | Range | Description |

| Stack_ | POSITIVE 11.. | Used to dimension the list of |
| Length_ f subtype j StackSize | elements j
I Range III I

The following data types were previously defined in the private part of this
part's package specification:

| Name | Type j Range j Description |

j Lists | array j N/A | List of elements |
j Stacks j record j N/A j List of data along with relevant
j j II information |

CAMP Software Detailed Design Document Page 1842

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_Stack package:

| Name | Type | Value | Description |

| Stack_ | POSITIVE | Initial_ | Number of elements in the stack |
I Size I I Stack_Size | |

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of AbstractDataStructures. BoundedStack
package:

| Name | Description |

| StackFull | Error condition raised if an attempt is made to add elements |
j j to a full stack |

3.3.7.1.9.7.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised

| Stack Full | Raised if an attempt is made to add elements to a full stack

3.3.7.1.9.7.10.3 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element from the stack and returns it to the
calling routine.

A StackEmpty exception is raised if this routine is called with an empty
stack.

3.3.7.1.9.7.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.3.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1843

3.3.7.1.9.7.10.3.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters;

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated
j Old_Element | Elements j out j Element retrieved from the stack j

3.3.7.1.9.7.10.3.4 LOCAL DATA

None.

3.3.7.1.9.7.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.3.6 PROCESSING

The following describes the processing performed by this part: •

procedure Retrieve_Element (Stack : in out Stacks;
Old Element : out Elements) is

—declaration section

List : Lists renames Stack.List;
Top : Stack_Length_Range renames Stack.Top;

— —begin procedure Retrievejuleinent

begin

—make sure there is something in the stack to retrieve
if Top - 0 then

raise StackEmpty;
end if;

—retrieve and remove the top element from the stack
01d_Element := List(Top);
Top := Top - 1;

end Retrieve Element ;

CAMP Software Detailed Design Document Page 184A

3.3.7.1.9.7.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component;

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Struetures.Bounded_Stack
package:

| Name | Type | Description |

| Elements | private { User defined type of data contained in the stack |

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

| Name I Type Range | Description

(Stack_
| Length_
I Range

] POSITIVE | 1 ..
I subtype j Stack_Size

Used to dimension the list of
elements

The following data types were previously defined in the private part of this
part's package specification:

| Name I Type | Range | Description

Lists
Stacks

| array
record

N/A | List of elements
N/A j List of data along with relevant

j Information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_Stack package:

| Name | Type Value | Description I
| Stack_ | POSITIVE | Initial_ | Number of elements in the stack
j Size j j StackSize j

Exceptions:

CAMP Software Detailed Design Document Page 1845

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Bounded_Stack
package:

| Name | Description |

| Stack_Empty | Error condition raised if an attempt is made to look at or |
I j retrieve elements from an empty stack j

3.3.7.1.9.7.10.3.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Stack_Empty | Raised if an attempt is made to look at or retrieve elements |
i j from an empty stack

3.3.7.1.9.7.10.4 PEEK UNIT DESIGN

. -u This function returns the data in the top element of the stack, but does not
^ remove the element from the stack.

A StackEmpty exception is raised if this routine is called with an empty
stack.

3.3.7.1.9.7.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.7.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated |

CAMP Software Detailed Design Document Page 1846

3.3.7.1.9.7.10.4.A LOCAL DATA

None.

3.3.7.1.9.7.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.4.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Stack : in Stacks) return Elements is

—declaration section

List : Lists renames Stack.List;
Top : Stack_Length_Range renames Stack.Top;

—begin function Peek

begin

—make sure there is something in the stack
if Top - 0 then

raise Stack_Empty;
end if;

—return value in top element of the stack
return List(Top);

end Peek ;

3.3.7.1.9.7.10.4.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures.Bounded_Stack
package:

CAMP Software Detailed Design Document Page 1847

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

| Name | Type | Range | Description |

; Stack_ | POSITIVE | 1 .. | Used to dimension the list of |
| Length_ j subtype j Stack_Size | elements |
I Range III I

The following data types were previously defined in the private part of this
part's package specification:

| Name | Type | Range | Description |

| Lists | array | N/A | List of elements |
j Stacks j record j N/A j List of data along with relevant
j j II information j

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_Stack package:

| Name | Type | Value | Description |

| Stack_ | POSITIVE | Initial | Number of elements in the stack |
j Size j | StackSize j j

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of AbstractDataStructures. BoundedStack
package:

| Name | Description |

| StackEmpty | Error condition raised if an attempt is made to look at or j
j j retrieve elements from an empty stack j

«

CAMP Software Detailed Design Document Page 18A8

3.3.7.1.9.7.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Stack_Empty | Raised if an attempt is made to look, at or retrieve elements |
j I from an empty stack

3.3.7.1.9.7.10.5 STACK_STATUS UNIT DESIGN

This function returns the status of the stack based on the following algorithm:

if no elements are in the stack then stack status is empty elsif the maximum
number of elements are in the stack then stack status is full else stack status
is available end if

3.3.7.1.9.7.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.5.2 LOCAL ENTITIES DESIGN .

None.

3.3.7.1.9.7.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated |

3.3.7.1.9.7.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Status | StackStatuses | N/A | Status of the stack |

'

CAMP Software Detailed Design Document Page 1849

3.3.7.1.9.7.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Stack Status (Stack : in Stacks) return Stack Statuses is

-declaration section

Top : Stack_Length_Range renames Stack.Top;

Status : Stack Statuses;

— —begin function Stack_Status

begin

if Top - 0 then
„a. Status im Empty;
t# elsif Top - Stack_Size then

Status :- FullT
else

Status i» Available;
end if;

return Status;

end Stack_Status ;

3.3.7.1.9.7.10.5.7 UTILIZATION OP OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the AbstractDataStructures.BoundedStack
package:

CAMP Software Detailed Design Document Page 1850

| Name Type Range Description |

| Stack POSITIVE 1 .. Used to dimension the list of |
| Length subtype Stack Size elements j
| Range
| Stack. discrete Empty, Used to indicate the status of i
j Statuses type Available,

Pull
the stack |

The following data types were previously defined in the private part of this
part's package specification:

| Name Type Range | Description

| Stacks | record | N/A | List of data along with relevant |
j j jj information

Data objects:

The following table summarizes the objects required by this part and defined in
the package specification of Abstract_Data_Structures. Bounded_Stack package:

Name | Type | Value | Description

Stack_ | POSITIVE | Initial | Number of elements in the stack
Size Stack Size

3.3.7.1.9.7.10.5.8 LIMITATIONS

None.

3.3.7.1.9.7.10.6 STACK_LENGTH UNIT DESIGN

This function returns the length of the stack.

3.3.7.1.9.7.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R166.

3.3.7.1.9.7.10.6.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1851

3.3.7.1.9.7.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Bounded stack being manipulated |

3.3.7.1.9.7.10.6.4 LOCAL DATA

None.

3.3.7.1.9.7.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.7.10.6.6 PROCESSING

The following describes the processing performed by this part:

(• function StackLength (Stack : in Stacks) return Stack_Length_Range is

begin

return Stack.Top;

end Stack_Length ;

3.3.7.1.9.7.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of the Abstract_Data_Structures.Bounded_Stack
package:

| Name | Type | Range | Description |

K

| Stack_ | POSITIVE | 1 .. I Used to dimension the list of
| Length j subtype j StackSize | elements

$$ I Range " | | I

CAMP Software Detailed Design Document Page 1852

The following data types were previously defined in the private part of this
part's package specification:

| Name | Type | Range | Description |

| Stacks | record | N/A | List of data along with relevant |
| j jj information j

3.3.7.1.9.7.10.6.8 LIMITATIONS

None.

3.3.7.1.9.8 UNBOUNDED_STACK PACKAGE DESIGN (CATALOG #P336-0)

This generic package performs last-in-first-out stacking operations on incoming
data. The head of the stack always points to the last element added to the
stack and the next element to be removed. The tail always points to a dummy
node located below the oldest element on the stack. If head and tail point to
the same node, the stack is empty.

An available space list is maintained local to this part. When this part is
elaborated the available space list will have a dummy node plus Initial-
Available Space_Size nodes. When .nodes are added to the stack, the Add_Element d
routine will try to get a node from the available space list before attempting *
to allocate more memory. When the Retrieve Element routine is called, the
unused node will be returned to the available space list for later use. The
memory committed to the available space may be deallocated by calling the
Free_Memory procedure.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.7.1.9.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.2 LOCAL ENTITIES DESIGN

Data structures:

This part maintains an available space list local to the package body.

Subprograms:

The following subprograms are contained local to this body:

m
CAMP Software Detailed Design Document Page 1853

| Name

Free_Node
Dot_Next

Set Next

Type | Description

procedure | Instantiation of UNCHECKED_DEALLOCATION
function j Given a pointer P, this function returns

j the value of P.Next
procedure j Given two points P & Q, this procedure

sets P.Next = Q

The following subprograms are contained in this part as a result of renaming
operations on identically named routines contained in the locally instantiated
Avallable_Space_Operat ions package.

Name I Type | Description

New Node

Save_Node
Save List

function

procedure
procedure

Returns a node to the calling routine; will get a
node from the available space list if possible,
otherwise will allocate a new node

Handles placing a node in the available space list
Handles placing a list of nodes in the available
space list

JÖO*.

This package body contains code to initialize the Availabie_Space List. This
code is executed when the package is elaborated. At a minimum, tHis code calls
the Initialize procedure to initialize the Available_Space List so it contains
a dummy node. If the generic formal object Initial_ÄvallaBle_Space_Size is
greater than or equal to 1, this routine then places the requested number of
nodes (in addition to the dummy node) in the available space list.

3.3.7.1.9.8.3 INPUT/OUTPUT

GENERIC PARAMETERS:

The following generic parameters were previously defined when this part was
specified in the package specification of the Abstract_Data_Structures package:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

Data objects:

The following table summarizes the generic formal objects required by this
part:

CAMP Software Detailed Design Document Page 1854

| Name | Type | Description |

| Initial_Available_ | NATURAL | Number of nodes to be initially placed in |
j Space_Size j | the available space list j

3.3.7.1.9.8.4 LOCAL DATA

None.

3.3.7.1.9.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.6 PROCESSING

The following describes the processing performed by this part:

with UNCHECKEDDEALLOCATION;
separate (Abstract_Data_Structures)
package body Unbounded_Stack is

-declaration section i

•- —this pointer is accessed ONLY when setting up the Available_Space
Initialjlead : Pointers :- new Nodes;

Available_Space : Stacks :« (Current_Length •> 0,
Top >> Initialjlead,
Bottom >> Initialjlead);

AvailableLength : INTEGER renames Available_Space.Current_Length;
AvailableTop : Pointers renames Aval lableSpace.Top;
Available_Bottom : Pointers renames Avallable~Space.Bottom;

procedure Free is new UNCHECKED_DEALLOCATION
(Object -> Nodes,
Name •> Pointers);

procedure Free_Node (Which_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set_Next (Ptr ; in Pointers;
Ptr_dot_Next : in Pointers);

package AvailableJ>paceJ)perations is new ^
Avallable_Space_List_Operations %

(Nodes '" '" »> Nodes,
Pointers => Pointers,

CAMP Software Detailed Design Document Page 1855

Available_Length => Available_Length,
Available_Heaci => Available_Top,
Available_Tail => Available~Bottom);

function New_Node return Pointers
renames Avallable_Space_Operations.New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renames Available_Space_Operations.Save_Node;

procedure Save_List (Saved_Head : in Pointers;
Saved Tail : in Pointers;
NodeCount : in POSITIVE)

renames Available_Space_Operations.Save_List;

—begin package Unbounded_Stack
—(see header for package body for details)

begin

— —set up availubie space list if one is desired
if Initial_Available_Space_Size > 0 then

Add Nodes to Available_Space_List:
^au lor I In I. .Initlal_Available Space Size loop
{• AvailableBottom.Next :- NEW Nodes;

AvallableBottorn :■ Available_Bottom.Next;
end loop Add_Nodes_to_Available_Space_List;

Avallable_Length ;■ Initial_Available_Space_Size;

end if;

end Unbounded_Stack;

3.3.7.1.9.8.7 UTILIZATION OF OTHER ELEMENTS

Subprograms and task entries:

The following table describes the subroutines required by this part:

| Name | Type | Source | Description |

| UNCHECKED_ | generic | N/A | Used to deallocate memory |
I DEALLOCATION j function | | j

Exceptions;

. The following table describes the exceptions required by this part and defined
^ in the Ada predefined package STANDARD:

CAMP Software Detailed Design Document Page 1856

| Name Description

| STORAGE_ERROR | Raised when an attempt is made to dynamically allocate \
\ I more memory than is available |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Packages:

The following table describes the packages required by this part and specified
in the package body of the Abstract_Data_Structures package:

| Name Type Description

| Available_Space_ | generic
I List Operations | package

Contains the routines required to retrieve
a node from and place a node in the
available space list

Data types:

The following data types were previously defined in this part's package
specification:

Name Type Range Description

| Stack_ | discrete | Empty, | Indicates the current status of |
I Statuses | type | Available j the stack
j j j Uninitialized j j

The following table describes the data types defined in the private part of the
Abs t rac t_Data_Struetures. Unbounded_Stack package:

| Name

Nodes

Pointers
Stacks

I Type

record

access
record

Range | Description

N/A

N/A
N/A

Contains a single element and a pointer
to another node

Points to & node
List of data along with relevant
information

Exceptions:

The following exceptions were previously defined in this part's package
specification:

CAMP Software Detailed Design Document Page 1857

| Name | Description |

| StackJEmpty | Error condition raised if an attempt is made to look at or |
I I retrieve elements from an empty stack j
I Stack Not_ j Raised if an attempt is made to use an uninitialized stack j
j Initialized j |

3.3.7.1.9.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| STANDARD.STORAGEERROR | Raised during elaboration of this package if an |
j j attempt is made to allocate memory when no more j
| j is available j

3.3.7.1.9.8.9 LLCSC DESIGN

None.

3.3.7.1.9.8.10 UNIT DESIGN

3.3.7.1.9.8.10.1 INITIALIZE UNIT DESIGN

This procedure Initializes a stack by placing a dummy node in the stack,
pointing the top and bottom to the dummy node, and setting the length to 0. If
this routine is called with a stack containing elements, then the stack is
cleared of all but the dummy node.

3.3.7.1.9.8.10.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.1.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

CAMP Software Detailed Design Document Page 1858

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.1.4 LOCAL DATA

None.

3.3.7.1.9.8.10.1.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.1.6 PROCESSING

The following describes the processing performed by this part:

procedure Initialize (Stack : in out Stacks) is

—declaration section

CutrentLength : INTEGER renames Stack. Current_Length;
Top : Pointers renames Stack.Top;
Bottom : Pointers renames Stack.Bottom;

— —begin procedure Initialize

begin

if Gurrent_Length ■ -1 then

—handle an uninitialized stack
Top :- New Node;
Bottom :- Top;
Current Length :- 0;

els if Current_Length > 0 then

—handle a stack that has elements in it
Clear_Stack (Stack -> Stack);

else

—current length = 0, so do nothing
NULL;

end if; (|

end Initialize ;

CAMP Software Detailed Design Document Page 1859

ik 3.3.7.1.9.8.10.1.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines required by this part and
defined in the package specification of Abstract_Data_Structures.Unbounded_-
Stack:

«?

j Natfe Type | Description I

| Clear_Stack | procedure | Clears a stack by returning all of its nodes to
j | j the available space list

The following table punmarizes the subroutines and task entries required by
this part and detineu in the package body of Abstract_Data_-
Structures.Unbounded Stack:

t
| Name | Type

| New Node | function

i " I
I I

Description

Returns a node to the calling routine; will get a
node from the available space list if possible, j
otherwise will allocate a new node j

Data types:

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded_Stack package:

| Name

Nodes

Pointers
Stacks

Type

record

access
record

| Range | Description

N/A

N/A
N/A

Contains a single element and a pointer
to another node

Points to a node
List of data along with relevant
information

3.3.7.1.9.8.10.1.8 LIMITATIONS

The following table describes the exceptions raised by this part;

CAMP Software Detailed Design Document Page 1860

| Name | When/Why Raised

| STANDARD.ST0RAGE_ERR0R | Raised if an attempt is made to allocate more
| I memory than is available

3.3.7.1.9.8.10.2 CLEAR_STACK UNIT DESIGN

This procedure removes nodes from a stack, leaving only the dummy node. The
nodes removed are placed in the available space list.

A Stack_Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.2.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.2.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.2.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| This_Node | Pointers | N/A | Points to the node to be placed in the |
| III available space list j

•>' w

r

V)

CAMP Software Detailed Design Document Page 1861

3.3.7.1.9.8.10.2.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.2.6 PROCESSING

The following describes the processing performed by this part:

procedure Clear Stack (Stack : in out Stacks) is

-declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;
Bottom : Pointers renames Stack.Bot torn;

This_Node : Pointers;

--begin procedure Clear_Stack

begin

—make sure stack has been initialized
if Current_Length - -1 then

raise Stack_Not_Initialized;

—make sure there is something in the stack
elsif CurrentLength /• 0 then

—placed nodes in the available space list
Save_List (SavedHead -> Top.Next,

SavedJTail -> Bottom,
Node_Count -> Current_Length);

—reinitialize stack variables
Top.Next :- NULL;
Bottom :- Top;
Current_Length := 0;

end if;

end Clear_Stack ;

3.3.7.1.9.8.10.2.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

CAMP Software Detailed Design Document Page 1862

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract_Data_-
Structures.Unbounded Stack:

| Name I Type Description

| Save_List | procedure | Handles placing a list of nodes in the available
j j j space list

Data types:

The following table describes the data types defined in the private part of the
Abstract Data Structures.Unbounded Stack package:

Name

Nodes

Pointers
Stacks

Type

record

access
record

Range | Description

N/A

N/A
N/A

Contains a single element and a pointer
to another node

Points to a node
List of data along with relevant
information

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_Stack:

Name | Description

Stack Not | Raised if an attempt is made to use an uninitialized stack
Initialized j

3.3.7.1.9.8.10.2.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Stack Not Initialized
1 " "

| Raised if an attempt is made to manipulate an
j uninitialized stack |

CAMP Software Detailed Design Document Page 1863

W 3.3.7.1.9.8.10.3 FREE_MEMORY UNIT DESIGN

This procedure deallocates the memory occupied by the nodes in the available
space list. Only a dummy node will be left in the list.

3.3.7.1.9.8.10.3.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.3.3 INPUT/OUTPUT

None.

3.3.7.1.9.8.10.3.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:
*iu.

\ Name | Type | Value | Description |

| ThisNode | Pointers | N/A | Points to the node to be deallocated |

3.3.7.1.9.8.10.3.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.3.6 PROCESSING

The following describes the processing performed by this part:

procedure Free_Memory is

—declaration section

ThisNode : Pointers;

— —begin procedure Free_Memory

w begin

CAMP Software Detailed Design Document Page 1864

Deallocate_Nodes in_Available Space_List:
while AvailabTe_Top /= AvaIlable_Bottom loop

This Node := AvailableTop;
AvaiTable_Top := Available Top.Next;
FreeNode (Which_Node => THis_Node);

end loop Deallocate_Nodes_in_Available_Space_List;

Available_Length := 0;
Available_Top.Next :« NULL;

end Free Memory ;

<S

3.3.7.1.9.8.10.3.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract_Data_-
S t rue tures.Unbounded_S tack: ~ ~

| Name | Type | Description

| FreeNode | procedure | Instantiation of UNCHECKEDDEALLOCATION

i

Data types:

The following table describes the data types defined in the private part of the
Abs tract_Data_Strue tures. Unbounded_Stack package:

Name

Nodes

Pointers
Stacks

Type

record

access
record

j Range | Description I

N/A | Contains a single element and a pointer
{ to another node

N/A j Points to a node
N/A j List of data along with relevant

information

3.3.7.1.9.8.10.3.8 LIMITATIONS

None.

i

r«ßJ.

CAMP Software Detailed Design Document Page 1865

3.3.7.1.9.8.10.4 ADD_ELEMENT UNIT DESIGN

This procedure adds an element to the top of the stack.

A Stack_Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.4.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

(• | NewElement | Elements | in | Element to be added to the stack
I Stack j Stacks j in out j Stack being manipulated j

3.3.7.^.9.8.10.4.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Ptr | Pointers | N/A | Points to the new node to be placed in the |
I I I I stack |

3.3.7.1.9.8.10.4.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.4.6 PROCESSING

jn The following describes the processing performed by this part:

procedure Add_Element (New_Element : in Elements;
Stack : in out Stacks) is

CAMP Software Detailed Design Document Page 1866

-declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

Ptr : Pointers;

-begin procedure Add Element

begin

if Current_Length = -1 then
raise Stack_Not_Initialized;

end if;

—get a node and initialize it
Ptr := New_Node;
Ptr.Data :> New_Element;

—place the node on the stack
Ptr.Next
Top
CurrentJLength

end Add Element ;

Top;
Ptr;
Current Length + 1;

3.3.7.1.9.8.10.4.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract_Data_-
Struetures.Unbounded Stack:

| Name | Type | Description |

| New_Node | function | Returns a node to the calling routine; will get a |
j | I node from the available space list if possible,
j j j otherwise will allocate a new node

Data types:

CAMP Software Detailed Design Document Page 1867

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Unbounded_Stack
package:

| Name | Type | Description

| Elements | private | User defined type of data contained in the stack

The following table describes the data types defined in the private part of the
Abstract Data Structures.Unbounded Stack package:

Name

Nodes

Pointers
Stacks

Type

record

access
record

Range

N/A

N/A
N/A

Description

Contains a single element and a pointer
to another node

Points to a node
List of data along with relevant
information

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of AbstractDataStructures. UnboundedStack:

| Name Description

| Stack Not | Raised if an attempt is made to use an uninitialized stack
I Initialized j

3.3.7.1.9.8.10.4.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised

| STANDARD. STORAGEERROR | Raised if an attempt is made to allocate more
j j memory than is available
j Stack_Not Initialized j Raised if an attempt is made to manipulate an

uninitialized stack

3.3.7.1.9.8.10.5 RETRIEVE_ELEMENT UNIT DESIGN

This procedure retrieves the top element of the stack and returns the data in
it to the calling routine. The node is then placed in the available space
list.

CAMP Software Detailed Design Document Page 1868

A Stack_En.pty exception is raised if this routine is called with an empty
stack.

A Stack_Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.5.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.5.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |
j 01d_Element j Elements j out j Elements retrieved from the stack j

3.3.7.1.9.8.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| ThisNode | Pointers | N/A | Node to be returned to the available |
| ill space list j

3.3.7.1.9.8.10.5.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.5.6 PROCESSING

The following describes the processing performed by this part:

procedure Retrieve_Element (Stack : in out Stacks;
Old Element : out Elements) is

CAMP Software Detailed Design Document Page 1869

C

--declaration section

Current_Length : INTEGER renames Stack.Current_Length5
Top : Pointers renames Stack.Top;

This_Node : Pointers;

— —begin procedure Retrieve Element

begin

—make sure there is something to retrieve
if Current_Length - -1 then

raise Stack_Not_Initialized;
elsif Current Length = 0 then

raise StacIc_Empty;
end if;

—retrieve data in the top node
OldElement :■ Top.Data;

—dispose of top node and adjust the stack
This_Node :■ Top;
Top :■ Top.Next;
SaveNode (SavedNode ■> Thls_Node);
Current_Length :■ Current_Length - 1;

end Retrieve_Elament ;

3.3.7.1.9.8.10.5.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Subprograms and task entries:

The following table summarizes the subroutines and task entries required by
this part and defined in the package body of Abstract_Data_-
S t rue t ures.Unbounded_S tack:

| Name | Type | Description |

| Save_Node | procedure | Handles placing a node in the available space list |

Data types:

CAMP Software Detailed Design Document Page 1870

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Unbounded_Stack
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table describes the data types defined in the private part of the
Abstract Data Structures.Unbounded Stack package:

| Name

Nodes

Pointers
Stacks

I Type

record

access
record

Range

N/A

N/A
N/A

Description

Contains a single element and a pointer
to another node

Points to a node
List of data along with relevant
information

Exceptions;

The following table summarizes the exceptions required by this part and defined
in the package specification of AbstractDataStructures. Unbounded_Stack:

Name Description

| Stack_Empty | Error condition raised if an attempt is made to look at or |
I j retrieve elements from an empty stack

I Stack Not j Raised if an attempt is made to use an uninitialized stack
| Initialized j |

3.3.7.1.9.8.10.5.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name When/Why Raised

Stack Not Initialized

I " "
| Stack Empty

I

| Raised if an attempt is made to manipulate an
j uninitialized stack
j Raised if an attempt is made to retrieve or look
I at elements in an empty stack

3.3.7.1.9.8.10.6 PEEK UNIT DESIGN

This function returns the data contained in the top element of the stack, but
does not remove the element from the stack.

m

c

CAMP Software Detailed Design Document Page 1871

A Stack_Empty exception is raised if this routine is called with an empty
stack.

A Stack_Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.6.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.6.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.6.3 INPUT/OUTPUT

FORMAL PARAMETERS'

The following table describes this part's formal parameters;

| Name | Type | Mode | Description |

| Stack I Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.6.4 LOCAL DATA

None.

3.3.7.1.9.8.10.6.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.6.6 PROCESSING

The following describes the processing performed by this part:

function Peek (Stack : in Stacks) return Elements is

—declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

— —begin function Peek

CAMP Software Detailed Design Document Page 1872

begin

—make sure there is something to peek at
if Current_Length = -1 then

raise Stack_Not_Initializecl;
elsif Current Length = 0 then

raise StacIc_Erapty;
end if;

—returned desired element
return Top.Data;

end Peek ;

3.3.7.1.9.8.10.6.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION 0? OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined as
generic formal parameters to the Abstract_Data_Structures. Unbounded_Stack
package:

| Name | Type | Description |

| Elements | private | User defined type of data contained in the stack |

The following table describes the data types defined in the private part of the
Abstract Data Structures.Unbounded Stack package:

Name

Nodes

Pointers
Stacks

I Type

| record

I
| access
record

| Range | Description

N/A | Contains a single element and a pointer
j to another node

N/A j Points to a node
N/A | List of data along with relevant

information

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Structures. Unbounded_Stack:

C

CAMP Software Detailed Design Document Page 1873

| Name | Description |

| Stack_Empty | Error condition raised if an attempt is made to look at or |
| j retrieve elements from an empty stack j
j Stack_Not_ j Raised if an attempt is made to use an uninitialized stack j
j Initialized |

3.3.7.1.9.8.10.6.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | When/Why Raised |

| Stack_Not_Initialized | Raised if an attempt is made to manipulate an {
| j uninitialized stack j
| Stack_Empty j Raised if an attempt is made to retrieve or look j
j at elements in an empty stack j

3.3.7.1.9.8.10.7 STACK_STATUS UNIT DESIGN

This function returns the status of the stack according to the following
algorithm:

if stack has never been initialized then stack status is uninitialized elsif
stack has no elements in it then stack status in empty else stack status is
available end if

3.3.7.1.9.8.10.7.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.7.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.7.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |

CAMP Software Detailed Design Document Page 1874

3.3.7.1.9.8.10.7.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Status | StackStatuses | N/A | Status of the stack |

3.3.7.1.9.8.10.7.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.7.6 PROCESSING

The following describes the processing performed by this part:

function Stack Status (Stack : in Stacks) return Stack Statuses is

—declaration section

CurrentLength : INTEGER renames Stack.CurrentLength;

Status : Stack Statuses;

—begin function Stack_Status

begin

if Current_Length - -1 then
Status r« Uninitialized;

elsif Current_Length - 0 then
Status i- Empty;

else
Status :■ Available;

end if;

return Status;

end Stack Status ;

CAMP Software Detailed Design Document Page 1875

3.3.7.1.9.8.10.7.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table summarizes the types required by this part and defined in
the package specification of Abstract_Data_Structures. Unbounded_Stack:

| Name | Type | Range | Description |

| Stack_ | discrete | Empty, | Indicates the current status of |
j Statuses j type j Available j the stack
| | | Uninitialized | j

The following table describes the data types defined in the private part of the
Abstract_Data_Structures.Unbounded_Stack package:

| Name | Type | Range | Description |

..-j, | Stacks | record | N/A | List of data along with relevant |
C I I I I. information |

3.3.7.1.9.8.10.7.8 LIMITATIONS

None.

3.3.7.1.9.8.10.8 STACK_LENGTH UNIT DESIGN

This function returns the length of the stack.

A Stack_Not_Initialized exception is raised if this routine is called with an
uninitialized stack.

3.3.7.1.9.8.10.8.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R167.

3.3.7.1.9.8.10.8.2 LOCAL ENTITIES DESIGN

None.

CAMP Software Detailed Design Document Page 1876

3.3.7.1.9.8.10.8.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Stack | Stacks | in out | Stack being manipulated |

3.3.7.1.9.8.10.8.4 LOCAL DATA

None.

3.3.7.1.9.8.10.8.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.8.6 PROCESSING

The following describes the processing performed by this part:

function Stack Length (Stack : in Stacks) return NATURAL is

—declaration section

CurrentLength : INTEGER renames Stack.Current_Length;

— —begin function Stack Length

begin

—make sure stack has been initialized
if Current_Length ■ -1 then

raise Stack_Not_Initialized;
end if;

return Current_Length;

end StackJLength ;

3.3.7.1.9.8.10.8.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

CAMP Software Detailed Design Document Page 1877

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data types:

The following table describes the data types defined in the private part of the
Abstract_Data_Strue tures. Unbounded_Stack package:

| Name | Type | Range | Description |

| Stacks | record | N/A | List of data along with relevant |
II Jl information

Exceptions:

The following table summarizes the exceptions required by this part and defined
in the package specification of Abstract_Data_Struetures. Unbounded_Stack:

| Name | Description |

| Stack Not | Raised if an attempt is made to use an uninitialized stack j
| Initialized j j

3.3.7.1.9.8.10.8.8 LIMITATIONS

The following table describes the exceptions raised by this part:

| Name | Vhen/Vhy Raised

| Stack_Not_Initialized | Raised if an attempt is made to manipulate an
j j uninitialized stack

3.3.7.1.9.8.10.9 D0T_NEXT UNIT DESIGN

Given an input pointer P, this function returns the value of P.Next.

3.3.7.1.9.8.10.9.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.8.10.9.2 LOCAL ENTITIES DESIGN

None.

m

CAMP Software Detailed Design Document Page 1878

3.3.7.1.9.8.10.9.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

Name | Type Mode | Description

Ptr | Pointers | in | Pointer to the node whose "next" entry is to
I I be returned

3.3.7.1.9.8.10.9.4 LOCAL DATA

None.

3.3.7.1.9.8.10.9.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.9.6 PROCESSING

The following describes the processing performed by this part:

function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

3.3.7.1.9.8.10.9.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

Name

Nodes

Pointers
Stacks

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the stack; contains
data and a pointer to the next node
Points to a node in the stack
Record containing the value of the current
length, head, and tail of the stack

m
CAMP Software Detailed Design Document Page 1879

3.3.7.1.9.8.10.9.8 LIMITATIONS

None.

3.3.7.1.9.8.10.10 SET_NEXT UNIT DESIGN

Given an two input pointers, P and 0, this procedure sets P.Next equal to Q.

3.3.7.1.9.8.10.10.1 REQUIREMENTS ALLOCATION

None.

3.3.7.1.9.8.10.10.2 LOCAL ENTITIES DESIGN

None.

3.3.7.1.9.8.10.10.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Ptr | Pointers | in | Pointer to the node whose "next" entry |
I | | | is to be modified j
j PtrdotNext j Pointers j in j Value to which Ptr.Next is to be set j

3.3.7.1.9.8.10.10.4 LOCAL DATA

None.

3.3.7.1.9.8.10.10.5 PROCESS CONTROL

Not applicable.

3.3.7.1.9.8.10.10.6 PROCESSING

The following describes the processing performed by this part:

procedure Set_Next (Ptr : in Pointers;
Ptr_dot_Next : in Pointers) is

begin
Ptr.Next := Ptr_dot_Next;

end Set Next;

CAMP Software Detailed Design Document Page 1880

3.3.7.1.9.8.10.10.7 UTILIZATION OF OTHER ELEMENTS

UTILIZATION OF OTHER ELEMENTS IN TOP-LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top-level component:

Data types:

The following table summarizes the types required by this part and defined in
the private portion of the part's package specification:

Name

Nodes

Pointers
Stacks

Type

record

access
record

Range

N/A

N/A
N/A

Description

A single entity in the stack; contains |
data and a pointer to the next node

Points to a node in the stack
Record containing the value of the current \
length, head, and tail of the stack

3.3.7.1.9.8.10.10.8 LIMITATIONS

None.

3.3.7.1.10 UNIT DESIGN

None.

\rj.

<*:

CAMP Software Detailed Design Document Page 1881

package body Abstract_Data_Structures is

pragma PAGE;
generic

type Nodes is limited private;
type Pointers is access Nodes;
Available_Length : in out INTEGER;
Available_Head : in out Pointers;
AvailableJTail : in out Pointers;
with function Dot_Next (Ptr : in Pointers) return Pointers is <>;
with procedure SetNext (Ptr : in Pointers;

PtrDot Next : in Pointers) is <>;
package Available_Space_List_OperatIons is

function Nev_Node return Pointers;

procedure Save_Node (Saved_Node : in Pointers);

procedure Save_List (Saved_Head : in Pointers;
SavedJTail : in Pointers;
Node_Count : in POSITIVE);

end Available_Space_List_Operations;

pragma PAGE;

— — separate package bodies

package body Bounded_Fifo_Buffer is separate;

package body Unbounded_Fifo_Buffer is separate;

package body Nonblocking_Circular_Buffer is separate;

package body Unbounded_Priority_Queue is separate;

package body Bounded_Stack is separate;

package body Unbounded_Stack is separate;

package body Available_Space_List_Operations is separate;

end Abstract Data Structures;

CAMP Software Detailed Design Document Page 1882

separate (Abstract_Data_Structures)
package body Available_Space_List_Operations is

pragma PAGE;
function New Node return Pointers is

— declaration section

Ptr : Pointers;
New Available Head : Pointers;

— — begin Junction New Node

begin

if Available_Length > 0 then

—get the node from the available space list and mark the node
— that will now be the head of the available space list
Ptr :• Available Head;
NevAvailableHead :<■ Dot_Next(Available_Head);

— initialize node being relumed'
Set_Next (Ptr -> Ptr,

Ptr_Dot_Next -> null);

—adjust the amiable space list
Available_Head :• New Available_Head;
Available_Length :« AvaTlable_Length - 1;

else

—allocate space to get the node
Ptr s- nev Nodes;

end if;

return Ptr;

end Nev_Node;

pragma PAGE;
procedure Save_Node(Saved_Node : in Pointers) is

begin

Set_Next (Ptr => Available_Tail,
Ptr_Dot_Next => Saved_Node);

Available Tail :« SavedNode;

Set_Next (Ptr => AvailableTail,
Ptr Dot Next «> null);

is
CAMP Software Detailed Design Document Page 1883

Available_Length := Available_Length + 1;

end Save_Node;

pragma PAGE;
procedure Save_List (Saved_Head : in Pointers;

SavedJTail : in Pointers;
NodeCount : in POSITIVE) is

begin

Set_Next (Ptr => Available Tail,
PtrDotNext «> Saved_Hea3);

AvailableTail := SavedTail;

Set_Next (Ptr -> Available Tail,
PtrDotNext -> Saved_Hea3);

Available_Length := Available_Length + Node_Count;

end Save_List;

end Available Space List Operations;

^

CAMP Software Detailed Design Document Page 1884

separate (Abstract_Data Structures)
package body Bounded_FiTo_Buffer is

pragma PAGE;
procedure Clear Buffer (Buffer : out Buffers) is

Ü

-- declaration section

Buffer_Length : Buffer_Range renames Buffer.BufferJLength;
Head : Buffer_Range renames Buffer.Head;
Tail : Buffer_Range renames Buffer.Tail;

— — begin procedure Clear Buffer

begin

Buffer_Length := 0
Head :- 0
Tail :- 1

end ClearBuffer ;

pragma PAGE;
procedure Add_Element (Nev Element : in Elements;

Buffer : in out Buffers) is

— declaration section

LIST : Lists renames Buffer.LIST;
Buffer_Length : Buffer_Range renames Buffer.Buffer_Length;
Head : Buffer_Range renames Buffer.Head;
Tail : BufferRange renames Buffer.Tail;

— — begin procedure Add Element

begin

— make sure buffer isn 't full
if Head - Tail then

raise BufferFull;
end if;

LIST(Tail) := New_Element;
Buffer Length :» Buffer Length + 1;
if Tail - Buffer_Size tfien

Tail :- 0;
else

Tail := Tall + 1;
end if;

CAMP Software Detailed Design Document Page 1885

end Add_Element ;

pragma PAGE;
procedure RetrieveElement (Buffer : in out Buffers;

Old Element : out Elements) is

— declaration section

Buffer_Length : Buffer_Range renaaes Buffer.BufferJLength;
Head : Buffer_Range renaaes Buffer.Head;
LIST : Lists renames Buffei.LIST;
Tail : Buffer Range renames Buffer.Tail;

— — begin procedure Retrieve Element

begin

— make sure don 'l have an empty buffer
if Head > (Tail-1) or else (Tail > 0 and Head - Buffer_Size) then

raise Buffer_Empty;
end if;

if Head - Buffer Size then
Head :- 0;

else
Head ;■ Head + 1;

end if;
Old Element :- LIST(Head);
BufIer_Length :■ Buffer_Length - 1;

end Retrieve_Element ;

pragma PAGE;
function Peek (Buffer : in Buffers) return Elements is

— declaration section

BufferLength : BufferRange renames Buffer. BufferLength;
Head : Buffer_Range renames Buff er. Head;
Tail : Buffer_Range renames Buffer.Tail;
LIST : Lists renames Buffer.LIST;
Spot : Buffer Range;

— begin function Peek

begin

— make sure don 7 have an empty buffer

CAMP Software Detailed Design Document Page 1886

if Head = (Tail-1) or else (Tail = 0 and Head = BufferSize) then
raise Buffer_Empty;

end if;

if Head = Buffer_Size then
Spot := 0;

else
Spot := Head + 1;

end if;

return LIST(Spot);

end Peek. ;

pragma PAGE;
function Buffer Status (Buffer : in Buffers) return Buffer Statuses is

— declaration section

Head : Buffer_Range renames Buffer.Head;
Tail : Buffer_Range renames Buffer.Tail;

Status : Buffer_Statuses;

— — begin function Buffer Status

begin

if Head = (Tail-1) or else (Tail - 0 and Head - BufferSize) then
Status := Empty;

elsif Head -. "ail then
Status := Full;

else
Status := Available;

end if;

return Status;

end Buffer_Status ;

pragma PAGE;
function BufferJLength (Buffer : in Buffers) return Buffer_Range is

begin

return Buffer.Buffer_Length;

end Buffer_Length ;

end Bounded Fifo Buffer;

•iKt

CAMP Software Detailed Design Document Page 1887

with Uncheck.ed_Deallocation;
separate (Abstract_Data_Structures)
package body Unbounded Fifo Buffer is

— —declaration sea ion

— —this variable is accessed ONLY when setting up the available space list
Initial_Head ; Pointers i- new Nodes;

Available_Space : Buffers := (Current_Length »> 0,
Head -> InitialHead,
Tall -> Initial_Head);

Available_Length ; INTEGER renames Available_Space.Current_Length;
Available_Head : Pointers renames Avallable_Space.Head;
AvailableJTail : Pointers renames Avallable_Space.Tail;

procedure Free is new Unchecked_Deallocation
(Object -> Nodes,
NAME => Pointers);

procedure Free_Node (Which_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure SetNext (Ptr : in Pointers;
Ptr_Dot_Next : in Pointers);

package Avallable_Space_Operations is new
Aval lable_Space_Lis t_0pera t ions

(Nodes m> Nodes,
Pointers -> Pointers,
Available_Length ■> Available_Length,
Available_Head •> Available_Head,
Available_Tail -> AvailableJTail);

function New_Node return Pointers
renames Avallable_Space_Operations. New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renames Avallable_Space_Operat ions. Save_Node;

procedure Save_List (Saved_Head : in Pointers;
Saved Tail : in Pointers;
NodeCount : in POSITIVE)

renames AvailableSpaceOperations. Save_Lis t;

pragma PAGE;
procedure Initialize Buffer (Buffer : in out Buffers) is

— declaration section

CAMP Software Detailed Design Document Page 1888

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;
Tail : Pointers renames Buffer.Tail;

-- —begin procedure Initialize Buffer

begin

if Current_Length = -1 then

— handle an uninitialized buffer
Head :- New Node;
Tail :- Hea3;
Current_Length :» 0;

elsif Current_Length > 0 then

— handle a buffer that has something in it
Clear Buffer(Buffer «> Buffer);

else

— current length = 0 so it is already initialized
null;

end if;

end InitializeBufcer ;

pragma PAGE;
procedure Clear Buffer (Buffer : in out Buffers) is

• declaration section

CurrentLength : INTEGER renames Buf fer.CurrentJLength;
Head : Pointers renames Buff er. Head;
Tail : Pointers renames Buffer.Tail;

ThisNode : Pointers;

— —begin procedure Clear Buffer

begin

— make sure this is an initialized buffer
if Current_Length = -1 then

raise Buffer_Not_Initialized;
end if;

—placed nodes in the available space list
Save List (Saved Head => Head.Next,

CAMP Software Detailed Design Document Page 1889

SavedJTail => Tail,
Node_Count => Current_Length);

— reinilialize buffer variables
Current_Length
Head.Next
Tail

end Clear Buffer ;

= 0;
» null;
■ Head;

pragma PAGE;
procedure Free Memory is

— declaration section

Node_To_Be_Freed : Pointers;

— begin procedure Free Memory

begin

Clear Out_Available Space_Llst:
while ÄvailableHead /- Available_Tail loop

Node To Be Freed :- ÄvailableHead;
AvaiTabIe_Head :- Avallable~Head.Next;

FreeNode (WhlchNode -> Node_To_Be_Freed);

end loop Clear_Out_Available_Space_List;

Available_Length :« 0;

end Free_Memory ;

pragma PAGE;
procedure Add_Element (Nev Element : in Elements;

Buffer : in out Buffers) is

--declaration section

CurrentLength : INTEGER renames Buffer.CurrentLength;
Tail : Pointers renames Buffer.Tail;

NewJTail : Pointers;

— begin procedure Addßlemeni

begin

CAMP Software Detailed Design Document Page 1890

— make sure buffer has been initialized
if. Current_Length = -1 then

raise Buffer_Not_Initialized;
end if;

— now get a node
New Tail := New Node;

— now adjust the buffer
Tail.Next
Tail
Tail.Data
Current_Length

end Add Element ;

■ NewJTail;
NewJTail;
New_Element;
Current Length + 1;

pragma PAGE;
procedure Retrieve_Element (Buffer : in out Buffers;

Old Element : out Elements) is

■declaration section

CurrentLength : INTEGER renaaes Buffer.Current_Length;
Head : Pointers renaaes Buffer.Head;

ThisNode : Pointers;

~ — begin procedure Retrieve Element

begin

— make sure an element is available
if Current_Length - -1 then

raise BufferNot Initialized;
elsif Current_LengtH > 0 then

raise Buffer_Empty;
end if;

—save dummy node in the available space list
ThisNode :- Head;
Head :• Head.Next;
Save_Node (Saved_Node ■> Thls_Node);

— retrieve element (its node becomes the new dummy node)
OldElement s- Head.Data;

— update buffer status
Current_Length := Current_Length - 1;

end Retrieve_Element ;

pragma PAGE;

CAMP Software Detailed Design Document Page 1891

function Peek (Buffer : in Buffers) return Elements is

— declaration section

Current_Length : INTEGER renames Buffer.Current_Length;
Head : Pointers renames Buffer.Head;

— begin junction Peek

hsgin

— make sure something is there to look at
if Current_Length = -1 then

raise BufferNot Initialized;
elsif Current_LengtE ■ 0 then

raise Buffer_Empty;
end if;

return Head.Next.Data;

end Peek ;

pragma PAGE;
function BufferStatus (Buffer : in Buffers) return BufferStatuses is

- declaration section

CurrentLength : INTEGER renames Buffer.Current_Length;
Status : Buffer Statuses;

- begin function Buffer Status

begin

if Current_Length - -1 then
Status T- Uninitialized;

elsif Current Length - 0 then
Status := Empty;

else
Status i- Available;

end if;

return Status;

end Buffer Status ;

CAMP Software Detailed Design Document Page 1892

pragma PAGE;
function Buffer Length (Buffer : in Buffers) return NATURAL is

■ declaration sfriion

CurrentLength : INTEGER renames Buffer.Gurrent_Length;

— —begin function Buffer Length

begin

— make sure the buffer has a length
it Current_Length = -1 then

raise Buffer_Not_Initialized;
end if;

return Current_Length;

end Buffer_Length ;

pragma PAGE;
function DotNext (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

pragma PAGE;
procedure SetNext (Ptr : in Pointers;

Ptr_Dot_Next : in Pointers) is
begin ~

Ptr.Next ;= Ptr_Dot_Next;
end SetNext;

pragma PAGE;

— begin package UnboundedFIFOBuffer
— (see header for package body for details)

begin

— —set up available space list if one is desired
if Initial_Available_Space_Size > 0 then

Add Nodes To Available_Space_List:
lor I In I. .Initial_Availible_Space_Size loop

AvailableJTail.Next :- nev Nodes;
Available_Tail := AvailableJTail.Next;

end loop Add_Nodes_To_Available_Space_List;

AvailableJLength :- Initial_Available_Space_Size;

end if;

CAMP Software Detailed Design Document Page 1893

m end Unbounded Fife Buffer;

CAMP Software Detailed Design Document Page 1894

separate (Abstract_Data_Structures)
package body Nonblocking_Circular_Buffer is

pragma PAGE;
procedure Clear Buffer (Buffer : out Buffers) is

— declaration section

Head : Buffer_Range renames Buffer.Head;
Tail : Buffer_Range runames Buffer.Tail;
Current Length ; Buffer Range renames Buffer.Current Length;

— —begin procedure Clear Buffer

begin

Head
Tail
Current_Length

end ClearBuffer ;

pragma PAGE;

= 0;
= 1;
- 0;

procedure AddJSlement (New Element : in Elements; \
Buffer : in out Buffers) is

— declaration section

Head : Buffer_Range renames Buffer.Head;
Tail ; BufferRange renames Buff er. Tail;
Current_Length : Buffer_Range renames Buffer.Current_Length;
LIST : Lists renames Buffer.LIST;

— begin procedure Add Element

begin

LIST(Tail) :- Nev_Element;

if Head - Tail then

— buffer was already full and an element was overwritten; therefore,
— both head and tail need to be advanced, but Current Length does
— not need to be changed

it Tail - BufferSize then
Head :- 0;
Tail :. 0;

else

m
CAMP Software Detailed Design Document Page 1895

Head := Head + 1;
Tail := Tail + 1;

end if;

else

— buffer was not already full; therefore, the Current Length needs
— lo be increment and only the tail needs to be advanced

if Tail = Buffer_Size then
Tail := 0;

else
Tail := Tail + 1;

end if;

Current_Length :» Current_Length + 1;

end if;

end Add_Element ;

pragma PAGE;
procedure RetrieveJSlement (Buffer : in out Buffers;

01d_Element : out Elements) is

— declaration section

Head : Buffer_Range renames Buff er. Head;
Tail : Buffer_Range renames Buffer.Tail;
Current_Length : Buffer_Range renames Buffer.Current_Length;
LIST : Lists renames Buffer.LIST; ~

— —begin procedure Retrieve Element
 1 t

begin

— make sure there is something there to retrieve
if Current_Length - 0 then

raise BufferEmpty;
end if;

—advance the head lo get to the next element to go out
if Head - BuffeiSize then

Head :« 0;
else

Head := Head + 1;
end if;

— now retrieve the element and update the state of the buffer
OldElement :* LIST(Head);
Current_Length :« Current_Length - 1;

end Retrieve Element ;

CAMP Software Detailed Design Document Page 1896

pragma PAGE;
function Peek (Buffer : in Buffers) return Elements is

— declaration section

Head : Buffer_Range renames Buffer.Head;
Current_Length : Buffer_Range renames Buffer.CurrentJLength;
LIST : Lists renames Buffer.LIST;

Spot : Buffer_Range;

— —begin function Peek

begin

— make sure there is something to peek at
if Current_Length = 0 then

raise Buffer_Empty;
end if;

— determine location of desired element
if Head - BufferSize then

Spot i- 0;
else

Spot :■ Head + 1;
end if;

— return requested element
return LIST(Spot);

end Peek. ;

pragma PAGE;
function Buffer_Status (Buffer : in Buffers) return Buffer_Statuses is

— declaration section

Current_Length : Buffer_Range renames Buffer.Current_Length;

Status : Buffer Statuses;

— — begin function Buffer Status

begin

if Current_Length * 0 then
Status := Empty;

elsif Current Length = Buffer Size then

CAMP Software Detailed Design Document Page 1897

Status := Full;
else

Status := Available;
end if;

return Status;

end Buffer_Status ;

pragma PAGE;
function Buffer_Length (Buffer : in Buffers) return Buffer_Range is

begin

return Buffer.CurrentJLength;

end Buffer_Length ;

end Nonblocking Circular Buffer;

CAMP Software Detailed Design Document Page 1898

with Unchecked_Deallocation;
separate (Abstract_Data_Structures)
package body Unbounded Priority Queue is

— —declaralioit section

— — this pointers is accessed ONLY when setting up the Available Space
Initial_Head : Pointers :- new Nodes;

AvailableSpace : Queues := (Current_Length «> 0,
Head -> InitialHead,
Tall -> Initial_Head);

Available_Length : INTEGER renames Available_Space.Current_Length;
Available_Head : Pointers renaaes Avallable_Space.Head;
Available_Tail : Pointers renames Avallable_Space.Tail;

procedure Free is new Unchecked_Deallocation
(Object => Nodes,
NAME -> Pointers);

procedure Free_Node (Which_Node : in out Pointers)
renaaes Free;

function DotNext (Ptr : in Pointers) return Pointers;

procedure Set_Next (Ptr : in Pointers;
Ptr_Dot_Next : in Pointers);

package Avallable_Space_Operations is new
Aval lable~Space_Lis t_0pera t Ions

(Nodes- >> Nodes,
Pointers >> Pointers,
Available_Length »> Available_Length,
Available_Head •> Available_Head,
Available_Tail -> Available_Tail);

function New_Node return Pointers
renaaes Aval lableSpaceOperat ions. New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renaaes Available_Space_Operations.Save_Node;

procedure Save_List (Saved_Head : in Pointers;
Saved Tail : in Pointers;
NodeCount : in POSITIVE)

renaaes Avallable_Space_Operations.Save_List;

pragma PAGE;
procedure Initialize (Queue : in out Queues) is

— declaration section

CAMP Software Detailed Design Document Page 1899

,^' Current_Length : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

— — begin procedure Initialize

begin

if Current_Length => -1 then

— handle an uninitialized queue
Head := New Node;
Tail :- Headf;
Current_Length := 0;

elsif CurrentJLength > 0 then

— handle a queue that has something in it
Clear Queue(Queue => Queue);

else

— current length - 0 so it is already initialized
null;

end if;

end Initialize ;

pragma PAGE;
procedure Clear Queue (Queue : in out Queues) is

— declaration section

CurrentJLength : INTEGER renames Queue.Current_Length;
Head : Pointers renames Queue.Head;
Tail : Pointers renames Queue.Tail;

ThisNode : Pointers;

— —begin procedure Clear Queue

begin

— make sure this is an initialized queue
it Current_Length = -1 then

raise Queue_Not_Initialized;

elsif Current Length > 0 then

CAMP Software Detailed Design Document Page 1900

— placed nodes in the available space list
Save_List (Savedjtead => Head.Next,

SavedJTail => Tail,
Node_Count => Current_Length);

— reinitialize queue variables
Current_Length
Head.Next
Tail

= 0;
= null;
- Head;

end if;

end Clear_Queue ;

pragma PAGE;
procedure Free_Memory is

— declaration section

Node To Be Freed : Pointers;

— — begin procedure Free Memory

begin

Clear Out Available_Space_List:
vhlle Aval lab leHead /- Available Tail loop

Node To Be Freed :- Available_Head;
AvaiIabIe_Head :> Avallable_Head.Next;
Free_Node (Which_Node ■> Node~To_Be_Freed);

end loop Clear_Out_Available_Space_List;

Available_Length :■ 0;

end Free Memory ;

pragaa PAGE;
procedure Add_Element (New_Element

New_Priority
Queue

in Elements;
in Priorities;
in out Queues) is

— declaration section

Current_Length
Head
Tail

Before
Here

: INTEGER renames Queue.Current_Length;
: Pointers renames Queue.Head;
: Pointers renames Queue.Tail;

: Pointers;
: Pointers;

«r

«

CAMP Software Detailed Design Document Page 1901

— —begin procedure Add Element

begin

— make sure queue has been initialized
if Current_Length = -1 then

raise Queue_Not_Initialized;
end if;

—find the nodes which are to go before and after the new element
Before := Head;
loop

exit when (Before ■ Tail) or else
(NewPriority > Before.Next.PRIORITY);

Before :» Before.Next;
end loop;

— now get a new node
Here :- New Node;

— set up the new node
Here.PRIORITY
Here.Data
Here.Next
Before.Next

New_Priority;
New_Element;
Before.Next;
Here;

— readjust the tail, if required
if Before - Tail then

Tail :■ Here;
end if;

— now adjust the queue
Current_Length :. Current_Length + 1;

end AddJBlement ;

pragna PAGE;
procedure Retrieve_EIement (Queue : in out Queues;

Old Element : out Elements) is

— declaration section

CurrentLength : INTEGER renames Queue.GurrentLength;
Head : Pointers renames Queue.Head;

This_Node : Pointers;

— —begin procedure Retrieve Element

begin

— make sure an element is available

CAMP Software Detailed Design Document Page 1902

if Current_Length = -1 then
raise Queue_Not_Initialized;

elsif Current_Length = 0 then
raise Queue_Empty;

end if;

— save dummy node in the available space list
ThisNode := Head;
Head •- Head.Next;
Save_Node (Saved_Node => This_Node);

— retrieve element (its node becomes the new dummy node)
OldElement :» Head.Data;

— update queue status
Current_Length := Current_Length - 1;

end Retrieve_Element ;

pragma PAGE;
function Peek. (Queue : in Queues) return Elements is

— declaration section

CurrentLength : INTEGER renaaes Queue.Gurrent_Length;
Head : Pointers renaaes Queue.Head;

— —begin function Peek

begin

— make sure something is there to look at
if Gurrent_Length = -1 then

raise Queue_No^Initialized;
elsif GurrentJLength - 0 then

raise Queue_Empty;
end if;

return Head.Next.Data;

end Peek ;

pragma PAGE;
function Queue Status (Queue : in Queues) return Queue Statuses is

— declaration section

GurrentJLength : INTEGER renames Queue.Gurrent_Length;
Status : Queue Statuses;

CAMP Software Detailed Design Document Page 1903

— —begin function Queue Status

begin

if Current_Length = -1 then
Status := Uninitialized;

elsif Current_Length ■ 0 then
Status :■ Empty;

else
Status !• Available;

end if;

return Status;

end Queue Status ;

pragma PAGE;
function Queue Length (Queue : in Queues) return NATURAL is

— declaration section

Current_Length : INTEGER renaaes Queue.Gurrent_Length;

jiXk — — ~ -~————

Ä^ — —begin juncUon QueueLenglh

begin

— make sure the queue has a length
if CurrentJLength - -1 then

raise Queue_Not_Initialized;
end if;

return Gurrent_Length;

end Queue_Length ;

pragaa PAGE;
function DotNext (Ptr s in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

pragaa PAGE;
procedure SetNext (Ptr : in Pointers;

Ptr_Dot_Next : in Pointers) is
begin

Ptr.Next := Ptr_Dot_Next;
end Set Next;

tffy pragma PAGE;

— begin package Unbounded Priority jiueue

CAMP Software Detailed Design Document Page 1904

— (see header for package body for details)

begin

— —sei up available space list if one is desired
if Initial_Available_Space_Size > 0 then

Add Nodes To Available_Space_List:
lor I In T. .Initial_Available_Space_Size loop

Avallable_Tail.Next := nev Nodes;
AvailableTail ;- Aval lable_Tail.Next;

end loop Add_Nodes_To_Available_Space_List;

Available_Length := Initial_Available_Space_Si2e;

end if;

end Unbounded Priority Queue;

I

w

m

CAMP Software Detailed Design Document Page 1905

separate (Abstract_Data_Structures)
package body Bounded_Stack. is

pragma PAGE;
procedure Clear_Stack (Stack : out Stacks) is

begin

Stack.Top := 0;

end Clear_Stack ;

pragma PAGE;
procedure Add_Element (New_Element : in Elements;

Stack : in out Stacks) is

— declaration section

LIST : Lists renames Stack.LIST;
Top : Stack_Length_Range renames Stack.Top;

— begin procedure Addßlement

begin

— make sure the slack is not already fitll
if Top - Stack_Size then

raise StackFull;
end if;

—add element to the stack
Top :- Top + 1;
LIST(Top) :« Nev_Element;

end Add_Element ;

pragma PAGE;
procedure RetrieveElement (Stack : in out Stacks;

Old Element : out Elements) is

— declaration section

LIST : Lists renames Stack.LIST;
Top : Stack Length Range renames Stack.Top;

— — begin procedure Retrieve Element

begin

CAMP Software Detailed Design Document Page 1906

— make sure there is something in the stack to retrieve
it Top - 0 then

raise Stack_Empty;
end if;

— retrieve and remove the top element from the stack
Old_Element := LIST(Top);
Top := Top - 1;

end Retrieve_Element ;

pragma PAGE;
function Peek (Stack : in Stacks) return Elements is

— declaration section

LIST : Lists renames Stack.LIST;
Top : Stack Length Range renames Stack.Top;

— begin function Peek

begin

— make sure there is something in the slack
if Top - 0 then

raise Stack_Empty;
end if;

— return value in top element of the slack
return LIST(Top);

end Peek ;

pragma PAGE;
function Stack Status (Stack : in Stacks) return Stack Statuses is

— declaration section

Top : Stack_Length_Range renames Stack.Top;

Status : Stack Statuses;

— begin function Slack Status

begin

if Top - 0 then
Status :• Empty;

elsif Top = StackSize then

CAMP Software Detailed Design Document Page 1907

Status := Full;
else

Status := Available;
end if;

return Status;

end StackStatus ;

pragma PAGE;
function StackLength (Stack : in Stacks) return StackLengthRange is

begin

return Stack.Top;

end StackJLength ;

end Bounded Stack;

CAMP Software Detailed Design Document Page 1908

vith UncheckedDeallocation;
separate (Abstract_Data_Structures)
package body Unbounded Stack is

— declaration section

— — this pointer is accessed ONLY when setting up the Available Space
Initial_Head : Pointers :■ new Nodes;

Available Space : Stacks :■ (Current_Length ■> 0,
Top => Initial_Headt
Bottom -> Inltial_Head);

AvailableLength : INTEGER renaaes AvailableSpace.CurrentLength;
Available_Top : Pointers renames Avallable_Space.Top;
Available_Bottom : Pointers renames Avallable_Space.Bottom;

procedure Free is new Unchecked_Deallocation
(Object -> Nodes,

NAME -> Pointers);

procedure Free_Node (Vhich_Node : in out Pointers)
renames Free;

function Dot_Next (Ptr : in Pointers) return Pointers;

procedure Set_Next (Ptr : in Pointers;
PtrJ)ot_Next : in Pointers);

package Available_Space_Operations is new
AvailableSpaceListOperations

(Nodes -> Nodes,
Pointers => Pointers,
AvailableLength ■> Available_Length,
Available Head ■> AvailableTop,
Available_Tail -> Avallable_Bottorn);

function New_Node return Pointers
renames Available_Space_Operations.New_Node;

procedure Save_Node (Saved_Node : in Pointers)
renames Aval lableSpaceOperat ions. SaveNode;

procedure Save_List (Saved_Head : in Pointers;
Saved Tail : in Pointers;
Node_Count : in POSITIVE)

renames Avallable_Space_Operations.SaveJList;

pragma PAGE;
procedure Initialize (Stack : in out Stacks) is

— declaration section

CAMP Software Detailed Design Document Page 1909

M
^ Current_Length : INTEGER renames Stack.Current_Length;

Top : Pointers renames Stack.Top;
Bottom : Pointers renames Stack.Bottom;

— —begin procedure Initialize

begin

if Current_Length » -1 then

— handle an uninitialized stack
Top
Bottom
Current Length

New_Node;
Top;
0;

elsif Current_Length > 0 then

— handle a stack thai has elements in it
ClearStack (Stack -> Stack);

else

— current length = 0, so do nothing
null;

end if;

end Initialize ;

pragma PAGE;
procedure Clear Stack (Stack : in out Stacks) Is

— declaration section

CurrentLength : INTEGER renames Stack. Current_Length;
Top : Pointers renames Stack.Top; ~
Bottom : Pointers renames Stack.Bottom;

This_Node z Pointers;

— — begin procedure ClearStack

begin

— make sure slack has been initialized
if Current_Length « -1 then

raise StackNotlnitialized;

— make sure there is something in the stack
elsif CurrentLength /• 0 then

CAMP Software Detailed Design Document Page 1910

— placed nodes in (he available space list
Save_List (Saved_Head => Top.Next,

SavedJTail => Bottom,
Node_Count => Current_Length);

— reinitialize slack variables
Top.Next
Bottom
Current_Length

end if;

end Clear Stack ;

pragaa PAGE;
procedure Free Memory is

— declaration section

This_Node : Pointers;

— -begin procedure Free Memory

* null;
= Top;
- 0;

begin

Deallocate_Nodes In Available Space_List:
while AvailabIe_Top /• AvaTlable_Bottom loop

This Node :■ Available_Top;
AvaiIable_Top i- Available Top.Next;
FreeNode (Which_Node «> THis_Node);

end loop Deallocate_Nodes_In_Available_Space_List;

AvailableLength :> 0;
Avallable_Top.Next »■ null;

end Free_Memory ;

pragaa PAGE;
procedure Add_Element (New_Element : in Elements;

Stack : in out Stacks) is

■ declaration section

CurrentLength : INTEGER renanes Stack.CurrentLength;
Top : Pointers renaaes Stack.Top;

Ptr : Pointers;

« •
' • •

i

CAMP Software Detailed Design Document Page 1911

— — begin procedure Add Element

begin

if Current_Length - -1 then
raise Stack Not Initialized;

end if;

—get a node and initialize it
Ptr NewNode;

Ptr.Data Nev_Element;

— place the node on the stack
Ptr.Next Top;
Top Ptr;

CurrentLength CurrentLength * 1;

end Add Element ;

pragma PAGE;
procedure RetrieveBlement (Stack : in out Stacks;

01d_Bleaent t out Blenents) is

— declaration section

CurrentLength : INTBGBR
Top : Pointers

Stack.Current_Length;
Stack.Top; ~

This Node : Pointers;

— — begin procedure Retrieve Element

begin

— make sure there is something to retrieve
if Current Length - -1 then

raise Stack Not Initialized;
elsif Current length - 0 then

raise Stac£ Bapty;
end if;

— retrieve data in the top node
01d_Bleaent :> Top.Data;

— dispose of top node and adjust the stack
T.his_Node Top;
Top Top.Next;

SaveNode (SavedNode -> ThisNode);
Current_Length Current_Length - 1;

end Retrieve Blement ;

CAMP Software Detailed Design Document Page 1912

pragma PAGE;
function Peek (Stack : in Stacks) return Elements is

— declaration section

Current_Length : INTEGER renames Stack.Current_Length;
Top : Pointers renames Stack.Top;

— —begin Junction Peek

begin

— make sure there is something to peek at
if Gurrent_Length ■ -1 then

raise Stack_Not_Initialized;
elsif Current Length ■ 0 then

raise Staclc Empty;
end if;

— returned desired element
return Top.Data;

end Peek ;

pragma PAGE;
function Stack Status (Stack : in Stacks) return Stack Statuses is

— declaration section

Current_Length : INTEGER renames Stack.Current_Length;

Status : Stack Statuses;

— — begin function Stackßtatus

begin

if Gurrent_Length - -1 then
Status r« Uninitialized;

elsif Gurrent_Length - 0 then
Status := Empty;

else
Status :■ Available;

end if;

CAMP Software Detailed Design Document Page 1913

return Status;

end Stack_Status ;

pragma PAGE;
function Stack Length (Stack ; in Stacks) return NATURAL is

— declaration section

CurrentLength : INTEGER renames Stack.CurrentLength;

— — begin function Stack Length

begin

— make sure stack has been initialized
if Current_Length ■ -1 then

raise Stack_Not_Initialized;
end if; ~

return Gurrent_Length;

end Stack_Length ;

pragma PAGE;
function Dot_Next (Ptr : in Pointers) return Pointers is
begin

return Ptr.Next;
end Dot_Next;

pragma PAGE;
procedure Set_Next (Ptr : in Pointers;

Ptr_Dot_Next : in Pointers) is
begin

Ptr.Next :« Ptr_Dot_Next;
end Set_Next;

pragma PAGE;

— begin package Unbounded Stack
— {see header for package body for details)

begin

— —set up available space list if one is desired
if Initlal_Avallable_Space_Si2e > 0 then

Add Nodes To Available_Space_List:
lor I In l..Initial_Available_Space_Size loop

AvailableBottorn.Next :- new Nodes;
AvailableJBottom :> Available_Bottoin.Next;

end loop Add Nodes To Available Space List;

CAMP Software Detailed Design Document Page 1914

Available_Length := Initial_Available_Space_Size;

end if;

end Unbounded Stack;

CAMP Software Detailed Design Document Page 1915

3.3.8 GENERAL UTILITIES

G

w'jfP'.rn.i'wim'iiii-ii ■ i' i >» ■mn1 wvm vm^ ilt'»i'»»'^iTnfv^n'vi'^is;i^fi^.'i^j I^M ^ii.-i.w.'i^fi^MfTwj'i.^m i-«. VXT « i« n»^ w'^i i y ^ » w-i^ ww »^ II^«^»H

CAMP Software Detailed Design Document

(This page intentionally left blank.)

1

THIS REPORT HAS BEEN DELIMITED

AND CLEARED FOR PUBLIC RELIASE

UNDER DOD DIRECTIVE 3200.20 AND
Nu RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE.

)!STR1BUTI0N STATEffNT A

APPROVED FOR PUBLIC RELIASEj

DISTRIBUTION UNLIMITED.

(ft

CAMP Software Detailed Design Document Page 1917

3.3.8.1 GENERALJJTILITIES TLCSC P361 (CATALOG #P267-0)

This package provides a group of general utility routines used in a missile
system.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R141.

3.3.8.1.2 LOCAL ENTITIES DESIGN

None.

3.3.8.1.3 INPUT/OUTPUT

None.

3.3.8.1.4 LOCAL DATA

None.

3.3.8.1.5 PROCESS CONTROL

Not applicable.

3.3.8.1.6 PROCESSING

The following describes the processing performed by this part:

package body General_Utilities is

end General_Utilities;

3.3.8.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.1.8 LIMITATIONS

None.

®>

CAMP Software Detailed Design Document Page 1918

3.3.8.1.9 LLCSC DESIGN **

None.

3.3.8.1.10 UNIT DESIGN

3.3.8.1.10.1 INSTRUCTION_SET_TEST UNIT DESIGN (CATALOG #P268-0)

This part is a generic function which checks for proper processor operation by
executing a function and comparing the result to the expected result. If the
expected and derived values match, "True" is returned. The part's generic
parameter may be any type, but a Test function must be supplied which matches
the parameter defined in the specification.

3.3.8.1.10.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R141.

3.3.8.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.8.1.10.1.3 INPUT/OUTPUT m

GENERIC PARAMETERS:

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| ReturnValues | private | May be any type. The type which the included |
| j I function must return. j

Subprograms:

The following table summarizes the generic formal subroutines required by this
part:

| Name | Type | Description |

| Test | function | the function to be tested, it must return a value of |
j I j Return_Values type. j

FORMAL PARAMETERS: „^

%

CAMP Software Detailed Design Document Page 1919

The following table describes this part's formal parameters:

| Name | Type | Mode | Description |

| Correct_Answer | Return_Values | in | The answer which is to be compared \
I I j j to what the function returns. |

3.3.8.1.10.1.4 LOCAL DATA

None.

3.3.8.1.10.1.5 PROCESS CONTROL

Not applicable.

3.3.8.1.10.1.6 PROCESSING

The following describes the processing performed by this part:

function Instruction_Set Test(Correct Answer : Return_Values)
return BOOLEAN is

begin
return Test » Correct_Answer;
— returns true if function and answer are the same
— false if they are not

end Instruction_Set_Test;

3.3.8.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.1.10.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1920

(This page left intentionally blank.)

i

CAMP Software Detailed Design Document

package body General Utilities is

Page 1921

function Instruction_Set_Test(Correct Answer : Return_Values)
return BOOLEAN is

begin
return Test = Correct_Answer;
— returns true if function and answer are the same
— false if they are not

end Instruction_Set_Test;

end General Utilities;

Ct

m

CAMP Software Detailed Design Document Page 1922

(This page left intentionally blank.)

i

t

CAHP Software Detailed Design Document Page 1923

3.3.8.2 COMMUNICATION_PARTS TLCSC P602 (CATALOG #P691-0)

This package provides a group of communication routines used in a missile
system.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.2.1 REQUIREMENTS ALLOCATION

This part meets requirement R137.

3.3.8.2.2 LOCAL ENTITIES DESIGN

None.

3.3.8.2.3 INPUT/OUTPUT

None.

3.3.8.2.4 LOCAL DATA

None.

3.3.8.2.5 PROCESS CONTROL

Not applicable.

3.3.8.2.6 PROCESSING

The following describes the processing performed by this part:

package body Coramunication_Parts is

end Communication_Parts;

3.3.8.2.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.2.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1924

3.3.8.2.9 LLCSC DESIGN

3.3.8.2.9.1 UPDATE_EXCLUSION PACKAGE DESIGN (CATALOG #P692-0)

This part is a generic package containing a task providing a mechanism for
ensuring that data accessed by more than one asymchronous task is properly
protected for such accesses. The part's generic parameter can be any type.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.8.2.9.1.1 REQUIREMENTS ALLOCATION

This part meets requirement R137.

3.3.8.2.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.8.2.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS!

Data types:

The following table summarizes the generic formal types required by this part:

| Name | Type | Description |

| ElementJType | private | Allows any type to be protected I

Data objects:

The following table summarizes the generic formal objects required by this
part:

| Name | Type | Description |

| Initial_Value | ElementJType | Allows the data type to be initialized so 1
| j I that the first time StartUpdateRequest is j
I j j called a constraint error is not raised by j
| j j some uninitialized value. j

FORMAL PARAMETERS:

The following table describes the formal parameters for the task entries in the
task contained in this part.

CAMP Software Detailed Design Document Page 1925

Task Name | Mode Type

ElenentJType

ElementJType

Element Type

Description

Read_
Update

Read_Request

Start_Update_
Request

Complete_
Update
Request

Output

Output

Input

Contains the value of
the returned data.
Contains the value of
the returned data.

Contains the new value of
the data to replace
the protected data.

3.3.8.2.9.1.4 LOCAL DATA

None.

3.3.8.2.9.1.5 PROCESS CONTROL

Not applicable.

3.3.8.2.9.1.6 PROCESSING

The following describes the processing performed by this part:,

package body Update_Exclusion is

task Read_Update is
entry Task_Read_Request(Requested Data : out ElementJType);
entry Task~Start_Update_Request(0Td_Data : out ElementJType);
entry Task_Complete_Update_Request(New_Data s in ElementJType);

end ReadJLIpdate;

procedure Attempt_Read(Requested_Data : in out ElementJType;
Result : out Rendezvous_Flags) is

begin
select

Read Update.Task_Read_Request(Requested_Data);
Result := Success;

Else
Result :- Failure;

end select;
end Attempt_Read;

procedure Attempt_Read_Wait(Requested_Data : in out ElementJType;
Result : out Rendezvous_Flags) is

begin
Read Update.Task_Read_Request(Requested_Data);
Result := Success;

end Attempt_Read_Wait;

procedure Attempt_Read_Delay(Requested_Data : in out ElementJType;
Result : out Rendezvous_Flags;
Delay Time : in DURATION) is

CAMP Software Detailed Design Document Page 1926

begin
Result := Failure;
select

Read Update.Task._Read_Request(Requested_Data);
Result := Success;

or
DELAY Delay_Time;

end select;
end Atteinpt_Read_Delay;

procedure A».tempt_Start_Update(01d_Data : in out ElementJType;
New_Id : out Rendezvous_Ids;
Result : out Rendezvous_Flags) is

begin
select

Read_Update.Task_Start_Update_Request(01d_Data »> Old_Data);
New_Id := Id;
Result i« Success;

else
Result ;■ Failure;
New Id := 0;

end select;
end Attempt_Start_Update;

procedure Attempt_Start_Update_Wait(01d_Data : in out Element_Type;
New_Id : out Rendezvous_Ids;
Result : out Rendezvous_Flags) is ^|

begin "
Read Update.Task_Start_Update_Request(OldData ■> OldData);
New_Td :■ Id; "
Result :■ Success;

end AttemptStartUpdateWait;

procedure Attempt_Start_Update_Delay(Old_Data : in out ElementJType;
New_Id : out Rendezvous_Ids;
Result ; out Rendezvous_Flags;
Time : in DURATION) is

begin
Result J- Failure;
select

Read_Update.Task_Start_Update_Request(01d_Data -> 01d_Data);
New_Td :■ Id;
Result :« Success;

or
DELAY Time;

end select;
end Attempt_Start_Update_Delay;

procedure Attempt_Complete_Update(New_Data : in ElementJType;
Passed_Id ; in Rendezvous_Ids;
Result : out Rendezvous_Flags) is

begin
if Passedld = Id then

select Al
Read Update.Task_Complete_Update_Request(New_Data); "W
Result :- Success;

else

CAMP Software Detailed Design Document Page 1927

Result := Failure;
end select;

else
Result := Bad_Id;

end if;
end Attempt_Coraplete_Update;

task body Read_Update is

Protected_Data : ElementJType := Initial_Value;

begin
process_con t inually;

loop
select

accept Task Read Request (Requested_Data : out Element Type)
do

Requested Data :> Protected_Data;
end Task_Rea3_Request;

or
accept Task Start_Update_Request (Old Data ; out Element Type)
do

OldData :■ Protected_Data;
end Task_Start_Update_Request;

accept Task Complete Update Request (New Data : in Element Type)
do

Protected_Data :- New_Data;
end Task_Complete_Update_Reques t;

if Id - RendezvousIds'LAST then
Id :■ Rendezvouslds'FIRST + 1;

else
Id :■ Rendezvt JS_Ids'SUCC(Id);

end if;
or

terminate;
end select;

end loop process_continually;
end Read_Update;

end Update_Exclusion;

3.3.8.2.9.1.7 UTILIZATION OF OTHER ELEMENTS

None.

3.3.8.2.9.1.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1928

3.3.8.2.9.1.9 LLCSC DESIGN

None.

3.3.8.2.9.1.10 UNIT DESIGN

None.

3.3.8.2.10 UNIT DESIGN

None.

jctf»

CAMP Software Detailed Design Document Page 1929

package body CommunicationParts is

package body Update_Exclusion is

task Read_Update is
entry Task_Read_Request(Requested Data : out Element_Type);
entry Task_Start_Update_Request(0Td_Data : out Element_Type);
entry Task_Complete Update_Request(New_Data : in Element_Type);

end Read_Update;

procedure Attempt_Read(Requested_Data : in out ElementJType;
Result : out Rendezvous_Flags) is

begin
select

Read Update.Task_Read_Request(Requested_Data);
Result :■ Success;

else
Result :» Failure;

end select;
end Attempt_Read;

procedure Attempt_Read_Vait(Requested_Data : in out Element_Type;
Result : out Rendezvous_Flags) is

begin
Read Update.Task_Read_Request(Requested_Data);
Result :■ Success;

end Attempt_Read_Wait;

procedure Attempt_Read_Delay(RequestedData : in out Element_Type;
Result : out RendezvousFlags;
Delay_Time : in DURATION)~ is

begin
Result :« Failure;
select

Read Update.Task_Read_Request(Requested_Data);
Result !- Success;

or
delay DelayJTime;

end select;
end Attempt_Read_Delay;

procedure Attempt_Start_Update(OldData : in out ElementJType;
Newld : out Rendezvous_Ids;
Result : out Rendezvous_Flags) is

begin
select

Read_Update.Task_Start_Update_Request(01d_Data -> 01d_Data);
New_Td :» Id;
Result := Success;

else
Result :■ Failure;
New Id :- 0;

end select;
end Attempt_Start_Update;

procedure Attempt_Start_Update_Wait(01d_Data : in out ElementJType;
New Id : out Rendezvous Ids;

CAMP Software Detailed Design Document Page 1930

Result : out Rendezvous_Flags) is
begin

Read_Update.Task_Start_Update_Request(01d_Data => 01d_Data);
New_Td := Id;
Result := Success;

end Attempt_Start_Update_Wait;

procedure Attempt_Start_Update_Delay(01d_Data : in out ElementJType;
New_Id : out Rendezvous_Ids;
Result : out Rendezvous Flags;
Time : in DURATION) is

begin
Result ;= Failure;
select

Read_Update.Task_Start_Update_Request(01d_Data -> 01d_Data);
New_Id ;- Id;
Result :■ Success;

or
delay Time;

end select;
end Attempt_Start_Update_Delay;

procedure Attempt_Complete_Update(Nev_Data : in ElementJType;
Passed_Id : in Rendezvöus_Ids;
Result : out Rendezvous~Flags) is

begin
if Passedld - Id then M

select- ^
Read Update.Task_Complete_Update_Request(NewData);
Result :• Success;

else
Result :■ Failure;

end select;
else

Result :■ Badld;
end if;

end Attempt_Complete_Update;

task body Read_Update is

Protected_Data : Element_Type :« Initial_Value;

begin
Process_Con t inually:

loop
select

accept Task Read Request (Requested Data : out Element Type)
do

Requested Data :■ Protected_Data;
end Task_Rea3_Reques t;

or
accept Task_Start_Update_Request (01d_Data : out ElementJType)
do

01d_Da£a ;= Protected_Data; idB
end Task_Start_Update_Request; ^x

accept Task Complete Update Request (New Data : in Element Type)

CAMP Software Detailed Design Document Page 1931

'' do
Protected_Data := New_Data;

end Task_Coniplete_Update_Request;

if Id = Rendezvous_Ids'LAST then
Id := Rendezvous_Ids'FIRST + 1;

else
Id := Rendezvous_Ids'SUCC(Id);

end if;
or

terminate;
end select;

end loop Process_Continually;
end Read_Update;

end Update_Exclusion;

end Communication Parts;

at

H0

CAMP Software Detailed Design Document Page 1932

(This page left intentionally blank.)

i

CAMP Software Detailed Design Document Page 1933

3.3.9 EQUIPMENT INTERFACES

&X:

CAMP Software Detailed Design Document Page 1934

m

(This page, intentionally left blank.)

/in|

.yTu

CAMP Software Detailed Design Document Page 1935

3.3.9.1 CLOCKHANDLER TLCSC P634 (CATALOG #P270-0)

This package contains the routines required to maintain an internal clock.

The following routines are provided to manipulate the clock: o Reset clock
(effectively zeroes out the clock) o Synchronize clock (effectively sets the
clock to the specified time) o Current time (effectively reads the internal
clock)

In addition, a ConvertedJTime routine is provided to convert a CALENDAR. TIME
to the "local time zone".

An ElapsedJTime routine is provided to act as a stopwatch. It returns the
elapsed time between successive calls to the function. This function is not
affected by resetting or synchronizing the clock.

The decomposition for this part is the same as that shown in the Top-Level
Design Document.

3.3.9.1.1 REQUIREMENTS ALLOCATION

This part meets CAMP requirement R046.

3.3.9.1.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.3 INPUT/OUTPUT

GENERIC PARAMETERS:

This part is a parameterless generic.

3.3.9.1.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| ReferenceTime | CALENDAR.TIME | N/A | Internal reference clock |
| ill maintained by this part j
I Time_Last_Called j CALENDAR.TIME j N/A j Last time the Elapsed |
j III Time function was called j

CAMP Software Detailed Design Document Page 1936

3.3.9.1.5 PROCESS CONTROL

Not applicable.

3.3.9.1.6 PROCESSING

The following describes the processing performed by this part:

package body Clock_Handler is

use CALENDAR;

— —local declarations

Reference_Tirae : CALENDAR.TIME := CALENDAR.CLOCK;
Time_Last_Called : CALENDAR.TIME :- CALENDAR.CLOCK;

end Clock_Handler;

3.3.9.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units were with'd by the package specification of this
part:

1. CALENDAR

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

| Name | Type | Source | Description |

| Clock | Function | Calendar | Returns the internal system time |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

| TIME | private | CALENDAR | Implementation-dependent representation of |
i | ! | time j
| DURATION | fixed | STANDARD | Represents a length of time !

CAMP Software Detailed Design Document Page 1937

3.3.9.1.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

Name | When/Why Raised

STANDARD. | Raised by the following routines if a difference in times
TIME ERROR | does not fit within the range of type STANDARD.DURATION:

o Current_Time
o Converted Time
o ElapsedJlTme
o Synchronize Time

3.3.9.1.9 LLCSC DESIGN

None.

3.3.9.1.10 UNIT DESIGN

3.3.9.1.10.1 CURRENTJTIME (FUNCTION BODY) UNIT DESIGN

This function returns the time of the current time of the clock. The current
time is the time which has passed since the last time the internal clock was
reset or since the time specified when the clock was synchronized.

3.3.9.1.10.1.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.1.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.1.3 INPUT/OUTPUT

None.

3.3.9.1.10.1.4 LOCAL DATA

None.

3.3.9.1.10.1.5 PROCESS CONTROL

Not applicable.

CAMP Software Detailed Design Document Page 1938

3.3.9.1.10.1.6 PROCESSING

The following describes the processing performed by this part:

function CurrentJTime return DURATION is

begin

return CALENDAR.CLOCK - ReferenceJTime;

end CurrentJTime;

3.3.9.1.10.1.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with'd and are visible to this
part:

1. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

| Name | Type | Source | Description |

| Clock | Function | Calendar | Returns the internal system time |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

| TIME | private | CALENDAR | Implementation-dependent representation of |
I I I I time |
| DURATION | fixed j STANDARD | Represents a length of time j

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock_Handler:

t.
CAMP Software Detailed Design Document Page 1939

| Name | Type | Value | Description |

| Reference_Time | CALENDAR.TIME | N/A | Internal reference clock |
j III maintained by this part

3.3.9.1.10.1.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

| Name | When/Why Raised j

| STANDARD. j Raised if the elapsed time does not fit within the range of j
j TIMEERROR | type STANDARD. DURATION |

3.3.9.1.10.2 CONVERTEDJTIME (FUNCTION BODY) UNIT DESIGN

This function converts an input time to a local time (i.e., converts it to the
"local time zone"). A local time is defined as the difference between the
input time and the internal reference time.

3.3.9.1.10.2.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.2.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.2.3 INF'JT/OUTPUT

FORMAL PARAMETERS!

The following table describes this part's formal parameters:

| Name | Type j Mode j Description |

| ClockTime j CALENDAR.TIME j In | Time to be coverted to a local tiirj |

3.3.9.1.10.2.4 LOCAL DATA

None.

CAMP Software Detailed Design Document Page 1940

3.3.9.1.10.2.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.2.6 PROCESSING

The following describes the processing performed by this part:

function ConvertedJIime (ClockJTime : in CALENDAR.TIME)
return DURATION Is

begin

return ClockJTime - Refer.ence_Time;

end ConvertedJTime;

3.3.9.1.10.2.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with'd and are visible to this
part:

1. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

| TIME | private | CALENDAR | Implementation-dependent representation of
III! time
I DURATION I fixed | STANDARD j Represents a length of time

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock_Handler:

| Name | Type | Value | Description |

| ReferenceJTime | CALENDAR.TIME | N/A | Internal reference clock |
j III maintained by this part j

<66

IP

CAMP Software Detailed Design Document Page 1941

3.3.9.1.10.2.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

| Name | When/Why Raised |

| STANDARD. | Raised if the elapsed time does not fit within the range of |
| TIME_ERR0R | type STANDARD.DURATION j

3.3.9.1.10.3 RESETCLOCK (PROCEDURE BODY) UNIT DESIGN

This procedure effectively zeroes out the internal clock by setting the
internal reference time equal to the system time.

3.3.9.1.10.3.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.3.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.3..3 INPUT/OUTPUT

None.

3.3.9.1.10.3.4 LOCAL DATA

None.

3.3.9.1.10.3.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.3.6 PROCESSING

The following describes the processing performed by this part:

procedure Reset_Clock is

begin

Reference_Time := CALENDAR.CLOCK;

end Reset Clock;

CAMP- Software Detailed Design Document Page 1942

3.3.9.1.10.3.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with'd and are visible to this
part:

1. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

| Name | Type | Source | Description |

| Clock | Function | Calendar | Returns the Internal system time |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

TIME	private	CALENDAR	Implementation-dependent representation of
	j	time	
DURATION j fixed	STANDARD j Represents a length of time		

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENTi

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data object^:

The following table summarizes the objects required by this part and defined in
the package body of Clock_Handler:

| Name | Type | Value | Description |

| ReferenceTime | CALENDAR. TIME | N/A | Internal reference clock |
I III maintained by this part j

3.3.9.1.10.3.8 LIMITATIONS

None.

CAMP Software Detailed Design Document Page 1943

3.3.9.1.10.4 SYNCHi<ONi:ZE_CLOCK (PROCEDURE BODY) UNIT DESIGN

This procedure effectively sets the internal clock to a user-specified time.
It does this by setting the reference time to a system (CALENDAR) time - the
desired time. By default, the system time used is CALENDAR.CLOCK by the user
may supply his own "system" time.

3.3.9.1.10.4.1 REQUIREMENTS ALLOCATION

This part partially meets requirement CAMP R046.

3.3.9.1.10.4.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.4.3 INPUT/OUTPUT

FORMAL PARAMETERS:

The following table describes this part's formal parameters:

| Name Type Mode Description

| NewJTime

Clockjime |

STANDARD. | In
DURATION |
CALENDAR.TIME I In

| Time to which the internal clock
j should be set
I System time

3.3.9.1.10.4.4 LOCAL DATA

None.

3.3.9.1.10.4.5 PROCESS CONTROL

Not applicable.

3.3.9.1.10.4.6 PROCESSING

The following describes the processing performed by this part:

procedure Synchronize Clock
(NewJTime : in STANDARD.DURATION;
Clockjime : in CALENDAR.TIME := CALENDAR.CLOCK) is

begin

ReferenceJTime :■ ClockJTime - NewJTime;

end Synchronize Clock;

CAMP Software Detailed Design Document Page 1944

3.3.9.1.10.4.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with'd and are visible to this
part:

1. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

| TIME | private | CALENDAR | Implementation-dependent representation of |
I I I I time |
I DURATION I fixed | STANDARD j Represents a length of time |

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Datfi objects:

Thu following table summarizes the objects required by this part and defined in M
tho package body of ClockHandler:

| Name | Type | Value | Description |

| ReferenceTime | CALENDAR.TIME | N/A | Internal reference clock |
j ill maintained by this part |

3.3.9.1.10.4.8 LIMITATIONS

None.

3.3.9.1.10.5 ELAPSED_TIME (FUNCTION BODY) UNIT DESIGN

This function returns the time since the la : call to this function. The first
call to this function will result in the ti .e since the package was elaborated.
This function is not affected by calls to Reset_Clock or Synchronize_Clock.

3.3.9.1.10.5.1 REQUIREMF.NTS ALLOCATION

This part partially meets requirement CAMP R046.

CAMP Software Detailed Design Document Page 1945

3.3.9.1.10.5.2 LOCAL ENTITIES DESIGN

None.

3.3.9.1.10.5.3 INPUT/OUTPUT

None.

3.3.9.1.10.5.4 LOCAL DATA

Data objects:

The following table describes the data objects maintained by this part:

| Name | Type | Value | Description |

| Answer | STANDARD. | N/A | Amount of time which has elapsed since the|
j j DURATION j I last call to this function j
I NewJTime j CALENDAR. | N/A j System time j
I I TIME | | |

flth 3;3.9.1.10.5.5 PROCESS CONTROL
st

Not applicable.

3.3.9.1.10.5.6 PROCESSING

The following describes the processing performed by this part:

function Elapsed Time return STANDARD.DURATION is

—declaration section

Answer : STANDARD.DURATION;
New Time : CALENDAR.TIME :. CALENDAR.CLOCK;

— --begin function ElapsedJTime

begin

Answer :» NewJTime - Time_Last_Called;
Time_Last_Called :» NewJTime;

return Answer;

end Elapsed Time;

CAMP Software Detailed Design Document Page 1946

m
3.3.9.1.10.5.7 UTILIZATION OF OTHER ELEMENTS

The following library units were previously with'd and are visible to this
part:

1. Calendar

UTILIZATION OF EXTERNAL ELEMENTS:

Subprograms and task entries:

The following table summarizes the external subroutines and task entries
required by this part:

| Name | Type | Source | Description |

| Clock | Function | Calendar | Returns the internal system time |

Data types:

The following table summarizes the external types required by this part:

| Name | Type | Source | Description |

| TINE | private | CALENDAR | Implementation-dependent representation of | tf*
111! time 1 m
j DURATION j fixed | STANDARD j Represents a length of time j

UTILIZATION OF OTHER ELEMENTS IN TOP LEVEL COMPONENT:

The following tables describe the elements used by this part but defined
elsewhere in the parent top level component:

Data objects:

The following table summarizes the objects required by this part and defined in
the package body of Clock_Handler:

| Name | Type | Value | Description |

| Time Last_Called | CALENDAR.TIME | N/A | Last time the Elapsed |
j ~ | II Time function was called j

3.3.9.1.10.5.8 LIMITATIONS

The following table describes the exceptions propagated by this part:

CAMP Software Detailed Design Document Page 1947

| Name | When/Why Raised |

| STANDARD. | Raised if the elapsed time does not fit within the range of |
| TIME ERROR | type STANDARD.DURATION |

(•

^

CAMP Software Detailed Design Document Page 1948

(This page left intentionally blank.)

CAMP Software Detailed Design Document Page 1949

package body Clock_Handler is

use CALENDAR;

— local declarations

ReferenceJTime : CALENDAR.Time := CALENDAR.Clock;
Time_Last_Called : CALENDAR.Time :- CALENDAR.Clock;

pragma PAGE;
function Current_Time return DURATION is

begin

return CALENDAR. Clock - ReferenceTime;

end Current_Time;

pragma PAGE;
function ConvertedJTime (Clock Time : in CALENDAR.Time)

"return DURATION is

begin

return ClockJTime - ReferenceJTime;

end Converted_Time;

pragma PAGE;
procedure Reset_Clock is

begin

ReferenceTime := CALENDAR.Clock;

end Reset_Clock;

pragma PAGE;
procedure Synchronize_Clock

(NewJTime : in STANDARD.DURATION;
ClockTime : in CALENDAR.Time :- CALENDAR.Clock) is

begin

ReferenceJTime :■ Clock_Time - New_Time;

end Synchronize_Clock;

pragma PAGE;
function Elapsed Time return STANDARD.DURATION is

— declaration seclion

CAMP Software Detailed Design Document Page 1950

m
Answer : STANDARD.DURATION;
New Time : CALENDAR.Time := CALENDAR.Clock;

— —begin function Elapsed Time

begin

Answer ;= NewJTime - Time_Last_Called;
Time_Last_Called := New_Time;

return Answer;

end ElapsedJIime;

end Clock Handler;

ÄU

CAMP Software Detailed Design Document Page 1951

A (NOT USED)

Sfc

CAMP Software Detailed Design Document Page 1952

(This page intentionally left blank.)

flfy

CAMP Software Detailed Design Document Page 1953

5 (NOT USED)

ÜfliU.

•

$

CAMP Software Detailed Design Document Page 1954

(This page intentionally left blank.)

w

CAMP Software Detailed Design Document Page 1955

6 NOTES

This paragraph does not apply to this DDD.

CAMP Software Detailed Design Document Page 1956

(This page intentionally left blank.)

SUPPLEMENTARY

INFORMATION

REPLY TO
ATTN OF:

DEPARTMENT OF THE MR FORCE
WHIQHT LABORATORY (AFSC)

EQUN AIR FORCE BASE, FLORIDA. 32542-5434

MNOI p[0 •M //WJ m-1L/ 13 ^ 92

SUBJECT: Ranoval of Distribution Statonent and Export-Control Warning Notices

TO: Defense Technical Information Center
ATTN: DTIC/HAR (Mr William Bush)
Bldg 5, Cameron Station
Alexandria, VA 22304-6145

1. The following technical reports have been approved for public release by
the local Public Affairs Office (copy attached).

Technical Report Number

i . 88-I8-V0I-4
Z. 88-I8-V0I-5
3. 88-I8-V0I-6

A. 88-25-Vol-l
5. 88-25-V01-2

t. 88-62-Vol-l
•7, 88-62-V01-2
^. 88-62-V01-3

9- 85-93-Vol-l
40. 85-93-V01-2
M. 85-93-Vol-3

to. 88-
IS. 88-
M. 88-
1S. 88-
\(o. 88-
17. 88-
1&.88-
!9. 88-

18-Vol-l
I8-V0I-2
I8-V0I-7
I8-V0I-8
I8-V0I-9
18-Vol-lO
18-Vol-ll
I8-V0I-I2

AD Number

ADD 120 251
ADB 120 252
ADB 120 253

ADB 120 309
ADB 120 310

ADB 129 568
ADB 129 569
ADB 129-570

ADB 102-654 ^
ADB 102-655
ADB 102-656

ADB 120 248
ADB 120 249
ADB 120 254
ADB 120 255^
ADB 120 256
ADB 120 257^
ADB 120 258
ADB 120 259

2. If you have any questions regarding this request call me at DSN 872-4620.

LYNWS.
Chief, Scientific and Technical

Information Branch

1 Atch
AFDTC/PA Ltr, dtd 30 Jan 92

ERRMR

DEPMIWITOFTHEMiraiia
HEADQUAm»« ZUR ro»«et««lOPMBIT-re»! C6NTER(AF8C)

EQUN AIR renCE BASE, FlOmOA 329«MO0O

REPLY TO
ATTNOF: PA (Jim Swinson, 882-3931) 30 January 1992

SUBJECT: clearance for Public Release

TO: WL/MNA

The following technical reports have been reviewed and are approved for
public release: AFAII/-TR-88-18 (Volumes 1 & 2), AFATL-TR-88-18 (Volumes
4 thru 12), AFATL-TR-88-25 (Volumes 1 & 2), AFATL-TR-88-62 (Volumes 1 thru 3)
and AFA3Ji-TR-85-93 (Volumes 1 thru 3).

/Os
imU. N. PRIBYLA, Lt Col,

Chief of Public Affairs

AFDIC/PA 92-039

